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Abstract

Quality control is a centerpiece of any manufacturing industry, regardless of the industrial
sector. This complex and demanding process must be carried out with a high degree of pre-
cision and rigour. Intelligent automatic systems have attracted the interest of the scientific
community for the fulfilment of this critical and complex task. This Thesis addresses the
challenge of AI-based image quality control systems applied to the manufacturing industry,
with the aim of improving this field through the use of advanced data acquisition and
processing techniques, in order to obtain robust, reliable and optimal systems.

Throughout this Thesis, research contributions are presented in the different stages of
the design and development of inspection systems. These contributions beginwith the use of
complex data acquisition techniques, specifically focused on the capture of specular surfaces
that are typical in the manufacturing industry. Other contributions are also presented in ad-
vanced processing techniques to maximise the information available in the images, in order
to facilitate and improve the learning of neural networks. Further contributions include the
application and design of specialised neural networks for defect detection, and finally the
integration and validation of these systems in production processes. It was developed in the
context of several applied research projects that provided practical feedback on the useful-
ness of the proposed computational advances, as well as real-life data for experimental vali-
dation.

Keywords:
Industrial Manufacturing, Quality Control, Deep Learning, Photometric Stereo, Synthethic
Data, In-line Superficial Inspection, Defect Detection.
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CHAPTER 1
Introduction

1.1 Introduction

Manufacturing industry is a driver of employment and economic development in a country.
Specifically, in the European economy, manufacturing industry represented 14.5% of EU
GDP between 2009 and 2019 [5]. Due to an increasingly globalized and competitive economy,
this industry sector faces a diverse set of challenges that forces it to be constantly adapting.
This adaptation is possible thanks to innovation, which allows production systems to be
flexible in order to meet the changing demands of consumers and thus remain a global
benchmark. Thanks to the integration of new technologies, the industry moves towards an
advanced manufacturing paradigm.

Advanced manufacturing is an important area for learning and process improvement,
based increasingly on R&D, becoming one of Europe’s key enabling technologies (KETs)
[6]. The use of innovative technologies and methodologies to improve competitiveness in
the manufacturing sector is becoming more and more established. The aim of this type of
manufacturing is to improve services, quality, the ability to meet market demand trends,
and to increase the value of the company, including advances in all aspects of the value
chain. To remain a basis and driver for the future, manufacturing industry must lead the
technological and ecological transition to Industry 5.0 [7]. This means going a step beyond
productivity and efficiency, prioritising the well-being of workers in the production process
and sustainability.

For this transition, the European Commission defines the following key technologies:
human-centric and human-machine-interaction solutions, bio-inspired technologies and
smart materials, real time based digital twins and simulation, cyber safe technologies,
Artificial Intelligence and technologies for energy efficiency and trustworthy autonomy.

Nowadays, manufacturing companies no longer just want to identify a problem and
take corrective action, but they also want to identify in advace all the problems that could
occur, convert their processes towards maximum resource efficiency, and to eliminate the
factors that prevent these goals from being achieved. For this reason, they are investing
more and more in the application of new technologies, as can be seen since the Industry
4.0 [8] revolution.
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1. Introduction

The inspection stage in the quality processes in the manufacturing industry is critical
to avoid defective final products. The exigence of high standard quality control systems in
order to satisfy customer requirements, reduce waste of materials, energy and time, and to
improve product safety and quality is increasing dramatically [9]. Improvements in quality
control systems must also comply with the new requirements that manufacturing industry
is undergoing in terms of reducing lead times under increasing market competitiveness.

However, quality should not only be offered in the final products, it should also be
present throughout the entire production process. Techniques such as statistical process
control (SPC) are often used in production processes [10]. The use of automated vision
systems and Artificial Intelligence (AI) makes possible to inspect each item in the entire
production process in real time. The benefits for the organisation are less waste, fewer
reworks, fewer rejects, fewer complaints, and fewer returns, resulting in lower costs and
higher productivity [11].

Currently, many inspection processes are carried out manually thus only a few samples
of each production batch are inspected. The lack of full process automation has severe
consequences such as no data traceability, human error caused by fatigue and other factors,
lack of data to generate process knowledge, and limited process analysis. The promise of
employing automated machine vision and AI systems is that data is collected accurately
and systematically. The move of organisations towards integrating AI into their processes
is a reality [12]. The impact on work productivity, product personalisation, time saving,
and product quality is expected to continue to grow in the coming years.

The aim of this Thesis is to develop machine vision and AI systems that are capable
of improving current systems, throughout all stages of the production process. For this
purpose, our work is focused on the challenges of automating inspection systems, and more
specifically in the challenges from the point of view of Deep Learning techniques [13].

1.1.1 Challenges of automated quality inspection systems in the
manufacturing industry

Quality control is a complex process whose success is based on a clear understanding of
the function, characteristics and requirements of the product being manufactured. All this
knowledge is necessary to design a robust and reliable system that will repeat over time
and provide confidence to the human operators.

By endowing a system with the ability to see and understand, via image capturing
devices, it can almost instantly determine whether or not a product meets certain pre-
defined requirements in terms of functionality or aesthetics. Passing each product item in
front of a sensor or a camera, the system can obtain accurate readings of its size, colour,
shape or dimensional defects, missing parts, internal or surface defects.

Unlike the human eye, a machine can perform this task uninterruptedly and make
decisions immediately, based on the data that it receives. In this way, machine vision
quality control of any industrialised area can be applied efficiently, quickly and extremely
cost-effectively.

Machine vision based visual quality inspection systems based on intelligent technologies
are one of the most cost-effective solutions available to an automated industry [14]. They
eliminate subjectivity in inspection, compared with manual or visual inspection. All
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1.2. Publications

products follow the same standards with the same quality, removing the uncertainty of
the human factor from the equation. They also provide adaptability and flexibility as
these systems are mutable, allowing them to adapt to different products on different or the
same production line. This means that the same equipment can be reconfigured to work
in another area without major complications. Another advantage is that quality control
is performed in a non-invasive way. This is an important feature, as vision systems are
minimally invasive techniques, allowing for cleaner and safer inspections.

However this task is challenging, as it involves a number of time-consuming and
costly steps. The design, development and deployment of automated systems are usually
processes that are not carried out quickly, and where the involvement of the company is
mandatory for the definition of requirements, the formation about the production process,
the generation of the database, and the final validation of the system. Throughout this
process different challenges often appear, such as: the system must be robust in hostile
environments, the total availability and repeatability of the system must be maximised,
the system must generalise with different references or finding an acquisition system for
complex materials and geometries, among others.

On the positive side, once this phase is over, companies will be ready to meet the
demands of new customers, who are usually looking for more customised products and
new services. At the same time, by becoming smarter, factories will also become more
operationally and energy efficient [15] [16]. Furthermore, the industrial sector will be able
to produce 24/7, to achieve greater precision, to reach excellent quality levels and to reduce
production and reaction time to a change or a need.

These systems bring great benefits to overall product quality inspection processes due
to their low error margins. These systems remove defective items from the production line,
which in general greatly improves the final quality perceived the customers.

This Thesis addresses the challenge of AI-based image quality control systems applied to
manufacturing industry, aiming to improve this field through the use of advanced techniques
for data acquisition and processing, in order to obtain robust, reliable and optimal systems.
This Thesis presents contributions on the use of complex data acquisition techniques, the
application and design of specialised neural networks for the defect detection, and the
integration and validation of these systems in production processes.

1.2 Publications

This Thesis is presented as a compilation of the following papers in compliance with the
rules defined by the UPV/EHU’s school of doctorate.

• Saiz, F.A.; Barandiaran, I.; Arbelaiz, A.; Graña, M. Photometric Stereo-Based Defect
Detection System for Steel Components Manufacturing Using a Deep Segmentation
Network. Sensors 2022, 22, 882. https://doi.org/10.3390/s22030882. [JCR (2021):
3.847, 5-year: 4.050, Q2]

• Saiz, F.A.; Alfaro, G.; Barandiaran, I.; Graña, M. Generative Adversarial Networks to
Improve the Robustness of Visual Defect Segmentation by Semantic Networks inMan-
ufacturing Components. Appl. Sci. 2021, 11, 6368. https://doi.org/10.3390/app11146368
[JCR (2021): 2.838, 5-year: 2.921, Q2]
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• Saiz, F.A., & Barandiaran, I. (2020). COVID-19 detection in chest X-ray images using
a deep learning approach. Int. J. Interact. Multimedia Artif. Intell., 6 (Regular Issue)
(2020), p. 4. http://dx.doi.org/10.9781/ijimai.2020.04.003 [JCR (2020): 4.936, 5-year:
3.730, Q2]

Additionally, the following publications are the direct result of the works reported in
this Thesis:

• Saiz, F. A., Barandiaran, I.; Arbelaiz, A.; Graña, M. (2022, May). Artificial Intelligence
for Advanced Manufacturing Quality Control. In Basque Conference on Cyber
Physical Systems and Artificial Intelligence (pp. 111-118). Zenodo.

• Garcia, A., Franco, J., Sáiz, F., Sánchez, J. R., Bruse, J. L. (2022). Containerized edge
architecture for manufacturing data analysis in Cyber-Physical Production Systems.
Procedia Computer Science, 204, 378–384. doi:10.1016/j.procs.2022.08.046

• Saiz, F.A.; Alfaro, G.; Barandiaran, I. An Inspection and Classification System for
Automotive Component Remanufacturing Industry Based on Ensemble Learning.
Information 2021, 12, 489. https://doi.org/10.3390/info12120489. [JCR (2021): Q3]

• Saiz, F. A., Alfaro, G., Barandiaran, I., Garcia, S., Carretero, M. P., & Graña, M. (2021).
Synthetic Data Set Generation for the Evaluation of Image Acquisition Strategies
Applied to Deep Learning Based Industrial Component Inspection Systems.

• Saiz, F.A., & Barandiaran, I. (2020). COVID-19 detection in chest X-ray images using
a deep learning approach. Int. J. Interact. Multimedia Artif. Intell., 6 (Regular Issue)
(2020), p. 4. http://dx.doi.org/10.9781/ijimai.2020.04.003 [JCR (2020): 4.936, 5-year:
3.730, Q2]

• Saiz, F. A., Serrano, I., Barandiarán, I., & Sánchez, J. R. (2018, September). A robust
and fast deep learning-based method for defect classification in steel surfaces. In
2018 International Conference on Intelligent Systems (IS) (pp. 455-460). IEEE.

The following publications are an indirect result of the works carried out during this
Thesis:

• Presa, S., Saiz, F.A., Barandiaran, I. (2022). A Fast Deep Learning Based Approach for
Unsupervised Anomaly Detection in 3D Data. In 2022 7th International conference
on Frontiers of Signal Processing. Proceedings pending to be published.

• Ojer, M.; Alvarez, H.; Serrano, I.; Saiz, F.A.; Barandiaran, I.; Aguinaga, D.; Querejeta, L.;
Alejandro, D. Projection-Based Augmented Reality Assistance for Manual Electronic
Component Assembly Processes. Appl. Sci. 2020, 10, 796. https://doi.org/10.3390/app10030796
[JCR (2020): 2.679, 5-year: 2.736, Q2]

• Ojer, M., Serrano, I., Saiz, F. et al. Real-time automatic optical system to assist
operators in the assembling of electronic components. Int J Adv Manuf Technol 107,
2261–2275 (2020). https://doi.org/10.1007/s00170-020-05125-z [JCR (2020): 3.226,
5-year: 3.320, Q2]
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CHAPTER 2
Foundations and Context

This chapter presents the theoretical concepts underlying the research developed in this
Thesis. First, we provide an introduction to quality control in industrial environments,
its importance and challenges that intelligent systems must overcome. Subsequently, we
describe typical inspection pipeline, discussing in some detail all the theoretical concepts
of each stage, from the design of the acquisition system to the final validation. Finally, the
metrics that were used throughout the experiments for the evaluation of the trained models
are explained.

2.1 The relevance of quality control

Quality control is a the key process that has a direct impact on the final manufactured
product. Quality control is a testing process that attempts to measure and guarantee product
compliance within the final specifications. In order to ensure the quality during the whole
manufacturing process, a series of tests are applied at each stage of the process.

The aim of a quality control is to help any type of company or industry to meet the
demand for better products, ensuring zero defects and compliance with the ISO 9000
standards that regulate quality [17].

The implementation of a quality control system in a production environment requires
planning and effort to ensure that it is done correctly. In this regard, there is a wide variety
of quality control techniques that can be applied in industrial processes, such as:

• Six Sigma: The Six Sigma [18] approach is the customer satisfaction method
developed at Motorola. It is based on two premises: (1) A product is built in the
shortest time and at the lowest cost if no mistake is made in the process; and (2) if no
defect can be found anywhere in the process of building a product for the customer,
then the customer probably will not find one either.

• Statistical Process Control (SPC): This technique [19] is based on tracking pro-
duction metrics by monitoring quality at each step. SPC focuses on optimising
continuous improvement by using statistical tools to analyse data, make inferences
about process behaviour and then make appropriate decisions.
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2. Foundations and Context

The basic assumption of SPC is that all processes are subject to variation. Variation
measures how the data is distributed around the central tendency. This allows a
better identification of problems and their resolution at an early stage.

• Total ProductionMaintenance (TPM): Total ProductionMaintenance is a working
method originated in the 1970s. It ensures and improves production integrity through
the use of machine, equipment, process and material innovation [20]. By using a
proactive approach, problems are identified at an early stage and eliminated as soon as
possible. It is a well-established way of improving manufacturing production systems
and works well as part of an overall quality control strategy in most environments.
The ultimate goal is to achieve the so-called 3 zeros: Zero defects, Zero breakdowns
and Zero accidents.

• Total quality management (TQM): TQM implies the presence of quality control
in all areas: in products, designs, procedures and systems [21]. A fundamental factor
considering the importance that quality has achieved as a means of guaranteeing cus-
tomer satisfaction and reducing costs. Their principles are: Customer-focused, Total
employee involvement, process-centered, Integrated system, strategic and systematic
approach, continual improvement, Fact-based decision making and Communications.

There are different areas where actions can be taken to improve the quality of total
production. This Thesis focuses on image based product quality inspection, and more
precisely, on defect detection at early stages of manufacturing.

Nowadays, the market demands quality products and the industry has been updating its
procedures and methods in order to meet this requirement. Traditionally, human inspection
was the method on which quality was based, discarding defective products before being
sent to the market. It is well known that this procedure, despite being exhaustive, does not
fully comply with the objective, mainly due to human operator fatigue and uncertainty,
resulting products being accepted or rejected incorrectly. We must also note that each item
rejected as defective has consumed company resources, labour, raw material, energy, etc.,
resulting in an effective increase in the final cost of the product.

Artificial Intelligence has taken off globally in recent years, being applied in several
contexts and sectors and the manufacturing industry and quality control specially is not
an exception. During the process of analysing and collecting data from companies, AI can
recognise regular patterns not perceivable to the human eye.

AI and machine learning in particular become possibly the most important factor in
complex contexts such as quality control. Using AI is required when there are numerous
unclear requirements, a multitude of variables or where conditions change over time. These
methods will be introduced in the following chapters.

2.2 Key points for solving the challenges of automated
inspection systems using Artificial Intelligence
techniques

AI in industry refers to predictive analytics methodologies, artificial vision systems or
decision support systems based on intelligent systems [22]. Machine vision intelligent
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2.2. Key points for solving the challenges of automated inspection systems using Artificial
Intelligence techniques

systems have become an essential element of technology, reporting highly accurate results
in multiple tasks applied to industrial manufacturing quality control processes, such as
surface inspection or the automatic handling of components in robotics [23]. Thanks to the
advances in AI, manufacturing industry can benefit from the improvements in automation,
productivity and safety that these systems offer.

Among many existing techniques used in Machine Learning, there is a branch that
is currently being researched and applied, known as is Deep Learning. Deep Learning
consists of an automatic learning process of computational architectures such as artificial
neural networks, originally developed trying to simulate the way in which the human brain
works. These architectures process data, extract features, and learn patterns to be used
afterwards during the decision-making process.

In a conventional machine vision method, a developer must define and verify individual
features manually. However, with deep learning, learning algorithms are used to auto-
matically find and extract unique patterns in order to identify and differentiate between
classes.

Many industrial applications are using these techniques in different fields. For example,
in the inspection process carried out in the electronics industry, it is possible to detect
different non-conceivable product defects effectively and automatically [24]. Another
industrial application is the localisation of paint defects very difficult for the human eye
but are able to be identified by these learning systems [25].

Within industrial quality control there are different inspection tasks ranging from simple
to more complex ones, mostly being characterised by the feasibility to define the features
that describes the problem. Simple tasks such as the correct placement of components
or the presence or absence of components are easily quantifiable. However, not all the
parameters that determine the proper quality of a product are easy to determine. Moreover,
due to the diversity of components that can be handled on the same production line and
their different characteristics, the task of identifying and classifying them is complicated.

It is important to clarify the relationship between Machine Learning and Deep learning.
Machine Learning is a subset of Artificial Intelligence that allows building intelligent
machines that learn from a set of data. Deep Learning is a subset of Machine Learning,
which uses Machine Learning algorithms to train deep neural networks achieving greater
accuracy in cases where conventional Machine Learning fails to perform adequately.

Conventional Machine Learning methods are limited by the need to process the original
data from its natural form to a form of representation that is appropriate for the solution
of each specific problem [26]. In real industrial environments this task is even more
complex as the data comes from different sources of information and with very particular
characteristics. Deep Learning techniques change this paradigm completely as the network
itself is responsible, from the raw data, for estimating the internal representation of the
data by means of optimisation techniques, simultaneously with the learning of the classifier
or inference system. This estimation is carried out in a single process and through the use
of layers specifically designed to learn filters, which allow the signal to be represented in a
versatile, hierarchical and a derivable way.

Deep Learning is most commonly applied to the classification of more complex objects.
Deep learning-based architectures vary according to the type of data (numerical, point
clouds, images, etc.) or the purpose of use (classify, detect, segment, etc.). Focusing their
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2. Foundations and Context

use on images, use of convolutional neural networks (CNNs) is expanding due to their
adaptation to different applications. However, obtaining quality results depends on proper
supervision, especially in the training phase. Although these models employ learning,
they depend on many factors such as the quality and size of the dataset and the chosen
architecture, where the knowledge of a specialist is important [27].

However, one of the main problems in training these systems is the requirement of a
large sample of images to recognise the object [28]. The size or the number of samples varies
depending on the characteristics of the object, since the sample must represent as much as
possible all the scenarios in which it can be found. This requirement is compounded by
the difficulty of sometimes not having these data available, and even if they were available,
the capturing process takes considerable time [29]. This is why new trends are emerging
trying to mitigate or avoid this problem, such as anomaly detection or synthetic data
generation [30] [31]. Throughout this Thesis, the research and developments carried out in
this direction are shown.

2.2.1 Automatized quality control systems and their challenges

Visual detection technology based on image processing has been widely used in various
fields, such as medicine [32], manufacturing [33], textile [34] and automotive industries
[35] for its unique advantages of accuracy and speed. Early defect detection methods
can be grouped into two general categories: contact and non-contact detection. Contact
detection receives information through direct contact with the surface of the component
using a sensor that interacts with it. However, non-contact inspection relies on technologies
based on photoelectricity and electromagnetism to obtain information about the surface
parameters of the sample without contacting it.

