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Abstract

We analyze the e¤ects of changes in the mortality rate upon life expectancy,
education, retirement age, human capital and growth in the presence of social secu-
rity. We build a vintage growth, overlapping generations model in which individuals
choose the time length of education and retirement age, and where unfunded social
security pensions depend on workers�past contributions. Social security has a pos-
itive e¤ect on education, but pension bene�ts favor reductions in retirement age.
The net e¤ect is that starting from a benchmark case, higher life expectancies give
rise to lower growth rates in the presence of social security as the share of active
population is reduced. In addition, higher social security contribution rates reduce
the growth rate.
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1 Introduction

This article intends to integrate two streams of the economic literature generally

considered separately: i) life expectancy and endogenous growth; and ii) aging,

unfunded social security and exogenous economic growth.

The relationship between life expectancy at birth and per capita growth has been

largely studied both empirically and theoretically. Regarding the empirical evidence,

the hypothesis that reductions in mortality rates have a non monotonic relationship

with per growth rates is mostly supported. By using time series data, Rodriguez

et al. (1999) �nd a positive e¤ect of life expectancy upon GDP growth rate in

Venezuela in 1970-90. However, Malmberg (1994) �nds a negative relationship in

Sweden in 1950-89. Analysis of cross section data also shows that this relationship

is not monotonic. Preliminary data from Latin America and Caribbean countries

indicate that GDP growth is positively associated with life expectancy. [See World

Health Organization (1999), Box 1.2, p. 9.] Barro et al. (1995), using a sample of 97

countries, estimate that an increment in life expectancy of 13 years would increase

per capita growth rate by 1.4% per year. Zhang et al. (2005) shows a clear, positive

relationship, but at a diminishing rate. Finally, some other studies have found mixed

evidence: increases in life expectancy have paralleled higher growth rates for low life

expectancies, but lower growth rates for high life expectancies. [See Zhang et al.

(2003) and references therein.]

Regarding theoretical works, they mostly assume that human capital accumula-

tion is the engine of growth. Some of them conclude that the relationship is always

positive, whereas some others are able to obtain an inverted U pattern. Among

the former we could mention Ehrlich et al. (1991) and Hu (1999). In this type of

models, a higher life expectancy increases the period length in which the return to

human capital investment is obtained, thus allowing for higher rates of return, and,
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in consequence, higher investment and growth rates.1

Some other works have obtained an inverted U pattern between life expectancy

and per capita growth what is consistent with the mixed empirical evidence above

mentioned (both with historical and cross-section data). De la Croix et al. (1999)

build up an economy where the e¤ect of a reduction in the mortality rate upon

the duration of education is such that the growth rate becomes higher for high

mortality rates (as in underdeveloped countries), but lower for low mortality rates

(as in industrialized countries). The same result is obtained in Boucekkine et al.

(2002), where they assume uncertain lifetime horizon and endogenous retirement

age. In both papers, labor force is the unique input in production, and the intuition

behind the negative sloped part is that average human capital of the labor force

becomes more obsolete as life expectancy increases.2 Zhang and Zhang (2003) and

Zhang et al. (2003) also obtain this result but by means of a di¤erent channel: not

through own education time, but through the expenditure on children�s education.

Regarding the second line of research mentioned in the beginning of the section,

a considerable number of articles in the recent literature deal with the connections

between population aging, pay-as-you-go social security and retirement age. One

recurring subject in this literature is the e¤ect of social security upon workers�

voluntary retirement age. Along these lines, the available empirical evidence suggests

that, at least for the US economy, social security is relevant for retirement age issues,

even though there is no total agreement on the e¤ects of variations in the generosity

of the social security program. [See, e.g., Diamond et al. (1997) and Coile et al.

(2000).]

1Echevarría (2003) shows in an exogenous retirement model in which human capital investment
depends positively on the number of remaining active periods until the individual�s retirement that
increases in life expectancy give rise to higher growth rates only if accompanied by simultaneous
exogenous increments in the active period (i.e., delays in the retirement age).

2Building on Boucekkine et al. (2002), but allowing for physical capital along with human
capital in a certain lifetime horizon, Echevarría (2004) obtains the same relationship.
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In this article we study to what extent introducing unfunded social security af-

fects the relationship between life expectancy and per capita growth rate, taking

into account its e¤ects on education and retirement age incentives. Our starting

point is Boucekkine et al. (2002). It is, in essence, an overlapping generations

model with uncertain, �nite lifetime horizon. Fertility and mortality rates are ex-

ogenous, and individuals choose their optimal education time length and retirement

age, thereby way in�uencing average human capital in a vintage way and the econ-

omy�s growth. In our extension we include an unfunded social security system whose

pension bene�ts depend on the contributions made by workers during their active

periods. According to this design, social security will in�uence not only individ-

ual decisions (namely, years of education and retirement age), but also aggregate

magnitudes such as economic growth.

Why might the inclusion of social security be of any interest? In such a setup

the return to human capital investment is not constrained to labor income while

active, but also extends to pensions during retirement, which are in turn related to

past wage earnings. Therefore, when individuals choose their optimal length of the

education period, they take into account not only the e¤ect on future labor earnings,

but also on future pension bene�ts. Additionally, voluntary retirement age will also

depend on the incentives that the public pension system embeds. As a consequence,

we have that social security will a¤ect the size of the working population and also

that of the aggregate human capital in the economy. Therefore, social security will

in�uence the response of the economy�s growth rate after, say, a fall in the mortality

rate and the corresponding increase in the life expectancy.

This article contains two di¤erent parts. In part one we solve analytically the

individual problem (individuals and �rms), the steady state per capita growth rate

and the social security budget balance. We characterize the parameter space which
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determines the type of solution for the individuals� problem and prove the exis-

tence and the uniqueness of that solution. Furthermore, we prove the existence and

uniqueness of steady state per capita growth rate and social security balance for the

case of interior solutions for education and retirement age.

In part two, given that the system of equations that solves the model turns out to

be non-linear, explicit solutions and analytical results are excluded. Thus, we limit

our results to numerical solutions to comparative statics exercises between steady

states. We compare two scenarios (with and without unfunded social security). We

are able to replicate the observed inverted U relationship between life expectancy

and per capita growth in our scenario with social security. Our main �nding is

that introducing social security a¤ects the incentives to education time and early

retirement in such a way that the major force driving the negatively sloped part

of that locus is the fall of the share of active population (i.e. workers), not the

obsolescence of human capital among workers as it is the case when there is no

social security.

The rest of the article is organized as follows. Section 2 shows the main demo-

graphic features of our model. Readers interested only in the economic aspects may

proceed to the next Section. Section 3 introduces the economic model: the indi-

vidual problem, the aggregate technology of production, the optimal education and

retirement age, the aggregates, the social security balance and the balanced growth

path. The numerical example and the results are shown in Section 4. Section 5

shows the conclusions. A mathematical Appendix contains the formal proofs.
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2 Demographic structure

Individuals face an uncertain lifetime horizon with a positive, age increasing instan-

taneous mortality rate, so that there exists a maximum attainable age.3

More precisely, the demographic structure in this economy is characterized by

the survival rate distribution

m(a) =
�� e��a
�� 1 ; 0 � a � J; � > 1; � < 0; (1)

where m(a) � Prob(ai � a), ai denoting an individual�s death age. That is, (1)

represents the probability of being alive at age a. J denotes the maximum attainable

age which corresponds to a 0 survival probability,

m(J) = 0 , J =
� ln�
�

> 0: (2)

One can obtain Yaari-Blanchard�s perpetual youth model with a survival probability

m(a) = e��a for � = 0 and � > 0 as a limiting case [Blanchard (1985)]. Population

in this economy is stable in that, in the absence of migratory movements, the age

distributions of fertility and mortality rates have remained constant for a long enough

time. Therefore, the age distribution and the growth rate of population are constant

as well [Schoen (1988)]. We do not consider explicitly the age distribution of the

fertility rate in our model. However, we will show the links between parameters

� and �, the population growth rate and the average fertility rate later on [see

equation (9)]. Increments in both � and in � imply higher survival probabilities,

but in a di¤erent manner. An increase in � means a reduction in young individuals�

mortality; however, a higher � is equivalent to lower mortality for old individuals.

The pdf associated with the distribution function Prob(ai � a) � 1 �m(a) as

p(a)

p(a) =
d[1�m(a)]

da
=
��e��a
�� 1 > 0: (3)

3This Section closely follows the �rst Section in Boucekkine et al. (2002).

6



In words, (3) represents the probability of dying at the age a. Denoting by x a random

variable meaning �remaining lifetime until death�, one obtains the probability of

dying at the age x+ a for an individual of age a from (1) and (3) as

p(x=a) =
p(x+ a)

m(a)
; 0 � x � J � a: (4)

From (4) one obtains the (conditional) life expectancy for an individual of age a,

or the average number of additional periods that one individual of age a expects to

live as

EV (a) = E[x=a] =

Z J�a

0

xp(x=a)dx = (5)

=
e��a

�
1� [1 + (J � a)�] e��(J�a)

	
�(e��a � �) :

From (5) and (2) it is possible to solve EV (0) for two particular cases: i) the life

expectancy at age a = J , EV (J) = 0; and ii) at age a = 0, i.e., the life expectancy

at birth (to which we will refer as, simply, life expectancy),

EV (0) =
1

�
� � ln�

(�� 1)� > 0: (6)

One can obtain, also as a limiting case for � = 0 and � > 0, Yaari-Blanchard�s

perpetual youth model [Blanchard (1985)] with a life expectancy which turns out to

be age independent, EV (a) = 1=�.

EV (0) is increasing both in � and in �, but (as we mentioned above) increases in

� and in � give rise to di¤erent kinds of increments in life expectancy. Along these

lines, Kalemli-Ozcan (2002b), p. 411, claims that during the last two centuries life

expectancy at birth has doubled in most parts of the world mostly due to larger falls

in child rather than adult mortality. Boucekkine et al. (2002), quoting Kelley and

Schmidt (1995), claim that in less developed countries mortality drops concentrate

on young and working age individuals. Zhang, Zhang and Lee (2001) claim that
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during the early stages of mortality falls these concentrate on the younger population

(at ages previous to reproduction); but as mortality keeps going down from low

enough levels, most additional years are gained at ages after retirement age. From

(6) it is easy to show that4

@EV (0)

@�
= � 1

�
EV (0) > 0,

@EV (0)

@�
=
�(�� 1� ln�)
�(�� 1)2 > 0:

Population is assumed to grow at an exogenous, constant rate n, so that the measure

of births at � can be expressed as

�(�) = �en� , � > 0; n � 0: (7)

Given (1), (2) and (7), after some algebra, one obtains the measure of population

at � as the sum of measures of individuals born between � and � � J who have

survived until � ,

P (�) =

Z �

��J
�(t)m(� � t)dt = �en��; (8)

where � is de�ned as

� =
��(1� �n=�) + n(�� 1)

(�� 1)(� + n)n > 0: (9)

From (7) and (8) it is easy to interpret � as the inverse of the fertility ratio, where this

is de�ned as the ratio of the measure of births to the measure of total population at

(any) moment � , 1=� = �(�)=P (�). Thus, an increase in life expectancy (regardless

of whether � or � becomes larger) implies two extreme cases: i) a higher population

growth rate n if the fertility ratio is kept constant, or ii) a reduction in the fertility

ratio ��1 if the population growth rate is unchanged. 5

The demographic structure that we use here, characterized by (1) and n [or,

alternatively, by (1) and �] is exogenous because neither the number of children

4The sign of @EV (0)=@� is proven by de�ning f(�) = �� 1� ln�, and checking that f(1) = 0,
f 0(1) = 0 and f 00(�) = ��2 > 0. Recall the restriction � > 1.

