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Abstract

In an economy with multiple sources of risk, the short-term interest rate does
not capture all the information that determines the conditional distribution of
bond yields. This is also true for path-dependent term structure models. In
either case, the current short rate level is not a sufficient statistic for the condi-
tional density of future short rates. This paper studies the empirical relevance
of both issues from a time-series nonparametric perspective. The analysis is
formulated as a test for the dependence of the short rate drift and diffusion on
variables other than the short rate, and exploits Ait-Sahalia, Bickel, and Stocker
(2001) dimension reduction method. The paper explores the finite sample per-
formance of the method and applies the test to US interest rate data. Results
reject a single-factor Markovian model, although conclusions are sensitive to the
choice of additional conditioning variables.
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1 Introduction

Equilibrium term structure models typically start by characterizing the dynamic behavior
of some latent variable or risk factor in a representative agent economy, and then derive
the equilibrium dynamics of the short term interest rate. On the other hand, arbitrage-
free models start by specifying the short rate process directly. In either case, assuming
some functional form for the market price of risk, it is possible to derive closed form or
numerical solutions to the prices of bonds of all maturities as a function of the state in
the economy. The first term structure models such as Vasicek (1977), Merton (1973) or
Cox, Ingersoll and Ross (1985b) (CIR) considered the existence of a single risk factor in
the economy which identifies exactly with the short term interest rate. Although tractable
and elegant, the performance of these models is poor. For instance, Brown and Dybvig
(1986), Gibbons and Ramaswamy (1993), or Pearson and Sun (1994), show that the CIR
model does not simultaneously explain the time-series and cross-section behavior of the yield
curve. However, the conclusions of these tests apply only to the specific models considered
and therefore do not provide further insight on how the short rate process should be modeled.
Another strand of empirical research takes a di erent approach. Rather than testing

for a given term structure model, it studies the adequacy of di erent specifications for the
short rate process in a time-series framework. For instance, Chan, Karolyi, Longsta , and
Sanders (1992) find that the data do not support a linear instantaneous short rate variance,
which challenges models in which the di usion coe cient of the short rate continuous-time
process equals the square root of a linear function in the state variable vector (in fact they
estimate a constant elasticity of variance of 1.5 rather than 0.5).
Similar in spirit, Ait-Sahalia (1996) points out another potential caveat: the linear

drift assumption. He develops a test for short rate models which entails comparing a
nonparametric estimate of the short rate marginal density to its parametric counterpart.
Ait-Sahalia’s test is conveniently based on the long-run rather than the conditional density
since the latter is generally not known in closed-form for most di usions. He rejects all
linear-drift short rate models1.
Finally, Stanton (1997) has proposed a nonparametric method for estimating the short

rate process based on the short rate conditional distribution. He shows how to obtain
discrete-time approximations to the drift and di usion functions up to any desired level of
accuracy as conditional moments of short rate changes. Using kernel smoothing to estimate
conditional moments Stanton’s paper confirms that the short rate drift is nonlinear2.
An important feature of all models considered by Chan, Karolyi, Longsta and Sanders

(1992), Ait-Sahalia (1996), and Stanton (1997) is that the current short rate itself contains all
relevant information regarding its conditional distribution. These models therefore implicitly
assume that either the short rate process is orthogonal to other risk factors or that the state
variable vector contains a single variable. Both assumptions are at odds with the evidence
that interest rates (including the short rate) are driven by multiple risk factors (see Litterman
and Scheinkman (1991)) and with the vast amount of theoretical multifactor models which
allow for the presence of multiple sources of risk in the economy, with the short rate being
a function of unobservable risk factors. Nevertheless, it is not so clear that single-factor
models should be discarded. On one hand, the empirical performance of multifactor models
is mixed (see Dai and Singleton (2000) or De Jong (1999)). On the other hand, these

1Pritsker (1998) however has shown that Ait-Sahalia’s (1996) test presents poor size properties.
Overrejection occurs because of the joint interaction of three e ects: the short rate is highly autocorrelated,
the test is based on the marginal density, and the test is asymptotic and not enough observations are
available.

2Although Stanton (1997) finds that the short rate drift appears to be nonlinear, Chapman and Pearson
(2000) show that this nonlinearity can be attributed to the sample being truncated at its maximum, which
causes the short rate drift to appear well below zero for high short rate levels.
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tests are typically based on a specific term structure model -usually of the tractable a ne
class studied by Du e and Kan (1996)- so the single-factor hypothesis cannot be rejected
independently.
In this paper we extend the “unconstrained” specification approach of the above

mentioned papers to test for the empirical validity of the one dimensional assumption. From
a time-series viewpoint, this assumption implies that the short rate dynamics is not driven
by factors a ecting the term structure other than the short rate itself. Since the state
of the short rate process -i.e., its conditional density at any point in time- is completely
characterized by its drift and di usion coe cients, testing for the dependence of the short
rate process on additional latent variables amounts to testing for the dependence of the
short rate drift and di usion on variables other than the short rate itself3. In particular, we
test for the dependence of the short rate drift and di usion on the term spread and a proxy
for the curvature of the yield curve, as well as on the short rate level. This is motivated
by the evidence that at least three factors -which induce changes in its level, slope, and
curvature- drive the yield curve4.
Another situation in which the current short term interest rate is not a su cient statistic

for the state of the system occurs when the yield curve dynamics depend not only on the
current yield curve but also on the whole history of past realizations of the term structure.
This is the case for the Heath, Jarrow, Morton (1992) (HJM) model. In fact, Cheyette
(1992) and Ritchken-Sankarasubramanian (1995) have identified a particular class of single-
factor models within the HJM framework which admit a path-independent two-state variable
representation, where the second variable captures all path-dependent information. We
therefore propose to test directly whether the short rate conditional mean and volatility are
non-Markovian, namely whether they depend on past short rate realizations as well as on
the current short rate level.
In order to conduct both tests, a dimension reduction method proposed by Ait-Sahalia,

Bickel and Stoker (2001) is employed. The method compares nonparametrically estimated
conditional expectations, and hence can be used in conjunction with Stanton’s (1997) short
rate drift and di usion estimators. In particular we test for expected short rate changes
conditional on the current short rate level departing significantly from expected short rate
changes conditional on the current short rate level and other variables. If the null is rejected,
then we can conclude that the short rate is not a su cient statistic to characterize its
conditional density. The dependence of the di usion on additional state variables can be
tested in an analogous way. This approach however entails two di culties:

1. If, as suggested by Chapman and Pearson (2000), Stanton’s short rate drift estimator
displays spurious nonlinearities at high current short rate levels, then the test
properties in finite samples could depart from the asymptotic properties. Nevertheless,
simulation work presented in Section 2 shows that the bias in Stanton’s drift estimator
appears to be small when one is estimating close enough to the center of the data and
the true drift is close to linear. Our conclusions are therefore constrained to the short
rate level being near the center of the empirical distribution.

