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a b s t r a c t

The egocentric action recognition EAR field has recently increased its popularity due to the affordable and
lightweight wearable cameras available nowadays such as GoPro and similars. Therefore, the amount of
egocentric data generated has increased, triggering the interest in the understanding of egocentric videos.
More specifically, the recognition of actions in egocentric videos has gained popularity due to the chal-
lenge that it poses: the wild movement of the camera and the lack of context make it hard to recognise
actions with a performance similar to that of third-person vision solutions. This has ignited the research
interest on the field and, nowadays, many public datasets and competitions can be found in both the
machine learning and the computer vision communities. In this survey, we aim to analyse the literature
on egocentric vision methods and algorithms. For that, we propose a taxonomy to divide the literature
into various categories with subcategories, contributing a more fine-grained classification of the available
methods. We also provide a review of the zero-shot approaches used by the EAR community, a method-
ology that could help to transfer EAR algorithms to real-world applications. Finally, we summarise the
datasets used by researchers in the literature.
� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the introduction of the first wearable camera [122], com-
mercial and lightweight cameras such as GoPro and similars have
become widely used, producing a vast amount of first-person or
egocentric videos to analyse. These videos are recorded from the
point of view of the wearer of the camera, producing videos with
large, non-linear and unpredictable head and body motion and a
lack of global context, which pose a challenge from a machine
learning standpoint. Hence, the increasing amount of data and
the interesting setting of these types of videos have attracted the
computer vision and the machine learning communities towards
the vision-based EAR research field.

In contrast to third-person or exocentric videos, first-person or
egocentric videos contain rich intrinsic features, motivating their
use for novel approaches, i.e. without relying exclusively on
approaches from the exocentric vision literature. For example,
these features include the occlusion-free interactions with objects,
the focus on the manipulation of objects, the gaze movement and
so forth, which have been identified in the literature [106] and are
helpful to discern actions. These cues make the first-person or ego-
centric action recognition a research field on its own, apart from
the third-person vision research. In fact, exploiting the intrinsic
features of this type of vision seems to be crucial to correctly recog-
nise the content of videos [139].

Nowadays, the egocentric vision research line has been adopted
by various research groups and several solutions have been pro-
posed. Even new features such as the use of sound are being lever-
aged in recent works [9,31], as some actions cannot be
distinguished using only visual cues. Even though the field is
advancing, it still has to become as large as the third-person one.
In addition, the results are still far from being acceptable. In fact,
the majority of the research is focused on the supervised learning
setting in which labels are provided in the training stage. This
requires large annotated datasets, which is a laborious task. There
are, however, works that have analysed the use of few-shot [208]
and zero-shot [205] learning frameworks. These require a few
annotated samples at most, being more suitable for real-world
applications than the classic supervised settings. Nevertheless,
more research is required in order to steer new solutions in the
correct direction.
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1.1. Vision-based Exocentric Action Recognition

In order to settle the basis for the action recognition field (later
focused only on EAR), we briefly describe the evolution of the exo-
centric (third-person) vision-based action recognition field over
the last few years.

Before the success of Deep Learning, hand-engineered features
were used for action recognition; for instance, extracting the fore-
ground (optionally), computing features from the inputs (using,
e.g. traditional algorithms such as LBP [143,144], SIFT [116] and
SURF [18]) and applying a classifier to obtain an action prediction.
The foreground extraction can be done, for example, to segment
hands and objects in egocentric-vision frames. The other two steps
can be applied for both types of action recognition approaches.
Other approaches include computing Optical Flow OF features,
computing the skeleton and joints, trajectory-based recognition
and so forth. These solutions are also seen in the EAR literature
with small adjustments to fit better the features that can be found
in egocentric videos (e.g. hands and objects).

With Deep Learning, features are automatically extracted,
instead of manually. The exocentric action recognition field
switched to three main approaches [232]: multi-stream Convolu-
tional Neural NetworkCNNs (being the two-stream network the
most used one [174]), 3D CNN [81] and those based on Recurrent
Neural NetworkRNN, e.g. the Long-Short Term Memory LSTM
[73]. There are other methods such as those using graphs (e.g.
[13]) which can also be found within one of these categories. More-
over, thanks to the use of Neural Network NN architectures, trans-
fer learning could be applied, allowing large models to be trained
with huge datasets (Imagenet [50] for static images, UCF101
[180] for third-person videos and so forth) before being fine-
tuned on specific tasks and/or smaller datasets (egocentric data-
sets, for example).

Multi-stream networks started with two branches (the two-
stream network by [174]), taking RGB and OF frames, to extract
spatial and temporal features and a classifier on top to make the
classification. They later evolved to include more information
(such as gaze [114] or visual rhythm images [40]) or even to add
streams with varying information ([170] includes bones, joints
and their motion as input to their multi-stream setting). Later,
the computation of OF was alleviated by the proposal of [237],
which had a two-stream network learning motion features in an
end-to-end fashion, allowing a real-time processing.3D CNN (e.g.
C3D [199]) learn spatio-temporal features using the 3D convolu-
tion operation. They are computationally heavier than the multi-
stream approaches; there are even works that aimed to divide
the 3D operation into a 2D and a 1D operation (as in the Xception
network [38]). Furthermore, an approach called Two-Stream
Inflated 3D ConvNet or I3D [30] mixed these last two ideas (two-
stream network and the 3D CNN) and became an standard for
extracting spatio-temporal features.

In fact, regarding feature extraction, it was usual to have a net-
work such as an I3D extracting spatio-temporal features in a short-
term span while having an RNN such as the LSTM extracting tem-
poral features in a longer temporal span. This type of architecture
was popularised by [56] and, afterwards, many works started
applying it, e.g. [200,65,229].

The majority of these architectures can be directly applied to
egocentric videos. However, as seen in Section 2, there are better
ways to deal with egocentric videos.
1.2. Contributions and Arrangement

In this paper, we contribute the following:
176
� A taxonomy to classify EAR methods into categories and
subcategories.

� A review of the EAR proposals using this taxonomy.

The rest of the paper is arranged as follows: Section 2 presents the
aforementioned taxonomy and reviews the fine-grained classified
literature; Section 3 presents the EAR methods that use or have
the potential to be used within the the zero-shot paradigm; Sec-
tion 4 summarises the egocentric video datasets and, finally, Sec-
tion 6 provides the final conclusions.
2. Egocentric Action Recognition

The idea of using egocentric videos has only started to be
exploited in the last decade thanks to novel, lightweight and
affordable devices such as GoPro and similars. In fact, lifelogging
has become widely used. Indeed, the number of datasets in the
state of the art of the EAR field has progressively increased during
this decade, with releases such as the large EPIC Kitchens dataset
[42]. This has also motivated the research on the topic
[84,14,21,49,139,11,12], being mainly divided into three areas: (i)
activity recognition/classification, (ii) video summarisation and
(iii) object detection. In this section, we aim to provide an exten-
sive review on the action recognition subfield, referred to as EAR
throughout the document. Examples of egocentric actions are
shown in Fig. 1.

First of all, it should be noted that the literature presents two
conflicting terms: actions and activities. [139] discussed that both
terms are semantically different: an action is a short event such as
”opening a jar” while an activity is a semantically higher event in
which various actions are combined, lasting from several minutes
to hours. Nonetheless, part of the literature does not take this dif-
ference into account and uses the word ”activity” instead of action.
Moreover, some works even denote the motion using the word ”ac-
tion”, i.e. the movement generated when something is being cut
would be called an action, regardless of the objects present in
the scene. In this survey, we will differentiate between actions
and activities and between actions and motion, being the motion
for us the movement generated from an action independently of
the object.

Reviewing the literature on EAR, it is noticeable that there are
various special cues intrinsic to egocentric videos that drive the
type of approach that researchers use to tackle the EAR challenge.
For example, [106] used (i) the hand pose and its movement [17],
(ii) the head motion and (iii) the gaze direction as egocentric cues
in their work. In addition, they also stressed the importance of
objects in the egocentric setting. In general, from the literature,
we can extract the main egocentric features or cues used, sum-
marised in Fig. 2. Hence, we can split these characteristics into
two groups: those related to the appearance or objects and those
related to the movement or motion.

Therefore, in this chapter, we split the literature into four sec-
tions depending on the type of modality driving the approaches:
(i) object- or appearance-based approaches, (ii) motion-based
approaches, (iii) hybrid approaches (combining appearance and
motion) and (iv) other approaches that consider other modalities
such as the sound or that are making a contribution not related
to these modalities. The proposed taxonomy used for this section
is illustrated in Fig. 3 and all the references following this categori-
sation can be found in Table 1.

We believe that having a taxonomy to divide the literature
allows researchers to have a better perspective of the kinds of
works that have been published or the research lines that are cur-
rently active. For a beginner, this makes it easy to find works of
interest and to explore similar ones. The possible disadvantage that



Fig. 1. Examples of egocentric actions (subsampled frames) from the Extended GTEA Gaze + dataset: (a) ”cut bell pepper” action, (b) ”wash pan” action and (c) ”move bowl”
action.

Fig. 2. Intrinsic egocentric cues.
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these kinds of taxonomies may have is that, unless they are very
fine-grained (which is not practical), for some works there are
overlaps between categories, i.e. a specific research may fall into
various categories. There might be better representations for such
a taxonomy (e.g. a graph) that cannot be represented here but
could be beneficial for the EAR community. We hope this taxon-
omy proposal enriches the research and motivates researchers to
propose new ways to divide the literature.

2.1. Object-driven Action Recognition

The current literature is highly dominated by works that believe
that objects present in the scene and, specially, objects related to
tasks are the main cues in the recognition of actions. That is, ana-
lysing objects in videos can become a critical hint towards recog-
nising actions. In fact, [59] argued that the egocentric paradigm
is specially beneficial to analyse actions that involve objects due
to three reasons: (i) object occlusions are minimised, as the space
where these are manipulated is always present; (ii) objects are
often seen at consistent viewing directions with respect to the ego-
177
centric camera, as poses and the displacement of the manipulated
objects are also consistent in workspace coordinates; and (iii) the
camera is usually focusing on objects and actions, that are usually
in the centre of the image or video, thus obtaining high quality
image measurements.

Regarding the classification of objects, there are various ways in
the literature to categorise them. [192], for example, opted for
defining objects by the type of space they are in. That is, the space
observed by the subject (the one wearing the camera) is known as
the observable space. Then, any object that is graspable or can be
reached using the hands is contained within the manipulation
space. Lastly, an object that is grabbed by the subject is said to be
a manipulated object.

In a complementary way, [139] stated that four types of objects
can be observed:

� Active and passive objects: active objects are those relevant for
actions and passive objects are background or non-important
items.

� Salient and non-salient objects: the former are those that are
fixated by the gaze or those in which the focus is put on while
the latter can be considered background or non-attended
objects.