Visual detection based on image sensors is one of the most widely used non-contact
detection methods because it is an effective combination of the high speed achieved by
contact detection methods and the flexibility of non-contact detection methods [36] [37].
The key feature is the simplicity of implementation of these systems, as they can be deployed
using an image acquisition system, a computer or a processing unit and an image processing
algorithm. The validation of these technologies is supported by a large amount of related
publications [38] [39] [40], that is continuously growing over the last decade. This upward
trend is based on the improvements in computer technology, the development of more
advanced sensors, and developments in intelligent image processing algorithms.

Although the solution seems straightforward, real-time surface inspection in industry
faces a number of challenges. Some of the challenges that the systems must overcome are
mentioned below and will be developed in depth throughout the Thesis:

• Defect catalogue variability and multiple surfaces: The variability of surface
defects is wide, with the location of defects varying depending on the component
and the processes applied to it. Some defect categories may have many intra-class dif-
ferences, and other defect categories may be similar to each other, which complicates
system development.

• Total machine availability and accuracy: A large number of production lines
are in operation 24 hours a day, 7 days a week, so the inspection system must meet a
strict KPI of machine availability. In addition, the algorithms to be developed must
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meet high demands in terms of accuracy, as they must outperform human detection
capabilities. Any system failure, whether of hardware or software, wastes money
and time, and negatively impacts the reliability of the system for the company and
the operators.

• High production rate: Generally, the production rate in themanufacturing industry
is high. For example, the production of rolled steel components can be 20m/s. This is
an important factor to take into account in all components of the inspection system,
as the result must be given in a very limited time to take corrective actions and avoid
scrapping as much material as possible.

• The complexities of deployment within the manufacturing line: Manufactur-
ing lines can be placed in very hostile conditions. Depending on the component to
be manufactured, there are different types of adversities such as high temperatures,
corrosive particles in suspension, oil, steam, vibrations, etc. These particularities
make difficult to install the acquisition systems properly, as they require extra pro-
tection for the hardware to last over time. In addition, the protections should not
require daily maintenance of the system, as this would invalidate its usefulness on
the production line. In terms of the quality of the data obtained, these factors cause a
performance loss that can increase over time between maintenance periods, causing
problems for the stability of the algorithms.

2.3 Inspection systems pipeline

Automatic inspection systems combine hardware and software components to perform
feature recognition based on image acquisition and processing. Generally, these systems
have a common pipeline that can be divided into several stages, such as shown in Figure
2.1, which are detailed in more detail below.

Figure 2.1: Inspection system pipeline
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2.3.1 First step: Image Acquisition

The image acquisition system has the function of transforming the optical scene into
numerical data that will be received by the processing device. The correct design of this
system has an important impact on the acquisition of proper data, and therefore on the
correct final system performance.

The sensors that can be used in this type of system aremultiple and are chosen according
to the defects to be detected and the characteristics of the production line. When designing
an illumination setup for an inspection system, the task that the inspection system must
overcome must be considered: look for a defect in a part, measure the dimensions of a
part, or simply determine the presence or absence of a feature. Then, it must be defined
the optical components that compose the inspection system. If the defects to be detected
are of dimensional nature, the most suitable sensors are 3D sensors, however for aesthetic
defects, which are the types of defects that are the focus of this Thesis, the most suitable
sensors are 2D cameras.

2.3.1.1 A brief perspective on 3D acquisition

While 2D vision techniques effectively solve many problems related with dimensional
inspection, they are severely limited by not being able to acquire all part geometry. 3D
acquisition techniques can be classified as active or passive [41] [42]. Passive methods,
which are rarely used in industry, use object reflection and scene illumination to derive
shape information, so an active device is not required. In the active form, which is more
robust, appropriate and specific sources of energy are used to obtain the information.

A distinction is also made between direct and indirect measurements [43]. Direct
techniques result in range data, e.g. a set of distances between the unknown surface and
the range sensor. Indirect measurements are inferred from monocular images and a priori
knowledge of the object properties.

The most common technique for obtaining three-dimensional information for continu-
ous products is laser optical triangulation [44] [45], based on the perception of positional
variation of a laser projection on the object. In order to obtain a complete scan, either the
sensor or the object must be moved. In continuous inspection, the movement is provided
by the process itself and it is usually reported to the scanner via an encoder. Lasers with
different wavelengths are used depending on the environmental conditions, such as 635nm
(red) for cold applications, 470nm (blue) for hot component inspection, or 530nm (green) for
underwater and some hot applications. As for the cameras, they are based on high-speed
matrix cameras usually based on CMOS sensors.

Another 3D acquisition system that is becoming more widespread in the industrial field
are those based on structured light [46]. In contrast to laser-based devices, there is no need
to move the system or the part as they are able to digitise a bigger area than a laser line at
once.

Structured light reconstruction is a technique that provides very good results in 3D
scanning of objects with little texture information, such as metallic objects [47] [48]. They
are based on the projection of a pattern or a sequence of patterns that univocally determine
the deviation between the projection and the pixel positions. Basically, it consists of using
one or several cameras and a projector to illuminate the object or scene to be reconstructed
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using one or several coded patterns and to analyse the image captured by the camera to
obtain, by triangulation, the information of each point of view of the object or surface
reconstructed in three-dimensional space.

Two groups of techniques can be distinguished depending on the nature of the patterns
used in the projection stage; those using a continuous pattern structure and those using
a discrete structure. Discrete coding methods are those that use patterns with a digital
profile, such as binary patterns with black and white pixel values, assigning the same value
to the region with the same colour. Patterns with continuous structure, however, present a
continuous variation in intensity or colour on the two axes.

The accuracy of these scanners depends mainly on the resolution and sharpness of the
projector, as well as the scanning distance. As the scanner is moved further away from the
object, the area covered by the projector and cameras becomes larger and more detail can
be discerned.

2.3.1.2 2D acquisition: sensors, optics and illumination

The definition of a 2D acquisition system is not a simple and quick task, especially in
industrial environments. The systems to be installed in the production shop floor must
be robust in adverse conditions, reliable and repetitive, so they have to try to control the
maximum possible variables existing in the production line. Typically, this system consists
of a sensor (or camera), a lens and an illumination assembly [49].

2.3.1.2.1 Camera sensor types
Each of these components must be carefully chosen depending on the application and the
type of part being inspected. The typology of image sensors can be classified according to
two main criteria: sensor geometry and spectral sensitivity. According to the geometric
criterion, there are two types of sensors:

• Area: the sensor is a square pixel array so that in each frame a complete image
is obtained. The vertical resolution of the image is therefore limited to the size of
the sensor. Furthermore, these sensors are only suitable for low acquisition rate
processes.

• Linear: The sensor has only one line of pixels, so that several frames have to be
acquired in order to build a complete image. The vertical resolution is not limited
by the sensor, but requires synchronised motion between the camera and the part
being captured. As shown in the Figure 2.2, this synchronisation is normally done by
encoders on a conveyor belt. This type of sensor can work in processes with high
acquisition rate.

2.3.1.2.2 Optics
The camera’s optics perform the function of focusing and directing the light onto the sensor.
Its characteristics determine the shape of the final image as well as the amount of light
the sensor will receive. Generally there are two main kinds of lenses used in industrial
applications: conventional lenses and telecentric lenses.
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Figure 2.2: Example of typical image acquisition schema using linear cameras.

Conventional lenses have a behaviour that approximates the perspective projection
model. In this way, objects have an apparent change in size, appearing smaller when they
are further away from the lens. This scaling factor depends directly on the focal length,
which also determines the effective working area of the camera.

The main disadvantage of this type of lens is that it is not easy to take measurements
from the images directly due to the perspective distortion, without any type of calibration
of geometric distortion correction [50].

In order to solve this problem, telecentric lenses achieve a behaviour that approximates
a parallel projection model [51]. As can be seen in the Figure 2.3, under this premise the
size of the objects in the image does not depend on their distance from the camera, so it is
always possible to establish a relationship between pixel size and object size, thus being
able to extract very accurate measurements.

However, these lenses have two disadvantages. On the one hand, their depth of field
distance is very small, only a few millimetres. On the other hand, they are usually quite
large lenses, which can be a handicap in some installations.

As an example, the Figure 2.3 shows a comparison of the image generated by a conven-
tional lens compared to the one generated by a telecentric lens. As can be seen in the case
of the telecentric lens, the size of the object is not distorted by its distance from the camera.

The accuracy that can be achieved with a telecentric lens depends on its working area,
sensor size, and sensor resolution. With a standard configuration it is possible to achieve
accuracies around 10µm.

2.3.1.2.3 Illumination setup
One of the most critical variables in the choice of the acquisition hardware is the ambient
lighting and the specularity of the surfaces to be inspected. The surfaces of a component
have optical properties that fall into one of three general categories of reflectance: specular,
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Figure 2.3: Effect of lens distortion on the acquired image.

diffuse or directional, as shown in Figure 2.4. Components or products may have different
types of surfaces, so it is important to understand how light interacts with them [52].

Very specular surfaces are mirror-like, flat and highly polished. They reflect light at an
angle equal and opposite to the angle of incidence. Diffuse surfaces are rough and have
an opaque shine, so they scatter light in all directions, an effect called diffuse reflectance.
And finally, directionally reflective surfaces usually contain fine slots that reflect light in
direction depending on the angle of incidence.

In addition to the reflective properties of a component, the geometry of the surface and
whether it is flat, curved or prismatic must also be taken into account. On a flat surface it
is easier to achieve uniform illumination, and the choice of systems is often easier than for
other geometries. However, the changing slope of a curved component can often cause a
lighting problem that manifests itself as uneven illumination across the surface.

Figure 2.4: Types of light reflections based on surface characteristics.

To ensure that an algorithm is robust and does not suffer from artefacts appearing in
the images, such as reflections, the illumination must be controlled as much as possible.
For this purpose, as Figure 2.5 shows, there are different illumination schemes [53]:

• Backlight: This type of illumination is used to generate a high contrast between the
background and the objects to be inspected. In this configuration the illuminator is
placed behind the object in the direction of the camera as shown in the Figure 2.5.
This technique is particularly effective when evaluating contours or measuring holes.
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• Diffuse light: This technique consists of indirectly illuminating the object from
all directions. It is particularly effective for inspecting curved surfaces and highly
specular materials. The most common configuration consists of a hemispherical
dome that reflects the light towards the object inside the dome.

• Bright field light: This technique consists of illuminating the object from the side
so that the angle of incidence of the light is within the cone of vision of the camera.
Due to its directionality, it is very useful when highlighting topological details of the
piece, such as reliefs. However, it presents problems with highly specular surfaces
due to the reflection it produces on its surface.

• Dark field light: Similar to the previous technique, this method illuminates the
object from the side, but with a very low angle of incidence so that the light is reflected
outside the cone of vision of the camera. In this way only the diffuse component
of the textured areas reaches the camera, preventing the specular component from
saturating the image. This technique is particularly effective with highly specular
materials, such as metals.

Figure 2.5: Types of light reflections based on surface characteristics.

2.3.1.2.4 Photometric stereo
Due to the difficulty of choosing lighting, these aforementioned illumination schemes serve
as a basis for the creation of more a advanced illumination systems, such as photometric
stereo, which has special relevance in this Thesis.

Reflectance based shape recovery of non-planar surfaces from several reflectance images
obtained under different irradiance sources is a classic task in computer vision [54]. This
type of approaches determine the absolute depth of the surfaces by reconstructing the
shape of the object under changing illumination conditions such as color or orientation,
among others. This problem is called Shape from Shading when just one irradiance image
is used for reconstruction process [55]. Photometric stereo methods firstly recover surface
orientations and can be combined with an integration method to calculate a height or depth
map. Even without a subsequent integration step the surface orientations can be used, for
example to determine curvature parameters of object surfaces [56]. To acquire images for
photometric stereo the object is consecutively illuminated by several light sources. In one
of the applications developed in the gramwork of this Thesis we use four different light
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sources from four different orientations around the component to be inspected, as shown
in Figure 2.6.

Figure 2.6: Schema of photometric stereo acquisition system with four light sources.

In this settings, we get 5 different photometric images for each acquisition as shown in
Figure 2.7, namely:

• Curvature images: Provides the contour lines of the surface topography. May be
used for the verification of local defects such as scratches, impact marks, etc.

• Texture images: Provides color or spectral response. They are very suitable for
detecting discoloration defects and rust damage.

• Gradient image X: Signal variation in x direction.

• Gradient image Y: Signal variation in y direction.

• Range images: Computed as the image gradient magnitude. It highlights information
about the changes in the intensity of the image.

Figure 2.7: An example of obtained images by photometric stereo acquisition.
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These images are the result of a system of equations introduced by Woodham [54]
formalizing the solution of the problem assuming Lambertian reflectance, and taking over
that the distant light sources are known point sources. Given a known vector I⃗ of i observed
intensities, the known matrix of normalised light directions [L⃗ ] = (L1, L2, L3)

T , and the
reflectivity ρ, the unknown surface normal n⃗ can be obtained by inverting the following
lineal equation:

I⃗ = ρ[L⃗ ]n⃗ (2.1)

If the three illumination vectors Lk do not lie in the same plane, the matrix [L⃗ ] is
non-singular and can be inverted, giving the following equation:

[L⃗ ]
−1

I⃗ = ρn⃗ (2.2)

As n⃗ has a unit length, we can estimate the surface normal and the albedo. The problem
comes when we have more than three light sources, in this case the illuminations matrix
[L⃗ ] would no longer be square, and therefore could not be inverted [57].

When the light sources are more than three, this problem is solved by least squares,
using the Moore-Penrose pseudo-inverse [58] in the Equation 2.1, thus obtaining the
following solution:

[L⃗ ]
T
I⃗ = [L⃗ ]

T
[L⃗ ]ρn⃗ (2.3)

ρn⃗ = ([L⃗ ]
T
[L⃗ ])

−1
[L⃗ ]

T
I⃗ (2.4)

Where ([L⃗ ]
T
[L⃗ ])

−1
[L⃗ ]

T is the Moore-Penrose pseudo-inverse. After that, ρ and n⃗
can be solved as before.

2.3.2 Second step: Dataset generation

Once the appropriate acquisition system design is chosen, the subsequent step is the
generation of the dataset. For AI-based system training, the quantity and quality of the
data available is decisive for the success or failure of the overall system [59]. This process
usually requires three different sets of data: the training set, the validation set and the test
set.

The training set is used to teach the model, while the validation set is used to check how
well the model has learned in every N iterations. When this process reaches a convergence
state, the training is considered to be complete. Then the test set is used to obtain an
estimation of how the model will perform on unseen data, so that its performance will be
extrapolated to the behaviour of the final system performance.

This data has to represent as far as possible the whole nature of the components to be
inspected and their corresponding defects. This task seems straightforward in other areas
such as autonomous driving, where data for element classification is abundant, but is not
so straightforward in manufacturing industrial environments. Due to the manufacturing
rate and the small percentage of defective parts in production, the composition of a robust
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and reliable database with variability is often impossible to achieve. To overcome these
problems, novel techniques are used to minimise these requirements through the use of
advanced data augmentation or synthetic image generation [60].

2.3.2.1 The importance of data and the difficulties in obtaining representative
and reliable ones

Every year, new, more complex and more accurate CNNs are designed for image recognition
tasks. Typically, these networks increase in width or depth [61], thus gaining representa-
tional power. These neural networks learn a hierarchy of visual representations, which
were shown to be very effective in computer vision tasks [62] [63] [64]. But learning these
representations requires a large amount of data that often cannot be achieved.

For the comparison and evaluation of networks, public datasets are often used, which
typically are of the order of hundreds of thousands of images. Some of the best known
ones are mentioned below:

• The Pascal Visual Object Classes (PASCAL VOC)
The PASCAL VOC 2012 dataset [65] contains 20 object categories including vehicles,
household, animals, and other objects. This dataset is usually used for object detection,
semantic segmentation or classification purposes, so each image in this dataset has
pixel-level segmentation annotations, bounding box annotations, and object class
annotations. The train/val data has 11,530 images containing 27,450 ROI annotated
objects and 6,929 segmentations.

• ImageNet
ImageNet [66] is an image dataset organised according to the WordNet hierarchy,
where there are more than 100,000 categories. ImageNet contains 1000 images of
each category, and the quality of each image and its corresponding annotation is
controlled by humans. In total it contains approximately 15 million images.

• COCO dataset
MS COCO (Microsoft Common Objects in Context) [67] is a large-scale image dataset
containing 328,000 images of 91 object types with a total of 2.5 million labelled
instances. It is usually used for object detection, segmentation, and captioning tasks.

These datasets have images of all kinds, which do not resemble in any way any likely
scenario in the manufacturing industry. However, one of the most powerful approaches is
to use these images in a pre-training stage. In this way, the original model learns visual
representations using millions of labelled images, and at a later stage is trained on target
tasks to perform better. In this way, the network transfers the acquired knowledge and
needs fewer images of the target environment to converge. Transfer learning improves
performance in multiple vision tasks, and during this Thesis it was applied in several
projects due to the lack of data available for training.

Although transfer learning is a very useful tool for obtaining robust models and filling
this lack of data, it is not a universal solution if still there is insufficient data of the target
scenario. It is well known that performance increases logarithmically as a function of the
amount of data available for training [68]. There is a logarithmic relationship between
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performance on vision tasks and the amount of training data used for representation
learning.

Finally, the amount and complexity of the data available has to be related to the capacity
of the neural networks. For example, in the case of ResNet-50 [69] the gain in COCO object
detection is lower (1.87%) compared to when using ResNet-152 (3.87%), that has more layers
and more parameters [61].

2.3.2.2 Data augmentation techniques

Data augmentation aims to increase the number of samples in training in order to reduce
overfitting and to overcome the problem of lack of data. There are multiple strategies for
data augmentation starting from more traditional image operations to more modern and
novel approaches such as the use of GANs. In the scheme shown in Figure 2.8, an outline
of proposed techniques is shown, whose branches will be explained below.

Figure 2.8: Data augmentation techniques schema.

2.3.2.2.1 Image based approaches: Geometric and Photometric transformations

One of the most traditional data enhancement techniques is to apply geometric and
photometric transformations to the image. Geometric transformations involve a transfor-
mation in the image coordinate system. There are many applicable operations as shown
in Figure 2.9, such as translation, rotation, resizing, affine transformation, or perspective
transformation.

Photometric transformations alter the RGB (red, green and blue) channels by shifting
each pixel value (r, g, b) to new values (r′, g′, b′) according to predefined rules; these trans-
formations adjust the lighting and colour of the image but leave the geometry unchanged.
For example, these transformations can highlight edges and contours, can influence colour
such as discoloration, or can simplify the image with detexturing. These transformations
have to be meaningful, and they have to represent situations that can occur in reality. It
should be noted that all the image transformations applied are to facilitate network learning,
so it is important to design a good strategy in terms of the operations to be applied.

2.3.2.2.2 CAD based approaches: Rendering
Synthetic data sets applied to machine learning have been used in different areas, such as
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Figure 2.9: Examples of data augmentation techniques.

object detection [70], 3D object position recognition [71] or text recognition [72]. Non-
photorealistic image data sets are easy to generate but usually tend to obtain poor results
when used for training a machine learning models for detection or classification. When
those trained models are applied to real images they use to fail because the generated
synthetic data does not correctly represent the reality and therefore the trained models are
not able to generalize well [73, 74]. Recent advances in computer graphics [75] allow these
systems to be more photo-realistic, being able to generate images that better approximate
those obtained in real scenarios [76]. These new advances in computer graphics techniques
are an increasingly popular tool for training deep learning models. Indeed, some deep
learning methods have obtained good performance on complex real-world images when
trained only with synthetically generated data [77]. However, the deployment of deep
learning models in multiple sectors is still limited by the difficulty and high consuming
task for collecting high-quality data sets for the training phase. The lack of real data may
require the use of synthetic rendered images to train neural networks. Specifically in the
manufacturing sector, CAD models of many industrial components are often available.
Therefore, it is feasible to generate rendered images to use Deep Learning in production
environments, often with excellent results, as discussed in the articles [78, 79, 80].