5See Kalemli-Ozcan (2002b) who reports the fall in fertility rates for Holland, Sweden, United
Kingdom, Africa, Asia and Latin America.
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is an individual choice, nor the survival probability depends, for instance, on per

capita income or (private or public) health expenditure.6

From (1), (7) and (8) it is possible to obtain the probability density function for

age a as the ratio of the measure of individuals born at � � a and still alive at � to

total population at �

f(a) =
�(� � a)m(a)

P (�)
=
e�na(e��a � �)
(1� �)� : (10)

The instantaneous mortality rate at age a, denoted as �(a), is de�ned as the

ratio of the measure of individuals who die at age a to the measure of individuals

surviving until the age a. Thus, from (1), (3) and (7) one obtains

�(a) =
�dm(a)=da
m(a)

=
p(a)

m(a)
=
��e��a
�� e��a > 0; (11)

which is strictly increasing in a (recall that we are assuming that � > 1 and � < 0):

@�(a)

@a
=

��2e��a

(�� e��a)2 > 0:

Observed mortality rates are not strictly increasing with age, however, because they

fall during childhood.7 Once more, we can obtain Yaari-Blanchard�s perpetual youth

model with a positive, age independent mortality rate as a limiting case: if � = 0

and � > 0, then �(a) = � > 0. [See Blanchard (1985).] The simplicity of the

demographic structure that we are using here [as only three parameters �, � and

n, and two equations, (1) and (9), are needed if migratory movements are absent],

make this demographic structure highly attractive for theoretical models.

6See, among others, Kalemli-Ozcan (2002b) as an example of endogenous demographic struc-
ture, or Zhang and Zhang (2003) and references therein on e¤ects of social security on fertility
rates.

7For the U.S. case, for instance, at least since the 1940�s the death rate attains its minimum at
the 5-14 year age group, regardless of sex and race. See Vital Statistics, in U.S. Census Bureau,
Statistical Abstract of the United States: 2004-2005, Table 96, p. 75.
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The mean age and the median age of population, �a and â, respectively, can be

obtained from (2) and (10) as �a =
R J
0
af(a)da and 0:5 =

R â
0
f(a)da, or

�a =
1

(�� 1)�

(
�
�
1� (1 + nJ)e�nJ

�
n2

� 1� [J(� + n) + 1] e
�J(�+n)

(� + n)2

)
; (12)

and

0:5 =
�(� + n)� n

(�� 1)�(� + n)n +
1

(�� 1)�

�
e�(�+n)â

� + n
� �
n
e�nâ

�
: (13)

In spite of the simplicity of this demographic model, it is possible to approximate

observed age distributions in terms of life expectancy, maximum age and median

age reasonably well. [See Table 1]

[INSERT TABLE 1 AROUND HERE]

The pattern is clear: falls in the rate of population growth and in the rate of

mortality accompany increments in life expectancy at birth and in the mean age,

median age and maximum attainable age.

For illustration purposes only, Figures 1:a � b show how changes in � a¤ect

the growth rate n, the life expectancy EV (0), the mean age �a and the median age

â. Falls in the mortality rate through increments in � force population aging: life

expectancy, mean age and median age are raised; likewise, the population growth

rate n increases. Although not shown for reasons of space, di¤erences about whether

the origin is an increase in � or in � (or whether n or � is kept constant) are purely

quantitative.

[INSERT FIGURES 1.A-B AROUND HERE]

3 The economy

Following Boucekkine et al. (2002), time is represented as a continuous variable.

At each instant � there exists a continuum of cohorts born at di¤erent instants t.
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A unique good is produced and it can be consumed, but not accumulated in the

form of physical capital. Its price is normalized to one. Production technology uses

human capital as the only production factor.

We assume that perfect annuity markets exist. Individuals do not save in physical

capital (it does not exist), but in annuities. This kind of asset yields a return to

its holder as long as he/she is alive. After his/her death, the property of the asset

goes back to the insurance company that issued the asset. Thus, even if there were

physical capital and individuals were not altruistic (so that they did not intend to

leave bequests to their heirs), they would always prefer to save in annuities rather

than in physical capital. The return of annuities would always be higher than that

of physical capital because, in exchange, they would give back the annuities to

the issuing company in case of death. This way the problem posed by unintended

positive bequests is removed. Assuming that negative bequests are forbidden by

law, individuals would also prefer to borrow in annuities. In exchange for cancelling

out the debt in case of death, borrowers are forced to paying an extra return that

compensates the lending company for the default risk in case of death.8

3.1 The individual problem

Denoting by t birth date and � calendar time, the problem that an individual faces

consists in �nding the consumption path C(t; �), the length of the education period

T (t) and the retirement age R(t) which maximize his/her expected lifetime utility.9

8This type of institution is often used in theoretical models as a means to avoid accidental
bequests. For instance, Zhang, Zhang and Lee (2001), Fuster (1999), De la Croix and Licandro
(1999), Boucekkine et al. (2002). In the following section we show that, �rst, the instantaneous
return of annuities depends on the individual�s age. Regardless of whether he/she is a borrower
or a lender, the return is equal to the instantaneous probability of death which depends on age as
we have seen in (11). And, second, insurance companies issuing annuities obtain zero pro�ts in
equilibrium. [Yaari (1965).]

9In our case retirement does not obey workers�health related issues, for instance, but leisure
time preference. [See Sabatini and Mitchell (1999).]
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Workers�education has both micro consequences (higher labor income) and, as we

will see later on, macro consequences (eventually, higher economic growth for the

whole economy in the aggregate).

Instantaneous utility depends linearly on consumption.10 Disutility from time

spent on education and working (i.e., other than in retirement) goes up as individ-

ual�s age � � t increases. It also depends negatively on average human capital in the

economy �H(t) at birth. Given that we will consider only steady state paths along

which individual choices R(t) and T (t) remain time invariant, the marginal disu-

tility of postponing retirement an additional period must be proportional to �H(t).

This is so because marginal utility out of the additional labor income obtained as a

result of postponing retirement age one period is also proportional to �H(t). In sum,

if devoting time to education and working means less leisure time, lifetime utility

depends negatively on retirement age.

Thus, expected lifetime utility is given byZ t+J

t

C(t; �)m(� � t)d� �
�H(t)

�

Z t+R(t)

t

(� � t)m(� � t)d� ; � > 0; (14)

where 1=� stands for the disutility which both education and work time represent

in terms of lost leisure.

The human capital with which this individual enters the labor market h(t) de-

pends on the number of periods devoted to education T (t) and on the human capital

in the economy at the time of his/her birth �H(t). In particular,

h(t) = � �H(t)T (t); � > 0: (15)

There is, therefore, an externality in the production of human capital. It seems

reasonable to assume that for a given education period, the human capital the

10We �rst tried to use a CRRA (logarithmic, in particular) instantaneous utility function in
order to obtain an explicit solution for consumption in a previous version of this article. However,
the non linearity of the model increased substantially, giving rise to a multiplicity of solutions.
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individual accumulates is higher the higher the knowledge in the economy as a

whole. This is, therefore, a public good that individuals enjoy but do not have to

pay for. Similar mechanisms have been used previously in the theoretical literature.

[See, e.g., Zhang and Zhang (2003), Zhang, Zhang and Lee (2001)-(2003), Azariadis

and Drazen (1990), Lucas (1988), Lucas (1990), Einarsson and Marquis (1996),

Echevarría (2003)-(2004) or Nerlove et al. (1993)]. Also, empirical evidence largely

supports the positive e¤ect of class and school composition on individual students�

educational attainment or the positive e¤ect of local workers with longer education

upon individual wages. [See Benabou (1993) and references therein.]

During his/her active life the individual is paid a gross wage per unit of e¢ cient

labor equal to !(�), and pays a (pay-as-you-go) social security tax at a constant

rate s 2 (0; 1). Thus, the net labor income obtained by this individual at time � is

equal to

w(t; �) = (1� s)!(�)h(t): (16)

For simplicity, we assume that there is no depreciation of individual human capi-

tal while individuals remain on-the-job. Along these lines, Stokey and Rebelo (1995)

claim that the largest source of depreciation of aggregate human capital comes from

the fact that lifetimes are �nite. Therefore, OLG models allow a more satisfactory

treatment of this issue than in�nite horizon representative agent models. This, in

turn, raises a new problem: how human capital is transmitted from one generation

to the next. In our model current generations learn from previous generations: they

take advantage of the accumulated knowledge in the society when they are in their

education period.

After retirement, the individual is paid a pension bene�t equal to b(t). The

relationship between social security contribution and pension bene�t is given by the

replacement rate # which we de�ne (purely for analytical convenience) in terms of
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average net wage income obtained during the active period,

b(t) = #(1� s) �w(t); (17)

where

�w(t) �
( R t+R(t)

t+T (t)
h(t)!(�)
R(t)�T (t)d� = h(t)�!(t), if R(t) > T (t)

0, if R(t) = T (t)
(18)

denotes the average gross wage income earned along the same period. That is, �!(t)

� [R(t)� T (t)]�1
R t+R(t)
t+T (t)

!(�)d� represents the average gross wage per e¢ ciency unit

earned while active.11 ; 12 This way, when making his/her optimal plan for education,

the individual takes into account that more education time not only means higher

wages while active, but also higher pension bene�ts while retired.

In short, the problem that the individual born at time t faces can be formally

expressed as

max
fC(t;�)g�=J�=t ;T (t);R(t)

Z t+J

t

C(t; �)m(� � t)d� �
�H(t)

�

Z t+R(t)

t

(� � t)m(� � t)d� (19)

subject to8>>>>>><>>>>>>:

R t+J
t

D(t; �)C(t; �)d� =
R t+R(t)
t+T (t)

D(t; �)w(t; �)d� +
R t+J
t+R(t)

D(t; �)b(t)d� ;

w(t; �) = (1� s)!(�)h(t);
h(t) = � �H(t)T (t);
b(t) = #(1� s) �w(t);
�w(t) = h(t)�!(t);
R(t) � J;

(20)

where D(t; �) denotes the discount factor that applies between t and � ; that is, the

price that an individual pays in t for one unit of consumption at time � (contingent

on being alive at that time).
11In some countries pension bene�ts are linked to the worker�s wage history: that is the case,

among others, of the US [Diamond and Gruber (1997)] and Spain [Boldrin et al. (1997)]. In other
countries, such as the UK, Holland or Sweden, pension bene�ts are the universal type. [See Miles
(1999).] Zhang and Zhang (2003) assume a mixed setup: part of the pension bene�ts is based on
the wage income obtained during the active period, while the rest is of a universal nature.
12Pension bene�ts in our model are proportional to the average wage income earned while active

for simplicity, but alternative assumptions could be made. For instance, the relationship between
pension bene�ts and average wage income in the US and in Spain is increasing, of course, but
concave. This might increase the incentives to early retirement. [See Diamond and Gruber (1997),
pp. 7 y 8, and Jiménez-Martín and Sánchez (1999) pp. 49 and 50].
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Upon substituting the second to fourth restrictions into the �rst one in (20), one

obtains the following Lagrangian

L =
Z t+J

t

C(t; �)m(� � t)d� �
�H(t)

�

Z t+R(t)

t

(� � t)m(� � t)d� (21)

� �(t)
(Z t+J

t

D(t; �)C(t; �)d� �
Z t+R(t)

t+T (t)

D(t; �)(1� s)!(�)� �H(t)T (t)d�

�
Z t+J

t+R(t)

D(t; �)#(1� s)�!(t)� �H(t)T (t)d�
�
� v(t) [R(t)� J ] :

�(t) � 0 denotes the Lagrange multiplier associated with the intertemporal budget

constraint (the marginal utility of income), and v(t) � 0 is the Lagrange multiplier

associated with the restriction that retirement age cannot exceed the maximum age

limit J . Notice that (24) is linear in C(t; �), so that we are implicitly assuming that

consumption is non-negative.

