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ABSTRACT

In this thesis we propose a new approach to deduction methodsfor temporal logic. Our proposal
is based on an inductive de�nition of eventualities that is different from the usual one. On the
basis of this non-customary inductive de�nition for eventualities, we �rst provide dual systems
of tableaux and sequents for Propositional Linear-time Temporal Logic (PLTL). Then, we adapt
the deductive approach introduced by means of these dual tableau and sequent systems to the
resolution framework and we present a clausal temporal resolution method forPLTL. Finally,
we make use of this new clausal temporal resolution method for establishing logical foundations
for declarative temporal logic programming languages.

The key element in the deduction systems for temporal logic is to deal with eventualities
and “hidden” invariants that may prevent the ful�llment of eventualities. Different ways of
addressing this issue can be found in the works on deduction systems for temporal logic.

Traditional tableau systems for temporal logic generate anauxiliary graph in a �rst pass.
Then, in a second pass, unsatis�able nodes are pruned. In particular, the second pass must
check whether the eventualities are ful�lled. The one-passtableau calculus introduced by S.
Schwendimann requires an additional handling of information in order to detect cyclic branches
that contain unful�lled eventualities. Regarding traditional sequent calculi for temporal logic,
the issue of eventualities and hidden invariants is tackledby making use of a kind of infer-
ence rules (mainly, invariant-based rules or in�nitary rules) that complicates their automation.
A remarkable consequence of using either a two-pass approach based on auxiliary graphs or a
one-pass approach that requires an additional handling of information in the tableau framework,
and either invariant-based rules or in�nitary rules in the sequent framework, is that temporal
logic fails to carry out the classical correspondence between tableaux and sequents. In this the-
sis, we �rst provide a one-pass tableau methodTTM that instead of a graph obtains a cyclic
tree to decide whether a set ofPLTL-formulas is satis�able. InTTM tableaux are classical-like.
For unsatis�able sets of formulas,TTM produces tableaux whose leaves contain a formula and
its negation. In the case of satis�able sets of formulas,TTM builds tableaux where each fully
expanded open branch characterizes a collection of models for the set of formulas in the root.
The tableau methodTTM is complete and yields a decision procedure forPLTL. This tableau
method is directly associated to a one-sided sequent calculus calledTTC. SinceTTM is free from
all the structural rules that hinder the mechanization of deduction, e.g. weakening and contrac-
tion, then the resulting sequent calculusTTC is also free from this kind of structural rules. In
particular,TTC is free of any kind of cut, including invariant-based cut. From the deduction
systemTTC, we obtain a two-sided sequent calculusGTC that preserves all these good freeness
properties and is �nitary, sound and complete forPLTL. Therefore, we show that the classical
correspondence between tableaux and sequent calculi can beextended to temporal logic.
The most fruitful approach in the literature on resolution methods for temporal logic, which
was started with the seminal paper of M. Fisher, deals withPLTL and requires to generate in-
variants for performing resolution on eventualities. In this thesis, we present a new approach



to resolution forPLTL. The main novelty of our approach is that we do not generate invari-
ants for performing resolution on eventualities. Our method is based on the dual methods of
tableaux and sequents forPLTL mentioned above. Our resolution method involves translation
into a clausal normal form that is a direct extension of classical CNF. We �rst show that any
PLTL-formula can be transformed into this clausal normal form. Then, we present our tem-
poral resolution method, calledTRS-resolution, that extends classical propositional resolution.
Finally, we prove thatTRS-resolution is sound and complete. In fact, it �nishes for any input
formula deciding its satis�ability, hence it gives rise to anew decision procedure forPLTL.
In the �eld of temporal logic programming, the declarative proposals that provide a complete-
ness result do not allow eventualities, whereas the proposals that follow the imperative future
approach either restrict the use of eventualities or deal with them by calculating an upper bound
based on the small model property forPLTL. In the latter, when the length of a derivation
reaches the upper bound, the derivation is given up and backtracking is used to try another possi-
ble derivation. In this thesis we present a declarative propositional temporal logic programming
language, calledTeDiLog, that is a combination of the temporal and disjunctive paradigms in
Logic Programming. We establish the logical foundations ofour proposal by formally de�ning
operational and logical semantics forTeDiLogand by proving their equivalence. SinceTeDiLog
is, syntactically, a sublanguage ofPLTL, the logical semantics ofTeDiLog is supported by
PLTL logical consequence. The operational semantics ofTeDiLog is based onTRS-resolution.
TeDiLog allows both eventualities and always-formulas to occur in clause heads and also in
clause bodies. To the best of our knowledge,TeDiLog is the �rst declarative temporal logic
programming language that achieves this high degree of expressiveness.

Since the tableau method presented in this thesis is able to detect that the ful�llment of
an eventuality is prevented by a hidden invariant without checking for it by means of an extra
process, since our �nitary sequent calculi do not include invariant-based rules and since our
resolution method dispenses with invariant generation, wesay that our deduction methods are
invariant-free.
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1. INTRODUCTION

Temporal logic plays a signi�cant role in computer science,since it is an appropriate tool for
specifying object behaviour, cooperative protocols, reactive systems, digital circuits, concurrent
programs and, in general, for reasoning about dynamic systems whose states change over time
(see e.g. [46, 56, 57, 86, 90, 91]). In particular, several concepts which are useful for the spec-
i�cation of properties of dynamic systems –such as fairness, non-starvation, liveness, safety,
mutual exclusion, etc– can be formally stated in temporal logic using very concise and readable
formulas. Several different temporal logics have been devised –as formalisms for representing
dynamic systems– that mainly differ in their underlying model of time and in their expressive-
ness. Regarding time modeling there are linear vs. branching, discrete vs. dense, future vs.
past-and-future, �nite vs in�nite, etc. Regarding expressiveness, they involve different temporal
connectives and logical constructions (such as, quanti�ers, variables, �xpoint operators). For a
recent survey on temporal logics we refer the reader to [85].

Propositional Linear-time Temporal Logic (PLTL) is one of the most widely used temporal
logics1. This logic has, as the intended model for time, the standardmodel of natural numbers.
Different contributions in the literature on temporal logic show its usefulness in computer sci-
ence and other related areas. For a recent and extensive monograph onPLTL techniques and
tools, we refer the reader to [44], where sample applications along with references to speci�c
works that use this temporal formalism to represent dynamicentities in a wide variety of �elds
–such as Program Speci�cation, System Veri�cation, Robotics, Reactive Systems, Databases,
Control Systems, Agent-based Systems, etc– can be found. The minimal language forPLTL
adds to classical propositional connectives two basic temporal connectives◦ (“next”) and U
(“until”) such that◦ψ is interpreted as “the next state makesψ true” andϕU ψ is interpreted as
“ϕ is true from now untilψ eventually becomes true”. Many other useful temporal connectives
can be de�ned as derived connectives, e.g.� (“eventually”), � (“always”) andR (“release”).

Automated reasoning for temporal logic is a quite recent trend. In temporal logics, as well
as in the more general framework of modal logic, different proof methods are starting to be
designed, implemented, compared, and improved. Speci�cation and veri�cation methods for
PLTL –and also for other temporal logics– are mainly based on three kinds of proposals: au-
tomata, tableaux and resolution. Automata are related to model checking whereas tableaux and
resolution are the main methods for proof theory. Other proof-theoretic approaches forPLTL
include its �rst axiomatization �a la Hilbert presented in [53]. See [110] for a good survey about
theorem-proving inPLTL and its extensions. The most developed approach is model checking
([30, 31]), which is automata-based. In fact, model checking of temporal formulas is tradition-
ally carried out by a conversion to Büchi automata (see e.g.[120]). In model checking, temporal
logic is used for speci�cation purposes, whereas the systemis often implemented in a different
language, hence veri�cation requires to manage different semantic domains. Model checking

1 Probably, the most used temporal logic is Computation Tree Logic (CTL), especially for model checking pur-
poses.
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focuses on the problem of deciding whether a concrete model (or run) of a system satis�es a
logical formula or not. This approach is reasonably ef�cient for �nite state systems and there is
a large body of research in this area. The interested reader is referred to [44] (Section 4.4.7 and
Chapter 5) for a recent work that describes model checking techniques. However, the automata
approach is not well suited for automated deduction, in the sense that it is not able to generate
proofs or deductions of a conclusion from a set of premises. Abrief and clarifying discussion
about model checking versus deductive temporal veri�cation can be found in [35].

Automated deduction forPLTL, and related logics, is mainly based on tableaux and reso-
lution. Indeed, there are recently published works comparing implementations of the different
tableau and resolution procedures forPLTL and similar logics (see e.g. [69, 77, 78]).

In this thesis we propose new deduction methods forPLTL. In particular, we introduce a
tableau method, two sequent calculi and a resolution procedure forPLTL. On the basis of the
resolution procedure, we also present a declarative temporal logic programming language.

Eventualities and Invariants

In every deduction method for temporal logic, the central topic is how to deal with eventualities
and “hidden” invariants that can prevent the ful�llment of eventualities. Eventualities directly
state that a property will eventually hold whereas invariants state, often in an intricate way, that
a property holds at every time instant from some moment onwards.

The use of the customary inductive de�nitions of the temporal connectives as the only mech-
anism for detecting the existence of an invariant that prevents the ful�llment of an eventuality,
leads to incomplete deduction systems. The reason is that such customary inductive de�nitions
make possible to inde�nitely postpone the ful�llment of an eventuality and, consequently, they
make possible to inde�nitely postpone the contradiction between an eventuality that states that
a propertyψ will eventually hold and an invariant that states thatψ will never hold. Therefore,
more elaborated mechanisms are needed.

Next, we review how this issue is tackled by the main approaches in the tableau, sequent,
resolution and temporal logic programming frameworks. Additionally we describe our contri-
bution to each of these frameworks.

Tableau systems

Traditional tableau systems for temporal logic, in particularPLTL, are based on the usual induc-
tive de�nition of eventualities (see e.g. [128, 73, 8, 87, 79, 81]). In order to obtain completeness,
they �rst build an auxiliary �nite graph by using tableau rules. Since in these systems, the num-
ber of different sets of formulas that can be produced from the initial set is �nite, the graph is
always �nite. Once the graph is completed, it is checked to detect the existence of unful�lled
eventualities. Nodes that do not belong to in�nite paths that give rise to models, are pruned.
These tableau methods are known as two-pass methods. The one-pass approach proposed in
[117] is also based on the usual inductive de�nition of eventualities. The method yields cyclic
trees. The second pass is avoided by associating additionalinformation to nodes. Part of the
information is generated in a top-down manner, while the branches are being built. But there are
also information that is obtained in a bottom-up manner, once the branch has been completed.
The information obtained in a bottom-up manner is necessaryto deal with cyclic branches that
are not ful�lling on their own but yield a ful�lling cycle if combined with other accessible



1. Introduction 3

branches. From a theoretical point of view, one of the drawbacks of the two-pass approach and
the above mentioned one-pass approach is that a classical-like tableau is not obtained. We mean
that, unsatis�able sets of formulas do not always produce closed branches whose last nodes
contain a formula and its negation, instead cycles that do not lead to models must be detected by
using an extra process. Our proposal is based on a non-customary inductive de�nition of even-
tualities. The rule obtained from this alternative inductive de�nition of eventualities, together
with a speci�c strategy for applying the tableau rules, gives rise to a tableau method, namely
TTM , where tableaux are cyclic trees and unsatis�ability is exclusively detected –like in clas-
sical tableau methods– by means of closed branches that contain a formula and its negation in
its last node. Additionally, by controlling cycles that only belong to a single branch, a decision
procedure is obtained. Our approach was �rst presented in [60] and then extended in [61]. A
preliminary prototype is accessible inhttp://www.sc.ehu.es/jiwlucap/TTM.html. A
report about this prototype is presented in [62].

Sequent systems

Traditional sequent systems for temporal logic (see e.g. [104, 105, 121]) are also based on the
usual inductive de�nition of eventualities. In order to deal with eventualities and invariants, they
either include an in�nitary rule or a rule that requires to previously �nd an adequate invariant.
On one hand in�nitary rules are not effective. On the other hand, invariant-based rules are
specialized cut rules that prevent from obtainingclassical-like cut-free proofs. As a consequence
of using either two-pass methods based on auxiliary graphs or a one-pass system that requires
an additional handling of information in the tableau framework, and either in�nitary rules or
invariant-based rules in the sequent framework, is that theclassical duality between tableau and
sequent proofs does not hold. The �nitary sequent system presented in [20] does not require an
invariant-based rule but annotated formulas are used. These formulas do not properly belong to
the logical language, so that an extra-logical feature is used. By following our approach based
on a non-customary inductive de�nition of eventualities, we propose a �nitary sequent calculus
that does not include either invariant-based rules or rulesthat contain extra-logical features such
as annotated formulas. Moreover, our tableau and sequent systems are dual in the sense that
from every tableau construction a sequent derivation can bestraightforwardly obtained. Our
proposal was �rst materialized by means of the sequent systemFC presented in [58], which is
the �rst �nitary sequent system forPLTL that is free from cut- and invariant-based rules. Later
on, the sequent systemsTTC and GTC were directly obtained from the tableau methodTTM

([61]). AlthoughFC andGTC are basically identical, the completeness proof forGTC is based
on its duality with respect toTTM and –unlike in the completeness proof ofFC– structural rules
such as weakening and contraction are not used.

Clausal Resolution

The clausal resolution methods forPLTL presented in [126] and [40] (see also [45]) require
invariant generation in order to deal with eventualities. The former does not tackle the invariant
generation issue whereas the latter provides an algorithm.The resolution system in [40] gives
rise to a decision procedure forPLTL, but it contains an extra-logical feature to resolve even-
tualities. The clausal resolution method introduced in [29] is not intended for fullPLTL and
the approach is based on the exhaustive analysis of all the possible transformations (in a �nite
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scope) of eventualities into formulas that only contain the◦ connective. The non-clausal resolu-
tion system presented in [1] is based on a non-customary inductive de�nition of eventualities that
is different from the one we consider in the above mentioned tableau and sequent frameworks.
However, the problem of satis�able input sets is not addressed in [1] and therefore a decision
procedure forPLTL is not provided. Our clausal resolution method, namelyTRS, is de�ned by
adapting theTTM approach for tableaux to the clausal resolution framework.Consequently, the
keys of our approach to temporal resolution are a rule that deals with eventualities and a strategy
formalized by means of a systematic resolution algorithm that gives rise to a resolution-based
decision procedure forPLTL. This resolution method is also described in detail in [62].A pro-
totype forTRS-resolution can be found inhttp://www.sc.ehu.es/jiwlucap/TRS.html.

Temporal Logic Programming

The idea of directly executing logical formulas and, therefore, using logic as a programming
language –already proven successful in classical Logic Programming– has also been tackled in
the case of temporal logic. Temporal Logic Programming provides a single framework in which
dynamic systems can be speci�ed, developed, validated and veri�ed by means of executable
speci�cations that make possible to prototype, debug and improve systems before their �nal
use. In classical Logic Programming, the underlying execution procedure is based on (classical)
clausal resolution ([88, 89]). The extension of this approach to Temporal Logic Programming
faces three main challenges: the undecidability of �rst-order temporal logic [92, 122, 121], the
dif�culty for dealing with eventualities and invariants and the complexity (even for the proposi-
tional fragment [119]).

Consequently, different proposals that can be classi�ed into two groups have arisen. One
of the groups is formed by the languages that are based on the imperative future approach (e.g.
[94, 9, 93]). In these languages programs are formulas –written in temporal logic– that state
which literals must be true in the next state. So the execution consists in explicitly building the
model for the program, state by state. The other group is formed by the languages that are based
on the declarative approach. The declarative languages extend classical Logic Programming
for reasoning about time. However, some of the declarative languages are not purely based on
temporal logic (e.g. [83, 74, 21, 50, 114]). The declarativelanguages that are purely based on
temporal logic extend classical Logic Programming by including temporal connectives in the
atoms and by also extending classical resolution ([2, 12, 127, 99, 55]). Here we only analyze
the languages that belong to the imperative future approachand the declarative languages that
are purely based on temporal logic. The languages that belong to the imperative future ap-
proach either restrict the use of eventualities (e.g. [94, 93]) or use the �nite-model property2

for �xing an upper bound that indicates that an eventuality cannot be ful�lled (e.g. [9]). The
declarative languages that are purely based on temporal logic either directly avoid eventualities
([2, 12, 127, 99]) or do not provide completeness result ([55]). If the clausal temporal res-
olution method presented in [40] were considered as a basis for a declarative temporal logic
programming language, its execution would require invariant generation. In the same way, the
sequent-based logical foundation for declarative temporal logic programming provided in [106]
includes an invariant-based rule. We propose a (propositional) declarative temporal logic pro-
gramming language, namedTeDiLog, whose execution mechanism is based onTRS-resolution.
Consequently there are no restrictions regarding the use ofeventualities. Moreover, we deal

2 Also known as small model property.
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with eventualities without requiring invariant generation. A preliminary version of this proposal
was presented in [64].

Invariant-Freeness

In order to sum up and highlight the distinctive feature of our approach to temporal deduction
we can say that:

• Our tableau method is classical-like in the sense that it does not require an extra process
(a second pass or an additional handling of information) fordetecting the unsatis�ability
of a set of formulas where an invariant prevents the ful�llment of an eventuality.

• Our �nitary sequent systems do not include invariant-basedrules.

• Our resolution method dispenses with invariant generation.

• The resolution procedure underlying our temporal logic programming language does not
require either invariant generation or invariant detection by means of upper bounds.

Consequently, we say that our approach is invariant-free.

Outline of the thesis

This thesis is organized in six chapters (including this one) as follows:

• In Chapter 2, we provide the preliminaries of the thesis, that is, the basic notions about
PLTL that are used in the remaining chapters.

• In Chapter 3, we �rst introduce our one-pass tableau methodTTM . This tableau method
includes a new tableau rule for dealing with eventualities.The completeness result of
TTM is based on this rule and the strategy formalized by means of the systematic tableau
algorithm that we also present in this chapter. Such rule together with the mentioned
strategy are the core of our proposal, which leads to a new approach to temporal deduction
and gives rise to a new decision procedure forPLTL. From TTM , we obtain the one-
sided �nitary sequent calculusTTC that is cut-free and invariant-free. On the basis of
TTC, we �nally de�ne the two-sided sequent calculusGTC, which is also �nitary, cut-free
and invariant-free. Moreover, bothTTC and GTC are weakening-free and contraction-
free. By means of these tableau and sequent systems we prove that the classical duality
between tableau and sequent systems extends toPLTL. At the beginning of Chapter 3 we
review related work to motivate our research. At the end of the chapter, we compare our
approach with related work with the aim of remarking the novelties of our contribution.
The contents of this chapter are strongly based on [58, 60, 61, 63].

• Chapter 4 is devoted to our clausal temporal resolution methodTRS. First, we brie�y
review previously existing approaches to motivate our work. Then, we introduce our
clausal normal form and the steps required to transform anyPLTL formula into this clausal
form. Next, we provide the rule system and the notion of derivation. The crucial rule for
eventualities and the systematic resolution algorithm that lead to the completeness result
and to the new resolution-based decision procedure, are obtained by adapting the key
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rule and the systematic tableau algorithm from the previouschapter to the clausal setting.
The major novelty of the resolution methodTRS is that, unlike the main approach in the
literature ([40, 45]), it dispenses with invariant generation. The last section of this chapter
is used to compare our contribution with previously existing approaches. The content of
this chapter is based on [62].

• In Chapter 5, we present a declarative propositional temporal logic programming lan-
guage calledTeDiLog. First we introduce the syntax ofTeDiLog which is an adaptation
of the clausal form introduced in the previous chapter to thelogic programming style.
Then we provide operational and logical semantics forTeDiLog and prove their equiva-
lence. The operational semantics is based on theTRS-resolution presented in Chapter 4
and the logical semantics is founded onPLTL logical consequence. At the beginning of
the chapter previous approaches are reviewed to motivate our work and at the end of the
chapter our contribution is compared with such approaches.The content of this chapter
extends [64].

• In Chapter 6, we expose the main contributions and results of this thesistogether with
the publicationsand remarkable research activity carriedout during the preparation of this
thesis. Besides, we also discuss future work.



2. PRELIMINARIES

In this chapter we provide the basic notions related toPLTL and we also introduce some nota-
tion that is used in this thesis. Sections 2.1 and 2.2 are devoted to the syntax and the semantics
of PLTL. Section 2.3 introduces the notions of soundness, refutational completeness and com-
pletenes for deduction systems. Finally, Section 2.4 introduces the notion of invariant formula
for PLTL.

2.1 Syntax ofPLTL

The syntax ofPLTL extends the syntax of classical propositional logic by allowing the use
of temporal connectives. Different temporal connectives can be considered in order to obtain
the full expressiveness ofPLTL. In this thesis we choose the temporal connectives◦ (“next”)
and U (“until”) as primitive temporal connectives. Therefore wesay thatPLTL-formulas are
built by using the nullary connective (i.e. the constant)F, propositional variables (denoted by
lowercase lettersp, q, . . .) from a setProp, the classical connectives¬ and∧, and the temporal
connectives◦ and U . In the sequel,formulameansPLTL-formula. A lowercase Greek letter
(ϕ, ψ,χ, γ, . . .) denotes a formula and an uppercase one (Φ, ∆, Γ, Ψ, Ω, . . .) denotes a �nite set
of formulas. As usual other connectives can be de�ned in terms of the previous ones:T ≡ ¬F,
ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), ϕRψ ≡ ¬(¬ϕU ¬ψ), �ϕ ≡ TU ϕ, � ϕ ≡ ¬�¬ϕ. Note that
� ϕ ≡ FRϕ. As can be observed in the above de�nitions, the linear-timeconnectivesR
(“release”),� (“eventually”) and� (“always”) can be de�ned in terms of the connectiveU .

The connectivesT, ∨, R and� are the dual connectives of the connectivesF, ∧, U and�
respectively. The connective◦ is its own dual.

The above de�ned connectives will be used as abbreviations for readability in the tableau
method and the sequent calculi but dual connectives are necessary in the clausal resolution
method. For technical convenience, we use the nullary connective F as part of the minimal
language forPLTL. However, its use can be avoided by considering thatF can be expressed
asψ ∧ ¬ψ, whereψ ∈ Prop. In fact, in the clausal resolution method we dispense with the
constantsF and T and we consider that�ϕ ≡ ¬ϕU ϕ and � ϕ ≡ ¬ϕRϕ. In the clausal
resolution method the empty clause is denoted syntactically as⊥ and� ⊥.

Formulas of the formψ, ¬ψ and◦ϕ, whereψ ∈ {F,T} ∪Prop, are calledelementary. Also
sets of elementary formulas are called elementary.

We denote by◦n , � n and� n , with n ≥ 0, the sequences ofn connectives◦, � and� ,
respectively. However, these kinds of superscripts are notation, hence they are not part of the
syntax.

Given a set of formulasΦ = {ϕ1, . . . , ϕn}we use¬Φ to denote the formula¬(ϕ1∧. . .∧ϕn )
and

V
Φ to denote the formulaϕ1∧ . . .∧ϕn . In particular, whenΦ is empty,¬Φ is the constant

F in the tableau and sequent systems (Chapter 3) and the empty clause in the resolution system
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(Chapters 4 and 5). On the other hand, whenΦ is empty,
V

Φ is the constantT in the tableau
and sequent systems (Chapter 3).

2.2 Semantics and Model Theory ofPLTL

Formally, aPLTL-structureM is a pair(SM , VM ) such thatSM is a denumerable sequence of
statess0, s1, s2, . . . andVM is a mapVM : SM → 2Prop. Intuitively, VM (sj ) speci�es which
atomic propositions are (necessarily) true in the statesj .

Formulas are interpreted in the states ofPLTL-structures. The formal semantics of formulas
is given by the truth of a formulaϕ in the statesj of a PLTL-structureM, which is denoted by
〈M, sj 〉 |= ϕ. This semantics is inductively de�ned as follows:

• 〈M, sj 〉 6|= F

• 〈M, sj 〉 |= p iff p ∈ VM (sj ) for p ∈ Prop

• 〈M, sj 〉 |= ¬ϕ iff 〈M, sj 〉 6|= ϕ

• 〈M, sj 〉 |= ϕ ∧ ψ iff 〈M, sj 〉 |= ϕ and〈M, sj 〉 |= ψ

• 〈M, sj 〉 |= ◦ϕ iff 〈M, sj +1 〉 |= ϕ

• 〈M, sj 〉 |= ϕU ψ iff there existsk ≥ j such that〈M, sk〉 |= ψ and for everyi ∈
{j, . . . , k− 1} it holds〈M, si 〉 |= ϕ.

The extension of the above formal semantics to the de�ned connectives yields:

• 〈M, sj 〉 |= T

• 〈M, sj 〉 |= ϕ ∨ ψ iff 〈M, sj 〉 |= ϕ or 〈M, sj 〉 |= ψ

• 〈M, sj 〉 |= ϕRψ iff for every k ≥ j it holds either〈M, sk〉 |= ψ or 〈M, si 〉 |= ϕ for
somei ∈ {j, . . . , k− 1}

• 〈M, sj 〉 |= �ϕ iff 〈M, sk〉 |= ϕ for somek ≥ j

• 〈M, sj 〉 |= � ϕ iff 〈M, sk〉 |= ϕ for everyk ≥ j.

If 〈M, sh〉 |= ϕ then we say thatϕ is true in the satesh of thePLTL-structureM.
Note that the truth ofϕU ψ and�ψ in a statesj of a PLTL-structureM requires thatψ

must eventually be true in some statesk ofM with k ≥ j, and also that the eventual truth of
¬ψ is required for¬� ψ and¬(ϕRψ) to be true. Consequently

De�nition 2.2.1. Aneventualityis a formula of the formϕU ψ or �ψ or ¬� ψ or ¬(ϕRψ). In
particular, formulas of the formϕU ψ are also calleduntil-formulas.

The semantics is extended from formulas to sets of formulas in the usual way:〈M, sj 〉 |= Φ
iff 〈M, sj 〉 |= γ for all γ ∈ Φ. We say thatM is a model ofΦ, in symbolsM |= Φ, iff
〈M, s0〉 |= Φ. A satis�able set of formulas has at least one model, otherwise it is unsatis�able.

De�nition 2.2.2. Two sets of formulasΦ andΨ are equisatis�ablewheneverΦ is satis�able if
and only ifΨ is satis�able.
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e0 e1 e2 . . . ej . . . ek
R R R R R R

R

Figure 2.1:Cyclic sequence

Thelogical consequencerelation between a set of formulasΦ and a formulaχ, denoted as
Φ |= χ, is de�ned in the following way:

Φ |= χ iff for every PLTL-structureM and everysj ∈ SM :

if 〈M, sj 〉 |= Φ then〈M, sj 〉 |= χ

The above notion of logical consequence is usually calledlocal logical consequence. There
is a weaker notion calledglobal logical consequencewhich demandsχ to be true at all states
inM if Φ is true at all states inM. This latter notion is also interesting for many applications
[48].

In order to construct models for satis�able sets of formulaswe usecyclic (also calledul-
timately periodic) PLTL-structures that we de�ne in terms of either in�nite paths over cycling
sequences (Chapters 3 and 4) or in�nite sequences (Chapter 5). Each element of such sequences
is associated with a set of formulas. An in�nite path (or in�nite sequence) becomes the sequence
of states of aPLTL-structure. The propositional variables that belong to thesets associated with
the states de�ne the mapV . Finally we ensure that aPLTL-structure built in this way makes
true, at each statesj , the formulas associated with the statesj .

Any in�nite sequencee0, e1, . . . , ek , . . . involves an implicit successor relation, namelyR,
such that(ei , ei +1 ) ∈ R for all i ∈ IN . When convenient, we writeeR e0 to denote(e, e0) ∈ R.
A �nite sequence gives also a corresponding implicit successor relation with a pair for each
element except for the last one. A �nite sequenceS = e0, e1, . . . , ek is said to becyclic iff
its successor relation extends the implicitR with a pair(ek , ej ) for somej ∈ {0, . . . , k} (see
Figure 2.1). Then,ej , . . . , ek is called theloop of S, ej is called thecycling elementof S, and
thepathoverS is the in�nite sequence

path(S) = e0, e1, . . . , ej � 1 · 〈ej , ej +1 , . . . , ek〉!

where · is the in�x operator of concatenation of sequences andU ! denotes the in�nite se-
quence that results by concatenation of the sequenceU in�nitely many times. Naturally, for any
non-cyclic �nite sequenceS we consider thatpath(S) = S.

A PLTL-structureM is cyclic or ultimately periodicif its (in�nite) sequence of statesSM

is a path over a cyclic sequence of states.
Ensuring that aPLTL-structure constructed from an in�nite sequenceS = e0, e1, . . . , ek, . . .

makes true the eventualities that appear in the sets associated to eachei in S is the key step of the
model construction process. In order to carry out this step,we de�ne the notion offul�llment of
eventualities. We say thatei in S ful�lls an eventualityϕU ψ that belongs to the set associated
with ei , whenever there existseh with h ≥ i such thatψ belongs to the set associated with
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eh andϕ belongs to the set associated witheg for everyg ∈ {i, . . . , h − 1}. We particularize
and precisely de�ne the notion of ful�llment for every deduction system in the corresponding
chapter.

2.3 Decidability of PLTL: Sound, Refutationally Complete and Complete
Deduction Systems

It is well known thatPLTL is a decidable logic (see e.g. [87]). Therefore, given aPLTL-
formulaψ, there exists a procedure that is able to decide, in a �nite amount of time, whetherψ
is satis�able or unsatis�able.

Whenever a new deduction system is proposed for a decidable logic, it must be assessed
whether the deduction system yields a decision procedure. A�nitary deduction system gives
rise to a decision procedure whenever it iscomplete. A deduction system is complete if it is
able to decide both satis�ability and unsatis�ability. Thecompleteness of a deduction system is
established by provingsoundness, terminationandrefutational completeness.

Soundness means that a deduction system is correct in the sense that if a formulaψ is
classi�ed as unsatis�able by such deduction system, thenψ is unsatis�able. A deduction system
is refutationally complete if whenever a formulaψ is unsatis�able, then the system classi�esψ
as unsatis�able. However, soundness and refutational completeness do not guarantee that the
satis�ability of a formula is decidable. That is, given a formulaψ, if ψ is unsatis�able, then a
sound and refutationally complete deduction system will beable to classifyψ as unsatis�able,
but ifψ is satis�able, then the deduction system may not terminate the derivation process, i.e. the
deduction system may not give any answer. For that reason, termination is additionally required
in order to have completeness, i.e, in order to decide both satis�ability and unsatis�ability.
However, it is customary to use the term completeness to refer to refutational completeness
in refutational systems where termination is not addressed. In each chapter of this thesis we
precisely de�ne the meaning of the term completeness for each deduction system.

The notion of deciding the satis�ability of a formulaψ extends to a �nite set of formulas
Φ = {ϕ1, . . . , ϕn} in a straightforward manner, sinceΦ is understood asϕ1 ∧ . . .∧ ϕn .

A logic is said to becompactwhen it veri�es that, given any set of formulasΦ, if every
�nite subset ofΦ is satis�able thenΦ is satis�able. It is well known thatPLTL is a non-compact
logic. For example, the in�nite set of formulasΨ = {◦ip | i ∈ IN} ∪ {�¬p} is not satis�able
but every �nite subset ofΨ is satis�able. As a consequence, any complete deduction system
that is able to deal with in�nite sets of formulas should be in�nitary. However in�nitary systems
do not yield decision procedures that are able to decide the satis�ability or unsatis�ability of a
formula in a �nite amount of time. Since we are interested in �nitary deduction systems, we
only deal with �nite sets of formulas.

2.4 Invariant Formulas in PLTL

One of the features ofPLTL (and temporal logic in general) is the ability to express eventuality
properties and invariant properties. Eventuality properties state that a formula will eventually
become true. Eventuality properties are directly expressed by means of speci�c connectives (e.g.
U and� ) that give rise to the so-called eventualities (see De�nition 2.2.1), which are trivially
detectable (ϕU ψ, �ψ, etc). Invariant properties state that a formula is always true (from some
moment onwards). Invariant properties are expressed by sets of formulas that, often, are not
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trivially detectable. If the set of formulasΦ expresses and invariant property, then we say that
the formula

V
Φ is an invariant formula(invariant, in short). Moreover,Φ could also be a

subset of another set of formulas, hence we say that, usually, invariants are “hidden” in a set
of formulas. Formally, a formulaχ is an invariant if and only if the formula¬χ ∨ ◦χ is true
at every state of everyPLTL-structure. Since “hidden” invariants can prevent the ful�llment of
eventualities, the key issue in the �nitary deduction systems forPLTL (and temporal logic in
general) is to deal with eventualities and invariants.

In order to illustrate the concept of invariant, let us consider the following three sets of
formulas

∆1 = {� (¬ϕ0 ∨ ◦ψ0), . . . , � (¬ϕn ∨ ◦ψn)}
∆2 = {� (¬ψ0 ∨ ¬γ), . . . , � (¬ψn ∨ ¬γ)}
∆3 = {� (¬ψ0 ∨ ϕ0 ∨ . . .∨ ϕn), . . . , � (¬ψn ∨ ϕ0 ∨ . . .∨ ϕn)}

The formulas◦� ¬γ and� (ϕ0 ∨ . . .∨ ϕn) are logical consequences of the set

Σ = {ϕ0 ∨ . . .∨ ϕn} ∪∆1∪∆2∪∆3

Additionally, for the formulaχ =
V

Σ, it holds that¬χ ∨ ◦χ is true in every state of every
PLTL-structure. Thereforeχ is an invariant that states, in an intricate way, that the eventuality
� γ cannot be true from the next state onwards. Note also that theformula� (¬(ϕ0∨ . . .∨ϕn)∨
◦(ϕ0∨ . . .∨ϕn)) is a logical consequence of∆1∪∆2∪∆3. So that, if we restrict ourselves to
the set of models of∆1∪∆2 ∪∆3, we could say that the formulaϕ0 ∨ . . .∨ ϕn is an invariant
with respect to such models.

