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Abstract

Background: Experimental observations and numerical studies with dissipative metabolic networks have shown that
cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of
enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are
only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal
metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic
Structure which seems to be a key feature common to all cellular organisms.

Methodology/Principal Findings: In order to investigate the functional importance of the metabolic core we have studied
different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging
biochemical data have been analysed using information-based dynamic tools, such as Pearson’s correlation and Transfer
Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity
emerges which is dynamical and characterized by significant variations of bio-molecular information flows.

Conclusions/Significance: We have quantified essential aspects of the metabolic core functionality. The always active
enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional
information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have
found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules
and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic
switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of
the Systemic Metabolic Structure.
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Introduction

Living cells are essentially highly evolved dynamic metabolic

structures, in which the most complex molecules of Nature are

synthesized and destroyed by means of sophisticated self-

regulating catalytic cycles.

Cells exhibit a rich variety of reactive dynamic phenomena [1]

and millions of biochemical interactions forming one of the most

complex self-organized networks [2].

The cellular biochemical reactor presents a surprising

molecular crowding in which enzymes are the most outstand-

ing molecules; they are responsible for almost all catalytic

transformations, which globally considered constitute cellular

metabolism.

One of the most important goals of the post-genomic era is to

understand the elementary principles and quantitative laws

governing the functional metabolic architecture of the cell.

Intensive studies of protein-protein interactions have shown that

in the cellular internal medium, enzymes do not work isolately but

forming supramolecular complexes [3] e.g., the analyses of the

proteome of Saccharomyces cerevisiae have shown that at least 83% of

all proteins form complexes -containing from two to eighty-three

proteins- and their overall enzymatic structure is formed by a

modular network of biochemical interactions between enzymatic

complexes [4]. These associations occur in all kinds of cells, both

eukaryotes and prokaryotes [5–7].

Some associations of various enzymes in large complexes may

allow the direct transfer of their common intermediate metabolites
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from the active site of one enzyme to the catalytic centre of the

following enzyme without prior dissociation into the bulk solvent

(substrate channelling). This process of non-covalent direct transfer

of metabolic intermediates allows for a decrease in the transit time

of reaction substrates, originating a faster catalysis through the

pathway, preventing the loss of reaction intermediates by diffusion

and increasing the efficiency and control of the catalytic processes

in the multienzymatic aggregate [8–12]. Substrate channelling can

occur within protein matrix channels or along the electrostatic

surface of the enzymes belonging to macromolecular complexes

[13,14].

In addition, reversible interactions of some enzyme aggregates

with structural proteins and membranes are of common

occurrence in eukaryotic cells, leading to the emergence of

metabolic microcompartments within the soluble phases of cells

[15–20].

Prokaryotic cells also exhibit microcompartments, but in this

case they have outer shells which are composed of thousands of

protein subunits and are filled with enzymes belonging to specific

metabolic pathways in the interiors [21,22].

Besides apart from forming complex catalytic associations,

enzymes can exhibit oscillatory catalytic patterns which allow the

temporal self-organization of metabolic processes.

During the last four decades, extensive studies of dynamical

biochemical behaviors in cellular conditions both in prokaryotic

and eukaryotic cells have revealed the spontaneous emergence of

molecular oscillations in most of the fundamental metabolic

processes. For instance, biochemical oscillations have been

reported to occur in: NAD(P)H concentration [23], biosynthesis

of phospholipids [24], cyclic AMP concentration [25], ATP [26]

and other adenine nucleotide levels [27], intracellular glutathione

concentration [28], actin polymerization [29], ERK/MAPK

metabolism [30], mRNA levels [31], intracellular free amino acid

pools [32], cytokinins [33], cyclins [34], transcription of cyclins

[35], gene expression [35–39], microtubule polymerization [40],

membrane receptor activities [41], membrane potential [42],

intracellular pH [43], respiratory metabolism [44], glycolysis [45],

intracellular calcium concentration [46], metabolism of carbohy-

drates [47], beta-oxidation of fatty acids [48], metabolism of

mRNA [49], tRNA [50], proteolysis [51], urea cycle [52], Krebs

cycle [53], mitochondrial metabolic processes [54], nuclear

translocation of the transcription factor [55], amino acid

transports [56], peroxidase-oxidase reactions [57], protein kinase

activities [58] and photosynthetic reactions [59].

The transition from simple periodic behavior to complex

oscillatory phenomena, including bursting (oscillations with one

large spike and series of secondary oscillations) [60] and chaos

(irregular oscillations), is often observed in metabolic behaviors

[61].

In the conditions prevailing inside the cell, the oscillations

represent one of the most striking manifestations of dynamic

behaviour not only of qualitative, but also, of quantitative

importance in cell metabolic systems; e.g., considering only the

transcription processes, it has been reported that at least 60% of all

gene expression in Saccharomyces cerevisae oscillates with an

approximate period of 300 min [62] and at least 10% of the rest of

cellular transcripts oscillate in a circadian manner [63].

This new type of supramolecular self-organization that operates

in far-from-equilibrium conditions was called dissipative structure

by Prigogine [64,65] and the enzymatic functional structures that

provide the temporal self-organization of metabolism find their

roots in the many regulatory processes that control the dynamics

of the enzymes that belong to them [65].

Dissipative enzymatic complexes are advantageous thermody-

namically biochemical structures, which acting as individual

catalytic entities forming unique, well-defined dynamical systems

and their activity are autonomous with respect to the other

enzymatic associations [1]. Each set of dissipatively-structured

enzymatic associations acts as a metabolic dynamic subsystem in

which molecular oscillations and steady state patterns may emerge

spontaneously. These enzymatic sets called metabolic subsystems

form a reactive entity as a whole and seem to constitute the

catalytic basic elements of the cellular metabolism [1].

Summing up, extensive studies have shown that (1) the

functional enzymatic associations which operate in far-from-

equilibrium conditions forming dissipative catalytic entities, (2) the

substrate channeling and (3) the microcompartmentalization of the

metabolic processes are the principal ways of structural organiza-

tion of the eukaryotic cell metabolism [1]. These elements are the

basis for more complex biomolecular self-organizations at superior

structural and functional levels as for example the Intracellular

Energetic Units (ICEU) [66] and the synaptosomes [19].

The first model of a Dissipative Metabolic Network was

developed in 1999 [67]. Essentially, these networks are open

systems formed by a set of metabolic subsystems which are

interconnected by substrate fluxes and regulatory signals (allosteric

and covalent modulations).

The catalytic activity of the allosteric enzymes is modulated

through the noncovalent binding of a specific metabolite at a

different location from the catalytic site, provoking alterations of

the metabolic state in an interval of seconds. Such types of

modulation may be both positive (activation of their catalytic rates)

and negative (inhibitory modulators). The regulation by means of

the covalent interactions can originate ‘‘all-or-nothing’’ types of

answers [68].

In agreement with experimental observations [1], the emergent

output activity of the enzymatic subsystems in the dissipative

networks may be oscillatory or steady state and comprises an

infinite number of distinct activity regimes.

Each dissipative network can be considered as a super-complex

dynamic structure which integrates a set of different dynamic

systems (the metabolic subsystems) forming a unique, well defined,

deterministic, dynamical super-system.

The first numerical studies with dissipative metabolic networks

allowed to observe a singular spontaneously self-organized

Systemic Metabolic Structure, characterized by a set of different

enzymatic associations always locked into active states (metabolic

core) while the rest of metabolic subsystems presented on-off

dynamics. When a metabolic subsystem is in an-off state for a long

time it can be turned on under specific metabolic conditions. In

these numerical works it was also suggested that the systemic

metabolic structure could be an intrinsic characteristic of

metabolism, common to all living cellular organisms [67,69].

Afterward, 2004 and 2005, several studies carried out

implementing flux balance analysis in experimental data produced

new evidences of this global functional structure [70,71,72].

Specifically, it was observed a set of metabolic reactions belonging

to different anabolic pathways which remain active under all

investigated growth conditions. The rest of the reactions belonging

to different pathways remain only intermittently active. These

global catalytic processes were verified for Escherichia coli,

Helicobacter pylori, and Saccharomyces cerevisiae [71,72].

The metabolic core forms a single cluster of permanently

connected metabolic processes where the activity is highly

coordinated. Two types of reactions are present in the metabolic

core: the first type is essential for biomass formation in both
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optimal and suboptimal growth, while the second type of reactions

is required only to assure optimal metabolic performance [71,72].

More recently, extensive analyses with different dissipative

metabolic networks have shown that the fundamental factor for

the spontaneous emergence of this global self-organized enzymatic

structure is the number of enzymatic dissipative associations

(metabolic subsystems) [73]. Moreover, it has been observed that

the Systemic Metabolic Structure forms a unique dynamical

system, in which self-organization, self-regulation and persistent

properties may emerge [74].

In order to investigate the functional importance of the

metabolic core we have studied different catalytic time series

belonging to a particular dissipative metabolic network. The data

have been analyzed using information-based dynamics tools, such

as Pearson’s correlation and Transfer Entropy (TE).

Pearson correlations allow for a straightforward quantification

of statistically dependencies between pairs of metabolic subsys-

tems.

TE allows for a quantification of how much the temporal

evolution of the activity of one metabolic subsystem helps to

improve the future prediction of another [75–79] and therefore,

here, we have been able to analyze which metabolic subsystems

influences which, and in this way, it is possible to evaluate the

effective connectivity of the dissipative metabolic networks.

In this paper we have quantified essential aspects of the

metabolic core functionality, and the results show that in the

metabolic network, besides the classical topological structure

characterized by the specific substrate fluxes, covalent modulation

processes and allosteric signals a dynamical functional organiza-

tion of effective connectivity emerges; it is characterized by

significant variations of biomolecular information flows. Likewise,

we have found that this organization of the effective information

flows is modular and the dynamical changes between the catalytic

modules correspond to metabolic switches which allow critical

transitions in enzymatic activity.

The metabolic core, the modules of effective connectivity and

the functional switches seem to be fundamental elements in the

self-regulation of the Systemic Metabolic Structure.