In short, the problem that the individual born at time t faces can be formally

expressed as

max
fc(t;�)g�=J�=t ;T (t);R(t)

Z t+J

t

c(t; �)m(� � t)d� �
�H(t)

�

Z t+R(t)

t

(� � t)m(� � t)d� (22)

subject to8>>>>>>>>><>>>>>>>>>:

R t+J
t

D(t; �)c(t; �)d� =
R t+R(t)
t+T (t)

D(t; �)w(t; �)d� +
R t+J
t+R(t)

D(t; �)b(t)d� ;

w(t; �) = (1� s)!(�)h(t);
h(t) = � �H(t)T (t);
b(t) = #(1� s) �w(t);
�w(t) = h(t)�!(t);

�!(t) � [R(t)� T (t)]�1
R t+R(t)
t+T (t)

!(�)d�

R(t) � J;

(23)

where D(t; �) denotes the discount factor that applies between t and � ; i.e., the

price that an individual pays in t for one unit of consumption at time � (contingent

on being alive at that time).

Upon substituting the second to fourth restrictions into the �rst one in (20), one
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obtains the following Lagrangian

L =
Z t+J

t

c(t; �)m(� � t)d� �
�H(t)

�

Z t+R(t)

t

(� � t)m(� � t)d� (24)

� �(t)
(Z t+J

t

D(t; �)c(t; �)d� �
Z t+R(t)

t+T (t)

D(t; �)(1� s)!(�)� �H(t)T (t)d�

�
Z t+J

t+R(t)

D(t; �)#(1� s)�!(t)� �H(t)T (t)d�
�
� v(t) [R(t)� J ] ;

where �!(t) � [R(t)� T (t)]�1
R t+R(t)
t+T (t)

!(�)d� , �(t) � 0 denotes the Lagrange mul-

tiplier associated with the intertemporal budget constraint (the marginal utility of

income), and v(t) � 0 is the Lagrange multiplier associated with the restriction that

retirement age cannot exceed the maximum age limit J . Notice that (24) is linear

in c(t; �), so that we are implicitly assuming that consumption is non-negative.

The corresponding �rst order necessary conditions are given by

@L
@c(t; �)

= 0 , m(� � t) = �(t)D(t; �); (25)

@L
@R(t)

= 0 ,
�H(t)

�
R(t)m[R(t)] = (26)

�(t)� �H(t)T (t)![t+R(t)](1� s)D[t+R(t); t]

��(t)#(1� s)�!(t)� �H(t)T (t)D[t+R(t); t]

+�(t)
t+JR
t+R(t)

D(t; �)#(1� s)� �H(t)T (t)@�!(t)
@R(t)

d� � v(t);

where
@�!(t)

@R(t)
=
![t+R(t)]� [R(t)� T (t)]�

R t+R(t)
t+T (t)

!(�)d�

[R(t)� T (t)]2 ; (27)

R(t) � J; v(t)[R(t)� J ] = 0; v(t) � 0 (28)
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@L
@T (t)

= 0 , 0 = �(t)

Z t+R(t)

t+T (t)

D(t; �)(1� s)!(�)� �H(t)d� (29)

��(t)� �H(t)T (t)![t+ T (t)](1� s)D[t+ T (t); t]

+�(t)

Z t+J

t+R(t)

#(1� s)�!(t)� �H(t)D(t; �)d�

+�(t)

Z t+J

t+R(t)

D(t; �)#(1� s)� �H(t)T (t)@�!(t)
@R(t)

d� ;

where
@�!(t)

@T (t)
=
�![t+ T (t)]� [R(t)� T (t)] +

R t+R(t)
t+T (t)

!(�)d�

[R(t)� T (t)]2 : (30)

In (26) we obtain that the marginal disutility of postponing retirement age for

one additional period (in terms of lost leisure) must be equal to the marginal utility

out of the augmented consumption that the additional income allows. Suppose that

the retirement age is postponed one additional period. Note that i) �(t) represents

the expected marginal utility out of income; ii) the sum of the terms that multiply

�(t) is the marginal increase of the discounted future labor income; and iii) v(t)

is the expected marginal utility out of increasing the maximum lifetime horizon J

(relevant if the restriction R(t) � J is binding).

By de�nition, one has that D(t; t) � 1 and that m(t� t) = m(0) = 1; therefore,

from (25) we obtain

�(t) = 1, and m(� � t) = D(t; �): (31)

Given that the utility function is linear in c(t; �), so is the Lagrangian (24): if

no restrictions are imposed on the optimal consumption plan, the maximum of

(24) is not well de�ned unless m(� � t) = D(t; �). That is, budget constraint and

indi¤erence curve coincide. If one imposed the non-negativity of c(t; �) in an explicit

manner, then (24) should be rewritten allowing for slackness variables. In that case,

the equality between the discount factorD(t; �) and the survival probabilitym(��t)

would be obtained only for interior solutions.
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Denoting the instantaneous return of an annuity by r(x), from (1) and (31) one

obtains exp
�
�
R �
t
r(x)dx

�
=
�
�� e��(��t)

�
(�� 1)�1. Upon di¤erentiating both

sides with respect to � , we obtain that

r(�) =
��e��(��t)
�� e��(��t) � �(� � t): (32)

In other words, the instantaneous rate of return at time � for an individual born at

t is identical to his/her instantaneous mortality rate de�ned in (11). An implication

of (32) is that, assuming that insurance companies issuing annuities are risk neutral

and perfectly competitive, they obtain zero pro�ts (as expected). Denoting the

stock of assets at time � of an individual born at t by W (t; �), the costs of the

insurance company would be equal to r(�)W (t; �). But its revenues would be equal

to �(� � t)W (t; �) because a fraction �(� � t) of individuals of age � � t would give

back all their assets to the company on dying.

As we will see in subsection 3.2, wages per e¢ ciency unit ! are constant, so

that the derivatives in (27) and (30) are identically equal to zero, and �!(t) = !.

Therefore, from (25) and (31) we obtain that (26) can be rewritten as

�
�H(t)

�
R(t)m[R(t)] + � �H(t)T (t)!(1� s)m[R(t)] (33)

�#(1� s)!� �H(t)T (t)m[R(t)]� v(t) = 0:

There are two open possibilities. i) If the optimal R(t) is an interior solution,

R(t) < J , then v(t) = 0. From (33) one obtains R(t) = ��T (t)(1 � s)(1 � #)!: ii)

If the optimal R(t) is a corner solution, then v(t) � 0 and R(t) = J . Thus, we will

have that

R(t) = min f��T (t)(1� s)(1� #)!; Jg : (34)

For the same reason, given (31) and (34), (29) can be rewritten as
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T (t)m[T (t)] =

Z t+minf��T (t)(1�s)(1�#)!;Jg

t+T (t)

m(� � t)d� (35)

+

Z t+J

t+minf��T (t)(1�s)(1�#)!;Jg
#m(� � t)d� :

Notice that (35) implies that T (t) = T and, therefore, from (34) we have that

R(t) = R. That is, optimal education time length and retirement age are constant.

A key parameter for our discussion and one we will use repeatedly is � � ��. If we

de�ne �0 � 1=[(1� s)(1� #)!], the following two equations characterize T and R

R = min

�
�

�0
T; J

�
; (36)

and

Tm(T ) =

Z min
n
�
�0
T;J

o
T

m(�)d� +

Z J

min
n
�
�0
T;J

o #m(�)d� : (37)

3.2 Technology of aggregate production

We assume that production technology is linear in human capital,

Y (�) = !H(�), ! > 0; (38)

where Y (�) denotes aggregate production and H(�) aggregate human capital at � .

The latter is equal to the sum of individual stocks of human capital across workers

of di¤erent ages (born at di¤erent t�s, but active at �). This is, in sum, a vintage

model as explained in detail in subsection 3.4. Therefore not only is the time �

at which human capital is measured relevant, but so is the education length T ,

retirement age R and age distribution of the population. Marginal productivity

of human capital ! is constant and equals the (gross) wage per unit of e¢ ciency.

The parallelism with AK technologies in which production is proportional to the

stock of aggregate capital in equilibrium is obvious. [See, among others, Barro and

Sala-i-Martín (1995) for details.]
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3.3 School and retirement in equilibrium

In this subsection we characterize optimal education periods and retirement age.

We will make the following distinction:

a) interior solutions: 0 < T < R < J , and

b) corner solutions which, in turn, can be of two types:

b.1 ) 0 < T < R = J . In this case, planned retirement is given by the

maximum lifetime horizon, and education period is equal to the upper bound for

interior solutions for T (which we will characterize later on); and

b.2 ) 0 = T = R < J . In this case individuals choose neither to invest in human

capital nor to enter the labor market. If so, both labor income and pension bene�ts

are zero. This is possible given our assumption of linear utility from consumption.

3.3.1 Interior solution: 0 < T < R < J:

In this subsection we �nd the conditions upon parameter � for the existence and

uniqueness of an interior solution. If the solution is interior, from (36) we obtain

that

R =
�

�0
T; (39)

where a necessary condition that � and �0 (or, equivalently, �, s, # and !) must

satisfy for R > T > 0 is that

� > �0: (40)

Intuitively, given the de�nitions of � and �0, for individuals to devote a part of their

lifetimes to education and a part to active work one needs: i) high gross wages

(high !), ii) low social security contribution rates (low s), iii) high productivity

of investment in human capital (high �), iv) low disutility of time not devoted to

leisure (high �), and v) low replacement rates (low #).
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Note that if the solution is interior, R is proportional to T and, in particular,

R = �(1 � #)(1 � s)!T . Therefore, for a given #, the discouraging e¤ect that a

higher s has upon T is enlarged when we look at the e¤ect upon R. This point will

be relevant when we carry out our numerical exercise en Section 4.

Assuming that � > �0, from (36), (37) and (39), optimal T is given by

Tm(T ) = G1(T ) +G2(T ); (41)

where we have de�ned

G1(T ) �
Z �

�0
T

T

m(�)d� , and G2(T ) � #
Z J

�
�0
T

m(�)d� . (42)

In other words, for T to be optimal the cost of an additional education period (in

terms of foregone wages) must be equal to the increment in the sum of expected

discounted future wages plus expected pension bene�ts as a result of that additional

learning period.

Besides, following the case of interior solution so that R < J , (39) implies that

T <
J�0
�
� Tmax(�) < J: (43)

There is, therefore, an upper bound for the optimal T (not only for interior solutions,

but -as we will see- also for corner solutions in which R = J and T � Tmax).

Introducing unfunded social security with positive # and s, raises the lower bound

of � for interior solutions slightly higher than the one required in Boucekkine et al.

(2002). [See Boucekkine et al. (2002), Lemma 2.3, p. 350, who obtain � > 2 as a

necessary condition for interior solution]. Assuming [as Boucekkine et al. (2002)]

! = 1, one has that �0 = [(1� s)(1�#)]�1 need not be higher than 2. For instance,

the productivity of education time in the production of individual human capital

need not be so high as to induce individuals to spend a fraction of their lifetimes on

accumulating knowledge. Why? Because in the presence of a social security system
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like ours (unfunded and whose pension bene�ts depend positively on earned labor

income in the past) pension bene�ts represent an additional incentive to the wage

income obtained during the active period. In other words, pension bene�ts reduce

the depreciation of human capital that a �nite active period represents for workers.

A graphical argument may be useful to understand the last discussion. [See

Figure 2.]

[INSERT FIGURE 2 AROUND HERE]

The area Tm(T ) must be equal to the sum of areas G1(T ) �
R �

�0
T

T m(�)d� plus

G2(T ) � #
R J
�
�0
T
m(�)d� . Therefore, G1(T ) need not be so high as when there is

no social security, the optimal T condition being given in that case by Tm(T ) =

G1(T ).13

To analyze the existence and uniqueness of the interior solution, we �rst de�ne

13If there were no social security, and given that m(x) is strictly decreasing, one would have in
Figure 2 that �

�

�0
� 1
�
Tm(

�T

�0
) <

Z �T
�0

T

m(x)dx| {z }
G1(T )

<

�
�

�0
� 1
�
Tm(T ):

If the solution for T were interior, from the second of the two previous inequalities and (41) one
would get Z �T

�0

T

m(x)dx <

�
�

�0
� 1
�"Z �T

�0

T

m(x)dx+ �

Z J

�T
�0

m(x)dx

#
)

) � >

2642
R �T

�0

T m(x)dx+ �
R J
�T
�0

m(x)dxR �T
�0

T m(x)dx+ �
R J
�T
�0

m(x)dx

375 �0:
If we assume that � = 0, ! = 1 and s = 0, we will have that � > 2�0 = 2, the same condition that
Boucekkine et al. (2002) obtain [See Boucekkine et al. (2002), Proposition 2.1, p. 350.]
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the following auxiliary continuous function in x and �:

M(x; �) � (�� 1) [xm(x)�G1(x)�G2(x)] (44)

= x
�
�� e��x

�
+ �x

�
1� �

�0

�
+
e��x � e��x

�
�0

�

+#�

�
�

�0
x� J

�
+ #

"
e
��x �

�0 � e��J
�

#
:

From (41), (42) and (44) one has that T is an interior solution if and only if x = T

is a root of equation (44). Therefore, we will be able to discuss the existence and

uniqueness of the interior solution upon studying the properties of M(x; �).