� Manipulated objects: objects that are in the hands are said to be
manipulated.

� Multi-state objects: those that have changes in terms of colour
or shape.

It is specially important to stress that active objects are considered
important to estimate the action [161], but recognising them is also
a challenging task due to hand occlusion or background clutter. To
diminish the effect of the background clutter, [60,59] proposed to
first detect a Region of Interest ROI before localising objects. In fact,
there are authors that aim to detect active objects in an unsuper-
vised way (without categorising them). Namely, [85] generated a
pool of segmentations, individually searching for instances of speci-
fic objects (one at a time) by enforcing constraints such as geomet-
ric consistency. [44] used a gaze tracker to infer the most important
objects and analysed the interactions with them. [129] made a seg-
mentation process in two steps: first, they generated a probabilistic



Fig. 3. The proposed taxonomy used to summarise the literature on EAR.

Table 1
Summary of the literature following the taxonomy proposed in Fig. 3.

Category Sub-category References

Object-based approaches Bag of Objects approaches [192,148,125,61,124,135,4,88]
Hand-Object and-Hand relations [20,19,33,67,16,120,196,138]
Graph representations [59,133]
Temporal dynamics [230]

Motion-based approaches Eye movement [224,225]
Ego-motion [191,163,178,137,153]

[175,154,93,177]
Eye movement and ego-motion [142,215]

Hybrid approaches Two-stream architectures [121,95,211,189,105,202]
[234,209,117,187,118,228]

Multi-stream architectures [195,64,74,207,83,128]
Single-stream, multiple tasks [176,188,86,149,146,115]
Combination of multiple features [182,171,216,35,176,233,134,131]

[79,155,52,239,238,87,226,227,94]
Knowledge graphs [212,165]
Hand-based recognition [236,66,28]

Other approaches Sound modality [9,31,32,90]
Task reformulation [130,213]
Privacy [152,54,183,198]
Data sampling [218]
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boundary map of the scene and, second, they made use of the fixa-
tion point to get the closed contour that included that point. [190]
presented EYEWATCHME, an integrated vision and state estimation
system that, at the same time, tracked, among others, the position
of hands and active objects. The approaches using the gaze are spe-
cially interesting, as [97,72] showed that the eyes always look
directly at the objects that are being manipulated (active objects).
In fact, these approaches could be integrated in an action recogni-
tion system that aimed to use active objects’ information. More
recently, [100] stressed the importance of hands for the detection
178
of active objects. They proposed to automatically segment hands
first and, then, including this information in an object localisation
network, achieved a more precise localisation of objects. This high-
lights the importance of hands in the active object detection
problem.

Bag of Objects approaches. There are several studies in which
the bag of objects approach is used (see Fig. 4 for an example).
Works such as those of [148,124] made use of bags of active and
passive objects to infer actions, being the objects first detected
by an object detector and, then, classified into active or passive.



Fig. 4. Bag-of-objects approaches aim at discovering actions using a collection of
objects.
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[192] used two complementary sets: one of observable objects and
another one of manipulable objects.

[125] argued that, as an extension of the traditional bag of
objects, spatio-temporal binning approaches could capture
space–time relations and, to solve the issue of inflexible predefined
schemes, they first proposed to learn the spatio-temporal parti-
tions that were most discriminative. For that, they generated a pool
of randomly generated candidates and used a boosting approach to
select the best ones. Second, to further improve the first contribu-
tion, they aimed to create object-centric partitions, i.e. regions of
videos where active objects are supposed to appear, by creating a
histogram of active objects for each video. For the classification,
they computed features from each proposal in the pool and applied
the boosting operation to get the best proposals that were used to
train the final classifier.

One aspect related to this bag of objects are the object fluents,
i.e. a time-varying attribute of objects or groups of objects whose
values are the specific states of the attribute [113,62,132]. For
example, for a mug, the states or fluents can be empty and full (bi-
nary fluents). Specifically, [113] proposed to represent an action as
concurrent and sequential object fluents. Given an egocentric
video, beam search was used to recognise the fluents per frame
and then infer actions. The bag of objects used in the work of
[61] was composed of sequences of visual patches of objects (a
sequence represented the changes of an object during a video).
[4] also modelled object state transitions as a means of inferring
actions. In their model, a CNN extracted visual features from a
set of frames selected from K segments (uniformly sampled across
each video), one per segment. The network was later divided into
two branches by means of a point-wise convolution: the first one
was in charge of learning nouns, while the second one took care
of learning states. A global average pooling was applied to obtain
a feature vector from each branch, one per frame. For the noun vec-
tors, a point-wise convolution led to a single feature vector while,
for the states, two channels were left after the same operation. The
two channels of the state branch represented the verb (the type of
change applied from the pre-state to the post-state), learnt using a
Fully-Connected FC layer. For the action classification task, another
FC layer was used. [88] analysed the use of object detections from
YOLO [159] as a tool to detect indoor actions and to experiment
with various detection parameters. They observed that the pres-
ence of certain objects was highly correlated with some actions
and that the lack in the detection of those relations hampered
the detection of actions. Thus, they compensated this using the
temporal information of objects, i.e. they gathered detections of
various frames to get a more complete picture of the scene. More
specifically, they trained a NN with a per-frame bag of objects to
179
infer the location (physical place), they also did the same using a
ISTM network to infer the location using the whole video. Finally,
for action recognition, another ISTMm was used, including in the
input the location and shape of the bounding boxes of the detected
objects apart from the presence vectors.

New methodologies to represent the bag of objects approach
are also arising, such as that of [135]. They presented a preliminary
work on object-based action recognition in which they detected
objects using a pre-trained CNN and they recognised the action
without training any other model. Specifically, to estimate the
action, they exploited web data to compute the semantic similarity
between the detected object names and the names of the action
classes.

Hands, Hand-Objects and Object-Object interactions. The
interaction between humans (using hands mainly) and objects
and also between objects is also a quite analysed topic in the
EAR field. [20] presented their bag of relations, which extended
the idea of the bag of objects including, not only the object itself,
but also the part of the body that interacted with the object
(object-body) and also the object-object relations. With the same
idea of the ”bag of interactions”, [19] proposed a Histogram of Ori-
ented Pairwise Relations in which the spatial relations (distances,
orientations and alignments) between visual-words were repre-
sented. Similarly, [33] also aimed to capture hands and the objects
that were being manipulated. For that, they leveraged the R*CNN
presented by [67] to detect the primary region (hands) and the sec-
ondary regions (objects). The output of that module was given to
an ISTM to process the evolution of the video. Going one step fur-
ther, [196] presented a unified model which, given a single RGB
image, in a single feed-forward pass, estimated the 3D hand and
object poses, their interactions and the object and action classes.
They extracted features using a Fully Convolutional NetworkFCN
in which each output cell predicted 3D hand poses and object
bounding box coordinates. Then, these cells were associated with
a vector that contained target values for the hand and object pose,
the object and action class and the overall confidence value. Those
predictions with the highest confidence were passed to their inter-
action RNN.

In contrast, without the need to include interactions, there is
research about the sole use of the shape and pose of hands to
determine actions. [16] argued that they could infer actions in their
dataset using only that information. To test their hypothesis, they
masked out the region where there were no hands and used a CNN
to infer actions. Even though the results were not perfect, they
showed that there is a high correlation between hands and actions.
Taking into account the temporal domain by applying a simple
majority voting, they concluded that their results improved as a
consequence of the importance that certain hand poses may have,
being more distinctive than others.

While the interactions between hand and objects are important,
the relation between different objects is also a central element of
actions, i.e. in a given scenario, only a subset of objects may be rel-
evant to the task. That is why [120] proposed a way to model arbi-
trary relations between arbitrary subgroups of objects. Their
method was first divided into two parts: (i) in the coarse-grained
part, a CNN extracted features from each frame, these were passed
through a Multi-Layer Perceptron MLP and, to join all the features,
the Scale Dot-Product Attention (SDP-Attention) of [201] was
applied to them; and (ii) in the fine-grained part, the Region Pro-
posal Network RPN proposed by [160] was used to extract object
ROI, which were fed to the Recurrent Higher-Order Interaction
(Recurrent HOI) module they contributed. This module employed
a learnable attention mechanism to decide the set of candidate
objects that were relevant for each action. Finally, the output of
both streams were concatenated and a FC layer with a softmax
activation was used.
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[138] investigated the acquisition of additional features that
modelled the interaction between hands and objects. For that, they
followed the bag-of-visual-words (BoVW) approach to model
actions. To infer the class of new samples, Dynamic Time Warping
DTW was applied to compare the features from a new sample and
the ones of the rest of samples. Next, they trained an object detec-
tor to recognise left and right hands. With these detections, the dis-
tance to any object could be determined. As active objects should
be in contact with hands, those objects that were being manipu-
lated (very close to the hands’ position) were considered actives
and the distance between both hands and each hand and the active
object were computed. The addition of these features to the pres-
ence of objects boosted the performance on the action recognition.
[140] proposed a novel NN based on SPD manifold learning. This
approach employed skeleton information for hand gesture (action)
recognition and was divided into three stages: (i) a CNN to encode
skeletal data; (ii) a Gaussian embedding to encode first- and
second-order statistics; and (iii) the learning of the SPD matrix
and the mapping of this matrix to an Euclidean space for the clas-
sification of actions.3D hand pose and gesture (action) recognition
were both the objective in the model proposed by [219]. This
started by learning joint-aware features using a ResNet network
and then the model branched in (i) the action recognition and (ii)
the hand pose estimation parts. These were trained iteratively, as
the output from one of them was the input to the other one and
vice versa. Within these branches, they proposed to use multi-
order multi-stream feature analysis. That is, various features were
computed: static, those representing velocity and those represent-
ing acceleration. For the latter, they took into account the slow and
fast moving joints and proposed to compute them separately. Each
of these features were fed to a multi-scale relation module that
went from fine-grained hand features to more holistic features
and then class scores were computed with a Temporal Convolution
Network (TCN). In a similar fashion (even with the same dataset),
but not specifically intended for egocentric videos, [110] decoupled
hand posture variations and hand movements using a two-stream
network. For the first one, a 3D CNN was employed, taking also the
fingertips’ relative position as an extra cue. The other stream was
implemented with another CNN. A FC layer computed the score
per stream before fusing them for gesture recognition.

Recently, [46] presented a graph architecture to model hand
skeleton data to recognise actions. Specifically, they employed a
spatio-temporal graph CNN. In fact, by exploiting the symmetry
of hand graphs, they proposed to use various sub-graphs to build
separate models for finger movements. In contrast, [111] argued
that, even though graph methods achieved good results, they were
inherently limited in capturing features of hand interactions. To
solve that, they contributed a self-attention based method: the
hierarchical self-attention network (HAN). A joint self-attention
module extracted local features and a finger self-attention module
aggregated them. For temporal reasoning, the temporal self-
attention module was in charge of modelling the dynamics of the
fingers and the entire hand.