Materials and Methods

1. Dissipative Metabolic Networks
As said in the Introduction section, experimental observations

have revealed that enzymes may form functional catalytic

associations in which a new type of dissipative supramolecular

self-organization may emerge [1,64,65].

We have called metabolic subsystems (MSb) or enzymatic

subsystems to these groups of dissipatively structured enzymatic

associations in which transitions between molecular oscillations

and steady states may emerge spontaneously [1]. Each subsystem

forms an enzymatic entity as a whole, in which the catalytic

activity is autonomous with respect to the other functional

enzymatic associations.

A Dissipative Metabolic Network (DMN) is an open system

formed by a given set of enzymatic subsystems interconnected by

substrate fluxes and regulatory signals, which may be of three

types: activatory (positive allosteric modulation), inhibitory (neg-

ative allosteric modulation) and all-or-nothing type (which

correspond with the regulatory enzymes of covalent modulation).

Certain enzymatic sets may receive an external substrate flux.

The regulatory signals come from any subsystem of the network

and do not require any flux relationship.

Each subsystem transforms the input substrate fluxes and

regulatory signals into the output catalytic activity. The input-

output conversion is performed in two stages. In the first one, the

input fluxes are transformed in an internal enzymatic activity of

the subsystem by means of flux integration functions. In the second

stage, the received regulatory signals modify the internal

enzymatic activity converting it into output catalytic activity.

The flux integration functions are based in the quantitative

catalytic studies of the amplitude and frequency of the glycolytic

patterns obtained by Goldbetter and Lefever in [80] under

dissipative conditions. In the second stage, the internal enzymatic

activity is modified by means of the regulatory signals integration,

which depends on the combination of the received regulatory

signals. Each regulatory signal has an associated regulatory

coefficient which defines the intensity of its influence.

In agreement with experimental observations [1], the output

activity of all the enzymatic subsystems may be oscillatory or

steady state and comprise a very large number of distinct activity

regimes. When a subsystem shows an activity with rhythmic

behaviour the output catalytic activities present nonlinear

oscillations with different levels of complexity, as it could be

expected in cellular conditions. Therefore, in the subsystems a

large number of transitions between periodic oscillations and

steady-states including deterministic chaotic patterns may emerge.

The mechanism that determines the complex catalytic behaviour

is not prefixed by any part of the metabolic system. There are not

rules that determine the network to present complex transitions in

the output activities of the metabolic subsystems. The complex

dynamic behaviours which spontaneously emerge in the metabolic

network have their origin in the regulatory structure of the

feedback loops, and in the nonlinearity of the constitutive

equations of the biochemical system.

Numerous mathematical studies on metabolic rhythms have

contributed to a better understanding of the functionality of the

enzymatic subsystems in cellular conditions. Most of the functional

biochemical studies have been carried out by means of systems of

differential equations e.g., in the Krebs cycle [81], in the amino

acid biosynthetic pathways [82], in the oxidative phosphorylation

subsystem [83], in the glycolytic subsystem [84], in the

transduction in G-protein enzyme cascade [85], in the gene

expression [86], in the cell cycle [87]. Likewise, in order to

understand the emerging dynamics in a single enzymatic set

dissipatively structured we have also investigated the yeast

glycolytic subsystem by means of a system of differential equations

with delay [88]. In these studies we have analyzed different

attractor dynamics linked to Hopf bifurcations [89], tangent

bifurcations [90], the classical period-doubling cascade preceding

chaos [91] and the multiplicity of coexisting attractors in the phase

space [91,92].

In all these studies, it is assumed that each metabolic subsystem

forms a unique dynamical system governing by different attractors

[1]. Therefore, the subsystems carry out their activity with

autonomy between them and play distinctive and essential roles

in the cell [65].

In a DMN, two kinds of attractors emerge: systemic and local

[74].

The asymptotic behaviours of activities of all metabolic

subsystems form systemic attractors in the phase space of the

global metabolic system [74]. At the same time, the subsystems

show local attractors which are defined by their local variables.

In a recent work, we have shown that the local attractors

belonging to the enzymatic subsystems are not projections of the

systemic attractors. The systemic attractors and the local attractors

of the subsystems are topologically different [74].

Therefore, a dissipative metabolic network can be considered as

a super-complex dynamic structure which integrates a set of

Metabolic Core and Catalytic Switches in Cells
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different dynamic systems (the metabolic subsystems) forming a

dynamical-super-system [74].

2. Subsystem activities
All the explicit details on how DMNs are constructed can be

found in [68,70,73,74] and are sketched in what follows.

Formally, we assume that the activity of the i-th enzymatic

subsystem is defined by

yi(t)~BizAisin 2pvitð Þ,

where Ai is the amplitude of oscillation, Bi is the baseline and vi is

the oscillation frequency. Moreover, to have yi(t)w0 we assume

that 0ƒAiƒBi and the baselines and frequencies are bounded

values, so there exists Bmax and vmax such that

BiƒBmax and viƒvmax Vi:

In this way, the activity of each subsystem yi(t) is characterized by

three variables xi,1, xi,2 and xi,3, with values between 0 and 1 such

that

Bi~xi,1Bmax,

Ai~xi,2Bi,

vi~xi,3vmax,

A subsystem is inactive when xi,1~0, and is in a steady state when

xi,2~0 or xi,3~0.

We fix 0vTvz? and define Dt~T=M as the time interval

during which the oscillations is maintained in the m-th time

interval between tm{1~(m{1)Dt and tm~mDt. In that interval,

the activity of the i-th subsystem is determined by the vector

xm
i ~(xm

i,1,xm
i,2,xm

i,3) and the state matrix by

X m~

xm
1

..

.

xm
N

0
BB@

1
CCA~

xm
1,1 xm

1,2 xm
1,3

..

. ..
. ..

.

xm
N,1 xm

N,2 xm
N,3

0
BB@

1
CCA,

which characterizes the whole DMN system, with N the total

number of subsystems.

3. Flux integration
Let us suppose that the i-th subsystem receives a flux from the j-

th. Its internal activity represented by zm
i will be computed by

three flux integration functions:

zm
i,1~F1 xm

j,1,pi,1

� �
,

zm
i,2~F2 xm

j,2,pi,2

� �
,

zm
i,3~F3 xm

j,3,pi,3

� �
,

Where pi,1, pi,2 and pi,3 are parameters associated to the flux

integration function which are characteristic of each metabolic

subsystem, and the Fi are piecewise linear approximations for

nonlinear functions obtained by Goldbeter and Lefever in [80]. In

this paper, the functions will be the following:

F1 x,pð Þ~F2 x,pð Þ~

0, if xƒ0:1,

2:5 x{0:1ð Þ if 0:1vxƒ0:3,

0:5z
p{0:5

0:5
x{0:3ð Þ if 0:3vxƒ0:8,

p

0:1
0:9{xð Þ if 0:8vxƒ0:9,

0, if xw0:9,

8>>>>>>>><
>>>>>>>>:

and

F3 x,pð Þ~

0, if xƒ0:1,

2:5 x{0:1ð Þ if 0:1vxƒ0:3,

0:5z
p{0:5

0:6
x{0:3ð Þ if 0:3vxƒ0:9,

p, if xw0:9:

8>>>>><
>>>>>:

When a subsystem receives different fluxes from at least two

subsystems, we compute the arithmetic mean of the F-values

previously calculated.

4. Regulatory signal integration
In this second stage, the internal activity values are modified

using the signal integration functions, which depend on the

combination of the received regulatory signals and their

corresponding parameters (regulatory coefficients). In the meta-

bolic subsystems, the existence of some regulatory enzymes (both

allosteric and covalent modulation) increases the interconnection

among them. The allosteric enzymes present different sensitivities

to the effectors, which can generate diverse changes on the kinetic

parameters and in their molecular structure; likewise, the

enzymatic activity of covalent modulation also presents different

levels of regulation. These effects on the catalytic activities are

represented in the dynamical system by the regulatory coefficients

and consequently each signal has an associated coefficient which

defines the intensity of its influence.

There exist three kinds of signal integration functions:

-Activation function AC.

-Inhibition function IN.

-Total inhibition function TI.

In this way, to compute xmz1
i from zm

i the i-th subsystem

receives enzymatic regulatory signals from r subsystems and they

work sequentially computing

zm
i ~ xm

i

� �0? xm
i

� �1? xm
i

� �2? . . . . . .? xm
i

� �r
~xmz1

i

where each step depends on the signal type. From xm
i

� �s
to

xm
i

� �sz1
if the signal is AC and is received from the j-th MSb

xm
i,k

� �sz1

~AC xm
i,k

� �s

,xm
j,k,qi,k

� �

~1{ qi,k{1ð Þxm
j,kz1

� �
1{ xm

i,k

� �s� �
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for k = 1, 2, 3 and qi,k are regulatory coefficient to each allosteric

activity signal which represents the sensitivity to the allosteric

effectors.

If the allosteric signal is inhibitory

xm
i,k

� �sz1

~IN xm
i,k

� �s

,xm
j,k,qi,k

� �
~ qi,k{1ð Þxm

j,kz1
� �

xm
i,k

� �s

,

and, finally, if the signal is of the total inhibition type

xm
i,k

� �sz1

~TI xm
i,k

� �s

,xm
j,k,d

� �
~

xm
i,k

� �s

, if xm
j,kvd

0, if xm
j,k§d,

8<
:

where d, the threshold value, is the regulatory coefficient

associated to each enzymatic activity signal of covalent modulation

which defines the intensity of its influence.

5. Metabolic network generation
First, we have fixed the following elements as control

parameters: (1) 18 subsystems in the DMN, (2) three substrate

input fluxes for each subsystem (each MSb can receive a

maximum of three substrate fluxes and it is not restricted the

number of flows leaving of them), (3) three input regulatory signals

for each metabolic subsystem and (4) the same number of signals

per class (allosteric activation, allosteric inhibition and covalent

modulation). Certain metabolic subsystems may receive a

substrate flux from the exterior and we have arbitrarily fixed the

MSb3 and the MSb10 for this function.