Our strategy will be as follows:

i) �rst, we will prove thatM(x; �) is negative in the origin x = 0 [Lemma 1] and

positive at x = Tmax > 0 for an interval of values of � [Lemma 2]. The continuity

of M(x; �) will assure us that there exists at least one x 2 (0; Tmax(�)) for which

M(x; �) = 0. [Proposition 1].

ii) second, we will show that such an x is unique. [Propositions 2 and 3, respec-

tively].

The argument is shown graphically in Figure 3.

[INSERT FIGURE 3 AROUND HERE]

The following Lemma gives us su¢ cient conditions forM(x; �) to be negative at

x = 0.

Lemma 1 Assume � < 0 and � > 1: if # > 0, then M(0; �) < 0.

Proof : See Appendix.

The next step consists in obtaining the conditions on � which guarantee that

M(Tmax(�); �) > 0. To this end we de�ne the following auxiliary function K(�) �
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M(Tmax(�); �). From (2), (43) and (44) it can be shown that

K(�) =
1

�

�
�0
�

�
�
�0
� � 2�

�
ln�+ � (ln�� 1) + �

�0
�

�
; (45)

which is continuous for � > 0. We next characterize function K(�).

Lemma 2 Assume � < 0, � > 1 and �0 > 0: then i) K(�) is continuous for � > 0;

ii) if � = �0, then K(�) = 0; iii) there is a unique �
� > 2�0 such that K(�

�) = 0;

and iv) K(�) > 0 if and only if � 2 (�0; ��);

Proof : See Appendix.

The function K(�) is represented in Figure 4.

[INSERT FIGURE 4 AROUND HERE]

The following Proposition gives us the interval for � such that there exists at

least one interior solution for T and R satisfying 0 < T < R < J , T < Tmax, and

equations (39) and (41).

Proposition 1 Existence. Su¢ ciency. Assume � < 0, � > 1, # > 0 and �0 > 0. If

�0 < � < �
�, then there is at least one interior solution for T and R which satis�es

(39) and (41), and for which 0 < T < R < J , T < Tmax.

Proof : See Appendix.

The following Proposition gives us su¢ cient conditions for the uniqueness of an

interior solution, i.e., for equation (44) to have a unique root.

Proposition 2 Uniqueness. Su¢ ciency. Assume � < 0, � > 1, # > 0 and �0 > 0.

If �0 < � < �
�, then there is a unique interior solution for T and R which satis�es

(39) and (41), and such that 0 < T < R < J , T < Tmax .14 ; 15

14We owe the the last part of proof to Águeda Madoz, our research assistant.
15We believe that the proofs of Lemma 2.2 and Lemma 2.3 in Boucekkine et al. (2002) are

wrong. The authors claim that �Trivially, limx!+1M(x) = +1 ...�, but this is not true. [See
proof of Lemma 2.2 on page 367, and proof of Lemma 2.3 on page 368.] Notice that m(x) as
de�ned in (1) is identically equal to 0 for x � J .
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Proof : See Appendix.

The following Proposition gives us necessary conditions for the uniqueness of the

interior solution, i.e., for equation (44) to have a unique root.

Proposition 3 Uniqueness. Necessity. Assume � < 0, � > 1, # > 0 and �0 > 0:

if the unique solution for T and R is interior, that is to say, 0 < T < R < J ,

T < Tmax, and satis�es (39) and (41), then it must be the case that �0 < � < �
�.

Proof : See Appendix.

In the next subsection we study corner solutions.

3.3.2 Corner solutions: 0 < T < R = J and 0 = T = R < J.

We obtain two possible corner solutions by considering four cases depending on the

value of �: i) � = ��, ii) � > ��, iii) � = �0, and iv) 0 < � < �0.

�Case i): � = ��

Let us assume that � = ��: in this case, given (39), Tmax(�) de�ned in (43),

(41), M(x; �) de�ned in (44), K(�) in (45) and �� in Lemma 2, T = Tmax(��) and

R = J satisfy the condition for an interior solution

Tmax(�
�)m [Tmax(�

�)] =

Z J

Tmax(��)

m(�)d� + #

Z J

J

m(�)d� (46)

=

Z J

Tmax(��)

m(�)d� :

Therefore, interior and corner solutions coincide. Notice that by de�nition of ��,

�� > �0 and, therefore, Tmax(�
�) � J�0

�� < J . Moreover, Tmax(��) is the unique

solution which, being less than J , satis�es (46). The following Proposition states

this result.

Proposition 4 Assume that � < 0, � > 1 and �0 > 0: if � = ��, then T = Tmax(��)
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� J�0
�� and R = J is the unique solution to (39) and (41) such that 0 < T < J .

Proof : See Appendix.

�Case ii): � > ��

The following Proposition states the solution for optimal T and R for values

of � greater than ��.

Proposition 5 Assume that � < 0, � > 1 and �0 > 0: if � > ��, then T

= Tmax(�
�) = J�0

�� and R = J is the unique solution to (36) and (37) such that

0 < T < J .

Proof : See Appendix.

Note that T = R = J is also a solution both in Case i) and in Case ii). However,

by using an indirect utility argument, this solution is dominated by T = Tmax(��) =

J�0
�� and R = J . Leisure is zero in both cases (R = J) and so are pension bene�ts.

But labor income is zero, and so is consumption, if T = R, while labor income and

consumption are positive if T = Tmax(��) < R.

�Case iii): � = �0
Consider now the case of � = �0. From (36) and (37) we obtain

R = min fT; Jg ; and (47)

Tm(T ) =

Z minfT;Jg

T

m(�)d� +

Z J

minfT;Jg
#m(�)d� : (48)

Given that individuals never survive the age J , it must be the case that T � J and,

therefore, R = T always. This implies, in turn, that individuals never contribute

to the social security and, therefore, # must be 0 if the social security budget is

balanced which, in turn, must be the case along balanced growth paths.
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Thus, focusing on balanced growth paths, optimal T is given by (47), (48),

T = minfT; Jg and # = 0 so that Tm(T ) = 0 which admits two solutions: 0 <

T = R = J , where T = Tmax(�0), and 0 = T = R < J . The latter is preferred

to the former. Why? Consumption is zero in both cases: both labor income and

pension bene�ts are zero because T = R [recall equations (17) and (18)]. But leisure

is positive (R < J) in the latter case, and zero in the former (R = J).

The following Proposition formalizes this result.

Proposition 6 Assume that � > 1, � < 0 and � = �0 > 0. If social security budget

is balanced, then # = 0; 0 = T = R < J .

Proof : See Appendix.

�Case iv): 0 < � < �0
Suppose, �nally, that 0 < � < �0. If this is the case, from (36) one has that

i) either R = J � T�=�0, so that J � T�=�0 < T ; but this cannot be a solution,

as it is meaningless: individuals would study after retirement and death; or ii)

R = T�=�0 � J which makes sense only if R = T = 0. Otherwise, if T > 0, one

has that R = T�=�0 < T and, therefore, R < T , which makes no sense. Individuals

would retire before completing the education period and entering the labor market.

The following Proposition states this result. The economic meaning of Case iv) [as

that of Case iii)] is absent: there would be no human capital, nor production, nor

consumption.

Proposition 7 Assume that � > 1 and � < 0. If 0 < � < �0, then 0 = T = R < J .

Proof : Omitted.

Table 2 summarizes the results in Propositions 2-7. Note that for � = �0 we

have only considered the possibility of social security budget balance.
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[INSERT TABLE 2 AROUND HERE]

3.4 Aggregates

In this subsection we obtain the aggregates for consumption and human capital at

time � . To this end we weight individuals�decisions by the size of the surviving

population in the living cohorts, and sum them up across birth dates.

�Aggregate consumption. From (1) and (7) aggregate consumption can be ex-

pressed as,

C(�) =

Z �

��J
C(t; �)�entm(� � t)dt; (49)

where C(t; �) represents consumption at � of an individual born at t and �entm(��t)

denotes the measure of population of t-th generation still alive at time � :

�Aggregate human capital. From (1) and (7) we obtain aggregate human capital

as

H(�) =

Z ��T (�)

��R(�)
h(t)�entm(� � t)dt; (50)

where the last generation to enter the labor market was born at � � T (�), and the

last generation to retire from their jobs was born at � �R(�). The cohort born at t

and still in the labor force has a measure equal to �entm(� � t), and their members

have a stock of individual human capital h(t), making this a vintage model.

Vintage models are often used both in economies with physical capital and in

economies with human capital. In the �rst case the aggregate stock of capital in-

stalled in �rms consists of capital goods of di¤erent ages, usually embedding di¤erent

technologies (with more productive technologies in the more recent ones). In the

second (i.e.,our) case, younger workers incorporate higher levels of human capital

than their predecessors in a growing economy (although without their labor expertise

which, for simplicity, we are not considering here).16

16Among the �rst type one could mention, e.g., Gittleman et al. (2003) and Jensen et al. (2001).
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From (50) we de�ne average human capital at time � , �rst introduced in the

individual human capital production function (15), as

�H(�) =
H(�)

��en�
; (51)

where the denominator represents total population at time � , de�ned in (8).

An indicator that can be used to explain growth in vintage models is the quality

of human capital. This is given by the degree of obsolescence of the human capital

which, in our case, is given by the average tenure of active workers L, which given

the age distribution (10) is equal to

L(�) =

R R(�)
T (�)

[a� T (�)]e�na(e��a � �)daR R(�)
T (�)

e�na(e��a � �)da
: (52)

The numerical exercises in Section 4, however, will not show a monotonic relationship

between L and 
.

3.5 Social security

Assuming that social security balances its budget on a period by period basis, the

following equality must hold at each time �Z ��T (�)

��R(�)
s!(�)h(t)�(t)m(� � t)dt =

Z ��R(�)

��J
b(t)�(t)m(� � t)dt: (53)

The left-hand-side represents the social security tax revenue from active generations

[i.e., born after ��R(�), but before ��T (�)]. The right-hand-side equals the pension

bene�ts paid to retirees [i.e., individuals born after � � J , but before � �R(�)].

3.6 Equilibrium

De�nition 1 An equilibrium path for this economy is de�ned as a sequence of quan-

tities fT (�); R(�); C(�); h(�); H(�); �H(�); Y (�)g1�=0 and prices f!(�); D(t; �) =

m(� � t)g1�=0 such that
And among the second type, one could mention Boucekkine et al. (2002), Echevarría (2003)-(2004),
Violante (2002), and Neuman and Weiss (1995).
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i) consumers maximize utility taking the sequences of human capital in the econ-

omy and wage per e¢ ciency unit, and the parameters representing the social security

policy fs; #g as given;

ii) �rms maximize pro�ts taking the sequence of wage per e¢ ciency unit as given;

iii) the government chooses the replacement rate #, for a given social security

tax rate s such that social security budget is balanced at each instant; and

iv) goods market clears.

In this article we only consider balanced growth paths characterized by the fact

that aggregate variables fC(�); H(�); Y (�)g grow at a constant rate or, equivalently,

per capita variables fh(�); �H(�); w(�)g grow at a constant rate 
. Moreover, vari-

ables indicating education time duration T and retirement age R are constant and,

therefore, do not depend on the worker�s birth date.