Since the setΣ can be formed by an arbitrary number of formulas, the invariant χ (unlike
eventualities) cannot be trivially detected. Additionally, Σ could just be a subset of another set
of formulas.

More details about invariants can be found in e.g. [45, 104, 105, 106].
Given a set of formulasΨ and an eventuality� γ, the crucial element for every refutationally

complete �nitary deduction system forPLTL is to detect whetherΨ contains an invariant that
prevents the ful�llment ofγ.





3. DUAL SYSTEMS OF TABLEAUX AND SEQUENTS FOR PLTL

3.1 Introduction

Tableau systems are refutational proof methods that play a prominent role in the development of
automated reasoning for temporal logic (and many other logics). In addition, in the case of de-
cidable logics, such asPLTL, tableau methods serve as decision procedures for the satis�ability
of (sets of) formulas. The �rst tableau method forPLTL was introduced by P. Wolper in [128]
and it is atwo-pass method. In the �rst pass, it generates an auxiliary graph by applying the
tableau rules. This graph is checked and possibly pruned in asecond pass that analyzes whether
the eventualities are ful�lled. As stated in De�nition 2.2.1, an eventuality is a formula that as-
serts that something does eventually hold. For example, fora path in the graph to ful�llϕU ψ,
the formulaψ must eventually appear in the path. Hence, any maximal strongly connected com-
ponent in the graph that containsϕU ψ in the label of one of its nodes, but does not containψ
in the label of any of its nodes and from which no other maximalstrongly connected component
can be reached, is pruned. At the end, an empty graph means unsatis�ability. Since Wolper's
seminal paper [128], several authors (e.g. [73, 8, 87, 79, 81]) have proposed and studied tableau
methods for different temporal and modal logics inspired byWolper's tableau (see [71] for a
good survey). In addition, Wolper's two-pass tableau has been used in the development of de-
cision procedures or proof techniques for logics that extend PLTL to some decidable fragment
of the �rst-order temporal logic (e.g.[84]), or to the branching case or with other features, such
as agents, knowledge, etc (e.g. [70]). In the case of two-pass tableau methods the auxiliary
graph and the second pass prevent the association of a sequent calculus proof to each tableau
refutation.

Sequent calculi provide a general deductive setting that uniformly embeds refutational meth-
ods and other deduction techniques such as goal-directed proofs or natural deduction. Tradi-
tional sequent calculi for temporal logic (e.g. [104, 105, 121]) usually include some inference
rules that complicate the automation of temporal deduction. In particular, temporal sequent cal-
culi either need some form of cut (classical cut or invariant-based cut) or they include in�nitary
rules. Cut rules imply the “invention” of lemmata, called cut formulas, for their application.
Invariant formulas are particular cut formulas for provingtemporal eventualities. In [104] and
[121], two sequent calculi for temporal logic with invariant-based rules are presented. In fact,
in both approaches, a system that includes also a cut rule is presented and then a cut elimination
proof is provided. However, invariant-based rules for temporal connectives cannot be avoided.
In [105] various sequent calculi are presented for temporallogic without the until connective
U (this means that the considered logic has a limited temporalexpressive power). In [105]
completeness and cut-elimination proofs, together with various interesting reductions among
various calculi are provided. However, every calculus includes either some in�nitary rule or
some invariant-based rule.

A remarkable consequence of using auxiliary graphs that require a second pass in the tableau
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framework and either invariant-based rules or in�nitary rules in the sequent framework is that
temporal logic fails to carry out the classical correspondence between tableaux and sequents. In
classical logic, and even in some non-classical logics (e.g. many-valued logics), each step in a
tableau construction corresponds to an inference in the sequent calculus. Therefore, there is an
easy, useful and well-known correspondence that associates with each closed tableau a sequent
proof, which is a refutation.

In this chapter, we present a tableau system together with a dual cut-free and invariant-free
�nitary sequent calculus forPLTL. We �rst provide aTemporalTableauMethod, calledTTM,
which does not require auxiliary graphs to decide if a set of formulas is satis�able. Instead,
there is a tableau rule that prevents from inde�nitely delaying the ful�llment of eventualities.
The tableau methodTTM is sound, refutationally complete and also complete. Therefore, it
gives rise to a decision procedure forPLTL. The tableau methodTTM is directly associated with
a one-sided (or Tait style) sequent calculus that we callTTC (from Tait-styleTemporalCalculus).
SinceTTM is free from all the structural rules that hinder the mechanization of deduction, e.g.
weakening and contraction, then the resulting sequent calculus TTC is also free from this kind
of structural rules. In particular,TTC is free from any kind of cut, including invariant-based cut.
From the deduction systemTTC, we obtain the two-sided sequent calculusGTC (from Gentzen-
styleTemporalCalculus) that preserves all these good freeness propertiesand is �nitary, sound
and complete forPLTL. Therefore, we show that the classical correspondence between tableaux
and sequent calculi can be extended to temporal logic. Such correspondence is mainly enabled
by a new style of inference rule for eventualities which introduces a new kind of temporal
deduction. This new kind of temporal deduction is based on the fact that if a set of formulas
∆∪{ϕU ψ} is satis�able, then it must exist a modelM (with statess0, s1, . . .) that is minimal
in the following sense:

M satis�es either∆∪{ψ} or ∆∪{ϕ, ◦((ϕ ∧ ¬∆)U ψ)}

where∆ = {ϕ1, . . . , ϕn} and¬∆ = ¬(ϕ1 ∧ . . . ∧ ϕn ). In other words, in a minimal model
M of ∆∪{ϕU ψ}, if ψ is not true ins0 then the so-calledcontext∆ cannot be true froms1

until the �rst state whereψ is true. In order to clarify this fact, let us consider a modelM0

with statess0
0, s0

1, . . . such thats0
j (with j ≥ 2) is the �rst state in whichψ is true and there

is at least one state in the sequences0
1, . . . , s0

j in which ∆ is true. Now, letk be the greatest
z ∈ {1, . . . , j} such that∆ is true ins0

z. Then, the structure given bys0
k , s

0
k+1 , . . . is also a

model of∆∪{ϕU ψ} that is minimal in the above sense.
The tableau methodTTM and the sequent calculiTTC and GTC (�rst presented in [61])

extend and improve the work introduced in [60, 58].
In addition to the traditional approaches to tableau and sequent systems for temporal logic

mentioned above, there are two approaches whose results areclosely related to ours. On one
hand, in [117] a one-pass tableau calculus that produces cyclic trees is introduced by Schwendi-
mann. This tableau calculus avoids the second pass by addingextra information to the nodes
in the tableau. Some of this information must be synthesizedbottom-up and it is needed be-
cause tableau branches are not independent from each other.In particular, a cyclic branch may
contain an unful�lled eventuality that can be ful�lled if other accessible cyclic branches are
considered for generating a wider cycle. Hence, it carries out an on-the-�y checking of the ful-
�llment of every eventuality in every branch. Our method is not based on an on-the-�y checking
of eventualities. As mentioned above, in our tableau methodTTM , there is a tableau rule that
prevents from inde�nitely delaying the ful�llment of eventualities. In TTM branches are in-
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dependent from each other and the ful�llment of an eventuality that appears in a branch does
not depend on other branches. Additionally,TTM tableaux are classical-like in the sense that
unsatis�able sets of formulas give rise to closed tableaux where every leaf contains either a for-
mula and its negation or the constantF. By contrast, Schwendimann's approach does not yield
classical-like tableaux in the sense that unsatis�able sets of formulas may produce non-ful�lling
cyclic branches whose last nodes do not contain an explicit inconsistency (i.e. a formula and its
negation). Consequently, such approach requires an extra process for deciding whether a cyclic
branch is ful�lling or not. Schwendimann's approach has also been applied to other logics such
as e.g.CTL ([5]) andPDL ([72]).

On the other hand, at the time of the publication of [60], to our knowledge the �rst published
invariant-free �nitary sequent calculus forPLTL, we learned about the work of K. Brünnler and
M. Lange (see [20]), which provides an interesting alternative approach to the proof theory
of PLTL. The calculus presented in [20] has the analytic superformula property. Actually, in
[20], the strategy that leads to prove the completeness of the sequent system –which lies in
fairly selecting exactly one eventuality and sticking to ituntil it is ful�lled– is incorporated
in the sequent system by means of the so-called annotated formulas (which do not belong to
the logical language). The completeness proof of our systemis also based on the mentioned
strategy but such a strategy is not incorporated in the system. In this way different strategies can
be used. We differentiate between the systematic derivation (which guarantees completeness)
and the many other derivations that usually are feasible. InSection 3.7 we compare, in a more
detailed way, our approach with the above mentioned approaches.

Outline of the chapter. In Section 3.2 we introduce the notions of sequent and sequent
system and we point out the relationship between tableau systems and sequent systems. In
Section 3.3 we present the tableau systemTTM . Subsection 3.3.1 introduces the basic tableau
structure. Subsection 3.3.2 provides the rule system. Subsection 3.3.3 contains the de�nitions of
inconsistent node and open and closed branches. In Subsection 3.3.4 we establish the notion of
TTM tableau which includes the key concepts of expanded branch and expanded tableau. Finally,
in Subsection 3.3.5 we show some examples of tableaux. Section 3.4 is devoted to the soundness
and completeness results. The soundness ofTTM is proved in Subsection 3.4.1. In Subsection
3.4.2 we propose an algorithm for systematically obtaining, for any set of formulasΦ, a �nite
tableau that proves thatΦ is either satis�able or unsatis�able. In particular we provide the
termination result and the worst case complexity for the algorithm. Examples that illustrate the
application of the systematic tableau algorithm are showedin Subsection 3.4.3. In Subsection
3.4.4 we prove the completeness ofTTM . In Subsection 3.4.5 we suggest some improvements.
In Sections 3.5 and 3.6, we introduce, respectively, the one-sided sequent systemTTC and the
two-sided sequent systemGTC. The rule system, the soundness and completeness results and
some illustrative examples are provided for each of these two sequent systems. Finally, in
Section 3.7 we deal with related work and we compare some features of our approach with
other approaches.

3.2 Sequent-based Deduction Systems and Tableaux

Sequent calculus, �rst introduced by Gentzen ([65]), is themost elegant and �exible system for
writing proofs. Each line of a sequent calculus proof is a sequent. Asequentwas (originally)
formed by two sequences of formulas separated by some kind ofarrow (for instance,̀ ). The
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intended meaning of a sequentϕ1, ϕ2, . . . , ϕn ` ψ1, ψ2, . . . , ψm is the formula
n̂

i =1

ϕi →
m_

i =1

ψi

where→ is the classical connective of implication (i.e.χ → γ ≡ ¬χ ∨ γ). The sequence
ϕ1, ϕ2, . . . , ϕn is called theantecedentof the above sequent and the sequenceψ1, ψ2, . . . , ψm

is called itsconsequent(or succedent). Since the seminal work of Gentzen, many variations of
the notion of sequent have been explored to provide different sequent-based deduction systems.
A sequent calculus is a proof system given by a set of rules such that each rule indicates that a
sequent may be inferred from a set of sequents. That is, a (�nitary) rule consists of anumerator
formed by a (�nite) set of sequentsS1, . . . , Sn and adenominatorS separated by a horizontal
line, next to which is the name of the rule1:

(r)
S1, . . . , Sn

S
In a rule(r) as above, each sequentSi is called apremiseandS is theconclusion. Traditionally,
a sequent calculus consists of structural rules and connective rules (rules for the connectives).
The conclusion of a connective rule has aprincipal formulathat is affected by the inference.
For example

(∧L)
∆, ϕ, ψ ` χ

∆, ϕ ∧ ψ ` χ
is a rule for conjunction (∧) whose principal formula isϕ ∧ ψ. However, in structural rules,
the inference is guided by the whole conclusion. An example of structural rule is classical
weakeaning

(Wk)
∆ ` χ

∆,∆0` χ
There are many variations of sequents. The simplest one is obtained by allowing the an-

tecedent and consequent to be a (multi)set instead of a sequence. This choice (of sequences,
multisets or sets) is directly related to the classical structural rules of exchange and contraction.
In particular, the exchange rule only makes sense in sequence-based sequent calculi, whereas
the contraction rule, which is well-founded for sequences and multisets, leads to some confusion
when sets are considered. More precisely, the classical contraction rule (on the left):

∆, ϕ, ϕ ` χ
∆, ϕ ` χ

makes no sense when the antecedent is a set, however some legal application of connective rules
could hide a contraction. For example, the inference

ϕ ∧ ψ, ϕ, ψ ` χ
ϕ ∧ ψ ` χ

1 Sometimes, due to space reasons, the rule is formatted as follows:

S1
...
Sn

S
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could result from a legal application of the above rule(∧L) for ∆ = {ϕ∧ψ}. In classical logic
this kind of hidden use of the contraction does not harm, however in temporal logic2 we must
be more careful on this matter. The sequent systems we are going to introduce are based on
sets. The notation∆, ϕ stands for∆∪{ϕ} whereϕ 6∈ ∆. This convention clearly disallows
hidden contraction. In particular, it disallows the above inference that uses the rule(∧L) for
∆ = {ϕ ∧ ψ}.

Another simple variation of sequent is related to the cardinality of the consequent. That is,
sequents can be either multiple-conclusioned or single-conclusioned, or even one-sided, respec-
tively depending on whether the consequent is a set, a singleton or empty.3 One-sided sequents
were �rst used by Schütte [116] with multisets and by Tait [123] with sets, hence when a new
system is presented it is usual to point out whether it is a Gentzen-Schütte style calculus or
whether it is a Tait style calculus. There are really two kinds of one-sided sequents: left-handed
(empty consequent) and right-handed (empty antecedent). In this thesis, we use left-handed
sequents because they are very close to tableau systems. In fact, we present the tableau system
TTM that is directly related to the left-handed sequent calculus TTC. Besides, the established
results for the calculusTTC can be easily extended to the two-sided sequent calculusGTC. We
have preferred to formulate the calculusGTC by means of single-conclusioned sequents, in-
stead of multiple-conclusioned sequents, because in our opinion single-conclusioned sequents
are closer to natural deduction and capture better our intuition in logical reasoning. A multiple-
conclusioned system can be easily obtained fromGTC.

3.3 The Tableau MethodTTM

In this section we present a tableau system, calledTTM , for PLTL. In TTM, tableaux are essen-
tially trees but branches can end in a leave that represents aloop into another node in its branch.
Our tableaux are one-pass in the sense of [117], that is, theydo not require a second pass to
check an auxiliary graph of states in order to determine if every eventuality is ful�lled. As a
consequence, temporal stages are represented inside the branches of the tableaux instead of in
an auxiliary graph. The contents of this section are dividedinto �ve subsections. In Subsection
3.3.1 we introduce preliminary concepts related to the tableau structure. In Subsections 3.3.2,
3.3.3 and 3.3.4 we present the rules for constructing tableaux, the notion of inconsistency in
nodes and the notion of tableau itself, respectively. Finally, in 3.3.5 we provide some detailed
examples of tableaux.

3.3.1 Pre-tableaux

A tableauT� for a �nite set of formulasΦ is a tree-like structure where each noden is labelled
with a set of formulasL(n). The root is labelled with the setΦ whose satis�ability we wish to
check. The children of a noden are obtained by applying one of the rules to one of the formulas
in L(n). Nodes are organized in branches, so that the rules serve to either enlarge the branch
(with one new child) or split the branch with two new children. In order to formalize the notion
of branch we recall the concept of strongly generated set.

2 In general, in modal logic.
3 There are more sophisticated variants of sequents that are obtained, for example, by adding structure or labels

into sequents, but they are out of the scope of this thesis.
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De�nition 3.3.1. Let Nodesbe a �nite non-empty set of nodes,n a node inNodesandNodes+

the set of all non-empty sequences of elements inNodes. A non-empty setB ⊆ Nodes+ is
strongly generatedwith respect toNodesandn iff it veri�es the following conditions:

1. If n0, n1, . . . , nk ∈ B, thenni 6= nj for all i andj such that0 ≤ i < j ≤ k

2. If n0, n1, . . . , nk ∈ B, thenn0 = n

3. If n0, n1, . . . , nk ∈ B, thenn0, n1, . . . , ni ∈ B for all i ∈ {0, . . . , k− 1}

4. For every nodem ∈ Nodesthere is a unique sequencen0, n1, . . . , nk ∈ B such that
nk = m.

We denote bytrees(Nodes, n) the collection of all subsets ofNodes+ that are strongly gen-
erated with respect toNodesandn. LetB ∈ trees(Nodes, n), each sequenceb ∈ B is called
a branch. A branchb0 = n0, n1, . . . , ni is a pre�x of another branchb = n0, n1, . . . , nk if
0 ≤ i ≤ k. If, besides,i 6= k, we say thatb0 is aproper pre�x of b. A branchb ∈ B is maximal
wheneverb is not proper pre�x of any other branch inB.

Note that, in the above De�nition 3.3.1, condition 1 means that a node cannot appear more
than once in a branch, condition 2 means that the �rst elementin every branch is the noden,
condition 3 means that a strongly generated set is closed with respect to non-empty pre�xes and
condition 4 states that every node must be the last node of exactly one branch, which may not
be maximal. Note also thattrees(Nodes, n) is �nite and every sequenceb ∈ B is �nite for any
B ∈ trees(Nodes, n).

Now we de�ne the concept of pre-tableau for a set of formulas.

De�nition 3.3.2. (Pre-tableau) A pre-tableaufor a �nite set of formulasΦ is a tupleT� =
(Nodes, n� , L, B, R) such that:

1. Nodesis a �nite non-empty set of nodes

2. n� is a node inNodes, called initial node

3. L : Nodes→ 2� is the labelling function whereΓ is a set of formulas that containsΦ
such that the initial node is labelled byΦ, that isL(n� ) = Φ

4. B is a strongly generated set intrees(Nodes, n� ), called the set of branches

5. R is the successor relation overNodes. R should be coherent withB in the sense that for
all n, n0 ∈ Nodes, (n, n0) ∈ R iff there exists a sequencen0, n1, . . . , nk ∈ B such that
n = ni andn0 = ni +1 for somei ∈ {0, . . . , k− 1}.

As usual,R+ andR� respectively denote the transitive closure and the re�exive-transitive
closure of any binary relationR.

3.3.2 Tableau Rules

A tableau rule is applied to a set of formulasL(n) labelling a noden (which is the last node of
a branch). Each rule application requires a previous choiceof a formula fromL(n). We call the
setL(n) \ {ϕ}, whereϕ is the chosen formula, thecontextand it is denoted by∆.
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Rule α A(α)
(¬¬) ¬¬ϕ {ϕ}
(∧) ϕ ∧ ψ {ϕ, ψ}

(¬◦) ¬◦ϕ {◦¬ϕ}

Rule β B1(β) B2(β)
(¬∧) ¬(ϕ ∧ ψ) {¬ϕ} {¬ψ}
(¬U ) ¬(ϕU ψ) {¬ϕ,¬ψ} {ϕ,¬ψ,¬◦(ϕU ψ)}
(U )1 ϕU ψ {ψ} {ϕ,¬ψ, ◦(ϕU ψ)}

Rule β B1(β) B2(β,∆)
(U )2 ϕU ψ {ψ} {ϕ,¬ψ, ◦((ϕ ∧ ¬∆)U ψ)}

where∆ stands for the context

Figure 3.1:PrimitiveTTM-Rules

As usual, theTTM-rules are based on a classi�cation of the formulas into conjunctive and
disjunctive, which are respectively named asα-formulas andβ-formulas. In Figure 3.1, any
α-formulaα is decomposed in a unique set, calledA(α), and anyβ-formulaβ is decomposed
into two constituent setsB1 andB2. The setB1 depends on the considered formulaβ, whereas
the setB2 can also depend on the context∆. 4

This classi�cation gives raise to the tableau rules whose names are also given in Figure 3.1.
Every rule, except(U )2, is well known in the literature. It is worth noting that(U )1 and(U )2

affect the sameβ-formula, but not in the same way. The rule(U )2 can be considered quite
peculiar, sinceB2(β,∆) includes a formula which depends on the whole set of formulasin the
node. Moreover,(U )2 leads to a new tableau construction style that allows us to dispense with
the auxiliary graph. This rule is based on the fact that if a formulaϕU ψ is satis�able in a
given context∆, it is because there exists a model for∆∪{ϕU ψ}, with satess0, s1, . . ., that is
minimal in the sense that ifsj (with j ≥ 0) is the �rst state in whichψ is true then∆ is not true
in the states that belong to the sequences1, s2, . . . , sj � 1. More precisely, the crucial idea behind
the rule(U )2 is based on the following equisatis�ability result that relates two eventualities.

Proposition 3.3.3. Let ∆ be a set of formulas.Σ1 = ∆∪{ϕU ψ} andΣ2 = ∆∪{ψ ∨ (ϕ ∧
(¬ψ) ∧ ◦((ϕ ∧ ¬∆)U ψ))}, whereϕU ψ 6∈ ∆, are equisatis�able.

Proof. In order to show thatΣ1 andΣ2 are equisatis�able, let us suppose thatM is a model
of Σ1. If 〈M, s0〉 |= ∆∪{ψ}, thenM is also a model ofΣ2. Otherwise,〈M, s0〉 |=
∆∪{ϕ,¬ψ, ◦(ϕU ψ)} and there exists a statesj with j ≥ 1 such that〈M, sj 〉 |= ψ and
〈M, si 〉 |= ϕ for every i ∈ {0, . . . , j − 1}. Let k be the greatesth such that0 ≤ h < j
and〈M, sh〉 |= ∆∪{ϕU ψ}. We can ensure the existence ofk because at least〈M, s0〉 |=
∆∪{ϕU ψ}. As a consequence of the choice ofk, it holds that〈M, sk〉 |= {ϕ,¬ψ, ◦((ϕ ∧
¬∆)U ψ)}. Then, thePLTL-structureM0 = (SM 0, VM 0) such thatSM 0 = s0

0, s0
1, . . . ands0

g =

4 Remember that� is always assumed to be a �nite set and that: � is F whenever� is empty.
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Rule α A(α)
(� ) � ϕ {ϕ, ◦� ϕ}

(¬�) ¬�ϕ {¬ϕ, ◦¬�ϕ}

Rule β B1(β) B2(β)
(R ) ϕRψ {ϕ, ψ} {¬ϕ, ψ, ◦(ϕRψ)}
(�)1 �ϕ {ϕ} {¬ϕ, ◦�ϕ}

(¬� )1 ¬� ϕ {¬ϕ} {ϕ, ◦¬� ϕ}
(¬R )1 ¬(ϕRψ) {¬ψ} {¬ϕ, ψ, ◦¬(ϕRψ)}

Rule β B1(β) B2(β,∆)
(�)2 �ϕ {ϕ} {¬ϕ, ◦((¬∆)U ϕ)}

(¬� )2 ¬� ϕ {¬ϕ} {ϕ, ◦((¬∆)U ¬ϕ)}
(¬R )2 ¬(ϕRψ) {¬ψ} {¬ϕ, ψ, ◦(((¬ϕ) ∧ ¬∆)U ¬ψ)}

where∆ stands for the context

Figure 3.2:Some DerivedTTM-Rules

sk+ g andVM 0(s0
g) = VM (sk+ g) for everyg ≥ 0 is a model of∆∪{ϕ,¬ψ, ◦((ϕ∧¬∆)U ψ)}.

Hence,M0 |= Σ2. In the converse direction, any model ofΣ2 is itself a model ofΣ1.

The above property is applied to the tableau construction bymeans of the rule(U )2. The
proof of Proposition 3.3.3 re�ects the intuitionbehind therule(U )2. In fact, Proposition3.3.3 is
used in Lemma 3.4.1 to prove the correctness of the rule(U )2. The use of the rule(U )2 makes
possible to prevent the repetition of contexts (i.e. sets offormulas) from the noden in which
(U )2 is applied to an eventualityϕU ψ ∈ L(n) until the �rst noden0 for whichψ ∈ L(n0),
provided that the number of possible contexts is �nite. Consequently, the rule(U )2 makes
possible not to allow the inde�nite postponement of the presence ofψ (i.e. the ful�llment of
ϕU ψ) in the sequence of nodes obtained fromn, provided that the number of possible contexts
is �nite.

One may wonder whether the rule(U )1 is essential for completeness. Our completeness
proof uses it, but it is an open problem whether there exists an alternative proof disregarding the
rule (U )1. However, we conjecture that(U )1 is essential for completeness. Anyway, from a
practical point of view it is better that the system includesthe rule(U )1, since(U )2 is costly
to use.

Besides the above primitiveTTM -rules, the methodTTM also uses the operatorunnext to
convert the labelling setL(n) of a noden into another setunnext(L(n)) that labels a new node
and that intuitively represents the jump from one time instant to the next one.

De�nition 3.3.4. For any set of formulasΨ:

unnext(Ψ) = {γ | ◦γ ∈ Ψ}

Note that,unnext(Ψ) could be the empty set, which we denote by∅.
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From the primitiveTTM -rules we can derive rules for the de�ned connectives like the ones
in Figure 3.2. However, along the chapter, most technical details are given only for the primitive
rules, in particular for the rule(U )2.

3.3.3 Consistent and Inconsistent Nodes and Closed and OpenBranches

Tableaux are constructed with the aim of refuting the initial set of formulas. The search for a
refutation is carried out by decomposing formulas into their constituent sets of formulas in order
to �nd out whether an inconsistent set of formulas can be obtained.

De�nition 3.3.5. A noden is consistent iffF 6∈ L(n) and there is noϕ such that{ϕ,¬ϕ} ⊆
L(n). Otherwise,n is inconsistent.

Note that, in De�nition 3.3.5, the formulaϕ is not required to be an atom. Indeed, by
demandingϕ to be atomic the completeness ofTTM would be lost. For example, the set of
formulasΨ = {pU q,¬(pU q)} would not be refutable, if the labelL(n) of an inconsistent
noden should satisfyF ∈ L(n) or {γ,¬γ} ⊆ L(n) such thatγ ∈ Prop. In fact, using
the tableau rules there is no way to achieve such atomic inconsistency. However,Ψ must be
inconsistent in order to achieve completeness. It is also worth noting that a node labelled byΣ =
{pU q, (¬p)R (¬q)} (which is equivalent toΨ) is not inconsistent (in the sense of De�nition
3.3.5). The set of formulasΣ can be refuted by our tableau method, but using the (non-atomic)
inconsistency of{◦((¬p)R (¬q)),¬◦((¬p)R (¬q))}.

When a branchb contains an inconsistent node we say thatb is closed. Any closed branch is
trivially unsatis�able. Branches that are not closed are said to beopen. However, open branches
are not necessarily satis�able. In particular, an open branch could be a pre�x of a closed one.

3.3.4 Semantic Tableaux

The tableau rules given in Subsection 3.3.2, together with the notion of consistent node (De�-
nition 3.3.5), allow us to determine when a pre-tableau is a tableau. Along this subsectionT�

stands for a pre-tableau forΦ given by a tuple(Nodes, n� , L, B, R).

De�nition 3.3.6. (Coherent pre-tableau) A pre-tableauT� is coherent if and only if every
noden in a non-maximal branch inB is consistent and exactly one of the following items holds
for every branchb = n0, n1, . . . , ni , ni +1 , . . . , nk ∈ B and everyi ∈ {0, . . . , k− 1}:

(1) L(ni +1 ) = A(α)∪L(ni ) \ {α} for someα ∈ L(ni )

(2) There exist exactly one noden0∈ N \ {ni +1 } and one branchb0 = n0, n1, . . . , ni , n0∈ B
such that for someβ ∈ L(ni ) either

• L(ni +1 ) = B1(β)∪L(ni ) \ {β} andL(n0) = C(β, L(ni ))∪L(ni ) \ {β} or

• L(ni +1 ) = C(β, L(ni ))∪L(ni ) \ {β} andL(n0) = B1(β)∪L(ni ) \ {β}

whereC(β, L(ni )) isB2(β) orB2(β, L(ni ) \ {β}).

(3) L(ni +1 ) = unnext(L(ni )).
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In items (1) and (3), every branch inB with proper pre�xn0, n1, . . . , ni must also have pre�x
n0, n1, . . . , ni , ni +1 , whereas in (2) every branch inB with proper pre�xn0, n1, . . . , ni has also
pre�x n0, n1, . . . , ni , ni +1 or pre�x n0, n1, . . . , ni , n0.

In a coherent pre-tableau branches whose last node is inconsistent do not accept more en-
largements or splittings. Every enlargement or splitting of a branch corresponds to the applica-
tion of aTTM -rule or theunnextoperator to its last node. The application of anα-rule enlarges
a branchn0, . . . , ni with a new nodeni +1 that includes, in the label, the constituents of the
treated formulaα, but notα itself. So that, the application scheme for theα-rules is

∆, α

∆, A(α)

whereα 6∈ ∆. The application of aβ-rule splits a branchn0, . . . , ni with two new nodesni +1

andn0 in such a way that the label of one of the new nodes includes theconstituents inB1(β)
and the label of the other new node includes the constituentsin C(β,∆), whereC(β,∆) is
eitherB2(β) orB2(β,∆), but the treated formulaβ is not included in the labels of the two new
nodes. So that, the application scheme for theβ-rules is

∆, β

∆, B1(β) ∆, C(β,∆)

whereβ 6∈ ∆. The application of theunnextoperator enlarges a branchn0, . . . , ni with a new
nodeni +1 whose label isunnext(L(ni )). The application scheme for theunnextoperator is

∆

unnext(∆)

In order to ensure when an open branch describes a model, we deal with the notions of stage,
cyclic branch, saturated set and ful�lling branch.

If we can ensure that the number of different labels used in the construction of a coherent
pre-tableauT� is �nite, then any in�nite branch must contain in�nitely many different nodes
with the same label. In particular, when a repetition arisesin an open branch

n0, n1, . . . , nj � 1, nj , . . . , nk

i.e. whenL(nk) = L(nj � 1) for somej ∈ {1, . . . , k}, then an in�nite branch of the form

n0, n1, . . . , nj � 1, nj , . . . , nk , nj , . . . , nk , . . .

can be obtained. In fact, this will be a cyclic branch that will be �nitely represented.

De�nition 3.3.7. If b = n0, n1, . . . , nk is an open branch such thatL(nk) = L(nj � 1) for some
j ∈ {1, . . . , k}, thenb is cyclic and we de�ne

cycle(b) = nj , nj +1 , . . . , nk

path(b) = n0, n1, . . . , nj � 1 · 〈nj , nj +1 , . . . , nk〉!

In other words, we consider that the implicit successor relation onb is extended withnkRnj .
If a (closed or open) branchb0 is not cyclic thenpath(b0) = b0.
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The last nodenk whose label appears previously in the branch is intentionally added to the
branch because this repetition is what we will use in the systematic tableau for detecting the
loop (see Subsection 3.4.2).

Every branch (cyclic or not) of a coherent pre-tableau can beseen as divided intostages
according to the applications of the operatorunnext. In other words, a stage is a sequence of
consecutive nodes between two consecutive applications ofthe operatorunnext.

De�nition 3.3.8. Given a branchb, every maximal subsequenceng, ng+1 , . . . , nh of path(b)
such thatL(n`) 6= unnext(L(n` � 1)) for every` ∈ {g + 1, . . . , h}, is called astage. The func-
tions�rst andlast respectively return the �rst and the last node of a given stage. We denote by
stages(b) thesequence of all stagesof a branchb. The successor relation onstages(b) is in-
duced by the successor relation onpath(b). That is, ifs ands0are respectively stagesn0, . . . , ni

andn0
0, . . . , n0

r in path(b) thensRs0wheneverniRn0
0. Hence, ifb = n0, n1, . . . , nj , . . . , nk is a

cyclic branch such thatcycle(b) = nj , nj +1 , . . . , nk (andj ≥ 1), thenstages(b) is a non-empty
�nite sequence of stagess0, s1, . . . , sm such thatlast(sm )R�rst (sz) for somez ∈ {1, . . . , m}
and n belongs tocycle(b) for everyy ∈ {z, . . . , m} and every noden in sy . For such a
cyclic branchb, we respectively denote bystages(cycle(b)) andpath(stages(b)) the sequences
sz, . . . , sm ands0, . . . , sz� 1 · 〈sz, . . . , sm〉! .

The following example serves to illustrate the notions ofstagesandpath by means of a
sample branch.

Example 3.3.9. Consider a cyclic branchb = n0, n1, n2, n3, n4 such thatL(n4) = L(n2).
Then,path(b) = n0, n1, n2 · 〈n3, n4〉! . Let us suppose thatL(n1) = unnext(L(n0)) and
L(n4) = unnext(L(n3)). Then, stages(b) is formed by three stages:s0 = 〈n0〉, s1 =
〈n1, n2, n3〉 and s2 = 〈n4, n3〉. Therefore, the induced relationR on stages(b) is given by
s0Rs1, s1Rs2 ands2Rs2. Hence,path(stages(b)) = s0, s1 · 〈s2〉! .

With a slight abuse of notation, the labelling functionL is extended from nodes to stages in
the natural way. That is, for any stages:

L(s) =
[

n2 s

L(n).

The general notion of ful�llment is introduced at the end of Section 2.2. Now we adapt such
notion to our tableau system.