Having fixed these elements, the structure of the network has

been randomly configured, including: (1) the topology of flux

interconnections and regulatory signals, (2) the pi parameters

associated to the flux integration functions, (3) the qi regulatory

coefficients to the allosteric activities, and (4) the values of the

initial conditions in the activities of all metabolic subsystems (Table

S1).

The values of pi and qi are random numbers between 0 and 1.

The changes in the parameters pi modify the flux integration

functions. The values of qi represents the influence level of the

allosteric regulatory signals (qi&0 for a low level and qi&1 for a

high level). The random values of the parameters pi and qi

originate metabolic networks with a great variety of catalytic

activities in each subsystem.

We have taken the constants Amax, Bmax, and vmax equal to 2,

and d, = 0.54 the threshold value of the regulatory coefficient

associated with the covalent modulation signal which defines the

intensity of its influence.

Finally, given T and M we calculate the activity matrices X m for

m = 1,…, M using the flux integration functions and regulatory

signals.

After numerical integration of the selected network, we generate

a discrete time-series for the 3-tuples (xk
1,xk

2,xk
3). For all cases, the

series of baseline, amplitude and frequency are analyzed after

1000 transitions.

6. Representation of the activity of the metabolic
subsystems

We consider a number N of transitions. At the k-th iteration-step

we suppose that the oscillation is harmonic, that is, the activity of

the subsystem is described by a function of the form

y(t) = B+Asin(2pvt), where B~xk
1Bmax, A~xk

2Amax and

v~xk
3vmax, and where Bmax and vmax are fixed parameters

independent on the stage number and on the subsystem. The

duration of the harmonic oscillation is a given parameter Th

independent also on the stage and on the subsystem. Along the two

stages, a mixed transition regime is maintained with a duration Ttr

which is independent of the stage number and of the subsystem. If

the transition goes from the k-th stage to the (k+1)-th stage then,

during the Ttr seconds of the transition regime, the activity is given

by a function of the form y tð Þ~A tð Þy1 tð ÞzB tð Þy2 tð Þ, where y1 tð Þ
is the activity corresponding to the prolongation in time of the

previous harmonic activity in the k-th stage, and y2 tð Þ is the back-

propagation in time of the subsequent harmonic activity in the

(k+1)-th stage. The numbers A tð Þ and B tð Þ are time dependent

and indicate the weights with which the activities of the subsystem

in the previous and posterior stage are present during the

transition time. At the beginning of the transition, say t~t0,

A t0ð Þ is 1 and B t0ð Þ is 0, and at the end of the transition, say t~t1,

A t1ð Þ is 0 and B t1ð Þ is 1. At the rest of the transition times A tð Þ
and B tð Þ vary according to A tð Þ~ t{t1

t0{t1
, B tð Þ~ t{to

t1{t0
. Finally,

during the transition time the activity is given by

y tð Þ~ t{t1

t0{t1
xk

1Amaxzxk
1xk

2Amaxsin xk
3 n maxt

� �� �
z

t{t0

t1{t0
xkz1

1 Amaxzxkz1
1 xkz1

x Amaxsin xkz1
3 n maxt

� �� �
:

The transition regimes are combinations of two harmonic

oscillations with nonconstant coefficients A tð Þ and B tð Þ depending

on time. Thus, the introduction of these transition regimes

provokes the emergence of nonlinear oscillatory behaviors, both

simple and complex.

7. Example of a simple DMN
We will consider a simple MN formed by two subsystems

arranged in series with two feedback loops of regulatory signals.

The MSb1 is activated by the second subsystem and the MSb2 is

totally inhibited by the first subsystem when the MSb1 activity

reaches a determinate threshold value. The input flux value of the

MSb1 is x�1,1~0:25, x�1,2~0:17, x�1,3~0:33, with p1,1~0:82,
p1,2~0:69,p1,3~0:74. Parameter values for the integration

functions of MSb2 are: p2,1~0:81, p2,2~0:90, p2,3~0:72. The

catalytic dissipative element MSb1 is activated by the second MSb,

with q1,1~0:29, q1,2~0:03, q1,3~0:09 and the MSb2 is totally

inhibited by MSb1, with a threshold d= 0.18.

The initial state is

x1
1,1~0:54, x1

1,2~0:19, x1
1,3~0:77,

x1
2,1~0:36, x1

2,2~0:49, x1
2,3~0:79:

After the flux integration stage we reach an internal enzymatic

activity with:

z1
1,1~F1 0:25,0:82ð Þ~0:375,

z1
1,2~F2 0:17,069ð Þ~0:175,

z1
1,3~F3 0:33,0:74ð Þ~0:512,

z1
2,1~F1 0:54,0:81ð Þ~0:6488,

z1
2,2~F2 0:19,0:90ð Þ~0:225,

z1
2,3~F3 0:77,0:72ð Þ~0:7068,

After the signal regulatory integration stage we obtain the

following activity state

Metabolic Core and Catalytic Switches in Cells
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x2
1,1~AC 0:375,0:36,0:29ð Þ~0:53475,

x2
1,2~AC 0:175,0:49,0:03ð Þ~0:5671225,

x2
1,3~AC 0:512,0:79,0:09ð Þ~0:8628232,

x2
2,1~TI 0:6488,0:54,0:2ð Þ~0,

x2
2,2~TI 0:225,0:19,0:2ð Þ~0,

x2
2,3~TI 0:7068,0:77,0:2ð Þ~0:

In the DMN the first metabolic subsystem will fall into a single

active state, corresponding to a periodic oscillation, and the second

subsystem is locked into an inactive state.

8. Pearson correlation
Pearson correlation is the simplest manner to quantify the

statistical dependency between two dynamical variables. Values of

Pearson correlation lie between 21 and 1. Two variables are

perfectly correlated, meaning that when one variable increases the

other does the same with the same proportion (one variable is up

the other is up). The value 21 corresponds to the two variables

being perfectly anti- correlated (one variable is up the other is

down). The case zero-correlation corresponds to having two

statistically independent variables.

The concept of synchronicity can also be related to correlations.

High or low correlation values can be mapped to a high or low

synchronicity between the two variables.

We have computed pairwise Pearson correlations between time

series of amplitude of enzymatic activity. For each pair of time

series, we shuffled the series to remove any statistical dependence

between the two variables. After 50 repetitions of the shuffling

experiment, the distribution of the correlation values is calculated.

This distribution constitutes the null hypothesis since all

dependencies have been removed by the shuffling procedure.

Values of correlations with pvalue larger than 0.05 were reset to

zero. In this way, we define the statistical significance of the

correlations values given in Tables 1 and 2.

9. State probabilities, Uncertainty and Shannon Entropy
Let consider that the enzymatic activity of a given metabolic

subsystem as represented by X: xtf gT
t~1, with xt being the state at

time t.

To compute probabilities, we considered the whole duration of

the time series, and after counting the number of times in which

the variable X is in state x, and dividing by time series length, we

have the probability p(x), which is the normalized frequency of

variable X in state x.

The uncertainty for a state x is defined as log
1

p xð Þ; the smaller

the probability for a given state x the less occurrence for that

event, and therefore the more uncertain it is.

The Shannon Entropy H Xð Þ:{
P

p xð Þlog p xð Þ is the

average uncertainty in the random variable X. The Entropy

satisfies that H Xð Þ§0 as 0ƒp xð Þƒ1. When the log is computed

in base 2 (the case considered here) the Entropy is measured in

bits.

The joint Entropy H(X,Y) between two random variables X

and Y is just an extension of H(X) to 2-dimensions, i.e.

H X,Yð Þ:{
P

p x,yð Þlog p x,yð Þ, where the joint probability

p(x,y) accounts for events in which the variable X is in the state

x and simultaneously Y is in y. Analogously one can extend this

Entropy to more than two variables.

10. Transfer Entropy
TE quantifies the information flow between pairs of metabolic

subsystems. The oscillatory patterns of the biochemical metabo-

Table 1. Functional Connectivity based on Pearson Correlations: both stimuli S1 and S2.

Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Sb11 Sb12 Sb13 Sb14 Sb15 Sb16 Sb17 Sb18

Sb1 1.00 0.34 20.44 20.01 20.04 20.09 20.15 20.30 20.38 20.44 0.26 20.10 20.19 0.65 0.00 20.69 20.52 20.04

Sb2 0.34 1.00 20.58 0.21 0.28 0.36 0.09 20.04 20.46 20.60 0.34 0.11 0.03 0.12 0.00 0.00 20.02 0.00

Sb3 20.44 20.58 1.00 20.30 0.23 0.19 0.22 0.24 0.81 0.82 20.55 0.40 0.19 20.07 0.00 0.42 0.46 0.42

Sb4 20.01 0.21 20.30 1.00 20.31 20.33 20.19 20.02 20.20 20.37 20.34 20.67 20.72 20.19 0.00 20.31 20.48 0.14

Sb5 20.04 0.28 0.23 20.31 1.00 0.90 0.68 0.54 0.20 0.11 0.03 0.80 0.40 0.23 0.00 0.45 0.32 0.55

Sb6 20.09 0.36 0.19 20.33 0.90 1.00 0.48 0.27 0.33 0.19 0.12 0.80 0.56 0.25 0.00 0.43 0.46 0.53

Sb7 20.15 0.09 0.22 20.19 0.68 0.48 1.00 0.89 0.05 0.06 20.22 0.59 0.20 20.00 0.00 0.42 0.18 0.54

Sb8 20.30 20.04 0.24 20.02 0.54 0.27 0.89 1.00 20.07 20.04 20.43 0.38 20.10 20.27 0.00 0.45 0.00 0.36

Sb9 20.38 20.46 0.81 20.20 0.20 0.33 0.05 20.07 1.00 0.84 20.29 0.35 0.37 0.09 0.00 0.28 0.48 0.48

Sb10 20.44 20.60 0.82 20.37 0.11 0.19 0.06 20.04 0.84 1.00 20.26 0.35 0.48 0.11 0.00 0.39 0.59 0.34