3.7 The balanced growth path

De�nition 2 Balanced growth paths in this economy are de�ned as sequences of

quantities fT; R; C(�); h(�); H(�); �H(�); Y (�)g1�=0 and prices f!;D(t; �) = m(� �

t)g1�=0 such that

i) conditions i)-iv) in De�nition 1 are met, and

ii) all aggregate variables in per capita terms grow at a constant rate 
.

In order to obtain the steady state growth in this economy, we �rst calculate the

rate of growth of aggregate human capital: the sum of population growth rate plus

the growth rate of average human capital. To obtain the latter we substitute (15)

and (51) into (50),

�H(�)��en� =

Z ��T

��R
� �H(t)T�entm(� � t)dt:

If we take into account that along the balanced growth path �H(t) = �H(�)e�
(��t)
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must hold, and we make the following change of variable z = � � t, on recalling the

survival probability (1) we can rewrite the above expression as,

�T

�

Z R

T

e�(
+n)z
�
�� e��z
�� 1

�
dz = 1; (54)

which implicitly characterizes the per capita growth rate 
 as a function of �, T ,

�, R, n, � and �. Ceteris paribus, from (54) one can see that for higher values

of retirement age R or productivity in human capital production �, the economy�s

long run growth rate 
 will be higher. If the education time length T becomes

longer, then an ambiguous result shows up: i) aggregate human capital is enlarged

(individual human capital stocks are higher), but ii) the share of active population

becomes smaller. From (54) one has the following Proposition.

Proposition 8 Assume that 0 < T < R < J . If there is a per capita growth rate 


that satis�es ( 54), it must be unique.

Proof : See Appendix.

An open question is the convergence of this economy to the steady state. Equa-

tion (50) is exactly the same as the one obtained by Boucekkine et al. (2002). [See

equation (23) in Boucekkine et al. (2002), p. 353.]17

Given that along balanced growth paths R(�) = R, T (�) = T , !(�) = !, and

�H(t) = �H(�)e�
(��t), �(t) = �(�)e�n(��t), taking into account (15), (17) and (18),

and after a change of variable z = � � t, the equation for social security budget

balance (53) can be rewritten as

s

Z R

T

e�(
+n)zm(z)dz = #(1� s)
Z J

R

e�(
+n)zm(z)dz: (55)

17In essence Boucekkine et al. (2002) show that the dynamics of aggregate human capital is
characterized by a second order delayed di¤erential equation with delayed derivatives. Its resolution
requires numerical methods, because no mathematical result that sets conditions on the parameters
(T and R, in particular) for it to converge is known.
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Finally, if the solution for T and R happens to be interior, the payroll tax rate

s and the replacement rate # which balance the social security budget are unique.

Proposition 9 If 0 < T < R < J , then there is a unique pair of payroll tax -

replacement rates (s; #) which satis�es the social security budget balance.

Proof : See Appendix.

Thus, summing up, along the balanced growth equilibrium path conditions (36),

(37), (54) and (55) must be met. This makes four non-linear equations in 4 un-

knowns: T , R, 
 and # (for a given s). Unlike Boucekkine et al. (2002), it is

not possible to obtain a relationship between T and 
 in our model: 
 in�uences

T through social security budget balance which in turn a¤ects #; and T a¤ects 


through the growth rate equation. Therefore, it is not possible obtain a replica of

their Proposition 3.4. [See Boucekkine et al. (2002), Proposition 3.4, p. 355.] More-

over, once the individual problem and the uniqueness of the steady state growth

rate and the social security budget balance are solved analytically, all the results

that follow in the next Section are strictly numerical.
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4 A numerical example

4.1 Calibration

In this Section we give values to the basic parameters to calculate numerically the

steady state equilibrium for a benchmark case. In order to illustrate the role played

by social security in our model, we run a �rst experiment in which we compare

the responses of this economy to exogenous changes in life expectancy under two

alternative scenarios: with and without social security. To this end, and taking some

features of the U.S. economy as an example, we use two sets of parameters which give

us to some approximation the same benchmark steady state.18 The summary of the

two sets of parameters, the steady state theoretical values for the benchmark model

and the empirically observed values are shown in Table 3. In a second experiment,

we analyze the e¤ects of changes in social security policy.

Concerning our �rst experiment, we choose one set of demographic parameters

�, � and n so that we are able to approximate the observed mean and median ages

and the life expectancy at birth, �a, â and EV , respectively. The crude birth rate 1=�

turns out to take a reasonable value too.19 As for the non-demographic parameters,

we choose two values for each of �, � and ! in such a way that the resulting T , R and


 obtained with (s > 0) and without (s = 0) social security satisfy two conditions:

18At any rate, the parameter sets must be such that �0 < � < �
�. If � � �0, condition (54) is

not met; and if � � ��, from (55) one would have that # would be in�nite. Therefore, we focus on
interior solutions for T and R.
19Data on n have been obtained from U.S. Census Bureau, National and Population Estimates,

NST-EST2003-pop-chg, Annual Estimates of the Population Change for the United States, and
Puerto Rico and State Rankings: July 1, 2002, to July 1, 2003, p.1, available at http://www.cen-
sus.gov/popest/states/NST-EST2003-pop-chg.html. For EV see 2004 World Population Data
Sheet of the Population Reference Bureau, Demographic Data and Estimates for the Countries
and Regions of the World, p. 7, available at http://www.prb.org. For �a and â see U.S. Census Bu-
reau, National Population Estimates, Characteristics, Annual Estimates of the Population by Sex
and Five Year Age Groups for the United States: April 1, 2000 to July 1, 2003 (NC-EST2003-01)
p.1, available at http://www.census.gov/popest/national/asrh/NC-EST2003/ Finally, for data on
1=� see Vital Statistics, in U.S. Census Bureau, Statistical Abstract of the United States: 2004-2005,
Table 72, p. 61.
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reasonably close between them and also to observed values, in particular in R and


.20

[INSERT TABLE 3 AROUND HERE]

Once we have set up the benchmark case, the experiment consists in generating

a range of values for the life expectancy (between 40 and 100). There are 4 ways

of modelling increases in life expectancy depending on, �rst, whether these are due

to lower mortality rate for young or for old agents (higher � or higher �, respec-

tively); and, second, whether the population growth rate or the crude birth rate

adjusts to mortality changes (constant n and lower 1=� or lower n and constant

1=�, respectively). Here we focus on increases in life expectancy caused by lower

mortality rates for young agents and lower crude birth rates, and then we discuss

how our results would di¤er if changes in � or n had been considered. The results

are illustrated in Figures 5 and 6. We run an additional experiment: keeping the

rest of the parameters constant, we analyze the response of our theoretical economy

upon changes in the social security tax rate s. The results are illustrated in Figure

7.

4.2 Findings

In our model the engine of growth is given by the change in the average human

capital of the economy. Average human capital, in turn, depends on, �rst, individual

decisions such as optimal schooling time and retirement age which (in the case of

T ) a¤ect not only their own productivity, but also the share of active workers in

20The value of s has been obtained from Coronado et al. (2000), p. 10. For data on T see
Butcher et al. (1994). Bassanini et al. (2001), p. 28, show the increasing time trend of average
years of education among working population for 21 OECD countries between 1971 and 1978. As
for retirement age R see, e.g., Gendell (1998). For 
 see Income, Expenditures and Wealth, in U.S.
Census Bureau, Statistical Abstract of the United States: 2004-2005, Table 648, p. 430. Finally, as
for the replacement rate, observed values vary substantially depending on the worker�s individual
characteristics. See, e.g., Diamond and Gruber (1997) or Kotliko¤ et al. (1999).
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the population as T and R represent entry to and exit from the labor market,

respectively. And, second, demographic characteristics, namely the survival rate

distribution. Thus, falls in the mortality rate (i.e., increases in life expectancy)

imply both a behavior e¤ect (through changes in T and R) and a composition e¤ect

(through changes not only in the age distribution of workers, but also on the range

of active ages) which in turn imply changes in the growth rate. We discuss below

that both e¤ects di¤er depending on whether there is an unfunded social security

in the economy or not.

We graph the response of individual and aggregate variables (in Figures 5 and

6, respectively) to increases in the life expectancy under both scenarios, i.e. with

and without social security.21

As life expectancy goes up, education time length increases in both scenarios.

Higher survival probabilities increase the expected �ow of future wages, thereby

giving incentives to extend the education time length. In eq. (37) the left-hand side

represents the marginal cost of increasing T , and the two terms on the right-hand

side represent the marginal bene�t, i.e. the expected �ow of future wages (pension

bene�ts included). Without social security only the �rst term is present. With

social security (if pensions depend on past contributions), however, an additional

term shows up as the incentives to a higher T increase. [See Fig. 5:a.]

Concerning the retirement age decision, we can see in equation (39) that increases

in life expectancy a¤ect R through both its e¤ect on T (as in an economy without

social security) and the social security policy represented by the replacement and the

contribution rates # and s, respectively (which enter the de�nition of �0). Therefore,

with social security the relationship between T and R is not proportional. In an

21The range of values for � goes from 3:4 to 13:5; n and � take on the same values as in the
benchmark case, 0:010 and �0:0170, respectively. As a result, EV ranges between 43:2 and 106:5,
and ��1 between 0:028 and 0:015.
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economy with no social security, however, increments in life expectancy give rise to

increases in R proportional to those in T . [See Fig. 5:c.] Our numerical experiment

shows that increases in life expectancy allow a higher generosity of social security

because # becomes higher. Why? Workers are more productive (so that they con-

tribute more) and their survival probabilities are higher (particularly among young

agents). [See Fig. 6:a.] Therefore, (unfunded) social security gives incentives to

early retirement, as it is a well known fact in the literature. This explains why as

life expectancy becomes larger, the retirement age increases at a lower rate than in

an economy with no social security. In fact, for high enough levels of life expectancy,

R is lower with than without social security. [See Fig. 5:b.] Along these lines, Fig.

5:c shows the ratio of R to T under both regimes: without social security it is just

a constant; with social security, however, it is decreasing in T .

This lower increment in R implies that the active life length R� T increases at

a lower rate with than without social security. So, even though the increment in T

is expected to be higher in the presence of social security (as discussed above), it is

lower than what it would have been had retirement age been exogenous. [See Fig.

5:d.]

We graph next the response of aggregate variables to increases in the life ex-

pectancy with and without social security in Figure 6. As advanced above, increases

in life expectancy bring about a higher generosity of social security represented by

a higher #. [See Fig. 6:a.]

Along a balanced-growth path economy, changes in active life parallel changes

in average tenure of active workers, L. [See Fig. 6:b]. Therefore, it is not surprising

that L increases along with life expectancy, but at a lower rate in the presence of

social security than in its absence, thus displaying a similar pattern to that one

of R � T . This has a composition and a behavior (productivity) e¤ect on the
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per capita growth rate of the economy. First, the share of active workers in the

population falls. Why? Even though the span of active life R � T becomes larger,

the whole population age distribution changes: it can be shown that the weight of

young individuals relatively drops, while olders�becomes relatively higher. However,

in an economy without social security the proportion of active workers increases with

life expectancy. This composition e¤ect turns out to be crucial to understand the

response of per capita growth as we see next. [See Fig. 6:c.]22 Second, given the

lower rate increment in average tenure, the obsolescence of active workers�human

capital will increase at a lower rate too.

We �nally arrive at the relationship between life expectancy and per capita

growth rate, and �nd that it exhibits an inverted U pattern under both scenarios.

In the social security regime, however, the negative sloped part shows up at much

lower levels of life expectancy. The explanation must be sought in the incentives to

early retirement that social security introduces and that, as we have just seen, make

the share of working population fall substantially. [See Fig. 6:d.]

More precisely, without social security the vintage characteristic appears to play

an important role in explaining the decreasing part of the inverted U : if mortality

rates fall, the proportion of workers whose schooling took place a long time ago (and

who have become obsolete) is higher. With social security, however, the vintage

characteristic does not play such an important role: the explanation must be sought

in the decrease in the share of workers: if mortality rates fall, growth rates may end

up decreasing simply because workers retire earlier.