De�nition 3.3.10. LetS be a sequence of stages,s ∈ S andϕU ψ ∈ L(s), we say thatϕU ψ
is ful�lled in S iff there existss0 such thatsR� s0 andψ ∈ L(s0). A sequenceS of stages is
ful�lling iff for all s ∈ S everyϕU ψ ∈ L(s) is ful�lled in S. A branchb is ful�lling iff the
sequencepath(stages(b)) is ful�lling.

The concept of ful�lling branch together with the followingconcept ofαβ-saturated stage
is crucial for determining when branches are able to describe a model.

De�nition 3.3.11. A stages is αβ-saturatedif and only if for everyϕ ∈ L(s):

1. If ϕ is anα-formula thenA(ϕ) ⊆ L(s)

2. If ϕ is a β-formula thenB1(ϕ) ⊆ L(s) or B2(ϕ) ⊆ L(s) or B2(ϕ,∆) ⊆ L(s), where
∆ = L(ni ) \ {ϕ} for someni ∈ s such thatϕ = χU γ ∈ L(ni ).
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Now, we give a suf�cient condition to consider that an open branch is (suf�ciently) ex-
panded. That is, it is able to describe a collection of models. This condition can be syntactically
checked. For the construction of systematic tableaux (see Subsection 3.4.2), we will re�ne this
suf�cient condition to a simpler one (see Remark 3.4.8).

De�nition 3.3.12. An open branchb is expandedif and only if b is ful�lling, cyclic and each
stages ∈ stages(b) isαβ-saturated.

For example, an expanded branch of a coherent pre-tableau for {rU p} can be formed by
the sequence of stagess0, s1, s2 whereL(s0) = {rU p, p} andL(s1) = L(s2) = ∅. Ac-
tually that branch is ful�lling, cyclic andαβ-saturated, hence it is expanded. Also the se-
quence of stagesx0, x1, x2, x3 whereL(x0) = {rU p, r,¬p, ◦(r U p)}, L(x1) = {rU p, p}
andL(x3) = L(x4) = ∅ is an expanded branch. It is worth noting that expanded branches
can be enlarged. For instance an expanded branch of a coherent pre-tableau for{� (rU p)} is
given by the sequence of stagesz0, z1 whereL(z0) = L(z1) = {� (rU p), ◦� (rU p), rU p, p}.
But the sequence of stagesz0, z1, z2, z3, z4 whereL(z0) andL(z1) are as above,L(z2) =
{� (rU p), ◦� (rU p), rU p, r,¬p, ◦(rU p)}, L(z3) = L(z0) andL(z4) = L(z2) is an ex-
panded branch too.

Remark 3.3.13.Enlargement of expanded branches is used in Subsection 3.4.2 for the system-
atic construction of tableaux in order to ensure the construction of ful�lling branches without
checking directly whether a branch is ful�lling (see Remark3.4.8).

When constructing a tableau, only open branches (expanded or non-expanded) can be en-
larged. A completely expanded tableau is constructed for deciding if the original set of formu-
las is satis�able or not, respectively depending on whetherthere is at least one expanded open
branch or all its branches are closed.

De�nition 3.3.14. (Tableau)A tableaufor a set of formulasΦ is a coherent pre-tableau forΦ.
Anexpanded tableauis a tableau where every maximal branch is either expanded orclosed. An
expanded tableau is open if it has at least one open maximal branch5, otherwise it is closed.

3.3.5 Examples of Tableaux

In this subsection, we give some examples of tableaux. Each tableau is showed by means of
a �gure formed by a part(a) and a part(b). The(a) part of the �gure is a tree that contains
the sets of formulas that label each node of the tableau and the (b) part of the �gure is a tree
that shows the rules applied at each step. For space reasons,the(a) and(b) part may appear in
the same �gure or in different �gures. For readability, we also underline the formula which the
TTM -rule is applied to. When theunnextoperator is applied, we do not underline any formula.
In the nodes in which we apply the rule(U )2 or the rule(�)2, we only underline the eventuality
to which the rule is applied. Branches with the mark# are closed branches. In the last nodes of
closed branches, we underline the formulas that cause inconsistency. However, when a node is
inconsistent for more than one reason, we only point out one of them. Note that, when a formula
is treated at a noden of a stages, this formula does not appear in the label of any successor of
n that belongs to the stages, although it remains belonging to the label ofs. Hence, already
treated formulas cannot be used to expand a branch again (at the same stage). Additionally,

5 which is expanded.
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(a) pU F

F

#
p, ¬F,

◦((p ∧ F)U F)

(p ∧ F)U F

F

#
p ∧ F, ¬F,
◦((p ∧ F)U F)

p, F, ¬F,
◦((p ∧ F)U F)

#

(b) (U )2

# (unnext)

(U )1

# (∧)

#

Figure 3.3:Closed tableau for the set of formulas{pU F}

(a) (1) pU F

F

#
p, ¬F,
◦(pU F)

(1) pU F

(b) (1) (U )1

# (unnext)

(1)

Figure 3.4:Non-expanded tableau for the set of formulas{pU F}

since open expanded branches are cyclic, we mark the leaf andthe internal repeated node with
the same superscript of the form( i ) wherei ≥ 1.

Example 3.3.15.In Figure 3.3 a closed expanded tableau for the unsatis�ableset of formulas
{pU F} is showed.

Note that the rightmost branch consists of two stages, the �rst one is formed by the two
higher nodes. The remaining three nodes form the second stage of the branch.

The set of formulas{pU F} also serves to show that by using only the rule(U )1 the ful-
�llment of an eventuality can be inde�nitely delayed. In particular, the set of formulas{pU F}
cannot beTTM-refuted without using the rule(U )2 (see Figure 3.4). The rightmost branch,
namelyb, of the tableau in Figure 3.4 is cyclic and is made up of two stages,x0 andx1. The
�rst two nodes form the stagex0 and the third and second nodes form the stagex1. Therefore
path(stages(b)) = x0 · 〈x1〉! . Although the branchb is open and cyclic and each stage is
αβ-saturated,b is not an expanded branch because it is not ful�lling.

Example 3.3.16.In Figure 3.5 an open expanded tableau for the satis�able setof formulas
{p, ◦¬p,¬FU ¬p} is showed. The tableau has two closed branches and one expanded open
branch, which is the central one. This open branch, which here we refer to asb, describes a
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(a) p, ◦¬p, ¬FU ¬p

p, ◦¬p, ¬p
#

p, ◦¬p, ¬¬p,
¬F, ◦(¬FU ¬p)

¬p, ¬FU ¬p

¬p

(1) ∅

(1) ∅

¬p, ¬F, ¬¬p,
◦(¬FU p)

#

(b) (U )1

# (unnext)

(U )1

(unnext)

(1) (unnext)

(1)

#

Figure 3.5:Open expanded tableau for the set of formulas{p,◦¬p,¬FU ¬p}

(a) (1)(2) � (p ∨ r)

◦� (p ∨ r), p∨ r

◦� (p ∨ r), p

(1) � (p ∨ r)

◦� (p ∨ r), r

(2) � (p ∨ r)

(b) (1)(2) (� )

(∨)

(unnext)

(1)

(unnext)

(2)

Figure 3.6:Open expanded tableau for the set of formulas{� (p ∨ r)}

collection of models. The �rst states0 of those models should make true the formulas labelling
the �rst stage (let us sayx0) of the branch which is formed by the �rst two nodes. In particular,
p should be true at the �rst states0. The second stage,x1, is given by the third and fourth
nodes of the branch, in particular¬p should be true in the second state (s1) of such collection
of models. In fact, any in�nite sequence of states pre�xed bythese two states,s0 and s1, is
a model of the root of the tableau since the third and fourth stages of the branch, namelyx2

and x3, are given by the �fth and sixth nodes that are labelled by theempty set. Note that
path(stages(b)) = x0, x1, x2 · 〈x3〉! .

Example 3.3.17.In Figure 3.6 we show an open expanded tableau for the satis�able set of
formulas{� (p ∨ q)}. This tableau has two expanded (open) branchesb1 (on the left) andb2

(on the right). Regarding the branchb1, the �rst three nodes form a stagex0 and the fourth
node together with the second and third nodes form another stagex1 andpath(stages(b1)) =
x0 · 〈x1〉! . This open branch describes a collection of models. The �rststate of those models
should make true the formulas labelling the �rst stage and all the other states should make true
the formulas labelling the second stage. In particularp should be true in all the states of those
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(a) pU q, �¬q

¬q, pU q

¬q, q
#

p, ¬q,
◦((p ∧ ¬¬q)U q)

(p ∧ ¬¬q)U q

q

(1) ∅

(1) ∅

p ∧ ¬¬q, ¬q,
◦((p ∧ ¬¬q)U q)

p, ¬¬q, ¬q,
◦((p ∧ ¬¬q)U q)

#

pU q, ¬¬q,◦�¬q

pU q,q, ◦�¬q

q, ◦�¬q

�¬q

¬q

(2) ∅

(2) ∅

¬¬q,◦(FU ¬q)

q,◦(FU ¬q)

FU ¬q

¬q

(3) ∅

(3) ∅

F, ¬¬q,
◦(FU ¬q)

#

q,¬q,
◦�¬q, p,
◦(pU q)

#

Figure 3.7:Open expanded tableau for the set of formulas{pU q, �¬q} (Part 1 of 2)

models. The case of the branchb2 is symmetric with the difference thatr should be true in all
the states of the models described byb2.

Example 3.3.18.The tableau in Figure 3.7 is an open expanded tableau for the satis�able set
of formulas{pU q, �¬q}. Due to space reasons, the(b) part of the tableau is in Figure 3.8.
Note that the derived rules(�)1 and (�)2 –which are shown in Figure 3.2– are used. This
tableau has three expanded open branches describing three different collections of models. The
leftmost open branch, that here we refer to asb1, represents the class of models with a �rst
state wherep and¬q are true and a second state whereq is true. In b1 the �rst three nodes
form a stage, let us sayx0, the fourth and �fth nodes form a stagex1, and the sixth and seventh
nodes form, respectively, stagesx2 and x3. Since the cycle ofb1 is formed by the seventh
node,path(stages(b1)) = x0, x1, x2 · 〈x3〉! . In the �rst state of the models represented by
the central open branchb2, the propositional variableq is true, whereas in the second one¬q
holds. As in the branchb1, in the branchb2 we can differentiate four stages, namellyy0, . . . , y3,
and the cycle is formed by the last node of the branch. The stage y3 is formed by the last
node of the branch andpath(stages(b2)) = y0, y1, y2 · 〈y3〉! . Finally, the rightmost open
branch,b3, represents models whose �rst three states respectively make true the literalsq, q
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(b) (�)1

(U )2

# (unnext)

(U )1

(unnext)

(1) (unnext)

(1)

(∧)

#

(¬¬)

(U )1

(unnext)

(�)2

(unnext)

(2) (unnext)

(2)

(¬¬)

(unnext)

(U )1

(unnext)

(3) (unnext)

(3)

#

#

Figure 3.8:Open expanded tableau for the set of formulas{pU q, �¬q} (Part 2 of 2)

and¬q. In the branchb3, the four applications of theunnextoperator give rise to �ve stages,
z0, . . . , z4. The cycle ofb3, as well as the stagez4, are formed by the last node of the branch
andpath(stages(b3)) = z0, z1, z2, z3 · 〈z4〉! .

3.4 Soundness and Completeness ofTTM

In this section we �rst adapt, to the �eld of tableau methods,the notions of soundness, refuta-
tional completeness and completeness introduced in Section 2.3. Then, we prove that the tableau
systemTTM is sound, refutationally complete and also complete.

A tableau method issoundif, whenever a closed tableau exists forΦ, thenΦ is unsatis�able.
A tableau method isrefutationally completeif, wheneverΦ is unsatis�able, a closed tableau for
Φ can be constructed. Therefore, a sound and refutationally complete tableau method guarantees
that, given a set of formulasΦ, a refutation (i.e. a closed tableau) is obtained if and onlyif the
setΦ is unsatis�able. A tableau method iscompleteif both satis�ability and unsatis�ability
are decidable. However, soundness and refutational completeness do not guarantee that for
satis�able sets of formulas such satis�ability is decidable. A termination proof is additionally
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required in order to prove completeness.
Subsection 3.4.1 is devoted to soundness. In Subsection 3.4.2 we introduce an algorithm for

the construction of systematic tableaux together with the concepts and results that the algorithm
and its correctness give rise to. In particular, we discuss about the analytic superformula property
and present our notion of closure, which serves to proof thatthe algorithm terminates for any
�nite set of formulas. The worst case complexity is also established. In Subsection 3.4.3 we
give some examples of systematic tableaux. In Subsection 3.4.4 we prove the completeness of
TTM , by proving, as a �rst step, its refutational completeness.In Subsection 3.4.5 we provide a
practical improvement of the rule(U )2.

3.4.1 Soundness

In this section we �rst show that theTTM -rules preserve equisatis�ability (De�nition 2.2.2) and
that theunnextoperator preserves satis�ability. Then, soundness is proved in Theorem 3.4.2.

The soundness of a system can be guaranteed rule by rule, where a rule is sound whenever
it preserves the satis�ability.

Lemma 3.4.1. For every set of formulasΦ, anyα-formulaγ and anyβ-formulaχ:

1. Φ∪{γ} is satis�able iffΦ∪A(γ) is satis�able

2. Φ∪{χ} is satis�able iffΦ∪B1(χ) or Φ∪B2(χ) or Φ∪B2(χ,Φ) is satis�able.

3. If Φ is satis�able thenunnext(Φ) is satis�able.

Proof. The case of the rule(U )2 is proved by using Proposition 3.3.3. The remaining cases
are straightforwardly proved by using the semantics of the connectives and the operatorunnext,
presented in Section 2.2, and De�nition 3.3.4.

Hence, soundness can be proved.

Theorem 3.4.2.If there exists a closed expanded tableau forΦ thenΦ is unsatis�able.

Proof. Let T� be a closed expanded tableau forΦ. The set of formulas labelling each leaf is
inconsistent and therefore unsatis�able. Then, by Lemma 3.4.1, each node inT� is labelled with
an unsatis�able set of formulas, in particular the root. ThereforeΦ is unsatis�able.

3.4.2 Systematic Tableaux

In this subsection we provide an algorithm for systematically building an expanded tableau.
We also study the main properties that our systematic tableau satis�es and we proof that the
algorithm terminates for any set of formulas given as input.

Unlike in complete tableau methods for propositional classical logic, the nondeterministic
application of theTTM -rules and theunnextoperator does guarantee neither refutational com-
pleteness nor completeness. In order to guarantee refutational completeness and completeness
we provide an algorithm that, given a set of formulasΦ, constructs an expanded tableau forΦ
that we denote byT� . The tableauT� will be closed ifΦ is unsatis�able and open otherwise.

The systematic tableau algorithm is depicted by a while-program in Figure 3.9. The system-
atic tableau construction provides a proof search procedure for automated deduction.
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Input: A �nite set of formulasΦ
Output: An expanded tableauT� = (Nodes, n� , L, B, R) for Φ

1 Nodes:= {n� }; L := {(n� ,Φ)}; B := {n� }; R := ∅; selfun:= {(n� , ∅)}
2 while unmarkedbranches(B) 6= ∅ loop
3 chooseb ∈ unmarkedbranches(B)
4 nk := last node(b);
5 if selfun(nk) = ∅ then fair select(b, T� , selfun) end if
6 if L(nk ) \ selfun(nk ) is not elementary
7 then chooseγ ∈ L(nk) \ selfun(nk)
8 non-selectexpand(γ, b, T� , selfun)
9 else ifselfun(nk) is neither empty nor elementary

10 then selectexpand(b, T� , selfun)
11 else{L(nk) is elementary} unnext expand(b, T� , selfun)
12 end if
13 end loop

Figure 3.9:Systematic Tableau Algorithm

The construction ofT� consists in a systematic extension of branches usingTTM -rules for
decomposingα- andβ-formulas into their constituents. When the current stage (De�nition
3.3.8) becomesαβ-saturated (De�nition 3.3.11), and consequently, theα- andβ-rules cannot
be applied, the operatorunnext (De�nition 3.3.4) is used to jump to a new stage. Regarding
the use of the rules(U )1 and(U )2, a speci�c strategy is followed. During the construction of
each stage, one eventuality –if there is any– is �xed as selected (Figure 3.9, line 5,fair select).
Then theTTM -rules (except(U )2) are nondeterministically applied until we obtain a set of
formulas where every formula, except the selected eventuality, is elementary (see Subsection
2.1). However, at each iteration step only one formula is chosen (Figure 3.9, line 7) for apply-
ing the corresponding rule (Figure 3.9, line 8,non-selectexpand) and, consequently, in general
several iteration steps are needed to obtain a set where onlythe selected eventuality is non-
elementary. At that point, the rule(U )2 is applied to the selected eventuality (Figure 3.9, line
10, selectexpand), if there is any (what is checked in line 9). When(U )2 is applied, new
non-elementary formulas may appear. Consequently, theTTM-rules (except(U )2) are nonde-
terministically applied again until we obtain an elementary set of formulas. Note that again,
in general, several iteration steps will be needed to obtainan elementary set. The construction
of a stage stops if an inconsistent node (De�nition 3.3.5) isobtained because the corresponding
branch is marked as closed and only unmarked branches are considered for further enlargements
or splittings (Figure 3.9, line 2,unmarkedbranches). If all the nodes of the stage we are con-
structing are consistent and the label of the last node of thestage is elementary, then the operator
unnextis applied (line 11,unnext expand) and the construction of the next stage begins.

When, during the construction of a stage, the rule(U )2 is applied to the selected eventuality
ϕU ψ with context∆0, the branch is split into two branches, let us sayb1 andb2. The label of
the last node in the branchb1 is ∆0∪{ψ} and the eventualityϕU ψ is ful�lled in this branch.
Therefore it represents an attempt to makeψ true in this state. However,b1 could still be
the pre�x of a closed branch. If following the enlargement ofb1 the next stage is created,
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i.e., if the branch does not close before applying the operator unnext, another eventuality must
be selected, if there is any available eventuality. The label of the last node in the branchb2

is ∆0∪{ϕ,¬ψ, ◦((ϕ ∧ ¬∆0)U ψ)}. Therefore, in the branchb2, the ful�llment of ϕU ψ is
postponed, but in the next stage, if the next stage is created, the eventuality(ϕ ∧ ¬∆0)U ψ
will be necessarily the selected one. In other words, the idea is to select an eventualityϕU ψ
and to apply(U )2 only toϕU ψ and to the eventualities generated from it in the branch where
the inclusion ofψ, i.e., the ful�llment ofϕU ψ is postponed. The eventualities generated from
ϕU ψ can be described as follows:

(ϕ ∧ ¬∆0)U ψ (ϕ ∧ ¬∆0 ∧ ¬∆1)U ψ . . . (ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . .∧ ¬∆k )U ψ

where∆i is the context at the moment of applying(U )2 to (ϕ∧¬∆0∧¬∆1∧. . .∧¬∆i � 1)U ψ.
Those eventualities are generated in different (consecutive) stages.

Since new eventualities are built up during the process, we must guarantee termination.
Classical propositional tableaux satisfy thesubformula property(SP):

For every formulaψ used in the construction of any tableau forΦ, there exists some
formulaγ ∈ Φ such thatψ is a (possibly negated) subformula ofγ.

This property ensures the termination of the construction of any tableau for a (�nite) set of
formulas. Most tableau systems for modal and temporal logics, fail to satisfy the SP, since some
of their rules introduce formulas that are not subformulas of the principal formula of the rule.
Hence, termination of modal/temporal tableaux is not obvious. However, most tableau systems
for modal and temporal logics, satisfy theanalytic superformula property(ASP):

For every �nite set of formulasΦ, there exists a �nite set that contains all the for-
mulas that may occur in any tableau forΦ.

Such set is usually called the closure ofΦ. The ASP also ensures the non-existence of in�nite
branches where all the nodes have different labels. Hence, by controlling loops, the �niteness of
proof search can be ensured. In our case, as a consequence of using the rule(U )2, the tableau
systemTTM fails to satisfy the ASP. However,TTM satis�es a slightly weaker variant that is
enough for ensuring completeness and that we call theweak analytic superformula property
(WASP):

For every �nite set of formulasΦ, there exists a �nite set that contains all the for-
mulas that may occur in anysystematic tableaufor Φ.

Our algorithm (Figure 3.9) constructs a systematic tableauT� for anyΦ such thatTTM satis�es
the WASP with respect to the setclo(Φ) (closure ofΦ) (see De�nition 3.4.9).

In order to satisfy the WASP, the algorithm keeps at most one selected formula to which the
rule (U )2 can be applied and when a new eventuality is generated in one stage, by using(U )2,
that new eventuality is the selected eventuality in the nextstage. In this way, when the rule
(U )2 is applied with context∆h, the eventualities previously built by using(U )2 are never in
∆h. Consequently there are only a �nite number of different contexts and this leads to the fact
that after a �nite process it must happen that when the rule(U )2 is applied to the set

∆i ∪{(ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . . ∧ ¬∆i � 1)U ψ}

the context∆i is equal to some∆j with j ∈ {0, . . . , i − 1}. In such a case, the new set of
formulas that corresponds to the branch that postpones the ful�llment of ϕU ψ is
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∆i ∪{ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . .∧ ¬∆i � 1,¬ψ, ◦((ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . . ∧ ¬∆i � 1 ∧ ¬∆i )U ψ)}

and a contradiction is generated from∆i and¬∆0 ∧ ¬∆1 ∧ . . . ∧ ¬∆i � 1. This ensures that
the branch where the ful�llment ofϕU ψ is always postponed will eventually close. Regarding
the branch that does not postpone the ful�llment ofϕU ψ, the new set is∆i ∪{ψ} and it does
not contain any eventuality generated by the rule(U )2 and there are only �nite different sets
of this kind, so repeated labels, that give rise to cycles, must necessarily appear after a �nite
number of tableau expansion steps. This strategy guarantees that a �nite amount of steps is
suf�cient to decide whether the selected eventuality can beful�lled or not. If the eventuality
cannot be ful�lled, the corresponding branches close. If the eventuality can be ful�lled, when
the eventuality is ful�lled another eventuality is selected and the process goes on. This selection
must be done in a fair manner, i.e., an eventuality that from some stage onwards appears as
an eligible eventuality whenever an eventuality must be selected, cannot remain inde�nitely
unselected. For handling selected formulas the algorithm uses a selection functionselfun. Along
the construction of the systematic tableau, the functionselfunassociates to every noden one of
the following three possible sets of formulas:

1. the empty set

2. a non-elementary singleton of the form{ϕU ψ}

3. an elementary singleton of the form{◦(ϕU ψ)}.

The case 1 means that no until-formula is selected. In 2,selfunyields the set containing the
selected until-formula to which(U )2 will be applied in the current stage. The case 3 happens
for every noden of a stages that has been created after the application of(U )2 in a noden0∈ s
and in which the ful�llment of the eventuality inselfun(n0) has been postponed. Therefore, case
3 means that◦(ϕU ψ) is the formula that has been obtained by applying the rule(U )2 to a
formulaχU ψ ∈ selfun(n0) and that in the next stageϕU ψ will be the selected eventuality. At
the beginning,selfunassociates the empty set to the initial node.

In order to constructT� , our algorithm nondeterministicallychooses, at each step, a maximal
branch to be extended. The algorithm ends when every maximalbranch is marked either as
closed or as expanded.

The procedureunmarkedbranchesyields the maximal branches that are not marked yet.
For extending the chosen branch, the algorithm uses three procedures. First, a procedurenon-
selectexpandthat applies the correspondingTTM -rule, excepting(U )2, to a formula that has
been nondeterministically chosen from the set of non-selected formulas in the last noden of the
branch, i.e., from the setL(n) \ selfun(n). Second, when theTTM-rules other than(U )2 cannot
be further applied, the procedureselectexpandapplies the rule(U )2 to the until-formula that is
selectedby the functionselfun, if there is some. The procedurefair selectupdates the function
selfunusing a fair strategy. Third, when the node is labelled by an elementary set, then the
operatorunnext is applied using the procedureunnext expand. Let us give a more detailed
explanation of all the procedures used by the algorithm.

last node(b) gives the last node added to a given branchb.

non-selectexpand(γ, b,T� , selfun) applies to the branchb theα- or β-rule (excepting(U )2)
that corresponds to the formulaγ. In both cases, the formula selected by the function
selfunis preserved. That is, fornk = last node(b):
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• If γ is anα-formula, create a new noden and a new branchb0 = b · n according to
the correspondingα-rule such thatL(n) = (L(nk) \ {γ})∪A(γ) and extendselfun
andR to beselfun(n) = selfun(nk) andnkRn.

• If γ is a (non-selected)β-formula, create two new nodesn0 andn00and two new
branchesb0 = b · n0andb00= b · n00according to the correspondingβ-rule such that
L(n0) = (L(nk)\{γ})∪B1(γ) andL(n00) = (L(nk)\{γ})∪B2(γ). Extendselfun
andR to beselfun(n0) = selfun(nk ), selfun(n00) = selfun(nk) andnkRn0, nkRn00.

selectexpand(b, T� , selfun) applies the rule(U )2 to an until-formulaϕU ψ that is selected by
the functionselfun. The functionselfunyields the empty set for the new node that contains
ψ since the until-formula has been ful�lled. In the other branch, the new selected formula
is ◦((ϕ ∧ ¬∆)U ψ). That is, fornk = last node(b):

Let selfun(nk) = {ϕU ψ}. Create two new nodesn0 andn00and two new branches
b0= b ·n0andb00= b ·n00such thatL(n0) = (L(nk)\{ϕU ψ})∪{ψ} andL(n00) =
(L(nk) \ {ϕU ψ})∪{ϕ,¬ψ, ◦((ϕ ∧ ¬∆)U ψ)} where∆ = L(nk) \ {ϕU ψ}.
ExtendselfunandR to beselfun(n0) = ∅, selfun(n00) = {◦((ϕ ∧ ¬∆)U ψ)} and
nkRn0, nkRn00.

unnext expand(b, T� , selfun) creates a new noden and a new branchb0 = b · n such that
L(n) = unnext(L(nk)) and extendsselfunandR to beselfun(n) = unnext(selfun(nk))
andnkRn wherenk = last node(b).

unmarkedbranches(B) returns the set of unmarked maximal branches in a given set ofbranches
B.

fair select(b, T� , selfun) selects an until-formula, if there is some in the last node ofb. That
is, for nk = last node(b), wheneverselfun(nk) = ∅ andL(nk) contains at least one
until-formula, it updatesselfun(nk ) with a singleton{ϕU ψ} such thatϕU ψ ∈ L(nk ).
Otherwise,selfun(nk) remains the empty set. If the node contains more than one until-
formula, the selection performed byfair selecton L(nk) should befair, in the sense
that no until-formula that from some stage onwards appears as an eligible eventuality
whenever an eventuality must be selected, could remain non-selected inde�nitely.

Let us give some useful results about the systematic tableauT� that this algorithm constructs
for any set of formulasΦ.

Proposition 3.4.3. If {ϕ,¬ϕ} ⊆ L(s) for some stages in a branchb ofT� , then every maximal
branch ofT� pre�xed byb is closed.

Proof. By structural induction onϕ. It is easy to see that the application ofTTM -rules to two
complementary formulas that belong to the same stage, but not necessarily to the same node,
should generate complementary constituents until they occur in the same node or, at most, they
become elementary.

In the next propositionwe show that non-satis�ed unselected eventualitiesare kept in branches
at least until they are ful�lled or they become selected.
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Proposition 3.4.4. Let b be a branch6 of T� , ands0, s1, s2, . . . , sk be any initial subsequence
of path(stages(b)). If the setL(last(sk)) is elementary, andϕU ψ ∈ L(si ) for somei ∈
{0, . . . , k}, andϕU ψ is not selected in the sequencesi , . . . , sk , andψ 6∈ L(si )∪ . . .∪L(sk ),
then{ϕ,¬ψ, ◦(ϕU ψ)} ⊆ L(sj ) for all j ∈ {i, . . . , k}.

Proof. By the construction ofT� , since non-selected eventualities are handled by procedure
non-selectexpandusing the rule(U )1 .

It is worth noting that in the above Proposition 3.4.4, the requirement ofL(last(sk )) be-
ing elementary is necessary. In order to illustrate this fact, let us consider the set of formulas
{pU q, � (pU q), rU v, � (rU v)} and the branchb = n0, n1, n2 such that

L(n0) = {pU q, � (pU q), rU v, � (rU v)}
L(n1) = {pU q, ◦� (pU q), rU v, � (rU v)}
L(n2) = {pU q, ◦� (pU q), rU v, ◦� (rU v)}

where, additionally,selfun(n0) = selfun(n1) = selfun(n2) = {pU q}. The branchb contains
only one stages0 = n0, n1, n2 andL(n2) is non-elementary. For the sequence of stagess0 it
holds thatrU v ∈ L(s0), r U v is not selected ins0 andv 6∈ L(s0). However,{r,¬v, ◦(rU v)}
is not a subset ofL(s0).

Next, we give a more detailed description of the syntactic form of the formulas appearing
in sequences of stages where a selected eventuality remainsunful�lled. Under that proviso, at
each stage, there is exactly one selected eventuality and exactly one node to which the procedure
selectexpandis applied. We also call this node theselected nodeof that stage. The fact that, at
each stage, there is exactly one selected eventuality and exactly one node to which the procedure
selectexpandis applied, is crucial for de�ning the notion of closure withrespect to whichTTM

satis�es the WASP. We �rst de�ne some auxiliary sets of sub- and super-formulas of a given
set of formulasΦ. Let sf(Φ) denote the set of all the subformulas of the formulas inΦ and
their negations. Then, the preclosure ofΦ, preclo(Φ), is the set of formulas that extendssf(Φ)
with all the superformulas that are generated fromsf(Φ) by means of all theTTM-rules with the
exception of the rule(U )2. That is

preclo(Φ) = sf(Φ) ∪ {◦(ϕU ψ),¬◦(ϕU ψ), ◦¬(ϕU ψ) | ϕU ψ ∈ sf(Φ)}
∪ {◦¬ϕ | ¬◦ϕ∈ sf(Φ)}.

Note thatpreclo(Φ) cannot be used as closure only because it does not capture thesuperfor-
mulas generated by the application of the rule(U )2. In order to capture these superformulas,
we de�ne the following set of conjunctions of negated contexts:

conj(Φ) = {
^

Γ | Γ ⊆ {ϕ | ϕU ψ ∈ sf(Φ)} ∪negctx(Φ)}

wherenegctx(Φ) = {¬∆ | ∆ ⊆ preclo(Φ)}

That is,negctx(Φ) is the set of all possiblenegated contextsandconj(Φ) is formed by all the
possible conjunctions of formulas innegctx(Φ) and the left-hand side subformulas of all the
until-formulas insf(Φ). In particular,F ∈ negctx(Φ) andF,¬F ∈ conj(Φ), sinceF and¬F are
respectively the disjunction and the conjunction of the empty set of formulas. Note also that, by
de�nition, in the conjunctions ofconj(Φ) every element ofnegctx(Φ) occurs at most once.

6 The branchb could be cyclic or not, so thatpath(stages(b)) could respectively be in�nite or �nite.
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Proposition 3.4.5. Let b be a branch6of T� , let s0, s1, s2, . . . , sk be any initial subsequence of
path(stages(b)) andϕU ψ ∈ sf(Φ) such thati is the least natural number such thatselfun(n) =
{ϕU ψ} for somen ∈ si . If the label of the last node ofb is an elementary set andψ 6∈
L(si )∪ . . .∪L(sk), then for all` ∈ {0, . . . , k − i}:

{δ` ,¬ψ, ◦(δ`+1 U ψ)} ⊆ L(si + `)

whereδ0 = ϕ andδ`+1 = δ` ∧ χ for someχ ∈ negctx(Φ). Moreover, ifδ` =
V

Γ for someΓ
such thatχ ∈ Γ then every maximal branch ofT� pre�xed bys0, . . . , si + ` is closed.

Proof. Since the label of the last node ofb is elementary, we can ensure, by De�nition 3.3.8, that
no node ofb belongs to two different stages. Consequently, if a stagesh , with h ∈ {i, . . . , k},
contains a nodem such thatselfun(m) is a singleton formed by an eventuality of the form
ψ1U ψ2, then, by construction ofT� , sh also contains a nodem0(generated later thanm) whose
label has been obtained by application of the rule(U )2.

On one hand, the procedureselectexpandyields two branches such that each branch either
contains{δ` ,¬ψ, ◦(δ`+1 U ψ)} or containsψ. Note that, by construction ofT� , if selfun(n) =
{◦(δ`+1 U ψ)} for somen ∈ si + ` , thenselfun(n0) = {δ`+1 U ψ} for the �rst noden0∈ si + `+1 ,
for all ` ∈ {0, . . . , k− i− 1}. Therefore,δ0 = ϕ and for allj > 0: δj = δj � 1 ∧ ¬∆j � 1 where
¬∆j � 1 ∈ negctx(Φ) and∆j � 1 is the contextL(n) \ selfun(n) of the selected noden of the
stagesi + j � 1. Hence, by induction oǹ, δ` ∈ conj(Φ) holds for all` ∈ {0, . . . , k− i}.

On the other hand, sinceχ is the negation of the context of the selected noden ∈ si + ` ,
if δ`+1 = δ` ∧ χ andδ` =

V
Γ for someΓ such thatχ ∈ Γ, then every branch pre�xed by

s0, . . . , si + ` contains at the same stage (possibly at different nodes){γ,¬γ} for some formula
γ. Hence, by Proposition 3.4.3, every maximal branch pre�xedby s0, . . . , si + ` is closed.

