
Assisting Blog Publication: Annotation, Model

Transformation, and Crossblogging Techniques

Felipe Martín Villoria

Dissertation
presented to

the Department of Computer Languages and Systems of
the University of the Basque Country

in Partial Fulfillment of
the Requirements
for the Degree of

Doctor of Philosophy

The University of the Basque Country
Universidad del País Vasco / Euskal Herriko Unibertsitatea

Supervisor: Prof. Dr. Óscar Díaz García
San Sebastián, Spain, 2012

This work was hosted by the University of the Basque Country (Faculty of Com-
puter Sciences). It was partially supported by the Spanish Ministry of Education
and Science (Ministerio de Educación y Ciencia) under contract TIC2002-01442.

To my wife Marisa

and

my daughter Patricia

Summary

Although blogs exist from the beginning of the Internet, their use has considerably

been increased in the last decade. Nowadays, they are ready for being used by

a broad range of people. From teenagers to multinationals, everyone can have a

global communication space.

Companies know blogs are a valuable publicity tool to share information with

the participants, and the importance of creating consumer communities around

them: participants come together to exchange ideas, review and recommend new

products, and even support each other. Also, companies can use blogs for different

purposes, such as a content management system to manage the content of web-

sites, a bulletin board to support communication and document sharing in teams,

an instrument in marketing to communicate with Internet users, or a Knowledge

Management Tool. However, an increasing number of blog content do not find

their source in the personal experiences of the writer. Thus, the information can

currently be kept in the user’s desktop documents, in the companies’ catalogues,

or in another blogs. Although the gap between blog and data source can be manu-

ally traversed in a manual coding, this is a cumbersome task that defeats the blog’s

easiness principle. Moreover, depending on the quantity of information and its

characterisation (i.e., structured content, unstructured content, etc.), an automatic

approach can be more effective.

Based on these observations, the aim of this dissertation is to assist blog pub-

lication through annotation, model transformation and crossblogging techniques.

These techniques have been implemented to give rise to Blogouse, Catablog, and

BlogUnion. These tools strive to improve the publication process considering the

aforementioned data sources.

Contents

1 Introduction 1
1.1 Overview . 1

1.2 Blogosphere typification . 3

1.3 Contributions . 3

1.4 Outline . 5

2 Background 7
2.1 Introduction . 7

2.2 Blog Interfaces . 7

2.2.1 Graphical-User Interfaces 8

2.2.2 Syndication Interfaces 11

2.2.3 Programming Interfaces 13

2.3 Publication Tools . 13

2.4 Contributions revisited . 15

3 Blog as Diaries 17
3.1 Introduction . 17

3.2 Blog clients for second-generation blogs 19

3.3 Blogouse at work . 20

3.3.1 Blogouse configuration 21

3.3.2 BlogThis! at Blogouse 23

3.4 Evaluation and discussion . 26

3.5 Conclusions . 28

4 Blog as Virtual Community Platforms 29
4.1 Introduction . 29

4.2 Blogs & Blog heterogeneity . 31

4.3 Blog generation as an instance of the MDE process 31

ix

x CONTENTS

4.4 The Catalogue Model . 34

4.5 The Content Model . 35

4.5.1 Obtaining the Content model 36

4.6 The Style Model . 37

4.6.1 Obtaining the Style model 41

4.7 Blojsom as a PSM . 42

4.8 Facing PSM evolution . 46

4.8.1 The Blog Abstract Platform 47

4.8.2 Mapping onto the Blog Abstract Platform 48

4.9 Discussion . 50

4.9.1 On the way to abstraction 50

4.9.2 On model transformations as a reuse mechanism 51

4.10 Related work . 53

4.11 Conclusions . 55

5 Blog as Peers 57
5.1 Introduction . 57

5.2 On blog integration through linking 59

5.2.1 Linking at the blog level 59

5.2.2 Linking at the post level 60

5.3 Requirements . 61

5.4 BlogUnion design . 63

5.4.1 Contract specification . 63

5.4.2 Contract negotiation . 65

5.5 BlogUnion implementation . 67

5.5.1 The Contract Vocabulary 69

5.5.2 Party definition . 70

5.5.3 Clauses as ECA rules . 70

5.5.4 An interface for contract definition 73

5.6 Discussion . 74

5.7 Conclusions . 76

6 Conclusions 77
6.1 Introduction . 77

6.2 Main Contributions . 78

6.3 Publications . 79

6.3.1 Journals . 79

CONTENTS xi

6.3.2 International Conferences 79

6.3.3 International Workshops 80

6.3.4 Spanish Conferences . 80

6.4 Future Work . 80

Bibliography 83

xii CONTENTS

Chapter 1

Introduction

“Never doubt that a small group of thoughtful, committed citizens can change the world.

Indeed, it is the only thing that ever has.”

– Margaret Mead.

1.1 Overview

In 1997, Jorn Barger, the editor of the Robot Wisdom website [Bar97], coined

the term weblog to describe the process of “logging the web”. This term is often

shortened as blog. Late in 1999, the software developer Dave Winer offered a free

hosting service at EditThisPage.com [Win99]. Then, people were able to publish

their own weblogs quickly and easily. He defined weblogs as “... often-updated

sites that point to articles elsewhere on the web, often with comments, and to on-

site articles. A weblog is kind of a continual tour, with a human guide who you

get to know. There are many guides to choose from, each develops an audience,

and there’s also comraderie and politics between the people who run weblogs,

they point to each other, in all kinds of structures, graphs, loops, etc.” [Win01]

In February 2001, he claimed to be hosting approximately 20,000 websites. The

whole of blogs and their interconnections is known as blogosphere. This term was

coined by Brad L. Graham1, a theater publicist, as a joke in 1999 [Gra99].

The boom of blogs arose soon after with the 9/11 aerial attacks. Then, people

searched information to understand that event. And sometimes, first-hand testi-

1Acccording to http://en.wikipedia.org/wiki/Blogosphere

1

2 Chapter 1. Introduction

monies were published on blogs before traditional mass media (e.g. newspapers,

TV, etc.) [BHH02]. In 2003, the Iraq War gave way to the warblogs (i.e., war

specialised blogs). In Baghdad, some soldiers and citizens wrote their thoughts in

their blogs and became real war correspondents. It is noteworthy the Salam Pax

blog. What started as a blog written by an Iraqi citizen [Sal], ended as a book

[Pax03].

According to Technorati, the largest blog search engine, the number of blogs

from March 2003 to July 2006 was doubled about every 6 months [Sif06]. In

March 2007, over 70 million blogs were tracked [Sif07].

A key factor of blog success is its simplicity of use. Before their appearance,

people had to create an HTML (HyperText Markup Language) [RHJ99] formatted

file, and then, upload it through FTP (File Transfer Protocol) [PR85]. Blogs put in

the layman’s hands the possibility of publishing web contents without this technical

knowledge: only an Internet-connected computer was necessary. As a result, the

publication process becomes democratic and, from then on, everyone can have his

say in the Internet [Blo02]. Two roles emerge around blogs: bloggers and the

audience. While bloggers publish contents in one or more blogs, the audience

reads them. Part of the audience (a.k.a. participants) also comments on blogs.

Active bloggers are also participants.

Often, blogs are blurred with web pages or forums. However, they differ on

how their contents are managed by the different roles. Only bloggers can write

in a blog, and their audience read or comment on it. Although web pages are

very similar, the audience cannot comment. They are restricted to read them. It is

remarkable that if the blog comments are disabled, both systems are identical, from

the point of view of these roles. Nonetheless, it is, technically, easier to publish

contents in a blog than in a web page. Finally, everyone can write, read, or respond

in a forum. Moreover, the contents of a blog are more personal than those of a

forum.

The blog community is very active. Since 2004, Deutsche Welle2 has been

organising the BOBs3 (Best Of Blogs) awards to encourage the use of blogs [BOB].

Furthermore, there exists workshops and conferences on this topic [Blo06][Blob],

and a great deal of tools has been developed [Blo07][Wor10c].

2Germany’s international public broadcaster.
3The world’s largest international awards for blogs, audioblogs and videoblogs.

1.2. Blogosphere typification 3

1.2 Blogosphere typification

The increasing number of blogs and the diversity of uses make difficult the study

of the blogosphere, and the blogs’ needs. This section dissects blogs by classifying

them through three characteristics: number of bloggers, content type, and visibility.

Depending on the number of bloggers, blogs can be personal or multi-author
(a.k.a. group blogs). Personal blogs are written by a single blogger, who expresses

his opinions, deals with topics he finds interesting (e.g. day-to-day experiences),

filters information, etc. By contrast, multi-author blogs are written by two or more

bloggers, who sometimes cover a variety of topics.

Thus, the aim of a blog is to publish information. The variability of the con-

tents is based on format, and topic. In format-based blogs, such as photoblogs

[Pho], videoblogs [Roc], audioblogs [Aud] or, simply, blogs; the main contents are

photos, videos, audios (e.g. speeches, music, etc.), or texts, respectively. When

blogs are about a clearly defined topic, such as war, education, business, etc., they

gave way to topic-based blog, such as warblogs (a.k.a. milblogs) [Mil], edublogs

[Edu], business blogs [Ama], etc. For instance, the latter improves workplace con-

versations, knowledge and project management, and direct communication with

customers (e.g. retrieving feedback from products).

Finally, the visibility of a blog defines its audience. For instance, intranet blogs

improve team communication in an organisation, extranet blogs share information

with external stakeholder of an organisation (e.g. suppliers, partners, clients, etc.),

and Internet blogs publish information for everyone. The latter are the most popu-

lar.

1.3 Contributions

The classification of the previous section does not pretend to be definitive, but it

helps to clarify the scope of this dissertation. The contributions of this dissertation

can be summarised as:

BLOG AS DIARIES

Problem Statement: Blogs can be used as a means to share information with

their audience. This information is stored up in the users’ computers with different

file formats. There is a gap in the publication process between the content source

(i.e., files) and the target blog that is overcome in a copy&paste manner (i.e., copy-

ing a text from a file to paste it in a blog).

4 Chapter 1. Introduction

Contribution: A mouse-based device was developed to automatise the pub-

lication process. The mouse menu is configured by an ontology which guides

the document annotation process. Bloggers personalise the ontology in their own

blogs. This device aims to fulfil the requirements of user-friendliness, as well as

blog-system and editor independence.

BLOG AS VIRTUAL COMMUNITY PLATFORMS

Problem Statement: Some business blogs publish information about products

in their catalogues (hereafter, referred to as “catablogs”). The audience creates

a consumer community to exchange ideas, review and recommend the products,

and even, support each other. However, the generation of a blog from a product

catalogue is manually coded, and is hindered by the immaturity of blog technology.

Contribution: A cost-effective way to generate catablogs through a Model

Driven Engineering (MDE) process is specified. Along this process, models are

transformed, annotated, and composed to create an application. The execution of

this application creates a catablog. The cost-effectiveness of catablog creation is

analysed comparing the labour-cost of the MDE approach versus the manual cod-

ing.

BLOG AS PEERS

Problem Statement: Lecturers maintain their own edublogs as a conduit for

lecturers to communicate with students (i.e., a place where course’s themes or as-

signments can be published). Links can be defined among edublogs of distinct

lecturers which sustain the very same course. However, posts and comments are

isolated in the blog where they were written. Reading and writing the linked blogs

implies to skip from one to another.

Contribution: The interaction between blogs has been automatised through a

contract-based distributed and heterogeneous crossblogging framework. Thus, any

content is susceptible of being automatically published on various blogs according

to a contract. Now, contents skip from one blog to another, and not lecturers and

students. The contract is established by two peer blogs, which can be distributed

in different computers and implemented by different blog engines. The term peer

is used as an entity (i.e., a blog) with capabilities similar to other entities in the

system [DSMX02].

1.4. Outline 5

1.4 Outline

This dissertation is composed of six chapters, including this one, namely:

Chapter 2 introduces the background of blogs. Here, the different applications

surrounding blogs are described, the blog structure is examined closely, and some

definitions are given. Also, the contributions of chapters 3 to 5 are contextualised.

Chapter 3 addresses the problem of publishing content kept into the desktop files

with different formats. To this aim, annotation techniques are applied to automatise

the publication, and make the mouse be ontology-aware.

Chapter 4 describes an MDE architecture to automatise the generation of cat-

ablogs out of catalogues. It provides some trade-off studies comparing the manual

coding versus the MDE approach.

Chapter 5 defines a blog extension to support a contract-based communication

between blogs. The contract specification, negotiation, and implementation are

described. RDF (Resource Description Framework) format [W3C04], and ECA

(Event Condition Action) rules are the keys to the contract implementation, and

interpretation, respectively.

Chapter 6 shows the conclusions, and summarises the main contributions of this

dissertation. Finally, the publications achieved along the dissertation, and the fu-

ture work are exposed.

6 Chapter 1. Introduction

Chapter 2

Background

“Keep It Simple, Stupid!”

– Kelly Johnson.

2.1 Introduction

What initially was thought as link-driven sites have evolved to a new mean of

communication. Blogs create a shared conversational space between the blogger

and his audience. These conversations create a community of interest around a

topic, where linking and discussing are the commonplace [KNRT04]. As a result,

stronger links between the blogger and his audience are created.

In consequence, a great deal of information is created everyday. Selecting

what blog to read, keeping the blog up-to-date, and promoting a blog are a daily

challenge for many bloggers. To manage this myriad of information, a broad range

of tools and characteristics are built around blogs.

Next sections describe how bloggers and the audience can interact with blogs,

and how blogs satisfy aforementioned characteristics. Finally, contributions are

revisited to contextualise the contributions of this dissertation.

2.2 Blog Interfaces

Blog interaction can be achieved through three different kinds of interfaces, namely,

graphical-user interfaces (GUI), syndication interfaces, and programmatic inter-

7

8 Chapter 2. Background

faces. The former are targeted at customary users, and present a human-readable

version of the blog. The rest are machine-readable interfaces, used to interact with

other tools. More details follow.

2.2.1 Graphical-User Interfaces

From the point of view of the audience, a blog is a frequently updated online jour-

nal or newsletter with different types of pages: index page, archive page, and addi-

tional pages. At the top of these pages, the blog title, and, usually, a short descrip-

tion are placed. It is common for these pages to link related blogs (e.g. blogrolls,

webrings, etc.), and provide notification services (e.g. content syndication capabil-

ities, web pings, etc.).

The index page is the main entry point to the blog. Its location (i.e., the blog

URL) is the only one that the audience has to remember. This page consists of

a sequence of usually short articles, namely posts, which are usually arranged in

reverse chronological order (i.e., the most recent post at the top of the page, and

the oldest one at the bottom) [Win01][BHH02]. The index page only shows the

latest posts. Meanwhile, the rest of the posts remain archived permanently. The

blog provides search facilities to access the archive, such as text-based, category-

based, author-based, calendar-based (i.e., daily, monthly, yearly, etc.), alphabetical

search, etc. [Wor10a]

The archive page shows a sequence of posts filtered by a criteria (e.g. by key-

word, category, date, etc.). Just like the index page, the posts are usually arranged

chronologically. Not only is this page a backup of the index page’s posts, but also

it enables the audience to read what was published on the blog [BHH02]. Thus,

the audience can contextualise the posts.

Also, there exists additional pages where the blogger can promote himself,

publish some photo galleries, receive emails through a contact form, etc. [BHH02]

All these pages share a consistent design under the notion of theme. A theme

is a cascading style sheets (CSS) [W3C] based package containing graphical ap-

pearance details. It is used to customise the look and feel of the blog. The

blogger can manage blog themes, changing, removing, or including a new one

[BHH02]. Also, they can develop, buy, or download them from another sites

[Bloc][Bloe][Blof][Blod] [Tem]. Figure 2.1 displays a blog GUI.

2.2. Blog Interfaces 9

Figure 2.1: Blog Graphical-User Interface.

Post Structure

A post (a.k.a. entry) is the atomic unit of a blog. Its structure includes a title and

a description. The description can be composed by contents of different formats.

The most common format is HTML, which allows bloggers to use anchors to refer

to any URL addressable content. Its length varies with the blogger. Some of them

decide to show only an excerpt of posts’ content (e.g. the first 100 characters).

Thus, their audience can make a quick glace at the blog contents without doing

long scrolls. In this case, each post provides a link to its complete content.

Metadata give more information about posts. They are a set of (property,

value) pairs attached to a post. The most outstanding metadata are the following

[BHH02]:

• Authoring points to the writer of a post, and is especially important in multi-

author blogs.

10 Chapter 2. Background

Figure 2.2: The ins and outs of a post.

2.2. Blog Interfaces 11

• Date gives a temporal context about a post. Thanks to this element, the

audience can experience a strong connection with bloggers. For instance,

if a blogger writes a post and someone reads it at once, the reader has the

impression of sharing that moment with the blogger. Thus, the blog is seen

as a shared place between the blogger and his audience.

• Categorisation is used to classify posts under blogger criteria.

• Permalink, or permanent link, is a unique and permanent URL identifier

that anyone can use to point to a specific post. Before permalinks, the index

page was the only way of referring to a post. However, as a new post was

published, the oldest one disappeared from the index page, and the refer-

ences became completely useless. The permalink solved this problem and,

from then on, linking to a specific post eased the discussion between blogs

[Meg02][Tom03].

Moreover, bloggers can add their own metadata for additional processing of posts

(e.g. for indexing or querying purposes). Also, they can be used to categorise

posts. Basically, the difference between a category and a metadata categorisation

is when each one is created. The existence of a category does not depends on the

existence of a post. However, a metadata is always attached to a post. Therefore,

the existence of metadata depends on the existence of a post. Also, unlike the

categories, metadata are not usually shown in the graphical-user interface.

Finally, a list of comments are attached to each post. They are usually written

by participants. They are anonymous to provide freedom of expression. However,

some bloggers disable them to avoid feedback from the audience. Others moderate

them to avoid publishing undesirable comments (e.g. spam) [Wor10a]. Comments

are based on the post content, and can link to other contents. Although they have

the comment publication date as single compulsory metadata, some blog engines

ask for extra information, e.g. authoring, email, an URL and the comment.