Sb11 20.10 0.11 0.40 20.67 0.80 0.80 0.59 0.38 0.35 0.35 0.09 1.00 0.71 0.19 0.00 0.53 0.56 0.39

Sb12 20.10 0.11 0.40 20.67 0.80 0.80 0.59 0.38 0.35 0.35 0.09 1.00 0.71 0.19 0.00 0.53 0.56 0.39

Sb13 20.19 0.03 0.19 20.72 0.40 0.56 0.20 20.10 0.37 0.48 0.53 0.71 1.00 0.21 0.00 0.50 0.74 0.06

Sb14 0.65 0.12 20.07 20.19 0.23 0.25 20.00 20.27 0.09 0.11 0.19 0.19 0.21 1.00 0.00 20.36 20.08 0.28

Sb15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sb16 20.69 0.00 0.42 20.31 0.45 0.43 0.42 0.45 0.28 0.39 20.03 0.53 0.50 20.36 0.00 1.00 0.75 0.03

Sb17 20.52 20.02 0.46 20.48 0.32 0.46 0.18 0.00 0.48 0.59 0.17 0.56 0.74 20.08 0.00 0.75 1.00 0.14

Sb18 20.04 0.00 0.42 0.14 0.55 0.53 0.54 0.36 0.48 0.34 20.39 0.39 0.06 0.28 0.00 0.03 0.14 1.00

Density (%): 86.728, Mean: 0.200, Std. Dev.: 0.418.
doi:10.1371/journal.pone.0027224.t001
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lites might have information which can be read-out by the

Transfer Entropy.

For a convenient derivation, let generally assume that the

activity of a given pair of metabolic systems is represented by the

two time series X:xt and Y:yt, with xt and yt representing the

instantaneous states of X and Y, so t~1, . . . ,T . Let make the

notation X P and Y P respectively for the pasts of X and Y and X F

for the future of X.

Let now define H X F jX Pð Þ:H X F ,X Pð Þ~H X Pð Þ as the

remaining uncertainty in X F known XP, where the H-functions

represent Shannon Entropies. H XFjXP
� �

is a positive-definite

quantity and has two extremes of interest; (1) The minimum

corresponds to H XFjXP
� �

~0, when knowing XP the uncertainty

in XF is completely determined and (2) the maximum,

H X F jX Pð Þ~H X Fð Þ, when knowing XP the uncertainty in XF

remains unchanged so both XP and XF are statistically

independent variables.

Analogously, H X F jX P,Y Pð Þ:H X F ,X P,Y Pð Þ{H X P,Y Pð Þ is

the remaining uncertainty in XF known XP and YP. The

difference H X F jX Pð Þ{H X F jX P,Y Pð Þ is by definition the

transfer entropy from Y to X, which denoted by TEY?X it is

quantifying the amount (number of digits) of information that the

inclusion of YP adds to the remaining uncertainty in X F

compared to the case in which solely is known XP. The term

‘‘information flow’’ comes from producing an uncertainty

reduction when adding the second variable

Before obtaining an explicit formula for the TE, some

comments about the definition of past and future events are

required. First, the past of X might be related with more than a

single time instant. This has been referred as the order of the

Markov Process, and it refers to the number of past instants one

should consider to compute the stationary probabilities for past

events. Calling m the order, the future states in the time series will

depend on the past m+1 events. Thus, we will take XP:xP
m such

as P xP
m

� �
~p xt,xtz1,xtz2, . . . ,xtzmð Þ with m§0 and analogously

for YP. xtz1 denotes the forward 1-lag time series and similarly

xtz2, . . . ,xtzm the forward 2-lags,…,m-lags. For the future time

series we simply take X F:xF
m,n~xtzmzn with n§1.

With these two considerations, and using the definition of

Shannon Entropy one obtains an explicit form for the Transfer

Entropy

TEm,n Y?Xð Þ:

P
P xP

m,yP
m,xF

m,n

� �
log2

P xP
m,yP

m,xF
m,n

� �
P xP

m

� �

P xP
m,xF

m,n

� �
P xP

m,yP
m

� �
0
@

1
A

The results of the effective connectivity graphs shown here were

computed for different values of m and n. In particular, we

performed measures for m = 2,3,4,5 and n = 5,10 and the results

did not change significantly.

It is important to remark that TEY?X is different to TEX?Y,

i.e., the effective connectivity is asymmetric, adding a direction-

ality which accounts for a particular case of directed graphs, the

graph of information flows between pairs of metabolic subsystems.

Alternatively to the Transfer Entropy, effective connectivity can

be obtained using Granger Causality [93], which addresses how

much the predictability of XF by looking only to XP is improved

when looking to both XP and YP. Recently, it has been proved

that in the case of Gaussian variables both Transfer Entropy and

Granger Causality are measuring exactly the same [94].

Therefore, the information flows based on Transfer Entropy and

the Granger causality coincide for Gaussian variables.

11. Binning probabilities and statistical significance of TE
The bin size to compute probabilities was fixed to 4. We did not

vary the bin size but addressed the statistical significance of our

Table 2. Functional Connectivity based on Pearson Correlations: only stimulus S1.

Sb1 Sb2 Sb3 Sb4 Sb5 Sb6 Sb7 Sb8 Sb9 Sb10 Sb11 Sb12 Sb13 Sb14 Sb15 Sb16 Sb17 Sb18

Sb1 1.00 0.50 20.14 0.18 0.11 0.05 20.21 20.25 20.37 20.23 20.37 0.30 20.39 0.73 20.18 20.56 0.04 0.06

Sb2 0.50 1.00 20.16 0.11 0.12 0.11 0.30 0.05 20.29 20.43 0.23 0.29 0.09 0.31 20.09 20.02 0.30 0.09

Sb3 20.14 20.16 1.00 20.31 0.14 0.01 0.11 0.12 0.55 0.24 20.11 0.23 0.03 20.20 0.46 0.00 20.27 0.24

Sb4 0.18 0.11 20.31 1.00 0.04 0.29 20.15 0.00 20.10 20.51 20.51 20.11 20.54 20.00 20.29 20.40 20.10 0.53

Sb5 0.11 0.12 0.14 0.04 1.00 0.81 0.80 0.81 20.10 20.32 0.11 0.84 20.04 0.00 20.10 0.28 0.42 0.21

Sb6 0.05 0.11 0.01 0.29 0.81 1.00 0.61 0.59 0.27 20.20 0.04 0.66 0.03 0.02 0.23 0.15 0.42 0.60

Sb7 20.21 0.30 0.11 20.15 0.80 0.61 1.00 0.88 20.09 20.34 0.53 0.68 0.30 20.26 20.10 0.60 0.50 0.00

Sb8 20.25 0.05 0.12 0.00 0.81 0.59 0.88 1.00 20.18 20.45 0.21 0.62 0.00 20.40 20.27 0.53 0.25 20.04

Sb9 20.37 20.29 0.55 20.10 20.10 0.27 20.09 20.18 1.00 0.56 0.05 20.06 0.34 20.18 0.90 0.03 20.07 0.63

Sb10 20.23 20.43 0.24 20.51 20.32 20.20 20.34 20.45 0.56 1.00 0.17 20.13 0.60 0.26 0.65 0.26 0.10 0.08

Sb11 20.37 0.23 20.11 20.51 0.11 0.04 0.53 0.21 0.05 0.17 1.00 0.13 0.80 20.21 0.16 0.59 0.62 20.22

Sb12 0.30 0.29 0.23 20.11 0.84 0.66 0.68 0.62 20.06 20.13 0.13 1.00 0.15 0.20 20.00 0.31 0.55 0.20

Sb13 20.39 0.09 0.03 20.54 20.04 0.03 0.30 0.00 0.34 0.60 0.80 0.15 1.00 20.03 0.46 0.72 0.59 0.02

Sb14 0.73 0.31 20.20 20.00 0.00 0.02 20.26 20.40 20.18 0.26 20.21 0.20 20.03 1.00 0.04 20.23 0.22 0.11

Sb15 20.18 20.09 0.46 20.29 20.10 0.23 20.10 20.27 0.90 0.65 0.16 20.00 0.46 0.04 1.00 0.06 0.04 0.53

Sb16 20.56 20.02 0.00 20.40 0.28 0.15 0.60 0.53 0.03 0.26 0.59 0.31 0.72 20.23 0.06 1.00 0.46 20.14

Sb17 0.04 0.30 20.27 20.10 0.42 0.42 0.50 0.25 20.07 0.10 0.62 0.55 0.59 0.22 0.04 0.46 1.00 0.19

Sb18 0.06 0.09 0.24 0.53 0.21 0.60 0.00 20.04 0.63 0.08 20.22 0.20 0.02 0.11 0.53 20.14 0.19 1.00

Density (%): 95.679, Mean: 0.190, Std. Dev.: 0.390.
doi:10.1371/journal.pone.0027224.t002
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results. This was achieved by comparing the obtained values of

TEY?X with the values obtained when considering a random

permutation of the future of X, which named the shuffled-future

of X constituted the null hypothesis. The non-zero values of TE

in Tables are statistically significant; non-significant values were

fixed to zero (pvalue = 0.05, Bonferroni correction for multiple

comparisons with n = 50 shuffling experiments).

Results

In order to investigate the functional importance of the

metabolic core we have constructed a dissipative metabolic

network of 18 subsystems, each of which represents a set of

functionally associated and dissipatively structured enzymes, called

indistinctly MSb, metabolic subsystem, enzymatic subsystem or

subsystem (see Model and Methods section for more details).

Figure 1 illustrates the topological structure of the metabo-

lic network which exhibits a complex organization of subs-

trate fluxes and regulatory signals. The different quantitative

characteristics of this dissipative metabolic network are given in

Tables S1 and S2.

Three types of biochemical signals are considered in the

network: activatory (positive allosteric modulation), inhibitory

(negative allosteric modulation) and an all-or nothing type

(corresponding to the regulatory enzymes of covalent modulation).