It is worth noting that if in the above Proposition 3.4.5 the label of the last node of the
branchb is non-elementary, then the result is not guaranteed. In order to illustrate this fact,
let us consider the set of formulas{pU q, ◦� (pU q), rU v, ◦� (rU v)} and the branchb =
n0, n1, n2, n3, n4, n5 such that

L(n0) = {pU q, ◦� (pU q), rU v, ◦� (r U v)}
L(n1) = {pU q, ◦� (pU q), r,¬v,◦(rU v), ◦� (rU v)}
L(n2) = {q, ◦� (pU q), r,¬v,◦(rU v), ◦� (rU v)}
L(n3) = {� (pU q), rU v, � (rU v)}
L(n4) = {� (pU q), rU v, ◦� (r U v)}
L(n5) = {pU q, ◦� (pU q), rU v, ◦� (r U v)}

where, additionally,selfun(n0) = selfun(n1) = {pU q}, selfun(n2) = ∅ andselfun(n3) =
selfun(n4) = selfun(n5) = {rU v}. The branchb gives rise to two stagess0 = n0, n1, n2 and
s1 = n3, n4, n5, n1, n2. If we consider the sequence of stagess1, it holds thatselfun(n3) =
{rU v} andv 6∈ L(s1). However,L(s1) does not contain the formula◦(δ1U v) mentioned in
Proposition 3.4.5.

Corollary 3.4.6. If b is a cyclic branch ofT� and the label of the last node ofb is elementary,
then every selected eventuality inb is ful�lled.
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Proof. By Proposition 3.4.5 since, whenever there is an unful�lledselected eventuality in a
branch, the presence of the formulasδ` makes impossible the existence of a loop.

It is trivial, by construction, that every stage in a cyclic branch ofT� isαβ-saturated. Hence,
by Proposition 3.4.4 and Corollary 3.4.6, we can re�ne the suf�cient conditions for being an
expanded branch ofT� (see De�nition 3.3.12) as follows

Proposition 3.4.7. Let b be an open branch ofT� , if b satis�es the following three conditions:

(i) b is cyclic

(ii) for every eventualityγ ∈ preclo(Φ) such thatγ ∈ L(�rst (s)) for all s ∈ stages(cycle(b)),
there exists somes0∈ stages(cycle(b)) such thatselfun(�rst (s0)) = {γ}

(iii) the label of the last node ofb is elementary

thenb is an expanded branch.

Proof. By Proposition 3.4.4, non-selected unful�lled eventualities are preserved from one stage
to its successor. In addition, by Corollary 3.4.6, every selected eventuality in a cyclic branch
whose last node is labelled by an elementary set, is ful�lled. Hence, by condition (ii), every
eventuality frompreclo(Φ) that occurs inL(�rst (s)) for everys ∈ stages(cycle(b)) should be
selected (at least) once and, hence, should be ful�lled.

Consequently, we use the three conditions in Proposition 3.4.7 to re�ne the implementation
of the procedureunmarkedbranches

Remark 3.4.8. Whenever a branchb satis�es conditions (i), (ii) and (iii) of Proposition 3.4.7,
the procedureunmarkedbranchesconsidersb to be marked as expanded.

Note that a branch can satisfy the conditions stated in De�nition 3.3.12 without satisfy-
ing conditions (i), (ii) and (iii) of Proposition 3.4.7. This means that sometimes the sys-
tematic algorithm does not detect that a branch is already expanded and goes on extending
it until conditions (i), (ii) and (iii) of Proposition 3.4.7are satis�ed. For example, an ex-
panded branch for the set{pU q, ◦� (pU q), rU v, ◦� (rU v)} is given by the sequence of nodes
b = n0, n1, n2, n3, n4, n5 such that

L(n0) = {pU q, ◦� (pU q), rU v, ◦� (rU v)}
L(n1) = {pU q, ◦� (pU q), v, ◦� (rU v)}
L(n2) = {q, ◦� (pU q), v, ◦� (rU v)}
L(n3) = {� (pU q), � (rU v)}
L(n4) = {� (pU q), rU v, ◦� (rU v)}
L(n5) = {pU q, ◦� (pU q), rU v, ◦� (rU v)}

whereselfun(n0) = selfun(n1) = {pU q}, selfun(n2) = selfun(n3) = ∅ andselfun(n4) =
selfun(n5) = {rU v}. The branchb gives rise to two stagess0 = n0, n1, n2 and s1 =
n3, n4, n5, n1, n2. The branchb is cyclic, ful�lling and the stages areαβ-saturated. Conse-
quently,b satis�es the conditions in De�nition 3.3.12, butb does not satisfy condition (iii) in
Proposition 3.4.7 and consequently the algorithm has to enlarge the branch. For instance, the
systematic algorithm can build the branchb · n6, n7 such that
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L(n6) = {q, ◦� (pU q), rU v, ◦� (rU v)}
L(n7) = {q, ◦� (pU q), v, ◦� (rU v)}

andselfun(n6) = {rU v} andselfun(n7) = ∅. The stages of the branchb · n6, n7 arex0 =
n0, n1, n2 andx1 = n3, n4, n5, n6, n7, additionally,path(stages(b)) = x0 · 〈x1〉! . The branch
b · n6, n7 satis�es conditions (i), (ii) and (iii) in Proposition 3.4.7.

By Corollary 3.4.6 and Remark 3.4.8,TTM satis�es the WASP with respect to the following
notion of closure.

De�nition 3.4.9. Let Φ be a set of formulas. The closure ofΦ, clo(Φ), is the following set of
formulas:

clo(Φ) = preclo(Φ)∪conj(Φ)∪ Ω
where
Ω = {(γ1 ∧ γ2)U ψ, ◦((γ1 ∧ γ2)U ψ) | ϕU ψ ∈ sf(Φ) andγ1, γ2 ∈ conj(Φ)}

Since in the systematic tableaux the formulas of the form

◦((ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . .∧ ¬∆k)U ψ)

built up by using the rule(U )2 can only contain one repetition of a negated context, i.e., since
there can only exist at most two valuesg andh such that1 ≤ g < h ≤ k and¬∆g = ¬∆h,
γ1 andγ2 are enough to represent such possible repetition of a negated context. In other words,
L(n) ⊆ clo(Φ) holds for all noden in T� , by Corollary 3.4.6 and Remark 3.4.8. In addition,
the closure set of a �nite set of formulas is �nite.

Proposition 3.4.10.If Φ is a �nite set of formulas, thenclo(Φ) is also �nite.

Proof. It is easy to see that, if|preclo(Φ)| = n then|negctx(Φ)| ∈ O(2n). As a consequence
|conj(Φ)|, |clo(Φ)| ∈ O(2O(2n)).

The above results jointly with the fairness offair select, allows us to ensure that the algo-
rithm in Figure 3.9 �nitely computes an expanded tableauT� for any inputΦ.

Lemma 3.4.11.The algorithm in Figure 3.9, for any inputΦ, stops leaving inT� an expanded
tableau.

Proof. By König's lemma, the only possibility for in�nite iteration would be the in�nite expan-
sion of (at least) one branch, namelyb. By Propositions 3.4.5, 3.4.7 and 3.4.10, the branch
b should contain an eventuality that is never selected, whichcontradicts the fairness of the
fair selectprocedure.

Note that the use of a fair strategy for selecting the eventualities in each branch of the tableau
is essential for proving that the algorithm in Figure 3.9 �nishes.

We would like to remark that previous tableau methods forPLTL, with the exception of the
one-pass proposal of [117], for obtaining a model of a satis�able set of formulas (when deciding
satis�ability) should generate the whole graph of possiblestates and all the successive tableaux
required for constructing this graph. However, we can use a depth-�rst strategy and, as soon
as a branch is marked expanded, the algorithm could stop providing a model for the original
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(a) “pU F”

F

#
p, ¬F,

“◦((p ∧ F)U F)”

“(p ∧ F)U F”

F

#
p ∧ F, ¬F,

“◦((p ∧ F ∧ F)U F)”

p, F, ¬F,
“◦((p ∧ F ∧ F)U F)”

#

(b) (U )2

# (unnext)

(U )2

# (∧)

#

Figure 3.10:Systematic closed tableau for the set of formulas{pU F}

set of formulas. It is also worth noting that in the tableau calculus introduced by Schwendi-
mann in [117], the ful�llment of eventualities may depend onmore than one cyclic branch, and
consequently, unlike inTTM, a fully expanded cyclic branch may not yield a model by itself.

3.4.3 Examples of Systematic Tableaux

In this subsection, we give four expanded tableaux built by using the systematic tableau algo-
rithm in Figure 3.9. In order to show each tableau we follow the same notation as in Subsection
3.3.5. The only difference is that in the systematic tableaux, we also manage the selection func-
tion selfun. So that, the formulas selected by the functionselfunappear between the quotation
marks “ and ”. When in a node of the(a) part there is a formulaχ between the quotation marks
“ and ”, i.e. “χ”, that means that the value ofselfunfor such node is{χ}. If a node does not
contain any formula between the quotation marks, then the value ofselfunfor such node is∅.

In the �rst two examples we provide the systematic expanded tableaux that correspond to
the tableaux showed in Example 3.3.15 (Figure 3.3) and Example 3.3.16 (Figure 3.5) in Section
3.3.5.

Example 3.4.12.In Figure 3.10 the systematic expanded tableau for the unsatis�able set of
formulas{pU F} is showed. This tableau is closed.

By following the algorithm for systematic tableau construction, the only available eventu-
ality, pU F, is selected. Hence the value of the selection functionselfunfor the �rst node is
{pU F}. Then theβ-rule (U )2 is applied to the formulapU F with the empty set of formulas
as context. The application of(U )2 splits the branch into two branches. The branch on the left
is closed because the label of its last node containsF. For the branch on the right, the label of
the new node contains the new formula◦((p ∧ F)U F). The formulaF that appears on the left
hand-side of the formula◦((p ∧ F)U F) corresponds to the negation of the empty set of formu-
las. The value of the selection functionselfunfor this second node in the branch on the right
is {◦(pU F)}. Since the label is elementary, the operatorunnext is applied in order to jump to
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(a) p, ◦¬p, “¬FU ¬p”

p,
¬p,
◦¬p
#

p, ◦¬p,¬F,¬¬p,
“◦((¬F ∧ ¬(p ∧ ◦¬p))U ¬p)”

p, ◦¬p,¬F,
“◦((¬F ∧ ¬(p ∧ ◦¬p))U ¬p)”

¬p, “(¬F ∧ ¬(p ∧ ◦¬p))U ¬p”

¬p

(1) ∅

(1) ∅

¬p, ¬F ∧ ¬(p ∧ ◦¬p), ¬¬p,
“◦((¬F ∧ ¬(p ∧ ◦¬p) ∧ ¬¬p)U p)”

#

(b) (U )2

# (¬¬)

(unnext)

(U )2

(unnext)

(1) (unnext)

(1)

#

Figure 3.11:Systematic expanded tableau for the set of formulas{p,◦¬p,¬FU ¬p}

the next state. The value of the selection functionselfunfor the new node (the third one in this
branch) is{(p ∧ F)U F}. By applying the rule(U )2, the branch is split into a closed branch
on the left and a branch with a new node whose label contains the formula◦((p ∧ F ∧ F)U F).
The secondF from the left, in the formula◦((p ∧ F ∧ F)U F), corresponds to the negation of
the empty set of formulas, which was the context in this second application of the rule(U )2.
Finally by applying theα-rule (∧) to the formulap ∧ F, an inconsistent node is generated.

It is worth noting that in the construction of the tableau in Figure 3.3 the rules(U )1 and
(U )2 are used whereas the systematic tableau in Figure 3.10 does not include any application
of the rule(U )1.

Example 3.4.13.In Figure 3.11 we provide the systematic expanded tableau for the satis�able
set of formulas{p, ◦¬p,¬FU ¬p}. In the �rst application of the rule(U )2, the context is
{p, ◦¬p} and in the second application of the rule(U )2, the context is{¬p}. The negations
of these two sets of formulas are used to generate, respectively, the formulas◦((¬F ∧ ¬(p ∧
◦¬p))U p) and◦((¬F ∧ ¬(p ∧ ◦¬p) ∧ ¬¬p)U p) obtained by means of the two applications
of the rule(U )2. The central open branch represents the collection of models explained in
Example 3.3.16.

Note that the formula¬FU ¬p can also be expressed as�¬p.
The next two examples are related to the induction on time. These examples illustrate the

use of both the derived rule(�)2 in Figure 3.2 and the rule(U )2 in Figure 3.1.

Example 3.4.14.In Figure 3.12 and Figure 3.13 we depict a systematic closed tableau for the
setΦ = {p, � (¬p ∨ ◦p), �¬p}. The subsetΣ = {p, � (¬p ∨ ◦p)} states, by means of the so-
calledinduction on time, that � p holds. Hence,Φ is unsatis�able. Note that the formula

V
Σ
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(a) p, � (¬p ∨ ◦p), “�¬p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “�¬p”

p, ¬p,
◦ψ,

“�¬p”
#

p, ◦p, ◦� (¬p ∨ ◦p), “�¬p”

p, ◦p,
◦ψ,
¬p
#

p, ◦p, ◦� (¬p ∨ ◦p),
¬¬p, “◦((¬∆0)U ¬p)”

p, ◦p, ◦� (¬p ∨ ◦p),“◦((¬∆0)U ¬p)”

p, � (¬p ∨ ◦p), “(¬∆0)U ¬p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “(¬∆0)U ¬p”

p, ¬p,
◦ψ,

“(¬∆0)U ¬p”
#

p, ◦p, ◦� (¬p ∨ ◦p),
“(¬∆0)U ¬p”

p,
◦p,
◦ψ,
¬p
#

p, ◦p, ◦ψ,
¬(p ∧ ◦p ∧ ◦ψ), ¬¬p,

“◦((¬∆0 ∧ ¬∆1)U ¬p)”

p, ◦p, ◦ψ,
¬(p ∧ ◦p ∧ ◦ψ),

“◦((¬∆0 ∧ ¬∆1)U ¬p)”

p, ◦p,
◦ψ, ¬p,

“ϕ”
#

p, ◦p, ◦ψ,
¬(◦p ∧ ◦ψ),

“ϕ”

p, ◦p,
◦ψ, ¬◦p,

“ϕ”
#

p, ◦p,
◦ψ, ¬◦ψ,

“ϕ”
#

where ψ = � (¬p ∨ ◦p)
∆0 = ∆1 = {p, ◦p, ◦ψ}
¬∆0 = ¬∆1 = ¬(p ∧ ◦p ∧ ◦ψ)
ϕ = ◦((¬∆0 ∧ ¬∆1)U ¬p)

Figure 3.12:Systematic closed tableau for{p, � (¬p ∨ ◦p),�¬p} by using(�)2 and(U )2 (Part 1 of 2)
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(b) (� )

(∨)

# (�)2

# (¬¬)

unnext

(� )

(∨)

# (U )2

# (¬¬)

(¬∧)

# (¬∧)

# #

Figure 3.13:Systematic closed tableau for{p, � (¬p ∨ ◦p),�¬p} by using(�)2 and(U )2 (Part 2 of 2)

is an invariant that contradicts the eventuality�¬p. The sets of formulas that label the nodes
appear in Figure 3.12 whereas the rules applied at each step appear in Figure 3.13.

The algorithm for systematic tableau construction, �rst selects the only available eventuality
�¬p. So the value of the selection functionselfunfor the �rst node is{�¬p}. Then theα-rule
(� ) is applied to the formula� (¬p ∨ ◦p) enlarging the branch with a new node (the second
one). In the second node, theβ-rule (∨) is applied to the formula¬p ∨ ◦p and two new nodes
are generated. The one on the left is inconsistent and it yields a closed branch. In the one
on the right every formula, with the exception of the selected eventuality, is elementary and
consequently the rule(U )2 is applied to�¬p with context∆0 = {p, ◦p, ◦� (¬p ∨ ◦p)}. The
application of the rule(U )2 splits the brach by creating two new nodes. The one on the leftis
inconsistent and gives rise to another closed branch. For the new node on the right, the new
value of the selection functionselfunis {◦((¬∆0)U p)}. Since the set that labels the node on
the right is non-elementary –because of the formula¬¬p– theα-rule (¬¬) is applied and a
new node with elementary label is obtained. Consequently, the operatorunnext is applied and
the branch is enlarged with a new node. The value of the selection functionselfunfor this node
is {(¬∆0)U ¬p}. The following two steps are like the two initial steps, i.e., theα-rule (� )
enlarges the branch and theβ-rule (∨) splits the enlarged branch giving rise to a closed branch
and a branch where only the selected eventuality(¬∆0)U ¬p is non-elementary. So the latter
branch is split again by applying the rule(U )2 with context∆1 = ∆0. The node in the left is
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(a) (1) p, � (¬p ∨ ◦p), �¬p

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), �¬p

p, ¬p, ◦� (¬p ∨ ◦p), �¬p
#

p, ◦p, ◦� (¬p ∨ ◦p), �¬p

p, ◦p,
◦� (¬p ∨ ◦p),

¬p
#

p, ◦p, ◦� (¬p ∨ ◦p),
¬¬p, ◦�¬p

p, ◦p, ◦� (¬p ∨ ◦p), ◦�¬p

(1) p, � (¬p ∨ ◦p), �¬p

(b) (1) (� )

(∨)

# (�)1

# (¬¬)

unnext

(1)

Figure 3.14:Non-systematic and non-expanded open tableau for{p, � (¬p ∨ ◦p),�¬p}

inconsistent and the branch is closed. The label of the node on the right is non-elementary and
the value of the selection functionselfunis {◦((¬∆0 ∧ ¬∆1)U p)}. Moreover, the repetition
of the context, i.e.,∆1 = ∆0, leads to inconsistency since the label of this node contains the
formulas{p, ◦p, ◦ψ,¬(p∧◦p∧◦ψ)}. First the branch is enlarged by means of the rule¬¬ and
�nally, two consecutive applications of theβ-rule (¬∧) produce three closed branches.

It is worth noting that by using only the rule(U )1, the ful�llment of an eventuality can
be inde�nitely delayed. As shown in Figure 3.14, the setΦ = {p, � (¬p ∨ ◦p), �¬p} cannot
be TTM-refuted without using the rules(�)2 and (U )2. In the third branch from the left, we
obtain the initial set after applying the operatorunnext. Although the branch is cyclic, it is not
ful�lling, so it is not expanded. If the rules(�)2 and (U )2 are not properly used as shown in
Figure 3.12 and Figure 3.13, the process will give rise to an in�nite branch. Obviously, this
derivation does not follow the algorithm for systematic tableau construction.

Example 3.4.15.In Figure 3.15 we depict a systematic expanded tableau for the satis�able set
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(a) p, � (¬p ∨ ◦p), “�p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “�p”

p, ¬p,
◦� (¬p ∨ ◦p),

“� p”
#

p, ◦p, ◦� (¬p ∨ ◦p), “�p”

(1) p, ◦p, ◦� (¬p ∨ ◦p)

p, � (¬p ∨ ◦p)

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p)

p, ¬p,
◦� (¬p ∨ ◦p)

#

(1) p, ◦p,
◦� (¬p ∨ ◦p)

p, ◦p, ◦� (¬p ∨ ◦p),
¬p, “◦((¬∆0)U ¬p)”

#

Where ∆0 = {p, ◦p, ◦� (¬p ∨ ◦p)}
¬∆0 = ¬(p ∧ ◦p ∧ ◦� (¬p ∨ ◦p))

(b) (� )

(∨)

# (�)2

(1) unnext

(� )

(∨)

# (1)

#

Figure 3.15:Systematic expanded tableau for{p, � (¬p ∨ ◦p),�p} obtained by using(�)2.



3. Dual Systems of Tableaux and Sequents forPLTL 44

Ψ = {p, � (¬p ∨ ◦p), � p}. The tableau is formed by four branches. Three of them are closed
and one is open (the third one from the left). The open branch,let us call itb, contains seven
nodes, so that, it is of the formn0, . . . , n6 whereL(n3) = L(n6). The branchb is cyclic, the
label of its last node is elementary and in the cycle there areno eventualities, hence the suf�cient
conditions for the algorithm to mark it as an expanded branchhold. We mark the leaf ofb and
the internal repeated node with the superscript(1) . This open branch is formed by two stages
x0 = n0, n1, n2, n3 andx1 = n4, n5, n6 andpath(b) = x0 · 〈x1〉! which describes a model in
whichp is true in every state becausep ∈ L(x0) andp ∈ L(x1).

3.4.4 Completeness

In this subsection we prove the refutational completeness of TTM by showing that ifΦ is satis-
�able then we can associate to any expanded branchb of the systematic tableau forΦ a cyclic
PLTL-structureGb that yields a model ofΦ.

De�nition 3.4.16. For any expanded branchb, we de�ne thePLTL-structureGb = (SGb , VGb)
such thatSGb = path(stages(b)) andVGb(s) = {p | p ∈ L(s) andp ∈ Prop}.

Note that termination of the systematic tableau construction is guaranteed by the �niteness
of the closure (see Proposition 3.4.10) together with the fairness in selecting until-formulas.
Consequently, since every maximal branch ofT� is closed or expanded, then any expanded
branch must have two nodes with the same label (see Remark 3.4.8) which necessarily belong
to two different stages, since one stage cannot contain two identical nodes. Summarizing, any
expanded branch ofT� has at least two nodes, at least two stages, and is cyclic. In the rest of
this subsection we will assume thatb = n0, . . . , nk is an expanded branch ofT� , henceb is
cyclic, and thatGb is the cyclicPLTL-structure associated tob.

In the previous Subsection 3.4.2 we prove some properties about the behaviour of eventual-
ities along the branches ofT� , that obviously can be applied toGb. The next proposition shows
the behaviour of negated eventualities inGb.

Proposition 3.4.17.Let sj ∈ SGb such that¬(ϕU ψ) ∈ L(sj ). Then, every �nite subsequence
π = sj , sj +1 , . . . , sk ofSGb satis�es one of the two following properties:

(a) {ϕ,¬ψ,¬◦(ϕU ψ)} ⊆ L(si ) for all i ∈ {j, . . . , k}

(b) There existsi ∈ {j, . . . , k} such that{¬ϕ,¬ψ} ⊆ L(si ) and{ϕ,¬ψ,¬◦(ϕU ψ)} ⊆ L(s`)
for all ` ∈ {j, . . . , i− 1}.

Proof. By induction onk− j. The casek = j is trivial. Fork− j ≥ 1, the induction hypothesis
guarantees thatπ0 = sj , s1, . . . , sk� 1 satis�es one of the properties(a) or (b). If π0satis�es(b),
so doesπ. If π0 satis�es(a) then, byαβ-saturation, we have{ϕ,¬ψ,¬◦(ϕU ψ)} ⊆ L(sk) or
{¬ϕ,¬ψ} ⊆ L(sk). Hence,π veri�es (a) or (b), respectively.

Therefore, we can prove that each state ofGb satis�es its labels, that is the set of formulas
labelling all nodes that constitute the concerned stage.

Lemma 3.4.18.For everys ∈ SGb, if ϕ ∈ L(s) then〈Gb, s〉 |= ϕ.
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Proof. By structural induction onϕ. The case of literals is trivial by de�nition ofGb.
For formulas of the form¬¬ϕ, ϕ ∧ψ,¬(ϕ∧ ψ), ◦ϕ and¬◦ϕ the property holds because every
stage inSGb is αβ-saturated and the induction hypothesis on{ϕ}, {ϕ, ψ}, {¬ϕ,¬ψ}, {ϕ} and
{¬ϕ}, respectively.
ForϕU ψ, by Propositions 3.4.4 and 3.4.5, there should exist a �nitesubsequences0, s1, . . . , sn

of SGb such thats0 = s, ψ ∈ sn andϕ ∈ si for every i ∈ {0, . . . , n − 1}. By the induction
hypothesis,〈Gb, sn〉 |= ψ and 〈Gb, si 〉 |= ϕ for every i ∈ {0, . . . , n − 1} and consequently
〈Gb, s〉 |= ϕU ψ.
For¬(ϕU ψ) formulas, by the above Propositions 3.4.3 and 3.4.17 and theinduction hypothe-
sis, there does not exist any �nite paths0, s1, . . . , sn in SGb such thats0 = s, 〈Gb, sn〉 |= ψ and
〈Gb, si 〉 |= ϕ for everyi ∈ {0, . . . , n − 1}. Consequently〈Gb, s〉 6|= ϕU ψ and hence〈Gb, s〉
|= ¬(ϕU ψ).

Corollary 3.4.19. Gb |= Φ

Proof. Immediate consequence of Lemma 3.4.18.

By means of the collection of results proved in this section,we provide an alternative proof
of the result that states that “every satis�able set ofPLTL-formulas has a cyclic model” (see
Theorem 7.1 in [128] and Theorem 1 in [15]). Our proof is constructive in the sense that it gives
a tableau-based procedure that constructs the cyclic modelGb for any satis�ableΦ.

Now, we prove the refutational completeness of the tableau systemTTM.

Theorem 3.4.20.If Φ is unsatis�able then there exists a closed tableau forΦ.

Proof. Suppose that it does not exist any closedTTM -tableau forΦ. Then the systematic tableau
T� would be open and there would be at least one expanded branchb of T� . By Corollary 3.4.19,
Gb |= Φ. ConsequentlyΦ would be satis�able.

Moreover, the tableau methodTTM is also complete.

Theorem 3.4.21.If Φ is satis�able then there exists a (�nite) open expanded tableau forΦ.

Proof. The systematic tableauT� suf�ces to prove this fact.

Hence, the systemTTM can be used as a satis�ability decision procedure forPLTL.

3.4.5 Improving Eventuality Handling

The application of the rule(U )2 builds up complex formulas that involve the whole context.
Hence, for practical purposes, it is interesting to simplify these formulas as much as possible. In
this subsection we are going to show some ideas for avoiding redundant formulas in the negated
context produced by application of the rule(U )2. That is, we introduce a new rule(U )3 (see
Figure 3.16) that is an improvement of(U )2 that prevents two kinds of redundancy:

1. Disjuncts stating that the next stage fails to satisfy a formula which the context ensures
forever.

2. Duplication of formulas.
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The �rst kind of redundancy is related to the logical equivalence of the formulas� δ1 ∧
◦((ϕ ∧ (¬� δ1 ∨ ¬δ2))U ψ) and � δ1 ∧ ◦((ϕ ∧ ¬δ2)U ψ). By means of this improvement,
formulas of the form◦i

� ϕ and syntactical variants (which are called persistent formulas in the
forthcoming De�nition 3.4.24 and Proposition 3.4.23) are left out of the context. The second
kind of redundancy corresponds to the equivalence ofϕ ∧ ϕ andϕ.

At the end of this subsection, we analyze the gain of the new rule with respect to the older
one.

In order to deal with the �rst kind of redundancy, we introduce the following notion of
persistence.

De�nition 3.4.22. A formulaϕ is calledpersistentiff for all M and allsj ∈ SM , if 〈M, sj 〉 |=
ϕ then〈M, sk〉 |= ϕ for all k > j.

When decomposing formulas in a systematic derivation process some syntactical patterns
may be used to detect persistent formulas. That is the case ofthe formulas of the form� ϕ and
◦� ϕ. By taking also into account that

�ϕ ≡ ¬�ϕ ≡ ¬(TU ϕ) ≡ ¬(¬FU ϕ) ≡ FRϕ ≡ ¬TRϕ

it is easy to prove the following result which constitutes a syntactical characterization of a subset
of persistent formulas.

Proposition 3.4.23.Every formula that matches one of the following patterns:

◦i
� ϕ, ◦i¬�ϕ,¬◦i�ϕ, ◦i¬(TU ϕ),¬◦i (TU ϕ),
◦i¬(¬FU ϕ),¬◦i (¬FU ϕ), ◦i (FRϕ),T,¬F

is persistent.

Note that we have characterized a proper subset of the set of all the persistent formulas. For
example,¬((¬(ϕ ∧ ¬ϕ))U ψ) is a persistent formula which does not match any of the above
syntactic patterns.

De�nition 3.4.24. For any set of formulasΦ, we writepersistch(Φ) to denote the set of all
γ ∈ Φ such thatγ �ts one of the forms considered in Proposition 3.4.23.

On one hand, in order to avoid the inclusion of persistent formulas in the negation of the
context, we de�ne the following operator:

e∆ = ¬(∆ \ persistch(∆))

Therefore, to get rid of the above �rst kind of redundancy, the rule (U )3 applies this new
operatore instead of the previous operator¬( ) to the context.

On the other hand, we de�ne an operatore in order to prevent duplication of formulas. First,
we need to extract all the negative conjuncts of a formula. The setcnjts(ϕ) consists of all the
conjuncts ofϕ and is recursively de�ned as follows:

cnjts(ϕ) =
�

cnjts(ϕ1)∪cnjts(ϕ2) if ϕ isϕ1 ∧ ϕ2

{ϕ} otherwise
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Rule β B1(β) B2(β,∆)

(U )3 ϕU ψ {ψ} {ϕ,¬ψ, ◦((ϕ e e∆)U ψ)}
(�)3 �ϕ {ϕ} {¬ϕ, ◦( e∆U ϕ)}

Figure 3.16:The Rules(U )3 and(�)3

Then, the set of all negative conjuncts ofϕ is

negcnjts(ϕ) = {ψ | ψ ∈ cnjts(ϕ) andψ is F or a formula of the form¬γ}

Consequently, the operatore is de�ned as follows:

ϕ e e∆ =

8
>><

>>:

F if (∆ \ persistch(∆)) = ∅ or F ∈ negcnjts(ϕ)
F if ∆ ∈ {cnjts(ψ) | ¬ψ ∈ negcnjts(ϕ)}
F if (∆ \ persistch(∆)) ∈ {cnjts(ψ) | ¬ψ ∈ negcnjts(ϕ)}
ϕ ∧ e∆ otherwise

Now we give some details to clarify the four cases in the de�nition of ϕ e e∆. First of all, let us
consider the set

Σ1 = {χ1, . . . , χn , γ1, . . . , γm , ϕ,¬ψ, ◦((ϕ ∧ ¬(χ1 ∧ . . . ∧ χn ∧ γ1 ∧ . . .∧ γm))U ψ)}

wherepersistch(Σ1) = {χ1, . . . , χn}. The setΣ1 is equivalent to the set

Σ2 = {χ1, . . . , χn , γ1, . . . , γm , ϕ,¬ψ, ◦((ϕ ∧ ¬(γ1 ∧ . . .∧ γm ))U ψ)}

Consequently, in the de�nition ofϕ e e∆, we can exclude the persistent formulas in∆ that
belong topersistch(∆). In the �rst case, on one hand, if∆ \ persistch(∆) = ∅ then, since
the negation of the empty set isF, we consider the equivalenceϕ ∧ F ≡ F. On the other
hand, if F ∈ negcnjts(ϕ) then we consider the equivalenceF ∧ ϕ ≡ F. In the second case,
if ∆ ∈ {cnjts(ψ) | ¬ψ ∈ negcnjts(ϕ)} thenϕ is of the formϕ1 ∧ . . . ∧ ϕk with k ≥ 1 and
ϕj = ¬∆ for somej ∈ {1, . . . , k}. Therefore, we could consider the equivalenceϕ ∧ ¬∆ ≡ ϕ
and state that in the second caseϕ e e∆ is ϕ. However,{χ, (γ ∧ ¬χ)U λ} is equivalent to
{χ, FU λ} for any formulasχ, γ andλ and, consequently, we chooseϕ e e∆ to beF. The third
case is like the second one, but without considering the persistent formulas. The fourth case is
the general case where the only simpli�cation consists in leaving out the persistent formulas.

By taking into account the above explanation, it is easy to see that the following two sets of
formulas are logically equivalent:

∆∪{◦((ϕ e e∆)U ψ)} and∆∪{◦((ϕ ∧ ¬∆)U ψ)}

The rule(U )3 in Figure 3.16 re�nes the rule(U )2 in Figure 3.1 since the second premise
◦((ϕ∧¬∆)U ψ) of the rule(U )2 is substituted by◦((ϕe e∆)U ψ) in the rule(U )3. It is easy
to derive, from the new rule(U )3, the corresponding rule(�)3 for the de�ned connective� .

Now, let us give two examples that make use of these two new rules(�)3 and(U )3 showed
in Figure 3.16. In these examples, the tableaux are built by using the systematic tableau algo-
rithm in Figure 3.9 and the rules(�)3 and(U )3 instead of the rules(�)2 and(U )2. In order to
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show each tableau we follow the same notation as in Subsection 3.4.3 (and Subsection 3.3.5).
As in the applications of the rules(�)2 and(U )2, in the applications of the rules(�)3 and(U )3

we only underline the eventuality to which the rule is applied.

Example 3.4.25.In Figures 3.17 and 3.18 we depict a systematic tableau for{p, � � p} obtained
by using the rules(�)3 and(U )3. As expected from the satis�ability of the root set, the tableau
is open. Concretely, there are two cyclic (expanded) branches with a common repeated node.
Both rules(�)3 and (U )3 are used twice. In the �rst application (from the top) of the rule
(�)3, the persistent formula◦� � p is left out of the negation of the context. Consequently, only
the negation ofp is considered in the formula◦((¬p)U p), which belongs to the label of the
child on the right. In the second application of the rule(�)3, again the persistent formula
◦� � p is left out of the negation of the context. Since there are no more formulas, the set of
non-persistent formulas is empty and the formula◦(FU p) is in the label of the child on the
right. In both applications of the rule(U )3, the selected eventuality isFU p. In both cases,
the corresponding context contains at least one formula that is not persistent but, by de�nition
of the operatore, the formula◦(FU p) is produced in both cases because of the formulaF in
FU p.