[INSERT FIGURES 5 AND 6 AROUND HERE.]

22It can be shown that in the social security case, increases in life expectancy go along increments
in the dependency ratio (retirees to workers ratio), a well documented fact in real economies. [See,
e.g., Diamond et al. (1997).] In the no social security case, however, increments in life expectancy
accompany falls in the dependency ratio.
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How would our results have changed if we had allowed reductions in the popu-

lation growth n (instead of the crude birth rate 1=� )? Or in the mortality for old

agents through increments in � (instead of the mortality for young agents through

increments in �)? Falls in crude birth rates along with increments life expectancy

and constant population growth rate are closer to the observed demographic charac-

teristics nowadays than constant crude birth rates and increasing population growth

rates. In terms of the model, the results (not shown for space saving) change only

quantitatively. Regarding whether the reduction in mortality rates a¤ects mainly

young or old individuals, Kalemli-Ozcan (2002b) claims that during the last two cen-

turies life expectancy has doubled in most parts of the world mostly due to larger

falls in child rather in adult mortality.23 It can be shown that the main di¤erence

shows up in the share of workers. If increments in � rather than in � are assumed,

the share of workers in an economy without social security decreases: the increase

in the population size mainly takes place at older ages.

How do these results match observed facts? Or, does the existence of unfunded

social security a¤ect the response of the economy to changes in life expectancy? Let

us continue with the U.S. case and split the data into two periods, 1870-1940 and

1950-2000, which can represent our two regimes: without and with social security,

respectively.24 Regarding the �rst period, we observe what our model predicts that

increased life expectancy is accompanied by three facts: i) increased average years

of education, ii) an inverted U pattern for the average annual growth rate of per

capita GDP , and iii) a fairly stable labor force participation. [See rows 2-4 in

23Zhang et al. (2001) claim that during the early stages of mortality falls these concentrate on
the younger population; but as mortality keeps going down from low enough levels, most additional
years are gained after retirement age.
241870 is the �rst year for which we have found available data for the series. Social security was

�rst introduced by the Social Security Act of 1935, although still in 1950 (when major amendments
were enacted) only about 50% of workers were covered. [See Social Security. A Brief History
(available at http://www.socialsecurity.gov/history) for further details.] Additionaly, the �gures
for the growth rates of per capita GDP were highly a¤ected by WWII events.
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Table 4.]25 For the second period (see rows 5-7 in Table 4) the predictions of our

model partly resemble observed facts: as before, augmented life expectancies go

along with facts i) and ii). As for the observed aggregate (i.e., for both sexes)

labor force participation, it exhibits an increase as opposed to the decline that our

one-sex model predicts. Why? A major distinction between male and female labor

force participation rates must be made and in particular among younger and older

workers.26 Whereas participation rates among women have increased substantially,

men�s have declined: for those aged 16 to 24, the decline likely re�ects increases in

T ; and for the elderly, the reason may be sought in a higher availability of pensions

and disability awards, i.e., social security. [See Fullerton (1999).] Our model does

not predict a decline in R in the social security regime, but it does predict a lower

increment in the retirement age. Perhaps an extended number of observations would

allow us to observe a deeper reduction in the per capita GDP growth rate and a

fall in aggregate participation rates as observed among male workers.

[INSERT TABLE 4 AROUND HERE]

�Social Security.

Figure 7 shows the e¤ects of changes in the social security contribution rate s.27

The �rst result is a net discouraging e¤ect upon human capital accumulation and

retirement age.
25Sources of data for the two periods di¤er. For the 1870-1940 period, the following sources

have been used: Maddison (1995) for education years, labor force participation and per capita
GDP growth; and http://www.ac.wwu.edu/~stephan/webstu¤/demographs/life.data.html for life
expectancy. For the 1950-2000 period, the sources used are: Barro and Lee (2000) for education
years; Vital Statistics, U.S. Census Bureau, Statistical Abstracts (several years) for life expectancy;
and Fullerton (1999), Szafran (2002), U.S. Census Bureau, Statistical Abstract (2001) for labor
force participation, and Penn World Table for per capita GDP.
26The di¤erence in the observed pattern for the participation rates between men and women

has been studied in the literature. See, e.g., Attanasio et al. (2004) and references therein. Two
additional forces help explain the behavior of observed labor force participation rates: immigration
and changes in the age distribution of population following the baby boom, neither of which our
model can account for. [See Fullerton (1999).]
27s ranges between s = 0:1% and s = 40:0%.
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A higher social security tax rate s reduces the net wage w(t) = (1� s)!� �H(t)T

[for a given �H(t)], so that incentives to devote a fraction of lifetime to education

T are reduced.28 R also drops signi�cantly when s rises. As noted in subsection

3.3.1, R = �(1� #)(1� s)!T . Given that the replacement rate # remains relatively

unchanged, pension bene�ts fall as well, so that incentives to lengthen the education

phase are reduced additionally, what generates an even larger reduction in R.

Given the reaction of R, it is easy to understand the response of the dependency

ratio, RD: the higher the social security contribution rate, the higher the depen-

dency ratio, and the lower the share of active workers. This result is in line with

Coile et al. (2000) and Kalemli-Ozcan (2002a), among others.

Once analyzed the behavior of T , R and RD, the performance of 
 is as expected:

higher social security contribution rates go along with lower rates of per capita

growth.29

Finally, focusing on the replacement rate, # remains hardly unchanged. How

is it possible that (upon increasing s) RD goes up and # stays almost constant?

Remember, �rst, that # represents the replacement rate de�ned on net wages (1�

s)w; and, second, as noted in the beginning of this subsection, the social security

budget balance condition depends on the dependency ratio, the contribution and

the replacement rates and also the economy�s per capita growth rate 
.

As a result, one would expect the generosity of the pension scheme to fall. One

way to measure this consists in calculating the ratio of the sum of present values of

expected pension bene�ts to the sum of present values of expected social security

28In Zhang and Zhang (2004) the e¤ect is just the opposite, but the mechanism is di¤erent:
parents pay for their children�s education. Higher pay-roll taxes reduce the net wages that children
will obtain and increase parents�incentives to spend more on their children�s education (and have
less children).
29Nevertheless, the values of s for which 
 attains the maximum is not zero, but slightly positive:

in our numerical example, we obtain that 
 = 2:3% for s = 1:4%. The existence of externalities in
the human capital accumulation explains why positive social security may promote growth.

40



contributions. Thus, from (1), (31), (15), (16), (17) and (18), and recalling that

!(�) = !, one has

G =

R t+J
t+R

D(t; �)b(t)d�R t+R
t+T

D(t; �)s!h(t)d�
=
#(1� s)

�
�(J �R) + e��J � e��R

�
s [�(R� T ) + e��R � e��T ] : (56)

The relationship between G and s that we obtain is strictly decreasing. In fact, for

low enough s (in our numerical example s < 0:27), the G that we obtain is higher

than 1 (actuarially more than fair pension bene�ts).

[INSERT FIGURE 7 AROUND HERE]

5 Conclusions

In this article we have studied the relationship between life expectancy and per

capita growth rate. We have used a vintage growth model with pay-as-you-go social

security where individuals choose education time and retirement age and where

pensions depend on the contributions made by workers during their active lives. This

way the �ow of income during the retirement period also depends on the education

time investment.

The results obtained in the �rst part of the article are analytical. We have

characterized the individual�s parameter space which establishes the type of solution

for education length and retirement age. We have also proved the existence of, at

most, one steady state per capita growth rate and of one unique steady state budget

balance for the social security. In the second part we have compared the responses

of the economy to exogenous changes in life expectancy under two regimes (with

and without social security), obtaining numerical results.

In our model the engine of growth is given by the change in the average human

capital of the economy. Average human capital depends on, �rst, individual deci-

sions such as optimal schooling and retirement age which a¤ect their own produc-
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tivity and the share of active workers in the population. And, second, demographic

characteristics, namely the survival rate distribution. We have seen that increases

in life expectancy imply both a behavior e¤ect (through changes in schooling and

retirement age) and a composition e¤ect (through changes in the age distribution

of workers and in the range of active workers) which in turn imply changes in the

growth rate. We have found that in an economy with no social security the vintage

characteristic seems to play a relevant role as the proportion of agents whose school-

ing was made a long time ago becomes higher with higher levels of life expectancy.

However, in an economy with social security the vintage description of the economy

does not play such an important role in explaining the decreasing part of the life

expectancy-per capita growth locus. In this case the decrease in the share of workers

as life expectancy goes up is the main factor.

Finally, we have studied the relationship between the size of the social secu-

rity and per capita growth rate of the economy. We have obtained that such a

relationship is mostly negative, except for very low values for the social security

contribution rate. The explanation is found in the discouraging e¤ect that social

security imposes in education and, in particular, retirement age what causes a fall

in the share of working population in the economy.

We believe that this line of research deserves further empirical work, especially

in western economies in which life expectancy has reached substantially high levels

and where there is strong debate about the sustainability of current unfunded social

security systems and the convenience of postponing retirement age.
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6 Appendix

Proof of Lemma 1. Substituting x = 0 into (44) one has that M(0; �) = #
�

[1 � �(1 � ln�)]. Let us de�ne f(�) � 1 � �(1 � ln�). If # > 0 and � < 0,
M(0; �) < 0 , f(�) > 0. Note that f(1) = 0 and f 0(�) = ln� > 0 8� > 1.
Therefore, if � > 1, then f(�) > 0 and M(0; �) < 0.

Before proving Lemma 2, some preliminaries (Claims 1-8) are needed.

Claim 1. Assume � < 0, � > 1 and �0 > 0: if � < �0, then K(�) is strictly
increasing.

Proof of Claim 1. Assume that � < 0, � > 1 and �0 > 0. From (45) one obtains
that K 0(�) = �0 ln�

�2�

h
2�� �

�0
�

�
2 + �0

�
ln�

�i
= �0 ln�

�2�
g(�; �), where g(�; �) � 2� �

�
�0
�

�
2 + �0

�
ln�

�
. Given the assumptions on �, � and �0, K

0(�) > 0, g(�; �) < 0.
Thus, it is necessary to prove that if � < �0, then g(�; �) < 0. Notice the following
facts:
i) g(1; �) = 0;
ii) @g(�; �)=@� = 2� �0

�
�
�0��
�

�
3 + �0

�
ln�

�
� h(�; �);

iii) h(�; �0) = �1� ln�;
iv) h(1; �0) = �1;
v) @h(�; �0)=@� = �1=� < 0; therefore,
vi) g(�; �0) < 0. We need to check how g(�; �) behaves for values of � less than

�0. It is straightforward to check that:
vii) @g(�; �)=@� = �0

�2
�
�0
�

�
3 + �0

�
ln�

�
ln� > 0.

Therefore, from vi) and vii) one has that if � < �0, then g(�; �) < 0 , K 0(�) >

0.

Claim 2 Assume � < 0, � > 1 and �0 > 0. i) K(�0) = 0. ii) If �0 > 0, then
K 0(�0) > 0.

Proof of Claim 2. Assume that � < 0, � > 1 and �0 > 0.
i) Trivially, from (45) K(�0) =

1
�
[�� ln�+ �(ln�� 1) + �] = 0.

ii) Finally, from the previous proof one has that
K 0(�) = �0 ln�

�2�

h
2� � �

�0
�

�
2 + �0

�
ln�

�i
. Evaluating K 0(�) in � = �0, one has

K 0(�0) =
�0 ln�

��20
[2� � � (2 + ln�)] = ��(ln�)2

�0�
> 0.

Claim 3 If � < 0, � > 1 and �0 > 0, then K(�) is negative for all � < �0.

Proof of Claim 3. From Claim 1 and part i) in Claim 2, it is trivial.
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Claim 4 If � < 0, � > 1 and �0 > 0, then i) K(2�0) > 0, and ii) K 0(2�0) < 0.