Some enzymatic subsystems exhibit different regulatory feedback

loops. Likewise, it can be observed that the MSb18 presents a self-

catalytic process.

Regulatory signals come from any subsystem of the network and

do not require any flux relationship.

The profile of flux connectivity has an average of SKT&4:4 and

exhibits some heterogeneity similar to the found in cellular

conditions e.g., one subsystem has connectivity 10 while another

has only K = 2).

Metabolic networks are open systems, and certain metabolic

subsystems may receive a substrate flux from the exterior. Here,

we have fixed the MSb3 and MSb10 for this function which

receive the constant substrate inputs of S1 = 0.54 and S2 = 0.16.

Figure 1. Topological structure of the dissipative metabolic network. The dissipative metabolic network formed by 18 catalytic subsystems
in which the interconnection by substrate fluxes (figure A) and input regulatory signals (figure B) are depicted. Each subsystem represents a set of
functionally associated enzymes which are dissipatively structured. Three classes of regulatory signals are considered: allosteric activation (blue),
allosteric inhibition (red) and covalent modulation (green). Non-directed edges in black represent a superposition of more-than-one classes of signals.
For instance, from MSb4 to MSb5 it exist a superposition of the three classes signals. The network might receive two substrate input fluxes S1 and S2,
applied respectively to MSb3 and MSb10 with constant values of S1 = 0.54 and S2 = 0.16 (represented in the graph by two in-ward arrows). A
(bottom): Black bars represent the total number of connections per subsystem (degree). Subsystem MSb2 is the hub, the node with a bigger number
of edges.
doi:10.1371/journal.pone.0027224.g001
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1. Catalytic dynamic behaviours
First, we have studied the catalytic dynamical patterns that

emerge under the two simultaneous external stimuli S1 and S2.

Under this stimulation condition, a Systemic Metabolic

Structure emerges spontaneously in the network in which the

MSb12 is always in an active state (metabolic core), the MSb15 is

always inactive whereas the rest of subsystems exhibit intermit-

tently catalytic activities (on-off changing states) see figure 2A1.

The active subsystems present complex output catalytic patterns

with large periodic transitions between oscillatory and steady state

Figure 2. Dynamic catalytic patterns of the dissipative metabolic network. The network was perturbed by two different external conditions:
(I) two simultaneous substrate input fluxes S1 and S2 (left column in panel) and (II) only with the stationary stimulus S1 (right column). (A1) Under the
external condition I, a Systemic Metabolic Structure spontaneously emerges in the network in which the enzymatic subsystem MSb12 is always
activity (metabolic core), the catalytic subsystem MSb15 is inactive, whereas the rest of enzymatic sets exhibit on-off changing states. (A2) In the
condition II the network preserves the Systemic Metabolic Structure exhibiting flux plasticity which involve persistent changes in all the catalytic
patterns (see B and C) and structural plasticity which results in a persistent change in the dynamic state of the subsystem MSb15 with a transition
from an off to an on-off changing state. (B1) Example of the enzymatic activities of the enzymatic set MSb12 (metabolic core) with large number of
different catalytic transitions between periodic oscillations and steady-states emerge in the network under condition I. (B2) In the condition II,
persistent changes in the catalytic activity of the subsystem MSb12 can be observed (flux plasticity). (C1–2) During the metabolic self-regulation to the
two external conditions changes for the amplitude of the enzymatic sets activities can be observed (flux plasticity).
doi:10.1371/journal.pone.0027224.g002
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behaviours (105 transitions per period). Figure 2B1 shows a

representative time series activities belonging to the MSb12

exhibiting 30 transitions between oscillatory and steady state

behaviours.

Next, we have removed the external stimulus S2 and considered

only the stationary input flux of substrate S1.

Under this new stimulation condition, the same network

undergoes a drastic reorganization of its catalytic dynamics

showing flux plasticity which involve persistent changes in all the

catalytic activities (see figure 2B1–B2 and 2C1–C2), and structural

plasticity which imply a persistent change in the state of the

MSb15 (in the first conditions with the stimuli S1 and S2, the

MSb15 was previously inactive and now is locked in an on-off

changing dynamics), see figure 2A2–C2.

After the external perturbation with one stimulus S1, all

subsystems present complex periodic activity with 350 different

transitions between oscillatory and steady state behaviours (in

figure 2B2 an example of 30 transitions in the catalytic activity of

the MSb12 can be observed).

Despite the drastic catalytic changes observed in the time

evolution of the dynamics of the subsystems, the network preserves

its Systemic Metabolic Structure, i.e., the MSb12 is the metabolic

core and the rest of subsystems continue exhibiting an intermit-

tently active dynamics.

The complex dynamic behaviors which spontaneously emerge

in the network have their origin in the regulatory structure of the

feedback loops, and in the nonlinearity of the constitutive

equations of the system. Therefore, the mechanism that

determines these large transitions is not prefixed in any of the

parts of the metabolic system and no rules determine the system to

present complex transitions in the output activities of the

metabolic subsystems.

Next, we have used the amplitude of the different catalytic

patterns (see some examples in figure 2C) to study both functional

connectivity based on Pearson correlation and effective connective

based on Transfer Entropy (details below).

2. Functional connectivity based on Pearson correlation
Pearson correlation allow for a straightforward quantification of

statistically dependencies between pairs of dynamical variables

(further details in Model and Methods section).

The results of the Pearson correlation analysis are given in

Tables 1 and 2 (pvalue,0.05, n = 50 experiments, Bonferroni

correction).

The graph of the functional correlations is highly dense for both

stimulation conditions, cf. figure 3 top panel, densities of 86.7%

(figure 3A) and 95.7% (figure 3B). This density is defined as the

number of significant connections divided all the possible

connections. Such robustness preserving a high density of

connections is an evidence of the systemic organization of the

metabolic network as the dynamics of the different subsystems are

statistically dependent each other.

The statistical dependencies existing in high correlation (or anti-

correlation) values between pairs of subsystems is corresponding to

having similar (or opposite) functionality. The high density of

connections based on correlations is indicating that there are

common functionalities among most of the pairs of subsystems

(about a 90% of the total). Contrarily, the subsystems with zero-

correlation (about a 10%) do not interact directly with each other,

but they can make it through common nearest neighbors.

In figure 3 top panel, we plotted in black the positive

correlations (about a 70% of the total) indicating variables with

similar function and in red variables with negative correlations,

with opposite function (about a 30%).

For the situation of both stimuli S1and S2 the MSb15 is an off

subsystem, therefore there are no correlations with any of the

subsystems.

It is important to remark that in the case of having very high

values of correlation it is possible to extract information about the

synchronization in the dynamics of pairs of subsystems. High

values of correlation indicate that the two variables do either

increase or decrease at the same time (phase-locked), thus in a

synchronized manner. In a similar way, very low values of

correlation identify to anti-synchronized subsystems. We have not

found such high values though (the lowest value was 20.72). In

order to detect good synchronization values, we have fixed a

threshold of correlation equals 0.8. The percentage of synchro-

nized subsystems pairs is about the 4% of the total (7 subsystems

pairs of a total 153) and that percentage kept constant for the two

stimulation conditions. However, although the percentage of

synchronized pairs was the same, the group of subsystems being

synchronized did change. Thus, for instance, for the stimulation

condition I (two external stimuli) the core MSb12 was synchro-

nized with subsystems MSb5 and MSb6 (correlations values of

0.80) and for condition II (one external stimulus) the core

increased the synchronization to MSb5 (from 0.80 to 0.84) but

de-synchronized with MSb6 (from 0.80 to 0.66), Therefore, the

patters of synchronization among different enzymatic sets also

changed with the experimental condition.

3. Effective connectivity based on Transfer Entropy
Transfer Entropy quantifies the uncertainty reduction in the

future activity of some metabolic subsystems when adding

information of others. Unlike Pearson correlations, the effective

connectivity based on TE can distinguish causal relations between

the catalytic activities. TE is measured in information bits (see

Model and Methods section).

For the first stimulation condition, in which the network

receives two simultaneous stimuli S1 and S2, the graph of effective

connections is shown in figure 3C. The arrows of the graph

illustrate that the TE has directionality the arrows thickness is

proportional to the values of TE given in Table 3.

The analysis shows that there are only 9 metabolic subsystems

with statistical significant TE connections (figure 3C). Each of

these 9 subsystems are effectively connected with other 8

subsystems by information flows (except the core MSb12 which

is connected to 7 enzymatic sets).

When comparing the TE connectivity to the Pearson correla-

tion the density of connections goes down very considerably, the

density is equal to 86.7% for correlation versus a 10.8% for TE

(Tables 1 and 3), thus the effective connectivity based on TE is

about 8 times less dense than the functional connectivity based on

Pearson correlation, what it can be easily observed comparing

figures 3A and 3C.

The maximum value of TE equal to 0.179 information bits is

corresponding to the connection from MSb16 to MSb13. The

mean value of TE connections is 0.079 and the standard deviation

is 0.065 (cf. Table 3).

For the second stimulation condition, in which the stimulus S2

was suppressed, the values of TE are given in Table 4 and its

graph is plotted in figure 3D.

By a simple inspection of figure 3D (one stimulus) versus 3C

(two stimuli) the structure of the effective information flows is now

more complex: (1) 10 of the 18 enzymatic sets have effective

connections, 8 of the 10 are connected to 9 others, except the

subsystems MSb3 and MSb4 which are connected to 8, (2) the

density of effective connections grows from 10.802 (two stimuli) to

13.580 (one stimulus), and (3) not only the density increased but
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the connections made stronger (mean values grow from 0.079 to

0.133 and the maximum value of effective connectivity is 0.377

versus 0.179 information bits, this maximum goes from MSb2 to

MSb8, thus appearing at a completely different location under two

external stimulus where the maximum was from MSb16 to

MSb13.

Therefore, the TE analysis reveals that the structure of effective

information flows is dynamical and it strongly varies depending on

the two external conditions.