The left-most open brach,b1, is formed by six nodesn0, . . . , n5 whereL(n2) = L(n5), and
yields two stages,x0 = n0, n1, n2 andx1 = n3, n4, n5. Consequentlypath(b1) = x0 · 〈x1〉! .
The right-most open brach,b2, is formed by ten nodesn0

0, . . . , n0
9 whereL(n0

2) = L(n0
9) and

gives rise to three stages,y0 = n0
0, n0

1, n0
2, y1 = n0

3, n0
4, n0

5 andy2 = n0
6, . . . , n0

9. Therefore
path(b2) = y0 · 〈y1, y2〉! . In the models described byb1, p is true in all the states. In the models
described byb2, p is true in the statess0, s2, s4, . . . whereas¬p is true in the remaining states
(s1, s3, s5, . . .).

Example 3.4.26.By means of Figures 3.19 and 3.20, we show a systematic closedtableau for
the unsatis�able set{p, � (¬p ∨ ◦p), �¬p}. In this tableau we use the rules(�)3 and (U )3.
In the nodes where(�)3 and (U )3 are applied the context is{p, ◦p, ◦� (¬p ∨ ◦p)} and the
setpersistch({p, ◦p, ◦� (¬p ∨ ◦p)}) = {p, ◦p}. Therefore, when the rule(�)3 is applied, the
considered set of formulas is∆0 = {p, ◦p} and the formula◦((¬∆0)U ¬p) is obtained. In
the same way, when the rule(U )3 is applied, the considered set of formulas is∆1 = {p, ◦p}.
However, since∆0 = ∆1, the application of the rule(U )3 yields the formula◦(FU ¬p) instead
of the formula◦((¬∆0 ∧ ¬∆1)U ¬p) generated by the rule(U )2 in Figure 3.12. As can be
appreciated in the de�nitions of∆0 and∆1, the persistent formula◦� (¬p∨◦p) is left out of the
context in the applications of the rules(�)3 and(U )3. Additionally, the application of the rule
(U )3 avoids the repetition of∆0 and obtains a simpli�ed formula by usingF. As a consequence
of these improvements the tableau has one branch less than the tableau constructed in Example
3.4.14 and the longest branch contains one node less than thelongest branch in Example 3.4.14
(Figure 3.12).

Finally, we formally analyze the gain of using the rule(U )3 instead of the rule(U )2. This
analysis yields a small difference between both worst cases, although the improvement is very
useful for practical implementation.

We reformulate the notion of closure for the system(TTM \{(U )2})∪{(U )3}. To this end,
we also need to rede�ne some other previously de�ned sets of formulas. However, other auxil-
iary sets, e.g. preclosure, remain de�ned as before. In order to stress which sets are rede�ned,
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(a) p, � � p

p, “� p”, ◦� � p

(1)(2) p, ◦� � p

� � p

“� p”, ◦� � p

(1) p, ◦� � p ¬p, ◦� � p, “◦(FU p)”

� � p, “FU p”

� p, ◦� � p, “FU p”

p, ◦� � p, “FU p”

(2) p,
◦� � p

p, F, ¬p,
◦� � p,
◦(FU p)

#

¬p, ◦� � p,
◦� p, “FU p”

¬p, p,
◦� p,
◦� � p

#

¬p, ◦� p,
F, ◦� � p,

“◦(FU p)”
#

p,
◦� � p,
¬p,

“◦((¬p)U p)”
#

Figure 3.17:Systematic expanded tableau for{p, � �p} by using(� )3 and(U )3 (Part 1 of 2)
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(b) (� )

(�)3

(1)(2) (unnext)

(� )

(�)3

(1) (unnext)

(� )

(�)1

(U )3

(2) #

(U )3

# #

#

Figure 3.18:Systematic expanded tableau for{p, � �p} by using(� )3 and(U )3 (Part 2 of 2)

we use the pre�xnew . The new de�nitions for the sets of negated contexts and conjunctions
are:

new negctx(Φ) = {¬∆ | ∆ ⊆ (preclo(Φ) \ persistch(preclo(Φ)))}.

new conj(Φ) = {
^

� 2 �

δ | Γ ⊆ new negctx(Φ) andΓ is adequate}.

where we say thatΓ ⊆ new negctx(Φ) is adequateiff

cnjts(δ) 6= cnjts(δ0) for every pair(¬δ,¬δ0) ∈ Γ× Γ such thatδ 6= δ0.

Now, the closure ofΦ can be rede�ned as follows:

new clo(Φ) = preclo(Φ)∪new conj(Φ)∪ Ω
where
Ω = {(ϕ ∧ γ)U ψ, ◦((ϕ ∧ γ)U ψ), FU ψ, ◦(FU ψ) | ϕU ψ ∈ sf(Φ) andγ ∈ new conj(Φ)}

Hence, the cardinality of this closure is a bit smaller than stated in Proposition 3.4.10. Actually,
if |preclo(Φ)| = n then|new negctx(Φ)| ∈ O(2n). Therefore

|new conj(Φ)|, |new clo(Φ)| ∈ O(22n
).

Recall that|clo(Φ)| ∈ O(2O(2n)).
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(a) p, � (¬p ∨ ◦p), “�¬p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “�¬p”

p, ¬p,
◦ψ,

“�¬p”
#

p, ◦p, ◦� (¬p ∨ ◦p), “�¬p”

p, ◦p,
◦ψ,
¬p
#

p, ◦p, ◦� (¬p ∨ ◦p),
¬¬p, “◦((¬∆0)U ¬p)”

p, ◦p, ◦� (¬p ∨ ◦p), “◦((¬∆0)U ¬p)”

p, � (¬p ∨ ◦p), “(¬∆0)U ¬p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “(¬∆0)U ¬p”

p, ¬p,
◦ψ,

“(¬∆0)U ¬p”
#

p, ◦p, ◦� (¬p ∨ ◦p),
“(¬∆0)U ¬p”

p,
◦p,
◦ψ,
¬p
#

p, ◦p,
◦� (¬p ∨ ◦p),
¬(p ∧ ◦p), ¬¬p,

“◦(FU ¬p)”

p, ◦p,
◦� (¬p ∨ ◦p),
¬(p ∧ ◦p),

“◦(FU ¬p)”

p, ◦p,
◦ψ, ¬p,

“◦(FU ¬p)”
#

p, ◦p,
◦ψ, ¬◦p,

“◦(FU ¬p)”
#

where ψ = � (¬p ∨ ◦p)
∆0 = ∆1 = {p, ◦p}
¬∆0 = ¬∆1 = ¬(p ∧ ◦p)

Figure 3.19:Systematic closed tableau for{p, � (¬p ∨ ◦p),�¬p} by using(�)3 and(U )3 (Part 1 of 2)
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(b) (� )

(∨)

# (�)3

# (¬¬)

unnext

(� )

(∨)

# (U )3

# (¬¬)

(¬∧)

# #

Figure 3.20:Systematic closed tableau for{p, � (¬p ∨ ◦p),�¬p} by using(�)3 and(U )3 (Part 2 of 2)

3.5 The Sequent CalculusTTC

In this section we introduce the sequent calculusTTC that directly corresponds to the previously
introduced tableau systemTTM . It is a reformulation ofTTM as a one-sided sequent calculus
that serves as a bridge fromTTM to the two-sided sequent calculusGTC that we introduce in the
next section (Section 3.6).

The sequent calculusTTC follows the left-handed one-sided approach (also known as Tait-
style, [123]), where sequents are formed by a set of formulas. We write∆ ` to represent a
sequent whose set of formulas is∆ and whose intended meaning is

V
∆→ F, i.e.¬(

V
∆).

The rules ofTTC (see Figure 3.21) are obtained essentially from theTTM-rules writing them
upside down with the difference that inTTC we have left-handed sequents and inTTM we have
simply sets of formulas. The only exception is the rule(◦) that corresponds to the application of
the operatorunnextin TTM . This direct relation between both systems makes possible to obtain
a TTC-proof from any closedTTM -tableau in a straightforward manner.

The strong similarity between tableau refutations and left-handed sequent proofs that are
cut-free, contraction-free and weakening-free is evident. As a consequence,TTC is cut-free,
invariant-free, weakening-free and contraction-free.

We have split the primitive rules ofTTC into three packages. Two of them consist of rules
for classical and temporal connectives, respectively. These rules follow the traditional style of
introductionof the connective and its negation in the sequent. In addition, we need two structural
rules which form the third package.
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Rules for the Classical Connectives

(¬¬)
∆, ϕ `

∆,¬¬ϕ `
(∧)

∆, ϕ, ψ `
∆, ϕ ∧ ψ `

(¬∧)
∆,¬ϕ ` ∆,¬ψ `

∆,¬(ϕ∧ ψ) `

Rules for the Temporal Connectives

(◦) unnext(∆) `
∆ `

(U )1
∆, ψ ` ∆, ϕ,¬ψ, ◦(ϕU ψ) `

∆, ϕU ψ `

(¬◦) ∆, ◦¬ϕ `
∆,¬◦ϕ ` (U )2

∆, ψ ` ∆, ϕ,¬ψ, ◦((ϕ ∧ ¬∆)U ψ) `
∆, ϕU ψ `

(¬U )
∆,¬ϕ,¬ψ ` ∆, ϕ,¬ψ,¬◦(ϕU ψ) `

∆,¬(ϕU ψ) `

Structural Rules

(Cd1)
∆, ϕ,¬ϕ `

(Cd2)
∆, F `

Figure 3.21:PrimitiveTTC-Rules

As TTC is sound and complete (Theorems 3.5.1 and 3.5.3), given a setof formulas∆, it
holds that∆ is unsatis�able if and only if there is aTTC-proof for ∆ `.

A TTC-derivation is a possibly in�nite tree labelled with sequents and built according to the
inference rules inTTC. A TTC-proof is a �nite derivation where the sequent to be proved labels
its root and the leaves are labelled with axioms (which are rules without premises).

A set of formulasΓ is TTC-consistentif and only if there is no anyTTC-proof for the sequent
Γ `.

The soundness ofTTC means that everyTTC-provable sequent, namelyΓ `, is correct re-
garding to satis�ability. In particular, every satis�ableset of formulasΓ is TTC-consistent.

In the TTC sequent calculus all the non-structural rules areinvertiblewith the exception of
the rule(◦). A rule is invertible when it holds that if the conclusion is provable, so are the
premises.

Theorem 3.5.1. (Soundness)For any set of formulasΓ, if Γ is notTTC-consistent, i.e., if there
exists aTTC-proof, thenΓ is unsatis�able.

Proof. By induction on the length of theTTC-proof, it suf�ces to prove that every primitive rule
of TTC (see Figure 3.21) is correct in the sense that if the set of formulas of each premise is
unsatis�able then the set of formulas of the conclusion is unsatis�able. The only dif�cult case
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is the case of the rule(U )2. The justi�cation for that case is already given in Theorem 3.4.2.

Next, we prove thatTTC is a complete calculus by relating its completeness to the complete-
ness ofTTM.

Proposition 3.5.2. For any set of formulasΦ, if T� is a closed expanded tableau forΦ then
there exists aTTC-proof for the sequentΦ `.

Proof. Since eachTTM -rule has its correspondingTTC-rule, theTTC-proof is directly obtained
from the closedTTM -tableau forΦ.

Theorem 3.5.3. (Completeness)For any set of formulasΦ, if Φ is unsatis�able, then there
exists aTTC-proof forΦ.

Proof. If Φ is unsatis�able then there exists a closedTTM -tableau forΦ. Hence, by Proposition
3.5.2 there exists aTTC-proof forΦ.

As in the case ofTTM, the exhaustive application of the rules in the calculusTTC, with-
out any additional restriction or strategy, does not yield adecision procedure forPLTL. The
reason is thatTTC, by itself, does not satisfy the weak analytic superformulaproperty (WASP)
(see Subsection 3.4.2). Remember that the systematic tableau algorithm of Subsection 3.4.2
incorporates a strategy for the application of(U )2 which contributes to the satisfaction of the
WASP.

When building aTTC-derivation we can use primitive rules, derived rules and also admis-
sible rules. The admissible rules are new sound rules that cannot be derived from the primitive
rules ofTTC, but do not add deductive power to the system. That is, a setΦ is consistent with
respect toTTC if and only if Φ is consistent with respect toTTC plus the admissible rules. In
other words, for everyTTC-proof that includes the use of some admissible rules there exists
anotherTTC-proof that does not use any admissible rule.

The derived rules can be used as a shortcut for several lines of proofs that are built by using
only primitive and admissible rules.

Among the admissible rules the most outstanding ones are thefollowing classical structural
rules of Weakening and Cut:

(Wk)
∆ `

∆,∆0`
(Cut)

∆, ϕ ` ∆,¬ϕ `
∆ `

The sequent calculusTTC is cut-free since we have already proved its soundness and complete-
ness and the cut rule is omitted inTTC. SinceTTC is complete without the cut rule, the cut rule
is admissible inTTC. However, the classical syntactical techniques for cut elimination cannot
be applied here because of the context used in the rule(U )2. Hence, we have been unable to
give a syntactic proof of cut elimination. However, we are aware of the work of K. Brünnler,
who introduced the notion ofdeep sequentand gave a cut-elimination procedure for modal logic
([19]). It remains open to see whether the same technique applied to our calculi (extended with
the cut rule) could yield a syntactical cut-elimination procedure forPLTL.
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(∨)
∆, ϕ ` ∆, ψ `

∆, ϕ ∨ ψ `
(R )

∆, ϕ, ψ ` ∆,¬ϕ, ψ, ◦(ϕRψ) `
∆, ϕRψ `

(¬∨)
∆,¬ϕ,¬ψ `

∆,¬(ϕ ∨ ψ) `
(¬R )1

∆,¬ψ ` ∆,¬ϕ, ψ, ◦(¬ϕU ¬ψ) `
∆,¬(ϕRψ) `

(¬R )2
∆,¬ψ ` ∆,¬ϕ, ψ, ◦((¬ϕ ∧ ¬∆)U ¬ψ) `

∆,¬(ϕRψ) `

(� )
∆, ϕ, ◦� ϕ `

∆, � ϕ `
(�)1

∆, ϕ ` ∆,¬ϕ, ◦(TU ϕ) `
∆, �ϕ `

(¬�) ∆,¬ϕ,¬◦�ϕ `
∆,¬�ϕ ` (�)2

∆, ϕ ` ∆,¬ϕ, ◦((¬∆)U ϕ) `
∆, �ϕ `

(¬� )1
∆,¬ϕ ` ∆, ϕ, ◦(TU ¬ϕ) `

∆,¬� ϕ `

(¬� )2
∆,¬ϕ ` ∆, ϕ, ◦(¬∆U ¬ϕ) `

∆,¬� ϕ `

Figure 3.22:Some Derived Rules forTTC

The weakening rule(Wk) is non-invertible so it must be used carefully. The rules(T) and
(¬F), that appear below, are particular cases of the rule(Wk) but they are invertible. So they
can be used to eliminate the formulasT and¬F knowing that the equivalence with respect to the
TTC-consistency is preserved:

(T)
∆ `

∆,T `
(¬F)

∆ `
∆,¬F `

SinceTTC is also contraction-free, admissible rules could be obtained by associating to
every non-structural rule(R) the rule(RC) that produces an (implicit) contraction in(R). For
example, the rule below(∧C) is the admissible rule that corresponds to the primitive rule (∧).

(∧C)
∆, ϕ ∧ ψ, ϕ, ψ `

∆, ϕ ∧ ψ `

Regarding derived rules, �rst we use the usual abbreviations of de�ned connectives in order
to derive the rules in Figure 3.22. It is easy to check that(∨) is derived from(¬∧) and(¬¬);
(¬∨) from (¬¬) and(∧); (R ) from (¬U ) and(¬¬); for i ∈ {1, 2}: (¬R )i is derived from
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q, F ` (Cd2)

F ` (Cd2)

F ` (Cd2)
F,¬F, ◦(FU F) `

(Cd2)

FU F ` (U )3

p ∧ ¬q,¬F, ◦(FU F) `
(◦)

(p ∧ ¬q)U F `
(U )3

q, p,¬F, ◦((p ∧ ¬q)U F) `
(◦)

q, pU F ` (U )3

Figure 3.23:TTC-proof for the set of formulas{q, pU F}

(¬¬) and(U )i ; for i ∈ {1, 2}: (�)i is derived from(U )i and(T); (¬�) is derived from(¬U ),
(T), (¬¬) and (Cd)2; (� ) from (¬�), (¬¬), (T) and(¬◦); and for i ∈ {1, 2}: (¬� )i from
(¬¬), (�)i and(T).

The soundness and invertibility of these derived rules is guaranteed by the fact that they have
been obtained using only sound and invertible rules. Note that if the rule(Wk) is used instead
of (T) for deriving the previous rules their invertibility could not be directly guaranteed.

It is well known that the connectiveU is not expressible in temporal logic with only◦, � ,
and� as temporal connectives (cf. [80, 53]). As a consequence, a complete calculus for the
sublogic that uses� instead ofU cannot be derived (by abbreviation) fromTTC, since the rule
(�)2 needs the connectiveU for expressing its second premise.

Finally, let us recall the respective re�nements(�)3 and(U )3 of the rules(�)2 and(U )2

that allow us to avoid the inclusion of persistent formulas and duplications in the negation of the
context (see Subsection 3.4.5):

(�)3

∆, ϕ `
∆,¬ϕ, ◦( e∆U ϕ) `

∆, �ϕ ` (U )3

∆, ψ `
∆, ϕ,¬ψ, ◦((ϕ e e∆)U ψ) `

∆, ϕU ψ `

Now, let us illustrate theTTC-style of reasoning by means of some examples ofTTC-proofs.
In order to enhance readability, we have underlined, at eachstep, the principal formula. How-
ever, when the rule(◦) is applied, we do not underline any formula. In the nodes in which we
apply the rules(U )2, (�)2, (U )3 or (�)3, we only underline the eventuality to which the rule is
applied.

Actually, each derivation can be seen as an inverted closedTTM tableau.

Example 3.5.4.TheTTC-proof in Figure 3.23 shows that the set of formulas{q, pU F} is un-
satis�able.

Note that in the �rst application (from the bottom) of the rule (U )3 the obtained premises
coincide with the ones that we would obtain by using the rule(U )2. By contrast, in the second
application of the rule(U )3, the right-hand premise is different from the one that we would
obtain by using the rule(U )2. By using(U )2 we would obtain the sequentp ∧ ¬q,¬F, ◦((p ∧
¬q ∧ F)U F) ` instead of the sequentp ∧ ¬q,¬F, ◦(FU F) `. It is also worth noting that this
TTC-proof does not exactly follow the strategy formalized by means of the systematic tableau
algorithm in Figure 3.9. In particular, in the second application (from the bottom) of the rule
(◦) the sequentp ∧ ¬q,¬F, ◦(FU F) ` is not formed only by elementary formulas.
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q,¬q, ◦¬� q ` (Cd1)

q,¬◦� q,¬q ` (Cd1)
p,¬¬q,¬q, ◦(FU q), ◦¬� q ` (Cd1)

p ∧ ¬¬q,¬q, ◦(FU q), ◦¬� q ` (∧)

(p ∧ ¬¬q)U q, ◦¬� q,¬q ` (U )3

(p ∧ ¬¬q)U q,¬◦� q,¬q ` (¬◦)

(p ∧ ¬¬q)U q,¬� q ` (¬� )

p,¬q, ◦((p ∧ ¬¬q)U q), ◦¬� q ` (◦)

pU q,¬q, ◦¬� q ` (U )3

pU q,¬q,¬◦� q ` (¬◦)

Figure 3.24:TTC-proof for the set of formulas{pU q,¬◦� q,¬q}

◦� ¬p,¬p, p ` (Cd1)

� ¬p, p ` (� )

¬p, ◦� ¬p, p ` (Cd1)

� ¬p, p ` (� )
� ¬p, F,¬p, ◦(FU p) `

(Cd2)

� ¬p, FU p ` (U )3

◦� ¬p,¬p, ◦(FU p) `
(◦)

� ¬p,¬p, ◦(FU p) `
(� )

� ¬p, � p ` (�)3

Figure 3.25:TTC-proof for the set of formulas{� ¬p,�p}

Example 3.5.5. In Figure 3.24 we depict aTTC-proof for the unsatis�able set of formulas
{pU q, ¬◦� q, ¬q}.

Note that in the �rst application (from the bottom) of the rule(U )3, we avoid to consider the
permanent formula◦¬� q in the negation of the context. Consequently in the right-handpremise
we obtain the sequentp,¬q, ◦((p ∧ ¬¬q)U q), ◦¬� q ` instead of the sequentp,¬q, ◦((p ∧
¬¬q ∧ ¬◦¬� q)U q), ◦¬� q ` that we would obtain by using the rule(U )2. In the second
application of the rule(U )3, we obtain the sequentp ∧ ¬¬q,¬q, ◦(FU q), ◦¬� q ` as the
right-hand premise because we dispense with the persistentformula ◦¬� q and because the
negation of¬q (i.e. the negation of the context without persistent formulas) is a conjunct of the
left-hand subformula of(p ∧ ¬¬q)U q.

Example 3.5.6. In Figure 3.25 we show aTTC-proof for the unsatis�able set of formulas
{� ¬p, � p}.

Note that, when the rule(�)3 is applied to the sequent� ¬p, � p `, the formula� ¬p is
left out of the negation of the context. Therefore the negation of the context without persistent
formulas isF. When the rule(U )3 is applied to the sequent� ¬p, FU p `, on one hand the
formula � ¬p is left out of the negation of the context. On the other hand, the negation of the
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context without persistent formulas isF. However,F is not repeated in the new formula that
contains the connectiveU , i.e., the new formula is◦(FU p) instead of◦((F∧F)U p), which we
would obtain if the rule(U )2 were used. Note also that thisTTC-proof does not exactly follow
the strategy formalized by means of the systematic tableau algorithm in Figure 3.9, because the
rules(U )3 and(�)3 are applied to sets of formulas that are not elementary.

Example 3.5.7. The TTC-proof in Figure 3.26 shows that the set of formulas{p, � (¬p ∨
◦p), �¬p} is unsatis�able. Actually, this proof can be obtained by inverting the closed tableau
built in Example 3.4.14 (Figures 3.12 and 3.13). Note that every setΣi , with i ∈ {0, . . . , 5}, is
inconsistent and the rule(Cd1) is used for each of them. In particular, setsΣ0, . . . ,Σ3 contain
p and¬p, Σ4 contains◦p and¬◦p andΣ5 contains◦ψ and¬◦ψ whereψ = � (¬p ∨ ◦p).

3.6 The Sequent CalculusGTC

In this section we present the sequent calculusGTC (see Figure 3.27) that is two-sided and one-
conclusioned (or asymmetric). We prove the soundness ofGTC and, then, we discuss about
admissible and derived rules. Afterwards, we prove the completeness ofGTC with the help of
some previously derived rules. Finally, we give four examples ofGTC-proofs.

The calculusGTC (see Figure 3.27) is straightforwardly obtained from the previous calculus
TTC. Actually, almost each primitive rule ofTTC has a counterpart inGTC that results from
adding a conclusionχ to each sequent in the rule. The only exception are the rules where the
context is combined with the principal formula to produce the sequents in the numerator, where
χ (or better¬χ) behaves as part of the context. Moreover, admissible or derived rules inGTC

are the same kind of counterparts ofTTC rules as the primitive ones.
The soundness ofGTC means that everyGTC-provable sequent, namelyΓ ` χ, is correct re-

garding to logical consequence. In particular, every satis�able set of formulas isGTC-consistent.

Theorem 3.6.1. (Soundness)For any set of formulasΓ∪{χ}, if Γ ` χ is GTC-provable then
Γ |= χ.

Proof. By induction on the length of theGTC-proof, it suf�ces to prove that every primitive rule
of GTC (see Figure 3.27) is correct in the sense of preserving the logical consequence relation
between the antecedent and the consequent.

The correctness proof of most rules is just routine. Actually, the only correctness proof that
poses some dif�culties is the proof of the rule(U L)2. Hence, we only give the details for this
rule.

We prove, by contradiction, that ifχ is a logical consequence of the antecedents of the
premises of the rule(U L)2 then,χ is also a logical consequence of∆∪{ϕU ψ}. Let us
assume thatχ is not a logical consequence of the set of formulas∆∪{ϕU ψ}, i.e. the set
∆∪{ϕU ψ,¬χ} is satis�able. Then, by Proposition 3.3.3, the set∆∪{ψ,¬χ} or the set
∆∪{ϕ,¬ψ, ◦((ϕ∧¬(∆∪{¬χ}))U ψ),¬χ} (at least one them) is satis�able. Consequently,χ
is not a logical consequence of∆∪{ψ} orχ is not a logical consequence of∆∪{ϕ,¬ψ, ◦((ϕ∧
¬(∆∪{¬χ}))U ψ)}. So that, we can build a countermodel for some of the two premises of the
rule (U L)2.
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Σ0 `
(Cd1)

Σ1 `
(Cd1)

Σ2 `
(Cd1)

Σ1 `
(Cd1)

Σ3 `
(Cd1)

Σ4 `
(Cd1) Σ5 `

(Cd1)

p, ◦p, ◦ψ,¬(◦p ∧ ◦ψ), ϕ `
(¬∧)

p, ◦p, ◦ψ,¬(p ∧ ◦p ∧ ◦ψ), ϕ `
(¬∧)

p, ◦p, ◦ψ,¬¬p,¬(p ∧ ◦p ∧ ◦ψ), ϕ `
(¬¬)

p, ◦p, ◦ψ, (¬∆0)U ¬p `
(U )2

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p), (¬∆0)U ¬p `
(∨)

p, � (¬p ∨ ◦p), (¬∆0)U ¬p `
(� )

p, ◦p, ◦� (¬p ∨ ◦p), ◦((¬∆0)U ¬p) `
(◦)

p, ◦p, ◦� (¬p ∨ ◦p),¬¬p, ◦((¬∆0)U ¬p) `
(¬¬)

p, ◦p, ◦� (¬p ∨ ◦p), �¬p ` (�)2

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p), �¬p ` (∨)

p, � (¬p ∨ ◦p), �¬p ` (� )

where ψ = � (¬p ∨ ◦p)
ϕ = ◦((¬∆0 ∧ ¬∆1)U ¬p)
∆0 = ∆1 = {p, ◦p, ◦ψ}
¬∆0 = ¬∆1 = ¬(p ∧ ◦p ∧ ◦ψ)
Σ0 = {p,¬p, ◦ψ, �¬p}
Σ1 = {p, ◦p, ◦ψ,¬p}
Σ2 = {p,¬p, ◦ψ, (¬∆0)U ¬p}
Σ3 = {p, ◦p, ◦ψ,¬p, ◦((¬∆0 ∧ ¬∆1)U ¬p)}
Σ4 = {p, ◦p, ◦ψ,¬◦p, ◦((¬∆0 ∧ ¬∆1)U ¬p)}
Σ5 = {p, ◦p, ◦ψ,¬◦ψ, ◦((¬∆0 ∧ ¬∆1)U ¬p)}

Figure 3.26:TTC-proof for the set of formulas{p, � (¬p ∨ ◦p),�¬p}
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Rules for the Classical Connectives

(¬L)
∆ ` ϕ

∆,¬ϕ ` χ
(R¬)

∆, ϕ ` F

∆ ` ¬ϕ

(∧L)
∆, ϕ, ψ ` χ

∆, ϕ ∧ ψ ` χ
(R∧)

∆ ` ϕ ∆ ` ψ
∆ ` ϕ ∧ ψ

Rules for the Temporal Connectives

(¬◦L)
∆, ◦¬ϕ ` χ
∆,¬◦ϕ ` χ (R◦L)

unnext(∆) ` ϕ
∆ ` ◦ϕ (R◦¬)

∆ ` ¬◦ϕ
∆ ` ◦¬ϕ

(U L)1
∆, ψ ` χ ∆, ϕ,¬ψ, ◦(ϕU ψ) ` χ

∆, ϕU ψ ` χ

(RU )
∆,¬ϕ ` ψ ∆, ϕ,¬◦(ϕU ψ) ` ψ

∆ ` ϕU ψ

(U L)2
∆, ψ ` χ ∆, ϕ,¬ψ,◦((ϕ ∧ ¬(∆∪{¬χ}))U ψ) ` χ

∆, ϕU ψ ` χ

Structural Rules

(As)
∆, ϕ ` ϕ

(Cd)
∆,¬ϕ ` F

∆ ` ϕ
(◦F)

∆ ` ◦F

∆ ` χ

Figure 3.27:Primitive Rules for the Sequent CalculusGTC
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(FL)
∆, F ` χ

(CdL)
∆, ϕ,¬ϕ ` χ

(¬¬L)
∆, ϕ ` χ

∆,¬¬ϕ ` χ

(¬ ∧ L)
∆,¬ϕ ` χ ∆,¬ψ ` χ

∆,¬(ϕ∧ ψ) ` χ
(◦L)

unnext(∆) ` F

∆ ` χ

(¬U L)
∆,¬ϕ,¬ψ ` χ ∆, ϕ,¬ψ,¬◦(ϕU ψ) ` χ

∆,¬(ϕU ψ) ` χ

Figure 3.28:Some DerivedGTC-Rules

The calculusGTC is more versatile thanTTC, in particularGTC allows not only refutation
proofs, but also goal-directed proofs or, in general, the consequent can directly be used as prin-
cipal formula inGTC-proofs. As a consequence, inGTC, we can derive rules that have no sense
in one-sided systems. For example, the contraposition rules:

(Cp1)
∆,¬ϕ ` ψ
∆,¬ψ ` ϕ

(Cp2)
∆, ϕ ` ψ

∆,¬ψ ` ¬ϕ

which can be derived in the usual way from the primitiveGTC-rules for the classical connectives.
The derived rules in Figure 3.28 are useful for proving the completeness ofGTC. They are

easily derived with the help of the above rules(Cp1) and(Cp2). It is easy to check that(FL) is
derived from(Cd) and(As); (CdL) from (¬L) and(As); (◦L) from (◦F) and(R◦L); (¬¬L)
from (Cp1) and(Cp2); (¬ ∧ L) from (Cp1) and(R∧); and(¬U L) from (Cp1) and(RU ).

Now, we can associate to eachTTC-proof aGTC-proof.

Proposition 3.6.2. If Φ ` is TTC-provable thenΦ ` F is GTC-provable.

Proof. Suppose thatΦ ` is TTC-provable. Then, by admissibility of the rule(¬F) (see Section
3.5),Φ,¬F ` is alsoTTC-provable.

It is easy to see that for eachTTC-rule there is a closely related (primitive or derived)GTC-
rule. In particular,TTC-rules areGTC-derived rules or single instances ofGTC-rules. More
precisely, theTTC-rules(¬¬), (∨), (¬∨), (◦), (U )1, (U )2, (¬◦), (¬U ), (Cd1) and(Cd2), re-
spectively correspond to(¬¬L), (∨L), (¬∨L), (◦L), (U L)1, (U L)2, (¬◦L), (¬U L), (CdL)
and(FL). As a consequence, we can construct aGTC-proof of the two-sided sequentΦ,¬F ` F.
Therefore, using theGTC-rule (Cd), the sequentΦ ` F, is alsoGTC-provable.

Theorem 3.6.3. (Completeness)For any set of formulasΓ∪{χ}, if Γ |= χ thenΓ ` χ is
GTC-provable.

Proof. If Γ ` χ is notGTC-provable, then by rule(Cd) the sequentΓ∪{¬χ} ` F is notGTC-
provable. By Proposition 3.6.2,Γ∪{¬χ} ` is not TTC-provable, which is a contradiction by
Theorem 3.5.3.



3. Dual Systems of Tableaux and Sequents forPLTL 62

Using the abbreviations�ϕ and� ϕ for TU ϕ and¬�¬ϕ, respectively, we are also able to
derive the following useful rules:

(�L)1

∆, ϕ ` χ
∆,¬ϕ, ◦(TU ϕ) ` χ

∆, �ϕ ` χ (�L)2

∆, ϕ ` χ
∆,¬ϕ, ◦(¬(∆∪{¬χ})U ϕ) ` χ

∆, �ϕ ` χ

(R� )
∆,¬◦�ϕ ` ϕ

∆ ` �ϕ (� L)
∆, ϕ, ◦� ϕ ` χ

∆, � ϕ ` χ

(R� )1

∆ ` ϕ
∆, ◦(TU ¬ϕ) ` ¬ϕ

∆ ` � ϕ
(R� )2

∆ ` ϕ
∆, ◦(¬∆U ¬ϕ) ` ¬ϕ

∆ ` � ϕ

In addition, theTTC-rules(U )3 and(�)3 produce the correspondingGTC-rules where∆0 =
∆∪{¬χ}:

(U L)3

∆, ψ ` χ
∆, ϕ,¬ψ, ◦((ϕ e f∆0)U ψ) ` χ

∆, ϕU ψ ` χ
(�L)3

∆, ϕ ` χ
∆,¬ϕ, ◦(f∆0U ϕ) ` χ

∆, �ϕ ` χ

and it is easy to derive the following rule(R� )3 for the de�ned connective� :

(R� )3

∆ ` ϕ
∆, ◦( e∆U ¬ϕ) ` ¬ϕ

∆ ` � ϕ

Note that, by(� L) and(CdL), the following contradiction rule is also derivable:

(Cd� )
∆, � ϕ,¬◦� ϕ ` χ

Let us now illustrate theGTC-style of reasoning by means of some examples ofGTC-proofs.
In order to enhance readability, we underline, at each step,the principal formula. However,
we do not underline any formula in the applications of the rules(R◦L), (◦F) and(◦L). Both
primitive and derived rules are used in the derivations.