2. Although the asymptotic distribution of the test statistic is not a ected by serial
dependence in the data, the strong persistence found in interest rate series suggests

3Note that apart from the problem of modeling the short rate process, whether the di usion coe cient
depends on variables other than the short rate has important implications regarding interest rate risk hedging
and the pricing of derivative assets on interest rates. As for the short rate drift, testing for the dependence
on a second state variable seems like an important previous step before investigating whether the short rate
drift is linear.

4This intuition, originally derived from principal component analysis, has found theoretical and empirical
support within the a ne class of term structure models (see for instance De Jong, 1999).
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that Monte Carlo experiments should be carried out in order to evaluate the size and
power of the test in this setting.

Our paper is close in spirit to Je rey, Linton, and Nguyen (2000). In their paper, the
authors construct a test for the restrictions imposed through Ito’s lemma on the dynamics of
the whole yield curve by the assumption of a single risk factor that follows a Markov di usion.
While our paper shows how to test for the dependence of the short rate dynamics on the rest
of the term structure, their test exploits information on the nature of that dependence. In
this sense, their approach is potentially more e cient than ours. Furthermore, in their test,
the alternative hypothesis is not specified. On the other hand, our test can be extended
to other null hypotheses. It may be used, for instance, to test the null hypothesis of a
two-factor term structure against a three-factor model, while the null hypothesis in their
test is always a univariate Markov di usion for the risk factor. Another advantage is that
the test we propose can be performed independently on the drift or on the di usion. This
is desirable given the lower rate of convergence of the nonparametric drift estimator.
Another closely related paper is Ait-Sahalia (2000). In this paper the author discusses

the di culties of basing a test for the Markov property on:

E[(rt+ rt)
p | rt, rt , · · ·, r0] = E[(rt+ rt)

p | rt]
for all p = 1, 2, ... for which these moments exist, where rs is the interest rate observed at
time s. Such a test is what he calls a “simple testing procedure”, and is in fact our approach.
He argues that the test is likely to fail due to four problems:

i) the null hypothesis may not be rejected, even if false, if relevant lagged values are not
included in the unrestricted regression;

ii) we may fail to reject the Markov property hypothesis if the model is not Markov in a
multivariate sense;

iii) we may fail to reject the null hypothesis if we do not apply the test to the relevant
moments;

iv) we may erroneously reject the null hypothesis if lagged variables proxy for omitted
non-linearities in the mean. Moreover, using discretely sampled data to test for non-
linearities is not possible if the transition density is not known in closed form.

Ait-Sahalia derives a test based on the property that multi-period Markov transitions can
be computed by iterating the one-period transition densities. In practice, the test implies
having to integrate numerically a non-parametrically estimated density.
We are fully aware that failure to reject the null hypothesis using our test cannot

be taken as conclusive evidence in favor of the single-factor Markov hypothesis. On the
other hand, rejection of the null for at least some additional variable and for at least
some conditional moment can be considered as evidence against a single-factor Markov
model. Problems i)-iii) can therefore be solved if the relevant variables are chosen in the
unrestricted regression. Finally, the fourth problem is solved in our paper since we use
fully nonparametric estimators of the conditional moments and therefore we do not need to
model the non-linearity explicitly. Hence, our approach is limited by the researcher’s ability
to choose the appropriate regressors, although it retains the advantage of simplicity.
The rest of the paper is organized as follows: Section 2 introduces the testing method

proposed by Ait-Sahalia et al. (2001), and investigates the properties of Stanton’s estimator
in finite samples as well as the performance of the test; Section 3 presents the empirical
results when the test is applied to US interest rate data; And finally Section 4 summarizes
and concludes.
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2 A dimension reduction test for the term structure

2.1 The method

The term structure being driven by more than one state variable is consistent with the
intuition of Litterman and Scheinkman (1991) that at least three factors induce changes in
the level, slope, and curvature of the yield curve. If the short rate process is endogenously
determined in equilibrium and the state variable vector contains multiple risk factors, then
the short rate conditional distribution at any given point in time will also depend on multiple
risk factors. Also, because the values of the state variables reflect in the term structure, the
term structure will contain information that a ects the conditional density of the short rate
and is not captured by the short rate level5. Consequently, we think it is important to assess
the empirical significance of the multi-dimensional nature of the short rate process and we
believe this can be accomplished by testing for the dependence of the short rate conditional
distribution on information provided by the term structure of interest rates. Since the short
rate drift and di usion functions determine unambiguously its conditional density, we can
base the test upon them. In other words, we can test for the null hypotheses that the short
rate drift and di usion functions depend only on the short rate level, against the alternative
hypothesis that they depend also on the slope of the term spread or its curvature. We next
explain how to combine a nonparametric dimension reduction test with a nonparametric
estimator of the short rate drift and di usion, in order to accomplish this goal.
The test proposed by Ait-Sahalia et al. (2001) uses kernel methods to estimate the

regression under the restricted specification and under the unrestricted alternative. The
di erence between the restricted and the unrestricted kernel regression is then measured via
the residual sum of squares.
It should be noted that although the test in principle applies to a data sample of

independent and identically distributed observations, the asymptotic distribution of the
test statistic is unchanged by serial dependence in the data provided that this is strictly
stationary ergodic and the amount of serial dependence in the data decays su ciently fast6.
We will assume that this condition holds true for the data set.
If the sample data consists of Zi = (Yi, Vi,Wi), i = 1, ..., N the test answers the question

of whether the predictor variables V can be omitted from the regression of Y on (W,V ).
The regression function of Y on (W,V ) is defined by

m(w, v) E(Y |W = w, V = v) =

R
yf(y,w, v)dy

f(w, v)
(1)

and the regression function of Y on W by

M(w) E(Y |W = w) =

R
yf(y,w)dy

f(w)
(2)

These conditional moments may be consistently estimated using the Nadaraya-Watson
kernel regression method:

5See for instance De Jong (1999) for a theoretical and empirical analysis of the relationship between
unobservable risk factors and observable characteristics of the yield curve for a ne models.