Real-time rendering engines like Unreal Engine, Unity or CryEngine are now used
to generate realistic synthetic data sets [81] in real-time thus accelerating the data sets
generation and therefore accelerating the whole training models process [74].
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2.3.2.2.3 Deep Learning approaches: GANs
When techniques that apply geometric or photometric transformations to the images are
used, the main drawback is that no new data are introduced into the model, merely the
same samples in a different state are included. Therefore, the model has already seen these
samples and the impact on generalisation is limited. Generating new realistic synthetic
data is a difficult task that includes learning to mimic the original distribution of the dataset,
for which complex task GANs are being used.

Generative approaches to model building can be applied to learn how to synThesise
realistic images from data without an underlying detailed physical model (CAD model).
Recent works use Generative Adversarial Networks(GANs) for this task [82] [30]. This
method demands less human involvement because both the learning process and the
posterior image generation are fully automatic. However, the image annotation task needs
to be done manually in a separate process.

The capabilities of GANs are impressive for data augmentation, as they can effectively
learn the underlying distribution of the input data and generate very realistic samples.
However, there are some limitations, such as not having a metric for assessing the quality
of the generated samples. In addition, the training of GANs is often unstable and requires a
lot of computational resources.

2.3.3 Third step: Network design and training

The design and choice of a neural network depends on the problem to be solved and on the
available data. There are different problems that are usually solved by vision in industrial
quality control systems, which can be grouped into three main classes: defect detection,
defect classification and component detection [49]. Depending on the problem, the choice
of the network will be different, and this will be detailed in depth in Subsection 2.3.3.1.

Regardless of the type of network chosen, training is an iterative process. While training,
there is no way to estimate the exact number of images that are needed for the model
convergence, nor is it possible to guess the ideal architecture and hyper-parameters that
will make the training an absolute success. Each training instance will encounter problems
or shortcomings that will be solved in a new iteration until the desired results are achieved.

2.3.3.1 A taxonomy of detection methods

An object detection algorithm aims to detect multiple objects and give their position in the
image. These types of networks are based on basic classification networks, such as Alexnet
[83], Resnet [69] and VGG [84], as their strategy consists of sampling and searching through
the image in search of possible objects. This process is not as simple as simply iterating and
testing, as there are multiple variables that would vary the result, such as the size of the
sliding window, whether it uses one or several sizes, the displacement distance between
samples, the overlap between the analysis windows, etc. In addition, the computational
time that would be required if this search is configured with many parameters to test must
be added. As a result of these problems, there are well-known strategies to solve them. The
most relevant ones are mentioned below:

2.3.3.1.1 Object detection networks
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• Region Based Convolutional Neural Networks (R-CNN)
R-CNN [85] arises with the proposal to determine regions of interest within the
image and then perform image classification on these regions using a pre-trained
network, as shown in Figure 2.10. The region extraction algorithm could propose
up to two thousand regions of various sizes, based on image characteristics such as
colour, line detection, textures, or sharp changes in contrast and brightness.

Figure 2.10: Proposed regions using CNN features in R-CNN.

The overlap between regions is controlled by using the Intersection over Union (IoU)
and Non-Maximum-Suppression (NMS) concepts. The IoU provides a percentage of
accuracy of the prediction area versus the actual bounding box to be detected, and
it will be explained more in detail in Section 2.4. The NMS allows the selection of
the bounding box that best fits the result among the multiple bounding boxes that
detected the same object, eliminating those that were not chosen.

This type of network was an improvement over the iteration algorithm initially
proposed, but its training and inference time was extremely slow. R-CNN served as
the basis for the design of new and faster networks that follow a similar approach:
Fast R-CNN and Faster R-CNN.

Fast R-CNN [86] improves the algorithm by employing the features extracted by
CNN to classify object propositions more efficiently. In addition, it features improve-
ments in the IoU and loss function to better position the bounding boxes.

Faster R-CNN [1] addresses the main bottleneck of previous models, which is
selective search. This new architecture employs an algorithm called Region Proposal,
shown in Figure 2.11. In addition, it introduces the pre-setting of anchors, which
allow defining sizes and scales of bounding boxes to be used in the search based on
the size characteristics of the objects.

These types of architectures are used in several applications of industrial manufactur-
ing quality control systems, especially the Faster R-CNN due to its improvements and
speed. The first outstanding application is the detection of defects in various types
of industry, such as the textile [87] and automotive industries [88], where different
types of CNNs are combined to extract features that serve as the basis for Faster
R-CNN. This strategy has been used for the analysis of different surfaces, among the
relevant ones for this Thesis, metal surfaces with complex and polished geometries
[89] [90]. The results obtained by this network are in the range between 75% and
80% of mAP, which may be insufficient to meet some strict quality controls.
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Figure 2.11: Faster R-CNN Region Proposal Algorithm [1]

Another notable application is the verification of component assembly, where the
mission of the network is to identify parts and inspect their assembly [91] [92]. In
this case, the model identifies and segments the part in the image, to subsequently
obtain its category. Thanks to the fact that this model obtains the positions of the
objects in the image, the correct position of the components in the assembly can be
verified. The results presented in the work ensure that this type of model offers a
robust solution in industrial environments.

• You Only Look Once
You Only Look Once (YOLO) [93] is an architecture created in 2016. This network
detects and classifies in a single step all the objects for which it has been trained,
as shown in Figure 2.12. Thanks to this single step strategy, it achieves speeds
never before achieved with no very powerful computers. This allows real-time
video detection of hundreds of objects simultaneously and even execution on mobile
devices.
Yolo defines a fixed-size grid over the image, divided in several cells. On these cells it
tries to detect objects using fixed anchors. Like R-CNN, it uses IoU and Non-Max-
suppression techniques. It also has an associated regression network in the last
step for the bounding-boxes position calculation. The main advantage of YOLO is
due to its CNN network. While R-CNN used some additional algorithm to select
the regions of interest on which it makes predictions, YOLO uses the same CNN
classification network with an algorithm whereby it does not need to iterate through
the grid and does the detection simultaneously. In terms of its architecture, YOLO
uses a CNN network called Darknet [94], although it can also be trained with any
other Convolutional network. It embeds in its output both the classification and the
positioning and size of the detected objects.
Over time, this network has evolved and new versions have been created, such as:
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Figure 2.12: Schema of YOLO detection and classification algorithm.

YOLOv2 [95], YOLOv3 [94], YOLOv4 [96], YOLOv5 [97] and YOLOv6 [98], which are
focused on improving the accuracy of the bounding boxes, while maintaining their
speed.

Thanks to the inference speed offered by this architecture, it is widely used in quality
control applications in manufacturing industry. It is widely used in the detection
of defects in metallic components [99] [100] [101], obtaining results of over 90% in
mAP. In addition, it is also used in component assembly testing tasks, where the
network’s capacity to learn a large number of different classes stands out [102].

• Single Shot Detector
SSD [2] has a pyramidal structure in its CNN in which the layers gradually decrease.
This allows it to detect both large and small objects. It does not use a predefined grid,
but has anchors of different proportions that scale as go down the pyramid (map of
smaller features, with proportionally larger anchors).

The main architecture, as shown in Figure 2.13, is an FPN and a backbone that can
be chosen, although in its first versions it used a VGG19.

This network is also relevant for its speed, but it is not as fast as YOLO, so it is not a
good choice for inspection applications in high throughput environments [103].

• RetinaNet
The Facebook AI Research team presented a new object detection algorithm, Reti-
naNet [104], which, despite performing the detection task in a single step, obtained
results comparable to those of Faster R-CNN.

The authors of the paper found that, in object detection and instance segmentation
algorithms, the vast majority of windows created by the network during the initial
phases of its training were negative (they did not capture any objects). As a result,
there was a decompensation in the training of the loss function in favour of these
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Figure 2.13: SSD architecture [2]

negatives. In two-stage algorithms (such as Mask R-CNN), this problem did not occur,
as the auxiliary network had previously discarded these false negatives.
For this reason, the researchers proposed to modify the cross-entropy loss function
in such a way that the easy-to-detect negatives would contribute very little to the
cross-entropy loss. The new function, called the focal loss (FL), has the form shown
in Equation 2.5.

FL(pt) = −(1− pt)
γ log (pt) (2.5)

where FL is the loss function, pt is the probability attributed by the network to the
correct category and γ a constant. When pt is very high, it means that the network
has got it right.

2.3.3.1.2 Segmentation networks

Segmentation neural networks obtain the pixel mask of the objects of interest to be
extracted from an image, performing a pixel-level classification. These networks are
an alternative that provides superior performance in complex applications compared to
more classical techniques such as thresholding, growing regions or Watershed’s algorithm.
Despite many traditional techniques, the emergence of deep neural networks has implied a
radical paradigm shift in terms of object segmentation, achieving optimal results in terms
of accuracy and speed.

They have encoder and decoder modules. The encoder is typically a pre-trained classi-
fication network. The decoder, however, is in charge of projecting the features learned by
the encoder, until a dense classification is achieved.

Image segmentation can be divided into two problems: the classification of pixels
with semantic labels or the segmentation of individual objects. Semantic segmentation
performs pixel-level labelling of a set of object classes, however, instance segmentation

24



2.3. Inspection systems pipeline

further extends the scope of semantic segmentation by detecting and delineating all objects
of interest in an image. The following is a review of the most commonly used segmentation
architectures:

• Fully Convolutional Network
[105] have been the first to develop a Fully Convolutional Network (FCN) trained
end-to-end for image segmentation. This network is based on classical convolutional
networks such as AlexNet [83], VGG [84] or GoogleNet [106]. It is mainly used for
semantic segmentation.
In terms of architecture, FCN has only locally connected layers, such as convolutional,
pooling and oversampling layers. By avoiding dense layers, it prescends parameters,
thus achieving a lighter network. Its architecture extracts image features in down-
sampling, and performs object localisation in up-sampling as shown in Figure 2.14.

Figure 2.14: FCN architecture.

The results obtained by this network in industrial quality control applications are
promising [107]. It has been used for defect segmentation in large images, where
defects are a small part of the image, so it proved to be stable in detecting small
defects [108]. It has also obtained very good results in segmentation with complex
backgrounds, where problems of noise caused by illumination or irregular geometries
and textures are presented [109].

• Feature Pyramid Network
The Feature Pyramid Network (FPN) allows extracting features from the input image
at various levels. This process is independent of convolutional backbone architectures,
so it is a generic solution that builds feature pyramids within deep convolutional
networks.
The pyramid construction is performed in two directions: ascending and descending.
In the ascending direction, the usual feature extraction is performed, as the spatial
resolution decreases but the semantic value increases. In the descending direction,
higher resolution layers are constructed using the semantic layer. To improve the
details lost in subsampling, lateral connections linking both directions are provided
to improve the network output and facilitate training.
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• Mask R-CNN
Mask R-CNN [3] is a convolutional neural network that performs image segmentation
and instance segmentation. This network is based on Faster R-CNN [1], but differs in
the outputs it has. While Faster R-CNN gets two outputs, a class label and a bounding
box that locates the object in the image, Mask R-CNN also generates the object mask.
The additional mask output is distinct from the class and box outputs, requiring the
extraction of a much finer spatial representation of an object.
This network is a hybrid model of segmentation and object detection, so its category
should not be a single one. It is placed in this section to provide a preliminary
grounding in the fundamentals of the networks on which it is based.
In terms of its architecture, the key element of this network is pixel-to-pixel alignment,
which is the main shortcoming of Faster R-CNN. It has two stages. The first one
generates proposals of regions where an object could be present. In the second stage,
the object class is predicted and the bounding box is refined. Additionally, it generates
a pixel-level mask of the object based on the proposed regions from the first stage
as shown in Figure 2.15. The communication between the two stages is done with
different connections along its structure.

Figure 2.15: The Mask R-CNN framework for instance segmentation [3]

This network has many industrial applications that have a higher complexity and
need to be solved with a combination of techniques to achieve the desired results.
Different studies have been found that demonstrate its ability to detect objects in
complex environments. This network has been applied in different scenarios with
lack of data, where the lack of data was overcome with synthetic data [110] or transfer
learning [111], or in non-conventional surfaces such as sheepskin [112], obtaining
promising results in all scenarios.

• DeepLab
DeepLab is an advanced segmentation model designed by Google. The novelties of
this network are given by the increase of the output sampling of the last convolution
layer and the modification in the calculation of the loss, which is now done at pixel
level. In addition, DeepLab introduces atrous convolution for up-sampling.
Atrous convolution means an alternative to the use of deconvolution, which increases
memory requirements and computation time. This type of convolution employs
sampled filters, thus extending the field of view of the filters without increasing the
number of parameters or computation requirements.
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DeepLab was improved over time, having different versions. The most relevant
features of each version are explained below:

DeepLabv1 [4]: This new version eliminates the down-sampling operator of the last
layers and instead increases the sampling of the atrous filters in later convolutional
layers, thus obtaining feature maps calculated with a higher sampling. They intro-
duce the Conditional Random Field (CRF) concept in order to capture fine details.
Deeplabv1 takes the input images and after passing through atrous layers obtains an
approximate score map. This map is sampled at the original image size by bilinear
interpolation. Finally, in order to improve the segmentation result, the previously
mentioned CRF is applied. The outline of this process is shown in Figure 2.16.

Figure 2.16: Deeplabv1 model outline illustration [4]

DeepLabv2 [113]: Regarding DeepLabv2, its main objective was to improve the
performance of DeepLabv1, focusing on improving the detection of multi-scale
objects using Atrous Special Pyramid Clustering (ASPP). The strategy is based on
applying atrous convolutions with different sampling rates to the input feature map
and then merging them. ASPP allows taking into account different scales of objects,
thus improving the accuracy of the network.

DeepLabv3 [114]: The DeepLabv3+ model corresponds to a deep neural network
that applies several parallel atrous convolutions with different rates (specifically
called Atrous Spatial Pyramid Pooling, or ASPP). This is useful since the important
semantic information is encoded in the last feature map, and the atrous convolution
allows extracting denser feature maps.

One of the most important and innovative parts of the network is the Atrous con-
volution, which is a powerful tool that allows explicitly controlling the resolution
of the features computed by deep convolutional neural networks and adjusts the
field of view of the filter to capture multi-scale information, i.e. it generalises the
standard convolution operation. In particular, in the case of two-dimensional signals,
for each location i in the output feature map y and a convolution filter w, an atrous
convolution is applied on the input feature map x, following the Equation 2.6.

y[i] =
∑

k

x[i+ r · k]w[k] (2.6)
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Where r represents the atrous rate which determines the step at which the input
signal is sampled. In the case of r = 1 is the special case of standard convolution.

2.3.3.1.3 Anomaly detection networks

In the field of autonomous learning, unsupervised algorithms are becoming more and
more relevant, because most of the available data and data that can potentially be collected
are not labelled or with a defined structure, making this type of artificial intelligence
algorithms very useful.

Among the deep learning architectures or Deep Learning, the best known models are
Autoencoders, Long Short Term memory networks (LSTM) or generative networks (GANs).

Anomaly detection is a sub-area of unsupervised learning, where the objective is to
detect patterns within the data, which deviate from an established norm.

• Autoencoders
Autoencoders are neural networks that detect anomalies based on the reconstruction
they generate. Anomalies are detected in data whose reconstruction is erroneous.
Autoencoders are neural networks that are trained by means of back propagation.
They consist of two stages, encoding, where a reduction of the data set dimensions
takes place, and then subsequent decoding, where reconstruction of the original data
takes place. By comparing the input data with the reconstruction generated at the
output, it is possible to identify anomalies in the data set.
There are different types of autoencoders: Convolutional AutoEncoders (CAEs) and
Contractive AutoEncoders.
In CAEs the input data is considered as a sum of different types of signals, which
can be filtered by means of convolutional operations. These neural networks are
able to learn which is the most suitable filter to represent the input data in smaller
dimensions and also to reduce the error rate for reconstruction [31] [115].
Contractive AutoEncoders [116] [117] are a variation where the network is intended
to be sufficiently robust to small variations in the input data. This is achieved by
applying a type of regularisation to the network that corresponds to the Frobenius
norm of the Jacobian matrix [118] of the encoder activation function.

• Convolutional LSTMs
LSTMs [119] [120] are a special type of recurrent neural networks (RNNs) in which
certain knowledge acquired by the network is persistently maintained and used as a
basis for predictions.
In convLSTM networks, convolutional neural networks (CNNs) are used to extract
features from spatial data in images or videos, and then use similar features extracted
in the past to make predictions.
This allows the creation of models that generate a correlation of space and time in a
given video. A typical architecture made using LSTM models has two branches, one
in charge of predicting future frames and the other of reconstructing current or past
frames. With these two metrics, a probability of the presence of anomalies in the
data can be determined.
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In general, in the case of generative models, the way to detect anomalies is through
the probability that a certain element is reproduced or generated by the network; if this
probability is low, then this element may be an outlier.

• Variational AutoEncoders (VAEs)
VAEs are a generative model that are able, by means of the probability density
function, to create images, or missing portions of images, during the reconstruction
of the data [121] [122].
Generally the data that are generated remain close to the ensemble norm, so that by
checking them against the input data it is possible to detect anomalies.

• Generative adversarial networks (GANs)
These are networks consisting of two parts, the generative network and the deter-
ministic network. These networks compete with each other; the generative network
produces candidates and the deterministic network evaluates them.
In the context of anomaly detection, these can be useful when trying to generate a
given sample; if it is not possible to generate it, this may indicate that anomalous
data is present. [123] [124]

2.3.4 Fourth step: Validation and Deployment

In order to know when a model is fit or poor, it must be validated on the test set. This set
must be well constructed, so that it contains examples of what the model may encounter
when it is in production. If this set is properly constructed, the results obtained in the
validation stage will be similar to those that the model will have in the future.

In this stage, different classification performance metrics are computed to obtain nu-
merical evidence of the behaviour of the model in images not seen in the training stage.
When these metrics meet the objectives defined for the automatic inspection system, the
next and final step is the deployment of the model. These metrics are explained in more
detail in Section 2.4 below.

Deep Learning based systems need special computing hardware components that are
not common in industrial machines, e.g. a GPU. The quality control, depending on the
component being inspected, has very demanding speed requirements, and this, together
with the computational requirements of Deep Learning models, means that having a GPU
in the computer assigned to quality control is necessary. Furthermore, these computers
not only make a quality assessment, they also have to keep a traceability of the defect
detections for other purposes such as productive maintenance or for quality certification
requirements. Therefore, the software architecture and the way in which these types of
systems are deployed in the production line is not a simple task.

2.4 Defect detection performance measures

In the field of surface defect detection, the following performance measures are often used
to evaluate the results obtained:

• True Positives (TP): the defect is detected as defect.
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• True Negatives (TN): the background is detected as background.

• False Positives (FP): the background is mistakenly detected as defect.

• False Negatives (FN): the defect is mistakenly detected as background.