Graph representations. Graphs are also used to represent
actions, as in the case of the work of [59], in which they built a
hierarchical graph (a tree-shaped graph) for activity recognition
in which an activity was composed of action nodes. The latter
had some leaf nodes: object and hand nodes. Their goal in infer-
ence time was to be able to predict hands, objects, actions and
activities. To train the system, they employed an algorithm similar
to the Expectation-Conditional Maximization of [127]. Recently,
[133] presented a work in which they built a topological map (rep-
resented by a graph) of the scene (of the physical space) from ego-
centric videos. In order to cluster zones, they employed a Siamese
network that took pairs of images and was able to find pairs that
corresponded to the same zone. Then, the graph they constructed
180
had collections of clips within nodes (representing zones and the
clips in which those zones were visited) and edges represented
weak spatial connectivity between zones based on how people tra-
versed them. From this graph they could infer the primary places of
interactions and the actions related to those spaces. Moreover, they
showed how to link zones across multiple related environments
(such as kitchens from different datasets). [167] proposed a
method to jointly recognise, localise and summarise actions. First,
they applied a centre-surround model to detect a central region
and its surroundings, obtaining superpixels from which features
were extracted using a GoogleNet [193]. These were used to build
a graph with the superpixels as nodes. By applying a random walk,
all the vertices could be annotated in a single run. Finally, a frac-
tional knapsack-type formulation was adopted to obtain a sum-
mary of the actions (given that there may be more than one
action occurring at the same time and that many superpixels
may be labelled as background). [96] parameterised left and right
hands and objects as individual graphs to be then joined in a single
multi-graph structure. This allowed their model to learn interac-
tions between both hands and between each hand and objects.

Temporal dynamics. The appearance in a frame, the local fea-
tures, can be extended to model the whole appearance of the video
or, better said, its dynamics and how it evolves. [230] proposed to
model the high level dynamics of the sub-events within an action
by dynamically pooling features of sub-intervals of time series
using a temporal feature pooling function. Specifically, each frame
was encoded using a CNN, in which each activation neuron was
considered a point in the time series, and features were pooled
in determined intervals (sub-events) to model the short-term
changes. Then, these sub-event dynamics were temporally aligned
and a group of Fourier coefficients were extracted in a temporal
pyramid to encode the overall video representation. Transformer
layers can also be employed to model this evolution, transforming
the problem in a sequence-to-sequence task. For example, [103]
presented their Trear, a Transformer-based architecture that took
RGB and depth images. Each modality was fed to an inter-frame
attention encoder (not sharing weights among them), merging
later in the mutual-attentional fusion block, allowing them to cre-
ate cross-modal representations. The latter are fed to a linear layer
to obtain a per-frame prediction, averaged at the end across frames
for the final action prediction.

2.2. Motion-driven Action Recognition

Apart from the object cues, which have shown to be relevant in
egocentric contexts, there are also cues related to the motion: eye
movement, hand motion and head motion. There is also a feature
called ego-motion, usually referring to the global motion generated
from objects in the scene, the movement of the body and the head.
Fig. 5 shows an example of the ego-motion of a video.

Eye movement. [98] stated that a person’s eye movement is a
valuable source of information to recognise actions. In addition,
as mentioned by [27], the eye movement can be classified into
three types of movements: saccades, fixations and blinks. Saccades
are the constant and simultaneous movements of both eyes that
are aimed at building a mental ”map” of the interesting parts of
the scene, fixations are stationary states in which the gaze is fixed
on a specific place and blinks are the regular opening and closing
movements of the eyelids. [224] limited themselves to actions per-
formed on a table and took hand positions, the locations of the eyes
and the head and the recorded ego-videos. Their aim was to be able
to segment actions. For that, and based on the fact that eye and
head movements are related to the attention as mentioned in the
work of [72], they developed a method to detect attention
switches. The tracking was done using a head-mounted ISCAN
infra-red video based eye tracker. With this, they divided each



Fig. 5. Ego-motion example in the EGTEA Gaze + dataset. The top row shows subsampled RGB frames, the middle row has the horizontal optical flow component and the
bottom row presents the vertical optical flow component.
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video into action segments and used multisensory data to recog-
nise actions. In another work, [225] explored the movement
dynamics of some body parts, namely, the eye (gaze), head and
hand movements. They integrated and modelled the action using
Parallel Hidden Markov Model HMM: body parts were processed
in parallel streams and integrated at the end. The benefits were
that it allowed different sampling rates and different learnt topolo-
gies in each stream and that the noise of a stream was isolated
without corrupting the others.

Ego-motion. A large part of the literature aims at capturing the
ego-motion or the general motion generated from the head move-
ment and employing it to recognise actions. [92] stated that there
are two types of motion: instantaneous motion (directional com-
ponent) and periodic motion (frequency component). In the first
case, actions such as turning one’s head have strong directional
component while repetitive actions such as walking have strong
periodic components. [191] aimed to recognise interactions (each
one composed of the manipulation, the object and the location)
using low resolution images and temporal templates or motion
history images. These templates captured any motion detected in
a video, using weights inversely proportional to the temporal dis-
tance from the frame in which the motion was detected to the cur-
rent one. For each class, they computed a mean template and
experimented with simple image matching, leading to finding
out that normalised cross-correlation performed the best. To infer
the location, objects, interactions, events and activities, they pro-
posed a Dynamic Bayesian Network. [163] studied interaction-
related actions, i.e. actions that involve interacting with the obser-
ver such as ”a person hugging the observer” or ”throwing objects to
the observer”. They went one step beyond the work of [92] and
explored multi-channel kernels to integrate global and local
motion information. They also introduced a methodology that took
into account the temporal structure of egocentric videos. Specifi-
cally, their global descriptors were histograms extracted from OF
data and the local descriptors were composed of 3-D XYT data,
i.e. computing salient motion in the video and summarising the
gradient values of the detected motion patches. Moreover, they
clusterised the motion descriptors and used the visual-word
approach to represent the video.

Similar to the previous one, [137] made use of first-person
dense trajectories in their motion pyramidal structure. The relative
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strengths of motion along the trajectories were then used to create
various bag-of-words descriptors that were later combined into a
single descriptor of the action. A non-linear Support Vector Machi-
neSVM was fed with these descriptors to classify actions. [153]
presented their Cumulative Displacement Curves, a method based
on the assumption that, over a long period of time, the average dis-
placement caused by the head rotation is practically zero. There-
fore, they divided the frames with a fixed grid and accumulated
the displacement up to a certain point within each cell (Cumulative
Displacement or CD). Analysing trends in these displacements
allowed them to focus on long-term actions and to avoid small per-
turbations due to the head motion. Moreover, for long-term trends,
they convolved the CDs with a gaussian kernel to smooth them. For
classification, they obtained various features and statistics com-
puted from these motion vectors and applied an SVM. [178] con-
tributed a new dataset called LENA and provided several
experiments on it with various feature descriptors for trajectories,
namely, Histogram of Oriented Gradients (HOG), Histogram of
Optical Flow (HOF) and Motion Boundary Histogram (MBH); Fisher
Vector encoding; Principal Component AnalysisPCA for dimension-
ality reduction; and a linear SVM for the classification step. [175]
argued that a method for both short-term (take, put and so forth)
and long-term actions (walking, driving and so on) did not exist
and proposed a way to solve the task. Their solution was based
on OF, in which they aimed to identify the dominant motion, i.e.
motion generated by objects and the hands. They compensated
the camera motion using a RANSAC-based homography [63] and
applied an extension of a Histogram of Optical Flow HOF. Their
classification goal was solely to infer if a video showed a short-
term or a long-term action, but this could be applied in an EAR
system.

[154] aimed to recognise long-term activities (helpful to seg-
ment long and unstructured videos) with a CNN architecture. They
sampled segments of 4 overlapping seconds from videos, spatially
divided each frame into a non-overlapping grid of size 32� 32 and
computed OF features from two corresponding grid cells in consec-
utive frames. This led to a cube of size 32� 32� 2 (due to the x and
y components of flow), which was used to create an stack of shape
32� 32� 120 from the whole video, finally employed as input to a
3D CNN. [93] extracted features such as Histograms of Oriented
Gradients, Motion Boundary Histograms and trajectories, com-
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bined all of them and applied PCA to reduce the dimensionality
before applying various classifiers: SVM, k-Nearest Neighbors K-
NN and the combination of the previous two (SVMkNN). There
are some works that provide new ways to arrange motion informa-
tion, such as that of [164], that presented a new feature represen-
tation, called Pooled Time Series POT, based on the time series
pooling of feature descriptors, particularly designed for motion
information in egocentric videos. However, it could be applied to
any feature descriptor such as HOF or CNN features. POT sum-
marised the short- and long-term changes in the descriptors over
time, it applied various temporal filters (set of time intervals) that
were pooled with various operators and concatenated to obtain a
single feature vector.

[177] proposed to combine several features such as dense tra-
jectories (both forward and backward), HOG, HOF (with a compen-
sated head motion), MBH and so on. Temporal pyramids were used
to represent features to better capture slow and fast actions. Even-
tually, each feature vector was used to build a bag of words, which
showed an improvement in the performance of the proposed solu-
tion. One important conclusion of this work was that, even though
the hands and objects are important as egocentric cues, it is not
necessary to explicitly segment them. Moreover, the features used
in this work were also applied in third-person proposals, creating a
bridge between both first- and third-person action recognition.

Combining eye movement and ego-motion. Others, such as
the work of [142], combined both approaches and exploited the
eye movement and the ego-motion; specifically, [142] analysed
the combination of the eye movement taken using an inside look-
ing camera and the ego-motion taken using an outside looking
camera. For the first case, they presented their own encoding
method while for the second one they used global OF values.
[215] aimed to recognise actions in an unsupervised way in an
office and a home environment: they employed encoding saccade
information (from an inside camera) and OF encoding obtained
from the video frames of an outside camera. They introduced
two variants of Multi-Task Clustering, including data from different
users in their clusters.

2.3. Hybrid approaches for Action Recognition

So far, the most promising approaches have been the object-
driven ones. However, motion-driven methods may add more
robustness and, thus, hybrid models are also proposed in the liter-
ature. Specially, the Deep Learning approaches dominate the liter-
ature due to their advantage in automatically extracting features
from different information sources.