6More technically, if Zi is the vector of observations at time i, then it must be the case that:
1. The data {Zi; i = 1, ...,N} are strictly stationary and -mixing with N = O(N k), k > 19/2.
2. The joint density f1,j(·, ·) of (Z1, Z1+j) exists for all j and is continuous on (R× S)2.
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m̂h(w, v)

PN
i=1Kh(w Wi, v Vi)YiPN
i=1Kh(w Wi, v Vi)

(3)

M̂H(w)

PN
i=1KH(w Wi)YiPN
i=1KH(w Wi)

(4)

where Kh(u) = h dK(u/h) andKH(u) = H dK(u/H), d being the dimension of the vector
u that measures the distance of the observed regressor data to the design point. The shape
of the kernel weights is determined by K, whereas the size of the weights is parameterized
by the bandwidth, denoted by h and H7.
The test statistic is based on the distance, measured in a mean squared error way,

between both regression functions or more precisely their estimates. If we define the
following statistic:

˜ 1

N

NX
i=1

n
m̂h(Wi, Vi) M̂H(Wi)

o2
Ai (5)

where Ai is the value that a weighting function8 takes for Wi, Vi, then ˜ is a consistent
estimator of the weighted expected squared di erence between m(W,V ) andM(W ). Under
the null hypotheses ˜ is asymptotically zero.
The distribution of the test statistic is derived under standard assumptions about the

density functions and the kernel. Specially relevant are those concerning the kernel function
and the bandwidth choice:

. The kernel K is a bounded function on R, symmetric about 0, with
R | K(z) | dz < ,R

K(z)dz = 1,
R
zjK(z)dz = 0 for 1 j r. Further,

r > 3(p+ q)/4 (6)

where p and q are the dimensions of W and V respectively.
2. As N , the unrestricted bandwidth sequence h = O(N 1/ ) is such that

2(p+ q) < < 2r + (p+ q)/2 (7)

while the restricted bandwidth H = O(N 1/ ) satisfies

p < 2r + p (8)

as well as

p/(p+ q) < (9)

The authors show that under the null hypothesis that V can be omitted from the
regression:

7More details on kernel smoothing techniques can be found in Härdle (1990).
8This weighting function allows us to test goodness-of-fit for particular value ranges and/or avoid technical

problems such as the estimation of conditional expectation in areas of low density.
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ˆ ˆ 1
11 (Nh

(p+q)/2 · ˜ h (p+q)/2ˆ12 h(q p)/2ˆ22 h(p+q)/2H pˆ32) N(0, 1) (10)

where the critical values are calculated in the following way:

ˆ211 =
2C11
N

XN

i=1

ˆ4h(Wi, Vi)A
2
i

f̂h(Wi, Vi)
, ˆ12 =

C12
N

XN

i=1

ˆ2h(Wi, Vi)Ai

f̂h(Wi, Vi)

ˆ22 =
2C22
N

XN

i=1

ˆ2h(Wi, Vi)Ai

f̂H(Wi, Vi)
, ˆ32 =

C32
N

XN

i=1

ˆ2H(Wi)Ãi

f̂H(Wi)

with ˆ2h(Wi, Vi) and ˆ2H(Wi) being the conditional variances of Y estimated
nonparametrically, and,

Ãi

PN
j=1KH(w Wj)AjPN
j=1KH(w Wj)

The constants Cij are determined by the choice of kernel. In our application:

C12 = 1/(2 )2, C22 = 1/ 2 , C32 = 1/(2 ), C11 = 1/(2 2 )2

With respect to the estimation method for the short rate drift and di usion, Stanton
(1997) considers a di usion process for the short rate, rt, which satisfies the stochastic
di erential equation.

drt = µ(rt)dt+ (rt)dZt

where dZt is a standard Brownian motion, and shows that first-order approximations to
µ and V 2 can be obtained as the conditional first and second moments of the Euler
discretization of the short rate process:

µ =
1
Et [rt+ rt] +O( ), (11)

V =
1
Et
£
(rt+ rt)

2
¤
+O( ) (12)

where is the interval between the times when rt and rt+ are observed. As the observation
frequency increases to infinity, 0, the approximations converge to the actual values
of the drift and di usion functions. Finally, the conditional expectations can be estimated
using the Nadaraya-Watson method as in (3) or (4).
Assuming that first-order discrete approximations are accurate enough, the hypothesis

that the short rate drift/di usion at any given point in time depends on the short rate, versus
the hypothesis that it depends on both the short rate level and a second state variable9, St,
can be formulated in the following terms:

9Stanton’s approach to estimating the drift and di usion have been previously extended to a bivariate
setting by Boudoukh, Richardson, Stanton and Whitelaw (1998), although they do not provide a formal
test for the double dependence.
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• H1:

E [rt+ rt | rt] = E [rt+ rt | rt, St] , (13)

• H2:

E
£
(rt+ rt)

2 | rt
¤
= E

£
(rt+ rt)

2 | rt, St
¤
. (14)

Note that these hypotheses can be tested in a nonparametric way using the testing
method described above. It should be noted that, as Bandi and Phillips (2003) point
out, Stanton’s (1997) estimator assumes a time-invariant density for the short rate process,
and hence is not robust to non-stationarity. In their paper they propose an alternative
nonparametric estimation method that only requires recurrence, i.e., the process visits any
level in its range an infinite number of times over time. Since we are using Ait-Sahalia et
al. (2001) test we employ kernel drift and di usion estimators as in Stanton (1997). This
means that we could fail to reject the null if the true process is not stationary, since under
the alternative hypothesis we only assume dependence on rt and St.
In our application, the following bandwidth functions are used for the unrestricted and

restricted regressions:

h = h0N
1/ with = 4.75 (15)

H = H0N
1/ with = 4.25 (16)

Also, the test is performed using an independent Gaussian kernel:

KH(w Wi) = H 1 1
2
exp( 1

2(
w Wi

H )2)

Kh(w Wi, v Vi) = h
2 1

2
exp( 1

2(
w Wi

h )2)× 1
2
exp( 1

2(
v Vi
h )2)