Example 3.6.4.TheGTC-proof in Figure 3.29 shows that the formulaq is a logical consequence
of the set of formulas{pU q, ¬◦� q}. This GTC-proof is similar to theTTC-proof showed in
Example 3.5.5 (Figure 3.24).

Note that in the �rst application (from the bottom) of the rule (U L)3 the persistent formula
◦¬� q is left out of the negation of the context. In the second application of the rule(U L)3 we
obtain, in the right-hand premise, the formula◦(FU q) because we dispense with the persistent
formula◦¬� q and because the negation of¬q is a conjunct of the subformulap ∧ ¬¬q in the
formula(p ∧ ¬¬q)U q.
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q, ◦¬� q ` q (As)

q,¬◦� q ` q (As)
p,¬¬q,¬q, ◦(FU q), ◦¬� q ` q (CdL)

p ∧ ¬¬q,¬q, ◦(FU q), ◦¬� q ` q (∧)

(p ∧ ¬¬q)U q, ◦¬� q ` q (U L)3

(p ∧ ¬¬q)U q,¬◦� q ` q (¬◦L)

(p ∧ ¬¬q)U q ` � q (R� )

(p ∧ ¬¬q)U q,¬� q ` F
(¬L)

p,¬q, ◦((p ∧ ¬¬q)U q), ◦¬� q ` ◦F
(R◦L)

p,¬q, ◦((p ∧ ¬¬q)U q), ◦¬� q ` q (◦F)

pU q, ◦¬� q ` q (U L)3

pU q,¬◦� q ` q (¬◦L)

Figure 3.29:GTC-proof that shows that the formulaq is a logical consequence of{pU q,¬◦� q}

Example 3.6.5.TheGTC-proof in Figure 3.30 shows that the formula¬� p is a logical conse-
quence of the set of formulas{� ¬p}. ThisGTC-proof is similar to theTTC-proof in Example
3.5.6 (Figure 3.25).

Note that, when applying the rule(�L)3 and(U L)3, the persistent formulas� ¬p and¬F

are left out of the negation of the context. As in the case of the TTC-proof in Example 3.5.6
(Figure 3.25), thisGTC-proof does not strictly follow the strategy presented by means of the
systematic tableau algorithm in Figure 3.9, because the rules(U L)3 and(�L)3 are applied to
sets of formulas that are non-elementary.

Example 3.6.6.By means of theGTC-proof in Figure 3.31, we show that the formula� p is a
logical consequence of the set of formulas{p, � (¬p ∨ ◦p)}. The setsΣi , with i ∈ {0, . . . , 5},
are inconsistent since they contain a formula and its negation and the derived rule(CdL) is
applied to each of them. Although the structure of the proof is the same as theTTC-proof in
Figure 3.26 of Example 3.5.7, the setΣ0 is different and the setΣ1 appears only once. In the
place of the �rst appearance (from the left) of the setΣ1 in Figure 3.26 of Example 3.5.7 now,
in Figure 3.31, we use the structural rule(As).

Note that, since we use(R� )2 and (U L)2, the persistent formula◦ψ = ◦� (¬p ∨ ◦p)
is included in the negation of the context and that repetitions are not avoided in the formula
ϕ = ◦((¬∆0 ∧ ¬∆1)U ¬p). However, the formula◦ψ could be left out of the negation of the
context and the repetition inϕ could also be avoided as shown in Example 3.6.7.

Example 3.6.7. As well as the proof given in Example 3.6.6, theGTC-proof in Figure 3.32
shows that the formula� p is a logical consequence of{p, � (¬p ∨ ◦p)}. However, in Figure
3.32 we use the rules(R� )3 and(U )3 whereas in Figure 3.31 the rules(R� )2 and(U )2 are
used. Additionally, the approach in Figure 3.32 is more “goal-directed” in the sense that in
order to prove that the formula� p follows from the set of formulas{p, � (¬p ∨ ◦p)}, in the
�rst derivation step� p is the principal formula. By contrast, theGTC-proof in Figure 3.31 is
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¬p, ◦� ¬p, p ` F
(CdL)

� ¬p, p ` F
(� L)

¬p, ◦� ¬p, p ` F
(CdL)

� ¬p, p ` F
(� L)

� ¬p, F,¬p, ◦(FU p) ` F
(FL)

� ¬p, FU p ` F
(U L)3

◦� ¬p,¬p, ◦(FU p) ` ◦F
(R◦L)

◦� ¬p,¬p, ◦(FU p) ` F
(◦F)

� ¬p,¬p, ◦(FU p) ` F
(� L)

� ¬p, � p ` F
(�L)3

� ¬p ` ¬� p (R¬)

Figure 3.30:GTC-proof that shows that the formula¬� p is a logical consequence of{� ¬p}

a direct adaptation of theTTC-proof in Figure 3.26 and is not driven by the “goal”, i.e. by the
formula� p, which we want to proof from{p, � (¬p ∨ ◦p)}.

TheGTC-proof in Figure 3.32 does not strictly follow the strategy presented by means of
the systematic tableau algorithm in Figure 3.9. In order to follow such strategy, either the rule
(U L)3 or the rule(U L)2 should be used instead of the rule(U L)1.

3.7 Related Work

In Section 3.1 we have brie�y surveyed the main representatives of the different approaches in
the tableau and sequent frameworks. In this section we add more details about these related
proposals.

3.7.1 Tableau Systems

The traditional tableau methods for temporal logic (e.g. [128, 73, 8, 87, 79, 81]) are based on
the usual inductive de�nitions of the temporal connectives. A traditional rule system for the
tableau framework can be obtained fromTTM (Figure 3.1) by just removing the rule(U )2.
In such systems an auxiliary graph is built in a �rst pass. Forinstance, an auxiliary graph
for the set of formulas{p, � (¬p ∨ ◦p), �¬p} is very similar to the right-most branch of the
tableau in Figure 3.14(a). Edges would be directed downwards and instead of the last node
of the branch, there would be an edge from the previous node tothe root node. So that, the
whole auxiliary graph would be a strongly connected component made up of �ve nodes. The
second pass serves to check whether an in�nite path that yields a model for the root set can be
built from the graph. With that purpose, maximal strongly connected components that are not
ful�lling for some eventuality and from which no other maximal strongly connected component
can be reached, are deleted. This process is repeated until no node can be eliminated. In the
above mentioned example, the only maximal strongly connected component (i.e. the whole
auxiliary graph) would be removed because it is not ful�lling for the eventuality�¬p and no
other nodes can be reached from it. Since the result would be an empty graph, the root set
would be classi�ed as unsatis�able. Our tableau methodTTM is one-pass. In Figure 3.12 it
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Σ0 ` � p (CdL)
p, ◦p, ◦ψ ` p (As)

Σ2 ` F
(CdL)

Σ1 ` F
(CdL)

Σ3 ` F
(CdL)

Σ4 ` F
(CdL) Σ5 ` F

(cdL)

p, ◦p, ◦ψ,¬(◦p ∧ ◦ψ), ϕ ` F
(¬∧)

p, ◦p, ◦ψ,¬(p∧ ◦p ∧ ◦ψ), ϕ ` F
(¬∧)

p, ◦p, ◦ψ,¬¬p,¬(p ∧ ◦p ∧ ◦ψ), ϕ ` F
(¬¬L)

p, ◦p, ◦ψ, (¬∆0)U ¬p ` F
(U L)2

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p), (¬∆0)U ¬p ` F
(∨)

p, � (¬p ∨ ◦p), (¬∆0)U ¬p ` F
(� L)

p, ◦p, ◦� (¬p ∨ ◦p), ◦((¬∆0)U ¬p) ` ¬p
(◦L)

p, ◦p, ◦� (¬p ∨ ◦p) ` � p
(R� )2

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p) ` � p
(∨)

p, � (¬p ∨ ◦p) ` � p
(� L)

where ψ = � (¬p ∨ ◦p)
ϕ = ◦((¬∆0 ∧ ¬∆1)U ¬p)
∆0 = ∆1 = {p, ◦p, ◦ψ}
¬∆0 = ¬∆1 = ¬(p ∧ ◦p ∧ ◦ψ)
Σ0 = {p,¬p, ◦ψ}
Σ1 = {p, ◦p, ◦ψ,¬p}
Σ2 = {p,¬p, ◦ψ, (¬∆0)U ¬p}
Σ3 = {p, ◦p, ◦ψ,¬p, ◦((¬∆0 ∧ ¬∆1)U ¬p)}
Σ4 = {p, ◦p, ◦ψ,¬◦p, ◦((¬∆0 ∧ ¬∆1)U ¬p)}
Σ5 = {p, ◦p, ◦ψ,¬◦ψ, ◦((¬∆0 ∧ ¬∆1)U ¬p)}

Figure 3.31:GTC-proof that shows that the formula� p is a logical consequence of the set of formulas{p, � (¬p ∨ ◦p)} (1st version)
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p, ψ ` p (As)

p,¬p, ◦ψ, ◦(¬pU ¬p) ` ¬p (As)

p, ψ,¬p ` F
(CdL) p, ψ,¬p,¬¬p, ◦(¬pU ¬p) ` F

(CdL)

p, � (¬p ∨ ◦p),¬pU ¬p ` F
(U L)1

p, ◦p, ◦� (¬p ∨ ◦p), ◦(¬pU ¬p) ` ¬p (◦L)

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p), ◦(¬pU ¬p) ` ¬p
(∨L)

p, � (¬p ∨ ◦p), ◦(¬pU ¬p) ` ¬p (� L)

p, � (¬p ∨ ◦p) ` � p
(R� )3

whereψ is � (¬p ∨ ◦p)

Figure 3.32:GTC-proof that shows that the formula� p is a logical consequence of the set of formulas{p, � (¬p ∨ ◦p)} (2nd version)
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can be appreciated that, by using theTTM -rules(�)2 and(U )2 and by following the systematic
tableau algorithm in Figure 3.9, we are able to close all the branches without a second pass.

The �rst one-pass tableau method forPLTL was presented by Schwendimann in [117] and
it avoids the second pass by adding extra information to the nodes in the tableau. This method
is also based on the usual inductive de�nition of the temporal connectives. As inTTM , branches
can be seen as sequences of stagess0, s1, . . . , si where each stagesj is a sequence of nodes

n0
j , n1

j , . . . , n
kj
j . Each application of the ruleNexttime (which corresponds to an application

of the operatorunnext in TTM ) to an elementary set of formulas gives rise to a new stage. Each
nodenh

j of a tableau is labelled with a triple of the form(Γh
j , Saveh

j , Resh
j ) where

• Γh
j is a �nite set of formulas.

• Saveh
j is a pair of the form(Evh

j , Brj ) that serves to store history information. More
precisely,Evh

j is a set of formulas representing the eventualities that areful�lled in the
nodesn0

j , n
1
j , . . . , n

h
j , andBrj (which only depends on the stage) is the sequence of pairs

(Γk0
0 , Ev

k0
0 ), (Γk1

1 , Ev
k1
1 ), . . . , (Γkj� 1

j � 1 , Ev
kj� 1
j � 1 ) representing the current branch. Note that

Γkg
g is the set of formulas of the last node of the stagesg for everyg ∈ {0, . . . , j − 1}.

• Resh
j is a pair of the form(rh

j , uevh
j ) that is used to store partial result information.

More precisely,rh
j is a natural number that represents the earliest nodeny

x (i.e. x ≤ j)
that is reachable fromnh

j . On the other hand,uevh
j is the set formed by the unful�lled

eventualities of the current branch.

The information inSaveh
j is produced in a top-down manner, from parent to child, whereas

the information inResh
j is synthesized bottom-up, from children to parent. The bottom-up

synthesis of information starts once a terminal rule is applied (i.e. a leaf is generated). The
information synthesized bottom-up inResh

j is needed because an eventuality that appears in a
cyclic branch but is not ful�lled directly in such branch, can be ful�lled in some other reachable
branch.

In TTM the ful�llment of an eventuality depends only on one branch.Consequently, given a
satis�able set of formulas as root set, an expanded open branch yields a model for the root set in
TTM whereas in [117] more than one cyclic branch may be required to obtain a cycle that gives
rise to a model for the set of formulas in the root. Additionally, nodes inTTM do not require so
much extra information. Moreover, given an unsatis�able set of formulas, instead of expanded
non-ful�lling cyclic branches,TTM obtains closed branches (whose last nodes are inconsistent,
see De�nition 3.3.5). For instance, if we consider the set offormulas{p, � (¬p ∨ ◦p), �¬p},
Schwendimann's tableau method would obtain a tree that contains the same nodes as the tableau
in Figure 3.14(a), but with the above indicated extra information in each node. Then, in the
right-most branch, the bottom-up synthesis would be necessary to detect that�¬p cannot be
ful�lled. By contrast, TTM obtains the closed tableau showed by means of Figures 3.12 and
3.13. The rule(U )2 together with the strategy expressed by means of the systematic tableau
algorithm in Figure 3.9 are the key for this different deductive approach forPLTL.

In order to detect whether an open cyclic branch is expanded,i.e. in order to decide whether
a cyclic branch is ful�lling, the systematic tableau algorithm for TTM does not directly check
whether each eventuality is ful�lled, instead it checks whether the eventualities that belong to
the �rst node of each stage of the cycle have been selected along the cycle (see De�nition 3.3.12
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and Remarks 3.3.13 and 3.4.8). This is another remarkable difference with respect to the above
mentioned approaches.

The complexity of the two-pass methods is exponential (evenin the average case) due to
the fact that the size of the graph is exponential in the size of the set of formulas in the root,
although some improvements such as not building the unreachable nodes can be considered (see
e.g. [81]). The worst case complexity for Schwendimann's tableau method andTTM is doubly
exponential. However, it has been shown by means of experimental analysis (see e.g. [76])
that, in some cases, doubly exponential algorithms can outperform exponential ones because
the occurrence of the worst case in the doubly exponential algorithms is rare. We are convinced
that a practical implementation that incorporates the simpli�cations explained in Section 3.4.5
may compete with traditional methods in several cases –e.g.when most of the formulas (in
the context) are always-formulas– and even be faster in others, e.g. when satis�ability can be
detected without constructing the whole graph. Of course, alot of experimental work needs
to be done in order to precisely compare the performance of these different approaches. As
a �rst step, we have implemented a preliminary prototype forthe TTM tableau method which
is available online inhttp://www.sc.ehu.es/jiwlucap/TTM.html. A report about the
implementation details of this prototype for theTTM tableau method can be found in [63].

3.7.2 Sequent Systems

The sequent calculusFC introduced in [60] is the �rst �nitary sequent calculus forPLTL that
dispenses with the cut rule and also with invariant-based rules. This cut-freeness and invariant-
freeness is achieved by means of the rule(U )2 and the strategy represented by the systematic
tableau algorithm forTTM. The sequent calculusFC is very similar toGTC. However, in order
to prove the completeness ofFC, the weakening rule(Wk), as well as a hidden contraction, are
used in [60] (in Lemma 22 and Lemma 11, respectively). By contrast, the sequent calculusGTC

is weakening-free and contraction-free. In this sense, thecompleteness result obtained forGTC

is an improvement of the completeness result obtained forFC. This improvement is achieved
by using the duality ofGTC with the tableau systemTTM.

Traditional sequent systems include either an in�nitary rule or an invariant-based rule. For
instance, in one of the sequent calculi presented in [105] wecan �nd an in�nitary rule that, in
terms of this dissertation, i.e., with non-relevant minor syntactical changes, is as follows:

∆, ϕ ` χ ∆, ◦ϕ ` χ ∆, ◦2ϕ ` χ . . .
∆, �ϕ ` χ

Note that the above rule contains in�nite premises.
We can also �nd an invariant-based rule in the sequent calculi introduced in [105] which, in

our notation, can be presented as follows:

∆ ` ψ ψ ` ◦ψ ψ ` ϕ
∆ ` � ϕ

The above formulaψ is called the invariant formula. These kinds of invariant-based rules require
an additional search for the invariant that is not addressedby the sequent calculi. A similar
invariant-based rule can be found in e.g. [104, 121].

The cut-free and also invariant-free sequent calculusLT2 for PLTL introduced in [20] is right
handed. So that, sequents are of the form` ψ1, . . . , ψn. The meaning of a sequent` ψ1, . . . , ψn
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is T→ ψ1∨ . . .∨ψn or equivalentlyψ1∨ . . .∨ψn . This sequent calculus is dual to our sequent
calculusTTC in the sense that aTTC-proof for ∆ ` states that∆ is unsatis�able whereas an
LT2-proof for` ∆ states that∆ is valid, i.e.,∆ is true in every state of everyPLTL-structure.
Additionally, theLT2-rule that corresponds to theTTM-rule(U )2 deals with annotated formulas
of the formϕR Hψ, 7 where the annotation or historyH is a �nite set of �nite sets of formulas
{Γ1, . . . ,Γn}. If Γi = {ϕ1, . . . , ϕm}, the meaning ofΓi isϕ1∨ . . .∨ϕm and the corresponding
formula forH is Γ1 ∧ . . . ∧ Γn . The formula represented by the annotated formulaϕR Hψ is
(ϕ ∨ ¬H)R (ψ ∨ ¬H). The key rule that deals with the annotated formulas is as follows:

` ∆, ψ,¬H ` ∆, ◦(ϕR H; � ψ), ϕ,¬H
` ∆, ϕR Hψ

whereH,∆ meansH ∪{∆} in the subindex of the connectiveR . This rule is similar to our
rule (U )2. As already mentioned in Section 3.1, the idea behind the wayin which eventualities
are dealt with and the strategy that leads to completeness coincide in the sequent calculiLT2
andTTC, even in the fairness requirement in the selection of eventualities. However, unlikeTTC,
the sequent calculusLT2 incorporates the selection of eventualities in the rule system by means
of a rule that carries out the selection of an eventuality by generating an annotated formula
ϕR ;ψ from a formulaϕRψ. Additionally, the strategy of sticking to a selected eventuality
–which is an annotated formula– until it is ful�lled, is alsoincorporated in the system sequent
by not allowing more than one annotated formula in each sequent of a derivation. Note also
that annotated formulas do not belong to the logical language. In other words, an additional
variable –or annotation– for saving the history is used inLT2 whereas inTTC all the formulas
belong to the logical language and no extra variable is used for history management. Moreover,
in TTC, the restrictions that lead to completeness are not incorporated in the sequent system. As
a consequence, we allow different strategies and differentderivations, although we follow the
systematic tableau algorithm to guarantee completeness.

7 Note that the use of the connectiveR on the right-hand side of a sequent correspondsto the use of the connective
U on the left-hand side. So that, a formula of the formϕR ψ on the right-hand side of a sequent represents an
eventuality.





4. INVARIANT-FREE CLAUSAL TEMPORAL RESOLUTION FOR PLTL

4.1 Introduction

In this chapter, we deal with clausal resolution forPLTL. The method of resolution, invented by
J.A. Robinson in 1965 ([111]), is an ef�cient refutation proof method that has provided the basis
for several well-known theorem provers for classical logics. As well as tableau methods, in the
case of decidable logics, resolution methods yield decision procedures for the satis�ability of
sets of formulas.

Different approaches have been proposed in the literature for adapting the classical reso-
lution method to temporal logic but without consensus in theclausal normal form or in the
temporal resolution itself. The earliest temporal resolution method [1] uses a non-clausal ap-
proach, hence a large number of rules are required for handling general formulas instead of
clauses. There is also early work (e.g. [12, 29]) related to clausal resolution for (less expressive)
sublogics ofPLTL. In the language considered in [12] there are no eventualities at all, whereas
in [29] the authors consider the strictly less expressive sublanguage ofPLTL de�ned by using
only ◦ and� as temporal connectives. The early clausal method presented in [126] tackles full
PLTL and uses a clausal form similar to ours, but completeness is only achieved in absence of
eventualities. More recently, a fruitful trend of clausal temporal resolution methods, starting
with the seminal paper of M. Fisher [40], achieves completeness for fullPLTL by means of a
specializedtemporal resolutionrule that needs to generate an invariant formula from a set of
clauses that behaves as a loop. The methods and techniques developed in such an approach
have been successfully adapted to Computation Tree Logic (CTL) (see [18]) and some exten-
sions ofCTL such asECTL andECTL+ (see [17, 16]), but not to Full Computation Tree Logic
(CTL?). It is remarkable that the clausal normal forms used in [12], [29], [126] and [40] are
quite different.

In this thesis, we introduce a new clausal resolution methodthat is sound and complete
for full PLTL. Our method is based on the dual methods of tableaux and sequents for PLTL
presented in the previous chapter. On this basis we are able to perform clausal resolution in the
presence of eventualities avoiding the requirement of invariant generation. We de�ne a notion of
clausal normal formand prove that everyPLTL-formula can be translated into an equisatis�able
set of clauses. Our resolution mechanism explicitly simulates the transition from one world to
the next one. Inside each world, we apply two kinds of rules: (1) the resolution and subsumption
rules and (2) the �xpoint rules for decomposing temporal literals. The latter split a clause with
a temporal literal into a �nite number of new clauses. We prove that the method is sound and
complete. In fact, it �nishes for any set of clauses decidingits (un)satis�ability, hence it gives
rise to a new decision procedure forPLTL. In Section 4.8 we compare our approach with the
methods in [29, 1, 126, 40]. We also give more details on the relation betweenTRS-resolution
and theTTM tableau method that is its forerunner.

Outline of the chapter. In Section 4.2 we introduce the syntactic notion of clause (Subsec-
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tion 4.2.1), we show that anyPLTL-formula can be transformed into a set of clauses (Subsection
4.2.2) and we analyze the complexity of this transformation(Subsection 4.2.3). In Section 4.3
we introduce the systemTRS of inference rules in two subsections: the �rst one presentsthe ba-
sic rules and the second one presents the rule for solving eventualities in a way that prevents their
inde�nite delay. Then, in Section 4.4, we present the notionof TRS-derivation, provide some
sample derivations and study the relationship betweenTRS-resolution and classical (proposi-
tional) resolution. The soundness ofTRS is proved in Section 4.5. In Section 4.6 we propose an
algorithm for systematically obtaining, for any set of clausesΓ, a �nite derivation that proves
thatΓ is either satis�able or unsatis�able. We also show some examples of application of the
algorithm in Subsection 4.6.2. An important issue for this algorithm is to prove its termination
for every input. This proof is presented in Subsection 4.6.3. In Subsection 4.6.4 we provide a
bound of the worst-case complexity of the algorithm. In Section 4.7, we prove the completeness
of TRS-resolution on the basis of the algorithm that outputs a �nite derivation for every set of
clauses. Finally, in Section 4.8 we discuss signi�cant related work.

4.2 The Clausal Language

In this section we �rst de�ne the conjunctive normal form of aformula. This is the basis for our
notion of clause. In the second subsection we explain how to convert any formula into a set of
clauses. Thirdly, we give the worst case complexity of the translation.

4.2.1 Conjunctive Normal Form for Formulas

Our notion of literal extends the classical notion of propositional literal. This extension intro-
duces both temporal literals and (possibly empty) pre�xed chains of the connective◦ in front of
temporal and propositional literals. That is, using the usual BNF-notation:

P ::= p | ¬p

T ::= P1U P2 | P1RP2 | �P | � P

L ::= ◦iP | ◦iT

wherep ∈ Propandi ∈ IN . P stands for a propositional literal,T for a (basic) temporal literal
andL for a literal. In the sequel, we use the term literal in the latter sense and only if needed we
will specify whether a literal is propositional or temporal.1 Sub- and superscripts are used when
necessary.

We extend the classical notion ofthe complementeL of a literalL as follows:

ep = ¬p, f¬p = p, f◦L = ◦eL, P̂1U P2 = fP1R fP2 and P̂1RP2 = fP1U fP2

It is easy to see thatg� P = � eP andg�P = � eP . Although�P and � P can be respectively
de�ned by eP U P and eP RP , we have intentionally introduced�P and� P as temporal literals
because of technical convenience.

A now-clauseN is a �nite disjunction of literals (above denoted byL):

N ::= ⊥ | L ∨N
1 Note that◦ is the only temporal connective that does not occur in the so-called (basic) temporal literals.
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where⊥ represents the empty disjunction (or the empty now-clause). We identify �nite dis-
junctions of literals with sets of literals. Hence, we assume that there are neither repetitions nor
any established order in the literals of a clause. This assumption is especially advantageous for
presenting the resolution rule, because it avoids factoring and ordering problems. However, for
readability, we always write the disjunction symbol between the literals of a clause.

A clause is either a now-clause or a now-clause preceded by the connective�

C ::= N | � N

A clause of the form� N is called analways-clause. In this chapter, we use the superscriptb
varying in{0, 1} to represent a formula with or without a pre�xed unary connective (in particular
a clause with or without a pre�xed� ). For instance,� bϕ is � ϕ wheneverb is 1 andϕ whenever
b is 0. Along the rest of the chapter superscripts starting byb (from bit) range in{0, 1}. These
kinds of superscripts are notation, hence they are not part of the syntax. Note that the formula
� b⊥ represents the two possible syntactic forms of the empty clause, as now- or always-clause.

For a clauseC = � b(L1 ∨ . . . ∨ Ln) we denote byLits(C) the set{L1, . . . , Ln} and for a
set of clausesΓ we denote byLits(Γ) the set

S
C2 � Lits(C).

De�nition 4.2.1. The set of all clauses inΓ that contain the literalL is denoted byΓ � {L}, i.e.
Γ � {L} = {C ∈ Γ | L ∈ Lits(C)}.

Since◦ distributes over disjunction, for a given now-clauseN = L1 ∨ . . .∨ Ln , we denote
by ◦N the now-clause◦L1 ∨ . . . ∨ ◦Ln . We say that a clauseC is ◦-free if Lits(C) does not
contain any literal of the form◦L.

De�nition 4.2.2. Given a set of clausesΓ, we de�nealw(Γ) = {� N | � N ∈ Γ} andnow(Γ) =
Γ \ alw(Γ).

Note that a formula of the form� P , can be understood as a now-clause consisting of one
temporal literal or as an always-clause consisting of one propositional literal. If a set of clauses
Γ contains this kind of formulas, by convention those formulas are considered to be inalw(Γ).

De�nition 4.2.3. For any set of clausesΓ

(a) drop� (Γ) = now(Γ)∪{N | � N ∈ alw(Γ)}.

(b) BTL(Γ) = {T | T ∨N ∈ drop� (Γ)}.

(c) unnext(Γ) = alw(Γ) ∪ {N | � b(◦N ) ∈ Γ}.

The setdrop� (Γ) is formed by all the now-clauses inΓ together with the inner now-clause
of all the always-clauses inΓ.

BTL(Γ) is the set of all the (basic) temporal literals that occur inΓ. Hence,BTL(Γ) is a
subset ofLits(Γ). It is worth noting that any literal inLits(Γ) that does not belong toBTL(Γ)
is either a propositional literalP or a literal of the form◦L, according to the grammar at the
beginning of this subsection.

The setunnext(Γ) consists of all the clauses that should be satis�ed at the next state of a
state that satis�esΓ. This de�nition of unnextis an adaptation to clauses of the operatorunnext
presented in De�nition 3.3.4. Note also thatunnext implicitly uses the equivalence between
� N and{N, � ◦N}.
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A formula is inconjunctive normal formwhenever it is a conjunction of clauses. For sim-
plicity, we identify a set of clauses with the conjunction ofthe clauses in it. Concretely, we
identify any formula in conjunctive normal form

N1 ∧N2 ∧ . . .∧Nr ∧ � Nr +1 ∧ . . .∧ � Nk

with the set of clauses
{N1, N2, . . . , Nr , � Nr +1 , . . . , � Nk}

where eachNi is a now-clause,k ≥ 1 andr ∈ {0, . . . , k}.

4.2.2 Transforming Formulas into CNF

In this subsection we present a transformationCNFwhich maps any formulaϕ to itsconjunctive
normal formCNF(ϕ). First, we show that any formulaϕ can be transformed into another
formula NNF(ϕ), called thenegation normal formof ϕ, such that every connective¬ is in
front of a proposition. Second, we introduce an intermediate notion of normal form, called
distributed normal form, denotedDtNF(ϕ) for input formulaϕ. The transformationsNNF and
DtNF preserve logical equivalence. Finally we present the transformation of any formula to
its conjunctive normal form. The formulasϕ andCNF(ϕ) are equisatis�able (De�nition 2.2.2)
although, in general, they are not logically equivalent.

Proposition 4.2.4. For any formulaϕ there exists a logically equivalent formulaNNF(ϕ) such
thatχ ∈ Propfor every subformula ofNNF(ϕ) of the form¬χ.

Proof. NNF(ϕ) is obtained by repeatedly applying to any subformula ofϕ the following reduc-
tion rules until no one can be applied

¬¬ψ nnf7−→ ψ ¬(ψ1 ∨ ψ2) nnf7−→ ¬ψ1 ∧ ¬ψ2

¬◦ψ nnf7−→ ◦¬ψ ¬(ψ1 ∧ ψ2) nnf7−→ ¬ψ1 ∨ ¬ψ2

¬�ψ nnf7−→ � ¬ψ ¬(ψ1U ψ2) nnf7−→ ¬ψ1R¬ψ2

¬� ψ nnf7−→ �¬ψ ¬(ψ1Rψ2)
nnf7−→ ¬ψ1 U ¬ψ2

It is routine to see that the relationnnf7−→ (de�ned above) preserves logical equivalence and the

process of repeatedly applying the transformationnnf7−→ stops after a �nite number of steps.
Therefore,ϕ andNNF(ϕ) are logically equivalent.

Now, in the distributed normal form, every connective¬ is in front of a propositional vari-
able, every connective∨ is distributed over∧, temporal connectives that are distributive over
∨ and∧ are distributed, for formulas of the formϕU (δ U ψ) and of the formϕR (δRψ) the
subformulasϕ andδ are different and non-empty sequences of the form� . . .� and of the form
� . . . � are of length1.

De�nition 4.2.5. A formula is indistributed normal formif it has the form(γ1
1 ∨ . . . ∨ γ

k1
1 ) ∧

. . .∧ (γ1
n ∨ . . .∨ γkn

n ) where eachγ j
g denotes a formula of one of the following forms

• ◦iP
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• ◦i (αR β) for someα andβ 6= αRψ for anyψ

• ◦i (β U α) for someβ andα 6= β U ψ for anyψ

• ◦i
� β for someβ 6= � ψ for anyψ

• ◦i�α for someα 6= �ψ for anyψ

whereα andβ denote two special cases of distributed normal form. Concretely,β stands for
a formula of the form(γ1

1 ∨ . . . ∨ γ
k1
1 ) with k1 ≥ 1 andα stands for either a formulaγ1

1 or a
formula(γ1

1∨. . .∨γ
k1
1 )∧. . .∧(γ1

n∨. . .∨γkn
n ) withn ≥ 2 andkh ≥ 1 for everyh ∈ {1, . . . , n}.

Note that if a formula is in distributed normal form then it isalso in negation normal form.

Proposition 4.2.6.For any formulaϕ there exists a logically equivalent formulaDtNF(ϕ) such
thatDtNF(ϕ) is in distributed normal form.

Proof. First, we transformϕ into NNF(ϕ) and then we repeatedly apply toNNF(ϕ) the follow-
ing reduction rules

(ϕ1 ∧ ϕ2) ∨ ψ dtnf7−→ (ϕ1 ∨ ψ) ∧ (ϕ2 ∨ ψ) ψ ∨ (ϕ1 ∧ ϕ2) dtnf7−→ (ψ ∨ ϕ1) ∧ (ψ ∨ ϕ2)

◦(ϕ1 ∨ ϕ2) dtnf7−→ ◦ϕ1 ∨ ◦ϕ2 ◦(ϕ1 ∧ ϕ2) dtnf7−→ ◦ϕ1 ∧ ◦ϕ2

ψ U (ϕ1 ∨ ϕ2) dtnf7−→ (ψU ϕ1) ∨ (ψ U ϕ2) ψR (ϕ1 ∧ ϕ2) dtnf7−→ (ψRϕ1) ∧ (ψRϕ2)

(ϕ1 ∧ ϕ2)U ψ dtnf7−→ (ϕ1U ψ) ∧ (ϕ2U ψ) (ϕ1 ∨ ϕ2)Rψ dtnf7−→ (ϕ1Rψ) ∨ (ϕ2Rψ)

� (ϕ1 ∨ ϕ2) dtnf7−→ �ϕ1 ∨ �ϕ2 � (ϕ1 ∧ ϕ2) dtnf7−→ � ϕ1 ∧ � ϕ2

ψ1U (ψ1U ψ2) dtnf7−→ ψ1U ψ2 ψ1R (ψ1Rψ2) dtnf7−→ ψ1Rψ2

��ψ dtnf7−→ �ψ � � ψ dtnf7−→ � ψ

It is routine to see that this reduction always terminates giving a formula in distributed normal

form. Additionally, it must be proved that everydtnf7−→-rule preserves logical equivalence. For

that, the only non-trivialdtnf7−→-rules are the ones for transformingψ U (ϕ1 ∨ϕ2), (ϕ1 ∧ϕ2)U ψ,
ψR (ϕ1 ∧ ϕ2), and(ϕ1 ∨ ϕ2)Rψ. Here, we give the proof details for the �rst one. The re-
maining three are similar.
Suppose that〈M, sj 〉 |= ψ U (ϕ1∨ϕ2). Then, there existsk ≥ j such that〈M, sk〉 |= ϕ1 ∨ϕ2

and〈M, si 〉 |= ψ for everyi such thatj ≤ i < k. Hence, for suchk, either〈M, sk〉 |= ϕ1 or
〈M, sk〉 |= ϕ2. In the former case,〈M, sj 〉 |= ψU ϕ1, whereas in the latter〈M, sj 〉 |= ψ U ϕ2.
Therefore〈M, sj 〉 |= (ψU ϕ1) ∨ (ψU ϕ2).
Conversely, if〈M, sj 〉 |= (ψU ϕ1) ∨ (ψU ϕ2), then either〈M, sj 〉 |= (ψU ϕ1) or 〈M, sj 〉 |=
(ψ U ϕ2). Hence, there existsk ≥ j such that〈M, si 〉 |= ψ for all i such thatj ≤ i < k and
〈M, sk〉 |= ϕ1 or 〈M, sk〉 |= ϕ2. Then,〈M, sk〉 |= ϕ1 ∨ ϕ2 and〈M, si 〉 |= ψ for everyi such
thatj ≤ i < k. Therefore,〈M, sj 〉 |= ψU (ϕ1 ∨ ϕ2).