Two-stream architectures. A highly popularised approach in
the DL community is the two-stream network presented in the
work of [174], which employs both RGB and OF information as
input. This model was first used for exocentric vision but it was
later adapted for egocentric vision [95,189,117,187]. In addition,
[174] observed that networks perform better when they do not
need to learn to estimate the motion implicitly. Fig. 6 shows an
example of a neural two-stream network that takes RGB and OF
images as input. [121] proposed an improvement for the appear-
ance stream, dividing it into two modules: one for hand segmenta-
tion and the other, that took the output of the first one, for object
classification. The hand segmentation part segmented and loca-
lised hands, creating a gaussian bump in the region where hands
were located (or the space between hands). That part was cropped
and fed to the object classification part, which was trained for
object recognition. Both this network and the motion stream had
their own loss. At the end, both network outputs were concate-
nated and a FC layer with a softmax activation was used to classify
actions. Hence, three different losses were used for training. The
fusion of both branches was done with a concatenation operation;
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however, this fusion was later revisited in the work of [95], in
which they contributed a long-term fusion pooling to aggregate
the features coming from the two branches and they also analysed
the effect of various pooling methods, namely, sum pooling, max
pooling and gradient pooling. A combination of all them seemed
to provide the best accuracy. An SVM was used as a classifier on
top. Instead of employing the standard hard assignment to a single
label, [211] used a soft assignment to various motion labels, e.g.
{open, hold, turn, rotate} can denote the kind of motion used to
open a jar or a bottle instead of just using the open label. This rep-
resentation can generalise to unseen actions in which the motion
pattern vary in some way, depending on the active object. Later,
[209] presented a multi-label verb-only representation for action
recognition and action retrieval. Their method allowed for an over-
lap of labels, removing the ambiguity of previous single label
methods. They observed that a multi-verb approach with hard
assignment was best suited for recognition tasks while an
approach with soft-assignment was better for retrieval tasks.

As the two-stream approaches required an aggregation opera-
tion for each clip of the video, [188,189] proposed to extend the
architecture in a CNN-RNN fashion using the Convolutional Long-
Short Term Memory ConvLSTM network of [214] as the RNN.
Moreover, one of the contributions of [189] was a spatial attention
layer between the the CNN and the ConvLSTM in the spatial
branch: they used Class Activation Maps (CAM) [235] from a pre-
trained CNN to encode the video. Following the idea of [189] of
adding attention mechanisms, [105] developed a NN that jointly
classified actions and learnt attention map distributions using gaze
information as supervision during the training. An attention map
was sampled from this distribution an applied spatially and tem-
porally to the frames in order to guide the action recognition. At
test time, using the received input video, the network could infer
both the gaze and the action. The idea of employing the gaze for
an attention mechanism was also exploited in the work of [117],
who implemented a two-stream network whose spatial branch
had an attention mechanism on top. This was composed of a linear
transformation supervised by a gaussian bump created from the
gaze fixation point, i.e. a 2D gaussian centred in the point the sub-
ject of the action was staring at. After that, both branches had a
bidirectional LSTM and, following it, they were fused.

[202] aimed at demonstrating that a two-stream approach with
an LSTM was suitable for classifying egocentric actions without
any egocentric feature. Moreover, they also showed that resizing
images to adjust the size of objects to those of Imagenet’s images
could potentially improve the results. [187] hypothesised how a
CNN-RNN structure could focus on ROI to better discriminate
actions and, for that, they analysed the shortcomings of the LSTM
and proposed their alternative Long Short-Term Attention LSTA
module. This new RNN introduced a built-in spatial attention and
a revised output gating. They deployed their LSTA in a two-
stream architecture and also proposed, for the cross-modality
fusion of RGB and OF, a novel control of the bias parameter of
one of the modalities using the other one. [118] aimed to learn
spatio-temporal attention features using human gaze as supervi-
sion. For that, they proposed a two-stream network, in which each
of the streams included the spatio-temporal attention module
(STAM) they contributed. This module included a 3D inception
module and a 3D convolutional layer to predict an attention
map. This map was combined with the original feature of the
stream to create more informative features. [228] advocated for
the use of Inertial Measurement Unit IMU for the motion classifica-
tion instead of the OF arguing that the latter’s computation was
rather demanding. Instead, they created a layered-like approach.
The classification of the motion was performed first by an LSTM.
Depending on the predicted label, samples were categorised into
different motion groups (for example, ”standing”, ”walking” and



Fig. 6. Two-stream neural network. It is composed of a feature extractor based on convolutional networks and a classifier based on fully-connected layers.
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so on). Within each group, various possible actions could be
inferred, but the actions not associated to the motion of the group
were discarded (e.g. actions in which it was impossible to be
”standing” are discarded if the sample is categorised as ”standing”).
If the sample was contained within a group with only one action,
then this action was predicted. In case there were various possibil-
ities, the motion group was used as a prior for the other branch
(the appearance branch), whose objective was to classify the sam-
ple among the possible actions of the group using visual features.
To adapt the method for low and high frame-rate photo streams,
two branches were used within the appearance stream. For a low
frame-rate, a CNN was used and, for a high frame-rate, a CNN
and an LSTM were employed. Similarly, [119] implemented a
two-stream network in which one of the branches passed IMU data
through an LSTM. The other branch employed a Recurrent Capsule
Network (RecCapsNet) and a convlstm to extract spatio-temporal
features. Then, both branches’ features were fed to FC layers (sep-
arately), then combined by concatenation and, once again, the
result was fed to a single FC layer. A softmax activation was finally
used to provide an action probability distribution.

The application of the two-stream started becoming main-
stream, as the architecture was being employed as a baseline. For
example, [234] focused on hand-hygiene egocentric actions and
proposed a method for first locating the action within an
untrimmed video using low-cost hand mask and motion histogram
features. In fact, once the action had been found, the classification
was done using a two-stream network. [102] proposed a two-
stream network in which one of the branches was composed of a
self-attention based Graph Convolutional Network and the other
one implemented a residual-connection enhanced bidirectional
Independently RNN. [112] implemented a model that generated a
Hierarchical Volumetric Representation (HVR) of the scene and
employed a two-stream network. One branch took the visual input
and processed it with an I3D network and the other one computed
environment features. This allowed the model to sample possible
action locations (learnt in a latent space) and to use those local
3D features for the action classification.

Multi-stream architectures. As two-stream architectures
became popular, a natural extension of them arose including more
branches and different input modalities. Each modality is assumed
to be complementary to the rest and, thus, helpful to improve the
classification of actions. Fig. 7 shows a general schema of a multi-
stream architecture. [64], for the action anticipation task, used
three complementary modalities of data: RGB (for appearance,
using a Batch Normalised Inception), OF (for motion, using a TSN
or TSN) and object features (confidence scores obtained from an
object detector). They introduced their Modality ATTention (MATT)
mechanism to fuse them, weighting each of them in an adaptive
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way to predict actions. The use of object detector information
was again explored in the work of [207], who detected a shortcom-
ing in the two-branched architecture (modelling appearance and
motion): both failed to exploit local information as there was no
position-aware information. In fact, just looking at the motion
change or the collection of objects in the scene may not be enough
for an annotator to understand the action, that is when position-
aware features (referred to as privileged information) could help
to drive the learning to action-relevant motion and objects. In
addition, they contributed a Symbiotic Attention mechanism for
Privileged information (SAP) that allowed for the communication
of the three sources of information. A 3D CNN was used to process
appearance and motion (outputting a single feature vector) while a
Faster Region-based Convolutional Neural NetworkR-CNN was
employed for the object features (extracted with RoIAlign). The
motion and appearance features were individually fused with the
detector’s features and some learnt gate weights (from the oppo-
site branch) were applied to them. One further attention step
was applied using the opposite branch’s features before obtaining
the last feature vector for a branch. Both the verb and the noun
were inferred separately and the predictions were combined and
re-weighed by the training set’s distribution to get the action
prediction.

[195] leveraged depth information in their multi-stream deep
neural network (MDNN), having two more branches fed with
RGB and OF data. The contribution of this approach was that they
aimed to preserve the distinctive characteristics of each stream
and to explore the shareable information. That is, as features
extracted from each stream were neither fully independent nor
correlated, the fusion of these features lacked any meaning. Hence,
they proposed a non-linear fusion strategy in which they mixed
the shareable components and the distinctive components (both
obtained with a non-linear mapping of the original features) with
a weighted addition. In the loss function, apart from the categorical
cross-entropy loss, they included two more terms: (i) a term to
measure the correlation between the shareable terms (modelled
with a Cauchy estimator) and (ii) a term to enforce the orthogonal-
ity constraint on both the shareable components and the distinc-
tive ones. Moreover, they also included a hand module that was
fed with the RGB frames. Within this module, a binary mask was
generated to black out parts of the original RGB images that were
later used for classification. In fact, the softmax output of this mod-
ule was combined through a weighted fusion with the softmax of
the original network.

In fact, multiple streams can arise in an intermediate step of the
system, not only at the beginning, as in the case of the work of [74].
They presented a novel Mutual Context Network (MCN) that
jointly learnt an action-dependent gaze prediction and a gaze-



Fig. 7. Multi-stream neural network. Various data modalities are included as input, each one with its own feature extractor, and fused at some point (depending on the
strategy, e.g. early, late or early + late). A classifier is used at the end for the prediction.
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guided action prediction. RGB and OF frames were processed by an
Inflated 3D Convolutional Neural Network I3D and fused by addi-
tion at the beginning to create the set of features F. Then, three par-
allel modules or branches could be found: (i) the saliency-based
gaze prediction module that outputted a set of saliency map pre-
dictions (bottom-up attention); (ii) the action-based gaze predic-
tion module that took action predictions, created kernels using
them and then deconvolved F with these kernels to create another
set of gaze prediction maps; and (iii) the gaze-guided action recog-
nition module that took the generated combination of saliency and
gaze maps, used them to pool the gaze and non-gaze regions of the
input features, convolved them and obtained a probability distri-
bution over the set of possible actions.

[83] proposed a branched method (for global and local charac-
teristics) in which each branch had tree streams: for RGB, OF and
warped OF, each one having as their backbone network a C3D
[199]. The local branch, in contrast to the global one, was fed with
the crops of the salient regions of the input frames, which were
first aligned. To evaluate each stream’s performance, they analysed
early and late fusion strategies. To combine both branches, they
came up with a cross-fusion strategy, in which pairs of different
modalities of data (RGB and OF) and the same modality of data
were mixed and a NN decided which features should have been
attended. To generate the video-level prediction, they opted for
the maximum-weighted-score voting, choosing the label with the
highest weighted confidence score. [128] presented a multi-
stream network that, apart from the RGB and OF data, included a
mask image branch for the hand shape and position information.
This was motivated by the fact that the recognition of actions
may have suffered in different environments due to its poor gener-
alisation ability. That is why they included hand information to
solve this, outperforming the conventional methods and also con-
firming that their method had a higher robustness to different sce-
narios. [75] contributed a three-stream network that took RGB, OF
and magnitude-orientations as input. An I3D network was used as
the backbone network. For the high-level temporal modeling, a
BiLSTM with attention was used to focus on the most important
parts of videos.