This is also further illustrated in the effective connectivity

dynamics of the metabolic core (figure 4). One can see how (1)

some connections preserved from switching the condition I (two

stimuli) to II (one stimulus) e.g., from MSb6 to MSb12, but

changed the TE values from 0.017 information bits to 0.112, (2)

others preserved but inverted the directionality in time, e.g., the

connection from MSb4 to MSb12 in condition I flipped its

direction in condition II, and (3) some others were newly created

e.g., the connection from MSb12 to MSb13 emerged in condition

Figure 3. Functional correlations vs Effective connectivity. (Top): Functional connectivity based on Pearson correlations. A connection in the
graph is corresponding to have a statistical significant correlation between two variables. Note that the correlation is a symmetric measure, so the
edge is non-directed. The edge thickness for each graph is proportional to the correlation values given in Tables 1 and 2. About the 32% of the total
connections are negative (depicted in red). In black we plotted positive correlations, in red negative correlations and in green the synchronized
subsystems (see text for details). The high density of connections is an evidence of the systemic organization of the metabolic network. (Bottom):
Effective connectivity based on Transfer Entropy. Because the TE is a non-symmetric measure now edges are directed. Similar to correlations, the
edge thickness is proportional to the values of TE given in Tables 3 and 4. The TE analysis shows a dynamical functional organization of effective
connectivity in the metabolic network. (Top and Bottom): Different enzymatic subsystems are plotted in different colors, light-blue for on-off
enzymatic sets, red for the on enzymatic subsystem (metabolic core) and dark-gray for the off metabolic subsystem, occurring only for MSb15. The
density of the graph is defined as the number of significant connections divided by the possible number of connections. Both values of correlations
and TE are statistical significant (pvalue,0.05, Bonferroni correction, n = 50 experiments).
doi:10.1371/journal.pone.0027224.g003
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II. Thus, the paths in which the metabolic core is participating

have drastic variations when changing the external conditions.

Similarly, those changes depending on external conditions also

occur for other enzymatic sets cf. figure 4B for MSb4 and figure 4C

for MSb13.

A further exploration shows a modular organization of the

effective information flows, in which some sets of subsystems are

clustered forming metabolic sub-networks. This is illustrated in

figure 5. Thus, for the stimulation condition I (two stimuli), the

network exhibits three different modules: a, b and c and the

Table 3. Effective Connective based on Transfer Entropy: both stimuli S1 and S2.

To1 To2 To3 To4 To5 To6 To7 To8 To9 To10 To11 To12 To13 To14 To15 To16 To17 To18

From1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.009 0.000 0.000

From3 0.000 0.114 0.000 0.104 0.000 0.004 0.173 0.000 0.000 0.000 0.000 0.000 0.113 0.000 0.000 0.116 0.000 0.000

From4 0.000 0.005 0.000 0.000 0.000 0.071 0.000 0.107 0.000 0.000 0.000 0.176 0.000 0.000 0.000 0.000 0.000 0.000

From5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From6 0.000 0.122 0.000 0.000 0.000 0.000 0.072 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000

From7 0.000 0.082 0.000 0.157 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.173 0.000 0.000 0.102 0.000 0.000

From8 0.000 0.038 0.042 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.116 0.004 0.000 0.000 0.004 0.000 0.000

From9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From12 0.000 0.005 0.002 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From13 0.000 0.000 0.000 0.178 0.000 0.076 0.000 0.000 0.000 0.000 0.000 0.173 0.000 0.000 0.000 0.000 0.000 0.000

From14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From16 0.000 0.000 0.000 0.176 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.179 0.000 0.000 0.000 0.000 0.000

From17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Density (%): 10.802, Mean: 0.079, Std. Dev.: 0.065, Max.: 0.179.
doi:10.1371/journal.pone.0027224.t003

Table 4. Effective Connectivity based on Transfer Entropy: only stimulus S1.

To1 To2 To3 To4 To5 To6 To7 To8 To9 To10 To11 To12 To13 To14 To15 To16 To17 To18

From1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From2 0.000 0.000 0.110 0.136 0.000 0.120 0.123 0.377 0.000 0.000 0.000 0.208 0.124 0.000 0.000 0.102 0.000 0.045

From3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.000 0.000 0.000 0.059 0.334 0.000 0.000 0.262 0.000 0.272

From4 0.000 0.000 0.000 0.000 0.000 0.085 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From6 0.000 0.000 0.244 0.000 0.000 0.000 0.000 0.078 0.000 0.000 0.000 0.112 0.000 0.000 0.000 0.000 0.000 0.000

From7 0.000 0.000 0.092 0.125 0.000 0.002 0.000 0.212 0.000 0.000 0.000 0.019 0.190 0.000 0.000 0.149 0.000 0.083

From8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.128 0.000 0.000 0.000 0.000 0.000

From9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From12 0.000 0.000 0.000 0.066 0.000 0.000 0.000 0.153 0.000 0.000 0.000 0.000 0.124 0.000 0.000 0.134 0.000 0.059

From13 0.000 0.000 0.000 0.128 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.139 0.000 0.000

From14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From16 0.000 0.000 0.000 0.267 0.000 0.008 0.000 0.171 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From18 0.000 0.000 0.000 0.253 0.000 0.008 0.000 0.096 0.000 0.000 0.000 0.000 0.104 0.000 0.000 0.281 0.000 0.000

Density (%): 13.580, Mean: 0.133, Std. Dev.: 0.089, Max.: 0.377.
doi:10.1371/journal.pone.0027224.t004
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modular organization did not preserve but also changed with the

external stimulation. In condition II (one stimulus) a module

preserved as also existed in condition I, the b module preserved

but inverted the time directionality and finally, a new d module

emerged, mainly connecting the Msb18.

The transitions between the modules provoke permanent

changes in all the catalytic activities of subsystems (see figures 2B

and 2C) and these metabolic switches are triggered by changes in

the external conditions.

4. Total information flow
In order to extract new functionality based on TE, we have

computed the total information flow, defined as the out-ward TE

minus the in-ward TE per each enzymatic set. Thus, positive

values are corresponding to sources and negative values to sinks of

effective information (Tables 5 and 6).

One can observe that despite the drastic variations in

connectivity structure reported in previous subsection, in terms

of total information flow some metabolic subsystems did not

Figure 4. In-ward and Out-ward of bio-molecular information flows. Same information as bottom graphs in Fig. 3 but with another view
point. For subsystems MSb12 (A), MSb3 (B) and MSb13 (C) we plotted the in-ward and out-ward TE for the two stimulation conditions (left and right
columns). With the letters (s), (m) and (a) we are referring respectively to sender, messenger and addressee. The dynamical functional structure of
effective information flows depends strongly on the two external conditions showing significant variations of bio-molecular information flows.
doi:10.1371/journal.pone.0027224.g004

Metabolic Core and Catalytic Switches in Cells

PLoS ONE | www.plosone.org 13 November 2011 | Volume 6 | Issue 11 | e27224



change their attributes of being sources or sinks but preserved

along the external stimulation condition.

The subsystems which exhibit functional invariants are MSb3,

MSb4 MSb6, MSb7 and MSb13. Three of them are sources

(MSb3, MSb6 and MSb7), two of them sinks (MSb4 and MSb13)

(Figure 6).

Likewise, there are 4 enzymatic sets that did change their

attributes (Figure 6). Very remarkably, the metabolic core MSb12

is one of the non-invariants, inverting its function from being a

sink in condition I (two external stimuli) to a source in condition II

(one external stimulus).

Finally, the analysis shows that the invariant MSb3 did not

change along the stimulation conditions not only its attribute of a

source but either its magnitude, possibly encoding the stimulus S1.

Discussion

In order to investigate the functional importance of the

metabolic core, i.e. the enzymatic processes always in an active

state, we have quantified essential aspects of the effective

functional connectivity in a dissipative metabolic network of 18

metabolic subsystems, each one representing a set of enzymes

functionally associated and dissipatively structured.

The metabolic network presents a topological organization of

substrate fluxes with most of the nodes with low connectivity and a

few hubs [95]. Likewise, the network includes an intricate

structure of regulatory signals of allosteric and covalent modula-

tions. Some enzymatic subsystems also exhibit regulatory feedback

loops and one of them presents an autocatalytic process.

Figure 5. Modularity in the metabolic network. Different sets of enzymatic subsystems form modules of effective connectivity. A: both stimuli
S1 and S2 are presented to the network. B: only stimulus S1 is presented. A,B: Same TE information as in Fig. 3 (bottom) but with a different
viewpoint. We colored the edges grouping the enzymatic subsystems in different modules. In green we plotted the connections which were
preserved for the two stimulation conditions (module alpha). In pink the connections existing in both A and B but with inverted directionality
(module beta), thus flipping the causality direction given by the sign of the TE. In dark-blue we plotted the connection only existing in condition A,
but disappearing in B (module gamma), and the opposite around, connections in B but not in A are plotted in yellow (module delta).
doi:10.1371/journal.pone.0027224.g005

Table 5. Total information flow: both stimuli S1 and S2.

MSb 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

flow 0.000 20.333 0.580 20.258 0.000 0.046 0.265 0.097 0.000 0.000 0.000 20.466 20.065 0.000 0.000 0.134 0.000 0.000

doi:10.1371/journal.pone.0027224.t005
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Under two stationary input fluxes of substrate which act

simultaneously (external stimuli S1 and S2) the numerical analysis

of the network shows that the enzymatic subsystems exhibit

complex catalytic activities with large number of different

transitions between oscillatory patterns and steady-states. Likewise,

in the dissipative network spontaneously emerges a Systemic

Metabolic Structure (SMS) in which the MSb12 is the metabolic

core, the MSb15 is inactive, whereas the rest of subsystems exhibit

intermittently active dynamics, i.e., on-off changing states.

Despite the complex activity observed in each subsystem with a

large number of different catalytic transitions between periodic

oscillations and steady-states, the network preserves the Systemic

Metabolic Structure. These kinds of local catalytic dissipative

responses (transitions between oscillatory patterns and steady-

states) [1] and the global functional structure (one metabolic core,

an MSb inactive and the rest of subsystems in an on-off chang-

ing state) are in accordance with experimental observations

[71,72,96].