Besides the statistics described above, the following metrics are commonly used to
evaluate the quality of the segmentation:

• Mean Dice Value: is a spatial overlap based metric. It focuses on measuring the
similarity between two samples through the union and intersection of sets of predicted
and ground truth pixels. This index takes values between 0 and 1, and is better when
it is closer to 1, since this means to have more surface in common between the ground
truth and the result of the segmentation. This coefficient is calculated by the Equation
2.7, where A and B are the ground truth mask and the predicted mask respectively.

Dice(A,B) =
2 ∥A⋂

B∥
∥A∥+ ∥B∥ (2.7)

• Sensitivity: is the ability of the model of not marking a negative sample as positive.
It is measured by the formula of Equation 2.8.

Sensitivity =
TP

(TP + FN)
(2.8)

• Specificity: is the ability to find all positive samples. It is measured by the formula of
Equation 2.9.

Specificity =
TN

(TN + FP )
(2.9)

• Pixel accuracy: the percent of pixels in the image that are classified correctly. It is
calculated by the Equation 2.10.

Accuracy =
TP + TN

(TP + TN + FP + FN)
(2.10)

• F1 Score: The F1 Score is an harmonic mean of the Precision and Recall Metrics. The
closer to 1, the better performer is going to be the DL model. Mathematically, it is
expressed in 2.11.

f1Score =
2

1
Precision + 1

Recall

(2.11)

• AUROC and ROC: The AUROC (Area Under the ROC curve) and ROC curve (Receiver
Operating Characteristic) is one of themost widely usedmetric in binary classification
problems. It indicates the probability that the model classifies a randomly chosen
positive sample as positive. The closer to 1 the better performer is the model.
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CHAPTER 3
Hypotheses and Objectives

The main objective of this Thesis is to research and develop intelligent systems for image
based quality control that overcome the multiple adversities that they face in the harsh
environments of production plants. Let us briefly highlight some of these adversities: (1)
high manufacturing cadences that hinder the real time data acquisition due to the speed
and management of the images, (2) the components under inspection are complex in terms
of geometry and/or material so advanced optical sensors are required, and (3) production
installations offer a hostile environment with particles in suspension and the influence of
ambient lighting that impairs the collection of quality data and affects its operation due to
its variable nature over time.

This Thesis reports on the design and experimental evaluation of AI-based inspection
systems for reliable final machines. Specifically, (a) we evaluate advanced acquisition
systems such as photometric stereo, (b) we evaluate and design convolutional neural
networks for the detection of small defects or objects in images, (c) we study the impact
of the data on the generalisation and learning of the networks, and (d) finally validate the
results experimentally. All the researchworks have been carried out during the development
of to real industry projects. Chapter 4 details how the research result fit into the frame of
the applied industrial projects which justifies the industrial labelling of this Thesis.

In the following, we outline the different hypotheses and objectives guiding our research
work. We also provide a brief description of the publications supporting this Thesis as a
collection of published papers and a recollection of the identified key contributions of our
work.

3.1 Hypotheses

• The impact of employing an acquisition system that is robust in terms of illumination
and that can highlight defects in the complex and reflective surfaces that are common
in industrially manufactured components is critical in the design and behaviour of
the final intelligent system that automates quality control.

• Data has a major impact on the learning and generalisation capabilities of neural
networks, and the lack of this information can be alleviated by the use of advanced
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data augmentation techniques, such as the use of geometric transformations, image
rendering from CADs or the use of synthetic samples generated by GANs.

• To maximise the training results, the networks must be adapted to the characteristics
of the data and the target scenario, which is the detection of small defects in high-
resolution images.

• The validation process of these systemsmust be done in an iterative waywith the help
of quality experts, and their deployment in the factory entails a series of requirements
in terms of software architecture that must be met.

3.2 Objectives

The main objective of this Thesis is to improve and develop artificial intelligence systems
for image based quality control in the manufacturing industry.

The objectives derived from this main objective are as follows:

• Develop advanced acquisition systems for the complex characteristics of the compo-
nents manufactured in the industry.

• Study the impact of data on the final result of these systems and on the training of
neural networks.

• Develop data augmentation methods for the specific task of defect detection.

• Develop neural networks optimised for defect detection and for the special charac-
teristics of the acquired data.

• Validate and deploy these systems in production lines, thus automating quality
control.

3.3 Brief description of the publications and contributions

The research work is assembled in a total of four main articles. Each research article focuses
on accomplishing of one or several technical objectives, answering the hypothesis listed
above.

3.3.1 Article 1: Photometric Stereo-Based Defect Detection System for
Steel Components Manufacturing Using a Deep Segmentation
Network

This paper presents an automatic system for the quality control of metallic components
using a photometric stereo-based sensor and a customized semantic segmentation network.
This system is designed based on interoperable modules, and allows capturing the knowl-
edge of the operators to apply it later in automatic defect detection. A salient contribution
is the compact representation of the surface information achieved by combining photomet-
ric stereo images into a RGB image that is fed to a convolutional segmentation network
trained for surface defect detection. We demonstrate the advantage of this compact surface

32



3.3. Brief description of the publications and contributions

imaging representation over the use of each photometric imaging source of information
in isolation. An empirical analysis of the performance of the segmentation network on
imaging samples of materials with diverse surface reflectance properties is carried out,
achieving Dice performance index values above 0.83 in all cases. The results support the
potential of photometric stereo in conjunction with our semantic segmentation network.

3.3.2 Article 2: An Inspection and Classification System for Automotive
Component Remanufacturing Industry Based on Ensemble
Learning

This paper presents an automated inspection and classification system for automotive
component remanufacturing industry, based on ensemble learning. The system is based
on different stages allowing to classify the components as good, rectifiable or rejection
according to the manufacturer criteria. A study of two deep learning-based models’ perfor-
mance when used individually and when using an ensemble is carried out, obtaining an
improvement of 7% in accuracy in the ensemble approach. The results demonstrate the
successful performance of the system in terms of component classification.

3.3.3 Article 3: Generative Adversarial Networks to Improve the
Robustness of Visual Defect Segmentation by Semantic Networks in
Manufacturing Components

This paper describes the application of Semantic Networks for the detection of defects in
images of metallic manufactured components in a situation where the number of available
samples of defects is small, which is rather common in real practical environments. In
order to overcome this shortage of data, the common approach is to use conventional
data augmentation techniques. We resort to Generative Adversarial Networks (GANs) that
have shown the capability to generate highly convincing samples of a specific class as
a result of a game between a discriminator and a generator module. Here, we apply the
GANs to generate samples of images of metallic manufactured components with specific
defects, in order to improve training of Semantic Networks (specifically DeepLabV3+
and Pyramid Attention Network (PAN) networks) carrying out the defect detection and
segmentation. Our process carries out the generation of defect images using the StyleGAN2
with the DiffAugment method, followed by a conventional data augmentation over the
entire enriched dataset, achieving a large balanced dataset that allows robust training
of the Semantic Network. We demonstrate the approach on a private dataset generated
for an industrial client, where images were acquired by an ad-hoc photometric-stereo
image acquisition system, and on a public dataset, the Northeastern University surface
defect database (NEU). The proposed approach achieves an improvement of 7% and 6% in
an intersection over union (IoU) measure of detection performance respectively over the
conventional data augmentation.

3.3.4 Article 4: COVID-19 detection in chest X-ray images using a deep
learning approach

The Corona Virus Disease (COVID-19) is an infectious disease caused by a new virus that
has not been detected in humans before. The virus causes a respiratory illness like the flu
with various symptoms such as cough or fever that, in severe cases, may cause pneumonia.
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The COVID-19 spreads so quickly between people, affecting to 1,200,000 people worldwide
at the time of writing this paper (April 2020). Due to the number of contagious and deaths
are continually growing day by day, the aim of this study is to develop a quick method to
detect COVID-19 in chest X-ray images using deep learning techniques. For this purpose,
an object detection architecture is proposed, trained and tested with a public available
dataset composed with 1500 images of non-infected patients and infected with COVID-19
and pneumonia. The main goal of our method is to classify the patient status either negative
or positive COVID-19 case. In our experiments using SDD 300 model we achieve a 94.92%
of sensibility and 92.00% of specificity in COVID-19 detection, demonstrating the usefulness
application of deep learning models to classify COVID-19 in X-ray images.

3.4 Key contributions

The following are the technical and methodological key contributions of this Thesis:
Advanced acquisition systems development for complex specular surfaces

• We have developed and tested a system based on diffuse illumination on non-
Lambertian surfaces with a white light source to extract surface topographic in-
formation and spectral (color) response at the same time.

Advanced image processing techniques to maximise the information present
in images in order to facilitate and improve the training of deep neural networks

• We have shown the benefit of using compact RGB images composed by photometric
stereo channels to feed segmentation networks.

• We have developed and applied in practical problems a processing pipeline for the
generation of synthetic images of industrial environments, for the training and
validation of Deep Learning models for inspection systems.

• We have demonstrated the use of GANs as a data augmentation method, validating
their contribution to improve defect segmentation on metal surfaces. The method is
validated on different well-known segmentation architectures.

• We have demonstrated different advanced image processing methods to enhance the
image information and facilitate the training of deep neural networks.

Development and research of deep neural networks for fast, accurate and
reliable detection of surface defects in metal components

• We have designed and validated a specialised defect segmentation network for
RGB images composed by the different images obtained in the photometric stereo
reconstruction.

• We have demonstrated the benefits of model assembly for defect detection and
segmentation with high intra-class variability applied to industrial remanufacturing.

• We carried out extensive research about the best convolutional neural networks for
the classification of typical defects on metal surfaces.
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Validation of automatic inspection systems in real industrial manufacturing
production lines

• We have carried out the rollout and validation of inspection systems in different
manufacturing production lines as well as a proposed software architecture for the
deployment of deep learning-based models in production.

• We have developed automated quality control systems designed for ad-hoc trou-
bleshooting which were validated on real production lines.
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CHAPTER 4
Results

In this chapter, we provide the details of how our results answer the requirements of the
industrial projects directly related to this Thesis, and their relationship with the achieved
publications.

4.1 KEYINSPECT: Machine vision inspection system of
reflective components

The business objective of the KEYINSPECT project is to automate the inspection of
reflective swords to allow the customer to remain competitive in the market. In recent
years, the volume of nickel-plated keys in the automotive market has increased dramatically
due to a strategic change in the design and aesthetics of the final product. Taking into
account the compromise acquired by the manufacturing company with the final customers,
it is essential to find a solution in order not to lose competitiveness. On the social side, this
project will involve to create new jobs with higher qualifications, without eliminating the
current ones, and at the same time increase productivity, raising production towards the
industry of the future.

One of the scientific-technological objectives in the inspection of automotive sector
parts is mainly to be able to identify all the defects on the component surfaces and especially
on the reflective ones. The system developed in this project must be able to verify more
than 3000 parts per hour and correctly eliminate 98% of the parts that do not comply with
the predetermined characteristics, while the false rejection rate must not exceed 5%. The
system is looking for both aesthetic and dimensional defects over parts with and without
surface treatment. An example of the variety of these parts is shown in Figure 4.1.
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Figure 4.1: An example of different parts dealt with in the KEYINSPECT project with their defects
highlighted in yellow.

To attack these challenges, a system was designed, built, and validated with a photomet-
ric stereo illumination ring able to obtain high resolution images despite the high reflectivity
of the surface of the objects to be analysed. A tool has been developed with multi-detectors
based on machine learning techniques, which are able to detect all the surface defects
defined by the manufacturer. The models developed for this machine was designed and
optimised for the type of images obtained with this method of image acquisition, thus
achieving the quality requirements imposed by the customer.

The results of this project are published in the paper "Photometric Stereo-Based Defect
Detection System for Steel Components Manufacturing Using a Deep Segmentation Network",
where it is demonstrated that the use of a photometric stereo sensor is adequate for the
application of defect detection on reflective surfaces. The proposed method of stacking
multiple sources of data from the photometric stereo sensor into a high resolution multi-
channel (RGB) image is a key contribution to the improvement in the accuracy performance
achieved with the ad-hoc Convolutional Neural Network. A typical problem with this type
of application is the difficulty of detection of very small defective regions with respect
to the dimension of the component. This makes it difficult to avoid false positives as the
dataset is greatly unbalanced between the amount of normal and defect pixels. The added
extra information provided by the multiple data layers from the photometric stereo allows
the model to extract new features related with defective regions in a better an optimal way.

In comparison against other inspection methods proposed in the state of the art our
method allows the inspection of reflective surfaces in the cycle time required by the
manufacturing company. Other methods propose multiple image acquisitions from different
angles to avoid surface reflections, thus affecting the acquisition time and also the required
space for the installation of the inspection station in the production line. Compared with the
methods that employDeep Learning ourmethod is novel in usingmultiple combined sources
of information allowing a more detailed and robust description of the component surface.
This feature gives greater stability in defect detection compared with traditional image
acquisition based systems. In addition, a specific segmentation network is created allowing
the exploitation of this information in a fast and accurate way. The proposed acquisition
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4.2. CARJAULAS: Assembly of deep learning models for the classification of CV joints for
remanufacturing

system can be also used on non-planar geometries, such as cylindrical components just by
modifying the automation of the component’s displacement.

A previously referred challenge in machine vision applications developed for industrial
manufacturing processes is the speed at which they must operate to comply with high
production rates. Defect segmentation applications are often not fast enough to be inte-
grated into an industrial production line. However, our proposed system is able to process
images in the required cycle time. We demonstrate that if the inference is performed on
an industrial grade computer, the required response time would not be achieved. Hence, a
distributed computation for parallelizing processes is mandatory. This computing architec-
ture is also a benefit in terms of organisation and scalability, since the same system can
inspect components in several production lines and more hardware resources can be easily
added to cope with the required compute demand.

4.2 CARJAULAS: Assembly of deep learning models for the
classification of CV joints for remanufacturing

The general objective of CARJAULAS project is the application of Computer Vision to
solve complex problems of remanufacturing companies in the fields of handling, diagnosis
and automatic classification of multi-reference parts. The industrial remanufacturing
process consists of the recovery of a previously used product or component to the same or
larger dimensions in terms of performance and quality of that product/component.

The use case addressed in this project is the recovery of vehicle transmissions and, more
specifically, the verification of the surface condition (wear) of the recovered transmission
CV joints, classifying them into three groups according to their wear: recoverable without
machining, recoverable with machining, non-recoverable. These wear defects occur in the
area where the CV joints come into contact with the balls, known as the bearing contact
zone. An example of the wears is shown in Figure 4.2. During the process of transmission
restoration, it is necessary to check the wear on both sides of all cage races. Currently,
this check is done subjectively by an operator based on his sense of touch. This manual
process generates a lot of uncertainty, which results in miss-classifications: parts that would
be recoverable are rejected and out-of-tolerance parts are recovered and end up failing
prematurely when serviced to the final user.

Figure 4.2: CARJAULAS acquisition system and an example of the wear images obtained.

One of the main challenges was the implementation of an illumination/optical assembly
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to highlight this defect, as it is very small and difficult to access. This problem is further
accentuated when considering a universal sorting system for CV joints of different families
with quite different sizes and geometries. It is also necessary to implement a handling
system to acquire the top and bottom sides of all their tracks (6-track and 8-track models).
Likewise, a model based on Deep Learning was developed to classify the pieces based
on supervised training using pre-classified samples. This model was validated by the
collaborating company GKN Driveline, using new samples that were not used during the
training process and with different references in order to have a significant result that can
be extrapolated to the real operation of the system when deployed in the production line.

In this project, more than 80 different parts needed to be inspected. Besides having
different geometries, they were also grease-stained and damaged at different levels. In
order to obtain a robust and reliable system, it was necessary to have more than one model
to analyse each image in parallel. To this end, a study of traditional machine learning
techniques and Deep Learning models was carried out to find the best combination of
classifiers.

The results obtained with traditional methods were not accurate enough regarding the
manufacturing industry requirements. These methods detect more false positives, increas-
ing false rejections. An automatic system based on these techniques would be unreliable
and would generate more financial and environmental costs than manual inspection.

Proposed system based on a combination of YOLOv5 and DeepLabV3+, i.e., an ensemble
of classifiers, classifies the component based on the individual results per bearing contact
point region and following the customer’s criteria. This system achieves an accuracy
of 100% in the overall performance test, entailing a promising tool to solve the problem
presented by the customer.

The publication "An Inspection and Classification System for Automotive Component
Remanufacturing Industry Based on Ensemble Learning" is the direct result of this project.

4.3 BATTERYCHECK: Automatic quality control system for
car batteries

The project BATTERYCHECK arises from the need to automate Clarios’ battery quality
inspection system. Clarios carries out the entire manufacturing process of its batteries
and controls the quality at different stages of production using different vision processes.
However, in some complex processes quality control is carried out manually. This project
comes from the need to automatically detect the defects presented in its catalogue, thus
reducing the need to perform this manual control.

The batteries have different types of defects in the different components that are part
of the battery, such as: lack of filling or burrs in the lead components, plastic separator
damage or repetition and missing metal plates. In this project a 2D and 3D acquisition
systems was designed and installed, which made possible to study the information coming
from both sources of information. The catalogue of manufactured references is extensive,
so the system developed is agnostic to the reference being manufactured. The algorithms
designed were validated on two production lines at the Clarios factory in Burgos.

In addition to the current production plant, The system is intended to be deployed in
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multiple lines of the company, so an easy deployable software architecture was developed.
Thanks to this architecture the operators have control over production, have a history of
each line, and can take corrective actions in case of detecting deviations. An example of
the visualization that operators has in each line is shown in Figure 4.3.

Figure 4.3: Visualization of BATTERYCHECK application where the image and point cloud are
shown, with the inspection result bellow.

This project, apart from including the specific acquisition system design necessary
to solve the problem, and the use of methods based on Artificial Intelligence to locate
the defects, carried out an extensive study and development of the optimal deployment
of these systems, known as cyber-physical production systems, in production factories.
These cyber-physical production systems (CPPS) integrate both the virtual and physical
parts of manufacturing lines. This integration requires information technology (IT) and
operations technology (OT), standards and specifications related with Industry 4.0. This
leads to an intrinsic complexity that poses a barrier to the deployment of CPPS in real-
world manufacturing scenarios. This project has enabled the development of a simple edge
architecture, based onmicro-services and focused on a commonCPPS task: themanagement
of asynchronous manufacturing data analysis jobs. As a result, the paper "Containerized
edge architecture for manufacturing data analysis in Cyber-Physical Production Systems" was
published.

4.4 INN-SURF: Unitary surface inspection system for hot
inners

GKN Driveline is the largest division within the Global Engineering Group, GKN PLC.
GKN leads the global manufacturing supplier base for the automotive, heavy machinery
and aerospace industries. GKN provides technology based, highly engineered products to
producers of light vehicles, agricultural construction equipment and aero engines. Nearly
40,000 people work in GKN companies and joint ventures in more than 30 countries.
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The scope of the resulting INN-SURF inspection system impacts the INNERS line. The
inners line includes 2 medium heat presses producing at a rate of 1500 parts per press per
hour, with an annual capacity of 14 million components. Defects that typically occur in
this component include bumps, burrs and underfills.

Themechanical configuration adoptedwas designed tomeet the following requirements:
accuracy in the positioning of the part for the correct acquisition of the defect, cycle time
maximising the acquisition time andworking in parallel in the image processing for decision
making, stability of the illumination in the different working conditions, temperature and
part geometry, mechanical robustness and isolation of press vibrations, compact layout
given the space limitations at the press exit and mechanical simplicity.