Finally, we choose to standardize regressors before applying the test. This has two
potential advantages. First, it allows us to use more similar bandwidths for di erent
regressors, which simplifies our search for the bandwidths with the most desirable properties.
Second, it is crucial to standardize both regressors in the bidimensional regression since we
use the same bandwidth (h) for smoothing both samples. If we do not standardize both
regressors and one series has much higher variance, using the same bandwidth will most
likely result in oversmoothing one series and undersmoothing the other. Clearly, this can
potentially bias inferences based on the test.
Throughout the paper, we focus our attention on the explanatory power of three

additional regressors.
First, the term spread as the di erence between the ten-year yield and the three-month

rate, which we consider a proxy for the slope of the yield curve.
Second, a proxy for the curvature of the yield curve, which we define as the di erence

between the ten-year yield and twice the one-year yield plus three-month rate.
Third, as pointed out in the introduction, deviations from the Markovian structure (as

is the case with HJM) may also result in the short rate level not being a su cient statistic
for the state of the system. In fact, the time series literature has provided evidence that the
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short rate process may indeed be non-Markovian10. We therefore explore whether the state
of the short rate process depends on lagged values many periods apart. In order to conduct
the test, we build on the fractional integration literature. Fractional integration enables
a parsimonious modelling of long memory processes (for a review of fractional integration
and long memory processes, see Baillie (1996)). Take for instance a fractional white noise
process, defined as

(1 L)d(yt µ) = t, (17)

where L is the usual lag operator, E( t) = 0, E( 2t ) =
2, and E( t, s) = 0 for s 6= t,

and where the fractional parameter is possibly noninteger. The process admits an infinite
autorregresive representation given by

yt =
X
k=1

kyt k + t, (18)

where the weights, k, are obtained from the expansion of (1 L)d

(1 L)d = 1 dL+
1

2!
d (d 1)L2 +

1

3!
d (d 1) (d 2)L3 + · · · (19)

Motivated by this literature, we construct a variable which is a weighted average of
lagged short rate values, where the weights correspond to the autorregresive representation
of a fractionally integrated process (18) truncated at k = 150 (three years). We then test
whether the resulting variable a ects the state of the short rate process significantly. In
order to perform the test we apply the dimension reduction test to the new variable. Our
approach can hence be regarded as a semiparametric test for long memory. The test is
conducted for d = 0.01 following Duan and Jacobs (2001), who estimated a value of d close
to 0.01 in a fractionally integrated GARCH model.
In any case, the validity of our proposal depends both on the finite sample properties

of Stanton’s (1997) estimator as well as on the performance of Ait-Sahalia et al. (2001)
asymptotic test in finite samples. In the following sections we study both issues.

2.2 Finite-sample properties of Stanton’s (1997) estimator

Let us start by applying Stanton’s (1997) estimation method to our data set. For the
application, a series of daily observations of annualized discount rates on US Treasury Bills
with three months to maturity (secondary market closing bid rates), as well as on one-year
and 10-year US Government Bonds (Treasury constant maturity rates) was obtained from
the Internet Site of the Federal Reserve. The rates correspond to secondary market closing
bid rates. From the daily series, we constructed a weekly series in which each observation
corresponds to the rate quoted on Wednesday (the day of the week with the least number
of missing observations). Finally, discount rates were converted to annualized continuously
compounded yields. The resulting series covers the period from February 1962 to December
2002 — a total of 2,101 observations— and is displayed on the top panel in Figure 1. The
middle panel displays the slope of the yield curve as proxied by the di erence between the

10Duan and Jacobs (2001) study the presence of short and long memory in the daily short rate series in
a parametric framework. Using a GARCH model, they find that lags beyond a week do not improve the
empirical fit of the model. They also extend Backus and Zin (1993) fractionally integrated approach to
conditional heteroscedasticity and report a significant long memory component.
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10-year yield and the three-month yield. Finally, the bottom panel shows the series of the
curvature of the yield curve as proxied by the di erence between the 10-year to one-year term
spread and the one-year to three-month term spread. Table 1 shows descriptive statistics
of the data set and Figure 2 shows the slow decay in the autocorrelation function for the
three-month yield series, which is a characteristic of long memory processes.
Figures 3 and 4 display kernel estimates of first-order approximations to the short rate

drift and di usion coe cients respectively as a function of the short rate level. The most
striking feature of these Figures is that when the conditioning short rate value is beyond
12 percent, the short rate drift decreases dramatically displaying a higher speed of mean
reversion. These results are very similar to those obtained by Stanton (1997) using a daily
series of the three month Treasury yield over a similar period.
Using simulations, Chapman and Pearson (2000) have shown, however, that non-

linearities displayed by Stanton’s kernel drift estimator may be spurious. In particular,
they simulate a large number of short rate samples following a CIR process (i.e., with linear
drift) and apply Stanton’s method to each of them. Their results suggest that Stanton’s
drift estimator is biased for low and high levels of the short rate. They distinguish between
two sources of bias near the upper and lower edges of the short rate data:
a) the boundary bias, which skews moment estimates at low density areas towards

estimates at the center of the distribution. Because the short rate drift is downward sloping,
this e ect results in estimates of the drift at high short rate levels appearing higher than
true moments. Similarly, for low short rates, the drift tends to be underestimated;
b) the truncation bias: because in finite samples short rate levels above the sample

maximum are not observed, changes in the short rate level conditional on the short rate
being close to the upper boundary are necessarily negative. This pushes the estimated drift
below the true drift for high values of the short rate. Analogously, this e ect increases the
estimated drift conditional on low short rate values.
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Figure 1. Time series plot of the short-term interest rate (top panel), the spread between the three-

month yield and the 10-year yield (middle panel), and the curvature of the yield curve (bottom

panel) for the February 1962-December 2002 period.
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Table 1. Summary statistics of the 3-month T-Bill yield, the yield on the 1-year US Bond, the yield

on the 10-year US Bond, the term spread, the curvature of the yield curvature and weekly changes

in the 3-month T-Bill rate. The series covers the period from February 1962 to Dec. 2002.

Variable Mean Std. Dev. Autocorr.