Single-stream, multiple tasks. Some authors criticised the use
of various streams and proposed a single stream approach that was
trained for various tasks in order to improve the generalisation of
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the method. Fig. 8 illustrates a possible scheme of this type of net-
work. [176] presented an initial single-stream Ego Convnet which
consisted of two convolutional layers, each followed by a max
pooling operation, a Rectified Linear Unit RELU non-linearity and
local response normalization (LRN). At the head of the network,
two FC layers were used. The inputs of the network were encoded
egocentric cues: hands masks (as binary images, automatically
segmented from the input images), camera motion (grayscale
images representing the horizontal and vertical components sepa-
rately, corrected using 2D homographies and RANSAC) and sal-
iency maps (also as grayscale images). These features were taken
from a set of L adjacent frames, creating a set of input features with
a channel depth of 4� L (four features per frame). To handle the
class imbalance, they proposed using the infogain multinomial
logistic loss. [86] showed their multi-task learning approach to
simultaneously learn verbs, objects, coordinates for hand locations
and the gaze-based visual saliency. This allowed them to improve
the generalisation ability of their model due to the network having
to follow various objectives. In addition, the network was forced to
exploit the secondary cues (hand locations and visual saliency)
that, otherwise, may have been missed. They later proposed to
extend this to multi-dataset multi-tasking in [89]. In each training
batch, datasets were always mixed. A 3D CNN was used as back-
bone and task/dataset specific–heads were included on top.

[149] argued that appearance and motion information should
have been jointly learned, as opposed to two-stream approaches
with late fusion. They proposed their self-supervised first-person
action recognition network (SparNet), a single-stream network
that coupled both appearance and motion through a Motion Seg-
mentation MS self-supervised task. This way, their training objec-
tive forced the network to learn the movement of objects. Their
architecture was composed of a CNN-RNN structure (the RNN in
this case was a convlstm), with a global average pooling and a FC
classifier for action recognition. For the MS, the output of the
CNN was fed to another convolutional layer and then to a FC layer.
This output was compared with the ground truth using a per-pixel
cross entropy loss. For the ground truth, Improved Dense Trajecto-
ries IDT [204] were computed. Then, each pixel was labelled as
moving or static depending on whether movement had been
detected for at least 10 frames in these features. The network
was trained using both losses with equal relevance. The video



Fig. 8. General scheme of a single-stream neural network. Usually with a single input, optionally many inner branches, and possibly various sub-objectives (multi-tasking).
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attention mechanism of [145] was used in the work of [146] in a
single-stream architecture that branched at the end to predict
the verb and object that composed an action. The backbone net-
work used in the approach was the Temporal Shift Module (TSM)
[107].

[188] proposed a CNN-ConvLSTM architecture that took RGB
frames and the difference between consecutive frames as input
to the network. Aiming at addressing the issue of the inherent
ego-motion of egocentric videos, [115] introduced a single-
stream architecture that started estimating the camera motion
and then the temporal sequence was divided into various chunks
using K-means clustering. For each chunk, the camera motion
was compensated independently. Then, a slow-fast ResNet (only
using its temporal branch) processed those chunks and a late
fusion concatenation was used to gather them. Two softmax func-
tions were used at the end to provide verb and object probability
distributions. The action probability distribution was obtained
with the outer product of the former two distributions and re-
weighted using the training set distribution.

Although it was not specifically intended for an egocentric set-
ting, [203] validated their approach using an egocentric dataset.
They contributed a NN based on Capsule Networks in which they
introduced Temporal Shift modules to allow the network to pro-
cess temporal information without adding extra computation. An
R*CNN [67] was used in the work of [34] to extract hands as pri-
mary regions and objects as secondary regions. This information
was fed to a Hierarchical Long Short-Term Memory Network
(HLSTM). In the first level, per-frame predictions were given within
each shot of the video, being the last hidden step of the HLSTM the
input for the shot-level LSTM. [150] presented their SparNet, a
single-stream network that jointly learnt spatial and temporal fea-
tures using an auxiliary pretext task. The objective of the latter was
to estimate the motion associated to static images. This allowed
the model to better focus on action-related features.

Combination of multiple features. Part of the literature advo-
cates for the use of different features outside of the end-to-end
deep learning systems. [182] employed ego-video and IMU data
to tackle the action segmentation and recognition in cooking-
related tasks. They explored in supervised and unsupervised set-
tings the performance of Gaussian Mixture Model GMM, HMM
and KNN. For high dimensional data, they observed that KNN
worked better than the other two approaches. [171] combined
gaze motion (using statistical features) and visual features (in a
bag-of-features approach, more suitable for object and scene
recognition). Both branches were independently processed and
trained using an SVM. The results were combined to get an action
prediction. [176] added two more streams to their single-stream
approach with features learnt using deep networks: one that cap-
tured the appearance (being fed with RGB images) while the other
one was in charge of the motion (taking a stack of OF images).
Fisher Vectors were used to encode these features and an SVM
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was used for the classification. To fuse the three streams, weighted
classifier scores were taken.

In a similar fashion to the two-stream network, [233] presented
an architecture with two independent branches, being the motion
features represented with a Fisher Vector encoding of various fea-
tures, IDT among them, and being the appearance features encoded
with CNN. They considered the use of early, early + late and late
fusion approaches to train an SVM for action recognition. In the
proposal of [79], the short-term motion was modelled with OF,
while the long-term one was extracted using the POT representa-
tion proposed by [164] with different pooling operators. The
appearance of a video was represented with its middle frame. With
the concatenated features, an SVM was applied to classify actions.
With a different objective compared to the previous authors, [155]
contributed a novel Reinforcement Learning algorithm to save
energy in wearable devices by trading off vision-based action
recognition with a low power motion-based sensor. For the vision
part, a CNN-RNN approach was used while an LSTM was employed
to process the motion. The policy function approximator was
implemented using an LSTM and trained using the Asynchronous
Advantage Actor Critic (A3C) algorithm. [216] proposed a multi-
task clustering using two methods: the earth movers distance
multi-task clustering and the convex multi-task clustering. In addi-
tion, they had two test cases: home and office environments, in
which different features were used as descriptors, as they argued
that the feature selection was not important for their method.
Therefore, for the home environment, they employed the object-
centric features of the work of [148] while, for the office, both
the eye motion and the head and body motion were considered
together with OF images.

[134] employed image and accelerator features and aimed at
predicting both the action and the energy expenditure (in terms
of kilocalories). They concatenated both input features and used
an LSTM to model their evolution in videos. [52] supplemented
the inertial data from motion sensors (from a smart watch) with
vision-based features and studied whether this addition could be
helpful in settings in which sensor data alone was not enough to
recognise actions. [239] introduced the gaze-informed ROI (GROI),
the region where the gaze was fixated (and, supposedly, an area
relevant to the task). Feature extraction was done in that area
and then these were encoded and fed to a classifier. Specifically,
the feature encoding consisted of (i) a normalisation step with
RootSIFT (see the work of [10]); (ii) a dimensionality reduction
with PCA; and (iii) a encoding step with Vectors of Locally Aggre-
gated Descriptors (VLAD) [80] and Fisher Vectors [147]. Later,
[238] proposed to enhance the local spatial and temporal feature
extraction using saliency maps. [87] aimed to recognise hand-
related actions based on the presence and position of detected
ROI in the scene explicitly, without using visual features. For that,
(i) they detected hands and tracked them across time and (ii) they
also looked for objects that were relevant for actions. The problem



Fig. 9. Example of a knowledge graph for EAR. Each node may have one or various
features associated, learnable or not. For visualisation purposes, colours are
assigned to nodes depending on the information they contain: verbs, objects or
actions.
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was modelled as the learning of the sequence of the detected spa-
tial positions.

[226] had three different data streams: one extracting informa-
tion from images (appearance stream), another one from IMU and
GPS data (motion stream) and the last one adding external knowl-
edge included by the user (external knowledge stream). In the
appearance stream, a CNN processed images so that it extracted
probability distributions from which several object probabilities
could be obtained. The set of all the objects, as strings, were used
to compute the basic belief assignment (BBA) for this stream. In
the motion stream, several features such as the mean, standard
deviation, correlation and so forth were extracted and an SVM
was applied with those features as input. The third stream created
a BBA using knowledge acquired from users: for some ranges of the
time of the day, the possibility of actions occurring was provided
by the user with some confidence values. Given an input times-
tamp, it was possible to acquire this time-based prior. To fuse all
three streams, Dezert-Smarandache theory (DSmT) [51] based
multi-source fusion was used. In a later approach, [227] con-
structed their framework that used the DSmT around three modal-
ities: location, motion and vision data from a wearable hybrid
sensor system. [35] argued that, in contrast to the classical ensem-
ble of a CNN and a Random Deep Forest RDF, their late-ensemble
technique could reduce the overfitting. The softmax output of the
CNN, contextual metadata (day of week and time of day) and the
global image information (histograms of colour) were given as fea-
tures to the RDF, obtaining a better combination of both classifiers
instead of the naive ensemble. This translated into a 5% accuracy
improvement in their dataset of 19 activities.

The Visual Rhythm Texture Descriptor (VRTD), obtained as tex-
ture features over visual rhythms, was used in the work of [131].
To build the visual rhythms, they used various types of images:
RGB, OF and motion boundaries. In a first instance, they built them
using a whole video, and later from patches of videos. Aiming to
obtain an efficient technique to classify actions, [94] applied a
median filter, followed by the watershed segmentation algorithm.
Features were extracted using the Histogram of Oriented Gradi-
ents, colours and the GiST descriptor. The combination of the fea-
tures was passed through a genetic algorithm, reducing its size.
The classification was performed using an SVM and a Random
Forest.

Knowledge graphs. A visual example of a knowledge graph for
egocentric actions can be seen in Fig. 9, although the structure has
to be adapted depending on the proposed solution. For instance,
[212] presented SEMBED (SEMantic emBEDding), an approach to
embed egocentric object interactions within a semantic-visual
graph (SVG). Their aim was to estimate the probability distribution
over the potential semantic labels. The verb annotations of the
interactions were unbounded (many verbs could describe the same
interactions), thus, embracing ambiguity in order to capture the
semantic relationships and the visual similarities of motion and
appearance features. The SVG was built from the training set, in
which (i) videos that were semantically linked (they had the exact
same verb label) were also linked in the SVG (first type of edge), (ii)
nodes that were visually similar, yet semantically different, were
linked (second type of edge) and (iii) edge weights corresponded
to the normalised visual similarity with neighbouring nodes. With
the SVG created, they employed the Markov Walk (MW) of [57]
and, taking the z nearest neighbours and t steps, they found the
probability distribution over the possible labels. Similar to the
work of [212,165] leveraged graphs for the representation. First,
they extracted features from individual frames (with the whole
frame and also dividing it into four bins) employing a Pyramidal
Histogram of Oriented Gradients (PHOG) [25]. They also used the
centre-surround model proposed by [166] to capture the ego-
motion. With those features, they built a weighted Video Similarity
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Graph (VSG) in which nodes represented frames of a video and
edges were measurements of the similarity between frames. To
infer actions, they used a weakly supervised approach in which
only 5% of the frames were required to be labelled and the remain-
ing ones had their label predicted using a Random Walk execution.