Different software modules were developed to analyse different zones of the inner:
upper zone, lower zone and sides, as shown in Figure 4.4. Due to the repetitiveness in terms
of appearance of the components and given the difficulty of building a defect database,
anomaly detection models were developed. The models were integrated into different
software modules of the project, which are supported by an Edge Computing platform.

Figure 4.4: CV Joint inner inspection: zenithal for fill inspection and lateral for superficial inspection.

The main problem of this project is the harsh conditions of its manufacturing envi-
ronment, which limits the ability to test and collect a high quality database for training
the neural models. The machine where hot quality control is performed has a very high
production rate, which makes it impossible to manually check piece by piece for defects. In
addition, it has a large imbalance between non-defective and defective samples.

To alleviate these problems, this project has proposed a pipeline to generate rendered
images from CAD models of industrial components and then feed them to a Deep Learning-
based anomaly detection model. This approach can simulate the possible geometric and
photometric transformations in which parts could be presented to a real camera to faithfully
reproduce the image acquisition behaviour of an automatic inspection system. We evalu-
ate the accuracy of several neural models trained with different synthetically generated
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datasets simulating different transformations such as part temperature or part position and
orientation with respect to a given camera.

The results show the feasibility of the proposed approach during the design and evalu-
ation process of the image acquisition setup and to ensure the success of the future real
application, as can be shown in the publication "Synthetic Data Set Generation for the Eval-
uation of Image Acquisition Strategies Applied to Deep Learning Based Industrial Component
Inspection Systems".

4.5 BLANKSURFACE: Inspection of rolled steel using
photometric stereo acquisition

The BLANKSURFACE project aims to inspect rolled steel surfaces manufactured by
Gonvarri. These steel sheets have a highly reflective and large surface to inspect and their
manufacturing rate is high.

The defects that can appear on them are scale, rust, friction, corrosion, stains and
coatings, among others. To solve this challenge, a stereo photometric illumination system
and a linear camera were used. This provides a solution for inspecting large reflective
surfaces without the influence of external light sources.

The images obtained are analysed using Resnet that analyses patches as the rolled steel
moves along the production line. This specialised neural network detects and classifies
them, so that the types of defects that are occurring can be monitored in near real time.
An example of this classification is shown in Figure 4.5, where the detected defects are
highlighted by red filled rectangles. This information can be exploited to find patterns of
behaviour for predictive maintenance.

Figure 4.5: Defect classification in rolled steel sheets.

In this project, due to the nature of rolled steel manufacturing, the lightness, speed
and robustness of the model were key factors. An AI-based method was developed that
combines traditional Machine Learning techniques with convolutional neural networks.
Multiple experiments were carried out in order to define the optimal parameters of the
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network, and experiments were performed to test the robustness of the model to changes
in illumination and occlusions conditions.

This method was also validated with a public dataset, the Northeastern University
surface defect database (NEU), achieving a classification rate of 99.95% and taking 0.019
seconds to classify an image. A comparison was made with state-of-the-art methods,
outperforming their results. These results can be seen in the publication "A robust and fast
deep learning-based method for defect classification in steel surfaces".

However, in the project dataset provided by the company the classes were not well
balanced and, therefore, we needed to balance them to obtain a more robust system. In
order to overcome this shortage of data, the common approach is to use conventional data
augmentation techniques. We resort to Generative Adversarial Networks (GANs) that have
shown the capability to generate highly convincing samples of a specific class as a result
of a game between a discriminator and a generator module.In this way, we apply GANs
to generate more samples of images with specific defects, in order to improve training
of Semantic Networks (specifically DeepLabV3+ and Pyramid Attention Network (PAN)
networks) carrying out the defect detection and segmentation. Our process carries out the
generation of defect images using the StyleGAN2 with the DiffAugment method, followed
by a conventional data augmentation over the entire enriched dataset, achieving a larger
and well balanced dataset that allows a robust training of the Semantic Network.

We demonstrate that this approach is valid on a private dataset generated for the
industrial customer where the images are acquired by an ad-hoc photometric-stereo image
acquisition system and on the public NEU dataset. The proposed approach achieves an
improvement of 7% and 6% in an intersection over union (IoU) measure of detection
performance on each dataset over the conventional data augmentation. The results were
published in the paper entitled Generative Adversarial Networks to Improve the Robustness
of Visual Defect Segmentation by Semantic Networks in Manufacturing Components.

4.6 GLASSINSPECT: Accurate, high-speed automated optical
inspection of automotive glass based on vision and Deep
Learning techniques

The project GLASSINSPECT aims to solve the problem of high-speed and accurate auto-
matic inspection of glass surfaces bymeans ofmachine vision andArtificial Intelligence. The
project targets the automotive sector, specifically the surface inspection of the translucent
part of cars. Obtained results can be easily extrapolated to the quality control of components
with glass surfaces in other sectors, such as the aeronautical sector, the construction sector
(domestic glass windows) or medical sector.

Surface inspection of translucent components has until now been carried out manually
because of the complexity of the design of image acquisition systems and the algorithms
required to automate it. Image acquisition systems for this application must cover a
very wide field of view and acquire defects with very high detail. The image acquisition
system used in this project has a very high resolution (16K) linear camera and a backlight
illumination.

The main challenge of this project is that the inspection must be carried out in real time
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within the imposed cycle time, which is 8 seconds. During these 8 seconds, it is necessary
to acquire images, analyse and decide whether anomalies are found on the component. In
addition, each defect on the surface must be located in order to know how it was originated
and therefore to be able to correct the manufacturing process. The smallest defect in the
catalogue of defects are small pores, measuring 0.4mm, and the largest ones are breaks
that cross the entire component surface practically from side to side. An example of some
defects is shown in Figure 4.6. The system is designed to be valid for multi-reference
inspection, so that defects of different sizes, aspects, position and shapes can be detected
on glass components of different sizes and prints.

Figure 4.6: An example of car glass with different types of defects highlighted in yellow and
zoomed.

In this project, transfer learning and data augmentation techniques were applied because
of the limited number of available defective samples that does not allow a full training of
the network. On the one hand, the training weights of YOLOv5 in Imagenet were used to
obtain a pre-trained model to improve learning. On the other hand, the training database
was augmented by following two strategies: the first one was to use images of similar
defects thus adding these images to the training set and the second one was to cut out
defects from other images and overlay them into background images to generate synthetic
images that add variety to the set.

With this augmented set, YOLOv5 defect detection network initialised with pre-trained
weights from Imagenet was trained. Thanks to the applied techniques, an improvement
in defect detection was obtained, compared to the training performed with the original
available samples, of approximately 15% in terms of accuracy.

4.7 COVID-19 detection

The SARS-CoV-2 coronavirus, which produces the disease known as COVID-19, kept the
whole world confined in lockdowns during the first months of 2020.

During that time, access to COVID-19 tests was only available to healthcare profession-
als and their reliability was not very high. The scientific community began to investigate

45



4. Results

multiple tasks such as the prediction of new waves of infection, new methods of detecting
COVID, or medicines to alleviate its symptoms.

In that sense, it was decided to work on COVID detection using chest X-rays and AI-
based techniques. Access to data was limited, and the available annotated databases were
very small and from various sources around the world. To address this and minimise false
positives for pneumonia, a new dataset combining COVID-19 and pneumonia radiographs
was proposed to obtain a robust and reliable model. In addition, advanced image processing
techniques were applied to normalise the images and improve the model learning process.
Promising results were obtained, 94.92% of sensibility and 92.00% of specificity, which could
be improved as the database is enriched.

Although this work is not directly related to industry, it demonstrates the versatility of
the methods in both fields. Furthermore, the X-ray acquisition method is commonly used
in industry also for internal quality control of components, as can be seen in the following
works [125] [126].
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CHAPTER 5
Conclusions

5.1 Conclusions

In this Thesis, several vision systems for metallic and therefore reflective components were
developed. In terms of acquisition, it was demonstrated that a good acquisition set up
has a direct impact on the results in terms of defect detection. Specifically, the use of a
photometric stereo acquisition system has shown to provide additional information on
these complex surfaces and, therefore, to extract more details of the defects to be detected.
To verify this, a comparison analysis was performed for each photometric stereo image,
which allows the most suitable combination of images to be chosen.

The combination of photometric stereo images provides additional information to the
neural networks increasing the efficiency and accuracy of defect detection. This approach
is confirmed on different materials showing a decrease in the false rejection rate and an
increase in the true detection rate.

As well as these images provide extra information, the positive impact of processing
and data augmentation has also demonstrated in all its variants: conventional, by using
rendered images and by using GANs. The main conclusion is that the use of synthetically
generated images significantly improves the performance of the networks. In the case
of defect segmentation neural networks, obtaining realistic images to resolve the lack of
samples in the training dataset improves the predictive power of the network.

The results show that this approach can be a good solution for dataset augmentation in
an industrial environment, where difficulties in obtaining defective parts are very common.
Even in the case of unbalanced databases in terms of defect classification, synthetic images
can complement the information needed to detect and segment a certain type of defect,
especially those related to the dimensional condition of the surface. In addition, the use
of these images in the training of the neural model can increase its accuracy and help to
generalise the process of detecting surface defects.

Experiments show that a 38% concentration of synthetically generated images improves
the segmentation results compared to the original dataset using only conventional data
augmentation. If there is any restriction in the real data acquisition process, the use of
synthetic images could be a very powerful and effective tool as a data augmentation method
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for the optimisation of the neural network learning process. Therefore, it is argued that
such synthetically created images are fully compatible to be used in machine vision systems
based on Deep Learning, and more specifically in semantic segmentation tasks.

As previously mentioned, the networks used in industries have to be lightweight
and robust, in order to detect defects quickly and without error. Therefore, multiple
experiments have been carried out to maximise the networks as much as possible. One of
them takes advantage of the extra information provided by photometric stereo, for which a
specific segmentation network was designed to meet these requirements. A performance
comparisonwith different known segmentation architectureswas performed to demonstrate
the suitability of the proposed segmentation network. The benefits of assembling different
models were also demonstrated, with the aim of diversifying problems and specialising
each model in different tasks, so that both models support each other and reduce their
shortcomings.

Finally, all developments were validated through experimentation and supervision
by quality experts. These experiments were based on predicting the future behaviour
of the system when it is in production, so that it was validated in realistic scenarios.
Another objective of these experiments was to find the perfect fit in terms of sensitivity
and specificity, allowing the user to fine-tune the output in terms of false negative and false
positive rates.

Performance tests have also carried out in terms of run time. These tests demonstrate
the need for accelerated hardware and parallel processing capabilities, such as making use of
distributed computing devices and GPUs to meet the speed required on the production line.
The need for an agile and easy-to-deploy software architecture, such as the containerised
edge architecture, was also demonstrated.
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Abstract: This paper describes the application of Semantic Networks for the detection of defects in
images of metallic manufactured components in a situation where the number of available samples
of defects is small, which is rather common in real practical environments. In order to overcome
this shortage of data, the common approach is to use conventional data augmentation techniques.
We resort to Generative Adversarial Networks (GANs) that have shown the capability to generate
highly convincing samples of a specific class as a result of a game between a discriminator and a
generator module. Here, we apply the GANs to generate samples of images of metallic manufactured
components with specific defects, in order to improve training of Semantic Networks (specifically
DeepLabV3+ and Pyramid Attention Network (PAN) networks) carrying out the defect detection
and segmentation. Our process carries out the generation of defect images using the StyleGAN2
with the DiffAugment method, followed by a conventional data augmentation over the entire
enriched dataset, achieving a large balanced dataset that allows robust training of the Semantic
Network. We demonstrate the approach on a private dataset generated for an industrial client, where
images are captured by an ad-hoc photometric-stereo image acquisition system, and a public dataset,
the Northeastern University surface defect database (NEU). The proposed approach achieves an
improvement of 7% and 6% in an intersection over union (IoU) measure of detection performance on
each dataset over the conventional data augmentation.

Keywords: defect segmentation; data augmentation; generative adversarial networks; industrial
manufacturing; quality inspection; photometric stereo

1. Introduction

In the manufacturing sector, any process needs continuous monitoring to ensure their
behavior and performance. In the case of components manufacturing for sub-sectors such
as the automotive industry, quality inspection is an imperative as the final quality of the
components can affect their functionality. Component manufacturers are continuously
looking for innovative quality inspection mechanisms that are the most efficient and
cost-effective strategy in order to survive in a very competitive market.

The Industry 4.0 paradigm has brought great opportunities to improve and man-
age quality control processes through the application of new visual computing related
technologies such as computer vision or artificial intelligence [1].

This work focuses on steel quality control. Steel has multiple uses in the construction
of buildings and infrastructures or in the manufacturing sector [2]. In the manufacturing
sector, the quality control processes carried out on steel products comprises the following
phases according to the defects to be located:

• A visual analysis by the operator (Superficial defects);
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• Studies on its chemical composition (Structural defects);
• Studies on its mechanical characteristics (Structural defects);
• Study of geometric characteristics (Dimensional defects).

The component quality control process has traditionally been done by applying
statistical process control (SPC), where various evaluation tests are applied to a component
sampled from the production line at a given sampling frequency. Test results are then
compared with acceptance/rejection criteria established according to the regulations or
customer requirements. Nowadays, due to the competitiveness of the markets, customer
requirements are becoming more and more demanding, aiming to achieve 100% inspection
of the production instead of SPC.

In the steel component production workflow, surface defects can occur at several
stages. The wide variety of surface defects that can occur for all different existing steel
products makes classification difficult. However, most of these defects involve some
type of surface roughness.To cope with the needs to inspect 100% of the production at
high production rates, and the new requirement of maximum precision in the detection
of defects, Deep Learning (DL) based models are becoming the predominant approach
to tackle the automatic defect inspection problem [3]. Surface inspection data from the
manufacturing industry are usually highly imbalanced because defects are typically low
frequency events. It is easy to understand that, for a company to be profitable, most of the
manufactured products must be free from defects. Therefore, a database extracted directly
from the production line will be composed mostly of non-defective products. Using such
type of datasets can lead to unwanted results, due to the extreme imbalance of the classes
in the data [4,5]. Machine learning model building approaches generally have a strong bias
towards the majority class in the case of imbalanced datasets. In order to correct this effect,
the generation of synthetic samples of the minority class is often used to obtain a better
balanced dataset [6]. The generation of realistic images containing surface defects can not
be easily achieved by conventional data augmentation methods.

1.1. Deep Learning Based Methods for Defect Detection

There are different types of DL techniques that are used to detect defects in images [7,8].
Some approaches such as the Improved You Only Look Once (YOLO) network [9] focus on
object detection, providing a short response time which is very important in the industrial
manufacturing environment in order to cope with high production rates. YOLO reported
a 99% detection accuracy with a speed of 83 FPS on NVIDIA GTX 1080Ti GPU. Another
example of real-time detection using these types of architectures is [10], which uses an
Inception-based MobileNet-SSD architecture, reporting an accuracy of 96.1% on the DAGM
2007 [11] test dataset at 73FPS on a NVIDIA GTX 1080Ti, outperforming a comparable
state-of-the-art fully convolutional network (FCN) model.

Depending on the application, a lot of precision regarding the location and the size or
the geometry of the defects is required. Many approaches use deep segmentation networks
for this purpose. For instance, the authors in [12] propose an end-to-end UNet-shaped fully
convolutional neural network for automated defect detection in surfaces of manufactured
components. They report results over a publicly available 10 class dataset applying a real-
time data augmentation approach during the training phase, achieving a mean intersection
over union (IoU) of 68.35%. There are different works analyzing the performance of
segmentation networks for superficial quality control [13,14], where DeepLabv3+ reaches
the best performance metric values in the defect segmentation.

In general, defect detection results worsen as the number of training samples decreases
because the similarities between defects are usually small so the trained models do not gen-
eralize well from small datasets. For example, the authors in [5] present two regularization
techniques via incorporating abundant defect-free images into the training of a UNet-like
encoder–decoder defect segmentation network. With their proposed method, they achieve
a 49.19% IoU on a 1-shot setting (K = 1) and 64.45% IoU on a 5-shot setting (K = 5).
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1.2. The Issue of Dataset Generation

A major issue is the difficulty of obtaining good quality images due to the complex
geometries of the parts or very reflective or shiny materials, and the lighting variations that
occur in a normal industrial environment. Thus, creating a stable robust machine vision
solution is always a complex task [15–17].

In addition, getting samples of products with defects is not always possible. Due
to the high production quality achieved by the manufacturing companies, most of the
components will be defect-free. It must also be considered that sometimes the production
rate is very high and it makes it difficult to locate defective parts. This is a common problem
when collecting datasets for training defect detection models applied to industrial parts [4].
Therefore, the generation of annotated synthetic sample sets is an increasingly promising
research area for the machine vision community.

1.3. Advances in Training Data Synthesis

Synthetic data can be obtained in several ways. On the one hand, realistically rendered
images can be produced from accurate geometrical and photo-metrical, i.e., physical,
models of the real environment where the artificial vision system would be installed [18,19].
Building such an accurate model requires a high amount of human involvement. However,
the samples generated are usually very good in terms of visual fidelity. In addition, the
annotation masks are automatically generated along with the images due to the rendering
process; therefore, they are highly useful for machine learning model training.

On the other hand, generative approaches can be applied to learn how to synthesize
realistic images from data without an underlying detailed physical model. Recent works
use Generative Adversarial Networks (GANs) [20] for this task, which demand less human
involvement because both the discriminator learning process and the image generation are
fully automatic. Contrary to rendering based methods, the image annotation task needs to
be done manually in a separate process.

For example, semantic networks for image segmentation improve their performance
when data augmentation of the training dataset is carried out with synthetic images
rendered from 3D models [21]. Specifically, authors report a significant increase in IoU
from 52.80% to 55.47% when training the system over the PASCAL 2012 dataset enriched
with 100 rendered artificial images.

In [22], the authors propose a new GAN based architecture for evaluating the effec-
tiveness of defective image generation using different public datasets for surface defect
segmentation. Another study [23] on defect detection in steel plates using deep learning
architectures also applies GANs for training set extension. They report improved detection
results with Fast R-CNN [24] and YOLO neural networks as surface defect detectors.

1.4. Contributions in This Paper

In this paper, GANs will be applied for augmenting the dataset. More precisely, we
propose to use StyleGAN2+DiffAugment [25] precisely, showing improvements over
conventional approaches. The benefit of this augmentation approach will be validated in
a semantic deep convolutional network training, specifically with DeepLabv3+ [26]. We
will also evaluate the repeatability of the obtained benefits by replicating the process with
another segmentation network, specifically Pyramid Attention Network (PAN) [27] and on
a well-known public dataset such as the NEU dataset [28].

2. Materials and Methods
2.1. Defects in Steel Surfaces

There are various types of steel that offer different results depending on their compo-
sition, thus being able to obtain a material that is more resistant to temperature, impact,
corrosion, etc. In our case, we focus on rolled steel. The rolling process is a metal forming
process by plastic deformation that consists of being passed between two or more rolls
that rotate in opposite directions and apply pressure. There are two types of rolling: cold
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rolling and hot rolling. These two types of processes obtain different results, so the choice
of the type depends on the intended application. The main difference between both types
is the temperature at which the steel is produced, varying from more than 927 ºC in the
case of hot rolling to ambient temperature in the case of cold rolling.

In this rolling process, different surface defects can occur such as finishing roll printing,
oxide, patches, scratches, crazing, or inclusions. An example of these defects can be shown
in Figure 1, shown in red and dotted lines.

(a) (b) (c)

(d) (e) (f)

Figure 1. Samples of four types of steel surface defects. (a) finishing roll printing; (b) oxide; (c)
patches; (d) scratches; (e) crazing; and (f) inclusions.