Figure 2.2 zooms in on the first post of the Figure 2.1 to stand out post’s ele-

ments. At the bottom of the figure, the comment GUI with its more characteristic

elements is depicted.

2.2.2 Syndication Interfaces

RSS (Really Simple Syndication) [Dav03] is a popular XML format for syndi-

cating news, also referred to as feeds. The feed provides a machine-readable de-

12 Chapter 2. Background

Figure 2.3: The RSS 1.0 syndication interface.

scription of blog contents to allow posts to be aggregated into a feed aggregator

application1. This description follows distinct dialects of RSS [Ham03].

Figure 2.3 shows the RSS 1.0 format [Web02] of the Figure 2.1. The blog is

mapped to the notion of channel in the RSS model (i.e., a feed provider). A chan-

nel has a title, link, description and another optional elements (e.g. a language),

followed by a series of items (a.k.a. news), each of which, also, have a title, link,

description and another optional elements.

In addition, the RSS 1.0 dialect [Web02] permits the use of XML Namespaces

[W3C09] to accommodate additional tags (a.k.a. modules in the RSS parlance).

The reason rests on RSS 1.0 lack of a central authority for extending the format.

Instead, modules are used for third parties to accommodate the feed description

to their own purposes. This is the case for the comment element, which uses the

namespace wfw to define the Comment API [The03] access in Figure 2.3.

2.3. Publication Tools 13

Figure 2.4: Blojsom APIs.

2.2.3 Programming Interfaces

The programming interfaces allow programmers to achieve most of the functions

which can be obtained through the GUI, also programmatically (e.g. creating a

post, introducing a comment, etc.). Although there is not such thing as a stan-

dard for blog APIs (Application Programming Interfaces), there is some consensus

about the functionality to be supported. There are two types of interfaces: (1) those

built on top of the XML-RPC2 protocol [Dav99], such as Blogger API 1.0 [Eva03],

MetaWeblog API [Dav02], MovableType API [Mov05] and Weblogs.Com [Dav01];

(2) those based in HTTP calls, such as Comment API [The03] and Trackback API

[Six04]. These APIs permit the construction of applications for blog engines, such

as publication, notification or commenting tools. Also, the blog developers can

build their own APIs. The uses of these interfaces are covered more deeply in fu-

ture sections. Figure 2.4 depicts the different interfaces implemented in Blojsom3

[Dav].

2.3 Publication Tools

Blogs allow bloggers to publish posts and comments through web-based interfaces

or desktop clients (a.k.a. blog clients) [DDJ+02][Wor10a].

Blog engines (e.g. [Dav]) provide back-end pages to ease blog management.

From these pages, bloggers can publish posts without technical knowledge (e.g.

HTML, FTP, etc.), categorise them, change themes, etc. Because of the importance

1A feed aggregator (a.k.a. feed reader) periodically checks the feed at the blog for changes, reacts
to the changes in an appropriate way, and, commonly, keeps an orderly and updated record of the
feeds at which it is subscribed to.

2XML-RPC is an internet-based cross-platform remote-procedure calling protocol which uses
HTTP as the transport medium, and XML as the encoding system for the communication between
different platforms.

3Notice that the developers do not have implemented these APIs completely.

14 Chapter 2. Background

of managing such blog’s elements, these pages are protected by password. So,

initially, bloggers have to open his browser at the back-end login page, insert their

username and password, and start working.

Publishing a post involves selecting the post creation page, and fill out a form

to complete the post structure. In this form, some fields are compulsorily com-

pleted by the blogger, such as the title and the description. The permalink and the

author are generated by the blog engine. Moreover, although a default publication

date4 and category are proposed by the blog, they can be changed. Optionally,

bloggers add metadata, and send notifications. Thus, the content design and other

technicalities (e.g. sending notifications) are up to the blog engine, and the blogger

can focus on writing.

The desktop clients are applications that run on a computer and communicates

with a blogging system, usually, through an XML-RPC protocol [DDJ+02]. They

provide a blog engine independent interface and, usually, WYSIWYG (What You

See Is What You Get) edition capabilities (see [Odd10], and [Lim10]). The latter

allows bloggers to easily add style to the content (e.g. bold, italic, etc.). Unlike

other Windows editors, the desktop clients require to configure an XML-RPC blog

connection, and buttons for content publication. Also, the desktop clients provide

an environment where blogger can write their posts offline, and publish them when

Internet connection is available. They can provide extra information (e.g. geo

positioning) when installed on mobile devices, such as mobile phones, PDAs, etc.

Also, photos, videos or audios can be published instantly. The action of publishing

content from these devices is known as mobile blogging or moblogging. It can be

used by bloggers who lack of computer access.

As an alternative to installing an independent application, some plugins are

developed. When a plugin is installed, it appears as a new toolbar inside an ap-

plication (e.g. Microsoft Word [Blo05], Firefox [Goo10], etc.). Then, bloggers

can publish the selected content displayed by the application. This is known as the

BlogThis! button.

In addition to the desktop clients, there exists server side solutions which allow

bloggers to publish contents in a blog by sending an email from their email client

[Wor10b], an SMS (Short Message Service) from a mobile phone [Let06], etc.

Thus, it is not needed to install any software. It is up to the server to manage this

kind of messages.

4Some blog engines allow bloggers to publish posts at a future date. In this case, the blogger can
change the publication date.

2.4. Contributions revisited 15

Figure 2.5: A typification of publication tools.

Although posts are just published after being written, some publication tools

allow bloggers to draft it, or publish it on a fixed date [DDJ+02][Dav]. Publishing

a draft of a post involves blogger confirmation. On the contrary, a post is automat-

ically published at the predefined date.

2.4 Contributions revisited

Figure 2.5 summarises the publication tools, according to the previous section.

Also, the contributions of this dissertation are contextualised.

The specific applications are independent from other applications. They are

classified as web-based or desktop-based. The standard applications are already

existing applications which extend their functionality to publish contents in a blog.

This is achieved through plugins and server-side solutions. The contributions of

this dissertation are classified following these criteria in the last row of the table.

Along the life cycle of this dissertation, the blog engines evolved. The work

presented in this dissertation has been developed using Blojsom as blog engine

[Dav], although the ideas exposed can be applied to others. Moreover, different

versions of Blojsom were needed in some sections.

Blojsom is a full-featured, multi-user, multi-blog, open source web application

developed in Java. It aims to retain simplicity in design while adding user flexibility

in storage, themes, etc. Also, the Blojsom development community has been very

active along this dissertation not only in programming it, but also in specifying it.

These characteristics as a whole have been decisive to select Blojsom, up to the

16 Chapter 2. Background

point that it has not been needed to use any additional blog engine to develop the

contributions of this dissertation. By chapter, these contributions are the following:

BLOG AS DIARIES

Contribution: A mouse-based desktop client and some blog extensions to au-

todiscover the configuration have been developed. Also, the configuration format

has been defined.

BLOG AS VIRTUAL COMMUNITY PLATFORMS

Contribution: Given a catalogue and a blog engine, a new blog instance is

generated with the products of the catalogue. The key point of the generation

process has been to define models and configuration elements. As programming

interfaces do not cover the generation of all blog elements, new interfaces has been

developed. Also, a part of the generation process can be seen as a transformation-

based desktop client. The contribution is focused on business blogs.

BLOG AS PEERS

Contribution: A server-based publication client focused on edublogs, where

the interaction between blogs has been automatised through a contract. Thus,

blog’s contents can seamlessly flow between blogs. This work describes both the

contract life cycle and an RDF-based contract specification using ECA rules.

Chapter 3

Blog as Diaries

“Without the data, the tools are useless; without the software, the data is unmanageable.”

– Tim O’Reilly.

3.1 Introduction

Initially thought as personal diaries, blogs’ scope has broadened to become a medium

for professionals to communicate [Röl03, Röl04]. Indeed, a report by Forrester

[Li04] suggests blogging as a valuable publicity tool for companies and a means

to keep in touch with their customer base. Enterprises can use blogs for different

purposes: as a content management system to manage the content of websites, as

a bulletin board to support communication and document sharing in teams, as an

instrument in marketing to communicate with Internet users, or as a Knowledge

Management Tool [Röl03].

This implies that an increasing number of posts do not find their source in the

personal experiences of the blogger. Rather, the blog is used as a means to share in-

formation with others. And this information is currently kept in the user’s desktop.

Regardless of the origin of the information (e.g. an Excel figure, a paragraph found

in a PDF document or a slide in a PPT presentation), this content is amenable to be

blogged, i.e., to be discussed and shared with the participants.

17

18 Chapter 3. Blog as Diaries

This scenario leads to a decoupling between the blog as a sharing platform,

and the desktop as a resource container. Currently, this gap is manually traversed

by the blogger in a copy&paste manner, a cumbersome task that defeats the blog’s

easiness principle. Consider the following scenario. Reading the sport newspaper

on the web, you come across with some awful comment on the performance of your

favorite soccer player on the last match. You want to collect the opinions of your

blogmates about this issue. To this end, you copy the corresponding paragraph

from the newspaper and you blog it. The latter implies to go to the blog, create

a new post, edit it, clean it1 and, finally, save it. Might be too cumbersome to

be worth the effort!! Blog is an spontaneous action which can be refrained if the

process is lengthy and unhandy.

Fortunately, some browsers (e.g. Firefox, Mozila) and search engines (e.g.

Google) are providing the BlogThis! functionality. This functionality achieves

“copy&blog” in an automatic way: posting a Web page is as easy as clicking on

the BlogThis! icon. This opens a small window where a blog post is edited after

the HTML page and a pointer are included to this source page.

Although similar functionality is also available for Word documents [Blo05],

there is no knowledge about the existence for other formats. This means that inter-

esting quotes from PDF or Excel documents can only be posted through laborious

copy&paste, defeating spontaneous blogging. And even if this were the case, a

BlogThis! functionality on an editor basis would require the user to become fa-

miliarised with distinct GUI interfaces (for Word, for Excel, for IE), putting an

additional burden on the layman.

Based on this observation, this chapter describes a BlogThis! device for desk-

top resources that is editor independent: Blogouse. Blogouse is a blog client that

achieves editor independence by building on the mouse rather than the editor. By

clicking on the mouse’s middle button, post can be created from no matter which

editor. Specifically, this device aims to fulfil the following requirements:

• user-friendliness. Usability is a main quality requirement in any blog inter-

face to promote the participation of the layman. Sophisticated functionality

should not be obtained at the cost of convoluted interfaces.

• blog-system independence. A myriad of tools are currently available for

laymen to build up their blogs. Blogouse should be as independent as possi-

ble from the underlying blog system. Specifically, this blog client builds on

1A blog entry is basically text. Figures or rendering tags needs a special treatment.

3.2. Blog clients for second-generation blogs 19

top of the XML-RPC API which is becoming a de facto standard [Dav99].

Many blog systems follow this API, including Blogger [Bloa], RadioUser-

land [Rad], MovableType [Sixa] and Blojsom [Dav].

• editor independence. The device should work with any editor, no matter

the format of the file. This includes IExplorer, Netscape, Acrobat Reader,

XMLSpy, OpenOffice or any editor of the Microsoft Office suite. In this

way, the source of the blog can be a PDF document, a Word document, an

Excel spreadsheet, an HTML page, or an XML file.

The rest of the chapter describes the contribution (Section 3.2), Blogouse blog

client (Section 3.3), and, finally, evaluation (Section 3.4) and conclusions (Section

3.5) are given.

3.2 Blog clients for second-generation blogs

A blog client works locally, and publishes globally. Unlike remote editing, local

editing permits to incorporate additional content without caring about connexion

problems. For shallow, semanticless, typed posts, this could not be regarded as an

important advantage as editing a post just takes few seconds. However, second-

generation blogging oversees the initial use of blogs as personal diaries to become

lightweight content management systems [Röl03].

An additional argument in favour of blog clients is the tight integration with the

desktop resources. Web-based editing do not permit the sophisticated GUI gadgets

available in a desktop (e.g. drag&drop, mouse mobility, etc.) and to which users

are accustomed. As pointed out in [MD05], “access to other desktop applications

and their data (e.g. through their public APIs), control of the clipboard, and tech-

niques like drag-and-drop are difficult or impossible to implement in a web-based

environment” which make them also favour a desktop approach.

The BlogThis! functionality permits posts to be constructed out of existing

desktop resources (e.g. a PDF file, an HTML page, an Excel spreadsheet). The

title, the description, and other properties of the post should be mostly derived

from the resource itself. Hence, posting is equated with annotating the resource

along “the blog ontology”.

Some of the information can be automatically extracted when the mapping

from the document content is clear. However, this is not always the case. For

instance, the title can be extracted from different places, such as the document title,

20 Chapter 3. Blog as Diaries

a section name, or, even, the beginning of a phrase. This situation deteriorates when

distinct formats and editors are considered. Automatic extraction could sacrifice

editor/format independence, a hallmark of this chapter’s approach.

Incorporating a BlogThis! button into each editor (i.e., as provided by Google)

will certainly lead to an integrated solution but at the price of coupling editing and

blogging. The myriad of formats which can be found in current desktop (e.g. .doc,

.xml, and .txt, to mention a few), and the corresponding editors, vindicate the use

of an editor-independent solution which relieves the user of such a burden. In this

chapter, the mouse is used to attain this aim.

Rather than using the extensibility technology provided by each editor (e.g. Ac-

tiveX controls in the case of Word), the development of this chapter is moved down

to the operating system so that the solution can be available to no matter which ed-

itor. The result is Blogouse, a BlogThis! device that achieves editor-independence

by working at the operating-system level. By clicking on the mouse’s middle but-

ton, a post is obtained from a resource regardless of the editor you are working

with. In this way, the user does not have to move to a new editor when posting

(e.g. desktop clients), nor has to learn a new GUI when resources from different

formats are edited (e.g. Google).

In this way, this chapter strives to enhance the functionality without loosing

the simplicity and usability that make blogware so popular. Next section describes

Blogouse through a sample case.

3.3 Blogouse at work

BlogThis! can be regarded as an extractive process that obtains a post out of an

external resource. If all posts have the same characterisation, the only source of

variation in this process will be the external resource as such, i.e., whether the post

is obtained from an HTML or a PDF document. This source of variation is faced

by abstracting from the editor at hand, and working at the operating-system level.

However, we envisage a second source of variation, namely, the characterisa-

tion of the post. It can vary depending on the blog ontology. So far, conventional

tags are used to describe no matter which post regardless of its content. However,

authors envisage a promising scenario where posts can be annotated to surface their

semantic content, and become integral parts of the semantic Web [KQ04]. In this

setting, post extraction depends on the ontology at hand, and the blog client needs

to be configured with the blog ontology. Next subsection describes this configura-

3.3. Blogouse at work 21

Figure 3.1: Blogouse configuration.

tion which is previous to the BlogThis! process.

3.3.1 Blogouse configuration

Figure 3.1 describes the menus for configuring Blogouse. By clicking on the mid-

dle button of the mouse, the user is prompted to indicate a previous profile (e.g.

“Semantic Blog Project”) or to enter a new one. In this latter case, a blog main

page URL, an user name and a password are provided to establish a new profile.

At any time, the user can change the active profile (i.e., the publishing blog).

When a blog connexion is created, Blogouse makes some HTTP requests to

configure itself. Firstly, the BlogURL is requested. As a result, three data are

obtained:

• the blog’s title (“ONEKIN Paper Repository Blog”), which is used to name

the profile,

• the RSD (Really Simple Discovery) URL [RSD], which holds the URI for a

RSD file. RSD aims at simplifying “the discovery of setting information by

22 Chapter 3. Blog as Diaries

Figure 3.2: An RSD file.

reducing the information a user must supply to three well known elements2.

Assuming that the RSD file is generated by the blogging software (Radio,

Manila, etc.), the other required bits of information, not well known to the

user, can be easily discovered and supplied” [RSD]. The rationale for RSD

rests on the heterogeneity of the formats and manners of the services avail-

able at blog engines that pose important interoperability problems to blog

clients. Figure 3.2 gives an snippet of an RSD file3.

• the ontology URL, which holds a URI for the file that keeps the blog on-

tology. The terms and associations defined in this ontology are then used to

configure dynamically the mouse menu during the BlogThis! process (i.e.,

the drop-down menus used for annotation).

All these data are embedded through HTML elements into the blog home page’s

header. Once the homepage is retrieved, the blog client filters <title> and <link>

elements, and obtains the APIs as well as the blog ontology. The following code

shows a <link> element definition for retrieving the ontology:

<link rel=”xrss” type=”application/rdf+xml” title=”Extended RSS 1.0
Schema” href=”http://158.227.114.168/blojsom/resources/repository/xRSS1.0.rdf”
/>

2These elements correspond to the attributes name, apiLink, and blogId, which are necessary to a
blog connection establishment.

3<engineName> holds the name of the blog engine, <engineLink> keeps the URL to the engine’s
home, <homePageLink> has the URL of the blog itself, <apis> contains a sequence of apis to be
used to interact with the blog. Additional elements can be included to point to documentation.

3.3. Blogouse at work 23

Figure 3.3: Document title annotation.

This process only occurs at configuration time. Once the configuration is set, the

user deploys this configuration by just selecting the corresponding profile. The

profile fixes where the post is going to be published, and which ontological terms

are available for annotation during the BlogThis! process.

3.3.2 BlogThis! at Blogouse

Once a profile is selected, Blogouse is ready for guiding the annotation process

through drop-down menus (see Figure 3.3). All the post properties (i.e., title, de-

scription, any metadata, etc.) are now obtained from the resource by selecting

some text chuck, and, next, clicking on the appropriate menu. For instance,

• title is obtained by selecting some text chunk, and next, clicking on the menu

(see Figure 3.3). Since title only admits one value, successive selections have

a substitution effect. Moreover, this element is mandatory (denoted by the

asterisk), therefore, the user has to annotate it before publishing content in

the blog.

24 Chapter 3. Blog as Diaries

Figure 3.4: Document interest annotation.