Hand-based recognition. Unlike previous approaches in which
only the shape and pose of hands or their interaction with objects
were analysed, the following approaches exploit both their appear-
ance and motion or leverage hand information combined with
other features. Starting from the work of [236], in which they
trained a Deconvolutional Neural Network DCNN to infer a pixel-
to-pixel segmentation of hands from weakly and strongly super-
vised data, i.e. massive bounding box annotations and fully anno-
tated segmentation masks, respectively. The network was trained
using a novel Expectation–Maximisation (EM) like learning frame-
work. For further improvement, the hand segmentation masks
were paired with motion maps (OF) and object feature maps (the
top-5 strongest object feature maps) with another DCNN to detect
active object regions or the interactional foregrounds. Concerning
the objective, both a softmax for object class probabilities and a
bounding box regressor were used. They trained two such detec-
tors, one for active objects and another one for passive objects,
and histograms were extracted from these representations to
model the appearance of actions. For the motion, IDT were
extracted from the global image (global motion) and from the
active object region (local motion). Combining all these features
and applying an SVM classifier, they inferred the action. [66]
focused on hand-related actions and introduced a dataset of 3D
hand poses. They presented an extensive experimental evaluation
of RGB-D and pose-based action recognition covering 18 baselines
(state-of-the-art approaches). They concluded that the hand pose
cue is of major help in the EAR field. [28] presented their work
on desktop action recognition, i.e. actions performed while humans
are sitting at a desk, and contributed a new dataset for the task.
Specifically, they focused on actions involving the manipulation
of objects. After extracting various features from hands (e.g. hand
shape, position and motion, inner hand OF and so on), they anal-
ysed their discriminative potential to classify actions. The conclu-
sion they extracted was that hand shape and motion were
decisive to recognise desktop actions. .

Finally, there are some approaches used for challenges that are
often based on ensemble models, i.e. models such as the ones pre-
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sented by [185]. In their case, they employed an ensemble of CNN-
LSTA [187] and also of Hierarchical Feature Aggregation (HF)-TSN
[186].

2.4. Other approaches

The remaining of the literature opted for going in other research
directions within the EAR field. For example, including other
modalities of data or changing some standards of the field.

Sound modality. Sound has not been extensively researched in
the literature of the EAR field, having few datasets with both RGB
frames and sound. However, it is a promising solution for some
actions in which the visual appearance and motion are not enough
(see Fig. 10). For example, [9] suggested combining audio-visual
features with multi-kernel learning MKL and multi-kernel boosting
MKBoost. Specifically, MKL was used to learn the weights of differ-
ent features, kernels and their parameters using the training set.
Concerning the features, the authors thought about employing
complementary features from different modalities: from videos,
they extracted global features using the Grid OF-based Features
(GOFF), Vision-based inertial features (VIF) (both from the work
of [3]) and Log-Covariance (Log-C) features [70]; local features
from videos leveraging Cuboids [99]; and, for audio features, they
used Mel-frequency cepstral coefficients (MFCCs) [47]. For the
classification part, apart from the MKL and the MKBOOST, they
employed an SVM.

With the launch of the EPIC Kitchens dataset [43], we can
expect more works exploring these areas. That is the case of [31],
as they explored the usefulness of sound. Their system processed
an audio spectrogram of the first four seconds of the video (fully
covering more than the 80% of the videos with that length) using
a VGG-11 network. For the spectrogram, they employed a short-
time Fourier transform to filter human voices and focus on noises.
In another work, [32] created a three-stream network, taking spa-
tial, temporal and audio features and combining them using a late-
fusion approach. Data was sparsely sampled from the video by
dividing it into K uniformly distributed segments. Audio was again
represented by its spectrogram. [90] proposed a new architecture
for multi-modal temporal-binding (the combination of modalities
within a range of temporal offsets) of RGB, OF and audio. In con-
trast to previous works, the modality fusion was performed before
the temporal aggregation and per Temporal Binding Window
(TBW), defined in the paper as ”a range of temporal offsets within
which an individual is able to perceptually bind inputs across sen-
sory modalities”. The width of the TBW was dependant on the
length of the video (not to bias the network towards short or long
actions) and K such windows were sampled from videos. For each
window, a three-stream network (with three Batch Normalised
Inceptions as backbone networks) processed each modality. All
modalities were fused at a mid-level and a prediction was given
for the window. For the video level prediction, the predictions of
all windows were averaged. Baesd on their experiments, they
demonstrated that audio is complementary to the appearance
and motion representation of the RGB and OF inputs. [151] con-
tributed a new loss function for multi-modal models (combining
audio and visual information) that aligned better the contribution
of both modalities.

Task reformulation. Some researchers provided novel view-
points, aiming at changing EAR conventions. For instance, [130]
explored the inconsistencies in the annotation of the temporal
boundaries of object interactions within and across annotators
and datasets. They argued that this phenomenon is given mainly
due to the limited understanding of the different phases of actions
and proposed annotating these boundaries based on Rubicon
Boundaries from the Rubicon Model of Action Phases presented
by [68]. [213] claimed that there were three incorrect assumptions
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driving the recognition of object interaction as a standard one-vs-
all classification problem: (i) classes were self-contained and had
strict boundaries, yet when the number of classes increased, these
tended to overlap; (ii) sequences could be split into segments con-
taining only one object interaction, but multiple interactions could
be given at the same time; and (iii) whether a verb could be used to
label actions was a binary decision, whereas different annotators
could label the same action in different ways. Therefore, in their
work, they proposed to reformulate the recognition of object inter-
actions as a multi-label classification, obtaining better results com-
pared with the single-label approach.

To date, egocentric models have been pre-trained with exocen-
tric data (as there are larger datasets for that). Recently, [104] crit-
icised that approach, arguing that it created a major domain
mismatch as exocentric models ignore egocentric vision proper-
ties. In fact, as stated in [172], pre-training only with exocentric
data led to worse results compared to training with egocentric
data. Other methods that map exocentric to egocentric data still
required parallel datasets, which were difficult to gather. However,
[104] proposed to use egocentric pre-defined tasks to steer the pre-
training of an egocentric model with exocentric data. These tasks
were (i) discerning between exocentric and egocentric videos, (ii)
finding interactive objects and (iii) discovering hand-interaction
regions. The ground-truth signals came from the output of other
models, being these training signals (and their respective classi-
fiers) similar to distillation models.

Privacy. Egocentric video data may be seen as privacy-sensitive
due to the possible threats they represent. [198] analysed some of
them: (i) recognising the wearer of the camera, (ii) detecting that
two videos have been recorded by the same person with low error,
(iii) extracting the gait signature of the wearer of the camera and
(iv) matching that gait with the one of a third-person view to
recognise the person. That is why the research on this topic of
the EAR field is becoming crucial with the increase of available ego-
centric videos. [54] aimed at classifying actions while preserving
the privacy of bystanders. In contrast to other approaches that
selectively filtered regions of images, they proposed to blur images
without suffering from a significant drop in the performance. In
fact, they carried out a quantitative analysis with 640 users to
assess the trade-off between privacy and performance, reaching
the conclusion that degrading egocentric images led to a more pos-
itive perception of privacy, increasing the willingness of users to be
captured. They employed CNN for the EAR and analysed the effect
of different levels of blurring and the obtained performance. [183]
argued that, within eyewear devices, the first-person camera in
charge of mapping the user’s gaze to the visual scene can pose a
security threat. To solve that, they proposed PrivacEye, a method
to detect privacy-sensitive scenes and to automatically disable
the eye tracker’s egocentric camera. To analyse the situation, they
employed deep features combined with eye movement features. To
activate the camera, eye movements alone were considered to
measure the level of privacy of new situations. It is also possible
that some people may want to check whether a person has been
recorded or not and, for that, a query is required. In order to ease
that type of query, [152] proposed a method to add a unique signa-
ture to videos of a given user using the patterns of the headmotion.
Unlike other methods, it was volatile and could only be used for a
particular place and time.

Data sampling. Videos of actions are usually composed of
frames that are relevant to actions and others that may be consid-
ered noise or that are simply identical to the adjacent ones. In fact,
many methods uniformly sample a few frames of videos due to the
fixed-length constraint of many DL architectures and the memory
limitations, without taking into account the importance of those
specific frames for the task. However, there are works such as that
of [218] in which a plug-and-play module for any EAR solution was



Fig. 10. Example of the importance of sound for the recognition of egocentric actions. Samples of actions that cannot be seen such as closing the fridge while staring at other
part of the kitchen are impossible to predict without complementary information such as sound.
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proposed. Given unprocessed noisy video clips, the module out-
putted a few informative frames. The basis of the module was
the combination of the sampler and the evaluator modules. The
first one was in charge of providing candidate frames while the
second had to evaluate the selection. As there was no ground truth,
the evaluation was done conditioned on the result of other EAR
algorithms. That is, a selection of frames that obtained a good
result in those algorithms was considered a good choice. This sig-
nal was used to train the sampler module in a student–teacher
fashion.
3. Alternative Learning Paradigms for Egocentric Action
Recognition

So far, all the works reviewed have followed a supervised set-
ting approach, i.e. a labelled dataset is required for the training
and evaluation stages. This means that each class requires several
samples for the learning phase. As the number of executable
actions in real-world scenarios is very high, it seems unrealistic
to collect and annotate samples for any kind of action. Hence, alter-
native paradigms to supervised learning become very interesting
to implement EAR systems in real-world applications.

These include the few-shot and zero-shot learning approaches
(see Fig. 11 for an illustration), in which a few samples or no sam-
ple at all is required for the training and the system has to gener-
alise to unseen samples and classes with the aid of prior
knowledge or by exploiting the characteristics of the data. Further-
more, the unsupervised setting can be considered within this cat-
egory, not requiring labels for the training stage. This section
presents a review of egocentric vision-based works with the afore-
mentioned characteristics.

Following the literature on EAR of Section 2, a popular strategy
to classify actions, the two-stream approach, is inherently built to
decompose the two main drivers or components of actions, the
verb and the noun. This allows the two-stream model to acquire
knowledge separately about verbs and objects and to leverage this
information for the classification of actions. In fact, the idea of fus-
ing verbs and objects to infer new combinations was already intro-
duced in 2017 by [233]. They employed the Fisher Vector encoding
of IDT and the Histogram of Oriented Gradients for the verb and
visual CNN features for the noun. They argued that the specialised
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features they considered for each decomposed concept were the
key to success in zero-shot tasks. In addition, they analysed various
fusion methods among early, late and early + late stage fusion. [6]
used a Myo armband sensor data and an MLP for verbs and a Goo-
gleNet that took crops of video frames for nouns. The latter crops
were extracted from the gaze region. Any new action composed
from the combination of the learnt verbs and objects could be
inferred using their system. Similarly, [141] used a DL two-
stream approach, having both branches separated, predicting the
verb and the object separately. The outer product of the probability
distributions of verbs and objects was employed to generate an
action probability distribution. Within this setting, they con-
tributed a way to re-weight that distribution with external knowl-
edge coming from text corpora. This way, action frequencies from
real-world corpora could be included in the system, allowing for
better predictions. The improvement came from (i) the removal
of non-existing actions and (ii) the re-weighting of not common
actions and frequent actions, making it a suitable approach for
real-world applications.