3-m. yield 0.0580 0.0246 0.9954

1-yr. yield 0.0636 0.0260 0.9966

10-yr. yield 0.0710 0.0229 0.9979

Spread 0.0130 0.0119 0.9860

Curvature 0.0017 0.0100 0.9814

3-m. weekly changes -7.01×10 6 0.0024 0.0898

Correlation Matrix 3-m. yield 1-yr. yield 10-yr. yield Spread Curvature

3-m. yield 1

1-yr. yield 0.9875 1

10-yr. yield 0.8776 0.9213 1

Spread -0.3781 -0.2677 0.1121 1

Curvature -0.6551 -0.6508 -0.3335 0.7138 1

3-m. weekly changes -0.0433 -0.0241 -0.0248 0.0418 0.0418

Figure 2. Autocorrelation function for the weekly series of the three-month T-Bill yield.
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We simulated 5,000 sample paths of weekly short rate observations following a CIR
process with parameters chosen to match true stationary moments with real data, and
sample size equal to 2, 000. The combined e ect of both biases averaged across all simulated
paths can be seen on Figures 5 and 6 for bandwidths H = ˆN 1/5 (Figure 5) and
H = 4 · ˆN 1/5 (Figure 6), where ˆ and N are the short rate sample standard deviation
and size respectively. Although the true drift is linear, the first graph shows the short rate
drift as being highly nonlinear, showing fast mean reversion for high short rate levels. This
nonlinearity is the consequence of the truncation bias. However, as the bandwidth increases
(Figure 6) the boundary bias drives drift estimates towards its sample average, hence pulling
the estimated drift upwards for high short rate levels. The boundary bias therefore partially
o sets the truncation bias. These graphs closely resemble the results obtained by Chapman
and Pearson (2000).
It is however not possible to assess the true magnitude of the truncation bias by

simulating a large number of sample paths, estimating the short rate drift conditional on the
same design points for every sample, and finally averaging across all estimates associated to
each sample path. The reason is that each path will have a di erent support. For instance,
one series will have a sample maximum at 20% while another will always be below 12%.
Although it is technically possible to estimate the short rate drift conditional on 15% for both
series, this value is in the center of the distribution for the first series and outside the support
of the distribution for the second one. Therefore, we are averaging an almost unbiased drift
estimate with a biased estimate. In order to overcome this problem we simply propose to
simulate series until we have enough of them within particular boundaries. In practice,
we simulate sample paths from a CIR process and keep 5,000 whose sample minimum is
between 2.60% and 2.80%, and whose sample maximum is between 11.90% and 12.30%. We
then estimate the short rate drift for each sample for design points in the interval [2.70%,
12.10%]. We also compute percentiles 2.5%, 5%, 95%, and 97.5% for each sample and the
average of those values across all samples. Similar experiments have been conducted by Li,
Pearson, and Potesham (2001), who study and propose a solution for the truncation bias in
a parametric setting.
Figures 7 and 8 show the results of the experiment for both bandwidths considered.

Vertical lines represent the mean percentiles across all simulated paths. For the
smaller bandwidth, Stanton’s estimator is remarkably unbiased inside the support of the
distribution. For the larger bandwidth however, estimates are slightly biased although there
is a significant gain in accuracy. In either case, there are almost no signs of the truncation
bias which causes the drift to appear nonlinear.
We can therefore consider Stanton’s drift estimator to be moderately unbiased as long

we are conditioning on short rate level not in the tails of the sample distribution. For this
reason, we shall condition all conclusions on the short rate level being in the center of the
data. This is accomplished by defining Ai in (5) as an indicator function that equals 1 if the
short rate is between its 5th and 95th percentiles of its sample, and zero otherwise. In any
case, our simulations show that unbiasedness only comes at the cost of low precision in drift
estimates. This can potentially a ect the ability of tests designed to distinguish between
alternative models based on the short rate drift.
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Figure 3. The short rate drift as a function of the short rate level, estimated using Stanton’s

(1997) first-order approximation and kernel smoothing. A Gaussian kernel has been employed with

bandwidth H = 4 · ˆ ·N 1/5.
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Figure 4. The short rate di usion as a function of the short rate level, estimated using Stanton’s

(1997) first-order approximation and kernel smoothing. A Gaussian kernel has been employed with

bandwidth H = 3 · ˆ ·N 1/5.
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Figure 5. The average estimated drift from 5,000 simulated paths of size 2,000 from a CIR process,

versus the true drift of the process, with bandwidthH = ˆ ·N 1/5 where ˆ is the sample standard
deviation and N is the sample size.
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Figure 6. The average estimated drift from 5,000 simulated paths of size 2,000 from a CIR process,

versus the true drift of the process, with bandwidth H = 4 · ˆ · N 1/5 where ˆ is the sample
standard deviation and N is the sample size.
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Figure 7. The average estimated drift for 5,000 simulated paths of size 2,000 from a CIR process,

and Monte-Carlo 5th and 95th percentiles versus the true drift of the process, with bandwidth

H = ˆ ·N 1/5 where ˆ is the sample standard deviation and N is the sample size. All samples

have a sample minimum within 10 basis points of 2.70% and 20 basis points of 12.10%. Vertical

lines (from left to right) mark the average 2.5, 5, 95, and 97.5 percentiles across all paths.
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Figure 8. The average estimated drift for 5,000 simulated paths of size 2,000 from a CIR process,

and Monte-Carlo 5th and 95th percentiles versus the true drift of the process, with bandwidth

H = 4 · ˆ ·N 1/5 where ˆ is the sample standard deviation and N is the sample size. All samples
have a sample minimum within 10 basis points of 2.70% and 20 basis points of 12.10%. Vertical

lines (from left to right) mark the average 2.5, 5, 95, and 97.5 percentiles across all paths.
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2.3 Finite sample properties of Ait-Sahalia et al. (2001) test

The second source of concern is the finite sample performance of Ait-Sahalia et al. (2001)
asymptotic test when applied to interest rate series. On one hand, interest rate data
are highly persistent as the autocorrelation coe cients of Table 1 show. Although serial
dependence has no impact on moment estimates of the test statistic asymptotic distribution,
it potentially biases inferences from finite samples. Another problem is related to the
independence of the regressors. In the course of our experiments, we have found that the size
of the test in finite samples quickly departs from the nominal size as the correlation between
the regressors increases. In particular, we have considered the same model as in Ait-Sahalia
et al. (section 5, 2001): Y = W + 0.75e 0.5W 2

, with = 1, and W, distributed as two
independent N(0, 1). We have then simulated 500 samples of size 1,000 each and we have
tested the null hypothesis that E[Y | W = w] = E[Y | W = w, V = v], where V is also
N(0, 1). Using the same kernels, the same bandwidths and the same weighting function as
in their simulations, but setting the correlation coe cient betweenW and V at 0.75 instead
of assuming independence, we have found that the test rejects the null hypothesis 24% and
35% of times for nominal sizes of 5% and 10%, respectively.
In order to study the adequacy of the test as applied to the interest rate data, we propose

to conduct Monte Carlo experiments.
We begin with the size of the test and proceed as follows:

1. We generate a path of 2,000 weekly 3-month interest rates -which we identify with the
short rate- following the one-factor CIR process:

drt = ( rt)dt+ rtdZt

with parameters = 0.1822, = 0.0640, and = 0.0609.