• description is also obtained through selection. However, this element is mul-

tivalued, so that successive selections have a cumulative effect. This situation

is denoted by prefix “m”.

• subject and rating are metadata elements which are directly provided by

the user (see the namesake menu options in Figure 3.4). As the metadata

depends on the blog at hand, this GUI is generated on the fly based on the

blog profile. For instance, rating only admits five values, namely “none”,

“low”, “medium”, “high”, and “outstanding”, whereas subject is restricted

to hold “Java”, “Web Service”, and “XML”.

• source is automatically filled up by Blogouse. This element maintains a

reference to a resource document from which the annotation is derived, in

this way the annotation is decoupled from the document.

Figure 3.5 shows the syntax of the rating element in the ontology. In the definition

of each element, the attributes visibility, multiple, and mandatory can be seen under

the namespace blogouse. If the value of the attribute is true, then the attribute has

an effect over the element (e.g. visibility=”true” indicates the element is shown in

3.3. Blogouse at work 25

Figure 3.5: Rating ontology description.

the menu). The combination of boolean values in the attributes gives the semantics

described for each element.

During this process, the (inconclusive) post is kept in a special clipboard. Once

concluded, the user can publish the bright-new post by clicking on BlogThis!.

To avoid publishing a post by mistake, Blogouse provides two security systems.

When user clicks on BlogThis!, the annotation of mandatory elements is checked.

If an error occurs, an alert window is shown and the publication process is stopped.

Once all mandatory elements are annotated, a preview window appears and dis-

plays the annotated content (similar to Google’s BlogThis!). Finally, the content is

published.

An option is also to upload the annotated document (i.e., the PDF file) as an

additional property of the post. This facilitates document sharing through the blog.

In this case, BlogThis! enacts two XML-RPC calls. Firstly, the annotated document

26 Chapter 3. Blog as Diaries

Figure 3.6: The annotated document as a post.

is uploaded to the blog, and the assigned URL is returned back. This URL is held

by the source element, and added to the post description. This post is then also

eventually uploaded, and published in the blog4. The result is displayed in Figure

3.6. Notice the [Download] anchor at the end of the post that is the GUI counterpart

of the source. It is also worth highlighting the metadata matrix found on the lower,

right-hand side corner. The same as the traditional calendar-based searches permit

to locate posts based on their publishing date, this matrix permits locating post

based on the subject and rating metadata. Each kind of metadata is shown as an

axis of the matrix. Each cell shows an “V” to indicate whether at least one post has

these metadata. In this case, when clicking on one of these cells, the blog filters

the posts with the corresponding metadata. In other case, an “X” is shown. This is

a straightforward use of metadata, but more sophisticated advantages can be drawn

from post annotation (refer to [KQ04] for a detailed account).

3.4 Evaluation and discussion

An experiment has been conducted to use blogs for teaching material sharing and

revision among six lecturers. Some lecturers were reluctant to participate as they

look down blogs as mere diary’s entries, and producing posts out of teaching ma-

4Implementation wise, resource upload is achieved through the MetaWeblog API whereas post
upload uses Blogger API. To ensure transactional properties to these two operations, a rollback-like
operation undoes the resource upload.

3.4. Evaluation and discussion 27

terial was quite labour intensive. On the other hand, most of them recognised the

advantages of having a central hub where documents as well as comments can be

widely and easily available. As pointed out in [Röl03] “weblog can reduce the

volume of e-mails received by the participants; reduce searching time looking for

teaching material; effectively archive project documentation”.

All participants agree these advantages were effective, and that Blogouse fa-

cilitated the ready publication of their desktop resource. Editor independence was

regarded as the most outstanding feature of Blogouse. The variety of formats used

for storing teaching material as well as the heterogeneous range of editors in such

a free environment as the university, where staff is free to choose the editor he en-

joys it most (e.g. XMLSpy for XML documents, Visio for UML diagrams, and so

forth), makes this feature be really a must. Furthermore, participants appreciate the

easiness of the interface provided by Blogouse.

On the down-side, the drop-down menus were found cumbersome. The an-

notation of some metadata requires three mouse clicks just for simple ontologies.

This really poses a scalability problem for sophisticated ontologies where a longer

“drill-down” process could be required to locate the appropriate concept.

Some authors note that semantic metadata should be produced “as a by-product

of tasks that a user is already used to perform on a day-to-day basis, such as enter-

ing people in an address book application, organizing events in a calendar or man-

aging publications in a bibliographic database” [Hen01, MD05], and that “while

the metadata added to a blog entry could in principle be hand coded or added

through specific form fields in a web-based blog editor, we believe that this would

be far too complicated to appeal to a non-technical user, like the average employee

we are aiming at” [MD05].

We agree on this statement. However, its feasibility is limited to structured re-

sources (e.g. bibliographic entries, calendar entries, and the like) where wrapping

techniques can be used to extract the appropriate metadata without user interven-

tion. Also, it is well-known that most of the desktop resources are far from being

structured, and annotation techniques and tooling are required here. In this sense,

Blogouse offers a compromise between simplicity and more powerful approaches

to metadata extraction.

28 Chapter 3. Blog as Diaries

3.5 Conclusions

This chapter describes how semantic annotation can be successfully applied to

improve blog publication client tools. These improvements basically consist on

an extension of mouse devices functionality, which they make the mouse devices

ontology-aware. As a result, a document with its annotations (metadata) can be

discussed and shared easily with the participants. As this point, annotation and

document are completely decoupled, and the blog is which links them to give them

a meaning.

Moreover, Blogouse has been designed to be user-friendly, editor-independent,

and blog-independent, maintaining the blog arena simplicity. This makes Blogouse

be a more general blog publication tool.

Chapter 4

Blog as Virtual Community
Platforms

“No great improvements in the lot of mankind are possible until a great change takes

place in the fundamental constitution of their modes of thought.”

– John Stuart Mill.

4.1 Introduction

Companies know the importance of creating consumer communities around their

products: users come together to exchange ideas, review and recommend new

products, and even support each other. These communities are frequently sup-

ported through blogs. One of its main proponents, Dion Hinchcliffe, states: “most

businesses should be actively exploring the use of blogs to communicate (two-way)

with their customers, starting small, expecting little, and looking for opportunity”

[Hin07]. Studies endorse the use of blogs to market products, build stronger rela-

tionships with customers, and obtain customer feedback [N06, LD08]. This inter-

action between the company and its customers frequently pivots around the prod-

ucts in the company’s catalogue. Such blogs are hereafter referred to as “catalogue

blogs” (CBs). CBs aim to be a conduit for customer feedback as well as fostering

community construction around products. However, CB development is hindered

by the lack of common standards for blogs, the immaturity of blog technology, and

the youth of virtual community development. This obstructs the development, the

29

30 Chapter 4. Blog as Virtual Community Platforms

maintenance and the migration of CBs.

This chapter addresses the aforementioned situation through Model Driven En-

gineering (MDE) [SV06]. The main requirement is to develop CBs in a cost-

effective way. The challenge is then not on feasibility but cost effectiveness. So

far, the immaturity of blog technology prevents code and knowledge acquired for a

given blog engine to be extrapolated to a different engine. This jeopardises migra-

tion and reuse which, in turn, hinders the fulfilment of the cost-effective mandate.

MDE achieves reuse by introducing distinct models of a system at different levels

of abstraction. Models consolidate design decisions in the sense that changes in

lower layers should not affect higher models.

The contribution of this work is then two-fold. First, to the best of our knowl-

edge, this chapter provides one of the few examples of using MDE for blog gen-

eration. Despite authoritative voices, such as that of D. Hinchcliffe, have long

recognised the usefulness of blogs for community support, we are not aware of

work on how such blogs can be developed. This chapter addresses “catablog con-

struction” along MDE principles and, in so doing, provides concrete guidelines for

both the models and the steps to be followed.

However, it is not just a question of showing that MDE-based blog develop-

ment is technically feasible. Companies need some cost analysis that proves the

benefits of MDE compared with current practices. This would be the second con-

tribution. The chapter reports on labour-cost experiments comparing the MDE ap-

proach versus manual coding. The break-even point is measured in terms of both

the catalogue size and the number of generated catablogs needed for the MDE

infrastructure to pay off.

The rest of the chapter is organised as follows. A brief on the heterogeneity of

blog engines is given in Section 4.2. Section 4.3 looks at blog construction as an

MDE process instance. The (meta)models, i.e., the Catalogue Model, the Content

Model, the Style Model are introduced in sections 4.4, 4.5 and 4.6, respectively.

Section 4.7 addresses Blojsom as a Platform-Specific Model while the challenge of

Blojsom evolution is the topic of Section 4.8. Section 4.9 discusses the approach,

and the related work (Section 4.10) and conclusions (Section 4.11) end the chapter.

4.2. Blogs & Blog heterogeneity 31

4.2 Blogs & Blog heterogeneity

A blog is basically a sequence of usually short, frequently updated posts that are

arranged chronologically. A blog engine is a software for blog management1. This

blog engine can take different forms, namely:

• Standalone blogs, where the engine is available for users to download and

install locally. Here, blog entries are realised as either database tuples or

folders in a given directory structure. LifeType[Lif], b2evolution[Fra] or

Blojsom[Dav] are some examples of this type. Unfortunately, the database

schema or the folder structure can differ greatly among engines.

• Hosted blogs, where the engine resides remotely, and blog creation is achieved

through API calls. Movable Type[Sixa], Blogger[Bloa], LiveJournal[Liv] or

Blojsom[Dav] illustrate this approach. Unfortunately, current situation is

characterised by lack of standards (the same functionality is termed differ-

ently), unstable APIs, and incomplete APIs (very often the blog engine has

to resort to distinct APIs). Even the protocols can differ (e.g. XML-RPC in

the case of post creation, whereas REST is used for trackback2 and comment

creation).

There is no one-size-fits-all solution for blog engines. The selection very much

depends on the budget, infrastructure availability, and the control required over

the final design. Different companies have distinct priorities for creating product

communities, and their technological literacy and staff availability also influence

the solution. Therefore, automating blog creation from product catalogues should

take blog heterogeneity as a starting point. Decoupling from engine specifics looks

as the only way out of this plethora of platforms which is constantly evolving and

widening. In this setting, Model-Driven Engineering (MDE) emerges as a way

to separate platform-independent design from platform-specific implementation.

Next section introduces blog construction as an instance of the MDE process.

4.3 Blog generation as an instance of the MDE process

The goal is to obtain a “catalogue blog” from a catalogue specification using an

MDE process (see Figure 4.1). The starting point is a specification of the catalogue

1Refer to [Gar05] for a detailed comparison of blog engines.
2Also known as external comment.

32 Chapter 4. Blog as Virtual Community Platforms

Figure 4.1: From OCF catalog to blog generation.

along the Open Catalog Format (OCF) standard [Mar]. The MDE process will

then generate an application whose enactment delivers a blog. During this process,

a large number of functional concerns emerge: what products to include, how they

are related, how consumers interact, how information is made persistent, the API

to use, etc. Additionally, other non-functional issues might be important: cost

(e.g. software license of the blog engine), maintainability, existence of in-house

development expertise, etc. MDE provides a way to stratify these concerns by

introducing distinct models of a system at different levels of abstraction [SV06].

In this case, the system is a “catalogue blog”, and the following (meta)models are

introduced (hereafter, capital M will denote (meta)Models):

• The Catalogue Model, a Platform Independent Model (PIM), which addresses

the following questions: which products are to be commented upon? which

kind of cross-selling relationships are involved? To this end, this work takes

a standard to catalogue definition: the Open Catalog Format (OCF),

• The CB Content Model, a PIM which captures the content to be rendered

through the blog. It can be automatically obtained from catalogue data,

• The CB Style Model, a PIM which collects those concerns that impact user

interaction. It is to be provided by a domain expert,

4.3. Blog generation as an instance of the MDE process 33

Figure 4.2: Blog generation as an instance of the MDE process.

• A hosted blog platform, a Platform Specific Model (PSM) for a hosted blog

platform: Blojsom [Dav],

• A standalone blog platform, also a PSM for a standalone blog platform also

in Blojsom.

These models describe the problem at different levels of abstraction. Model

transformations are then used to map among models. Model transformation is the

process of converting one or more input models (a.k.a. source models) to one

output model (a.k.a. the target model) of the same application. In this way, MDE

strives to substitute manual coding by first modeling, then transforming.

Consequently, MDE focuses on the construction of Models, specification of

transformation patterns, and the chaining of transformation (a.k.a. the MDE pro-

cess). System development is conceived as transformation chains where the arti-

facts that result from each phase must be models. SPEM (Software Process En-

gineering Metamodel) is a notation for defining processes and their components

whose constructs can be described in UML notation [OMG05]. Hereafter, SPEM

terminology is used to specify the milestones, roles and dataflow that go with pro-

ducing a blog from a catalogue description through a chain of model transforma-

tions.

The OCF-to-Blojsom process is depicted as an SPEM process in Figure 4.2.

Three actors are distinguished: the transformer (i.e., the software that maps from

source model to a target model), the composer (i.e., the software that takes two

models as input and delivers a single model) and the domain expert.

34 Chapter 4. Blog as Virtual Community Platforms

Figure 4.3: The OCF Model.

The process starts by mapping the XML-based OCF file into Ecore (i.e., the

Eclipse-based realisation of MOF3) that can now be processed as a model. This

OCF model serves to obtain the Content Model. However, some ambiguities exist

about how OCF product attributes are to be mapped to properties of the Content

Model. The domain expert needs to intervene to disambiguate the transformation.

This is known as “annotation”. Annotations are not about the source model as such

but on how to transform the source model. Hence, it is possible to have different

outputs for the very same input model based on indications on how the transforma-

tion should proceed. The outcome is an Annotated OCF model (see Figure 4.2).

This annotated model is then used to obtain the Content model. Content is next

complemented by the Style model provided by the domain expert. Together they

serve to obtain a full-fledged catablog model. Finally, a model-to-text transfor-

mation outputs the code that realises the catablog for a specific PSM. Figure 4.2

serves as a road map for the next sections.

4.4 The Catalogue Model

The Catalogue Model is based on OCF. OCF is readily transformable to other

major catalog standards like xCBL, Punchout, xCBL, CIF, CUP, cXML, OCI or

Rosettanet. This work takes OCF version 1.0. Figure 4.3 describes the main no-

tions behind OCF: catalog, which consists of a hierarchy of product categories;

category, which contains attributes, parameters, links, products and subcategories.

3Meta-Object Facility

4.5. The Content Model 35

Figure 4.4: The Content Model.

Each category has a name. A category defines a set of attributes which specify

special information about the category. A category also defines a set of links (see

below). Categories are arranged along parent-child relationships where a child

category inherits all the characterisation of its parent category; product, which be-

longs to a category and defines values for attributes of this category. Besides those

attributes, a product can have attributes on its own; attributes, which describes

a property of a product; link, which indicates the existence of an association be-

tween either categories or products. Links have a name that describe the nature of

the link. For instance, two categories can be “alternative” whereas two products

can hold a “compound” or “cross-selling” relationship between them. Since cata-

logue information is natively provided as an XML file, it needs to be first converted

to Ecore.

4.5 The Content Model

The Content Model is an attempt to abstract away from the peculiarities of how

content is supported in different blog engines. Basically, this content is arranged

along the following constructs (see Figure 4.4): blog as the content root, post as

a blog entry, category as the means to classify posts, metadata as content not in-

tended to be rendered but needed for additional processing of posts (e.g. for in-

dexing or querying purposes), and finally, descriptionDatum, which keeps product

attributes that will later be used to generate the content of the post4. Notice that

comments are left outside this model since they are not generated from the cata-

logue, but dynamically provided by end users.

4A Description Datum is basically a (name,value) pair. Additionally, the “valuetype” and “unit”
are also collected from the catalogue due to their potential impact on the rendering of this datum.

36 Chapter 4. Blog as Virtual Community Platforms

Figure 4.5: AMW Model Extension.

These classes can hold distinct associations (see Figure 4.4), e.g. the “parent”

association, that captures category hierarchies; the trackback association, that re-

flects the namesake relationship between posts, etc. This Content Model provides

the hook for adding style hints.

4.5.1 Obtaining the Content model

Content models are obtained from OCF models. Some mappings are straightfor-

ward: a Catalog element delivers a Blog element; an OCF Category is mapped into

a Category; an OCF Product outputs a Post. However, there exists some ambigu-

ity about how OCF Attributes should be transformed. Specifically, OCF attributes

can be mapped into either descriptionDatum or metadata in the Content Model.

For instance, vendor is a product attribute in the OCF Model. When mapped to the

Content Model, this attribute can be used to generate the description of the post.

Additionally, it can also play the role of metadata in the sense that vendor can be

used for indexing posts so that you can render the posts that pertain to a given ven-

dor. Therefore, the Domain Expert should provide hints about how transformation

should proceed.

The Domain Expert annotates OCF attributes indicating whether they will be-

come metadata or descriptionDatum in the Content Model. Annotations are not

relevant to the OCF model itself. To prevent the OCF model from being polluted,

a distinct model is used to collect these decisions. Along the lines described in

[VdCdFM08], a weaving model is used to capture the relationships between el-

ements of the annotated model (i.e., the catalog attributes) and the annotation as

such (i.e., becoming metadata). Then, each link in the weaving model represents

an annotation for the woven model. ATLAS Model Weaver (AMW) is used for this

purpose [dFBV06]. Figure 4.5 shows the Weaving (meta)Model.

4.6. The Style Model 37

Figure 4.6: OCF_to_catablog mapping: this ATL rule only applies to catalogue attributes
that play the role of blog metadata. The helper function checks this out by consulting the
Weaving model.

Now transformation can proceed. Annotations (i.e., the Weaving model) are

consulted during transformation through helper functions. Figure 4.6 provides

a case in point. This transformation rule invokes a helper function to ascertain

whether a given OCF attribute will become metadata. The function looks for

metadata annotations whose target element coincides to the attribute being passed

as a parameter (identified by the _xmiID_ property).