As the following theorem shows, we will use the distributed normal form as a preliminary
step for transforming a formula into its conjunctive normalform.
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Theorem 4.2.7.For any formulaϕ there exists an equisatis�able formulaCNF(ϕ) such that
CNF(ϕ) is in conjunctive normal form.

Proof. First, we transformϕ into DtNF(ϕ). Second, we repeatedly apply the following rules
until no one can be applied. In the rules bellowψ is the whole formula (in distributed normal
form) and the expressions of the formψ[α⇒ β] denote the formula obtained by simultaneously
replacing all the occurrences of the subformulaα in ψ by the formulaβ, whereα is any non-
literal subformula of any conjunct ofψ that is not a clause yet.

ψ cnf7−→ ψ[◦i (ϕ1U ϕ2)⇒ ◦i (p1U p2)] ∧ CNF(� (¬p1 ∨ ϕ1)) ∧ CNF(� (¬p2 ∨ ϕ2))

ψ cnf7−→ ψ[◦i (ϕ1Rϕ2)⇒ ◦i (p1R p2)] ∧ CNF(� (¬p1 ∨ ϕ1)) ∧ CNF(� (¬p2 ∨ ϕ2))

ψ cnf7−→ ψ[◦i
� γ ⇒ ◦i

� p ] ∧ CNF(� (¬p ∨ γ))

ψ cnf7−→ ψ[◦i� γ ⇒ ◦i� p ] ∧ CNF(� (¬p ∨ γ))

ψ cnf7−→ ψ[� (γ ∨ � χ)⇒ � (γ ∨ � p)] ∧ CNF(� (¬p ∨ χ))

ψ cnf7−→ ψ[� (� χ ∨ γ)⇒ � (� p ∨ γ)] ∧ CNF(� (¬p ∨ χ))

wherep, p1 andp2 are fresh new propositional variables and the formulaχ is not a propositional
literal. Note that the new conjunctions of the formCNF(� (¬ψ1 ∨ψ2)) serve to de�ne the fresh
new symbolsψ1. We will prove that the transformation fromϕ to CNF(ϕ) stops after a �nite
number of steps and both formulas are equisatis�able.

On one hand, each application of acnf7−→-rule reduces the depth of (at least) one non-literal
subformula of a formula inDtNF-form. Additionally, the number of fresh new variables is
bounded by the number of subformulas. These two facts ensuretermination.

On the other hand we prove, by structural induction, that theformulas in both sides of each
cnf7−→-rule are equisatis�able. Here we only show the details for the �rst rule above (the remaining

rules are similar or particular cases). Suppose that〈M, sj 〉 |= ψ whereψ is in distributednormal
form and◦i (ϕ1U ϕ2) is a non-literal subformula of any conjunct ofψ that is not a clause yet.
Then, sincep1 andp2 are fresh,p1, p2 6∈ VM (sk) for all k ≥ 0. Therefore, we de�neM0 to be
the extension ofM such thatph ∈ VM 0(s0

k) iff 〈M, sk〉 |= ϕh for all k ≥ 0 andh ∈ {1, 2}.
As a consequence, for allk ≥ 0, 〈M, sk〉 |= ◦i (ϕ1U ϕ2) iff 〈M0, s0

k〉 |= ◦
i (p1U p2) and

〈M0, s0
k〉 |= � (¬p1 ∨ ϕ1) ∧ � (¬p2 ∨ ϕ2). Hence,

〈M0, s0
k〉 |= ψ[◦i (ϕ1U ϕ2)⇒ ◦i (p1U p2)] ∧ � (¬p1 ∨ ϕ1) ∧ � (¬p2 ∨ ϕ2).

By the induction hypothesis, the transformation of� (¬p1∨ϕ1) and� (¬p2∨ϕ2) to conjunctive
normal form preserves equisatis�ability.

Conversely, consider any modelM of the right-hand part of the �rstcnf7−→-rule. If 〈M, s0〉 6|=
◦i (p1U p2), then〈M, s0〉 must satisfy some other disjunct in every conjunct of the formulaψ
where◦i (p1U p2) occurs in. ThereforeM is also a model ofψ. If 〈M, s0〉 |= ◦i (p1U p2), then
there exists aj ≥ i such that〈M, sj 〉 |= p2 and〈M, sk〉 |= p1 for all k such thati ≤ k < j.
Additionally, for all k ≥ 0, 〈M, sk〉 |= � (¬ph ∨ ϕh) for h ∈ {1, 2}. Therefore,〈M, sj 〉 |= ϕ2

and〈M, sk〉 |= ϕ1 for all k such thati ≤ k < j. Hence,〈M, s0〉 |= ◦i (ϕ1U ϕ2), which means
thatM must be a model ofψ.
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Example 4.2.8.Let us consider the following formulaϕ = ¬(p ∧ r ∧ � (¬(p ∧ r) ∨ ◦(p ∧ r)))
Note thatϕ is equivalent to¬� (p ∧ r) by means of induction on time. First, we transformϕ
into

NNF(ϕ) = ¬p ∨ ¬r ∨ � (p ∧ r ∧ ◦(¬p ∨ ¬r))

Then, its distributed normal form is

DtNF(ϕ) = ¬p ∨ ¬r ∨ � (p ∧ r ∧ (◦¬p ∨ ◦¬r))

Finally, the conjunctive (or clausal) normal form ofϕ is

CNF(ϕ) = (¬p ∨ ¬r ∨ �a) ∧CNF(� (¬a ∨ (p ∧ r ∧ (◦¬p ∨ ◦¬r)))) =
= (¬p ∨ ¬r ∨ �a) ∧ � (¬a ∨ p) ∧ � (¬a ∨ r) ∧ � (¬a ∨ ◦¬p ∨ ◦¬r)

where a new propositional variablea ∈ Prophas been introduced and new clauses that de�ne
the variablea have been added. The formulaCNF(ϕ) can also be understood as the set of
clauses{(¬p ∨ ¬r ∨ �a), � (¬a ∨ p), � (¬a ∨ r), � (¬a ∨ ◦¬p ∨ ◦¬r)}.

4.2.3 Complexity of the Translation

In this subsection we show that the worst case of the translation to CNF is bounded by an
exponential on the size of the input formula.

De�nition 4.2.9. Given a formulaϕ, we de�ne the size ofϕ, namelysize(ϕ), as the number of
connectivescnt(ϕ) plus the number of propositional variables,pv(ϕ) in ϕ.

Proposition 4.2.10.For any formulaϕ, size(CNF(ϕ)) ∈ 2O(size(' )) .

Proof. The complexity of the �rst transformation fromϕ to NNF(ϕ) is linear because the worst
case is when the connective¬ appears only once and it occurs as the outermost connective,i.e.
ϕ is of the form¬ψ for some formulaψ. In such a case¬ will end up appearing in front of
every propositional variable. Hence,size(NNF(ϕ)) = cnt(ϕ)− 1 + 2× pv(ϕ) which is smaller
or equal than2× size(ϕ).
In the second transformation toDtNF(ϕ), each use of the distribution laws can almost double
the size of the initial formula. So, we only can ensure thatsize(DtNF(ϕ)) ≤ 2size(NNF(' )) or
equivalently thatsize(DtNF(ϕ)) ∈ O(2size(' )).
Finally, the last transformation toCNF(ϕ) has again linear complexity. This is basically because
–in the rules of Theorem 4.2.7– each new variable replaces a subformula of a formulaψ that is
already inDtNF form.
Summarizing,size(CNF(ϕ)) ∈ O(2O(size(' )) ) = 2O(size(' )) .

We would like to remark that the exponential blow-up is only due –as in classical cnf– to
the distribution laws and it can be prevented using fresh variables as it is made in the so-called
de�nitional cnf (see [39]). Therefore, as in classical cnf, for practical purposes, we could use
new variables to achieve a transformation to clausal form oflinear complexity.
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(Res)
� b(L∨N ) � b0(eL ∨N0)

� b� b0(N ∨N0)

Figure 4.1:The Resolution Rule

(Sbm) {� bN, � bN0} 7−→ {� bN0} if N0⊆ N

Figure 4.2:The Subsumption Rule

4.3 The Temporal Resolution Rules

In this section, we present the rules of our temporal resolutionsystem. In addition to a resolution-
like rule (Res), the Temporal Resolution SystemTRS includes a subsumption rule(Sbm) and
also the three so-called �xpoint rules –(RFix), (U Fix) and(U Set)– for decomposing tem-
poral literals. The rule(Sbm) is a natural extension of (traditional) clausal subsumption. The
rules(RFix) and(U Fix) are based on the usual inductive de�nition of the connectives R
and U , respectively, whereas(U Set) is based on a more complex inductive de�nition ofU
(already explained in the previous chapter of this thesis) that is the basis of our approach. There-
fore, this section is split into two subsections. The �rst subsection is devoted to the �rst four
rules which we callBasic Rules. The details about the rule(U Set) are explained in the second
subsection. The corresponding derived rules for� and� are showed in both subsections. In the
sequel, the rules explained in this section are calledTRS-rules and the system is calledTRS.

4.3.1 Basic Rules

Considering thatΓ is the current set of clauses, the resolution rule(Res) in Figure 4.1 is applied
to two clauses (the premises) inΓ and obtains a new clause (the resolvent). The rule(Res) is
a very natural generalization of classical resolution for always-clauses, and it is written in the
usual format of premises and resolvent separated by a horizontal line. (Res) applies to two
clauses (the premises) that contain two complementary literals. Both premises can be headed
or not by an always connective (depending on superscriptsb andb0 whose range is{0, 1}). By
means of the productb × b0 in the superscript of the resolvent, only when both premisesare
always-clauses, the resolvent is also an always-clause. Inparticular, whenN andN0 are both
⊥, the resolvent is� b� b0⊥, i.e. either� ⊥ or⊥. The resolvent is added toΓ while the premises
remain inΓ. That is, each application of the rule(Res) adds a clause to the current set of
clauses. On the contrary, the remainingTRS-rules replace a set of clausesΣ ⊆ Γ with another
set of clauses, namelyΨ. We write them as transformation rulesΣ 7→ Ψ. The setsΣ andΨ
are respectively called the antecedent and the consequent and they are in general equisatis�able
but in some cases logically equivalent. So that, each application of these transformation rules
removes the clauses inΣ from the current set of clauses and adds the clauses inΨ.

The �rst transformation rule is the subsumption rule(Sbm) in Figure 4.2, which generalizes
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(RFix) {� b((P1RP2) ∨N )} 7−→ {� b(P2 ∨N )
� b(P1 ∨ ◦(P1RP2) ∨N )}

(U Fix) {� b((P1U P2) ∨N )} 7−→ {� b(P2 ∨ P1 ∨N )
� b(P2 ∨ ◦(P1 U P2) ∨N )}

Figure 4.3:The Fixpoint Rules(RF ix) and(U F ix)

(� Fix) {� b(� P ∨N )} 7−→ {� b(P ∨N ), � b(◦ � P ∨N )}

(�Fix) {� b(�P ∨N )} 7−→ {� b(P ∨ ◦�P ∨N )}

Figure 4.4:The Fixpoint Rules(� F ix) and(�F ix)

classical subsumption to always-clauses.2 This rule can be applied to any set that contains a
clause of the form� bN and a clause of the form� bN0, such thatN0⊆ N . The application of
the rule(Sbm) eliminates the clause� bN while the clause� bN0remains. Regarding these two
clauses in the antecedent, it is said that the clause� bN is subsumed by the clause� bN0. Our
resolution mechanism requires the rule(Sbm) for completeness. Actually, subsumption is used
in Lemma 4.6.13 which allows to prove Theorem 4.6.14.

The �xpoint rules(RFix) and(U Fix) in Figure 4.3 serve to replace a clause of the form
� b(T∨N ) with a logically equivalent set of clauses. The rule(RFix) splits the temporal literal
P1RP2 by using the well-known inductive de�nition of the connective R : P1RP2 ≡ P2 ∧
(P1 ∨ ◦(P1RP2)). Likewise, the rule(U Fix) uses the inductive de�nition of the connective
U : P1 U P2 ≡ P2 ∨ (P1 ∧ ◦(P1U P2)). In both cases, a simple distribution gives the equivalent
set of two clauses that is shown in the consequent of each rule. In order to illustrate this point
let us consider the case of the connectiveU . By the inductive de�nition ofU and distributivity
of ∨ over∧,

P1 U P2 ≡ P2 ∨ (P1 ∧ ◦(P1U P2)) ≡ (P2 ∨ P1) ∧ (P2 ∨ ◦(P1U P2)).

Hence,� b((P1U P2)∨N ) is logically equivalent to the conjunction of the two clauses � b(P2∨
P1 ∨N ) and� b(P2 ∨ ◦(P1U P2)∨N ). So that, the antecedent of the rule(U Fix) is logically
equivalent to the conjunction of the two clauses in the consequent.

Since the connectives� and� can be seen as particular cases ofR andU respectively, the
rules in Figure 4.4 constitute the corresponding specializations of the rules in Figure 4.3.

4.3.2 The Rule(U Set)

The rule(U Set) in Figure 4.5 is an adaptation to the resolution system of theTTM-rule (U )2

presented in Figure 3.1. The construction of the consequentof the rule(U Set) takes into

2 Note that the same superscriptb occurs in both clauses.
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(U Set) Φ ∪ {� bi((P1U P2) ∨Ni ) | 1 ≤ i ≤ n}

7−→ Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}
∪ {P2 ∨ ◦(aU P2) ∨Ni | 1 ≤ i ≤ n}
∪ CNF(def(a, P1,∆))
∪ {� (◦(P1 U P2) ∨ ◦Ni ) | bi = 1 and1 ≤ i ≤ n}

wheren ≥ 1
∆ = now(Φ)
a ∈ Prop is fresh
def(a, P1,∆) = � (¬a ∨ (P1 ∧ ¬∆)) if ∆ 6= ∅
def(a, P1,∆) = � ¬a if ∆ = ∅

Figure 4.5:The Rule(U Set)

account, not only a (non-empty) set whose clauses include a temporal atomP1U P2, but also
the remaining clauses. Consequently, the antecedent of therule (U Set) is

Φ∪ {� bi ((P1U P2) ∨Ni ) | 1 ≤ i ≤ n}

wheren ≥ 1 andΦ stands for the set consisting of all the remaining clauses inthe set to which
(U Set) is applied. The antecedent of(U Set) must be interpreted as a partition of the whole
set of clauses (on which we are applying temporal resolution) into two sets. The second set
{� bi((P1U P2) ∨Ni ) | 1 ≤ i ≤ n} in the antecedent is a non-empty set of clauses that contain
the same (basic) temporal literalP1 U P2. It is worth noting that the literalP1U P2 can also
occur inΦ. The opposite restriction is not required for soundness. However, for achieving
completeness the rule(U Set) is applied over a partition of the current set of clauses intoa set
formed by all the clauses that includeP1U P2 and the remaining clauses.

Example 4.3.1.Let us apply the rule(U Set) to the eventualityrU s in the set of clauses

{p, ◦q, � u, � ((rU s) ∨ (◦t))}.

ThenΦ = {p, ◦q, � u} and ∆ = now(Φ) = {p, ◦q}, wherenow is the operator on sets of
clauses introduced in De�nition 4.2.2. Therefore, the consequent of this(U Set) application is

{p, ◦q, � u} ∪ {s ∨ r ∨ ◦t, s ∨ ◦(aU s) ∨ ◦t}
∪ {� (¬a ∨ r), � (¬a ∨ ¬p ∨ ◦¬q)}
∪ {� ((◦(rU s)) ∨ (◦◦t))}

wherea is the fresh variable anddef(a, r,∆) = {� (¬a ∨ r), � (¬a ∨ ¬p ∨ ◦¬q)}. Below we
justify the construction of∆ = now(Φ) for excluding always-clauses from the de�nition of the
fresh variablea. We call∆ the context. Let us give a clue on context handling through this
example. If we used the whole setΦ instead of∆ in the de�nition ofa, then the second clause
in def(a, r,Φ) would be� (¬a ∨ ¬p ∨ ◦¬q ∨ �¬u). However, since� u is in Φ, the clause� u
also belongs to the consequent. Therefore, the disjunct�¬u of the above clause, would never
be satis�ed.
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Next, we explain the intuition behind the rule(U Set) and introduce the de�nition ofcon-
text.

The crucial idea behind the rule(U Set) (and, hence, behind theTRS resolution system)
is based on the equisatis�ability result presented in Proposition 3.3.3 (Section 3.3.2). Here we
provide an adaptation of Proposition 3.3.3 to the clausal language.

Proposition 4.3.2. Let ∆ be a set of formulas,Σ1 = ∆∪{P2 ∨ P1 ∨ β, P2 ∨ ◦(P1U P2) ∨ β}
andΣ2 = ∆∪{P2∨P1∨β, P2∨◦((P1∧¬∆)U P2)∨β}. ThenΣ1 andΣ2 are equisatis�able.

Proof. Suppose thatΣ1 has a modelM. If 〈M, s0〉 |= ∆∪{P2} or 〈M, s0〉 |= ∆∪{β}, then
M is also a model ofΣ2. Otherwise,〈M, s0〉 |= {P1, ◦(P1U P2)} andP2 should be satis�ed
in some statesj with j ≥ 1 andP1 is true in all the statessh such that0 ≤ h < j. Let k be
the greatest index in{0, . . . , j − 1} such that〈M, sk〉 |= ∆ and∆ is not satis�ed in the states
sk+1 , . . . , sj � 1 ofM. Then, we can construct a modelM0 of ∆ by simply deleting the states
s0, . . . , sk� 1 inM. As a consequence of the choice ofk, thePLTL-structureM0is also a model
of {P1, ◦((P1∧¬∆)U P2)}. Hence,M0 |= Σ2. Conversely, any model ofΣ2 is a model ofΣ1.

Now, we transform the antecedent of(U Set) into its consequent, while preserving equisat-
is�ability (indeed, logical equivalence is preserved at most steps).
The �rst transformation step is based on the equivalence� ψ ≡ ψ ∧ � ◦ψ. Consequently, each
clause� bi ((P1U P2) ∨ Ni ) such thatbi = 1 is split (while clauses withbi = 0 remain un-
changed). So that, the set in the antecedent of(U Set):

Ψ0 = Φ ∪ {� bi ((P1U P2) ∨Ni ) | 1 ≤ i ≤ n}

is equivalent to

Ψ1 = Φ ∪ {(P1U P2) ∨Ni | 1 ≤ i ≤ n}
∪ {� bi((P1U P2) ∨Ni ) | bi = 1, 1 ≤ i ≤ n}

Then, as explained for the rule(U Fix), the setΨ1 is equivalent to the set

Ψ2 = Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}
∪ {P2 ∨ ◦(P1U P2) ∨Ni | 1 ≤ i ≤ n}
∪ {� bi(◦(P1U P2) ∨ ◦Ni ) | bi = 1 and1 ≤ i ≤ n}

Let Υ be the last set in the description ofΨ2, that is

Υ = {� bi (◦(P1U P2) ∨ ◦Ni ) | bi = 1 and1 ≤ i ≤ n},

we replace the above underlined set (insideΨ2) with the following set

{P2 ∨ ◦((P1 ∧ ¬(Φ∪Υ))U P2) ∨Ni | 1 ≤ i ≤ n} (4.1)

Hence, we obtain

Ψ3 = Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}
∪ {P2 ∨ ◦((P1 ∧ ¬(Φ∪Υ))U P2) ∨Ni | 1 ≤ i ≤ n}
∪ {� bi (◦(P1U P2) ∨ ◦Ni ) | bi = 1 and1 ≤ i ≤ n}

By Proposition 4.3.2, the setsΨ2 andΨ3 are equisatis�able. Additionally, any set of the form

{� χ1, � χ2, . . . , � χm , ◦((ϕ ∧ (γ ∨ ¬� χ1 ∨ ¬� χ2 ∨ . . . ∨ ¬� χm ))U ψ)}
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is equivalent to the set

{� χ1, � χ2, . . . , � χm , ◦((ϕ ∧ γ)U ψ)}

because if the formulasχ1, χ2, . . . , χm are true from now forever, then the truth of the formula

◦((ϕ ∧ (γ ∨ ¬� χ1 ∨ ¬� χ2 ∨ . . .∨ ¬� χm ))U ψ)

does not depend on the truth of the disjunction¬� χ1 ∨ ¬� χ2 ∨ . . . ∨ ¬� χm which should be
false. Consequently, it is not necessary to consider the clauses that belong toalw(Φ)∪Υ (see
De�nition 4.2.2) in the subset ofΨ3 considered in (4.1) because only clauses innow(Φ) are
needed. Therefore, we replace the subformula¬(Φ∪Υ) with ¬now(Φ) in Ψ3 and we obtain
the following (logically equivalent) set

Ψ4 = Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}
∪ {P2 ∨ ◦((P1 ∧ ¬now(Φ))U P2) ∨Ni | 1 ≤ i ≤ n}
∪ {� bi (◦(P1 U P2) ∨ ◦Ni ) | bi = 1 and1 ≤ i ≤ n}

The logical equivalence ofΨ3 andΨ4 motivates the following notion of context.

De�nition 4.3.3. In an application of the rule(U Set) (see Figure 4.5) to an antecedent that is
partitioned in the two setsΦ and{� bi((P1U P2)∨Ni ) | 1 ≤ i ≤ n}, we say that∆ = now(Φ)
is thecontext. 3

Since the above formula◦((P1 ∧ ¬now(Φ))U P2) is not (in general) a literal, we should
transformΨ4 into clausal form. For that, we substitute the subformulaP1 ∧ ¬now(Φ) by the
fresh variablea and we add the clauses that de�ne the meaning ofa. This gives the following set
Ψ5 wheredef(a, P1, now(Φ)) is the result of transforming the formula� (¬a∨(P1∧¬now(Φ)))
to a set of clauses (whose de�nition is given in Figure 4.5):

Ψ5 = Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}
∪ {P2 ∨ ◦(aU P2) ∨Ni | 1 ≤ i ≤ n}
∪ CNF(def(a, P1, now(Φ)))
∪ {� bi(◦(P1U P2) ∨ ◦Ni ) | bi = 1 and1 ≤ i ≤ n}

Finally, let us check that the setsΨ4 andΨ5 are equisatis�able. On the one hand, sincea does not
appear inΨ4, a modelM0of Ψ5 can be built from a modelM of Ψ4 by just de�ningVM 0(s0

j ) as
VM (sj )∪{a} if P1∧¬now(Φ) is true in the statesj ofM and by de�ningVM 0(s0

j ) asVM (sj )\
{a} if P1 ∧ ¬now(Φ) is not true in the statesj ofM. On the other hand, since every model of
Ψ5 satis�es the formula� (¬a∨ (P1 ∧¬now(Φ))), we can ensure thatP1 ∧¬now(Φ) is true in
any states of a model ofΨ5 whenevera is true ins. Consequently,◦((P1 ∧¬now(Φ))U P2) is
true in any states of a model ofΨ5 whenever◦(aU P2) is true ins. Therefore, every model of
Ψ5 is also a model ofΨ4.

At �rst sight it could seem that the de�nition of the fresh variablea should be given by the
cnf form of the formula� (¬a∨(P1∧¬now(Φ)))∧� (a∨¬(P1∧¬now(Φ))). However, as can be
seen in the above reasoning, the clauses that correspond to the formula� (a∨¬(P1∧¬now(Φ)))
are not needed for equisatis�ability. Therefore, we do not add the clauses that correspond to
� (a ∨ ¬(P1 ∧ ¬now(Φ))).
To summarize, the initial setΨ0 –which is the antecedent of the rule(U Set)– and the last set
Ψ5 –which is the consequent of the rule(U Set)– are equisatis�able.

3 The operatornow is introduced in De�nition 4.2.2.
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(�Set) Φ ∪ {� bi(�P ∨Ni ) | 1 ≤ i ≤ n}

7−→ Φ ∪ {P ∨ ◦(aU P ) ∨Ni | 1 ≤ i ≤ n}
∪ CNF(def(a,∆))
∪ {� (◦�P ∨ ◦Ni ) | bi = 1 and1 ≤ i ≤ n}

wheren ≥ 1
∆ = now(Φ)
a ∈ Prop is fresh
def(a,∆) = � (¬a ∨ ¬∆) if ∆ 6= ∅
def(a,∆) = � ¬a if ∆ = ∅

Figure 4.6:The Rule(�Set)

The correctness of the rule(U Set) is shown in detail in the proof of Proposition 4.5.2.
The rule(U Set) leads to a complete resolution method that does not require invariant gen-

eration. This is mainly due to the above explained management of the so-called contexts by
means of the rule(U Set). An adaptation to clauses of the strategy followed in the systematic
tableau algorithm forTTM (Figure 3.9), prevents from postponing inde�nitely the satisfaction
of P1U P2. Example 4.4.4 in Section 4.4 illustrates how contexts are handled to cause incon-
sistency whenever the ful�llment of an eventuality could bein�nitely delayed. There is a �nite
number of possible different contexts and the repetition ofa previous context, while postpon-
ing an eventuality, also causes inconsistency. Therefore,there is a clear strategy to achieve
termination and completeness.

The rule(�Set) in Figure 4.6 is the specialization of(U Set) that corresponds to the equiv-
alence of�P ≡ eP U P . Consequently, along the rest of the chapter, the rule(�Set) is treated
as a derived rule, in the sense that most technical details are given only for the general rule
(U Set).

4.4 Temporal Resolution Derivations

A classical resolution derivation for a set of propositional clausesΓ is a sequence of sets of
clauses

Γ0 7→ Γ1 7→ . . . 7→ Γk

whereΓ = Γ0 and eachΓi +1 is obtained fromΓi by means of a resolution-step that consists in
applying the (classical) resolution rule. The sequence ends when eitherΓk contains the empty
clause⊥ or every application of the resolution rule on formulas inΓk yields a formula that is
already inΓk . For classical propositional logic, resolution is sound, refutationally complete and,
even, complete. Soundness and refutational completeness mean that the method obtains a set
Γk that contains⊥ for somek ∈ IN if and only if Γ is unsatis�able. Moreover, in classical
propositional resolution the sequence obtained is always �nite (if the pairs of clauses for apply-
ing the resolution rule are selected fairly) and consequently classical propositional resolution is
also complete and serves as a decision procedure.
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In this section we �rst extend the classical notion of derivation –to the temporal case of
PLTL– introducingTRS-derivations. We also provide some sampleTRS-derivations. The notion
of TRS-derivation is the basis of the sound, refutationally complete, and complete resolution
mechanism that is presented in this chapter. In the second subsection we prove technical results
on the relationship betweenTRS-resolution and classical (propositional) resolution.

4.4.1 TRS-Derivations and Examples

Our notion of derivation explicitly simulates the transition from one state to the next one, in the
sense that whenever in the current set of clauses no more resolution resolvents can be added,
then we use the operatorunnext (see De�nition 4.2.3) to get the clauses that must be satis�ed
in the state that follows (is next to) the current one. Insideeach state, theTRS-rules are applied,
hence the so-called local derivations are (roughly speaking) an extension of classical derivations.

De�nition 4.4.1. A TRS-derivationfor a set of clausesΓ is a sequence

D = Γ0
0 7→ Γ1

0 7→ . . . 7→ Γh0
0 Z⇒ Γ0

1 7→ Γ1
1 7→ . . . 7→ Γh1

1 Z⇒ . . . Z⇒ Γ0
i 7→ Γ1

i 7→ . . .

where

(a) Γ0
0 = Γ

(b) 7→ represents the application of aTRS-rule

(c) Z⇒ represents the application of the operatorunnext.

If any setΓj
i in D contains� b⊥, thenD is called arefutationfor Γ. We say that aTRS-

derivation is alocal derivationif it does not contain any application of the operatorunnext. A
local derivation is called alocal refutationif it is a refutation.

Note that we use two different symbols (7→ andZ⇒) to highlight the difference between the
application of aTRS-rule and the application of the operatorunnext. The former applications
produce setsΓj +1

i from Γj
i and are calledTRS-steps. The latter applications yieldΓ0

i +1 from Γhi
i

and are calledunnext-steps.
In the sequel we only use the pre�xTRS- whenever confusion might result, otherwise we

simply say derivation.
Now we give four examples of refutations. For readability, the derivations are represented

as vertical sequences of rule applications with the name of the applied rule at the right-hand side
of each step. In addition, the clauses to which each rule affects have been underlined. However,
we do not underline any formula in the applications of the operatorunnext. The �rst example
shows that in some cases, even if temporal literals are involved, the refutation is achieved using
only the resolution rule(Res) and the operatorunnext. The second example illustrates that
sometimes the rule(U Set) is not necessary and the rule(U Fix) is enough. The third example
shows how contexts are handled to cause inconsistency whenever the ful�llment of an eventu-
ality could be in�nitely delayed. Finally, in the fourth example, the rule(U Set) is applied to a
proper subset of the set of clauses that contain the literalpU q. In general, it can be applied to
any non-empty subset.

Example 4.4.2.In Figure 4.7 aTRS-refutation for the unsatis�able set of clauses
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Γ0
0 = {� (r ∨ � p), � ◦¬r, ◦� ¬p, � (◦r ∨ ¬q ∨ � p), p ∨ q,¬q} (unnext)

Γ0
1 = {� (r ∨ � p), � ◦¬r,¬r, � ¬p, � (◦r ∨ ¬q ∨ � p)} (Res)

Γ1
1 = {� (r ∨ � p), � ◦¬r,¬r, � ¬p, � (◦r ∨ ¬q ∨ � p), �p} (Res)

Γ2
1 = {� (r ∨ � p), �p, � ◦¬r,¬r, � ¬p, � (◦r ∨ ¬q ∨ � p),⊥}

Figure 4.7:TRS-refutation for the set of clauses{� (r∨� p), � ◦¬r,◦� ¬p, � (◦r∨¬q∨�p), p∨ q,¬q}

Γ0
0 = {� ¬p, � (rU p), (¬r)U p} (U Fix)

Γ1
0 = {� ¬p, (¬r)U p, � (p ∨ r), � (p ∨ ◦(rU p))} (U Fix)

Γ2
0 = {� ¬p, � (p ∨ r), � (p ∨ ◦(rU p)), p ∨ ¬r, p ∨ ◦((¬r)U p)} (Res)

Γ3
0 = {� ¬p, � (p ∨ r), � (p ∨ ◦(rU p)), p ∨ ¬r, p ∨ ◦((¬r)U p), � r} (Res)

Γ4
0 = {� ¬p, � (p ∨ r), � (p ∨ ◦(rU p)), p ∨ ¬r, p ∨ ◦((¬r)U p), � r,¬r} (Res)

Γ5
0 = {� ¬p, � (p ∨ r), � (p ∨ ◦(rU p)), p ∨ ¬r, p ∨ ◦((¬r)U p), � r,¬r,⊥}

Figure 4.8:TRS-refutation for the set of clauses{� ¬p, � (rU p), (¬r)U p}

{� (r ∨ � p), � ◦¬r, ◦� ¬p, � (◦r ∨ ¬q ∨ � p), p ∨ q,¬q}

is provided. It is worth remarking that in theTRS-step that yieldsΓ2
1 fromΓ1

1 the formula� ¬p
is treated as a now-clause formed by a temporal literal. Although (basic) temporal literals are
involved in the derivation process, the rules for decomposing temporal literals are not needed.

Example 4.4.3.In Figure 4.8 aTRS-refutation for the unsatis�able set of clauses

{� ¬p, � (rU p), (¬r)U p}

is showed. In this example the formulas� ¬p and � r are treated as always-clauses formed
by one propositional literal. Although literals that contain the connectiveU are involved, the
refutation is obtained without using the rule(U Set). The rule(U Fix) is enough in this case.