2. For our simulated path, we compute the corresponding one-year and ten-year yields
according to the model (see CIR (1985b)) given the short rate realizations. We also
compute the term spread, the curvature of the yield curve, and the moving average in
(19).

3. Because in the CIR model (just as in any other one-factor a ne term structure
model), yields are all perfectly correlated, we add a measurement (independent zero-
mean normal) error to the spread and curvature, with standard deviations chosen to
match the observed correlations in the data11. No measurement error is added to the
simulated moving average since its correlation with the short rate is similar to that
found in the data (0.9320). We then standardize the regressors and apply the test.

4. We repeat steps 1-3 for 500 sample paths.

Monte Carlo results are reported in Tables 2, 3, and 4. Top panels correspond to results
for the drift while bottom panels display results for the di usion. Each panel reports
rejection rates for the one-tail test and 1%, 5% and 10% critical values (z0.01 = 2.32,
z0.05 = 1.64, and z0.10 = 1.28), as well as the standard deviation of the computed test
statistic, which is 1 asymptotically under the null.

11More specifically, the standard deviation of the measurement errors added to the spread and curvature
equal 3% and 1% respectively.
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Table 2. Size of the test: spread. We simulate 500 short rate paths followinga one-factor CIR model

and derive the term spread as the di erence between the ten-year yield and the short rate. We then

add a measurement error and apply the dimension test to the standardized regressors. Rejection

rates are in percent points.

Panel A: Drift
H0 = 1.00
h0 = 0.95

H0 = 2.50
h0 = 2.45

H0 = 4.00
h0 = 3.95

1% 31.60 1.40 0.40
5% 54.60 6.40 1.40
10% 68.40 13.20 3.80
Std. Dev.(ˆ) 1.11 0.67 0.40

Panel B: Di usion
H0 = 1.00
h0 = 0.95

H0 = 2.25
h0 = 2.20

H0 = 4.00
h0 = 3.95

1% 17.80 1.80 6.20
5% 38.60 5.00 15.20
10% 54.20 8.60 25.40
Std. Dev.(ˆ) 1.30 0.67 0.73

Table 3. Size of the test: curvature. We simulate 500 short rate paths followinga one-factor

CIR model and derive the curvature of the yield curve as described in the text. We then add a

measurement error and apply the dimension test to the standardized regressors. Rejection rates

are in percent points.

Panel A: Drift
H0 = 1.00
h0 = 0.95

H0 = 2.50
h0 = 2.45

H0 = 4.00
h0 = 3.95

1% 27.40 0.80 0.20
5% 50.00 3.60 1.20
10% 65.20 8.00 3.40
Std. Dev. (ˆ) 1.06 0.58 0.37

Panel B: Di usion
H0 = 1.00
h0 = 0.95

H0 = 2.00
h0 = 1.95

H0 = 4.00
h0 = 3.95

1% 15.20 2.00 15.40
5% 30.60 8.00 34.20
10% 43..40 13.60 49.40
Std. Dev. (ˆ) 1.1535 0.67 0.90
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Table 4. Size of the test: long memory. We simulate 500 short rate paths following a one-factor

CIR model and derive a weighted average of past short rate realizations as described in the text.

Rejection rates are in percent points.

Panel A: Drift
H0 = 1.00
h0 = 0.95

H0 = 1.50
h0 = 1.45

H0 = 2.00
h0 = 1.95

1% 7.00 1.00 0.60
5% 18.80 7.60 2.40
10% 33.00 16.60 7.60
Std. Dev. (ˆ) 0.72 0.48 0.34

Panel B: Di usion
H0 = 1.00
h0 = 0.95

H0 = 2.00
h0 = 1.95

H0 = 4.00
h0 = 3.95

1% 2.20 1.80 5.80
5% 12.60 8.40 31.00
10% 25.20 24.20 63.40
Std. Dev. (ˆ) 0.59 0.46 0.48

In each experiment, we fix h0 andH0 in (15) and (16), which is equivalent to using a plug-
in rule to choose the bandwidths. Bandwidths for the bivariate and univariate regression are
therefore proportional to N 1/4.25 and N 1/4.75, respectively. We report simulation results
for three pairs of bandwidth parameters (h0,H0) : (i) the pair that gives the empirical size
closest to the nominal size (the column in the center); (ii) a larger pair of bandwidths 12;
and (iii) tighter bands for comparison purposes. From Tables 2-4, it is clear that values of
h0 and H0 close to 2 result in the empirical distribution of the test statistic being closest to
the asymptotic distribution, while larger and smaller bandwidths produce large distortions.
With respect to the test statistic applied to the short rate drift, and focusing exclusively on
the bandwidth parameters with the nominal size closest to the empirical size, the largest
distortion corresponds to the case when we are testing for the null hypothesis that the short
rate drift does not depend on past short rate values and the 10% critical value. In this case,
the empirical size is 6% larger than the nominal size.
On the other hand, rejection of the null based on the di usion cannot be attributable

to the test displaying poor size, as long as appropriate bandwidths are employed. There is
only one exception: the test rejects the null that the di usion does not depend on lagged
short rate values 24.20% of times at the 10% critical value for the best bandwidth pair.
It is also possible to explore the power of the test to reject the null when the true data

generating process is a multi-factor model. We take the following steps:

1. We generate a path of 2,000 weekly realizations of the unobservable factors in a two-
factor version of the CIR model as described in Geyer and Pichler (1999) using their
parameter estimates.

2. We compute the corresponding three-month, one-year and ten-year yields according
to the model (see Geyer and Pichler (1999)) given the factor realizations. We also
compute the term spread, the curvature of the yield curve, and the moving average in
(19).