4.6 The Style Model

The design of this metamodel is based on two observations. First, catalogue blogs

(CBs) differ from diary-like blogs in their purpose, i.e., supporting virtual com-

munities. Unlike diary-like blogs, CBs should introduce means for community

building but without losing blog simplicity. The second observation is that blog

simplicity is obtained at the cost of reducing the design space. Blog engines restrict

how content can be presented and navigated. Specifically, blogs are characterised

by (1) content being arranged in terms of post, (2) navigation being limited to cate-

gory-based and chronology-based search, and (3) presentation being mainly based

38 Chapter 4. Blog as Virtual Community Platforms

Figure 4.7: The Style Model.

on themes. Of course, more sophisticated forms of presentation and navigation

could be envisaged but this would have infringed the simplicity principle.

Therefore, introducing, let’s say, general-purpose navigation models as those

provided by WebML [BCFM07] or OO-H [GCP01] would have been of limited

use here, since some features would have not been possible to be realised through

blog engines. Blog engines, although PSMs, provide a more abstract platform than

general-purpose Web frameworks (e.g. Struts). As a result, we did not come up

with a meta-model and then, looked at how this model could have been mapped

down to technological platforms. Rather, the approach was the other way around.

We departed from existing blog engines, and strove to find a set of style parameters

that abstract away from specifics of how rendering is achieved in distinct blog

engines.

Based on these two observations, we introduce the Style Model. We get in-

spiration from the cascading-style-sheet (CSS) way of handling rendering [W3C].

CSS classes permit to associate a name to a preset collection of rendering param-

eters. These parameters are low level (e.g. background color, fonts and the like).

The Style Model abstracts away for low-level rendering details (diversely realised

by blog engines) into a set of criteria adapted to CBs. Therefore, we do not pre-

tend this model to be general but domain specific, i.e., tuned for blogs supporting

community building around product catalogues.

Figure 4.7 depicts the Style Model. A set of parameters are provided that de-

fine the so-called InteractionStyle, namely: postOrder, blogAudience, postIt and

vote4It. The first two parameters, postOrder and blogAudience, look at CBs as

blog abstractions by describing design criteria that guide blog navigation and pre-

sentation. On the other hand, postIt and vote4It capture blogs as community con-

4.6. The Style Model 39

duits. Next, an InteractionStyle applies within a Scope. A Scope has a name and

type. The type range include, catablog (which affects the whole blog), category

(which impacts all products of this category) and post (which is restricted to a sin-

gle product). An order is defined among scopes (post < category < catablog) so

that parameters defined at one scope can be overridden by lower level scopes5. It is

worth noticing that scopes with a catablog or category type should have their coun-

terpart at the Content model (i.e., the scope’s name should be found at the Content

model). Next paragraphs introduce each parameter of the Interaction Sytle.

postOrder. It indicates the order in which posts can be arranged in the index

page of the blog. Three values are included, namely, chronologically (i.e., posts are

ordered by their creation time), alphabetically (by post title) or byCategory (i.e.,

ordered by the post category). The scope of this property is the whole blog.

blogAudience. Blogs use themes for rendering. Each blog engine has its own

collection of themes. This makes theme a platform-specific concern. Hence, the

notion of theme needs to be abstracted into those concerns that will eventually

guide the selection of the theme at transformation time, once the blog engine is

selected. This is the role of blogAudience. This property captures the expected age

of users as the main criteria for theme selection. Five values are considered: child,

teenager, young, adult and senior.

postIt. The rationale for this property is based on the increasing popularity of

social bookmarking. Tagging sites, such as delicious, digg, fark, newsvine, reddit,

simpy or spurl, permit to share URL-addressable resources. Since products are

now realised as blog entries (hence, URL addressable), every new post in a blog

is actually a new page which has a permalink. This permits the indexing of post

by search engines (e.g. potential customers can come across with your product

posts through Google), and the affixing of blog entries into tagging sites (which

facilitates the sharing of product information with a wider audience). This property

holds a list of the tagging sites to which blog entries can be posted to. Rendering

wise, this property is realised as a set of icons at the bottom of each entry (see

Figure 4.1). For instance, by clicking on the digg icon, the content of the entry

is published at digg. So far, five tagging sites are considered: blinkList, delicious,

digg, fark and furl.

vote4It. This property captures a new means for community building. In a

blog setting, participation is realised through commenting on a blog post. So far,

5It can potentially be possible to define scopes based on queries over the catalogue so that the
style applies to those products meeting the query criteria. This option is left for future developments.

40 Chapter 4. Blog as Virtual Community Platforms

commenting requires users to access directly the CB. However, users can hold their

own blogs, wikis or portals through which they comment about products of your

catalogue, and hence should be reachable through the CB.

As an example, consider that a customer prefers to comment on your products

at his own website, rather than accessing your CB. For instance, this customer can

write the following HTML snippet at his website:

We have successfully installed <a href="http://.../catablog/Computer

Software/ Acrobat2.3.html" rev="vote-for">Acrobat 2.3, after all

difficulties with <a href="http://.../Computer Software/Taborca3.2.html"

rev="vote-against">Taborca 3.2

The two anchors refer to products at your CB by including their permalinks. The

question is how your CB can be aware of such external references. The answer is

through trackbacks. This mechanism enables websites communicate via “pings”,

where each ping informs the blog that the sending site has made a reference to a

post on the blog [Six04]. Having a permalink, products can be referenced from

other websites, i.e., comments on this product can appear outside the blog. Instead

of forcing customers to comment only at the CB place, customers can now simply

send a “ping” to your CB every time they have something to say about your prod-

ucts without having to leave their company website or personal blog. This wides

the scope of the community outside the blog itself.

Trackback counting can then be used to measure the popularity of products.

Trackbacks support a push rather than a pull approach to voting: votes are spread

all over the web, and it is the blog itself (“the ballot box”) the one that goes to your

website to collect the vote. Even more, as the vote is at your site, you can change

your vote at any time, and the voting is re-calculated. This is in sharp contrast

with current pull approaches to voting, where you need to go to the place where

the product is described, tick some rank boxes, and then, lose the control over your

vote.

However, trackbacks just indicate that there is a reference to the post, but not

its intention. Such intention can be expressed through the VoteLink microformat

[Me05]. Microformats are defined as embedded annotations into HTML markup

that convey metadata, i.e., describing what the content is about. For instance, the

VoteLink microformat proposes a set of three new values for the rev attribute of

the <a> tag in HTML. The new values are “vote-for”, “vote-abstain” and “vote-

against”, which are mutually exclusive, and represent agreement, abstention, and

4.6. The Style Model 41

disagreement, respectively. Now, a hyperlink (i.e., the <a> markup) not only

points to an URL but also conveys opinions about your likings w.r.t. what this

URL stands for. In our case, these URLs stand for products (i.e., permalinks on

posts that represent products). A customer commenting at his company website can

now include a link to your CB but now the link can be annotated with his likings

(i.e., vote) to the linked product in a machine-understandable way. The previous

HTML sample uses this approach to convey the likings of the customer about two

products: Acrobat2.3 and Taborca3.2. This feature is captured in the Style Model

through the vote4It property. This property holds a boolean that indicates whether

this feature is to be present in the CB (see [Me05] for supporting VoteLink-aware

trackbacks).

4.6.1 Obtaining the Style model

The Domain Expert provides himself the Style model. The postOrder, blogAudi-

ence and other Style parameters are then consulted when the blog application is

generated so that the right theme, order of posts, tagging hyperlinks, etc. are ob-

tained for the blog engine at hand. These properties are, by no means, the only

criteria that can guide, for instance, the selection of the theme for the blog ap-

plication. Other aspects to be considered during theme selection can include de-

mographic (e.g. sex, age, education, etc.), geographic, attitudinal (e.g. interest

in lifelong learning) or behavioral (e.g. product usage rate) data [BU]. This very

much depends on the importance of these factors on the market at hand.

The bottom line is that the Style Model explicitly captures design criteria through

properties. And even more important, the impact that these criteria have, or better

said, the impact that the combined interaction of these criteria have in the aesthetic

of the blog are specified as transformation rules. For instance, expressions, such as

(ageAudience=”adult”, educationAudience=”BSc”, sexAudience=”female”), can

characterise a market segment with a specific rendering theme. These expressions

can be explicitly captured through transformation rules. Therefore, transformation

rules embody design criteria about how market segments impact blog rendering,

and, in so doing, they are true repositories of design expertise.

Finally, the Style model is composed with the Content model to deliver a full

model of the blog. Model composition is achieved on the grounds that Style scopes

should find their counterpart as either the catablog, categories or posts of the Con-

tent model. That is, scopes’ names should coincide with the name/title of objects

42 Chapter 4. Blog as Virtual Community Platforms

in the Content model. This is achieved through AMW6. Once the Content model

and the Style model are composed, all it is ready to generate the code.

4.7 Blojsom as a PSM

Blog engine heterogeneity firstly motivates this work. A major distinction is that

of standalone blogs versus hosted blogs. Standalone blogs are those where the

engine is available for users to download and install. Here, blog creation involves

the population of a database or the creation of a folder structure that records blog

data. On the other hand, hosted blogs are those where the engine resides remotely,

and blog creation is achieved through API calls.

This work focuses on Blojsom [Dav]. Even within a single vendor like Bloj-

som different alternatives exist: file-based blogs (Blojsom 2.x), database blogs or

hosted blogs (Blojsom 3.x through Blogger API 1.0). Next paragraphs address the

mapping into different PSMs.

Standalone platform. Standalone platforms store data locally. Two options

are available: files and databases. File-based blogs rely on both folders and files to

store blog elements. Figure 4.8 outlines the file structure for our sample case. The

mapping goes as follows:

• Categories are embodied through folders which are named after the category

name (e.g. the Computer Software folder stands for the namesake category).

The location of the root category (or root folder) is configured through a blog

installation property. Subcategories are supported as nesting folders.

• Category metadata are kept in the so-called blojsom.properties file, whose

content is a set of (property, value) pairs. This file is located inside the folder

category. For instance, the metadata of the category Computer Software is

located at /Computer Software/blojsom.properties.

• Posts are supported as text files with html extension. The file extension is

after the post title. The content includes the title of the post (first line), and

the description of the post. These files are kept inside the post category

folder.

6The composition process goes as follows. First, a weaving model captures the links between the
input model elements, for instance indicating that Post (from the Content model) and Scope (from
the Style model) whose name coincides should be combined into Post. Second, the weaving model
is used to generate a transformation that achieves the composition.

4.7. Blojsom as a PSM 43

Figure 4.8: Blog directory structure and its rendering counterpart: posts, categories, meta-
data are all kept in files.

• Post metadata is mapped to a .meta file. The file extension is after the post

title. In this way, myPost.meta holds the metadata of myPost, whose content

is a set of (property, value) pairs. These files are kept inside the post category

folder.

• Trackbacks are supported as .tb files, named after the trackback creation

timestamp. Post trackbacks are collected in a folder that is misleadingly

named after the post file (e.g. “myPost.html” but now as a folder name).

Additionally, folders related with posts belonging to the same category are

kept under the .trackback folder. Finally, this folder hangs from the cate-

gory folder to which the corresponding post belongs. An example follows:

categoryA/.trackback/myPost.html/1201455552085.tb

• Trackback metadata are contained in a .meta file, named after the corre-

sponding trackback. For instance, 1201455552085.meta will contain the

metadata of the 1201455552085.tb trackback, whose content is a set of

(property, value) pairs.

Figure 4.9 provides a MOFScript snippet for creating files for posts and their corre-

sponding metadata. For each post, an html-typed namesake file is created (line 65).

44 Chapter 4. Blog as Virtual Community Platforms

Figure 4.9: MOFScript snippet that outputs code for the file-based Blojsom platform.
(right truncation).

This post is associated with the category specified as the “ecp” parameter. Along

Blojsom guidelines, a post file contains first a title (line 66) and, next, the content

of the post. This content is obtained by formatting DescriptionDatum elements

(lines 69-86). Once a post file is created, its associated metadata file needs to be

generated. Line 90 creates the metadata file. Its content includes the creator and

the timestamp for the associated post (lines 93-94). The other metadata is obtained

from Metadata elements of the blog model (lines 95-102).

Rather than files and folders, Blojsom also permits to store blog data as tuples

4.7. Blojsom as a PSM 45

Figure 4.10: Blojsom database schema.

in a local database. Figure 4.10 depicts the database schema for Blojsom. This

involves a different MOFScript transformation. Now, SQL scripts are generated

that basically maps elements of the blog model into tables of the Blojsom database

schema.

Hosted platform. This option permits the blog to reside remotely. API re-

quests are then used to manage the blog online. Although there is not such thing

as a standard for blog APIs, there is some consensus about the functionality to be

supported. To the best of our knowledge, this functionality is captured by Blog-

ger API 1.0 [Eva03], MetaWeblog API [Dav02], and parts of the MovableType

API [Mov05]. Many blog systems understand the Blogger API, including Blogger

[Bloa], RadioUserland [Rad], MovableType [Sixa], and Blojsom [Dav]. All these

APIs build on top of the XML-RPC protocol.

Unfortunately, current APIs fall short to generate the whole blog. APIs are

thought to populate the blog but do not contemplate blog creation. Specifically,

current APIs do not allow for creation of the blog itself as well as category and

metadata definition. The former limitation is overcome through a script that mim-

ics user actions when introducing new information using the blog back-end web

editing tool (through HTTP calls). The second drawback (i.e., category and meta-

data remote insertion) is addressed through an ad-hoc XML-RPC plugin. It is

46 Chapter 4. Blog as Virtual Community Platforms

worth noticing how this forces the MOFScript-generated application to handle two

different protocols to create the blog.

To sum up, three different MOFScript applications were developed to handle

the specifics of each target platform. Unfortunately, this MOFScript code is too

exposed to ad-hoc details of Blojsom, making the code too expose to Blojsom evo-

lution. Next section addresses this issue.

4.8 Facing PSM evolution

MDE suggests to create a dedicated mapping for each PSM. This is basically the

approach described in the previous section. Three MOFScript applications cope

with the idiosyncrasies of each Blojsom platforms (i.e., file-based, database-based

and API-based). However, PSMs can be a moving target. For immature domains,

PSMs tend to suffer frequent updates (new versions) which will more likely impact

the transformations. For our sample case, transformations would need to be rewrit-

ten in at least three scenarios: changes in the file structure, updates of the database

schema or modifications in the Blojsom APIs. The likelihood of such revisions

much depends on the stability of the domain. Unfortunately, the current panorama

is characterised by a plethora of heterogeneous blog engines where standards are

far from being yet set. Therefore, it can be expected that future releases of Blojsom

will gradually support standards as they emerge. The question is how to shield

MOFScript code from those changes.

To this end, it is resorted to the notion of “abstract platform”. An abstract

platform defines an acceptable or, to some extent, ideal platform from the point

of view of the application developer [ADvP04]. The aim is two fold. Firstly,

the abstract platform permits MOFScript developers to describe the mapping in

more abstract terms. Secondly, it shields MOFScript code from changes in the

underlying PSMs whose specifics are encapsulated as part of the implementation

of the abstract platform.

Therefore, an abstract platform has a dual nature. As a platform, it provides an

executable environment. As an abstraction, it factors out the details of the set of

existing platforms. That is, it represents a higher degree of platform-independence

than that of existing platforms. Indeed, an abstract platform is defined w.r.t the

existing platforms it abstracts from. Abstract platforms stand inbetween PIM and

PSM. The aim is to ease PSM mappings when either the PIM-PSM gap or the PSM

likelihood of evolution are important. Thus, abstract platforms are not PIMs but

4.8. Facing PSM evolution 47

Figure 4.11: Blog Abstract Platform (partial view).

provide some kind of platform-independence for a set collection of PSMs. Next

subsections present how these ideas are realised for the blog case.

4.8.1 The Blog Abstract Platform

Defining an abstract platform starts by identifying the existing platforms to ab-

stract from. In our case, this includes: file-based Blojsom PSM, database Blojsom

PSM and hosted Blojsom PSM. Next, platform-independence is defined based on

these three PSMs. The peculiarities on handling blog creation among these three

platforms are factored out into the abstract platform. This implies defining the

architecture and operations over the abstract platform. Figure 4.11 outlines the

architecture of the Blog Abstract Platform.

48 Chapter 4. Blog as Virtual Community Platforms

The architecture is inspired by how database applications are isolated from

the peculiarities of Database Management Systems along the lines of ODBC and

JDBC. A set of abstract operations are introduced to handle blog data no mat-

ter how these data end up being stored, i.e., either through hosted or standalone

blogs. Specifically, the following operations are introduced: createBlog(), create-

Category, createCategoryMetadata(), createPost(), createPostMetadata(), create-

Trackback() and createTrackbackMetadata().

Next, BlogDrivers map these operations into the specificities of each blog en-

gine. A BlogDriver encapsulates the peculiarities of the blog PSM at hand (e.g.

protocol, data format, etc.). The management of BlogDrivers is realised by a Blog-

DriverManager component, which hosts the drivers, and supports the interaction

with the distinct PSMs using a BlogConnection component.

This architecture permits to introduce new blog engines by specialising the

BlogDriver, BlogConnection and BlogStatement interfaces. Figure 4.11 depicts

this situation for the fileBasedBlojsomPSM platform. In this case, the driver de-

scribes how operations on the abstract platform (e.g. createPost()) are implemented

in terms of files. This is supported by realising the BlogStatement interface, e.g.

fileBasedBlojsomPSMCreatePost class. This class encapsulates the protocol and

parameter details to achieve post creation for the fileBasedBlojsomPSM. The cur-

rent implementation also provides drivers for the databaseBlojsomPSM and the

hostedBlojsomPSM.

Once the abstract platform is in place, MOFScript can generate code for this

platform. Next subsection outlines an example.