Once the dynamical catalytic behavior was studied, we next

analyzed the Pearson correlation between pairs of time series of

metabolic subsystems. The results showed that 1) the enzymatic

sets are densely connected, 2) positive correlations are dominant

versus negative correlations and 3) only a 4% of subsystems are

synchronized. Consequently, it exists a systemic metabolic

structure in which the different subsystems are statistically

dependent each other. This systemic structure of correlations is

highly dynamical, and it changes depending on external

conditions.

But functional correlations do not imply effective connectivity,

and therefore, Pearson correlations do not distinguish between

causal and non-causal informational interactions [97].

For this reason, in the second analysis, we have used Transfer

Entropy (TE) to establish the effective functional connectivity in

the network. Concretely, we have applied this method for a

quantification of how much the temporal evolution of the activity

of one enzymatic subsystem helps to reduce the uncertainty in the

future of another.

The analysis of TE shows that the network exhibits a singular

structure of causal information flows in which about 50% of

enzymatic sets included the metabolic core exhibit both effective

connectivity flows and a high number of causal connections.

These levels of effective functional influence account for the

contribution of each subsystem to the generation of the different

catalytic behavior in other enzymatic sets and add directionality in

the influence interactions between them.

The activity patterns of the biochemical activities have effective

information which can be read-out by the TE. Therefore, in terms

of the bio-molecular information processing, in the network about

a 50% of subsystems have zero-TE but they are correlated and the

rest of enzymatic sets have effective connectivity.

When the stimulation condition is changed the same network

undergoes a drastic reorganization of its catalytic dynamics (1)

Table 6. Total information flow: only stimulus S1.

MSb 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

flow 0.000 20.333 0.580 20.258 0.000 0.046 0.265 0.097 0.000 0.000 0.000 20.466 20.065 0.000 0.000 0.134 0.000 0.000

doi:10.1371/journal.pone.0027224.t006

Figure 6. Transfer Entropy flow and metabolic functional invariants. A: both stimuli S1 and S2 are presented to the network. B: only stimulus
S1 is presented. A,B: Transfer Entropy flow is defined as the out-ward TE minus the in-ward. Now connections are weighted, so the TE flow is different
to the net TE in Fig. 5 where we only counted the number of connections in each direction with no consideration of the connections weight. Positive
values of flow are corresponding with sources and negative values with targets or sinks. The subsystem attribute is the being of a source or a sink.
Functional metabolic invariants are the subsystems with no changes on their attributes along the two stimulation conditions (left and right columns).
This happened for enzymatic subsystems MSb3, MSb4, MSb6, MSb7 and MSb13 (bars colored in light green). The non-invariant subsystems were
colored in gray. With a red line on subsystem MSb12 we marked the nucleus. With a blue line on subsystem MSb3, we marked that this subsystem in
addition to be an invariant, it did neither change its magnitude, possibly encoding the external stimuli S1.
doi:10.1371/journal.pone.0027224.g006
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exhibiting flux plasticity which involve persistent changes in all the

catalytic patterns [72,96], and (2) structural plasticity which result

in a persistent change in the dynamic state of the MSb15 with a

transition from an off to an on-off changing state [72,96]. Under

this new external stimulation, despite the activity transitions

observed in the time evolution of the subsystems (see figure 2), the

network preserves the systemic structure, i.e., the MSb12 is the

metabolic core and the rest of subsystems continue in an on-off

changing state.

It is interesting to remark that the network have adjusted the

internal metabolic activities to the new external environmental

change (the input flux of substrate S2 was removed in the

conditions II) by means of flux plasticity and structural plasticity

which has been experimentally observed in the metabolism of

several organisms as the main systemic molecular mechanisms of

adaptation to external perturbations [72,94].

Depending on the stimulation conditions the network exhibits

different both qualitative and quantitative patterns of effective

information flows. From conditions I, two stimuli, to II, one

stimulus, (1) the density of causal connections become greater

(from 10.802 to 13.580), (2) the average of TE value increases

notably (0.133 to 0.79) and (3) about 50% of enzymatic subsystems

undergoes remarkable variations of the causal connections

between them, i.e., some connections disappear, others new

emerge, and those that preserves modify their TE values.

The metabolic cores also manifest qualitative and quantitative

changes in the information flows, specifically, increasing the TE

values and modifying the connectivity with several subsystems. For

example, under the first perturbation (external stimuli S1 and S2)

the core receives from MSb8 a causal information flow with a

value of TE = 0.116 and when the input flux of substrate S2 is

removed, the directionality of the signal reverses and the core

sends to the MSb8 a information flow of a TE = 0.153 information

bits.

The level of effective influence flows between the enzymatic

subsystems is not always the same but varies depending on the

external environment conditions. The dissipative metabolic

network is self-regulated exhibiting for this an informative systemic

organization, able to modify the catalytic kinetics of the all

enzymatic sets.

Summing up, in addition to the network topological structure,

characterized by the specific location of enzymatic subsystems,

molecular substrate fluxes and regulatory signals, there is a

functional structure of effective information flows which is

dynamic and exhibits notable variations of the causal interactions.

In the third analysis, we have measured the total information

flows. Positive values mean that the subsystems are sources of

causality flows and negative flows are interpreted as sinks or

targets. The results show that 5 subsystems do not change their

attributes of effective functionality. Specifically, three enzymatic

sets are sources, and two are sinks.

These five enzymatic subsystems present complex dynamic

behaviours in their activities with large number of different

transitions between periodic oscillations and steady-states (in total

more than of 100 transitions per MSb was studied), however the

obtained functional attributes, source or sink, are preserved during

the catalytic activities generated under the two different external

conditions and therefore these functional attributes seem to be

invariants.

It is remarkable that the MSb3 did neither change the sign of

the information flow nor its magnitude, which does not happen

with any other one. From the biochemical point of view this

enzymatic set is functionally important because it receives the

external stimulus S1, and it regulates the metabolic core by means

of an allosteric activation signal. Therefore, the invariant MSb3

directly transmits information to the core on the biochemical

perturbations originated from the external environment. Possibly,

the MSb3 encodes the stimuli S1, but this interesting issue it might

require other additional studies.

These invariant constraints depend neither on the external

environment conditions nor on the subsystem activity state, but

only on the dynamic characteristics of the Systemic Metabolic

Structure.

The presence of invariant properties in some subsystems

indicates the profound functional constraints emerging in the

catalytic processes which are operating under systemic conditions.

The internal metabolic environment exhibits functional restric-

tions which seem to be attributable to the activity of the

biochemical system as a whole. In an intuitive way, this idea was

already announced by Claude Bernard, who can be considered

one of the first systems biologists in history [98,99].

In contrast with the five subsystems that develop functional

invariants, the metabolic core and three more subsystems exhibit a

flexible functionality able to be either a source or a sink of causal

information.

Consequently, from the point of view of the information theory,

three kinds of enzymatic associations emerge in the network, i.e.,

subsystems with zero-TE but correlated, invariant subsystems and

un-constrained enzymatic subsystems.

The metabolic processes under systemic conditions form a

global dynamic structure, highly interconnected, able to transmit

information between its parts, in such a way that the activity of

each enzymatic subsystem could be considered as an informative

operation.

Each catalytic element of the network, in its subordination to

substrate fluxes and regulatory signals generated by other

metabolic subsystems, would perform three functions at the same

time: signal reception, signal integration and acting as a source of

new biomolecular information.

At global level, the transmission of information between the

enzymatic subsystems provokes the emergence of a dynamical

functional organization characterized by changing effective

connectivity flows and functional attributes on the enzymatic

subsystems (unconstrained enzymatic sets, invariant subsystems

and subsystems with zero-TE but correlated). Therefore, the

Systemic Metabolic Structure generates a complex network of

functional constraints for the activities of the enzymatic sets

establishing an informational hierarchy between them.

The emergent Systemic Metabolic Structure in the biochemical

system is characterized by an effective functional organization

which generates information flows between the metabolic

subsystems, forcing them to be interlocked between themselves;

i.e., each subsystem is conditioned to cooperate with others and

have precise and specific activity regimes in concordance to the

activity system as a whole. As a result of the overall process, the

network operates as a complex information processing system

which defines in every moment sets of biochemical instructions

that makes each enzymatic set to evolve with a particular and

precise catalytic pattern.

Lastly, our analyses also show that the organization of the

effective information flows is modular. A detailed study of the TE

allows inferring a different modular organization: (1) a set of

effective connections between determined subsystems is preserved

during both external conditions (Module a), (2) a second sub-

network of effective information flows exhibit reverse directionality

(Module b) and the third set of connections emerge only in one of

the considered external perturbations (Modules c and d) (see

figure 5).
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During the first perturbation of the network (simultaneous

external stimuli S1 and S2) the diversity of the observed catalytic

behaviors are systemically self-regulated by means of the Modules

a, b and c. However, when it is only considered a stationary input

flux of substrate S1, the network undergoes a dramatic

reorganization of all catalytic dynamics exhibiting flux plasticity

and structural plasticity; these drastic change are self-regulated by

means of the Module a, an emergent Module d and the Module b,

but now in this module all the directions of effective connectivity

are reversing.

The modules seem to work as functional dynamic entities which

allow to communicate very concrete enzymatic subsystems with

well-defined others by means of effective information flows

permitting high coordination and efficient catalytic regulations.

Under systemic conditions, our results show that the catalytic

activities form functional modules which are highly self-regulated

by means of biomolecular information flows in a way that different

kinds of functional sub-networks coexist together. The change

from a catalytic activity state to another persistent state is triggered

by transitions at specific catalytic modules replacing of some

functional sub-networks by another. These dynamic of change

corresponds to metabolic switches which allow for critical

transitions in the enzymatic activities.

The modular configuration of the enzymatic subsystems and the

functional switches seem to be key elements to understanding the

dramatic changes observed in the catalytic network when the

external stimulus S2 is removed.