12Optimal bandwidths -in the sense that the mean squared error is minimized- estimated through cross-
validation for our original dataset, are in the neighbourhood of the largest bandwidths reported in the
table.
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3. Although in the simulated two-factor CIR samples, the short rate is not perfectly
correlated with the term spread or the curvature of the yield curve, in order to
generate correlations between the regressors closer to those observed in the data, we
add a measurement error to the spread and curvature13. Again, we standardize the
regressors and apply the test.

4. We repeat steps 1-3 for 500 paths.

Results are reported in Tables 5, 6, and 7. Again, top panels correspond to results for
the drift, while bottom panels display results for the di usion. Each panel reports rejection
rates for the one-tail test and 1%, 5% and 10% critical values, as well as the standard
deviation of the empirical distribution of the test statistic. Results are reported for the
same bandwidth parameters (h0,H0) as in the previous experiments.
Monte Carlo results for the drift suggest that for bandwidth parameters that give

reasonable size, the test lacks all power to reject the single factor hypothesis. Therefore,
failure to reject the null may well be attributable to poor power and not necessarily to
the one-factor hypothesis being true. This is probably due to lack of precision in the drift
estimator, which results in noisy estimates and is penalized by the test. In contrast, it is
easier to reject the null when the test is applied to the short rate di usion. This is especially
true for the curvature.

Table 5. Power of the test: spread. We simulate 500 interest rate paths following a two-factor CIR

model and compute the term spread as described in the text. We then add a measurement error

and apply the dimension test to the standardized regressors. Rejection rates are in percent points.

Panel A: Drift
H0 = 1.00
h0 = 0.95

H0 = 2.50
h0 = 2.45

H0 = 4.00
h0 = 3.95

1% 29.80 1.40 0.40
5% 55.20 3.80 2.80
10% 70.20 8.20 4.60
Std. Dev.(ˆ) 1.14 0.62 0.45

Panel B: Di usion
H0 = 1.00
h0 = 0.95

H0 = 2.25
h0 = 2.20

H0 = 4.00
h0 = 3.95

1% 26.60 23.00 63.60
5% 48.00 44.80 81.60
10% 64.20 56.80 90.40
Std. Dev. (ˆ) 1.95 1.43 1.68

13In this case, the standard deviation of the measurement errors added to the spread and curvature equal
0.02 and 0.008 respectively.
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Table 6. Power of the test: curvature. We simulate 500 interest rate paths following a two-factor

CIR model and compute the term spread as described in the text. We then add a measurement

error and apply the dimension test to the standardized regressors. Rejection rates are in percent
points.

Panel A: Drift
H0 = 1.00
h0 = 0.95

H0 = 2.50
h0 = 2.45

H0 = 4.00
h0 = 3.95

1% 27.20 2.20 1.20
5% 46.00 6.80 3.20
10% 60.00 11.00 6.20
Std. Dev. (ˆ) 1.05 0.62 0.49

Panel B: Di usion
H0 = 1.00
h0 = 0.95

H0 = 2.00
h0 = 1.95

H0 = 4.00
h0 = 3.95

1% 30.40 44.00 92.20
5% 50.80 62.60 98.20
10% 63.40 72.40 99.00
Std. Dev. (ˆ) 1.49 1.71 1.91

Table 7. Power of the test: long memory. We simulate 500 interest rate paths following a two-factor

CIR model and compute a weighted average of past short rate realizations as described in the text.

We then apply the dimension test to the standardized regressors.Rejection rates are in percent
points.

Panel A: Drift
H0 = 1.00
h0 = 0.95

H0 = 1.50
h0 = 1.45

H0 = 2.00
h0 = 1.95

1% 9.00 1.40 1.80
5% 21.60 6.00 5.40
10% 34.20 14.20 10.00
Std. Dev. (ˆ) 0.89 0.61 0.53

Panel B: Di usion
H0 = 1.00
h0 = 0.95

H0 = 2.00
h0 = 1.95

H0 = 4.00
h0 = 3.95

1% 35.20 20.20 38.00
5% 54.80 36.20 52.80
10% 67.20 50.00 65.20
Std. Dev. (ˆ) 1.71 1.30 1.12
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3 Empirical results

Let us first consider the e ect of the term spread on the short rate drift and di usion.
The test statistic ˆ associated with the short rate drift and its corresponding p-value are
shown in Table 8 (panel A) for the same bandwidth parameters as those employed in the
Monte Carlo experiments of Subsection 2.3. We are therefore also using a plug-in method
to choose the bandwidths for testing purposes. The test for the bandwidth parameters that
give the best empirical size indicates that we cannot reject the null hypothesis that expected
conditional changes in the three-month rate are fully explained by the current short rate
at the 1%, 5% or 10% significance levels. The asymptotic test therefore suggests that the
slope of the yield curve contains no predictive power about future weekly changes in interest
rates. However, this result is not reliable given the low power of the test to reject the null
as discussed above.
As for the test for the short rate di usion, the associated test statistic ˆ and its

corresponding p-value are shown in Table 8 (panel B) also for the same bandwidths as in
the Monte Carlo experiments of Subsection 2.3. The value of the test statistic is significant
at the 5% and 10% levels only for the smallest bandwidth considered. Table 2, however,
shows that for the smallest bandwidth, the test severely overrejects the null even if the null
is true. Consequently, we may not reject the single-factor hypothesis on the basis of this
test when the information content of the term spread is considered.
Table 9 presents the test results for the curvature. Although the null that the drift

depends only on the short rate is rejected for the smallest bandwidth, the result is most
likely driven by poor size of the test in finite samples as seen on Table 3 (Panel A). Also,
failure to reject the null for the best bandwidth pair can be explained by extreme low
power of the test. Di erent conclusions can be reached when examining Panel B. The test
rejects the null hypothesis of a one-dimensional di usion function for all critical values and
according to Table 3 (Panel B), this result is not explained by poor size of the test in finite
samples, but rather may be considered as evidence against a single-factor Markov short rate
di usion.
Finally, Table 10 shows test results for lagged values of the short term interest rate.

Similarly to the previous case, Panel A shows that the null corresponding to the drift is
only rejected when the bandwidth with worst size (strongest tendency to overrejection)
is employed. For more adequate bandwidth parameters, however, we cannot discard the
single factor model on the basis of this test. Again, low power is a possible explanation for
this result. However, when the dependence of the short rate di usion on past short rate
realizations is considered, the null is rejected at the 1%, 5%, and 10% significance levels.
As Table 4 shows, when the single factor model is the true model, the null is rejected only
for 1.80% of our simulations at the 1% level. This result can be taken as further evidence
against the short rate being driven by a single factor Markovian process, and is consistent
with Ait-Sahalia (2000).
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Table 8. Test Results: Spread. This Table shows the test statistic values and the corresponding

p-values for the null hypothesis that the term spread does not contribute to explaining changes in

the drift and di usion of the short rate process. Regressors have been standardized.