[210] had as objective the creation of a representation suitable
for cross-modal search, i.e. video-to-text or text-to-video queries,
in which the query and the target were from different modalities.
They proposed two Multi-Modal Embedding Networks (MMEN)
that embedded video features and text features into the same
space, one for verbs and the other one for nouns. Specifically, the
same video features were sent to the two MMEN while, in the case
of the text, the verb and the set of nouns were first extracted and
then sent to their corresponding modules. The representations
obtained from the MMENs were further encoded to get features
for verbs and also for objects. The network leveraged intra- and
cross-modality losses to preserve the neighbourhood structure
within verb and noun spaces and to ensure that the representation
of a query and a relevant item for that query from a different
modality were closer than the representation of the query and a
non-relevant item. With their approach, they aimed to create verb
and noun spaces that were suitable for actions, e.g. for a given verb,
independently of the objects accompanying it, the representation
should have been able to capture its essence.

To join both zero-shot learning and few-shot learning, [169]
proposed the cross-modal few-shot generalisation setting. First, they
embedded videos using CNN features and deep metric learning so
that they could create an embedding space with discriminative



Fig. 11. ZSEAR approach using motion and object recognition to predict unseen action classes. Frames taken from the EGTEA Gaze + dataset.
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features. Then, they aimed to align word-embedding features of
class labels with video embedding features with a combined loss
term. In fact, word embeddings were passed through another
embedding to match the dimensionality of video features and to
become class-agnostic. This enabled the cross-modality metric-
learning between the video embedding and the twice-embedded
class labels. They even proposed a new split of EPIC-Kitchens to
evaluate their approach. [123] built a model, the Spatial–Temporal
Interaction Network (STIN), that could reason about the relations
between objects and the agent of the action (hands). Using an
object detector and a tracker, they created object-graph represen-
tations that included hands and constituent object nodes. With
this, spatio-temporal reasoning was performed using the BB, aim-
ing at understanding how the relation between the subject and the
objects change over time. This included the modelling of the trans-
formation of the geometric relations of objects.

So far, zero-shot approaches had relied on data to train a latent
space. However, going one step beyond, it is possible to have a
zero-shot application with zero supervision as in the case of [2].
They proposed one of the first works on open-world EAR. They
employed commonsense knowledge from ConceptNet [109,181]
to solve the demand for training data quality and quantity. By
means of relations between several concepts, they were able to
infer the action with the highest probability. This methodology
was grounded on the Pattern Theory formalism of [69,1].

Apart from the strategy of dividing the learning of the verb and
the noun, other approaches could be employed for the zero-shot
task. The approaches followed by [212,211] (discussed in Sec-
tion 2), as the authors mentioned, could be employed for zero-
shot EAR, although that was not their original purpose.

In their fully unsupervised system, [23] used the two-stream
autoencoder approach in which both streams were aggregated by
late fusion. Then, a cascade of LSTM autoencoders were used, each
one with a different temporal resolution and offset. At the end, K-
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means clustering was applied for the learning of groups. The
results showed that their method led to the discovery of semanti-
cally meaningful action groups. According to the authors, this
unsupervised methodology may had its applications for privacy-
sensitive data as, in contrast to supervised methods, there were
no pre-defined labels. [45] had the aim of discovering task-
relevant objects in an unsupervised way. To focus the attention
on objects, they employed appearance, position and motion fea-
tures and gaze fixations. Using clustered motion features, they
were able to predict modes of interaction (movement patterns,
as in the case of actions). [92] used sparse OF vectors as their
motion features to encode the ego-motion in a fully unsupervised
scenario. They found out that this feature itself was a strong
descriptor for actions related to sports.

In the system proposed by [230], the approach to represent the
video was fully unsupervised and dictionary-free. They pooled fea-
tures from sub-intervals using a temporal feature pooling function.
These were temporally aligned and a recursive Fast Fourier Trans-
form was applied on a pyramidal temporal structure. Although this
procedure did not require labels, they need them to train the action
classifier. Similarly, [156] created a video descriptor without
supervision. First, they employed the trajectory-pooled deep-
convolutional descriptor (comprising both spatial and temporal
information). Sub-actions were adaptatively localised in time, then
the features were aggregated by temporal pooling and rank pool-
ing was used to determine the temporal evolution of videos. The
Hilbert-Huang transform was finally applied to obtain the final
descriptor. Nevertheless, the training of the SVM classifier required
labelled data.
4. Egocentric Video Datasets

Since 2009, several datasets for EAR have been proposed in the
literature, being the main resource for researchers to evaluate their
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proposals. Table 2 summarises the most relevant datasets of the
literature and their characteristics. Specifically, we show whether
they contain BB annotations, their publication year, the number
of action clips (instances used for training and evaluating machine
learning models) and the number of action, verb, and object
classes. In the case of Charades-Ego, the dataset is partially egocen-
tric, having part of its content filled with third-person videos. The
annotation of actions in all the presented datasets consists of a
verb and a set of nouns, creating an action when combined. That
may be one of the reasons why popular methods such as the
two-stream network approach have adapted well to the egocentric
vision, i.e. as the motion and the object features can be decom-
posed, there are labels to train two separated classifiers and/or to
jointly train two branches.

There are other egocentric datasets that are not suitable for EAR
due to their intrinsic purpose (the task, a focus on activities or
interactions rather than on actions and so on) and/or due to the
lack of labels. We only present datasets that are, to the best of
our knowledge, publicly available.

The University of Texas at Austin Egocentric (UT Ego) dataset
[101] is composed of 4 videos (10 in total, but only 4 public) with a
length of 3-5 h and recorded in an uncontrolled setting. The videos
capture a variety of activities such as eating, shopping, attending a
lecture, driving and cooking.

The JPL First-Person Interaction dataset (JPL-Interaction
dataset) [163] is an egocentric dataset composed of activities of
interactions (e.g. shake hands, hug or punch) with the wearer of
the camera.

The NUSFPID - NUS First Person Interaction Dataset [137] is
composed of 8 interactions in both egocentric and exocentric
perspectives.

The Stereo Ego-Motion Dataset1 contains videos that show a
person walking around objects or animals under no special circum-
stances. The first two objects, a car and a chair, show no motion
whereas the cats and dogs of the next two cases have strong articu-
lated motion.

The LENA (Life-logging Ego-ceNtric Activities) [178] includes
13 activities recorded with the Google Glass such as read, watch
videos, walk straight and so forth.

The EGO-GROUP and EGO–HPE datasets [8,7] are aimed for
ego-vision applications: social group detection and head pose esti-
mation, respectively.

The Egocentric Dataset of the University of Barcelona - Seg-
mentation (EDUB-Seg) [194,53] is a dataset acquired with Narra-
tive Clip, taking a picture every 30 s, containing 18;735 frames
from seven users. For the sake of variety, each user recorded their
actions in different scenarios: attending a conference, on holiday,
during the weekend and during the week. It contains annotations
to segment events in time under the condition that those events
can be inferred using visual features, i.e. there is enough visual
information in that segment to infer the event.

The Multimodal Egocentric Activity Dataset [179] contains 20
activities, having each activity short clips of up to 15 s. For exam-
ple, it includes writing sentences, organising files and running. Fur-
thermore, images are accompanied by sensor signals.

The UTokyo collection of datasets, composed of UTokyo Paired
Ego-Video (PEV) dataset [221], the UTokyo Navigation dataset
[222] and the UTokyo Ego-Surf dataset [220,223], are a family of
datasets developed by the University of Tokyo. The first one con-
tains videos from dyadic (between two persons) conversations,
capturing interactions. The second one has videos of people walk-
ing around a university campus to visit landmarks, but the videos
per se are not available (due to privacy concerns), yet already
1 https://lmb.informatik.uni-freiburg.de/resources/datasets/StereoEgomotion/
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extracted features can be obtained. The third one contains 8 groups
of videos recorded synchronously during face-to-face
conversations.

The EgoFoodPlaces dataset [168] involves 12 users in their
daily food-related activities. The classes for this dataset are locali-
sations where the activities are held.

The Dataset of Multimodal Semantic Egocentric Videos
(DoMSEV) [173] is a 80-h dataset containing information about
the scenes that were being recorded. This includes the type of
scene (indoor, urban, crowded environment or nature), the activity
performed (walking, running, standing, browsing, driving, biking,
eating, cooking, eating, observing, in conversation, playing or shop-
ping), if there was something special that caught the attention of
the observer and also interactions with some objects.

The EGOcentric–Cultural Heritage dataset (EGO-CH) [157] is a
dataset for cultural sites’ visitors behaviour understanding. The
dataset includes 60 videos, 26 environments and over 200 Point
of InterestPOI. Moreover, it is annotated with temporal labels
including the location of the visitor and the observed POI, a BB
annotation around POI and the survey associated to each video
filled by the visitor. The dataset is aimed at providing 4 tasks:
room-based localisation, POI or object recognition, object retrieval
and survey prediction.

The EgoK360 dataset [22] is an egocentric 360� video analysis
dataset. It contains several activities with actions within them,
being quite challenging due to the distortion and the wide field
of view.

5. Applications of Egocentric Video Analysis

The analysis of egocentric videos serve for several purposes.
Although the datasets shown in Section 4 may provide some hints
on the kind of applications that can be given, we review the appli-
cations found in the literature. Given that the field is still relatively
new, many new applications may arise in the future.