The network seems to operate as a complex information

processing system which defines in every moment sets of

biochemical instructions that makes to evolve with a particular

and precise dynamical change of catalytic patterns. As a

consequence of these systemic biomolecular processes the

metabolic activities act as a whole able to self-regulate against

external perturbations by means of effective functional flows and

switches allowing flux plasticity and structural plasticity.

Metabolic self-regulation can be understood as a global process

in which the enzymatic subsystems tend to reach a particular

dynamics in their catalytic states, with autonomy against external

factors, allowing for the integration of external stimuli and its

adaptation of the metabolic system as a whole. This process is an

emergent property originated by the complex dynamics of the

global interactions and implies the modulation of each subsystem

activity, driving the whole enzymatic behaviours over time and

across changing circumstances. Contrarily to self-organization, the

self-regulation does not seem to be a spontaneous process since it

depends on local properties of subsystems and requires the

processing of the information relative to the different states of all

catalytic elements of the network.

Our results show that, at functional level, the metabolic switches

are discrete transitions between enzymatic functional modules

regulated by a systemic dynamics of the effective information

flows.

At molecular level, a switch is a biochemical process in which

determined enzymes can undergo a persistent change in their

catalytic activity states. In experimental conditions it has been

observed that, the molecular mechanisms implied in the switches

generally depend on some kind of enzymatic activities [100] such

as phosphorylations [101], acetylations [102]and methylations

[103].

Molecular switches have been implicated in many types of

metabolic processes including the transcriptional regulation [104],

Warburg effect [105,106], cell cycle [107], epigenetic processes

[108], central carbon metabolism [109], DNA repair [110],

growth cell metabolism [111] and T-Cell activation and apoptosis

[112].

In this paper, we have quantified essential aspects of the

Systemic Metabolic Structure and of the metabolic core

functionality. In terms of the bio-molecular information process-

ing, the enzymatic core is a hub which exhibits a high degree of

connectivity with other subsystems, forming modules, and a wide

range of effective information values depending on the external

stimulation condition.

In addition, in the network we have observed an informational

hierarchy (subsystems with zero-TE but correlated, functional

invariant enzymatic sets and unconstrained metabolic subsystems)

in which the metabolic core is an unconstrained subsystem in

terms of information flow. In contrast with other subsystems the

metabolic core does not present functional invariance but exhibits

a flexible dynamic behavior acting as a source or a sink of causal

information.

There are three other subsystems in the same category as the

metabolic core (the MSb2, MSb8 and MSb16) which might have

high relevance in the bio-molecular information processing. But

this result would need further analysis.

In final summary, our analysis reveals that in addition to the

biomolecular topological organization characterized by the

specific location of enzymatic sets, substrate fluxes and regulatory

signals, a global functional structure conformed by effective

information flows emerge in the network which is dynamical

and exhibits notable variations of the causal interactions.

Under systemic conditions, the dissipative catalytic processes

form a functional self-organization of biomolecular information

flows, becoming the enzymatic network in a complex information

processing system.

The Systemic Metabolic Structure is not only characterized

by a metabolic core, enzymes in an on-off changing state and a

determinate biomolecular topological organization, but also

forms a sophisticated structure of effective information flows

which provides an informational hierarchy on the dissipative

catalytic sets: subsystems with zero-TE but correlated, func-

tional invariant enzymatic sets and unconstrained metabolic

subsystems.

The functional structure of biomolecular information flows is

modular and the dynamical changes between the modules

correspond to metabolic switches which allow for critical

transitions in the enzymatic activities.

These modules of effective connectivity and the functional

switches seem to be important elements of the Systemic Metabolic

Structure.

In the post-genomic era, the understanding of the elemental

principles and quantitative laws that govern the self-organization

and self-regulation of the catalytic processes under systemic

conditions will be crucial to elucidate the functional architecture

of the cell and the fundamental dynamics of cellular life.
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Table S1 Parameters of the dissipative metabolic
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third fluxes of the subsystems.
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15. Ovádi J, Saks V (2004) On the origin of the ideas of intracellular

compartmentation and organized metabolic systems. Mol Cell Biochem 256:
5–12.

16. Monge C, Grichine A, Rostovtseva T, Sackett P, Saks VA (2009)
Compartmentation of ATP in cardiomyocytes and mitochondria. Kinetic

studies and direct measurements. Biophys J 96: 241a.

17. Lunn EJ (2007) Compartmentation in plant metabolism. J Exp Bot 58: 35–47.

18. Saks VA, Monge C, Anmann T, Dzeja P (2007) Integrated and organized

cellular energeticsystems: Theories of cell energetics, compartmentation and
metabolic channeling. In MolecularSystem Bioenergetics. Energy for Life;

Saks, V.A., Ed.; Wiley-VCH: Weinheim, Germany.

19. Monge C, Beraud N, Kuznetsov AV, Rostovtseva T, Sackett D (2008)

Regulation of respiration in brain mitochondria and synaptosomes: Restrictions
of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase.

Mol Cell Biochem 318: 147–165.

20. Saks V, Monge C, Guzun R (2009) Philosophical basis and some historical

aspects of systems biology: From hegel to noble - Applications for bioenergetic
research. Int J Mol Sci 10: 1161–1192.

21. Yeates TO, Tsai Y, Tanaka S, Sawaya MR, Kerfeld CA (2007) Self-assembly

in the carboxysome: A viral capsid-like protein shell in bacterial cells. Biochem
Soc Trans 35: 508–511.

22. Fan C, Cheng S, Liu Y, Escobar CM, Crowley CS (2010) Short N-terminal
sequences package proteins into bacterial microcompartments. Proc Natl Acad

Sci USA 107: 7509–7514.

23. Rosenspire AJ, Kindzelskii AL, Petty H (2001) Pulsed DC electric fields couple

to natural NAD(P)H oscillations in HT-1080 fibrosarcoma cells. Journal of Cell
Science 114: 1515–1520.

24. Marquez S, et al. (2004) The metabolism of phospholipids oscillates

rhythmically in cultures of fibroblasts and is regulated by the clock protein.
PERIOD 1 FASEB Journal 18: 519–521.

25. Holz GG, Emma Heart E, Leech CA (2008) Synchronizing Ca2+ and cAMP
oscillations in pancreatic beta cells: a role for glucose metabolism and GLP-1

receptors? Am J Physiol Cell Physiol 294: c4–c6.

26. Ainscow EK, Mirsham S, Tang T, Ashford MLJ, Rutter GA (2002) Dynamic

imaging of free cytosolic ATP concentration during fuel sensing by rat

hypothalamic neurones: evidence for ATPindependent control of ATP-

sensitive K+ channels. Journal of Physiology 544: 429–445.

27. Zhaojun XU, So-ichi Y, Kunio T (2004) Gts1p stabilizes oscillations in energy
metabolism by activating the transcription of TPS1 encoding trehalose-6-

phosphate synthase 1 in the yeast Saccharomyces cerevisiae. Biochem J 383:

171–178.

28. Lloyd D, Murray DB (2005) Ultradian metronome: timekeeper for orchestra-
tion of cellular coherence. TRENDS in Biochemical Sciences 30: 373–377.

29. Rengan R, Omann GM (1999) Regulation of Oscillations in Filamentous Actin
Content in Polymorphonuclear Leukocytes Stimulated with Leukotriene B4

and Platelet-Activating Factor. Biochemical and Biophysical Research
Communications 262: 479–486.

30. Shankaran H, Ippolito DL, Chrisler WB, Resat H, Bollinger K, et al. (2009)
Rapid and sustained nuclear–cytoplasmic ERK oscillations induced by

epidermal growth factor. Molecular Systems Biology 332: 1–13.

31. Zhaojun XU, So-ichi Y, Kunio T (2004) Gts1p stabilizes oscillations in energy

metabolism by activating the transcription of TPS1 encoding trehalose-6-
phosphate synthase 1 in the yeast Saccharomyces cerevisiae. Biochem J 383:

171–178.

32. Hans MA, Heinzle E, Wittmann Ch (2003) Free intracellular amino acid pools

during autonomous oscillations in Saccharomyces cerevisiae. Biotechnol
Bioeng 82(2): 143–151.

33. Hartig K, Beck E (2005) Endogenous Cytokinin Oscillations Control Cell Cycle

Progression of Tobacco BY-2 Cells Plant Biology 7(1): 33–40.

34. Hungerbuehler AK, Philippsen P, Gladfelter AS (2007) Limited Functional

Redundancy and Oscillation of Cyclins in Multinucleated Ashbya gossypii
Fungal Cells Eukaryot Cell 6(3): 473–486.

35. Shaul O, Mironov V, Burssens S, Van Montagu M, Inze D (1996) Two
Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in

synchronized tobacco BY-2 cells. Proc Natl Acad Sci 93(10): 4868–4872.

36. Chabot JR, Pedraza JM, Luitel P, van Oudenaarden A (2007) A Stochastic

gene expression out-of-steady-state in the cyanobacterial circadian clock.
Nature 450: 1249–1252.

37. Tian B, Nowak DE, Brasier AR (2005) A TNF-induced gene expression

program under oscillatory NF-kB control. BMC Genomics 6: 137.

38. Tonozuka H, Wang J, Mitsui K, Saito T, Hamada Y, et al. (2001) Analysis of

the Upstream Regulatory Region of the GTS1 Gene Required for Its
Oscillatory Expression. J Biochem 130: 589–595.

39. Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation
in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci

101(5): 1200–1205.

40. Lange G, Mandelkow EM, Jagla A, Mandelklow E (2004) Tubulin oligomers

and microtubule oscillations Antagonistic role of microtubule stabilizers and
destabilizers. FEBS 178: 61–69.

41. Placantonakis DG, Welsh JP (2001) Two distinct oscillatory states determined

by the NMDA receptor in rat inferior olive. J Physiol 534: 123–140.

42. De Forest M, Wheeler CJ (1999) Coherent Oscillations in Membrane Potential

Synchronize Impulse Bursts in Central Olfactory Neurons of the Crayfish.
J Neurophysiol 81: 1231–1241.
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