Proof of Claim 4. Assume that � < 0, � > 1 and �0 > 0.
i) After some tedious algebra, it can be shown from (45) that

K(2�0) =
�1=2

�

�
ln�
2
+ 1 � �1=2

�
= �1=2

�
i(�), where i(�) � ln�

2
+ 1 � �1=2. Given

that � < 0, K(2�0) > 0 , i(�) < 0. Notice that, �rst, i(1) = 0 and, second, i0(�)
= ��1=2

2

�
��1=2 � 1

�
< 0 , � > 1. Therefore, if � > 1, then i(�) < 0 and K(2�0)

> 0.
ii) Finally, from the previous proof, one has that

K 0(�) = �0 ln�
�2�

h
2� � �

�0
�

�
2 + �0

�
ln�

�i
. Evaluating K 0(�) at � = 2�0, one has

K 0(2�0) =
ln�
4��0

j(�), where j(�) � 2� � � 1
2

�
2 + ln�

2

�
. Given the restrictions upon

� and �0, then K
0(2�0) < 0 , j(�) > 0. Note the following facts:

ii.1 ) j(1) = 0;
ii.2 ) j0(�) = 2 � ��1=2

�
3
2
+ ln�

4

�
;

ii.3 ) j0(1) = 1=2; and,
ii.4 ) j00(�) = ��3=2

�
ln�
8
+ 1

2

�
> 0 if � � 1.

Therefore, if � > 1, then j(�) > 0 and K 0(2�0) < 0.

Claim 5 If � < 0, � > 1 and �0 > 0, then one unique �̂ 2 (�0; 2�0) exists such that
K 0(�̂) = 0.

Proof of Claim 5. Assume that � < 0, � > 1 and �0 > 0. From (45) one obtains
that K 0(�) = �0 ln�

��2
g(�; �), where g(�; �) � 2� � �

�0
�

�
2 + �0

�
ln�

�
, continuous in

� for all � > 0. Therefore, K 0(�) = 0 , g(�; �) = 0. Moreover, g(�; �) = 0 ,
l(�; �) = m(�; �), where l(�; �) � 2�

���0
� and m(�; �) � 2 + �0

�
ln�.

It can be shown that:
i) l(�; �) is strictly increasing in �;
ii) l(�; �0) = 2;
iii) l(�; 2�0) = 2�

1=2;
iv) m(�; �) is strictly decreasing in �;
v) m(�; �0) = 2 + ln�;
vi) m(�; 2�0) = 2 +

1
2
ln�;

vii) m(�; �0) > l(�; �0), whose proof is trivial;
viii) m(�; 2�0) < l(�; 2�0). Note that m(�; 2�0) < l(�; 2�0), n(�) � 2 + 1

2
ln�

�2�1=2 < 0, and also that n(1) = 0 and n0(�) = ��1=2
�

1
2�1=2

� 1
�
< 0 if � > 1.

Therefore, if � > 1, then n(�) < 0; equivalently, m(�; 2�0) < l(�; 2�0).
To sum up, from i), iv), vii) and viii) one obtains that there is one unique

�̂ 2 (�0; 2�0) such that l(�; �̂) = m(�; �̂), that is to say, g(�; �̂) = 0; equivalently,
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K 0(�̂) = 0.

Claim 6 Assume that � < 0, � > 1 and �0 > 0: if � > 2�0, then K(�) is strictly
decreasing.

Proof of Claim 6. Assume that � < 0, � > 1 and �0 > 0. From (45) one has
that K 0(�) = �0 ln�

��2
g(�; �), where g(�; �) � 2� � �

�0
�

�
2 + �0

�
ln�

�
is continuous

in � for all � > 0. We have proved in Claim 4 that K 0(2�0) < 0, that is, g(�; 2�0) >
0. In addition, @g(�; �)=@� = �0

�2
�
�0
�

�
3 + �0

�
ln�

�
ln� > 0. Therefore, if � > 2�0,

then g(�; �) > 0 and K 0(�) < 0.

Claim 7 If � < 0 and � > 1, then lim�!1K(�) < 0.

Proof of Claim 7. Assume that � < 0 and � > 1. From (45) one has that
lim�!1K(�) =

�
�

�
ln�+ 1

�
� 1
�
� �

�
o(�), where o(�) � ln� + 1

�
� 1. Therefore,

lim�!1K(�) < 0 , o(�) > 0. Note that o(1) = 0 and o0(�) = 1
�

�
1 � 1

�

�
> 0.

Therefore, lim�!1K(�) < 0.

Claim 8 Assume � < 0, � > 1 and �0 > 0. Then i) there is a unique �� > 2�0
such that K(��) = 0, and ii) K(�) < 0 for all � > ��.

Proof of Claim 8. From Claim 4, Claim 6 and Claim 7 the proof is trivial.

Now we are ready to prove Lemma 2.
Proof of Lemma 2. From Claims 3-5 and Claim 8 the proof is trivial.

Proof of Proposition 1. From Lemma 1 and Lemma 2 the result is trivial.

Proof of Proposition 2. Assume that � < 0, � > 1 and �0 > 0. From Proposition
1 one has that there is at least one x 2 (0; Tmax(�)) such thatM(x; �) = 0. To prove
that it is unique, we split M(x; �) as the di¤erence of two functions p(x; �) and
q(x; �), and prove that one unique intersection point exists between them.
i) M(x; �) can be rewritten as M(x; �) � p(x; �) � q(x; �), where p(x; �) �

2�x� 1�#
�
e
�� �

�0
x � #

�
e��J , and q(x; �) � xe��x + #�J + (1� #)�x �

�0
� 1

�
e��x;

ii) using the de�nition of J , p(0; �) = � 1
�
�#
�
(�� 1) > 0;

iii) given the de�nitions of J and Tmax(�), p [Tmax(�); �] = ��
�

�
2�0
�
ln�+ 1

�
> 0;

iv) @p(x; �)=@x = 2� + (1�#)�
�0

e
�� �

�0
x
> 0, that is, p(x; �) is strictly increasing in

x; v) @2p(x; �)=@x2 = � (1�#)�2�
�20

e
�� �

�0
x
> 0, that is, p(x; �) is strictly convex in x;

vi) q(0; �) � � 1
�
(#� ln�+ 1) > 0 and � > 1;

vii) given the de�nitions of J and Tmax(�),
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q [Tmax(�); �] = � 1
�

h�
� + �0

�
�
�0
�

�
ln� + �

�0
�

i
> 0;

viii) @q(x; �)=@x = e��x(2 � x�)+ (1 � #)� �
�0
> 0, that is, q(x; �) is strictly

increasing in x;
ix) @2q(x; �)=@x2 = e��x(x�2 � 3�) > 0, that is, q(x; �) is strictly convex in x;
x) p(0; �) < q(0; �) , � ln�� �+ 1 > 0; see expression o(�) in Claim 7;
xi) p [Tmax(�); �] > q [Tmax(�); �] , M [Tmax(�); �] � K(�) > 0 if � 2 (�0; ��).

[See Lemma 2.]
Therefore, p(x; �) and q(x; �) cross each other only once between x = 0 and x =

Tmax(�), that is, there exists one unique x 2 (0; Tmax(�)) such that p(x; �) = q(x; �)
, M(x; �) = 0. The following plot in Figure 7 can help us understand the proof.

[INSERT FIGURE 8 AROUND HERE]

Proof of Proposition 3. Given (1), x = T is a solution to (37) if and only ifcM(x; �) = 0, where
cM(x; �) � x ��� e��x�+ � �x�min��x

�0
; J

��
(57)

+
e��x � e��min

n
�x
�0
;J
o

�
+ #�

�
min

�
�x

�0
; J

�
� J

�
+

#

�
e
��min

n
�x
�0
;J
o
� e��J

�
�

:

The strategy of the proof will follow these steps:
i) �rst, we will prove that cM(J; �) = 0;
ii) second, we will prove that for values of x less than and close enough to J we

will have that cM(x; �) > 0;
iii) third, we will prove that cM(0; �) < 0;
iv) fourth, given that cM(x; �) is continuous, at least one x 2 (0; J) exists such

that cM(x; �) = 0; and
v) �fth, if such an x is unique and interior, 0 < x < Tmax(�) < J , then K(�) > 0,

which implies that � 2 (�0; ��) as we have proven in Lemma 2.
In subsection 3.3.1 we have proven that if the solution is interior, then it must

be the case that � > �0.
i) If so, min

n
�J
�0
; J
o
= J . Therefore, from (57) and (2) one has that cM(J; �) =

J(�� e��J) = 0.
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ii) Similarly, for x less than but close enough to J , min
n
�x
�0
; J
o
= J . Therefore,

from (57) one has that

cM(x; �) � x
�
�� e��x

�
+ �(x� J) + e

��x � e��J
�

) @cM(x; �)
@x

= 2
�
�� e��x

�
+ �xe��x

) lim
x!J�

@cM(x; �)
@x

= 2
�
�� e��J

�
+ �xe��J = �� ln� < 0;

given that � > 1. Thus, given i), for x less than but close enough to J one has thatcM(x; �) > 0.
iii) From (57) one obtains that

cM(0; �) = #

�
[1 + � (ln�� 1)] < 0:

The previous inequality is immediately checked if we assume that � < 0 and de�ne
f(�) � 1 + � (ln�� 1), so that f(1) = 0, f 0(�) = ln� > 0 and, therefore, f(�) > 0
for � > 1.
iv) Thus, given that cM(x; �) is continuous, from ii) and iii) one has that at least

one x� 2 (0; J) exists such that cM(x; �) = 0;
v) Given (43), from (44), (45) and (57) it can be obtained

cM [Tmax(�); �] =M [Tmax(�); �] � K(�):

If the answer of item iv) is unique and interior, that is to say, 0 < x� < Tmax(�) < J ,
then cM [Tmax(�); �] > 0. In this case, given the equality in the previous expression,
K(�) > 0 and for this to happen we have seen that it is necessary that � 2 (�0; ��).
[See Lemma2.]

Proof of Proposition 4. The strategy of the proof is as follows:
i) �rst, we prove that T = Tmax(��) � J�0

�� and R = J is a solution to (39) and
(41);
ii) second, we prove that it is the unique one which meets the condition 0 < T <

J .
i) Assume that � < 0, � > 1, � = �� > �0 > 0. From Lemma 2 one has

that K(��) = 0. Given the de�nition of K(�) � M [Tmax(�); �], one has that
M [Tmax(��); ��] = 0; equivalently, Tmax(��) �

J�0
�� < J is a solution to (41). In

this case, from (39) one has that R = J . In sum, T = Tmax(��) �
J�0
�� and R = J

satisfy (39) and (41), so that corner and interior solutions coincide.
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ii) To see that it is the unique one such that 0 < T < J we have to prove that
Tm(T ) =

R R
T
m(�)d� + #

R J
R
m(�)d� =

R J
T
m(�)d� has one unique solution T < J

[because, trivially, Jm(J) =
R J
J
m(�)d� = 0 by de�nition of J in (2)]. Given (1)

and (2), it can be shown after some algebra that condition Tm(T ) =
R J
T
m(�)d� is

equivalent to r(T; �; �) = 0, where r(T; �; �) �
�
T � 1

�

� �
�� e��T

�
� � (J � T ).

Note that
ii.1 ) r(T; �; �) is continuous in T and in �;
ii.2 ) by de�nition of J , r(0; �; �) = �1

�
(� � 1 � � ln�);

ii.3 ) r(0; 1; �) = 0;
ii.4 ) @r(0; �; �)=@� = ln�

�
< 0 if � > 1 and � < 0 and that, therefore,

ii.5 ) r(0; �; �) < 0 if � < 0 and � > 1.
ii.6 ) Given the de�nition of J , r(J; �; �) = 0.
ii.7 ) @r(T; �; �)=@T = 2�� (2� �T )e��T and, therefore,
ii.8 ) if T = 0, then @r(T; �; �)=@T = 2(�� 1) > 0 if � > 1, and
ii.9 ) if T = J , then @r(T; �; �)=@T = �� ln� < 0 if � > 1.
ii.10 ) To sum up, from ii.1 ), ii.5 ), ii.6 ), ii.8 ), and ii.9 ), one has that at least

one d 2 (0; J) exists such that @r(T; �; �)=@T = 0 for T = d.
ii.11 ) Finally, it can be shown that @2r(T; �; �)=@T 2 = e��T�(3 � �T ) < 0 if

� < 0, that is, r(T; �; �) is strictly concave in T .
ii.12 ) Therefore, from ii.10 ) and ii.11 ) one has that there is one unique d 2 (0; J)

for which @r(T; �; �)=@T = 0 for T = d and, therefore,
ii.13 ) from ii.1 ), ii.5 ), ii.6 ) and ii.12 ) one has that one unique T [where 0 <

T < d < J ] exists such that r(T; �; �) = 0 , Tm(T ) =
R J
T
m(�)d� .