4.8.2 Mapping onto the Blog Abstract Platform

Applications can be generated over the Blog Abstract Platform. This implies that

the application is described in terms of “abstract operations” (e.g. createPost())

rather than describing how this operation is finally realised in a target platform

(e.g. creating a file for the post). As an example, consider a MOFScript snippet

for creating posts and their corresponding metadata out of blog models (see Figure

4.12). This script generates code for the Blog Abstract Platform rather than for a

particular blog engine. Indeed, lines 124 and 133 generate calls to createPost() and

createPostMetadata(), respectively. This is in contrast with the previous script in

Figure 4.9 where the details of how the platform handles post and metadata are

exposed in the transformation. That is, notions, such as files or tables, that were

explicit in the previous version of MOFScript code (see line 65 in Figure 4.9),

4.8. Facing PSM evolution 49

Figure 4.12: MOFScript snippet that outputs code for the Blog Abstract Platform.

are now hidden by the abstract platform. These details are encapsulated in the

BlogDriver.

The benefits of this approach include:

• Legibility. This stems from reducing the gap between the source PIM and the

(abstract) platform. The mapping focuses on how model elements become

post/metadata rather than struggling with PSM specifics. MOFScript code

is now specified in more abstract terms.

• Robustness. MOFScript code is shielded from the internal design of the Blog

Abstract Platform as well as from evolution in the APIs or database schemas

of Blojsom.

• Reuse. The very same MOFScript code can be reused for distinct target

50 Chapter 4. Blog as Virtual Community Platforms

PSMs. The example in Figure 4.12 can generate either file-based blogs,

database blogs or hosted blogs by just changing the driver. The driver and

other connection parameters (e.g. user name, password for blog connection,

etc.) are provided as configuration parameters at the time the MOFScript

script is enacted.

• Portability. New blog engines can be introduced by just realising the inter-

faces of the abstract platform. That is, the very same MOFScript code can

be “ported” to new blog engines as long as appropriate drivers are provided.

The only change is that now the MOFScript code is executed with a different

value for the “driver” configuration parameter.

On the downside, introducing abstract platforms on top of existing platforms can

add some cost in terms of memory and execution speed at the time the generated

program is executed. This is true in a general setting but does not apply here.

The overhead caused by mapping “the abstract API” to, e.g. Blojsom’s APIs, only

occurs at the time the blog is created, not during blog operation. Therefore, the

indirection penalty has no impact on the everyday use of the so-generated blog.

The bottom line is that platform independence is not an all-or-nothing option.

When pursuing platform-independence, one could strive for PIMs that are neutral

with respect to all different classes of technical platforms. This frequently forces

MOFScript mappings to bridge a wide gap between the PIM and the PSM, leading

to clutter code. Rather, this chapter advocates for abstract platforms as an hybrid

way by moving platform specificities from the mapping code to the drivers.

4.9 Discussion

MDE aims at raising the level of abstraction in application specification and in-

creasing automation in program development. On the grounds of this project, this

section reflects on the methodology to achieve abstraction, and the break-even point

between manual coding vs. automation (i.e., code generation).

4.9.1 On the way to abstraction

Broadly, model-driven application development follows a top-down approach, i.e.,

starting from abstract PIMs to then gradually introduce more platform specifics,

till, finally, the code is generated. However, from the experience of this chapter,

4.9. Discussion 51

the creation of the MDE infrastructure (i.e., metamodels and transformations) ba-

sically proceeds the other way around. This is more so if the notion of “abstract

platform” is introduced as another artifact of the MDE infrastructure. Companies

have already a set of blog engines they work with. This collection of blog engines

sets the initial PSM space from which the CB metamodels are abstracted. This ex-

plains why these metamodels are not general-purpose models for Web applications,

but models that abstract from existing blog engines. The options are then limited to

those available to the initial set of blog engines. This is in contrast to general Web

models where navigation and rendering is fully modeled since their PSM platforms

can be as general as HTML. Our experience then confirms the insights of Markus

Volter: “...it is better to start from the bottom: first define a DSL that resembles

your system’s software architecture (used to describe applications), and build a

generator that automates the grunt work with the implementation technologies”

[Völ08].

On the way to abstraction, models and abstract platforms as introduced in this

chapter, provide two complementary mechanisms. The difference stems from both

the time and means to concretise the abstraction into a target PSM. Models resort

to transformations as “the concretisation mechanism” which is used at generation

time. By contrast, abstract platforms are executable environments where software

patterns can achieve the variability needed to accommodate distinct target plat-

forms (e.g. the Factory pattern which is used in the Blog Abstract Platform). Un-

like models, abstract platforms imply indirection, and hence incur in an additional

cost at execution time. This cost should be balanced against the benefits reported

by more maintainable, reusable and portable MOFScript code. Aspects to be con-

sidered include the heterogeneity of target PSMs, the likelihood of evolution for

target PSMs, or the probability of enlarging the number of target PSMs. Addition-

ally, the scarcity of MOFScript programmers can also support the option of moving

the burden of handling PSM peculiarities from model mapping (using MOFScript)

to an abstract platform (e.g. implemented in Java).

4.9.2 On model transformations as a reuse mechanism

MDE achieves reuse through abstractions (models) and model transformations.

Models capture the specificities of the application at hand whereas transforma-

tions account for reuse. Hence, code programming is substituted by modeling and

transforming. This subsection attempts to measure the reuse gains in terms of pro-

ductivity by comparing manual coding vs. code generation using MDE techniques.

52 Chapter 4. Blog as Virtual Community Platforms

Figure 4.13: Breakeven in terms of 50-product blogs: 48,91 catablog projects are needed.

An empirical study was conducted comparing labour hours involved in obtain-

ing a standalone file-based blog through either manual coding or code generation.

Figure 4.13 shows the results for a 50-product catalogue. The different inputs in-

clude:

• Cost of directly coding in Blojsom. This involves coding the products as blog

posts one by one. The cost of learning Blojsom is not included since this is

an asset already available. Total costs: 1,9 hours using Blojsom wizards to

create blog defaults.

• Cost of generating the code out of the OCF document. The existence of the

OCF catalogue is taken from granted. Therefore, the labour cost is restricted

to adding the virtual community properties through the Style model. Total

costs: 0,25 hours.

• Upfront investment. It includes both the cost of building the MDE infrastruc-

ture (i.e., meta-models and transformations), and the learning of the MDE

tooling (in our case ATL, AMW and MOFScript). For an experienced and

motivated developer, this accounts for 80 hours. Companies incur in this

base cost no matter the number of catablogs being generated.

The gains for this upfront cost much depends on two factors: the average size of

the product catalogue and the number of catablog projects. The catalogue size

mainly influences the cost of directly coding in Blojsom. By contrast, it has almost

no impact on the MDE alternative where data is directly obtained from the OCF

file. As an example, consider a sample catalogue including 25 categories and 50

4.10. Related work 53

Figure 4.14: Break-even as a function of two parameters: number of blogs & number of
products.

products with 7.2 properties per product on average. It took 1,9 hours to obtain

the blog through manual coding. By contrast, MDE generates the very same blog

but involving only 0,25 hours of labour work (mainly, the elaboration of the Style

model and the Annotation model).

Figure 4.13 extrapolates these results by keeping constant the catalog size, and

obtaining the breakeven as the number of catablog projects needed to payoff the

upfront investment. Notice that the slope of the dotted line (i.e., the MDE ap-

proach) is less sharp than the manual-approach line. This stems from model anno-

tation being easier than coding directly into Blojsom all the products’ content. The

figure highlights the role of MDE as a reuse technique where benefits are gradually

obtained along distinct projects.

Figure 4.14 extrapolates those results, and assesses the breakeven as a function

of two parameters, namely, the number of blogs and the number of products. For

instance, scenarios where the breakeven is met include (2 blog projects of 1500

products) or (25 blog projects of less than 100 products).

4.10 Related work

This work contributes to two main areas: e-catalogue support and model-driven

development. Next paragraphs provide related work in each of these areas.

Catalogue support. To the best of our knowledge, we are not aware of any

project that addresses automatic generation of blogs. Catalogue browsing through

54 Chapter 4. Blog as Virtual Community Platforms

small screens is addressed in [GT07]. This could be contemplated as a different

technological platform from blog engines that, quite likely, would also require ex-

tension at the PIM level. Future work could contemplate transforming catablog to

platforms other than blogs (e.g. PDA). This would permit to capitalise on exist-

ing PIMs, and focus on the transformation to PDAs, and, in so doing, proving the

advantages that the MDE architecture brings to cope with new PSM.

In the area of library catalogues, [VR06] focuses on the extraction and descrip-

tion of library cards using XML technologies. Although the main challenge rests

on harmonising the different types of catalogue cards, they also present a way to

render such library cards in HTML using XSLT technology. A step forward would

be to use blogs rather than static HTML pages to display library cards. Library

members could then leave comments and engage in discussions that support reader

communities. This could be easily achieved by just specifying library cards as

OCF descriptions, and then, generate “library blogs” using the approach described

in this chapter.

Model-Driven Engineering. The Web Engineering community is actively

supporting MDE practices. There exists a series of workshops on this topic (MDWE7),

and different experiences have been reported (refer to [RPSO07] for an overview).

Most of the approaches focus on data-intensive Web applications (see [EK04]

for a review on Web design methods). These approaches are design-intensive,

and involve important upfront investment. By contrast, our approach has cost-

effectiveness as a main requirement. From this perspective, blogs offer a good

balance between price and functionality where companies can checkout the benefit

of catablogs, and if successful, move to more sophisticated and costly solutions.

On a different front, few studies report on the experiences in adopting MDE.

The adoption of this approach in a large IT consultancy organisation is described in

[KR06]. Specially interesting is the quote “small-to-medium sized projects found

the model-driven approach too heavyweight and restrictive. Shorter project du-

rations didn’t allow for investments in learning/training. Need to deliver quickly

made the teams intolerant to tooling irritants. The perceived loss of control of

the development process and artifacts was the principal reason for these projects

not taking to model-driven approach.” [KR06]. Our project can be considered

as medium sized, and we indeed experienced some of the mentioned drawbacks.

However, these limitations were overcome by supportive programmers that saw the

project as an opportunity to delve into Software Engineering advance practices. In-

7http://mdwe2009.pst.ifi.lmu.de/

4.11. Conclusions 55

deed, we regards catablog as a pilot project from which to obtain vivid experiences

on how MDE automates recurrent tasks, allowing the developer to focus on higher

value labors on the hope that this experience will ultimately ease the transition to

MDE in companies.

A set of variables to weight the MDE effort is proposed in [MBVM06]. These

variables include tools maturity (measured by the time that the user was idle due

to bugs in the tool), learning curve (measured by a survey of attendees of each

course), resistance to change how willing people are to start using MDE (measured

by a survey of attitudes), and, finally, perceived value of using MDE (also mea-

sured by a survey of attitudes). The paper does not compare manual vs. generate

approaches. Neither do we address the impact that, let’s say, tools maturity has on

the final break-even point. We estimate this break-even point for a set scenario, and

measure the labour cost in this scenario. Hence, we do not claim that our results

can be directly extrapolated to other companies since the maturity of MDE tool-

ing (improving as time goes by) or the resistance to change to MDE (decreasing

as MDE becomes mainstream) are moving targets. However, the results show out

that even with the current state of affairs at the time of this writing, MDE is moving

from promises to practice.

4.11 Conclusions

This chapter addresses how blogs can be generated from product catalogues in a

cost-effective way. The main challenges come from the heterogeneity and instabil-

ity of blog engines. The chapter presents an MDE architecture where metamodels

and transformations are introduced that gradually detach the models from their fi-

nal realisation through blog engines. The use of an “abstract platform” also helps

to make the final solution more robust. Some figures shown the cost-effectiveness

of the MDE solution in comparison with manual coding.

Future work includes enriching the catablog Model with additional aspects

such as security or permission. Another main issue is evolution. Catalogues evolve,

and this evolution percolates their blog counterparts. We hope to report on these

issues as further insights are gained by developing more catablog projects.

56 Chapter 4. Blog as Virtual Community Platforms

Chapter 5

Blog as Peers

“When I began blogging, I imagined that someday there might be hundreds of Weblogs,

with tens of thousands of readers. Instead of dozens of Weblogs with a million readers,

there are now well over four million Weblogs worldwide - most with only a few dozen

readers.”

– Rebecca Blood.

5.1 Introduction

The content of blog posts can range from personal experiences to professional-

oriented content. Along with this broader spectrum comes the need to move from

isolated, personal blogs to blog rings where blogs conform chains of “like blogs”.

The difference between an isolated blog and a blog pertaining to a ring rests on

offering basically three additional links: "Join" | "Next" | "Prev" that permit par-

ticipants to join the ring, go to the next blog in the ring, or go to the blog that is

sequenced previous to the one you are on (for a list of blog rings refer to [alt10]).

So, basically, a blog ring is a way to connect blogs. This connection is re-

stricted to visit related blogs sequentially. However, some scenarios can benefit

from a tighter integration. So far, the blog subject is the main criterion to aggregate

blogs into a ring (e.g. “Canals and Waterway” to mention a true ring [Rin08]).

However, other criteria are possible. For instance, rings can also be defined on a

personal basis: blogs of actors participating in the same movie, blogs of colleagues

collaborating on the same project, blogs of lecturers teaching the same subject,

57

58 Chapter 5. Blog as Peers

etc. As an example, consider the latter case. Blogs are proposed as a conduit for

lecturers to communicate with students. Blog posts can stand for course’s themes

or assignments. Then, students can pose their questions as blog comments, visible

to other students. A blog ring can be defined among blogs which sustain the very

same course, although taught by distinct lecturers. In this way, students can peer at

different blogs of the same subject.

Blog integration through rings is commonly limited to reading. Students can

peer to blogs other than the one of their own lecturer. However, writing posts and

comments all along the ring is normally not supported. The community created

by the ring is limited to consumers (reading posts) rather than providers (writers

of comments). Post writing requires appropriate permissions. Even from reading,

the blog ring does not account for a seamless integration: consumers are aware of

skipping from one blog to the following one (e.g. changes on blog themes). As

reported in [OTH+04], blogs fall short as communication platforms. But, after

all, blogs were not thought for peer collaboration but asymmetric relationships

between the blog owner and the blog participants. If symmetric collaboration is the

target, other platforms such as Facebook [Mar10] can be the answer. In Facebook,

users collaboration starts through a username-based request. Once the request is

accepted, posts and comments of each other are shown in the user wall (i.e., a

page that aggregates friends’ posts of a user). Posts can be private, white/black-

listed, only visible for friends, or friends of friends. However, Facebook lacks the

autonomy that blogs enjoy. Bloggers can choose not only the type of platform (e.g.

where to keep their posts: online vs. locally) but also they retain the control over

what is the subject to talk about (i.e., what are the blog posts). Compared with the

symmetry of Facebook (i.e., no difference exists between lecturers and students),

the asymmetry of blogs better mirrors some real scenarios (e.g. unlike students,

lecturers can post entries in the blog). The question is how to find a federated

approach where blog owners can freely join collaboration spaces but retain the

control over their own blogs.

This chapter describes BlogUnion, i.e., a federated approach to blog integra-

tion. BlogUnion provides a contract-based distributed and heterogeneous cross-

blogging framework. Using a contract, two blogs agree on how information flows

from one blog to another. For instance, lecturerA’s blog and lecturerB’s blog set a

contract to indicate how posts on a certain subject or comments on a certain posts

can flow between their blogs. In this way, students do not have to skip from one

blog to the next, but posts/comments/trackbacks can seamlessly flow between blogs

5.2. On blog integration through linking 59

according to the contract specification.

Previous scenario is specified through a contract model which is enacted by a

contract engine. The operational semantics of contracts is described in terms of

event-condition-action rules. Rules regulate how information flows between blogs.

The approach is evolutive in the sense that existing mechanisms in blog engines

are sufficient to support the contract engine: contract negotiation is inspired in

trackbacks while contract representation follows the content syndication format.

The so-developed contract engine, named BlogUnion, is delivered as an extension

for Blojsom [Dav]. From the point of view of the participants (e.g. the students)

there are no difference with traditional blogs.

The rest of the chapter is organised as follows. Section 5.2 introduces current

approaches to integrate blogs through links and linkbacks. Our approach aims at

providing tighter forms of integration through contracts. This is motivated through

two running scenarios in Section 5.3. The design and implementation of BlogU-

nion are addressed in Sections 5.4 and 5.5, respectively. Finally, Section 5.6 dis-

cusses the approach, and conclusions (Section 5.7) end the chapter.

5.2 On blog integration through linking

Both posts and comments are URL-addressable. Hyperlinks (or links) are then a

common mechanism to refer to blog content. From this perspective, “... a ’com-

munity’ is a set of blogs linking back and forth to one another’s postings while

discussing common topics... Members of such an informal community might list

one another’s blogs in a ’blogroll’ (...) and might read, link to, and respond to

content in other community member’s blog” [KNRT04]. Next sections delve into

how hyperlinks are used to create blog communities.

5.2.1 Linking at the blog level

Blogrolls and webrings are two mechanisms for blog linking. Grouped blogs tend

to have something in common. This commonality can rest on the blog subject (e.g.

blogs about cooking) or some external matter (e.g. blogs from player pertaining

to the same team) [BHH02]. Differences stem from (1) how membership is estab-

lished, and (2) how related blogs are visited.

A blogroll is a group of blogs compiled by the blog owner, and exposed to the

blog participants as a blog sidebar index [DDJ+02][Wor10a]. Once on a blog, you

can move to any other blog in the roll.

60 Chapter 5. Blog as Peers

A webring is a list of blogs compiled by distinct blog owners, and exposed as

a navigation ring (i.e., arrows forward and backward are available to move along

the ring) [BHH02]. Once on a blog, you can only visit either the previous or the

following blog in the ring. By permitting blog owners to add their blog to the ring,

this structure is more dynamic and participative than its blogroll counterpart. Any

blogger can create a webring, or ask for his blog to be joined to an existing we-

bring. This implies filling out a form on a site, or contacting the webring creator

directly. The webring creator decides which petitions to include. After approval,

the requester blogger needs to add an HTML or JavaScript snippet to link the pre-

vious and next blogs of the webring. This permits blogs of the webring to receive

traffic from related blogs. The linking between blogs is provided by a central site to

prevent the webring from breaking when a blog goes offline. Examples of webring

providers include [alt10], [Wor10d] and [Web10].