2.2. Galvanized Steel Dataset Description

For the experimental validation of the proposed approach, we use a dataset of 204
images of galvanized steel surfaces provided by a steel manufacturing company, which
was seeking technological advice on their specific defect detection problems. The imaged
material samples show natural or manufacturing defects discussed in Section 2.1.

Images were acquired using a photometric-stereo system [29,30], as shown in Figure 2.
Image acquisition consists of taking several images with different lighting orientations.
From these images, it is possible to compute a three-dimensional geometrical model of the
object using a shape-from-shading approach.

Figure 2. Photometric-stereo image acquisition system.

The photometric-stereo system obtains three high resolution computed images for
each steel sheet, as shown in Figure 3. A brief description of every computed image follows:

• Curvature images: Provides topographic information of the two gradient images
in the x- and y-directions. May be used for the verification of local defects such as
scratches, impact marks, etc.

• Texture images: Provides information on surface gloss. They are very suitable for
detecting discoloration defects and rust damage.
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• Range images: Computed as the image gradient magnitude. It highlights information
about the changes in the intensity of the image.

(a) (b) (c)
Figure 3. Different image types obtained by the photometric-stereo system of two different steel
sheet samples (one sample in each row); (a) curvature image; (b) range image; and (c) texture image.

From Figure 3, it can be ascertained that each of the three images is suitable for
detecting a specific type of defect. Therefore, the system provides the necessary visual
information to reveal different imperfections that may be present in the surface of the
galvanized steel products. We propose to combine these three single channel images in
a RGB format or three layer based images in which each layer corresponds to one such
image, i.e., red channel corresponds to curvature image, green channel corresponds to
range image, and, finally, the blue channel stores the texture image. In this way, we are
collecting the information given by each individual image in one single image.

The dataset annotation task was carried out manually by a human operator who is
an expert in the inspection of defects in the galvanized steel products. The annotations
have different shapes and sizes, ideally fitting or resembling the geometry of the defects.
Two samples of the texture channel with their corresponding ground truth masks in red
identifying the defects are shown in Figure 4.
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Figure 4. Texture channel of RGB photometric-stereo images with corresponding ground truth
masks in red and dotted lines.

dataset, and (b) apply the entire process on a publicly available dataset that allows190

independent confirmation of our results.191

2.3.1. Conventional data augmentation192

As mentioned before, in each channel of the RGB image, the texture image, the193

curvature image and the range image are storedin a single RGB image. We apply a194

conventional data augmentation approach to obtain a fifteen-fold augmentation of the195

training dataset obtaining a total of 2445 images. Conventional data augmentation196

consists of randomly applying a series of geometrical and photometrical transformations197

to original iamges
::::::
images. The chosen transformations are:198

• Horizontal and Vertical Shift transformation199

• Horizontal and Vertical Flip
:::
flip

:
transformation200

• Random image rotation transformation (in a range between 0 to 180 degrees)201

• Random scale transformation (maximum value 2x)202

• Addition of Gaussian noise203

• Brightness modification204

2.3.2. Defect segmentation using DeepLabV3+205

Semantic segmentation Deep Learning architectures are usually based on an encoder-206

decoder structure [31]. The encoder reduces the size of the image after passing through207

the Maxpool grouping layers in the convolution stage. After this stage comes the decod-208

ing phase, which consists of gradually recovering the spatial information until it reaches209

the same dimensions as the input image. The network output is an image corresponding210

to the pixelwise classification of the image into defect and defect-free classes, where211

each intensity value encodes a label of a particular class. In our case, the classification is212
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2.3. Experimental Design

We use a GAN based approach to generate new photometric-stereo RGB images that
will augment the available dataset. Specifically, we use StyleGAN2 in combination with the
DiffAugment method. In order to obtain the ground-truth defect masks for the GAN-based
generated images, we apply a DeepLabV3+ segmentation network [26] already trained
on the original dataset of photometric-stereo RGB images. Once the defect masks are
obtained, we then re-train the DeepLabV3+ segmentation network by combining synthetic
and original images in different ratios, reporting the impact on the dataset enrichment on
the segmentation results. In order to assess the general applicability of our approach, we
have (a) trained a different architecture on our private dataset, and (b) applied the entire
process on a publicly available dataset that allows independent confirmation of our results.

2.3.1. Conventional Data Augmentation

As mentioned before, in each channel of the RGB image, the texture image, the curva-
ture image, and the range image are stored. We apply a conventional data augmentation
approach to obtain a fifteen-fold augmentation of the training dataset obtaining a total
of 2445 images. Conventional data augmentation consists of randomly applying a se-
ries of geometrical and photometrical transformations to original images. The chosen
transformations are:

• Horizontal and Vertical Shift transformation
• Horizontal and Vertical Flip transformation
• Random image rotation transformation (in a range between 0 to 180 degrees)
• Random scale transformation (maximum value 2x)
• Addition of Gaussian noise
• Brightness modification

2.3.2. Defect Segmentation Using DeepLabV3+

Semantic segmentation Deep Learning architectures are usually based on an encoder–
decoder structure [31]. The encoder reduces the size of the image after passing through the
Maxpool grouping layers in the convolution stage. After this stage comes the decoding
phase, which consists of gradually recovering the spatial information until it reaches the
same dimensions as the input image. The network output is an image corresponding to
the pixelwise classification of the image into defect and defect-free classes, where each
intensity value encodes a label of a particular class. In our case, the classification is binary,
between the “defect” label with a numerical value of 1 and the “background” or “non-
defect” label with a value of 0. To evaluate the semantic segmentation results, we use
the Intersection-Over-Union (IoU) metric measuring the overlap between predicted and
ground truth defect masks. Accuracy is also reported, though it is biased by the greater
number of pixels in the non-defect or background class.

Figure 5 depicts the DeepLabv3+ architecture [26]. It uses a CNN called Xception with
Atrous Convolution layers to get the coarse score map and then a conditional random field
is used to produce the final output. This architecture has some peculiarities such as the use
of the aforementioned Atrous Spatial Pyramid Pooling (ASPP) [32–37] based on the Atrous
Separable convolution [38,39]. This network has a simple yet effective decoder module to
refine the segmentation results, especially along object boundaries.



Appl. Sci. 2021, 11, 6368 7 of 15

Figure 5. Architecture diagram of the DeepLabV3+ network [26].

2.3.3. GAN Based Image Generation

The basic architecture of GANs is composed of two networks that pursue opposite
optimization goals regarding a loss function. On the one hand, the generating network
produces artificial data as close as possible to reality trying to mislead the discriminant
network. On the other hand, the discriminating network tries to determine whether
the input image is real or fake (i.e., generated by the generating network). In this way,
the training process pursues the minimization of an overall loss function that measures
recognition performance. If the process is successful, the fake images are quite convincing
surrogates of the real ones.

We use the StyleGAN2 architecture [40] combined with the DiffAugment [25] method.
StyleGAN2 is an improved GAN network in terms of existing distribution quality metrics
as well as perceived image quality. DiffAugment uses a simple method that improves the
data efficiency of GANs by imposing various types of differentiable augmentations on both
real and fake samples. This combination allows for stabilizing training and leads to better
convergence in comparison with previous attempts that directly augment the training data,
manipulating the distribution of real images.

3. Results and Discussion

In this section, different experiments are presented in order to demonstrate whether
data augmentation using GANs is a viable and robust solution for the training of steel
defect segmentation models. First, we study how the segmentation performance varies
along with changes in the synthetic image ratio in the dataset in different training processes.
With this experiment, we want to find the optimal ratio and prove the robustness of
the segmentation model. Secondly, we validate if the metrics obtained with the optimal
image ratio using DeepLabV3+ are repeatable with another segmentation network, such
as PAN [27]. Finally, with the same optimal image ratio, we replicate the training process
of StyleGAN2+DiffAugment and PAN network with the NEU public database in order to
validate if the benefit obtained in our dataset also correlates with another dataset.

3.1. DeepLabV3+ Trained with Real Images and Conventional Data Augmentation

In this experiment, we trained the DeepLabV3+ defect segmentation model using only
original images augmented with conventional data augmentation methods as described in
Section 2.3.1. The training process was carried out by using 80% of the augmented database
and the remaining 20% is set aside for later evaluation. Training was carried out on two
Tesla GPUs with 16 GB of VRAM each.
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Figure 6 shows some visual detection results obtained with this model and dataset. In
this case, we obtain a mean IoU of 68.3%. These results represent the baseline benchmark
for the rest of the experiments.

(a) (b) (c)
Figure 6. Some visual results of defect detection by the DeepLabv3+ trained on the conventional
augmented dataset. (a) photometric-stereo texture channel images; (b) ground truth defect masks;
and (c) predicted defect masks.

3.2. StyleGAN2+DiffAugment for Defect Images Generation

For this training stage, the network requires that the training set has at least 100
real images, as described in [25]. For the StyleGAN2+DiffAugment training process, the
original 204 photometric-stereo RGB images were used without any transformation or
processing. Using the trained StyleGAN2+DiffAugment, we generated 100 new synthetic
images. Generated images capture the general appearance of the components as well as the
particular characteristics of the defects of the galvanized steel material. However, generated
data need to be annotated. Thus, the annotation of the new StyleGAN2+DiffAugment
generated images was done by the DeepLabv3+ semantic segmentation network trained
in the previous computational experiment. Subsequently, in order to avoid the holes
inside the predicted defect masks, a correction consisting of mathematical morphology was
applied. The result can be seen in the set of images shown in Figure 7, where the predicted
mask fits the defects of the generated steel sheets.
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(a) (b) (c)
Figure 7. (a) Synthetic RGB images; (b) texture channel of Synthetic images with the defects in red (c)
ground truth masks.

3.3. Variations in the Ratio of GAN Generated Images in the Training Dataset

In this computational experiment, six instances of the DeepLabv3+ architecture were
trained for semantic segmentation. The basic dataset for the experiment consists of the
204 original images, and a second set with 41 images for the validation process. In addition
to the training set, 100 generated images by the GAN were added.

The strategy that was carried out during the process of augmenting the dataset
with synthetic images was to modify the number of real images in the original database,
and to keep the number of synthetic images constant. Therefore, the volume of the real
images was varied three times, one for each training instance, as can be shown in the
first column of Table 1. Consequently, the ratio of synthetic versus real image on the
training set changes. Table 1 shows different volumes of learning images, along with the
corresponding percentage of synthetic images ratio, and the average IoU metric provided
by the segmentation model over the validation dataset.

These results show that the mean IoU decreases as the number of real images decreases
and the number of synthetic images remains constant. In addition, the number of original
images is not very high, so this trend may not be as significant in a more complete dataset.

After evaluating the result of the trained DeepLabv3+ networks in both scenarios, i.e.,
the scenario using only real images and the scenario combining real and GAN generated
images, a significant improvement in the predictions of the second scenario can be per-
ceived in Figure 8—specifically, when the database is composed of 38% of GAN generated
images. It can be seen in Figure 8d that the predicted masks are closer to the perimeter
of the defects. A comparison between the prediction masks obtained with a DeepLabv3+
network trained using only the original database and with the dataset including synthetic
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images generated by the GAN is shown in Figure 8c,d, respectively. It can be assured that
the performance of semantic segmentation network performance increases using GAN
synthetic images on the basis of the improved visualized defect location and on the ob-
tained metrics in the confusion matrices, shown in Figure 9. It can be observed that the
detection of defects is more accurate when using data enhancement with synthetic images,
as shown by the value of true positives. The obtained metrics in the confusion matrix for
DeepLabV3+ trained using only real images and the training combining real and GAN
generated images is shown in Figure 9a,b, respectively.

(a) (b) (c) (d)
Figure 8. Detection of defects using two instances of the DeepLabv3+ semantic segmentation neural
network. (a) photometric-stereo texture channel images; (b) ground truth masks; (c) predictions
with the original RGB photometric-stereo database; and (d) predictions adding GAN-generated RGB
photometric-stereo images.

Table 1. Different variations of the GAN generated images ratio in the data augmentation of the original RGB training set
and the respective mean IoU values (%) of the validation process for each instance.

Different Training Instances of the DeepLabv3+ Model

Number of
Training Set Real

Images

Number of
Training Set GAN
Generated Images

Total Number of
Training Set

Images

Conventional
Fifteen-Fold Data
Augmentation of
the Training Set

Images

GAN Generated
Data Ratio (%)

Mean IoU (%)
during Evaluation

163 0 163 2445 0 68.3
163 25 188 2820 13 69.02
163 50 213 3195 23.5 69.16
163 75 238 3570 31.5 69.77
163 100 263 3945 38 70
130 100 230 3450 44 60.09
100 100 200 3000 50 59.93
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Figure 11 shows that we get 70% of IoU thanks to the data augmentation done by
GAN, compared with 68.3% IoU using only real images. Similarly, it is observed that the
IoU curve shown in Figure 10 with the increase of data and the 38% ratio is placed in a
higher position compared to the IoU curve with the original dataset. It should be noted
that the training set is unbalanced in terms of the type of surface defect of the galvanized
steel. It is observed that defects that alter the base color of the material (such as oxidation)
are more abundant in the dataset than defects with dimensional affection (such as scratches
or impact marks). These images with color based alteration are those included in the range
between image 19 and image 35.

(a) (b)

Figure 9. Confusion matrices of the test set, where label 0 represents background and label 1 means
defect. (a) Confusion matrix of DeepLabV3+ trained only with real images and (b) confusion matrix
of DeepLabV3+ trained with the original dataset augmented with synthetic images generated by the
GAN with a 38% ratio.

Figure 10. Mean of IoU (%)result with original dataset augmented with a conventional method and
the original augmented with synthetic images generated by the GAN with a 38% ratio.

It can be seen in Figure 10 that there are segmentation results in some images, specif-
ically between images 3 and 15 of the test set that obtains more than 6% improvement
in the IoU when using a dataset augmented with GAN generated images. We realized
that images exhibiting that improvement are those with more severe surface dimensional
affection. On the other hand, images that obtain almost the same results are those re-
lated with changes only in the color of the material. We argue that segmenting images
with surface dimensional affection requires segmentation models with higher information.
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Therefore, models that were trained with an augmented dataset using GAN generated
images obtain better results compared with those trained with original real images only,
due to the addition of new images. Thanks to these new images, we are adding more
information to the segmentation model for better distinguishing between affected and
non-affected surface regions.

3.4. Using PAN Network for Defect Segmentation

In this experiment, the PAN network [27] was trained with the original real images
and with the optimal synthetic augmentation dataset to validate the benefits in a complete
different segmentation architecture compared with DeepLabV3+.

PAN is proposed to exploit the impact of global contextual information in semantic
segmentation. This network combines attention mechanism and spatial pyramid to extract
precise dense features for pixel labeling instead of dilated convolution and artificially
designed decoder networks. PAN uses a Feature Pyramid Attention (FPA) module to
perform spatial pyramid attention structure on high-level output and combining global
pooling to learn a better feature representation. This network also has a Global Attention
Upsample module on each decoder layer to provide global context as a guidance of low-
level features to select category localization detail [27].

With this network and the original dataset, we obtain an IoU metric of 75.31%, while,
in the case of the augmented dataset, we get 82.29%. This repetition in the IoU increment
shows that the benefits of augmenting the dataset using synthetic images are also repeated
using another segmentation network. The comparison of the obtained results with both
segmentation networks with the previously-mentioned datasets is shown in Figure 11.
Moreover, apart from the metric, the segmentation quality results are also better. The
segmentation performed by the network trained with synthetic data are better adapted to
the geometry of the defects. Due to the FPA module, this architecture uses the information
at different scales, so the segmentation output is better in terms of pixel-level attention.

Figure 11. Mean of IoU (%) during evaluation with the original photometric-stereo RGB augmented
database and the original one plus synthetic images generated by the GAN with a 38% ratio.

3.5. Validation of the Proposed Method on the NEU Dataset

In order to validate that the benefits obtained by introducing synthetically generated
images with the GAN is repeated with other datasets, we replicated the process but using
an NEU publicly available dataset [28]. The NEU dataset is a defect database composed
of six types of typical defects in hot rolled steel surfaces. These defects are: rolled-in scale
(RS), patches (Pa), crazing (Cr), pitted surface (PS), inclusion (In), and scratches (Sc). This
database has a total of 1800 greyscale images, where each class has 300 different samples.

As described in Section 3.2, we also trained a StyleGAN2 network to generate 100
new synthetic images but from the NEU dataset. As for the segmentation process, PAN
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was also trained with both an original NEU dataset and with an augmented dataset with
StyleGAN2 generated images.

In the training with the original NEU dataset augmented with conventional methods, a
total of 2445 images were used. In the training with the original images plus the StyleGAN2
synthesized images, as stated in the experiment of image ratio variation, the number of the
training set amounts to 3930. The results on the validation set, which has 42 un-augmented
images, was 69.11% in IoU with the original dataset and 75.32% in IoU with the synthetic
images. A sample image, its corresponding ground truth, and the network segmentation
output are shown in Figure 12.

(a) (b) (c)
Figure 12. Results of defect segmentation by the PAN trained on the synthetically augmented NEU
dataset. (a) StyleGAN2 generated synthetic image; (b) ground truth defect mask; and (c) predicted
defect mask.

The results obtained show that data augmentation by generating synthetic images
gives good results in terms of segmentation quality and in the IoU metric. This shows that
this data augmentation technique is an additional benefit in network training. It is true
that it does not match the results obtained in training using more real images, but it is a
good tool to apply variability in training, which traditional data augmentation methods
cannot provide.

4. Conclusions

Our main conclusion is that using GAN generated images significantly improves
the performance of the semantic network trained for defect segmentation. These types of
generative networks allow for obtaining realistic images that are useful to solve the lack
of samples in the training dataset, thus improving the predictive power of the semantic
segmentation network.

The results show that this approach may be a good solution for the dataset augmenta-
tion in an industrial environment, where the difficulties to obtain defective parts is very
common. Even for unbalanced databases in terms of defect typology, the generated GAN
images can complement the information needed for segmenting a particular type of defect,
especially those related with dimensional surface affection. Moreover, the use of GAN
images in the model training can increase its accuracy, helping to generalize the surface
defect detection process.

Our experiments show that 38% of the GAN generated images ratio improves the
segmentation results compared with the original dataset using only conventional data
augmentation. If there is any restriction in the real data acquisition process, the use of
GANs could be a very powerful and effective tool as a data augmentation method for the
optimization of the neural network learning process. It has even been observed that the
addition of GAN generated images into the database improves segmentation results of
both the DeepLabv3+ and PAN neural models. Therefore, it is argued that such images
created by the GANs are fully compatible to be used in machine vision systems based on
Deep Learning, and more precisely in semantic segmentation tasks.

Regarding the results obtained in IoU with the two networks in our dataset, the one
with the best results was obtained by a PAN approach. We argue that PAN architecture
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is able to fuse context information from different scales and produce better pixel level
attention, obtaining better results in the segmentation of small defects.

The improvement obtained by augmenting the data with synthetic images was also
demonstrated on the public NEU dataset. The same steps as in our dataset were replicated
on this dataset, and, by augmenting the training set with synthetic images, we have
managed to increase the IoU from 69.11% to 75.32% using the PAN network.