Ambient Assisted Living. One of the current main challenges
for the public administration is to promote active and healthy age-
ing for as long as possible. Achieving it would pose positive conse-
quences for the society and the socio-sanitary services, such as
reducing the costs from medicines and other treatments. The latter
expenses are becoming more and more worrying with the ageing
of society. For example, Spain dedicated the 9:8% of its GDP to
elderly care in 20142. Given that reports estimate that the world’s
older population is going to duplicate by 20503, the magnitude of
the problem may become unmanageable. Due to this, public admin-
istrations are investing in research projects which may help alleviat-
ing or avoiding this problem in the future, creating an active and
healthy older population. Although the research projects using com-
puter vision approaches have mainly focused on the third-person
vision [29], nowadays the use of wearable systems is more abundant
[37,39]. [126] proposed a system to support clinicians for the care of
dementia patients and [231] used smart glasses with a first-person
system that could warn people with cognitive impairments of dan-
gerous situations. But not only is it useful for supporting health pro-
fessionals, aiding caregivers is also a potential application of first-
person systems. [136] described a method leveraging a first-person
camera to evaluate the tender dementia-care technique. They
obtained the 3D facial distance, pose and eye-contact states between
caregivers and receivers and performed statistical analysis to assess
the caregiver’s skills. These types of approaches can be grouped in
the AAL paradigm, which promotes the use of modern ICT technolo-
https://www.imserso.es/InterPresent2/groups/imserso/documents/binario/
112017001_informe-2016-persona.pdf

3 https://www.nih.gov/news-events/news-releases/worlds-older-population-
grows-dramatically



Table 2
Summary of the most relevant egocentric action recognition datasets ordered by their publication year. *Only for 4 objects. **Manually computed, there is no official number.

Dataset Year Object Action Action Verb Object
BB? clips classes classes classes

Intel Egocentric Vision [162] 2009 � 922 42 42 42
CMU [48] 2009 � 516 31 16 33
ADL [148] 2012 U 436 32 24 42
GTEA Gaze [60] 2012 � 511 94 10 33
GTEA Gaze+ [60] 2012 � 3,371 44 9 29
BEOID [44] 2014 � 742 34 15 20
EGTEA Gaze+ [105] 2018 � 10,325 106 19 53
Charades-Ego [172] 2018 � 30,516 157 33 36
First-Person Hand Action (FPHA)[66] 2018 U* 1,175 45 27 26
EPIC-Kitchens [43] 2018 U 50,547 2,747 93 272
EPIC-Tent [78] 2019 � 921 11 6 9
EPIC-Kitchens-100 [41] 2020 U 89,979 4,025 97 300
Meccano [158] 2021 U 8,857 61 12 20
H20 [96] 2021 U 184** 36 11 8
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gies to assist the elderly in their ADL. The main objective of the AAL
is to avoid the dependence of elderly people on other people in their
daily living activities. In particular, EAR becomes a key enabler for
AAL approaches.

Hand recognition. Hands are of special importance for humans,
allowing us to interact with objects and environments. As a conse-
quence, the daily life of a person with impaired or reduced hand
functionality may be drastically affected and the recovery of hands
should be a priority [17]. Even though health related issues may be
grouped within the AAL field, this is a special case for egocentric
videos. As seen throughout the document, hands play a key role
in egocentric actions and, therefore, this use case is separated from
the aforementioned. The recognition of hands includes their local-
isation in the space, their segmentation, their identification (left or
right) and the pose estimation (fingertips, for example). From this
information, it is possible to remotely assess the functioning of
hands. Another application of the recognition of hands is to be able
to understand children’s visual attention [15], as it seems that par-
ents’ hands drive their attention.

The augmented reality (AR) and the virtual reality (VR) tech-
nologies, which are becoming more popular, require the egocen-
tric recognition of hands for natural user interfaces that need to
know the position and movements of the hands [17]. For example,
[71] proposed an interface to move 3D objects using hands and,
thus, they implemented a virtual hand interaction technique. In
the work of [77], they aimed at simultaneously detecting click
actions and estimating occluded fingertip positions. [197] intro-
duced a solution to allow users to inspect 3D objects using their
hands, requiring to estimate the 6D palm pose and the gesture per-
formed. [76] focused on the rotation of 3D objects. By performing
the ”holding” gesture, virtual objects could be summoned into
the palm, allowing another gesture to trigger their function. [26]
argued that it was difficult to correctly detect hands in cluttered
backgrounds with varying illuminations and, hence, they proposed
a solution for indoor and outdoor environments.

Social Interaction Analysis. People’s social behaviour can be
analysed and classified using egocentric videos. [58], for example,
aimed at detecting social interactions in a day-long activity. First,
the context provided by faces was obtained and used to estimate
the location that was being attended. Second, based on the pat-
terns of people, roles were assigned to them. By analysing temporal
patterns of roles and locations, they were able to detect and recog-
nise social interactions. They also explored the inclusion of head
movement as an extra feature. [163] focused on interactions with
the wearer of the camera, including both friendly and aggressive
interactions. [217] had as objective the extraction of interaction
features (IF), features that are common between interactions.
These are mainly composed of physical information of head, body
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languages and emotional expression. An HMM was used to model
the sequence.

When considering a group, based on the concept of the F-
formation [91,8] tracked through a video sequence a group of peo-
ple, estimating their head pose and 3D location, to predict the
affinity of a two people in the scene. Again following the F-
formation concept, [5] aimed at detecting when a social interaction
was given.

Pedestrian movement anticipation. Using an egocentric cam-
era, it is possible to analyse the patterns of movements of the
pedestrians in front of the wearer and anticipate their movements.
This may even have applications for autonomous vehicles for
pedestrian safety [184,36,108].

Nutritional behaviour analysis. The analysis of egocentric
videos could be interesting when we are performing actions
related to eating. This could lead to analyse our nutritional beha-
viours, diet and lifestyle as proposed by [82]. Moreover, as men-
tioned by [168], the food intake and its duration are of major
relevance to protect against diseases. That is why they developed
a model to detect the food intake events during the day. [24] aimed
at both localising and recognising food simultaneously.
6. Conclusions

Throughout this survey four main distinct ways to categorise
the EAR proposals have been introduced: those solutions based
on objects or the appearance, the ones employing motion as their
main driver, hybrid approaches that consider both the appearance,
and the motion and other approaches (still not that abundant) that
consider more modalities like the sound or contribute on other
topics of the field. Moreover, alternative learning paradigms for
the EAR and potential applications of this research field have been
summarised.

Although the EAR field advances are still far from being com-
pletely transferable to real-world applications, many steps towards
that goal have been taken. There are larger and larger datasets to
train deeper and deeper models, allowing to obtain models with
better performance and generalisation ability. The range of egocen-
tric actions that are considered in the literature is also increasing
with the evolution of datasets, considering rarer or more difficult
events. But this advance does not only come from the data, new
important modalities of data such as sound, crucial for actions that
are recognised only by that feature or in which this may play an
important role, are being included in the literature and the
datasets.
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6.1. Future work

Many ideas to tackle the EAR have been proposed throughout
this document. Many of them are still taking their first steps while
others have a larger trajectory. Nonetheless, their potential is
shown when comparing different solutions using standard bench-
marking datasets. Between them, the following research lines
should be taken into account:

� The use of the sound seems promising (see Section 2.4) despite
models using it can not compare directly with methods that do
not employ it. However, apart from the simple comparison
between models to achieve the best possible accuracy, solutions
including sound have appeared to provide a solution for new
action classes that did not have an easy way to be distinguished.
For example, consider an action that is not seen by the camera
but can be heard, such as a fridge closing while the camera
wearer is turning back (performing the action while looking
away from the fridge). By including sound it would now be pos-
sible to recognise this action. Clever ways to fuse sound infor-
mation with RGB, OF and so on need to be proposed to push
the real-world recognition of egocentric actions.

� The use of complementary information, apart from the sound,
to the traditional RGB and OF setting. For example, the object-
centric features extracted from RPN modules in hybrid
approaches. This seems to lead to competitive results [206]
while exploiting one of the most important features in the ego-
centric vision: objects. There are also works including hand
information. It is possible that including hands just like objects
are could lead to an improvement due to the inclusion of hands’
shape, trajectory and so on, as some actions can only by distin-
guished by discerning those cues. As an example, imagine trying
to distinguish turning on or off a burner. Visually, both actions
look the same, there is only a variation in the motion of the
hands. There should also be more research including left and
right hand variations, as so far the field has focused on right-
handed actions when only one hand is necessary.

� Creating attention mechanisms that are specific to the egocen-
tric setting. There may be a suitable way to improve the results
and the information captured by models without making net-
works bigger and deeper. In fact, the scaling of networks
towards bigger and bigger versions is reaching hardware limita-
tions and, thus, alternative ways to increase the performance
are even more necessary.

� Multi-tasking approaches such as [121,86,89] have obtained the
best results among many EAR solutions using the GTEA
Gaze + and EGTEA Gaze + datasets. This type of approach may
be a key enabler of the breaking of the performance barrier that
can be achieved with single-objective methods. This includes,
for example, aiming at learning egocentric features and/or verb,
object and action labels at the same time, following the litera-
ture of the EAR field. If more than a single objective is consid-
ered, the results obtained by these works may suggest that a
stronger generalisation is achieved.

� Alternative paradigms for learning egocentric actions in order to
be able to apply an EAR system in the real-world should also be
considered, including the zero-, one- and few-shot learning.
These require none, one or few samples, respectively, related
to the task and they usually extract the information required
for the learning (if any) from prior knowledge or auxiliary data-
sets. They may also exploit characteristic of the data (hands or
objects) or use unsupervised algorithms such as clustering, i.e.
grouping data points by specific features. This allows to create
models that may be able to generalise better when there is a
scarcity of data for a given task, making them more suitable
for real-world purposes.
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6.2. Challenges

One of the major challenges that needs to be addressed with
future works is how authors disseminate their models and results.
It is already known that there is an issue with the reproducibility of
Deep Learning results [55]. In fact, this also applies to the EAR com-
munity: there is a need for better description of models, datasets
employed, the data splits created and so on. It is also specially
important to establish appropriate metrics for the sake of compar-
ison, as the accuracy is extensively used on its own. Due to the
accuracy paradox and the unbalanced nature of EAR datasets, the
accuracy is not a suitable metric and it does not allow to correctly
compare different solutions. Moreover, how the results are pro-
vided is still not usually specified. That is, given the randomness
associated to Deep Learning, providing a single result may be mis-
leading and how this result has been computed should be speci-
fied. This problem is described by [55], whose authors propose to
compare models using a budget (i.e. time to train, number of
hyper-parameters and so forth).

Another aspect to improve is the collection of egocentric data-
sets we have. In fact, this is an important issue to address in order
to push forward the research. In Section 4 the available datasets
were analysed. Among them, the largest and most complete is
the EPIC Kitchens dataset. In contrast to the exocentric vision, this
community did not have a very large dataset to be used for pre-
training or just to have a common dataset for benchmarking until
the appearance of EPIC Kitchens, limiting the research and perfor-
mance that could be obtained, having to pre-train EAR models with
exocentric datasets. Nonetheless, even larger datasets need to be
created (or the existing ones need to be extended), as it is known
that video datasets are still small in comparison to static image
datasets. In fact, in the egocentric community there is also a need
for variety. The most used datasets, the GTEA family and the EPIC
Kitchen dataset, target kitchen related actions. This limits the
scope of actions and the possibility to apply to the real-world mod-
els that learnt from them. Moreover, this could also lead to a data
bias, as models that used these datasets can be considered special-
ists in kitchen actions, neglecting other tasks.
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