5.2.2 Linking at the post level

The term linkback1 refers to a method for Web authors to obtain notifications when

other authors link to one of their documents. This enables authors to keep track

of who is linking/referring to their articles. To this end, three approaches exist:

Trackback, Pingback and Refback. Next paragraphs delve into the differences.

A trackback enables websites to communicate via “pings”, where each ping

informs the blog that the sending site has made a reference to a post on this blog

[Six04]. A trackback ping is sent to a trackback URL (i.e., a unique address as-

sociated with a post) through an HTTP POST request. This request needs four

parameters: title, excerpt, url, and blog_name. Only the url parameter is required.

The rest of the parameters contextualise the trackback.

As an example, consider two bloggers, A and B, who own blogA and blogB,

respectively. BloggerA writes a postA in the blogA, and decides to inform the

blogB that the postA references a postB of the blogB. To this end, a trackback ping

is sent to the trackback URL of the postB. The following parameters are sent in the

HTTP request: title of the postA; excerpt of the postA; url for the postA (a.k.a. its

permalink); blog_name of the blogA.

The trackback is moderated by bloggerB. If accepted, a link from postB to

postA is published on postB. Thus, the participants of both blogs can be involved

in a conversation. Since trackbacks only send an excerpt of postA, blogB’s partici-

1http://en.wikipedia.org/wiki/Linkback

5.3. Requirements 61

pants are encouraged to read and comment the rest of postA’s content [Wor10a].

Trackbacks can be seen as notifications of related or interesting content (e.g.

postA is related to or interesting for postB), or as an external comment (e.g. a

comment from postA to postB). Similar to comments, a list of trackbacks is attached

to each post.

A pingback is a method to automatically notify when a source post links2 to a

target post [Stu02]. When a post is published, its content is scrutinised for HTML

links. For each detected link, the source blog retrieves the target post, through

an HTTP request, to autodiscover the URL of the pingback server on the target

blog. This URL can be included in the “X-Pingback” HTTP header of the HTTP

response, or as part of the resultant HTML page. The latter implies parsing the

HTML page to search the following tag:

<link rel="pingback" href="pingback server URL" />

Next, a pingback is sent to this URL through an XML-RPC request3. This

request needs two parameters: the source post’s URL and the target post’s URL.

To prevent spam, the target blog verifies that the content of the source post contains

a link to the target post. In addition, it retrieves some information from the source

post (e.g. the page title, an extract of the source content surrounding the target link,

etc). The target blog links the source post to the information so obtained.

Finally, a refback is a method to automatically discover source post URL

through the HTTP header [Uch08]. When the participants click on a link to ac-

cess a post, the URL of the previous post is sent in the “referrer” HTTP header.

Then, the linked blog can access this URL, and retrieve some information, such

as pingback does. Finally, the target blog links the source post with this informa-

tion. Unlike trackbacks and pingbacks, refback only requires the linked blog to be

refback enabled.

5.3 Requirements

Both blog and post linkings rest on “similarity”, i.e., the condition of having some-

thing in common. This similarity can be established at the blog level: if two blogs

address similar matters then, they are candidates to pertain to the same blogroll

2This differs from trackbacks where an HTML link is not necessary. However, trackbacks could
be implemented to check the existence of this link as pingback does.

3This is similar to a trackback ping.

62 Chapter 5. Blog as Peers

or webring. Alternatively, if two posts address a similar issue then, one post can

trackback upon the other. Regardless of whether similarity is established at either

the blog level or the post level, users are in charge of supporting what this sim-

ilarity implies (e.g. adding a new blog to the ring, a trackback to a post, etc.).

BlogUnion extension aims at allowing blog owners to set this similarity and state

the consequences in a declarative way.

As a running example, consider two lecturers teaching the same course (e.g.

Databases). Both lecturers use blogs for course support (e.g. blogA and blogB).

Blogs are autonomous: (1) each lecturer classifies content along his own cate-

gories (e.g. meetings, subjects, etc.), (2) course subjects can be categorised differ-

ently, and (3) each blog accounts for a different student community. This autonomy

also implies that all, i.e., posts, comments and trackbacks, are within the blog silo.

However, “opening the silos” (under regulated conditions) can account for cross-

fertilisation among both communities. Two possible scenarios follow:

1. if postA is similar to postB then, commenting on postB can be propagated as

a comment on postA. Both lectures need to agree on post similarity: one of

them proposes this similarity while the other accepts or rejects it,

2. if categoryA (e.g. Database Design) is set as similar to categoryB (e.g. Nor-

malisation or under a different supercategory e.g. Sub ject→DatabaseDesign)

then, posts on categoryA can be forwarded to categoryB. This can be ex-

tended to comments so that students of no matter the community are aware

of all comments no matter the blog. Figure 5.1 depicts this situation.

These basic scenarios permit to identify main requirements for BlogUnion:

• functionality. Blog owners should be able to (1) agree on post pursuing

similar aims, or addressing similar topics, and (2) indicate the consequences

of this similarity as operations on blog resources,

• usability. BlogUnion is targeted to end users. It should be designed to be

extremely lightweight to use, and intuitive to grasp. Blog owners should be

able to define contracts at any time,

• interoperability. BlogUnion is all about opening blog silos and allowing

blog data to flow between blogs. Implementation wise, BlogUnion should

cause a minimum footprint on existing blog engines.

5.4. BlogUnion design 63

Figure 5.1: BlogA (left handside) and BlogB (right handside) become a BlogUnion.

5.4 BlogUnion design

BlogUnion advocates a federated approach to blog integration. By federated is

meant that blogs keep their autonomy, and freely decide to exchange blog data

after some deliberations. Decisions are specified in terms of contracts while delib-

erations take the form of contract negotiations. This section introduces a model for

both contract specification and contract negotiation.

5.4.1 Contract specification

A contract comprises a set of terms or clauses [MJSSW03][GHM00]. These clauses

stipulate how the signing parties are expected to behave, i.e., they list the rights and

64 Chapter 5. Blog as Peers

Figure 5.2: The BlogUnion contract model.

obligations of each signing party [MJSSW03]. [GHM00] defines what elements

are needed to create a contract and how these elements appear in the clauses as de-

scription of parties involved, definition and interpretation of terms, jurisdiction4,

duration and territory, nature of consideration (e.g. fees, services rendered, goods

exchanged, rights granted, etc.) and obligations.

These terms need to be re-written for the blog domain. Figure 5.2 depicts the

4Because of the distributed nature of the Web, neither jurisdiction nor territory is considered in
our development.

5.4. BlogUnion design 65

Figure 5.3: Contract negotiation life cycle.

model for the BlogUnion contract. A Contract is an aggregate of Clauses, signed

between two Parties. The contract validity is defined by startdate and enddate.

Parties can be involved in different clauses and contracts. A party is defined by a

title, a link and a description. A clause grants a right to one party (e.g. to create

a post, a comment, etc.) and sets an obligation for the other party. Such rights

and obligations are described in two ways. The human-readable version of the

rule is given by title, link, and description properties. The prescriptive version is

specified in terms of event-condition-action rules (ECA rules) to be consumed by

the BlogUnion engine.

5.4.2 Contract negotiation

A contract negotiation is established between two parties: the proponent and the

receptor. The proponent starts the negotiation by proposing a contract. The recep-

tor either accepts or rejects it. If accepted, the negotiation goes along the following

stages: contract establishment, contract enactment, and contract ending.

Contract establishment. This phase mimics the trackback communication

method [Six04][PP04], so it can be easily enacted by blog owners. Figure 5.3 de-

picts the process (the description blends both what and how each step is supported):

1. The proponent lecturer searches for a receptor blog, and gets the receptor’s

blog URL5 from the browser.

2. A partial contract is created by the proponent. So far, the contract only has

information about him and his intentions.

5The blog’s main page URL.

66 Chapter 5. Blog as Peers

Figure 5.4: Contract management GUI.

3. The partial contract is sent to the blog URL, through an ad hoc XML-

RPC programmatic interface. This interface is anonymous to allow any

blog to send a contract to another blog. The use of anonymous interfaces is

broadly accepted in blog systems to create comments [The03] and trackbacks

[Six04]. However, they require of moderation systems to avoid undesired in-

formation. In our case, the blog administration interface has been extended

to moderate contracts as depicted in Figure 5.4. The outgoing contract box

permits proponent to manage pending contracts.

4. The receptor is notified about arrival contracts through the incoming con-

tract box (see Figure 5.4). The receptor could approve or reject the contract

proposal6. If rejected, the negotiation ends.

5. If the receptor approves the contract then, the contract is completed with

the receptor information, and becomes a total contract (hereafter referred to

as contract). Both, the proponent and the receptor are notified through the

current contract box (see Figure 5.4). Previous notifications of this contract

at the incoming/outgoing boxes disappear. At this point, contract enactment

is established, and each blog maintains a local copy of the contract.

6In the graphical-user interface, the approval or the rejection of a contract is done by clicking on
either the “V” or “X” icon, respectively.

5.5. BlogUnion implementation 67

ELEMENT RSS CONTRACT

contract - duration
channel 1 channel, blog description 2 channels, party description

item post content rights and obligations

Table 5.1: RSS vs. Contract.

Contract enactment. A contract comprises a set of clauses. Expressiveness

wise, a clause takes the form of an ECA rule. Hence, clause enactment requires first

to monitor blog changes as event realisations. Next, the condition is checked, and

if it is met, an action on the blog’s receptor is enacted. Some of these operations

require authentication (e.g. post creation, modification or deletion).

Contract ending. Finally, the contract could expire or be rescinded. The con-

tract expiration is obtained automatically when an ending condition is satisfied (e.g.

the last day of the contract validity passes). By contrast, the contract could be re-

scinded manually at any time from the current contracts box (see Figure 5.4) by

either the proponent or the receptor. Manual cancellation is useful when one of the

parties detects a breach of the contract.

5.5 BlogUnion implementation

Interoperability imposes to use mechanisms that are widely available no matter

the blog engine. Specifically, the main implementation decisions are: (1) contract

representation follows the content syndication format, and (2), contract negotiation

is inspired in trackbacks.

A contract is realised as a syndication between parties. Content syndication is

a well-known technology used by blog developers. They develop RSS templates

to be consumed by RSS aggregators. Therefore, RSS 1.0 [Web02] (i.e., an RDF

implementation of RSS format) is idoneous as a base format over which contract

implementation could be developed. Although a contract is a syndication between

parties, RSS, just as it is, does not model a contract. The main elements of RSS 1.0

are one channel (i.e., the blog description), and a set of items (i.e., a list of posts).

In our case, the contract has two channels (i.e., description of parties), and a set

of items (i.e., definition and interpretation of terms, and nature of consideration).

Each item is linked with one party, defining its rights and obligations. Furthermore,

a new element (i.e., <contract:contract> tag) has been created to locate general

information (e.g. duration). Table 5.1 compares both formats.

68 Chapter 5. Blog as Peers

Figure 5.5: Scenario 1: propagating comments of a similar post from blogB to blogA.

5.5. BlogUnion implementation 69

Figure 5.6: Scenario 2 (partial view): propagating posts published in a category from
blogA to blogB, and sending back the comments from blogB to blogA.

5.5.1 The Contract Vocabulary

Contracts are defined using RSS 1.0. Figure 5.5 and Figure 5.6 describe the con-

tract for implementing the scenario 1 and 2, respectively. The contract starts defin-

70 Chapter 5. Blog as Peers

ing the XML Namespaces [W3C09] to accommodate additional tags (i.e., mod-

ules). Next, <contact:contract>7 tag defines information with a global effect in the

contract: duration and parties involved. The contract duration is described by the

module mod_event8 [Sor01], which uses <ev:startdate> and <ev:enddate> tags

for this purpose. The <contract:channels> tag lists the parties involved through

links to each party definition.

5.5.2 Party definition

Each party has an unique identifier (i.e., the blog URL), which is linked from the

<contract:contract> tag, and is described through the RSS <channel> tag. There,

information about <title>, <link>, and <description> tags is provided by the blog

configuration properties. This gives human-readable information for describing a

party (compare the header of the left handside blog in Figure 5.1 with the Blog A’s

<channel> tag of Figure 5.5). RSS <items> tag lists the obligations9 applied to

this party through links to each clause definition. This differs from a pure RSS

format where <items> refers to news articles.

The <channel> tag also contains non-RSS tags, such as <comm:url>, <comm:

username>, and <comm:password>. These tags extend <channel> to provide in-

formation about the communication process (see Section 5.4.2). While the con-

tract is partial, the proponent fulfil the communication information with the URL

to receive feedback about contract negotiation. Although the username and the

password are given, they are an autogenerated proposal only valid while the con-

tract is in force. At this point, the proponent only knows the receptor’s blog URL.

Additional information about the receptor will only be available once the receptor

accepts the contract.

5.5.3 Clauses as ECA rules

A clause defines an obligation of a party, making reference to the nature of con-

sideration (e.g. goods exchanged, rights granted, etc.) of the other party’s objects.

The nature of consideration is based on the definition and interpretation of terms.

These terms are described by the remote programmatic interfaces’ methods in-

volved in the contract enactment phase (e.g. create, modify, delete, etc.), and acts

7Each contract has an identifier, provided by the proponent blog, which permits identify univo-
cally a contract in the contract-realm.

8An RSS 1.0 module proposed for being standard.
9Notice that, in Figure 5.5, LecturerA has no obligations while LecturerB has only one.

5.5. BlogUnion implementation 71

on blog objects (e.g. posts, comments, trackbacks, etc.). ECA rules define how to

interpret these terms.

The proposal of ECA rules for contract definition is not new. In [KK08], it

is stated that “With Web services support, organizations can also send primitive

events (when required) among business partners at different sites to generate the

requisite composite events. Such events can then cause an e-contract system to

evaluate an ECA rule’s condition for fulfilling the contract activities. If the condi-

tion is evaluated to be true, the system can trigger the action for execution through

a target Web service. A unified Web services infrastructure thus lets us streamline

distributed events and ECA rule processing”. We follow this approach adapted to

blog-way of working.

Each clause has a blog URL-based unique identifier, which is linked from the

party’s <items> tag, and is described through the RSS <item> tag. There, the pro-

ponent provides human-readable information for describing a clause (i.e., the <ti-

tle>, <link>, and <description> tags). Additionally, we need a machine-oriented

counterpart that permits rule enactment by the BlogUnion engine. This is done by

defining ECA rules at <item> level with non-RSS tags (e.g. <rule:events>).

Events are happenings of interest for the domain at hand. For blogs, events

stand for changes in the blog data (i.e., posts, comments, trackbacks). Such changes

can be performed graphically (i.e., the event arises as a result of interacting with

the blog’s GUI) or programmatically (i.e., the event accounts for sending a mes-

sage along the blog’s API). Notice that both can achieve the very same results

(e.g. creating a post, introducing a comment). However, their origins are different:

graphical events are sourced by end users while programmatic events are originated

by programs. These different sources advice to name them differently. When the

blog is manipulated through its GUI, graphical events are risen: “newPost”, “new-

Comment”, etc. By contrast, when it is manipulated through remote programmatic

interfaces, the event is qualified by the name of the API: “blogger.newPost”, “com-

ment.newComment”, etc. These APIs are being subject to standardisation. Finally,

no matter the origin, events have parameters (i.e., the event payload). Figure 5.5

shows the case for the event “newComment”. Event parameters (i.e., permalink,

author, email, link, and comment) are kept as rule variables (e.g. “postBId”, “blog-

BUser”, “authorEmailB”, “authorURLB” and “commentB”). These variables are

now available for the rule’s condition and actions.

72 Chapter 5. Blog as Peers

Condition. The <rule:condition> tag holds a “test” property which keeps an

XPath expression over the rule’s variables [W3C99]. For instance, the following

expression checks whether the current event stands for commenting on the post

“/?permalink=Database-Design.html”, i.e., the post’s permalink (see Figure 5.5):

rule:test=“//*[@rule:name=’newComment’]/rule:parameter

[@rule:name=’postBId’]=’/?permalink=Database-Design.html”’

Actions can create programmatic events to change a blog remotely. Just like

events, actions have parameters with their respective types and names. However,

action parameters can also have two modes: input10 and output. Input parameters

get their values from event parameters or from output parameters returned by previ-

ously executed actions. By contrast, an output parameter creates a new parameter,

or modifies an existing one as a result of the action execution. Additionally, param-

eters can be assigned constants (e.g. “/Database+Design/2010/06/06/Database-

Design-and-Modeling-Fundamentals.html” for the “postAId” parameter in Figure

5.5). If parameters are optional, the empty string is assigned as default value.

Rules can then cause the creation of blog data on the partner’s blog. Addition-

ally, it is sometimes required to create rules on the partners’ blog. This is so when

the contract requires the flow of data to go both ways. This is illustrated by the

second scenario. This scenario permits posts from blogA to flow to blogB, but once

a so-created post is available in blogB, comments on this post at blogB should go

the other way around to blogA so that comments are synchronised no matter where

they are written.

Creating a rule involves two parameters (see Figure 5.6):

• ruleOwner defines which party the rule will be applied to (see rdf:about

attribute in the <item> element of Figure 5.7).

• rule parameter defines a rule template. When a new rule is created, the

parameters of the template are filled with their values as a constant (see

Figure 5.7). In this case, it can be necessary the use of $variables11 to

discriminate between value and constant value in the condition. For in-

stance, in the condition of Figure 5.6, “postBId” is a constant value in

“@rule:name=’postBId”’ while “$postBId” is the parameter value in “=’$post-

BId”’. The condition of the new rule (see Figure 5.7) replaces “$postBId”

with “’Subjects/Database Design/?permalink=Database-Design-html”’.
10This is the default value if the attribute mode does not appear.
11$variableName represents the value of the parameter called variableName taken from the rule

context.

5.5. BlogUnion implementation 73

Figure 5.7: New rule for scenario 2.