A line of future research is to modify the loss function of the segmentation network
into one that allows the user of the system to tune up the output of the networks in terms
of false positive and true positive rates, i.e., in terms of the sensitivity and specificity of
the network.
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I. Introduction

THE new SARS-CoV-2 coronavirus, which produces the disease 
known as COVID-19, kept the whole world on edge during the first 

months of 2020. It provoked the borders close of many countries and 
the confinement of millions of citizens to their homes due to infected 
people, which amounts to 868,000 confirmed cases worldwide at this 
moment (April 2020). This virus was originated in China in December 
2019. From March 2020, Europe was the main focus of the virus 
sprout, achieving more than 445,000 infected people. 

China, with a total of 3,312 deaths and more than 81,000 infected 
people, has managed to contain the virus almost three months after 
the start of the crisis in December 2019. Italy, which surpassed the 
Asian country in death toll on March 2020, became the most affected 
country, in number of deceased is followed by Spain, with more than 
10,000 dead based on a report made on April 2020. This number was 
constantly growing. There were different studies that predicted the 
growth of the curves of infections, based on different parameters such 
as exposed, infected or recovered human’s number. These studies 
allowed to get an idea of the transmission dynamics that could occur in 
each country [1] [2].

The origin of the outbreak is unknown. The first cases were detected 
in December 2019. The clinical characteristics of COVID-19 include 
respiratory symptoms, fever, cough, dyspnea, and viral pneumonia 
[3] [4]. The main problem of these symptoms is that there are virus-
infected asymptomatic patients. 

The test to detect the COVID-19 is based on taking samples from 
the respiratory tract. It is carried out by a health care professional at 
home, generally when the case study is asymptomatic or symptoms 
are mild, or in a health center or hospital, if the patient is admitted for 
a serious condition. Carrying out as many tests as possible has shown 
to be the key tool to stop the virus in countries like Germany or South 
Korea. Spain was not able to carry out so many tests, therefore it is 
important to research and develop alternative methods to perform these 
tests in a quick and effective way.

AI and radiomics applied to X-Ray and Computed Tomography 
(CT) are useful tools in the detection and follow-up of the disease 
[5] [6]. As stated in [7], conspicuous ground grass opacity lesions 
in the peripheral and posterior lungs on CT images are indicative of 
COVID-19 pneumonia. Therefore, CT can play an important role 
in the diagnosis of COVID-19 as an advanced imaging evidence 
once findings in chest radiographs are indicative of coronavirus. AI 
algorithms and radiomics features derived from Chest X-rays would 
be of huge help to undertake massive screening programs that could 
take place in any country with access to X-ray equipment and aid in the 
diagnosis of COVID-19 [8] [9].

The current situation evokes the necessity to implement an 
automatic detection system as an alternative diagnosis option to prevent 
COVID-19 spreading among people. There are different studies that 
apply machine learning for this task, such as Size Aware Random 
Forest method (iSARF) that was proposed by [10], in which subjects 
were categorized into groups with different ranges of infected lesion 
sizes. Then a random forest-based classifier was trained with each 
group. Experimental results show that their proposed method yielded 
an accuracy of 0.879 under five-fold cross-validation, a sensitivity of 
0.907 and a specificity of 0.833.
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Abstract

The Corona Virus Disease (COVID-19) is an infectious disease caused by a new virus that has not been detected 
in humans before. The virus causes a respiratory illness like the flu with various symptoms such as cough 
or fever that, in severe cases, may cause pneumonia. The COVID-19 spreads so quickly between people, 
affecting to 1,200,000 people worldwide at the time of writing this paper (April 2020). Due to the number of 
contagious and deaths are continually growing day by day, the aim of this study is to develop a quick method to 
detect COVID-19 in chest X-ray images using deep learning techniques. For this purpose, an object detection 
architecture is proposed, trained and tested with a public available dataset composed with 1500 images of 
non-infected patients and infected with COVID-19 and pneumonia. The main goal of our method is to classify 
the patient status either negative or positive COVID-19 case. In our experiments using SDD300 model we 
achieve a 94.92% of sensibility and 92.00% of specificity in COVID-19 detection, demonstrating the usefulness 
application of deep learning models to classify COVID-19 in X-ray images. 
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Deep learning techniques are also used in order to achieve better 
results than using more traditional machine learning approaches. 
One of the most used approach in image classification is the use of 
convolutional neural networks (CNNs). This type of models are used 
in different studies for COVID-19 detection in medical images like in 
[11], in their study the authors propose a CNN model trained with a 
randomly selection of image regions of interest (ROIs), achieving a 
85.2% of accuracy, 0.83 of specificity and 0.67 of sensitivity. Other 
example of the results that can be obtained using CNNs is presented by 
[12]. They propose the COVID-Net CNN network obtaining 92.4% of 
accuracy, 80% of sensibility and 88.9% of specificity.

A method called COVIDX-Net is presented by [13], COVIDX-
Net includes seven different architectures of deep convolutional neural 
network models, such as a modified version of Visual Geometry Group 
Network (VGG19) and the second version of Google MobileNet. Each 
deep neural network model is able to analyze the normalized intensities 
of the X-ray image to classify the patient status either negative or 
positive COVID-19 case. Their experiments evaluation achieves 
f1-scores of 0.89 and 0.91 for healthy and COVID-19 detection 
respectively.

The results shown in mentioned works demonstrate that deep 
learning techniques are useful for the virus detection, and that 
improve the obtained metrics using more traditional machine learning 
approaches [11] [12] [13].

The main contribution of our paper is focused on the improvement 
of the detection accuracy of COVID-19, by proposing a new dataset 
that combines COVID-19 and pneumonia images to make more stable 
predictions and by applying image processing that allows image-
standardization and also improves model learning.

II. Method

We propose to use a deep convolutional neural network specialized 
for object detection along with a new dataset composed of COVID-19 
and pneumonia images. Both are publicly available on GitHub [14] 
and Kaggle [15] respectively. The chest X-ray or CT images that 
are available in GitHub belong to COVID-19 cases. It was created 
by assembling medical images from public available websites and 
publications. This dataset contains 204 COVID-19 X-ray images. 
On the other hand, the Kaggle dataset was created for a pneumonia 
detection challenge. The images have bounding boxes around diseased 
areas of the lung. Samples without bounding boxes are negative and 
contain no definitive evidence of pneumonia. Samples with bounding 
boxes indicate evidence of pneumonia.

We propose a new dataset by merging COVID-19 and pneumonia 
images to obtain a wider and diverse one. The fact of having pneumonia 
images in the training dataset supposes an extra advantage, due to 
normal pneumonia and COVID-19 have similar appearance in chest 
X-ray images. This dataset merge allows to get a robuster model that 
is able to better distinguish between those diseases. Another advantage 
of this merge is the fact of enlarging the train dataset, because the 
COVID-19 images are not abundant at the time of writing this paper. 
This merge does not enlarges COVID-19 image set but improves 
detection quality because of the similarity between pneumonia and 
COVID-19. Train with pneumonia images gives an extra knowledge 
to the model in order to not confuse COVID-19 with pneumonia, being 
more effective and stable in disease detection.

We split the images in train and test sets, dividing all the data in a 
balanced way, meaning that all samples of each class in the training sets 
are well-balanced, in order to avoid biased results. For this purpose, 
even though we have a large number of pneumonia and normal images, 
we compose a dataset of 1500 images. 

We compose the dataset as follows: we select 104 COVID-19 
images, 205 health lung images and 204 pneumonia images for 
training, and 100 COVID-19 images, 444 health lung images and 443 
pneumonia images for testing. In the Kaggle dataset there are more 
samples of pneumonia and normal images, but we select only 205 
for training with the purpose of having a balanced dataset. In the test 
stage, we add more pneumonia and normal images to demonstrate the 
robustness of the model giving no false positives in the detection of 
COVID-19. Summing up, we use a train set composed of 513 images 
and a test set of 887 images in total.

In the next step, training images are labeled using a XML annotation 
file based on Pascal VOC format [16]. Each sample in the dataset is an 
image with ground truth bounding boxes for each object in the images 
as shown in the Fig. 1. 

Fig.  1. Created bounding boxes of normal regions in a chest X-Ray image.

III. Model Architecture

The selection of the used architecture is based on the good results 
obtained with CNNs in the state-of-the-art works for COVID-19 image 
classification, and the good results obtained in other similar tasks with 
this kind of architecture [11] [12] [13].  We used the same network 
architecture as proposed in [17], based on Single Shot Multibox 
Detector (SSD). This architecture is optimized for detecting objects in 
images using a single deep neural network. This approach discretizes 
the output space of bounding boxes into a set of default boxes over 
different aspect ratios and scales per feature map location. At prediction 
time, the network generates scores for the presence of each object 
category in each default box and produces adjustments to the box to 
better match the object shape. Additionally, the network combines 
predictions from multiple feature maps with different resolutions to 
naturally handle objects of various sizes. 

Experimental results on different remarkable datasets confirm that 
SSD has comparable accuracy to methods that utilize more than one 
architecture for detecting objects being much faster, while providing 
a unified framework for both training and inference. Compared to 
other single stage methods, SSD has much better accuracy, even with a 
smaller input image size [17].

We use VGG-16 [18] as the base network for performing feature 
extraction in this architecture. This model is also based on Fast 
R-CNN. During training, we have multiple boxes with different sizes 
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and different aspect ratios across the whole image. SSD finds the 
box that has more Intersection-Over-Union (IoU) compared with the 
ground truth. A detailed description of the layers architecture of SDD 
network is shown in [17].

Our main goal is to obtain a more robust model to various input 
object sizes and shapes. Therefore, during the SSD training a data 
augmentation step is performed. This process is composed by the 
following operations applied to every image in the dataset:
• Use the entire original input image.
• Sample a patch so that the minimum overlap with the objects is 0.1, 

0.3, 0.5, 0.7, or 0.9. The size of each sampled patch is a percentage 
between [0.1, 1] of the original image size.

• Randomly sample a patch.
During the inference, SDD uses 8732 boxes for a better coverage 

of object location. After the inference step, a set of boxes representing 
the detected objects are given along with the respective label and score, 
as shown in Fig. 2.

Fig. 2.  Detection boxes of SSD model inference output detecting normal lungs.

One of the advantages of this model is the possibility of precise 
object localization, which is not the case in previous works [11] [12] 
[13].

IV. Experiments and Results

The first experiment made in this work, is the contrast adjustment 
of each image in the dataset. This adjustment is necessary because the 
exposure time in X-Ray images can be different between acquisitions. 
All the images of the dataset are from different hospitals around the 
world, so the image acquisition settings and conditions are different in 
each place. In X-Ray images, an adjustment in the voltage spike results 
in a change in the contrast of the radiography. Exposure time, which 
refers to the time interval during which x-rays are produced, is also a 
factor that affects the contrast of the obtained image [19]. 

In order to get image similarity between the dataset, Contrast 
Limited Adaptive Histogram Equalization (CLAHE) [20] is applied. 
This is a transformation that aims to obtain a histogram with an even 
distribution for an image. That is, there is the same number of pixels for 

each level of gray in the histogram of a monochrome image. As cited in 
[20], in X-ray imaging, when continuous exposure is used to obtain an 
image sequence or video, usually low-level exposure is administered 
until the region of interest is identified, so reducing the radiation 
applied to the patients. As a drawback, images with low signal-to-noise 
ratio are obtained. In this case, and many other similar situations, it 
is desirable to improve image quality by using some type of image 
enhancement such as histogram equalization algorithms. An example 
of the application of this image operation is shown in Fig. 3. 

Fig. 3. Comparison between original image and CLAHE applied images.

The differences obtained in the detection applying or not CLAHE 
in the train and test datasets are shown in TABLE I. As the table shows, 
the fact of applying this pre-processing increases notably the detection 
accuracy in health and infected lungs.

We load VGG-16 weights trained on ImageNet. There are many 
works that evaluate the accuracy improvement using transfer learning, 
specially in small datasets [21] [22]. We apply these weights because 
though lower layers learn features that are not necessarily specific 
to this dataset, this action improves the detection accuracy and the 
sensibility and specificity metrics. The key idea is to take advantage 
of a trained model for similar images and adapt a base-learner to a new 
task for which only a few labeled samples are available.

The last experiment evaluates the detection accuracy obtained in 
the detection of COVID-19. For this purpose, we set apart two sets of 
images, one with non-COVID-19 and the other one with COVID-19 
positives. We obtain different metrics that can be seen in TABLE II. 
Another metric that we take in care is the inference time that we obtain 
running the model on a GPU, achieving 0,13s per image. 

TABLE I. Obtained Results in Image Classification Applying or Not 
CLAHE in the Dataset.

Image class CLAHE Total images True detection Accuracy

Normal No 887 827 93.24%

Normal Yes 887 842 94.92%

COVID-19 No 100 83 83.00%

COVID-19 Yes 100 92 92.00%
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TABLE II. Obtained Metrics Values

Metric Operation Value
Sensibility 842 / (842+45) 0.9492
Specificity 92 / (92+8) 0.9200

V. Conclusion

This study demonstrates the useful application to detect COVID-19 
in chest X-ray images based on image pre-processing and the proposed 
object detection model. 

The proposed merged dataset using pneumonia images allows 
getting a more robust model that is able to distinguish between 
COVID-19 and pneumonia diseases. With the histogram equalization 
operation, we can get a normalized dataset that helps to model training 
step. It also improves the normal image detection and minimizes the 
false positives rate.

With our proposed method, we achieve a 94.92% of sensibility and 
92.00% of specificity in COVID-19 detection. The detection accuracy 
obtained using this architecture and the proposed dataset improves 
the results described in [11] [12] [13]. These results demonstrate that 
object detection models trained with more images of similar diseases 
and applying transfer learning, combined with CLAHE algorithm for 
image normalization, could be successful in medical decision-making 
processes related with COVID-19 virus diagnosis.  
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Abstract: This paper presents an automatic system for the quality control of metallic components
using a photometric stereo-based sensor and a customized semantic segmentation network. This
system is designed based on interoperable modules, and allows capturing the knowledge of the
operators to apply it later in automatic defect detection. A salient contribution is the compact
representation of the surface information achieved by combining photometric stereo images into a
RGB image that is fed to a convolutional segmentation network trained for surface defect detection.
We demonstrate the advantage of this compact surface imaging representation over the use of each
photometric imaging source of information in isolation. An empirical analysis of the performance of
the segmentation network on imaging samples of materials with diverse surface reflectance properties
is carried out, achieving Dice performance index values above 0.83 in all cases. The results support
the potential of photometric stereo in conjunction with our semantic segmentation network.

Keywords: photometric stereo; quality control; deep learning; image processing; semantic segmentation

1. Introduction

Quality control is a centerpiece of any manufacturing industry, regardless of the in-
dustrial sector. This complex and demanding process must be carried out with a high
degree of precision and rigour. Moreover, the quality of manufactured components directly
impacts the positioning and profit of companies in their industrial sector. Component
quality inspection requires checking many aspects of the products such as its dimensions,
colour or surface characteristics. Many of these inspections are usually carried out by
qualified operators, especially those aspects related to surface or cosmetic defects. The main
problems with this manual inspection methodology are subjectivity, monotony and being
prone to human error [1]. These problems, and recent advances in computer vision and ma-
chine learning, are encouraging the trend towards the integration of automated inspection,
which eliminates subjectivity and analyzes all components quickly and effectively.

Surface inspection systems are especially difficult to automatize when surfaces are
highly reflective or specular because of strong image variations due to reflection. These
variations tends to generate very bright image regions and very deep shadows, impeding
the detection of small surface defects. This paper describes our design for a photometric
stereo image acquisition technique along with a convolutional segmentation network that
achieves accurate detect surface detection in highly reflective surfaces.

1.1. Related Works

The first neural networks appeared thanks to the ideas about unsupervised learning
published by [2,3]. Subsequently, the supervised and unsupervised learning concepts were
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published [4] and the first neural networks were born, which were no more than variants
of linear regressors. Deep neural networks were introduced by [5], who published the
first learning algorithm for supervised deep feedforward multilayer perceptrons. Since
that time, the development of deep learning has continued advancing, accompanied by
technological progresses. These advances and the explosion of data have allowed the
development of multiple applications in many different sectors, such us medicine [6],
security systems [7] or robotics [8].

In the last decade there have been multiple advances in the field of machine learning.
Especially, these advances come from the development of deep learning-related techniques.
Deep learning architectures have become popular thanks to the increase of computing
power and the availability of huge amounts of data [9,10].

Deep Learning algorithms are also increasingly applied in machine vision systems
for industrial quality control. Due to the wide variety of surfaces that can be found in the
manufacturing environment the way to acquire component images in each application
must be customized to obtain the best image quality. Material surfaces may be specular, so
choosing the right lighting schema for the acquisition of optimal images can be a difficult
task. There are many works that try to eliminate the brightness produced by incident light
over shiny surfaces that usually saturates image sensor regions, thus limiting any image
processing in those areas [11]. For example, [12] proposes a method for specular reflection
removal in a single image at the level of the individual pixel. The chromaticity of diffuse
reflection is approximately estimated by employing the concept of modified specular-
free image and the specular component is adjusted according to the criterion of smooth
color transition along the boundary of diffuse and specular regions. Experimental results
indicate that the proposed method is promising when compared with other state-of-the-art
techniques, in both separation accuracy and running speed.

However, the best approach for obtaining useful images of specular surfaces is to
have a reliable acquisition system that avoids surface reflections. Photometric stereo sys-
tems have been very suitable for acquiring these kind of images [13,14]. This technique
estimates the object surface normals by imaging it under different lighting conditions [15].
Photometric stereo images can be used as input to a deep learning model for better defect
classification. For example, a commonly used approach for classification tasks is convo-
lutional neural networks (CNN). There are different industrial applications that combine
photometric stereo acquisition and CNNs applied to defect detection. For example [16] ap-
plies this method in order to find rail defects. By means of differently colored light-sources
illuminating the rail surfaces from different and constant directions, cavities are made
visible in a photometric dark-field setup. Then, they experimented with classical CNNs
trained in purely supervised way and also explored the impact of regularization methods,
such as unsupervised layer-wise pre-training and training data-set augmentation.

In the detection of defects in the manufacturing industry, it is often also interesting to
know the geometry of the defect in order to estimate its size and classify it based on criteria
established by the client. For this purpose, defect detection is usually carried out by means
of pixel-level segmentation. For example, [17] uses a UNet architecture for the localisation
and segmentation of defects in metallic components, achieving a Dice value of 0.9167 [18].
Alternatively, [19] also propose a precise pixel-level segmentation of surface defects, using
segmentation networks with different modules that allow a fast and accurate segmentation.

1.2. Main Contributions

Related work shows the ability of convolutional neural networks for automatic defect
detection tasks but also the importance of the image quality, which is highly related with
having an adequate acquisition set up according to the characteristics of the surface to
be inspected. Specially in specular surfaces, topographic information is very relevant
to defect characterization, thus, being a valuable source of information for its detection.
Additionally, processing time is critical in order to cope with the inspection of components
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in high-production-rate scenarios. Therefore, the challenges that our proposed method
must overcome are the following:

1. Obtain high resolution images of non-Lambertian surfaces without light reflections.
2. Use both topographic and spectral (color) information for surface analysis and

defect detection.
3. Obtain a robust neural model able to detect all defects without obtaining a high false

rejection rate.
4. Obtain a neural model with low processing time.

In order to overcome these challenges, we propose a system based on diffuse illumi-
nation over non-Lambertian surfaces with a white light source for extracting topographic
surface information and spectral (color) response at the same time. We propose combining
these sources of information into a compact RGB image format for feeding a segmentation
CNN for surface defect detection. We demonstrate the benefit of this combination compared
with the use of each source of information individually. We integrated the convolutional
segmentation network and the photometric stereo optical sensor in an automatic inspection
system for product quality assurance in a manufacturing process of metallic pieces with
highly specular surface finishing and high production rates.