[INSERT FIGURE 9 AROUND HERE]

Proof of Proposition 5. This is the strategy of the proof:
i) �rst, we will show that there is no x 2 [0; Tmax(�)] such that (37) has solution

or that, equivalently, cM (x; �) de�ned in (57) takes the value zero.
ii) second, we will show that cM (J; �) = 0, therefore J is a solution.
iii) third, we will prove that one unique x 2 (Tmax(�); J) exists such thatcM (x; �) = 0, where x = Tmax(��) �

J�0
��
, so that T = Tmax(��) �

J�0
��
, and R

= J:

48



i.1 ) Assume that � < 0, � > 1 and � > �� > �0 > 0. Given (43), from (44), (45)
and (57) it can be checked that

cM [Tmax(�); �] =M [Tmax(�); �] � K(�):

According to Claim 8, if � > ��, then K(�) < 0. Therefore, cM [Tmax(�); �] < 0.
i.2 ) cM (x; �) de�ned in (57) can be rewritten as cM (x; �) = p̂(x; �) � q̂(x; �),

where

p̂(x; �) � 2�x� (1� #)
�

e
��min

n
�x
�0
;J
o
� #
�
e��J ; and

q̂(x; �) � xe��x + �#J + �(1� #)min
�
�x

�0
; J

�
� e

��x

�
:

i.3 ) Let us assume values of x 2 [0; Tmax(�)]. In this case, min
n
�x
�0
; J
o
= �x

�0
, so

that

p̂(x; �) � 2�x� (1� #)
�

e
�� �x

�0 � #
�
e��J ; and

q̂(x; �) � xe��x + �#J + �(1� #)�x
�0
� e

��x

�
:

i.4 ) p̂(0; �) = �1
�
[1 + #(�� 1)] > 0.

i.5 ) p̂ [Tmax(�); �] = ��
�

h
1 + 2�0

�
ln�

i
> 0.

i.6 ) @p̂(x;�)
@x

= 2� + (1�#)�
�0

e
�� �x

�0 > 0: p̂(x; �) is strictly increasing for x 2
(0; Tmax(�)).
i.7 ) @

2p̂(x;�)
@x2

= �(1�#)��2
�20

e
�� �x

�0 > 0: p̂(x; �) is strictly convex for x 2 (0; Tmax(�)).
i.8 ) q̂(0; �) = �1

�
[1 + �# ln�] > 0.

i.9 ) q̂ [Tmax(�); �] = �1
�

h
�
�0
� +

�
�+ �0

�
�
�0
�

�
ln�

i
> 0.

i.10 ) @q̂(x;�)
@x

= (2� �x) e��x + �(1 � #) �
�0
> 0: q̂(x; �) is strictly increasing for

x 2 (0; Tmax(�)).
i.11 ) @

2q̂(x;�)
@x2

=
�
x�2 � 3�

�
e��x: q̂(x; �) is strictly convex for x 2 (0; Tmax(�)).

i.12 ) From i.1 ) and i.8 ) one has that p̂(0; �) � q̂(0; �) = � 1 + �(1� ln�) < 0.
i.13 ) From i.1 ) and i.2 ) ones has that cM [Tmax(�); �]� p̂ [Tmax(�); �]� q̂ [Tmax(�); �]

< 0.
i.14 ) Therefore, from i.4 )-i.13 ) one has that p̂(x; �) and q̂(x; �) do not cross

each other at any x 2 [0; Tmax(�)]; equivalently, no x 2 [0; Tmax(�)] exists such that
M̂(x; �) = 0. And if there is some x for which M̂(x; �) = 0, then x 2 (Tmax(�); J ].
ii) Given that � > �� > �0, min

n
�J
�0
; J
o
= J and, therefore, from (57) one has

that M̂(J; �) = 0, that is x = J is a solution to (57).
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iii) We are going to prove that one unique T 2 (Tmax(�); J) exists such thatcM (x; �) = 0, where T = Tmax(��) �
J�0
��
; this way T > Tmax(�), and R = J .

iii.1 ) From cM (x; �) de�ned in (57), for � > �0 and for x close enough to J , one
has that �x

�0
> J , so that min

n
�x
�0
; J
o
= J . Therefore, for x close enough to J ,

cM(x; �) � x
�
�� e��x

�
+ �(x� J) + e

��x � e��J
�

) @cM(x; �)
@x

= 2
�
�� e��x

�
+ �xe��x

) lim
x!J�

@cM(x; �)
@x

= �xe��J = �� ln� < 0:

Therefore, cM(x; �) > 0 for x close enough to J . Thus, there exists at least one T
2 (Tmax(�); J) such that cM (T; �) = 0. If T > Tmax(�), then T >

J�0
�
, T�

�0
> J )

R = min
n
T�
�0
; J
o
= J .

But if so, from (36) and (37) one has that T must satisfy

Tm(T ) =

Z J

T

m(�)d� :

And this is, precisely, Case i) studied in Proposition 4. Therefore, one unique T < J
exists which satis�es the previous equation, so that T = Tmax(��) �

J�0
�� < J if

�� > �0. Note that, additionally, T > Tmax(�) because by de�nition of Tmax(�) in
(43), J�0

��
> J�0

�
, � > ��. In short, if � > ��, then T = Tmax(��) and R = J .

Proof of Proposition 6. If � = �0, from (36) one has that R = T � J , because T
cannot be greater than J . At any rate, R = T , so that social security tax revenues
are zero. Social security budget balance is required so that # = 0. From (47) and
(48) we obtain that

Tm(T ) = 0: (58)

The strategy of the proof consists of two steps: �rst, we prove that (58) admits
only two solutions; and, second, we prove that the indirect utility function attains
a higher value in one of the two.
Equation (58) has 2 possible solutions: T = 0 and T = J . To check that

Tm(T ) = 0 admits only these 2 solutions, notice that Tm(T ) = 0 , u(T ) �
T
�
�� e��T

�
= 0.

i) u(0) = 0: 0 is a solution;
ii) u(J) = 0: J is a solution;

50



iii) u0(T ) = e��T (�T � 1) + �;
iv) u0(0) = �� 1 > 0 (u is increasing in T = 0);
v) u0(J) = � ln� < 0 (u is decreasing in T = J); and
vi) u00(T ) = �e��T (2� �T ) < 0 [i.e., u(T ) is strictly concave and, therefore, no

T 2 (0; J) exists which is a solution to (58)].
To sum up, there are two solutions: 0 = T = R < J , and 0 < T = R = J . The

situation is described in Figure 10.

[INSERT FIGURE 10 AROUND HERE]

Finally, we will prove that the indirect utility function is higher at T = 0 than
at T = J .
i) Substituting the rest of equality restrictions into the �rst restriction of (20) ;
ii) taking into account that !(�) = �!(t) = !, T (t) = T , R(t) = �T=�0, and that

m(� � t) = D(t; �) [given (1)];
iii) solving for

R t+J
t

C(t; �)m(� � t)d� and substituting into the lifetime utility
function (14);
iv) recalling that � � ��, we obtain the indirect utility function for a solution

in which R = T�=�0 (without loss of generality, we assume an individual born at
t = 0), and
v) assuming � = �0 and # = 0, we obtain

V (T; �) = �
�H

�

Z T

0

�

�
e��� � �
1� �

�
d� ;

which, trivially, is decreasing in T . Therefore, solution 0 = T = R < J is preferred
to solution 0 < T = R = J .

Proof of Proposition 8. The proof is trivial. (54) can be rewritten asZ R

T

e�
zf(z)dz =
�(�� 1)
�T

; (59)

where f(z) � e�nz
�
�� e��z

�
> 0 if z < J . Denoting the left-hand-side of (59) by

I(
) and di¤erentiating with respect to 
, one has

dI(
)

d

= �

Z R

T

e�
zzf(z)dz < 0;

if T < R, i.e., I(
) is strictly decreasing in 
. Therefore, at most one unique 

exists which satis�es (59).

Proof of Proposition 9. From (1) and (55) this turns out to be trivial.
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Tables

Table 1:
Country � � n EVO EVT âO âT J
Spain 27.9 -0.031 0.002 79.1 79.1 38.0 39.1 107.4
France 21.3 -0.028 0.005 78.8 78.9 37.7 36.3 109.2
Italy 21.4 -0.028 0.003 79.1 79.1 41.6 38.3 109.4
Great Britain 28.6 -0.032 0.004 77.8 77.3 36.4 36.4 104.8
Canada 21.9 -0.028 0.010 79.4 79.8 37.2 32.1 110.2
United States 29.7 -0.033 0.010 76.6 76.0 35.8 38.6 102.8

Key: EV , life expectancy; â, median age; J , maximum age. Subindex �T�denotes

theoretical value; and subindex �O�denotes observed. Source for âO: UNECE Statistical

Division United Nations Economic Commission for Europe, Table 1.1. Basic Population

Data and Structures in 2001, http://www.unece.org/stats/trends/Ch1/1.xls. Figures cor-

respond to 2001. Source for EVO and n: US Census Bureau International Data Base,

http://www.census.gov/ipc/www/idbsum.html. Figures correspond to 2000.

Table 2: Interior vs. Corner Solutions
0 < � � �0 �0 < � < �

� � � ��
0 = T = R < J 0 < T < R < J T = Tmax(�

�) = J�0
��

R = J

Table 3. Benchmark case
Demographics
Parameters Results
n = 0:010 (Id.), â = 31:65 (35.9), �a = 37:08 (36.2),
� = �0:017, EV = 77:93 (77), 1=� = 0:019 (0.015),
� = 7:5 J = 118:5
Non-demographics
Parameters with S. S. Results
s = 0:135 (Id.), � = 0:286, T = 34:5 (12.33), R = 60:0 (61.6),
� = 0:485, ! = 24:302 
 = 1:97% (2.1%), # = 0:39
Parameters without S. S. Results
s = 0, � = 0:251, T = 28:6, R = 60:0, 
 = 2:0%
� = 8:3075, ! = 1:006
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Key to Table 3. Observed values are shown in parentheses.

Table 4. Without vs. with social security
Period EV T 
 LFPA LFPM LFP yM LFP eM
1870-1890 41.4 5.6 1.89 37.5 n.a. n.a. n.a.
1890-1910 46.4 7.1 1.95 39.0 n.a. n.a. n.a.
1910-1940 56.5 8.2 1.13 37.1 n.a. n.a. n.a.
1950-1970 69.5 8.9 2.23 59.8 83.1 73.4 36.3
1970-1990 73.1 10.9 2.39 63.4 77.9 70.5 21.6
1990-2000 76.2 12.1 2.32 66.8 75.4 71.7 17.0

Key to Table 4. EV : life expectancy at birth; from 1870 to 1940, �gures correspond
to white males; from 1950 to 2000, �gures correspond to total population. T : from 1870

to 1940, years of schooling weighted by education; from 1950 to 2000, average years of

schooling. 
: growth of per capita GDP (in %). LFPA: from 1870 to 1940 �gures

correspond to the employed population to the total population ratio; from 1950 to 2000,

aggregate labor force participation; LFPM : from 1950 to 2000, labor force participation

among male workers; LFP yM : from 1950 to 2000, labor force participation among young

male workers (16-24 years); LFP eM : from 1950 to 2000, labor force participation among

elderly male workers (65 and older). n.a.: not available.
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