5.5.4 An interface for contract definition

The use of XML for contract specification can certainly put users off, more to the

point if blogs are targeted to non technicians. A GUI is required that permits the

generation of XML contracts. This section presents a GUI provided as part of the

BlogUnion extension (see Figure 5.8).

Firstly, the blog owner fills out the receptor’s blog URL to send the contract,

and defines its duration through the start and end date boxes. The duration fields

are optional. The absence of the start date indicates the contract is in force on

acceptance. In the case of the end date, the contract never ends so the contract can

be cancelled only manually (see Figure 5.4). Next paragraphs describe the use of

this interface to define the running scenarios.

Scenario 1. This scenario requires the permalinks of the posts being identified

as similar, and the direction flow for comment propagation. The permalinks are

obtained in a copy&paste manner (e.i., copying the permalinks from the blogs and,

next, paste them into the interface). The comment propagation is configured by

compulsorily selecting one of the following three options: (1) from the receptor’s

post to the proponent’s post; (2) from the proponent’s post to the receptor’s post;

(3) from one post to the other, and vice versa.

74 Chapter 5. Blog as Peers

Figure 5.8: Contract creation interface proposal.

Scenario 2. This scenario needs to set the blog categories being identified as

similar, and the direction flow for post propagation12. Category values are also ob-

tained in a copy&paste manner. The post propagation is configured by compulso-

rily selecting one of the following three options: (1) from the receptor’s category

to the proponent’s category; (2) from the proponent’s category to the receptor’s

category; (3) from one category to the other, and vice versa.

5.6 Discussion

Although the proposed approach suggests a rather flexible mechanism for sharing

information between blogs, it only works on predefined blog engines. However,

blog engines are in continuous evolution. We expect the proposed functionality

will be useful enough to be adopted by blog developers. This was the case for the

blog communication through trackbacks. Initially, blogs lacked of this framework

12Propagation could also be extended to comments if so desired.

5.6. Discussion 75

when it was develop by Six Apart [Sixb]. From then on, it has been adopted by

some blog engines, such as b2evolution [Fra], Blojsom [Dav], PivotX [Keva], to

name a few. Others, such as NucleusCMS [Wou] and Blosxom [Kevb], provide

trackback functionality as a plugin (i.e., not included in the blog engine core).

To ease this adoption, the new functionalities have been developed using tech-

nologies close to bloggers and blog developers. From the point of view of the

bloggers, they have to learn to create and manage contracts. As shown in Section

5.5.4, the process to create a BlogUnion contract is quite simple. No technical re-

quirements are needed. Also, sending a contract is similar to sending a trackback, a

well-known technology. The contract management is quite similar to the comment

and trackback moderation, where the blogger decides if a comment or trackback is

finally published.

However, blog developers have more work to do. Although the technologies

are close to them, they have to develop the contract model and the negotiation pro-

tocol with the corresponding interfaces. Apart from these new developments, they

have to integrate the new interfaces with the old ones, and extend the interactions of

the blog to connect them with the contract engine. For instance, when calling the

“newPost” method of the Blogger API, a new post is created. Nonetheless, now,

it is also needed to create a “blogger.newPost” external event, pass the parameters

of the call to the contract engine, and process the contracts in force of the current

contract box with these parameters (see Figure 5.4).

Despite the extension, the Blogger API and the publication delay (i.e., the re-

sponse time between sending content to be published and the publication itself) are

maintained. The interface does not change. Only it changes the implementation to

add the new functionality to the existing one. Thus, the applications built around

this API will call it, and work as before. Moreover, the new functionality does not

affect the efficiency of the publication delay, because firstly the post is published,

and, in this way, the delay is maintained. Finally, the contracts are processed in

background. The latter has some cost in terms of memory and execution speed.

[Hen09] explains this issue for wrapper development. In our case, it happens when

adding an extra behaviour to process contracts. This cost depends on the number

of rules to process, and actions to execute.

76 Chapter 5. Blog as Peers

5.7 Conclusions

This chapter introduces a federated approach to blog integration. Blogs are kept au-

tonomous, and eventually decide to engage in data flows between blog peers. Such

data flows are defined through contracts and realised as event-condition-action

rules. Data flow affects posts, comments and trackbacks. This vision is realised

through BlogUnion, an extension for Blojsom that permits blogs to become par-

ties in contracts, and, hence, participate in the exchange of blog data among their

peers. The use of a GUI for contract definition permits end-users to easily define

contracts. Next steps include a thorough evaluation of BlogUnion through real

blogs. We plan to do this for educational blogs.

Chapter 6

Conclusions

“Each painting has its own way of evolving... When the painting is finished, the subject

reaveals itself.”

– William Baziotes.

6.1 Introduction

Throughout this dissertation, the use of blogs as diaries, as virtual community plat-

forms, and as peers has been described. Because of posts do not always find their

source in the personal experiences (i.e., contents from user’s desktop documents,

companies’ catalogues, or another blogs are amenable to be blogged), each chapter

exposed a very different problem focused on a specific data source. To solve these

problems, three new publication techniques were used: annotation, model trans-

formation, and crossblogging. These techniques gave rise to the implementation of

Blogouse, Catablog, and BlogUnion, respectively. As a result, these tools strove to

improve the publication process for the data sources.

The rest of this chapter summarises the main contributions of this dissertation.

Next, the publications achieved along these years are listed. Finally, proposals for

future research are described.

77

78 Chapter 6. Conclusions

6.2 Main Contributions

Depending on the nature of the data source, it is up to the bloggers to decide what

is the most convenient way of publishing in a blog. This dissertation presents some

scenarios where new tools were developed to ease bloggers the publication. Next,

the concrete contributions are detailed.

In chapter 3, Blogouse describes how semantic annotation can be successfully

applied to improve blog publication client tools. These improvements basically

consist on an extension of mouse devices functionality, which they make the mouse

ontology-aware. As a result, a document with its annotations (metadata) can be

discussed and shared easily with the blog participants. At this point, annotation

and document are completely decoupled, and the blog is the link to give them a

meaning.

This approach was presented in the 7th International Conference on Web In-

formation Systems Engineering (WISE 2006): Blogouse: Turning the Mouse into

a Copy&Blog Device [VAD06].

Chapter 4 addresses how blogs can be generated from product catalogues in a

cost-effective way. The main challenges come from the heterogeneity and instabil-

ity of blog engines. This chapter presents an MDE architecture where metamodels

and transformations are introduced that gradually detach the models from their fi-

nal realisation through blog engines. The use of an “abstract platform” also helps

to make the final solution more robust. Some figures shown the cost-effectiveness

of the solution in comparison with manual coding.

This approach was presented in 5th International Workshop on Model-Driven

Web Engineering (MDWE 2009), co-located with the 9th International Conference

of Web Engineering (ICWE 2009): Generating blogs form Product Catalogues: A

Model-Driven Approach [DV09], and, also, in the Journal of Systems and Soft-

ware (JSS 2010): Generating blogs out of product catalogues: An MDE approach

[DV10].

Finally, chapter 5 introduces a federated approach to blog integration. Blogs

are kept autonomous, and eventually decide to engage in data flows between blog

peers. Such data flows are defined through contracts and realised as event-condition-

action rules. Data flow affects posts, comments and trackbacks. This vision is re-

alised through BlogUnion, an extension for Blojsom that permits blogs to become

parties in contracts, and, hence, participate in the exchange of blog data among

their peers. The use of a GUI for contract definition permits end-users to easily

6.3. Publications 79

define contracts.

This approach was presented in the 11th IEEE/IPSJ International Symposium

on Applications and the Internet (SAINT 2011): A federated approach to cross-

blogging through contracts [VD11].

6.3 Publications

Next, the publications in which the author was involved along the development

of this dissertation are presented. They are grouped by type of publication, and

organised chronologically inside the group.

6.3.1 Journals

• Generating blogs out of product catalogues: An MDE approach. Óscar Díaz

and Felipe M. Villoria. Journal of Systems and Software (JSS 2010). Octo-

ber 2010 [DV10]. Impact Factor: 1.3401.

6.3.2 International Conferences

• Peer-Blog-Peer: The Swiss Knife. Iker Azpeitia, Óscar Barrera, Felipe M.

Villoria and Óscar Díaz. 3rd International Association for Development of

the Information Society - Web Based Communities (IADIS 2006). San Se-

bastián, Spain. February 2006 [ABVD06]. Acceptance Rate: 54%.

• Powering RSS Aggregators with Ontologies: a case for RSSOwl aggregator.

Felipe M. Villoria, Óscar Díaz and Sergio Fernández Anzuola. 8th Interna-

tional Conference on Enterprise Information Systems (ICEIS 2006). Paphos,

Cyprus. May 2006 [VDA06]. Acceptance Rate: 59%.

• Blogouse: Turning the Mouse into a Copy&Blog Device. Felipe M. Villoria,

Sergio Fernández Anzuola and Óscar Díaz. 7th International Conference

on Web Information Systems Engineering (WISE 2006). Wuhan, China.

October 2006 [VAD06]. Acceptance Rate: 29%.

• Designing portlet aggregation through statecharts. Óscar Díaz, Arantza

Irastorza, Maider Azanza and Felipe M. Villoria. 7th International Con-

ference on Web Information Systems Engineering (WISE 2006). Wuhan,

China. October 2006 [DIAV06b]. Acceptance Rate: 20%.
1Journal Citations Reports © published by Thomson Reuters 2010

80 Chapter 6. Conclusions

• A federated approach to crossblogging through contracts. Felipe M. Villoria

and Óscar Díaz. 11th IEEE/IPSJ International Symposium on Applications

and the Internet (SAINT 2011). Munich, Germany. July 2011 [VD11]. Ac-

ceptance Rate: 32%.

6.3.3 International Workshops

• Generating blogs form Product Catalogues: A Model-Driven Approach. Ós-

car Díaz and Felipe M. Villoria. 5th International Workshop on Model-

Driven Web Engineering (MDWE 2009), co-located with the 9th Interna-

tional Conference of Web Engineering (ICWE 2009). San Sebastián, Spain.

June 2009 [DV09]. Acceptance Rate: 62%.

6.3.4 Spanish Conferences

• Modelado de la agregación de portlets por medio de statecharts. Óscar Díaz,

Arantza Irastorza, Maider Azanza and Felipe M. Villoria. XI Jornadas de

Ingeniería del Software y Bases de Datos (JISBD 2006). Sitges, Barcelona.

October 2006 [DIAV06a]. Acceptance Rate: 33%.

6.4 Future Work

Blogouse, Catablog, and BlogUnion were implemented and proved as feasible us-

ing some sample cases. However, more research rests ahead.

Blogouse has been presented as a text based publication tool. However, docu-

ments also include figures, references (e.g. to footnotes, to figures, to tables, etc.),

which should have to be considered as well. Considering the requirements of user-

friendliness, editor-independence, and blog-independence, Blogouse should handle

these elements and links, and provide the corresponding layout in the blog.

In the case of Catablog, future work includes enriching the catablog Model

with additional aspects such as security or permission. Also, an option to explore

is the definition of scopes (see Style Model in Section 4.6) based on queries over

the catalog so that the style applies to those products meeting the query criteria.

Another main issue is evolution. Catalogues evolve, and this evolution percolates

their blog counterparts. Moreover, transforming catablog to platforms other than

blogs (e.g. PDA) would permit to capitalise on existing PIMs, and focus on the

6.4. Future Work 81

transformation to PDAs, and, in so doing, providing the advantages that the MDE

architecture brings to cope with new PSM.

The next steps for BlogUnion include a thorough evaluation through real blogs.

We plan to do this for educational blogs. Also, exploring the use of BlogUnion in

other domains will be beneficial for the development of the framework.

Finally, previous tools use the programmatic interfaces to communicate with

blogs. However, these APIs are unstable and incomplete, therefore, API evolution

is an open research issue.

82 Chapter 6. Conclusions

Bibliography

[ABVD06] Iker Azpeitia, Oscar Barrera, Felipe M. Villoria, and Oscar Diaz.

Peer-Blog-Peer: The Swiss Knife. IADIS, (February), 2006. 79

[ADvP04] J.P. Andrade Almeida, R.M. Dijkman, M.J. Sinderen van, and

L. Ferreira Pires. Platform-independent modeling in MDA: sup-

porting abstract platforms. In Model Driven Architecture. European

MDA Workshops, MDAFA 2004, Sweden, June 2004. 46

[alt10] alt-webring. The alternative web ring system, 2010. http://www.alt-

webring.com/. 57, 60

[Ama] amazon.com associates blog - The official blog of the Amazon As-

sociates program. http://affiliate-blog.amazon.com/. 3

[APR+06] Karl Aberer, Zhiyong Peng, Elke A. Rundensteiner, Yanchun

Zhang, and Xuhui Li, editors. Web Information Systems - WISE

2006, 7th International Conference on Web Information Systems

Engineering, Wuhan, China, October 23-26, 2006, Proceedings,

volume 4255 of Lecture Notes in Computer Science. Springer, 2006.

85, 91

[Aud] hipcast: the audio & video podcasting service.

http://www.audioblog.com/. 3

[Bar97] Jorn Barger. Robot Wisdom Weblog, 1997.

http://www.robotwisdom.com/. 1

[BCFM07] M. Brambilla, S. Comai, P. Fraternali, and M. Matera. Web En-

gineering: Modelling and Implementing Web Applications, chapter

Designing Web Applications with WebML and WebRatio, pages

221–260. Springer, 2007. 38

83

84 BIBLIOGRAPHY

[BHH02] Paul Bausch, Matthew Haughey, and Meg Hourihan. We Blog: Pub-

lishing Online with Blogs. Wiley, 2002. 2, 8, 9, 59, 60

[Bloa] Blogger. http://www.blogger.com. 19, 31, 45

[Blob] BlogTalk. http://www.blogtalk.net/. 2

[Bloc] BloggerThemes.net. BloggerThemes: #1 WordPress Theme Gener-

ator. http://www.bloggerthemes.net/. 8

[Blod] BloggingThemes.com. Blogging Themes: Free Blog Templates.

http://www.bloggingthemes.com/. 8

[Bloe] BlogThemes.com. BlogThemes: The Ultimate WordPress Theme.

http://www.blogthemes.com/. 8

[Blof] BlogThemesPlus.com. BlogThemes Plus: ThemeForest.

http://blogthemesplus.com/. 8

[Blo02] Rebecca Blood. The Weblog Handbook: Practical Advice on Cre-

ating and Maintaining Your Blog. Perseus Publishing, 2002. 2

[Blo05] Blogger. Blogger for Word, 2005.

http://buzz.blogger.com/bloggerforword.html. 14, 18

[Blo06] BlogPulse, 2006. http://www.blogpulse.com/www2006-

workshop/. 2

[Blo07] Blogged Out! List of Blog Software & Blog Genera-

tors , 2007. http://www.blogged-out.com/2007/05/26/list-of-blog-

software-blog-generators/. 2

[BOB] The BOBs awards. http://www.thebobs.com/. 2

[BU] BPIR.com and Massey University. Customer market seg-

mentation. http://www.bpir.com/ customer-market-segmentation-

bpir.com/menu-id-72/expert-opinion.html. 41

[Dav] David Czarnecki. Blojsom. http://sourceforge.net/projects/blojsom/.

13, 15, 19, 31, 33, 42, 45, 59, 75

[Dav99] Dave Winer. XML-RPC Specification, 1999.

http://www.xmlrpc.com/spec. 13, 19

BIBLIOGRAPHY 85

[Dav01] Dave Winer. Weblogs.Com XML-RPC interface, 2001.

http://www.xmlrpc.com/weblogsCom. 13

[Dav02] Dave Winer. RFC: Metaweblog API, 2002.

http://www.xmlrpc.com/metaweblogAPI. 13, 45

[Dav03] Dave Winer. RSS 2.0 Specification, 2003.

http://cyber.law.harvard.edu/rss/rss.html. 11

[DDJ+02] Cory Doctorow, Rael Dornfest, J. Scott Johnson, Shelley Powers,

Benjamin Trott, and Mena G. Trott. Essential Blogging. O’Reilly,

2002. 13, 14, 15, 59

[dFBV06] Marcos Didonet del Fabro, Jean Bézivin, and Patrick Valduriez.

Weaving Models with the Eclipse AMW plugin. Eclipse Modeling

Symposium, Eclipse Summit Europe, Esslingen, Germany., Octo-

ber 2006. 36

[DIAV06a] Oscar Díaz, Arantza Irastorza, Maider Azanza, and Felipe M. Villo-

ria. Modelado de la agregación de portlets por medio de statecharts.

In José Cristóbal Riquelme Santos and Pere Botella, editors, JISBD,

pages 453–462, 2006. 80

[DIAV06b] Oscar Díaz, Arantza Irastorza, Maider Azanza, and Felipe M. Vil-

loria. Modeling portlet aggregation through statecharts. In Aberer

et al. [APR+06], pages 265–276. 79

[DSMX02] Rajan Lukose Kiran Nagaraja Jim Pruyne Bruno Richard

Sami Rollins Dejan S. Milojicic, Vana Kalogeraki and Zhichen Xu.

Peer-to-peer computing. Technical report, HP Laboratories, 2002.