Panel A: Drift
H0 = 1.00
h0 = 0.95

H0 = 2.50
h0 = 2.45

H0 = 4.00
h0 = 3.95

ˆ 1.1687 0.2490 0.5220
(p-value) (0.1213) (0.5983) (0.6992)

Panel B: Di usion
H0 = 1.00
h0 = 0.95

H0 = 2.25
h0 = 2.20

H0 = 4.00
h0 = 3.95

ˆ 1.8332 1.1128 0.7722
(p-value) (0.0334) (0.1329) (0.2200)

Table 9. Test Results: Curvature. This Table shows the test statistic values and the corresponding

p-values for the null hypothesis that the curvature of the yield curve does not contribute to

explaining changes in the drift and di usion of the short rate process. Regressors have been

standardized.

Panel A: Drift
H0 = 1.00
h0 = 0.95

H0 = 2.50
h0 = 2.45

H0 = 4.00
h0 = 3.95

ˆ 2.3203 1.2610 0.6725
(p-value) (0.0102) (0.1037) (0.2506)

Panel B: Di usion
H0 = 1.00
h0 = 0.95

H0 = 2.00
h0 = 1.95

H0 = 4.00
h0 = 3.95

ˆ 2.8834 2.7931 3.3839
(p-value) (0.0020) (0.0026) (0.0004)

Table 10. Test Results: Long memory. This Table shows the test statistic values and the

corresponding p-values for the null hypothesis that past short rate realizations do not contribute

to explaining changesin the drift and di usion of the short rate process. Regressors have been

standardized.

Panel A: Drift
H0 = 1.00
h0 = 0.95

H0 = 1.50
h0 = 1.45

H0 = 2.00
h0 = 1.95

ˆ 2.5678 1.1239 0.8547
(p-value) (0.0051) (0.1305) (0.1964)

Panel B: Di usion
H0 = 1.00
h0 = 0.95

H0 = 2.00
h0 = 1.95

H0 = 4.00
h0 = 3.95

ˆ 3.0221 2.4732 2.5243
(p-value) (0.0020) (0.0067) (0.0058)
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To summarize, considering only the tests and bandwidth parameters with lowest size
distortions, we may conclude that the asymptotic test rejects the null hypothesis that the
short rate di usion does not depend on the curvature of the yield curve or on lagged short
rate values. However, we can exploit the empirical distribution obtained in Monte Carlo
experiments in order to test the null hypothesis that our observations have been generated
by a one-factor CIR model. Table 11 displays the critical values for the test when the
alternative hypothesis is that the short rate di usion depends on the curvature of the yield
curve (Panel A) and the moving average (Panel B). Test statistics for the real data (from
Tables 6 and 7) are also displayed. The null hypothesis is rejected for all bandwidths
considered at 5% significance level or at the 5% and 1% significance levels with a single
exception, where the null is rejected at the 10% significance level. Empirical test results
therefore do not contradict those of the asymptotic test.

Table 11. Empirical Test. This Table shows the critical values from the empirical distribution of

the test statistic under the null hypothesis that the curvature of the yield curve and past short

rate realizations do not contribute to explaining the short rate di usion. In each experiment, 1,000

sample paths have been sampled from a one-factor CIR term structure model. Test statistics for

the real data are displayed in italics in the bottom line of each panel.

Panel A: Curvature
H0 = 1.00
h0 = 0.95

H0 = 2.00
h0 = 1.95

H0 = 4.00
h0 = 3.95

90th percentile 2.3827 1.4836 2.6460
95th percentile 3.0933 1.9541 2.9890
99th percentile 5.3574 3.1673 4.0398
ˆ 2 .8834 2 .793 3 .3839

Panel B. Long memory
H0 = 1.00
h0 = 0.95

H0 = 2.00
h0 = 1.95

H0 = 4.00
h0 = 3.95

90th percentile 1.7612 1.7156 2.0940
95th percentile 2.1179 1.9413 2.2856
99th percentile 2.9287 2.4033 2.6264
ˆ 3 .022 2 .4732 2 .5243

4 Summary and conclusions

This paper assesses the ability of general single-factor Markovian processes to fit observed
short rate data. Despite evidence that the conditional distribution of bond yields depends
on multiple common risk factors, and the large body of theoretical research along this line,
the single-factor Markov di usion process for the short rate has not been directly tested in
a non-parametric setting with two exceptions: Ait-Sahalia (2000) and Je rey et al. (2000).
Compared to those papers, our approach has the virtue of simplicity and potential generality
of the null hypothesis, but su ers from the caveat of the alternative hypothesis being specific
with respect to the regressors.
The paper first shows how to conduct the analysis in a nonparametric fashion. In

particular, Stanton’s (1997) estimation method of the short rate conditional distribution
is combined with a dimension reduction test developed by Ait-Sahalia, Bickel, and Stoker
(2001). Simulation work shows that using kernel smoothing to estimate conditional moments

23Gil-Bazo and Rubio: A Nonparametric Dimension Test of the Term Structure

Produced by The Berkeley Electronic Press, 2005



leads to relatively unbiased (albeit perhaps ine cient) drift estimates as long as the
conditioning variables are not in the tails of the sample distribution. Additionally, the
paper examines, via Monte Carlo experiments, the finite sample performance of Ait-Sahalia
et al. (2001) test as applied to this specific setting. We conclude from the analysis that
although it is possible to find bandwidth values that lead to appropriate empirical sizes,
when applied to the short rate drift, the test lacks all power to reject the null. On the other
hand, tests based on the di usion can more easily reject the null hypothesis of a single factor
process.
Applying the test to our data set, we find that the short rate drift does not appear to be

determined by any of the variables considered. Unfortunately, given the low power of the
test finite samples, this result should not be taken as evidence in favor of a one-dimensional
drift function for the short rate. Di erent conclusions are obtained when examining the
short rate di usion. In particular, the null is rejected when considering the dependence of
the short rate di usion on the curvature of the yield curve and on the past short rate path.
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