The structure of this paper is as follows: Section 2 describes our approach for automatic
metallic component inspection based on photometric stereo images and a convolutional
neural network. Section 3 describes the results obtained during the evaluation of the
proposed approach. Section 4 describes the system implementation and an analysis of its
performance. Subsequently, a discussion is presented in Section 5. Finally, conclusions are
depicted in Section 6.

2. Materials and Methods

The manufactured components under analysis in this work are machined nickel-
plated components that may show different types of small defects on their surfaces. These
components have a dimension of 50 mm × 7 mm and a thickness of 2 mm. Some samples
of these defects are shown in Figure 1.

Figure 1. (Top) Conventional (non-photometric stereo) image of a manufactured component.
(Bottom) Samples of component defects acquired with photometric stereo imaging.

The nature of the defects is caused by the customer’s manufacturing process. This
process performs some cuttings and machining on the component causing surface defects.
The sizes and types of defects to be detected are established by the customer’s quality
control experts.

These components, due to nickel-plated process and some coatings, have very high
specular indexes resulting in very shiny components. In order to obtain high resolution
and high quality images of components surfaces, we propose to use an approach based on
photometric stereo.
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2.1. Photometric Stereo Image Acquisition

Reflectance-based shape recovery of non-planar surfaces from several reflectance
images obtained under different irradiance sources is a classic task in computer vision [15].
This type of approach determines the absolute depth of the surfaces by reconstructing the
shape of the object under changing illumination conditions such as color or orientation,
among others. This problem is called shape from shading when just one irradiance image
is used for reconstruction process [20]. Photometric stereo methods firstly recover surface
orientations and can be combined with an integration method to calculate a height or depth
map. Even without a subsequent integration step the surface orientations can be used, for
example, to determine the curvature parameters of object surfaces [21]. To acquire images
for photometric stereo the object is consecutively illuminated by several light sources. In
our approach we use four different light sources from four different orientations around
the component to be inspected.

In this way, we get five different photometric images for each acquisition:

• Curvature images: Provides the contour lines of the surface topography.
• Texture images: Provides color or spectral response.
• Gradient image X: Signal variation in x direction.
• Gradient image Y: Signal variation in y direction.
• Range images: Computed as the image gradient magnitude. It highlights information

about the changes in the intensity of the image.

To achieve these images, a system of equations introduced by Woodham [15] formal-
izes the solution of the problem assuming Lambertian reflectance, i.e., that the distant light
sources are known point sources. Given a known vector ~I of i observed intensities, the
known matrix of normalised light directions [~L ] = (L1, L2, L3)

T and the reflectivity ρ, the
unknown surface normal~n can be obtained by inverting the following lineal equation:

~I = ρ[~L ]~n (1)

If the three illumination vectors Lk do not lie in the same plane, the matrix [~L ] is
non-singular and can be inverted, giving the following equation:

[~L ]
−1~I = ρ~n (2)

As ~n has a unit length, we can estimate the surface normal and the albedo. The
problem comes when we have more than three input images; in this case the illuminations
matrix [~L ] would no longer be square, and therefore could not be inverted [22].

When the light sources are more than three, this problem is solved by least squares, us-
ing the Moore–Penrose pseudo-inverse [23] in Equation (1), thus obtaining the
following solution:

[~L ]
T~I = [~L ]

T
[~L ]ρ~n (3)

ρ~n = ([~L ]
T
[~L ])

−1
[~L ]

T~I (4)

where ([~L ]
T
[~L ])

−1
[~L ]

T
is the Moore–Penrose pseudo-inverse. After that, ρ and~n can be

solved as before.

2.2. Defect Segmentation Model

The proposed model is a deep network, trained with a pixel-wise loss, that considers
each pixel as an individual training sample that achieves an accurate defect segmentation,
adapted to its shape. With this approach we also reduce the size of the training dataset
from approaches based on sliding windows. Another goal that the network has to achieve
is to be able to learn the contours and engravings of each component, which are different
for each product reference.
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The architecture is shown in Figure 2. The proposed network consists of six sequen-
tial layers, each composed by a combination of convolutional, normalization and max
pooling operations, with an image input size of 512 × 2500. In total, the network has 19
convolutional layers for feature extraction and 2 max-pooling layers for down-sampling
feature maps, combined with batch normalization and ReLU layers, in order to improve
the speed, performance and stability of the network. The kernel sizes are different for each
layer. In the last layers, the size is fixed and not reduced in order to have a more accurate
segmentation. With this approach, we have the speed of a simple architecture with the
segmentation resolution of a complex one.

This architecture is optimized for the segmentation of small defects that appears in
the components.

Figure 2. Defect segmentation network architecture.

3. Results
3.1. Data Set Generation

The images acquired in this application are images of metal components with different
coatings: nickel (NI), nickel–silver (NS) and Ni7 nickel–silver (Ni7). Depending on the
coating’s material, the light reflected to the camera may vary, resulting in different light
intensity and color detected by the sensor. Therefore, the acquisition of each material looks
different and must be treated individually to obtain optimal results, thus resulting in three
different sub-datasets. An example of the differences in the surface appearance is shown in
Figure 3.

Figure 3. Zoom of a component region showing different texture image appearance caused by
different coatings: nickel (NI), nickel–silver (NS) and Ni7 nickel–silver (Ni7).

Our data set contains the samples shown in Table 1. The images were acquired and
annotated by the quality experts of the manufacturing company.
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Table 1. Number of acquired training images for each coating and each defect type.

Number of Samples in the Training Dataset

Coating Type Non-Defective Samples Bump Marks and Scratches Samples Total Images

nickel (NI) 427 464 891
nickel–silver (NS) 489 470 959
Ni7 nickel–silver (Ni7) 465 434 899

In order to obtain a model robust to small changes that may occur during the ac-
quisition step, we applied a data augmentation process. These type of techniques are
very powerful to artificially create variations of existing images or samples by applying
geometric and photometric transformations [24]. These transformations have to be adapted
to the specific use case.

In our use case, we apply photometric transformations to simulate small changes on
the surface coating that components may have. A change in the surface coating supposes a
different response in the incident light and, therefore, differences in the acquired image
brightness. Although we separate the classes into different subgroups, variations of this
type may occur within each class.

We also apply geometric transformations such as horizontal and vertical flipping and
image rotations of some degrees. In our case, the component is always placed horizontally,
so we apply only ±2 degrees in-plane rotation in order to resemble the real manufacturing
conditions.

To evaluate the trained models, new samples of the three materials were captured
as described in Table 2. These testing samples were intended to be composed with equal
proportions of defective and non-defective samples.

Table 2. Number of test images for each coating.

Number of Samples in the Testing Dataset

Coating Type Samples

nickel (NI) 297
nickel–silver (NS) 417
Ni7 nickel–silver (Ni7) 320

3.2. Performance Criteria

In the field of surface defect detection, the following statistics are often used to evaluate
the results obtained:

• True Positives (TP): the defect is detected as a defect.
• True Negatives (TN): the background is detected as background.
• False Positives (FP): the background is mistakenly detected as a defect.
• False Negatives (FN): the defect is mistakenly detected as background.

With the values of the statistics described above, the following values commonly used
to evaluate the quality of the segmentation can be calculated [25]:

• Mean Dice Value: is an spatial overlap-based metric. It focuses on measuring the
similarity between two samples through the union and intersection of sets of predicted
and ground truth pixels. This index takes values between 0 and 1, and is better
when it is closer to 1, since this means having more surface in common between
the ground truth and the result of the segmentation. This coefficient is calculated
by the Equation (5), where A and B are the ground truth mask and the predicted
mask, respectively.

Dice(A, B) =
2‖A

⋂
B‖

‖A‖+ ‖B‖ (5)
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• Sensitivity: is the ability of the model in not marking a negative sample as positive. It
is measured by the formula of Equation (6).

Sensitivity =
TP

(TP + FN)
(6)

• Specificity: is the ability to find all positive samples. It is measured by the formula of
Equation (7).

Speci f icity =
TN

(TN + FP)
(7)

• Pixel accuracy: the percent of pixels in the image that are classified correctly. It is
calculated by the Equation (8).

Accuracy =
TP + TN

(TP + TN + FP + FN)
(8)

In our use case, the criterion for positive detection is a Dice index greater than 0.5. The
results shown in the following tables were obtained using this criteria.

3.3. Combination of Photometrtic Stereo Images for Defect Detection

One of our goals is to exploit the full potential of photometric stereo images. We
propose creating RGB images by embedding different photometric stereo images in each
color channel.

In order to compose the best combination of images, a study of their individual use-
fulness for defect prediction was performed. For this purpose, we trained the customized
segmentation model in each image independently, obtaining the segmentation accuracy in
each case, using the same NI dataset. Based on the results, the three channels that obtained
the best results were texture, range and curvature as shown in Table 3.

Table 3. Defect segmentation results for each photometric stereo image using our customized
segmentation network.

Segmentation Results for Each Photometric Stereo Image in NI Dataset

Image Type Accuracy

texture 0.9259
range 0.9482
curvature 0.9326
gradient X 0.7865
gradient Y 0.8103

We think that these three images contain better information for defect representation
than gradient X and gradient Y. Given these results, we propose combining texture, range
and curvature images into an RGB image for training the segmentation network, as shown
in Figure 4.

3.4. Comparison of Segmentation Results between RGB and Texture-Only Images

The defect segmentation network of each material was trained using two different
types of datasets: a dataset with a single channel images containing, only texture informa-
tion, and a dataset with RGB images composed of all the photometric stereo information,
i.e., with texture, range and curvature images combined. The single-channel images can re-
semble the images acquired by a conventional non-photometric diffuse illumination dome.
With this experiment, we evaluated the potential benefits of using photometric-based
imaging, comparing it with a more conventional non-photometric based approach.
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Figure 4. RGB image with the selected layers of photometric stereo acquisition.

As shown the results in Tables 4–6, respectively, all materials demonstrate an improve-
ment in all metrics of the use of the RGB representation over the use of texture-only images.
With the use of image combination, the false positive rate is reduced to approximately half
for all materials. In addition, an increase in the rate of true positives is observed. These
values are especially relevant in the industrial manufacturing environment. With respect to
the Dice value, an increase of 9%, 6% and 4% is observed for NI, NS and NI7 respectively.

Table 4. Nickel material segmentation results.

Value NI (RGB) NI (Texture Only)

Dice mean 0.8957 0.8027
sensitivity 0.98 0.9477
specificity 0.931 0.9027
accuracy 0.956 0.9259
TP 150 145
TN 134 130
FP 10 14
FN 3 8

Table 5. Nickel Silver material segmentation results.

Value NS (RGB) NS (Texture Only)

Dice mean 0.829 0.767
sensitivity 0.954 0.9081
specificity 0.883 0.819
accuracy 0.916 0.8609
TP 186 178
TN 196 181
FP 26 40
FN 9 18

3.5. Defect Segmentation Performance for Each Material Using RGB Images

We evaluated the performance of the defect segmentation network using the RGB
images composed by texture, curvature and range in each material. As shown in Table 7,
the models reach a Dice value higher than 0.82, reaching a value of up to 0.94 in NI7.
Regarding the performance of the algorithm in the inspection line, the results obtained
on the test set reveal the good performance of the model. The achieved sensitivity and
specificity ensure the defect detection without increasing the false rejection rate.



Sensors 2022, 22, 882 9 of 14

Table 6. Ni7 material segmentation results.

Value NI7 (RGB) NI7 (Texture Only)

Dice Mean 0.9739 0.9619
sensitivity 0.9855 0.9710
specificity 0.9615 0.9505
accuracy 0.9690 0.9593
TP 136 134
TN 175 173
FP 7 9
FN 2 4

Table 7. Material Segmentation results.

Value NI NS NI7

Dice Mean 0.8957 0.829 0.9739
sensitivity 0.98 0.954 0.9855
specificity 0.931 0.883 0.9615
accuracy 0.956 0.916 0.9690
TP 150 186 136
TN 134 196 175
FP 10 26 7
FN 3 9 2

3.6. Comparison against Two Benchmark Segmentation Networks

To test the performance of our proposed network, we compared our approach with
two well-known segmentation networks: DFANet [26] and UNet [27].

DFANet is an efficient segmentation architecture designed to be agile and to run with
the minimum necessary resources. It is based on multi-scale feature propagation, thus
reducing the number of parameters. Its design is intended to achieve a good trade off
between speed and performance in segmentation.

We also use UNet, which is a network designed to be trained end-to-end with few
image samples. In addition, thanks to its design for the medical field, it allows obtaining a
very accurate detection result.

The results show that our customized segmentation network achieves better results
in defect segmentation of the components, as shown in Table 8. DFANet obtains a higher
number of false positives because its structure detects impurities on the non-defective
surfaces that are not considered real defects. UNet obtains better results than DFANet, but
fails in the detection of the defects, with only dimensional affection. If a defect does not
show relevance in the texture image, this network is not able to detect it correctly, thus
causing false negatives.

Table 8. Defect segmentation results using DFANet and UNet on NI dataset.

Segmentation Results Using NI Dataset

Neural Network Accuracy

DFANet 0.8732
UNet 0.9113
Our network 0.9560
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4. System Implementation

Once the feasibility of the defect detection algorithms and the suitability of the acquisi-
tion system had been verified, the whole system architecture was designed and developed.
Overall, the system was composed of several interoperable modules such as, image acquisi-
tion, image annotation and image processing in a distributed manner. Figure 5 shows an
overview/scheme of the relation between the developed modules.

Figure 5. System architecture for defect detection in steel components.

4.1. Acquisition Set Up

For image acquisition, we combine a photometric stereo diffuse dome and a high
resolution linear sensor with a telecentric lens. The field of view was chosen based on the
maximum dimension of the component to be analyzed, in our case, 200 mm. To allow the
inspection of small defects with enough detail (<1 mm), each line capture of the components
is acquired at 4 K. Therefore, we obtain a very high-resolution capture of the component
surface. This set up is shown in Figure 6.

Figure 6. Acquisition set up to capture photometric stereo images.

4.2. Annotation Module

This module provides an annotation tool for capturing the knowledge of quality
inspection experts. As previously described in Section 2.1, we acquire five input images
during the photometric stereo surface reconstruction. In order to take advantage of this
information we have developed a viewer that allows visualizing the different image layers
synchronously. All types of defects are not always visible in the five photometric stereo
images. For example, defects that are dimensionally affected, such as scratches, are more
visible in the range and curvature images. In contrast, defects without topographic involve-
ment, such as oxide, are more visible in the texture images. The main advantage of our
customized annotation tool is that the user can visualize and interact with one, two or
three channels of the same image independently. A shown in Figure 7, it allows the quality
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expert to discern both type of defects at the same time in a side by side view of different
photometric stereo images of the same component.

Figure 7. Customized annotation tool showing a side by side view of texture channel (left) and range
channel (right) of an interest region of the component.

4.3. System Performance

Besides the accuracy of the segmentation network, another fundamental point for
the integration of any application in the industry is the processing time of the inspection
analysis. It is mandatory that the time spent in this analysis to be under a certain cycle
time, in order to allow the continuous production of the components. In this regard, a
comparison of the processing execution time between an industrial computer without a
GPU and an external server with a GPU is made. The external server has an NVIDIA RTX
2070, allowing performing the inference step faster than a CPU.

Our system uses a message broker as a middleware to orchestrate and communicate
all the processes involved in a distributed manner. This tool facilitates the definition of
exchanges and communication channels between the different modules and processes
with the use of message queues. In this case, the acquisition and inspection processes
are performed in different computers with dedicated hardware for each task. Thus, we
can leverage the use of specialized hardware resources such as GPUs for the inference
computation for our network and easily scale when required.

Performance evaluation is measured for the following processes: inference and persis-
tence (storing the result in the database). The time breakdown for each process is shown
in Table 9. In summary, the total processing time executed locally in a single PC with a
CPU is 707ms. In contrast, executed in a distributed manner on the external server with
dedicated GPU, the processing time is 138ms. If the application is executed locally, the
processing time does not reach the required production rate, so it is necessary to distribute
the processing task into an external server. This action implies a five-fold reduction of the
execution time.

Table 9. Processing times.

Action Time CPU (ms) Time GPU (ms)

inference time 471 126
DDBB storage 236 12

total time (ms) 707 138

5. Discussion

As demonstrated by experimentation and results shown in previous sections, the
use of a photometric stereo sensor is adequate for the application of defect detection on
reflective surfaces. The proposed method of stacking multiple sources of data from the
photometric stereo sensor into a high-resolution, multi-channel (RGB) image supposes an
improvement in the accuracy and performance achieved with the presented convolutional
neural network. A typical problem with this type of application is the detection of very
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small defective regions with respect to the dimension of the component. This makes it
difficult to avoid false positives, as the dataset is unbalanced between the amount of normal
and defect pixels. Therefore, the extra information provided by the multiple data layers
from the photometric stereo allows the model to extract features related with defective
regions in a more optimal way.

Another challenge to overcome in machine vision applications developed for industrial
manufacturing processes is the speed at which they must operate to satisfy high production
rates. Defect segmentation applications are often not fast enough to be integrated into an
industrial production line. However, our proposed system is able to process images in the
required cycle time. We demonstrate that, if the inference is performed on an industrial
computer (CPU), the required time is not achieved. Hence, a distributed computation for
parallelizing processes is mandatory. This is also a benefit in terms of organization and
scalability, since the same system can inspect components in several production lines and
more hardware resources can be easily added to cope with the required compute demand.

In comparison to other inspection methods proposed in the state of the art, our method
allows the inspection of reflective surfaces in the cycle time required by the manufacturing
industry. Other methods propose multiple image acquisitions from different angles to
avoid surface reflections, thus affecting the acquisition time and also the required space for
the installation of the inspection station in the production line. Compared with the methods
that employ deep learning, our method is novel in using multiple combined sources of
information, allowing a more detailed and robust description of the component surface.
This feature gives greater stability in defect detection compared with traditional image
acquisition-based systems. In addition, a specific segmentation network is created, allowing
the exploitation of this information in a fast and accurate way. The proposed acquisition
system can be also used on non-planar geometries, such as cylindrical components, just by
modifying the automation of the component’s displacement. The proposed method has
disadvantageous in terms of hardware costs and the level of automation required for image
acquisition. A photometric stereo dome is electronically more complex than conventional
illumination, supposing a cost penalty. Furthermore, automation is needed to move the
component in a constant and controlled way, which must be perfectly synchronised with
the trigger of the camera and the dome.

6. Conclusions

This work proposes an automatic system for the quality inspection of metallic com-
ponents using a photometric stereo based sensor and a customised segmentation model.
We propose combining the photometric stereo information that better resemble the defects.
For this purpose, a comparison analysis was carried out for each photometric stereo image,
which allows choosing the most suitable image combination.

The photometric stereo image combination provides additional information to the
segmentation network increasing the effectiveness and accuracy of the defect detection.
This approach is confirmed in different materials showing a decrease in false rejection rate
and an increase in the true detection rate.

A performance comparison with different well-known segmentation architectures was
carried out to demonstrate the suitability of our proposed segmentation network.

Finally, some performance tests were carried out in terms of execution time. These
tests demonstrate the need of accelerated hardware and parallel processing capabilities,
such as, making use of distributed computing and GPU devices to fulfill the required speed
in the production line.
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