4

[DV09] Oscar Díaz and Felipe M. Villoria. Generating Blogs from Prod-

uct Catalogues: A Model-Driven Approach. In Proceedings of

the 5th International Workshop on Model-Driven Web Engineering

(MDWE), pages 61–75, June 2009. 78, 80

[DV10] Oscar Díaz and Felipe M. Villoria. Generating Blogs out of Product

Catalogues: An MDE Approach. Journal of Systems and Software,

83(10):1970–1982, 2010. 78, 79

86 BIBLIOGRAPHY

[Edu] edublogs: the world’s most popular education blogging service.

http://edublogs.org/. 3

[EK04] María José Escalona and Nora Koch. Requirements Engineering

for Web Applications - A Comparative Study. Journal of Web En-

gineering, 2(3):193–212, 2004. 54

[Eva03] Evan Willians. Blogger API, 2003.

http://www.blogger.com/developers/api/1_docs/. 13, 45

[Fra] François Planque. b2evolution. http://b2evolution.net/. 31, 75

[Gar05] Susannah Gardner. Time to check: Are you using the right blogging

tool?, July 2005. http://www.ojr.org/ojr/stories/050714gardner/. 31

[GCP01] Jaime Gómez, Cristina Cachero, and Oscar Pastor. Conceptual

modeling of device-independent Web applications. IEEE MultiMe-

dia, 8(2):26–39, 2001. 38

[GHM00] Andrew Goodchild, Charles Herring, and Zoran Milosevic. Busi-

ness contracts for b2b. In Heiko Ludwig, Yigal Hoffner, Christoph

Bussler, and Martin Bichler, editors, ISDO, volume 30 of CEUR

Workshop Proceedings. CEUR-WS.org, 2000. 63, 64

[Goo10] Google. Google Toolbar, 2010.

http://www.google.com/intl/en/toolbar/ff/index.html. 14

[Gra99] Brad L. Graham. The BradLands:

Must See HTTP://, September 1999.

http://www.bradlands.com/weblog/comments/september_10_1999/.

1

[GT07] Sheng Uei Guan and Yuan Sherng Tay. Interactive product cata-

logue with user preference tracking. International Journal of Web

and Grid Services, 3(1):58–81, 2007. 54

[Ham03] Ben Hammersley. Content Syndication with RSS. O’Reilly, March

2003. ISBN: 0-596-00383-8. 12

[Hen01] James A. Hendler. Agents and the Semantic Web. IEEE Intelligent

Systems, 16(2):30–37, March/April 2001. 27

BIBLIOGRAPHY 87

[Hen09] Michi Henning. Api design matters. Communications of the ACM,

52(5):46–56, 2009. 75

[Hin07] Dion Hinchcliffe. A checkpoint on Web 2.0 in the enterprise, Part

2, August 2007. http://blogs.zdnet.com/Hinchcliffe/?p=135. 29

[Keva] Kevin Pascal and Bob den Otter. PivotX. http://pivotx.net/. 75

[Kevb] Kevin Scaldeferri and Axel Beckert. Blosxom.

http://www.blosxom.com/. 75

[KK08] P. Radha Krishna and Kamalakar Karlapalem. Electronic contracts.

IEEE Internet Computing, 10:60–68, 2008. 71

[KNRT04] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew

Tomkins. Structure and evolution of blogspace. Communications

of the ACM, 47(12):35–39, 2004. 7, 59

[KQ04] David R. Karger and Dennis Quan. What Would It Mean to Blog on

the Semantic Web? In Proceedings of 3rd International Semantic

Web Conference (ISWC2004), pages 214–228, November 2004. 20,

26

[KR06] Vinay Kulkarni and Sreedhar Reddy. Introducing MDA in a large IT

consultancy organization. In APSEC, pages 419–426. IEEE Com-

puter Society, 2006. 54

[LD08] Nicholas S. Lockwood and Alan R. Dennis. Exploring the corporate

blogosphere: A taxonomy for research and practice. In HICSS, page

149. IEEE Computer Society, 2008. 29

[Let06] Letmeparty.com. Blog via SMS from your Mobile Phone!, 2006.

http://www.letmeparty.com/. 14

[Li04] Charlene Li. Blogging: Bubble Or Big Deal?, November 2004. 17

[Lif] LifeType Open Source Blogging Platform. http://lifetype.net/. 31

[Lim10] Marcelo L. Limaverde. w.bloggar, 2010.

http://www.wbloggar.com. 14

[Liv] LiveJournal. http://www.livejournal.com/. 31

88 BIBLIOGRAPHY

[Mar] MartSoft, Inc. OCF - Open Catalog Format.

http://www.martsoft.com/. 32

[Mar10] Mark Zuckerberg and Eduardo Saverin and Dustin Moskovitz and

Chris Hughes. Facebook, 2010. http://www.facebook.com/. 58

[MBVM06] Jason Xabier Mansell, Aitor Bediaga, Régis Vogel, and Keith Man-

tell. A process framework for the successful adoption of model

driven development. In Arend Rensink and Jos Warmer, editors,

ECMDA-FA, volume 4066 of Lecture Notes in Computer Science,

pages 90–100. Springer, 2006. 55

[MD05] Knud Möller and Stefan Decker. Harvesting Desktop Data for Se-

mantic Blogging. ISWC 2005 Workshop, November 2005. 19, 27

[Me05] Kevin Marks and Tantek Çelik. Vote links, 2005.

http://microformats.org/wiki/vote-links. 40, 41

[Meg02] Meg Hourihan. What We’re Doing When We Blog, 2002.

http://www.oreillynet.com/pub/a/javascript/2002/06/13/megnut.html.

11

[Mil] MILbloggin.com. http://milblogging.com/. 3

[MJSSW03] Carlos Molina-Jiménez, Santosh K. Shrivastava, Ellis Solaiman,

and John P. Warne. Contract representation for run-time monitoring

and enforcement. In CEC, pages 103–110. IEEE Computer Society,

2003. 63, 64

[Mov05] Movable Type. Movable Type API, 2005.

http://www.sixapart.com/movabletype/docs/mtmanual_programmatic.

13, 45

[N06] Carr N. Lessons in corporate blogging. 2006. Business Week

Online. 29

[Odd10] Sigfús R. Oddson. blogBuddy, 2010.

http://blogbuddy.sourceforge.net/. 14

[OMG05] OMG. Software Process Engineering Metamodel Specification

(SPEM). Adopted Specification, January 2005. 33

BIBLIOGRAPHY 89

[OTH+04] Ikki Ohmukai, Hideaki Takeda, Masahiro Hamasaki, Kosuke

Numa, and Shin Adachi. Metadata-driven personal knowledge pub-

lishing. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van

Harmelen, editors, International Semantic Web Conference, vol-

ume 3298 of Lecture Notes in Computer Science, pages 591–604.

Springer, 2004. 58

[Pax03] Salam Pax. Salam Pax: The Clandestine Diary of an Ordinary Iraqi,

2003. 2

[Pho] Photoblog. http://www.photoblog.com/. 3

[PP04] Sébastien Paquet and Phillip Pearson. A topic sharing infrastructure

for weblog networks. In CNSR, pages 301–304. IEEE Computer

Society, 2004. 65

[PR85] Jon Postel and Joyce Reynolds. File Transfer Protocol (FTP), 1985.

http://tools.ietf.org/html/rfc959. 2

[Rad] Radio UserLand. http://radio.userland.com/. 19, 45

[RHJ99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Spec-

ification, 1999. http://www.w3.org/TR/html4/. 2

[Rin08] Ringsurf. World canals & inland waterways ring, 2008.

http://webrings.bendall.de/waterways-ring.html. 57

[Röl03] Martin Röll. Business Weblogs - A pragmatic Approach to intro-

ducing Weblogs in medium and large Enterprises. BlogTalk, May

2003. 17, 19, 27

[Röl04] Martin Röll. Distributed KM - Improving Knowledge Workers’

Productivity and Organisational Knowledge Sharing with Weblog-

based Personal Publishing. BlogTalk 2.0, July 2004. 17

[Roc] RocketBoom: daily internet culture. http://www.rocketboom.com/.

3

[RPSO07] G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, editors. Web Engi-

neering: Modelling and Implementing Web Applications. Springer,

2007. 54

90 BIBLIOGRAPHY

[RSD] Really Simple Discoverability 1.0.

http://archipelago.phrasewise.com/rsd. 21, 22

[Sal] Salam Pax: The Baghdad Blogger.

http://salampax.wordpress.com/. 2

[Sif06] David Sifry. State of the Blogosphere, 2006.

http://www.sifry.com/alerts/archives/000436.html. 2

[Sif07] David Sifry. The State of the Live Web, 2007.

http://www.sifry.com/alerts/archives/000493.html. 2

[Sixa] Six Apart. Movable Type. http://www.movabletype.com. 19, 31,

45

[Sixb] Six Apart. Six Apart News & Events. http://www.sixapart.com/. 75

[Six04] Six Apart. Trackback Technical Specification, 2004.

http://www.sixapart.com/pronet/docs/trackback_spec. 13, 40,

60, 65, 66

[Sor01] Soren Roug and European Environment Agency.

RDF Site Summary 1.0 Modules: Event, 2001.

http://web.resource.org/rss/1.0/modules/event/. 70

[Stu02] Stuart Langridge and Ian Hickson. Pingback 1.0, 2002.

http://www.hixie.ch/specs/pingback/pingback. 61

[SV06] Thomas Stahl and Markus Voelter. Model-Driven Software Devel-

opment: Technology, Engineering, Management. Wiley, 1 edition,

May 2006. 30, 32

[Tem] TemplatesBlogger.com. Templates Blogger: Free Blogger Tem-

plates for your Blog. http://www.templates-blogger.com/. 8

[The03] The Well Formed Web. The Comment API, 2003.

http://wellformedweb.org/story/9. 12, 13, 66

[Tom03] Tom Coates. On permalinks and Paradigms..., 2003.

http://www.plasticbag.org/archives/2003/06/on_permalinks_and_

paradigms/. 11

BIBLIOGRAPHY 91

[Uch08] Uche Ogbuji. Real Web 2.0: Battling Web spam, Part

2 - Use the power of community against spam, 2008.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/web/wa-

realweb11/wa-realweb11-pdf.pdf. 61

[VAD06] Felipe M. Villoria, Sergio Fernández Anzuola, and Oscar Díaz. lo-

gouse: Turning the mouse into a copy&blog device. In Aberer et al.

[APR+06], pages 554–559. 78, 79

[VD11] Felipe M. Villoria and Oscar Díaz. A federated approach to cross-

blogging through contracts. In SAINT, pages 91–99. IEEE Com-

puter Society, 2011. 79, 80

[VDA06] Felipe M. Villoria, Oscar Díaz, and Sergio Fernández Anzuola.

Powering rss aggregators with ontologies - a case for the rssowl

aggregator. In Yannis Manolopoulos, Joaquim Filipe, Panos Con-

stantopoulos, and José Cordeiro, editors, ICEIS (4), pages 197–200,

2006. 79

[VdCdFM08] Juan M. Vara, Mª Valeria de Castro, Marcos Didonet del Fabro, and

Esperanza Marcos. Using Weaving Models to automate Model-

Driven Web Engineering proposals. In XIII Jornadas de Ingeniería

del Software y Bases de Datos (JISBD/ZOCO 2008), 2008. 36

[Völ08] Markus Völter. MD* Best Practices, December 2008.

http://www.voelter.de/data/articles/DSLBestPractices-Website.pdf.

51

[VR06] Jovana Vidakovic and Milos Rackovic. Generating content and dis-

play of library catalogue cards using xml technology. Software:

Practice and Experience, 36(5):513–524, 2006. 54

[W3C] W3C. Cascading Style Sheets. http://www.w3.org/Style/CSS/. 8,

38

[W3C99] W3C. XML Path Language, 1999. http://www.w3.org/TR/xpath.

72

[W3C04] W3C. Resource Description Framework (RDF), February 2004.

http://www.w3.org/RDF/. 5

92 BIBLIOGRAPHY

[W3C09] W3C. Namespaces in XML 1.0 (Third Edition), December 2009.

http://www.w3.org/TR/xml-names/. 12, 70

[Web02] Web Resource. RSS 1.0 Specification, 2002.

http://web.resource.org/rss/1.0/. 12, 67

[Web10] WebRing. Creating Communities, Connecting People, 2010.

http://dir.webring.com/rw. 60

[Win99] Dave Winer. EditThisPage.Com, 1999.

http://www.scripting.com/davenet/1999/12/08/editthispagecom.html.

1

[Win01] Dave Winer. The history of weblogs, 2001.

http://www.userland.com/theHistoryOfWeblogs. 1, 8

[Wor10a] WordPress.org. Introduction to Blogging, 2010.

http://codex.wordpress.org/Introduction_to_Blogging. 8, 11,

13, 59, 61

[Wor10b] WordPress.org. Post to your blog using email, 2010.

http://codex.wordpress.org/Post_to_your_blog_using_email. 14

[Wor10c] WordPress.org. Weblog Client, 2010.

http://codex.wordpress.org/Weblog_Client. 2

[Wor10d] World of Webrings. World of Webrings, 2010.

http://www.webringworld.org/. 60

[Wou] Wouter Demuynck and Rodrigo Moraes and Jeroen Budts. Nucleus

CMS. http://nucleuscms.org/. 75

Epilogue

Making a dissertation is a travel full of uncertainties. The only certainty is the

starting point, but not whether or when the travel is going to end. Behind they

remain a lot of hours of dedication, which, probably, few people will appreciate.

However, the end of this travel is the beginning of a new one, where the lessons

learned should be applied. New uncertainties for a new amazing travel, where the

only certainty is the evolution of the world. This evolution will provide us new

technologies and ways of understanding the world. Let’s ready for changes!

Acknowledgments

After two years working in various companies, I decided to get on a train with an

uncertain destination. Firstly, I went to a well-known train station, the Faculty of

Computer Engineering at the University of the Basque Country. There, I started

looking for a train to achieve my goal, i.e., making a dissertation. Suddenly, two

trains appeared in my way, which seemed to go towards this objective, although

with different routes. I already knew some passengers in both trains, but I had to

choose one of them. The train I caught was the Ekin research group, nowadays

called Onekin. The beginnings were very hard, because I was alone in a carriage.

However, this changed when the train arrived at the next station, the towers of

Arbide, where all passengers were put together. After a three-year stay there, I

went back to work for a company, from where I visited Arbide. Although, now,

the train is again at the initial station (i.e., in the university), I see this travel from

a new perspective. Along these years, I shared my life with people, or, better said,

colleagues, whom I have too much to thank. I only hope I do not forget anyone.

First of all, I would like to express my gratitude to Óscar Díaz for giving me

the chance to work with him in his research group. He taught me to open my mind,

and encouraged me along this dissertation. Thanks for your dedication, and for

showing me the right way. However, this would not have been possible without

Iñaki Paz, who previously put me in touch with Óscar.

Along these years, I have had the chance to collaborate with Cristobal Arellano,

Maider Azanza, Iker Azpeitia, Óscar Barrera, Óscar Díaz, Sergio Fernández, and

Arantza Irastorza, from whom I learnt a lot. Thanks Arantza for sharing your

dissertation experience, and reviewing this one, it has been very helpful.

Moreover, my gratitude to the remaining members of Onekin: Luis M. Alonso,

Jokin García, Felipe Ibáñez, Jesús Ibáñez, Jon Iturrioz, Arturo Jaime, Jon Ko-

rtabitarte, Sandy Pérez, Gorka Puente, Juan J. Rodríguez, and Salvador Trujillo.

Outside of Onekin, Tomás A. Pérez advised me throughout my studies, al-

96 BIBLIOGRAPHY

though not always I have followed his advices. Thank you for your comments

about this dissertation. Also, thanks to Javier Álvez, who was always there to give

me a hand with LATEX.

Despite the demand of this work, there was life out of the university. I would

like to thank my family and friends for being always accessible when I needed

them, even after long periods of time without having been in contact with some of

them. They helped me to free my mind for some hours. Also, thanks to my parents,

who have taught me the value of education from my childhood. They have always

encouraged me to follow studying.

I specially thank Marisa for accompanying me along this hard travel. Along

these years, we have moved house, got married, had and brought up a baby, and

suffered this dissertation. However, what I most appreciate is your invaluable ded-

ication, and your physical and mental endurance. Not only do you have supported

me technically, but also at personal level. You have to be both father and mother of

our daughter Patricia in my repeated absences. Sincerely, you have done a really

fantastic job. I only hope I can compensate for your continuous efforts.

And what to say about you, my little Patricia. When we met, I was already

involved in this dissertation, and you suffered some of my continuous absences.

Thanks for making me get up the chair to play together, for being always so happy

and giving away so much infectious smiles to me. We have a lot of time to recover.

Finally, I would like to express my gratitude to the unknown reviewers of the

submitted articles for their insightful comments, and the reviewers and members

of the dissertation committee for your invaluable work beforehand.

Thank God that’s over!

Vita

Felipe Martín Villoria was born in San Sebastián, Spain on December 26th, 1977.

He entered in the Faculty of Computer Engineering at the University of the Basque

Country in 1995, where he received the degree of Engineer (Master of Science)

in 2000. After two years working in various companies, he entered the Doctoral

School at the University of the Basque Country in 2002, where he conducted his

doctoral research until 2012. The last years of this dissertation were combined with

his work as an IT consultant.

97

	Introduction
	Overview
	Blogosphere typification
	Contributions
	Outline

	Background
	Introduction
	Blog Interfaces
	Graphical-User Interfaces
	Syndication Interfaces
	Programming Interfaces

	Publication Tools
	Contributions revisited

	Blog as Diaries
	Introduction
	Blog clients for second-generation blogs
	Blogouse at work
	Blogouse configuration
	BlogThis! at Blogouse

	Evaluation and discussion
	Conclusions

	Blog as Virtual Community Platforms
	Introduction
	Blogs & Blog heterogeneity
	Blog generation as an instance of the MDE process
	The Catalogue Model
	The Content Model
	Obtaining the Content model

	The Style Model
	Obtaining the Style model

	Blojsom as a PSM
	Facing PSM evolution
	The Blog Abstract Platform
	Mapping onto the Blog Abstract Platform

	Discussion
	On the way to abstraction
	On model transformations as a reuse mechanism

	Related work
	Conclusions

	Blog as Peers
	Introduction
	On blog integration through linking
	Linking at the blog level
	Linking at the post level

	Requirements
	BlogUnion design
	Contract specification
	Contract negotiation

	BlogUnion implementation
	The Contract Vocabulary
	Party definition
	Clauses as ECA rules
	An interface for contract definition

	Discussion
	Conclusions

	Conclusions
	Introduction
	Main Contributions
	Publications
	Journals
	International Conferences
	International Workshops
	Spanish Conferences

	Future Work

	Bibliography