Example 4.4.4.LetΓ0
0 = {� (¬p∨ ◦p), p, rU ¬p}. Then, by applying(U Set) to rU ¬p in Γ0

0
whereΦ = {� (¬p ∨ ◦p), p} and∆ = {p}, we obtain

Γ1
0 = {� (¬p ∨ ◦p), p,¬p∨ r,¬p ∨ ◦(aU ¬p), � (¬a ∨ ¬p), � (¬a ∨ r)}

wherea is the fresh variable whose meaning is de�ned to ber ∧ ¬p by the last two clauses.
Note that¬p is ¬∆. Then, by four applications of the rule(Res) that respectively resolve the
singleton clausep with the four occurrences of¬p, we obtain

Γ5
0 = {� (¬p ∨ ◦p), ◦p, r, p,¬p∨ r,¬p∨ ◦(aU ¬p), ◦(aU ¬p),¬a, � (¬a ∨ ¬p), � (¬a∨ r)}.
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Γ0
0 = {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s} (Res)

Γ1
0 = {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s, (pU q)} (U Set)

Γ2
0 = {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s, q ∨ p,

q ∨ ◦(aU q), � ¬a}
(Res)

Γ3
0 = {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s, q ∨ p,

q ∨ ◦(aU q), � ¬a, ◦(aU q)}
(unnext)

Γ0
1 = {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s, � ¬a, aU q} (U Set)

Γ1
1 = {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s, � ¬a, q ∨ a,

q ∨ ◦(bU q), � ¬b}
(Res)

Γ2
1 = {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s, � ¬a, q ∨ a,

q ∨ ◦(bU q), � ¬b, q}
(Res)

Γ3
1 = {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s, � ¬a, q ∨ a,

q ∨ ◦(bU q), � ¬b, q,⊥}

Figure 4.9:TRS-refutation for the set of clauses{� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s}

Now, the operatorunnextproduces

Γ0
1 = {� (¬p ∨ ◦p), p, aU ¬p, � (¬a ∨ ¬p), � (¬a ∨ r)}.

Hence, the application of(U Set) to aU ¬p in Γ0
1 where Φ = {� (¬p ∨ ◦p), p, � (¬a ∨

¬p), � (¬a ∨ r)} and∆ = {p} yields

Γ1
1 = {� (¬p∨◦p), p,¬p∨a,¬p∨◦(bU ¬p), � (¬b∨¬p), � (¬b∨a), � (¬a∨¬p), � (¬a∨r)}

where the fresh variableb is de�ned asa ∧ ¬p by the clauses� (¬b ∨ ¬p), � (¬b ∨ a). Then,
the application of(Res) to p and¬p ∨ a yieldsa. Finally, the resolution ofp and � (¬a ∨ ¬p)
yields¬a. Hence, the empty clause is immediately obtained froma and¬a.
Roughly speaking,a holds whenever the satisfaction of¬p (or equivalently the full�lment of
rU ¬p) is postponed. However,a meansr ∧ ¬p, where¬p is the negated context. So that, the
part of the de�nition ofa given by the clause� (¬a ∨ ¬p) allows the inference of¬a, which
leads to the inconsistency.

Example 4.4.5. In Figure 4.9 we show aTRS-refutation for the unsatis�able set of clauses
{� ((pU q)∨r), � ((pU q)∨� s), � ¬q, � ¬s}. Note that the formula� ¬s is treated as a literal
in Γ0

0 and as an always-clause inΓ1
0. Besides, it is worth noting that inΓ1

0 there are three
occurrences ofpU q, but the rule(U Set) is applied by considering the setΦ to be formed by
the �rst four clauses, i.e.,Φ = {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s}. So that, in this
case the setΦ includes clauses that contain the literalpU q.
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4.4.2 RelatingTRS-Resolution to Classical Resolution

In this subsection we de�ne the notion of linear local derivation and, based on it, we establish
a relation betweenTRS-resolution and classical resolution that enables us to usewell-known
results from classical propositional logic.

De�nition 4.4.6. A set of clausesΓ is closedwith respect toTRS-rules (shortly,TRS-closed) iff
it satis�es the following three conditions:

(a) BTL(Γ) = ∅ (i.e. any literal inΓ is either propositional (p or ¬p) or starts by◦)4

(b) The subsumption rule(Sbm) cannot be applied toΓ

(c) Every clause obtained fromΓ by application of the resolution rule(Res) is already inΓ or
it is subsumed by some clause inΓ.

De�nition 4.4.7. LetΓ be a set of clauses, we denote byΓ� any set such that there exists a local
derivationΓ 7→ . . . 7→ Γ� and either� b⊥ ∈ Γ� or Γ� is TRS-closed.

Note that, in general, given a set of clausesΓ, a local derivation that yields a setΓ� that
either contains the clause� b⊥ or is TRS-closed, may include some applications of the rules
(U Set) and(�Set).

De�nition 4.4.8. Let Γ be a set of clauses, the non-deterministic operation that yieldsΓ� from
Γ without any application of the rules(U Set) and(�Set) is denoted by�x close.

In the algorithm presented in Figure 4.10 (Section 4.6) we use the procedure�x closethat
implements the operation�x closeduring the construction of a derivation.

De�nition 4.4.9. A set of clausesΓ is locally inconsistentiff there exists a local refutation for
Γ. Otherwise it islocally consistent.

Proposition 4.4.10.For anyTRS-closed set of clausesΓ, if � b⊥ 6∈ Γ thenΓ is locally consis-
tent.

Proof. If Γ is TRS-closed, every clause that can be obtained by means of the rule (Res) is al-
ready inΓ or is subsumed by some other clause inΓ. If � b⊥ is not inΓ then there is no way to
obtain it by means of a local derivation.

The following notion is an adaptation of the concept oflinear resolution based on a clause
(see e.g. Section 2.6 in [115]).

De�nition 4.4.11. A local derivationD for Γ is linear with respect to a clauseC ∈ Γ iff it
satis�es the following three conditions

(a) EveryTRS-step inD is an application of the rule(Res)

(b) C is one of the premises for(Res) in the �rst TRS-step

(c) For everyTRS-step inD, with the exception of the �rst one, one of the premises is the
resolvent obtained in the previousTRS-step.

4 see Subsection 4.2.1.
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Next, we formulate a useful relationship betweenTRS-resolution and classical propositional
resolution.

De�nition 4.4.12. Let Γ be a set of clauses,prop(Γ) is the set that results fromdrop� (Γ) by
replacing all the occurrences of each non-propositional literalL ∈ Lits(drop� (Γ)) with a fresh
propositional literal in a coherent way, in the sense that complementary literals are replaced
with complementary propositional literals.

Proposition 4.4.13.Let Γ be a set of clauses such thatBTL(Γ) = ∅.

(i) drop� (Γ) is locally inconsistent iffprop(Γ) is inconsistent (in classical logic).

(ii) Γ is locally inconsistent iffdrop� (Γ) is locally inconsistent.

Proof. (i) For the left to right implication, sinceBTL(Γ) = ∅, if drop� (Γ) is locally incon-
sistent then there exists a local refutation fordrop� (Γ) where everyTRS-step is an ap-
plication of the rule(Res) or the rule(Sbm). Hence, we can trivially build a classical
refutation forprop(Γ) with the same number of steps and using classical resolutionand
subsumption instead of(Res) and(Sbm), respectively.
Conversely, ifprop(Γ) is inconsistent then by completeness of classical propositional res-
olution there exists a refutation forprop(Γ) where only the classical resolution rule is
used. Then, it is easy to obtain a local refutation fordrop� (Γ) applying the resolution
rule (Res) to the corresponding clauses.

(ii) SinceBTL(Γ) = ∅, if Γ is locally inconsistent then there exists a local refutationD for Γ
where everyTRS-step is an application of the rule(Res) or the rule(Sbm). FromD we
can build a local refutationD0 for Γ where everyTRS-step is an application of the rule
(Res). It suf�ces to remove fromD theTRS-steps in which the rule(Sbm) is applied and
to keep (or add) the clauses subsumed inD by the applications of the rule(Sbm). From
D0we can obtain a local refutation fordrop� (Γ) in a trivial manner, by using a clauseN
whenever the original derivationD0uses the corresponding� N .
If drop� (Γ) is locally inconsistent then, by (i) and the completeness ofclassical propo-
sitional resolution, there exists a refutationD for prop(Γ) where everyTRS-step is an
application of the classical resolution rule. FromD, it is straightforward to obtain a local
refutationD0for drop� (Γ) where everyTRS-step is an application of the rule(Res). This
local refutation is trivially convertible into a local refutation for Γ, by using the clause
� N ∈ Γ instead ofN ∈ drop� (Γ) wheneverN 6∈ Γ.

Next, we provide a basic result that is used in Section 4.7 forproving completeness. This
result is an adaptation of the completeness of classical linear resolution (see Section 2.6 in [115])
that states

Given a consistent set of propositional clausesΦ, if for a propositional clauseβ 6∈ Φ
the setΦ∪{β} is inconsistent then there exists a refutation forΦ∪{β} that is linear
with respect to the clauseβ.

Proposition 4.4.14.Let Γ be a locally consistent set of clauses such thatBTL(Γ) = ∅ and let
C be a clause that is not inΓ such thatBTL({C}) = ∅. If Γ∪{C} is locally inconsistent then
there exists a local refutation forΓ∪{C} that is linear with respect to the clauseC.
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Proof. If Γ∪{C} is locally inconsistent, by Proposition 4.4.13 the setprop(Γ∪{C}) is incon-
sistent and, by completeness of classical linear resolution (see above), there exists a refutation
D0 for prop(Γ∪{C}) that is linear with respect to the clauseC0 ∈ prop(Γ∪{C}) that corre-
sponds to the clauseC. FromD0, it is trivial to build a local refutationD for Γ∪{C} that is
linear with respect toC.

4.5 Soundness

A resolution system issoundif, whenever a refutation exists for a set of clausesΓ, thenΓ
is unsatis�able. The soundness of a system can be guaranteedrule by rule, where a rule is
sound whenever it preserves the satis�ability. Often some rules preserve stronger properties
than satis�ability. In this section, we analyze each rule from the point of view of soundness and
stronger properties and prove that the resolution systemTRS is sound.

Proposition 4.5.1.The Basic Rules of Subsection 4.3.1 are sound. Moreover, every application
of these rules yields a new set of clauses that is logically equivalent to the initial set.

Proof. When(Res) is applied to two clauses (the premises)� b(L ∨ N ) and � b0(eL ∨ N0) in
Γ, the resolvent� b� b0(N ∨ N0) is a logical consequence of{� b(L ∨ N ), � b0(eL ∨ N0)} and,
consequently, the new set of clausesΓ0 = Γ∪{� b� b0(N ∨ N0)} is logically equivalent to the
set of clausesΓ.

For soundness of(Sbm), suppose that� bN and� bN0are inΓ and thatN0 ( N . It is trivial
that any model ofΓ is also a model ofΓ \ {� bN} and vice-versa.

Given a set of clausesΓ, the rule(U Fix) replaces a clause� b((P1U P2) ∨ N ) ∈ Γ
with two clauses� b(P2 ∨ P1 ∨ N ) and � b(P2 ∨ ◦(P1U P2) ∨ N ) obtaining a new setΓ0

= (Γ \ {� b((P1U P2) ∨ N )})∪{� b(P2 ∨ P1 ∨ N ), � b(P2 ∨ ◦(P1U P2) ∨ N )}. The two
sets,Γ and Γ0, are logically equivalent since the clause that contains the literal of the form
P1 U P2 is replaced with the clauses obtained by taking into accountthe inductive de�nition
of the connectiveU . Similarly, the rule(RFix) replaces a clause� b((P1RP2) ∨ N ) ∈
Γ with two clauses� b(P2 ∨ N ) and � b(P1 ∨ ◦(P1RP2) ∨ N ) obtaining a new setΓ0 =
(Γ \ {� b((P1RP2) ∨ N )})∪{� b(P2 ∨ N ), � b(P1 ∨ ◦(P1RP2) ∨ N )}. The setsΓ and
Γ0 are logically equivalent because the clause that contains the literal of the formP1RP2 is
substituted by the clauses obtained by using the inductive de�nition of the connectiveR. In
particular, every application of the rules(� Fix) and(�Fix) yields a new set of clauses that is
logically equivalent to the initial set. Therefore, they are also sound.

Proposition 4.5.2. The rule(U Set) is sound. Moreover, the initial and the target sets of every
application of(U Set) are equisatis�able.

Proof. When the rule(U Set) is applied to a set of clausesΓ, a non-empty subset

{� bi(P1 U P2 ∨Ni ) | 1 ≤ i ≤ n}

is replaced with a set of clauses
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Ψ = {P2 ∨ P1 ∨Ni , P2 ∨ ◦(aU P2) ∨Ni | 1 ≤ i ≤ n}

∪ CNF(def(a, P1,∆))

∪ {� (◦(P1U P2) ∨ ◦Ni ) | bi = 1 and1 ≤ i ≤ n}

where∆ = now(Γ \ {� bi(P1U P2 ∨ Ni ) | 1 ≤ i ≤ n}), a ∈ Prop is fresh,def(a, P1,∆) =
� (¬a ∨ (P1 ∧ ¬∆)) if ∆ 6= ∅ anddef(a, P1,∆) = � ¬a if ∆ = ∅.

So the new setΓ0 is

(Γ \ {� bi(P1 U P2 ∨Ni ) | 1 ≤ i ≤ n})∪Ψ.

We �rst show, in item(a), that if Γ0 is satis�able thenΓ is satis�able and then, in item(b),
we show that ifΓ is satis�able thenΓ0 is satis�able:

(a) By Theorem 4.2.7, the setΨ and the following setΥ are equisatis�able:

Υ = {P2 ∨ P1 ∨Ni , P2 ∨ ◦(aU P2) ∨Ni | 1 ≤ i ≤ n}

∪ def(a, P1,∆)

∪ {� (◦(P1U P2) ∨ ◦Ni ) | bi = 1 and1 ≤ i ≤ n}

Consequently, the setΓ0 and the set

Γ00= ((Γ0\Ψ)∪ Υ) = ((Γ \ {� bi (P1U P2 ∨Ni ) | 1 ≤ i ≤ n})∪ Υ)

are equisatis�able. Let〈M00, s00
0〉 |= Γ00, sincea does appear neither in theP2 ∨Ni 's nor

in Γ, we build a modelM of Γ in the following two cases:

1. If 〈M00, s00
0〉 |= P2 ∨Ni for all i ∈ {1, . . . , n}, then we can de�ne the modelM for

Γ as follows

• a 6∈ VM (sj ) for everyj ∈ IN
• p ∈ VM (sj ) iff p ∈ VM 00(s00

j ) for all j ∈ IN and allp ∈ Propsuch thatp 6= a.

2. If 〈M00, s00
0〉 6|= P2 ∨Ni for somei ∈ {1, . . . , n}, then it should be that〈M00, s00

0〉 |=
{P1, ◦(aU P2)}. Let x be the leastz ≥ 1 such that〈M00, s00

z〉 |= P2. If x = 1 then,
sincea does not appear inP2 and〈M00, s00

0〉 |= P1, the modelM of Γ can be built
just as in the case 1 of this item(a). If x > 1, then

〈M00, s00
y〉 |= {a} ∪ def(a, P1,∆)

for everyy such that1 ≤ y < x. Note that∆ cannot be the empty set∅ because in
such casea would not be true for anyy such that1 ≤ y < x. As a consequence,

〈M00, s00
y〉 |= {a} ∪{P1 ∧ ¬∆}

for everyy such that1 ≤ y < x.
So that the modelM of Γ can be built just as in the case 1 of this item(a).

(b) Now we show the converse implication. Let〈M, s0〉 |= Γ, sincea does not appear in the
Ni 's, we build a modelM0of Γ0 in the following two cases.



4. Invariant-Free Clausal Temporal Resolution forPLTL 91

1. Let us consider that〈M, s0〉 |= Ni for all i ∈ {1, . . . , n}. Then we can de�ne a
modelM0for Γ0as follows:

• a 6∈ VM 0(s0
j ) for everyj ∈ IN

• p ∈ VM 0(s0
j ) iff p ∈ VM (sj ) for all j ∈ IN and allp ∈ Propsuch thatp 6= a

2. If 〈M, s0〉 6|= Ni for somei ∈ {1, . . . , n}, then it should be that〈M, s0〉 |=
P1U P2. Let x be the leastz ≥ 0 such that〈M, sz〉 |= P2. If x = 0 then, sincea
does not appear inP2, a modelM0 of Γ0 can be built just as in the case 1 of item
(b). If x > 0, let y be the greatestz such that0 ≤ z < x and

〈M, sz〉 |= now(Γ \ {� bi(P1U P2 ∨Ni ) | 1 ≤ i ≤ n})∪{P1U P2}.

Note that at leastz = 0 must satisfy the above set of clauses. As a consequence of
the choice ofx andy, it holds that

〈M, sy〉 |= {P1,¬P2, ◦((P1∧¬now(Γ\{� bi(P1 U P2∨Ni ) | 1 ≤ i ≤ n}))U P2)}.

Besides,〈M, sy〉 |= now(Γ \ {� bi(P1U P2 ∨Ni ) | 1 ≤ i ≤ n}). So that, we can
de�ne a modelM0for Γ0as follows

• p ∈ VM 0(s0
j ) iff p ∈ VM (sj + y) for all j ∈ IN and allp ∈ Propsuch thatp 6= a

• a 6∈ VM 0(s0
0)

• a ∈ VM 0(s0
j ) for everyj ∈ {1, . . . , x− y − 1}

• a 6∈ VM 0(s0
j ) for everyj ≥ x− y.

As a particular case of Proposition 4.5.2, the derived rule(�Set) is also sound.

Proposition 4.5.3. The operatorunnext(see De�nition 4.2.3) preserves satis�ability.

Proof. If M is a model ofΓ thenunnext(Γ) is true in the states1 ofM, which obviously gives
a model forunnext(Γ).

Note that the equisatis�ability, in general, of initial andtarget sets ofunnext cannot be
ensured. For example,{p,¬p, ◦q} is unsatis�able, butunnext({p,¬p, ◦q}) = {q} is satis�able.

As a direct consequence of the above Propositions 4.5.1, 4.5.2 and 4.5.3, we have the fol-
lowing soundness theorem:

Theorem 4.5.4.If the resolution systemTRS produces a refutation fromΓ, thenΓ is unsatis�-
able.

4.6 The Algorithm SR for SystematicTRS-Resolution

The nondeterministic application of the set ofTRS-rules yields sound derivations but it does not
guarantee completeness, even with the proviso of fairness.In this section we �rst introduce an
algorithm for systematic resolution derivation calledSR that uses the systemTRS in a more
(not fully) deterministic way which ensures completeness.Then, in the second subsection we
provide some detailed examples of application ofSR. In the third and fourth subsections we
respectively provide the termination and the worst case complexity results forSR.
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Input: A �nite set of clausesΓ
Output: A resolution proof forΓ calledD(Γ)

1 Γ0
0 := Γ; i := 0; j := 0;

2 sel ev set0 := fair select(Γ0
0);

3 loop

4 if sel ev seti 6= ∅
5 then (Γ1

i , sel ev set�i ) := apply U Set(Γ0
i , sel ev seti ); j := 1;

6 elsesel ev set�i := ∅
7 end if;

8 Γ�
i := �x close(Γj

i );
9 if � b⊥ ∈ Γ�

i or is cycling(D(Γ)) then exit; end if;

10 Γ0
i +1 := unnext(Γ�

i );
11 if sel ev set�i ∩ event(Γ0

i +1 ) = ∅ then sel ev seti +1 := fair select(Γ0
i +1 );

12 elsesel ev seti +1 := sel ev set�i
13 end if;

14 i := i+ 1; j := 0;

15 end loop;

Figure 4.10:The AlgorithmSR for SystematicTRS-Resolution

4.6.1 The AlgorithmSR

The algorithmSR, for any input set of clausesΓ, obtains a �niteresolution proof–calledD(Γ)–
of the form

Γ0
0 7→ . . . 7→ Γh0

0 Z⇒ Γ0
1 7→ . . . 7→ Γh1

1 Z⇒ . . . Z⇒ Γ0
k 7→ . . . 7→ Γhk

k

As we will respectively show in Subsection 4.6.3 and Section4.7,D(Γ) is always �nite and
D(Γ) is a refutation whenever the input setΓ is unsatis�able. When convenient, we represent
D(Γ) by sequences of pairs

(Γ0,Γ�
0) Z⇒ (Γ1,Γ�

1) Z⇒ . . . Z⇒ (Γk ,Γ�
k)

whereΓi andΓ�
i coincide withΓ0

i andΓhi
i respectively, for everyi ∈ {0, . . . , k}.

Derivations (refutations) obtained by means of the algorithm SR are called systematic
derivations (refutations) and systematicTRS-derivations (refutations).

The construction ofD(Γ), for any inputΓ, is expressed by means of a while-program in
Figure 4.10, called the algorithmSR, which we explain next. In order to ensure thatD(Γ) is
�nite, the rule (U Set) is applied exactly to one eventuality5 (if there is any) between each two
consecutive unnext-steps (see Subsection 4.4.1). For thatpurpose, the algorithmSR keeps two
variablessel ev seti andsel ev set�i for everyi ≥ 0. Both variablessel ev seti andsel ev set�i
take as value a set that is a singleton or empty, depending on whetherΓ0

i contains at least one

5 see De�nition 2.2.1.
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eventuality or not, respectively. The variablesel ev seti stands for the selected eventuality in
Γ0

i , whereassel ev set�i corresponds to the eventuality selected in every set of the sequence from
Γ1

i until Γhi
i .

The algorithmSR (see Figure 4.10) initializes both the set of clauses for starting the derivation
Γ0

0 to be the input setΓ and the variablesel ev set0 to be either, a fairly selected eventuality
in Γ0

0 if there is any, or empty, otherwise. The expressionfair select(Γ`
g) encapsulates thefair

selection of an eventuality inΓ`
g, where fairness means that if an eventuality appears as available

(from some moment onwards) for being selected whenever an eventuality must be selected, such
eventuality cannot remain inde�nitely unselected.
After initialization, each iteration-step of the algorithmSR serves to extend the derivation from
Γ0

i to Γ�
i by means of the following process:

• The lines 4 to 8 serve to extend the derivation fromΓ0
i to Γ�

i .
First, by lines 4-7, the rule(U Set) is applied exactly to the selected eventuality provided
that sel ev seti 6= ∅. More precisely, ifsel ev seti = {T}, then the rule(U Set) is
applied to a partition ofΓ0

i of the formΦ∪ (Γ0
i � sel ev seti ),6 producing the setΓ1

i in
D(Γ). Additionally, as part of this application of the rule(U Set), the variablesel ev set�i
gets the value{aU P} whereaU P is the new eventuality introduced by the rule(U Set)
with a fresh variablea. Otherwise, ifsel ev seti is empty, the rule(U Set) is not applied
andsel ev set�i gets the value∅.
Second, by line 8, the remainingTRS-rules are repeatedly applied toΓj

i (wherej = 0 or
j = 1) to constructΓ�

i . The operation�x closeis introduced in De�nition 4.4.8. Hence,
Γ�

i is eitherTRS-closed (see De�nition 4.4.6) or contains the empty clause.Moreover, the
variablesel ev set�i is not changed by the operation�x close. Hence, at line 11 the value
of sel ev set�i is the same as at line 7.

• In line 9, the loop is exited if either the empty clause has been added toΓ�
i or a cycle in

D(Γ) is detected according to the following de�nition.

De�nition 4.6.1. LetD = (Γ0,Γ�
0) Z⇒ (Γ1,Γ�

1) Z⇒ . . . Z⇒ (Γj ,Γ�
j ) Z⇒ . . . Z⇒ (Γk ,Γ�

k)
be a derivation (where0 ≤ j ≤ k), we say thatD is cyclingwith respect toj andk iff D
satis�es the following conditions

1. � b⊥ 6∈ Γ�
i for everyi ∈ {0, . . . , k}

2. now(unnext(Γ�
k)) = now(Γj )

3. For every eventualityT such thatT ∈ Lits(now(Γg)) for all g ∈ {j, . . . , k}, there
existsh ∈ {j, . . . , k} such thatsel ev seth = {T}.

The functionis cycling(line 9) is supposed to implement a test of the conditions (2)and
(3) in De�nition 4.6.1 on the current derivationD(Γ) = (Γ0,Γ�

0) Z⇒ . . . Z⇒ (Γi ,Γ�
i ).

• Otherwise, if the loop is not exited, the operatorunnext (De�nition 4.2.3) is applied to
theTRS-closed setΓ�

i to yield Γ0
i +1 (line 10), which will be theΓ0

i of the next step, after
increasingi (line 14).

6 See De�nition 4.2.1.
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• Finally, the lines 11 to 13 serve to initialize the variablesel ev seti +1 . Note that, after the
application of the subsumption rule and/or of the operatorunnext, every clause that in-
cludes the selected eventualitysel ev set�i could have disappeared from the currentΓ0

i +1 .
In other words, although◦(aU P ) occurs in someΓj

i , it could happen that the selected
eventualityaU P does not occur inΓ0

i +1 . The functionevent(line 11) returns the set of
all eventualities occurring in an input set of clauses, thatis

De�nition 4.6.2. LetΨ be a set of clauses,event(Ψ) = {P1U P2 | � b((P1U P2) ∨N ) ∈
Ψ}.

Therefore, ifsel ev set�i ∩ event(Γ0
i +1 ) is non-empty, then the selected eventuality remains

selected. Otherwise, the functionfair selectis used to fairly select an eventuality from
event(Γ0

i +1 ).

We would like to remark the following three issues about the construction ofD(Γ) by the
algorithmSR

1. Although(Sbm) can be correctly applied whenever it is possible, in order toguarantee
termination it suf�ces to apply(Sbm) just before testing for a cycling derivation. This
can be seen in the proof of Lemma 4.6.13.

2. For achieving completeness the operatorunnext must always be applied toTRS-closed
sets. Otherwise, equisatis�ability is not guaranteed because the operatorunnextpreserves
satis�ability (Proposition 4.5.3) but, in general, does not preserve unsatis�ability.

3. In the intermediate setsΓj
i of the process for obtainingΓ�

i from Γi , literals can appear that
are neither inΓ�

i nor in Γi . This fact can be easily observed applying the algorithmSR
to (e.g.) the setΓ = {pU q, q}.

4.6.2 Examples

In this subsection we apply the algorithmSR to some illustrative examples. As in the examples
showed in Subsection 4.4.1, the clauses to which each rule affects have been underlined but
we do not underline any formula in the applications of the operatorunnext. Since theseTRS-
derivations are built by using the algorithmSR, in each �gure we show the value of the variables
sel ev seti andsel ev set�i .

Example 4.6.3.The derivation in Figure 4.11 is a refutation of the unsatis�able set of clauses
{p, � (¬p ∨ ◦p), �¬p} that has been obtained following the algorithmSR. First of all, in Γ0,
i.e., in Γ0

0 the selected eventuality is�¬p and consequentlysel ev set0 = {�¬p}. Then, the
application of the rule(�Set) with context{p} (always-clauses are excluded from the negation
of the context) introduces a new propositional variablea and transforms the clause�¬p into the
last two clauses inΓ1

0, ¬p ∨ ◦(aU ¬p) and � (¬a ∨ ¬p). Additionally, the value ofsel ev set�0
is set to{aU ¬p}. Then, the rule applications that correspond to the operation�x close(line 8,
Figure 4.10) are performed and theTRS-closed setΓ5

0, i.e.,Γ�
0 is obtained. In order to obtain the

TRS-closed setΓ5
0 fromΓ1

0 the resolution rule(Res) is applied three times and the subsumption
rule (Sbm) is applied once. In the application of the rule(Res) to the setΓ1

0, the clausesp and
� (¬p ∨ ◦p) are the premises and the resolvent is the last clause◦p in Γ2

0. Then the rule(Res)
is applied to the �rst and third clauses inΓ2

0, giving the last clause◦(aU ¬p) in Γ3
0. Again, by
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Γ0 = Γ0
0 = {p, � (¬p ∨ ◦p), �¬p} (�Set) sel ev set0 = {�¬p}

Γ1
0 = {p, � (¬p ∨ ◦p),¬p ∨ ◦(aU ¬p),

� (¬a ∨ ¬p)}
(Res) sel ev set�0 = {aU ¬p}

Γ2
0 = {p, � (¬p ∨ ◦p),¬p ∨ ◦(aU ¬p),

� (¬a ∨ ¬p), ◦p}
(Res)

Γ3
0 = {p, � (¬p ∨ ◦p),¬p ∨ ◦(aU ¬p),

� (¬a ∨ ¬p), ◦p, ◦(aU ¬p)}
(Res)

Γ4
0 = {p, � (¬p ∨ ◦p),¬p ∨ ◦(aU ¬p),

� (¬a ∨ ¬p), ◦p, ◦(aU ¬p),¬a}
(Sbm)

Γ�
0 = Γ5

0 = {p, � (¬p ∨ ◦p), � (¬a ∨ ¬p), ◦p,
◦(aU ¬p),¬a}

(unnext)

Γ1 = Γ0
1 = {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p, aU ¬p} (U Set) sel ev set1 = {aU ¬p}

Γ1
1 = {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p,¬p ∨ a,

¬p ∨ ◦(bU ¬p), � (¬b ∨ a),
� (¬b ∨ ¬p)}

(Res) sel ev set�1 = {bU ¬p}

Γ2
1 = {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p,¬p ∨ a,

¬p ∨ ◦(bU ¬p), � (¬b ∨ a),
� (¬b ∨ ¬p), a}

(Res)

Γ3
1 = {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p,¬p∨ a,

¬p ∨ ◦(bU ¬p), � (¬b ∨ a),
� (¬b ∨ ¬p), a,¬a}

(Res)

Γ�
1 = Γ4

1 = {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p,¬p∨ a,
¬p ∨ ◦(bU ¬p), � (¬b ∨ a),
� (¬b ∨ ¬p), a,¬a,⊥}

Figure 4.11:SystematicTRS-refutation for the set of clauses{p, � (¬p ∨ ◦p),�¬p}
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resolution of the �rst and fourth clauses inΓ3
0, we obtain the clause¬a in Γ4

0. By subsumption,
the third clause is dropped, since it is subsumed by the sixthone, yieldingΓ5

0. Then, since
no other rule can be applied, the operatorunnext transforms theTRS-closed setΓ5

0 into Γ1.
The latter represents the clauses that must be satis�ed in the states1, provided that the state
s0 satis�esΓ0. SinceaU ¬p belongs toevent(Γ0

1), the value of the setsel ev set1 is {aU ¬p}.
Since the selected eventuality must be immediately handled(after the application of the operator
unnext), the rule(U Set) is applied toΓ1 = Γ0

1. Note that, the context is again{p}. Then,
Γ1

1 contains four new clauses that substitute the clauseaU ¬p. A new propositional variableb
occurs in the new clauses andsel ev set�1 is{bU ¬p}. Finally, by three consecutive applications
of the rule(Res) –which correspond to the operation�x close– to the three underlined pairs of
clauses, the empty clause is obtained inΓ4

1. Note that the repeated context inΓ0 andΓ1 leads
to �nd a contradiction.

In the previous example, if we had used the rules(�Fix) and(U Fix) instead of the rules
(�Set) and(U Set), we would have not obtained the empty clause. The following example
illustrates this fact.

Example 4.6.4. In Figure 4.12 we show a derivation whose initial setΓ0
0 coincides with the

initial unsatis�able set considered in Example 4.6.3 (Figure 4.11). Whereas in the refutation
presented in Figure 4.11 we �rst apply the rule(�Set), we start the derivation in Figure 4.12 by
applying the rule(�Fix). Then the resolution rule(Res) is applied twice and the subsumption
rule (Sbm) once, obtaining theTRS-closed setΓ4

0. The application of the operatorunnext to
the setΓ4

0 yields the setΓ0
1 which contains the same clauses asΓ0

0. By repeating this process,
we could obtain an endless resolution derivation. Indeed, we will never obtain the empty clause
unless we use the rules(�Set) and(U Set) in an appropriatemanner. Obviously, the derivation
in Figure 4.12 does not follow the algorithmSR.

The next example shows how the systematicTRS-resolution deals with clauses of the form
� P .

Example 4.6.5.In Figure 4.13 we provide a systematicTRS-refutation for the unsatis�able set
of clauses{� p, �¬p}. Since the procedure�x closein the algorithmSR uses the function
BTL (see De�nitions 4.2.3 and 4.4.8) in order to decide whether aset of clauses isTRS-closed
(De�nition 4.4.6) and sinceBTL is based on the functiondrop� (De�nition 4.2.3), clauses of
the form� P are considered always-clauses formed by one propositionalliteral and not now-
clauses formed by one (basic) temporal literal. So following the algorithmSR we obtain the
refutation in Figure 4.13. But we would like to remark that ifwe do not follow the algorithm
SR, it is possible to build the refutation in Figure 4.14.

The following two examples show that the subsumption rule(Sbm) is required to guarantee
the termination of the algorithmSR. In the case of Example 4.6.6 the concerned set of clauses
is satis�able, whereas in Example 4.6.7 is not.

Example 4.6.6. Let us consider the derivation for the satis�able set of clauses{(pU q) ∨
� r, � ¬p, � ¬q} that is showed split (due to space reasons) in Figures 4.15 and 4.16. The
derivation is only developed until the �rst application of the operatorunnext, which yields the
setΓ0

1.
It is worth noting that if the rule(Sbm) were not applied to the sets fromΓ11

0 to Γ21
0 , then

the setΓ1 would be
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Γ0
0 = {p, � (¬p ∨ ◦p), �¬p} (�Fix)

Γ1
0 = {p, � (¬p ∨ ◦p),¬p ∨ ◦�¬p} (Res)

Γ2
0 = {p, � (¬p ∨ ◦p),¬p ∨ ◦�¬p, ◦p} (Res)

Γ3
0 = {p, � (¬p ∨ ◦p),¬p ∨ ◦�¬p, ◦p, ◦�¬p} (Sbm)

Γ4
0 = {p, � (¬p ∨ ◦p), ◦p, ◦�¬p} (unnext)

Γ0
1 = {p, � (¬p ∨ ◦p), �¬p}

. . .

Figure 4.12:Non-systematicTRS-derivation for the set of clauses{p, � (¬p ∨ ◦p),�¬p}

Γ0 = Γ0
0 = {� p, �¬p} (�Set) sel ev set0 = {�¬p}

Γ1
0 = {� p,¬p ∨ ◦(aU ¬p), � ¬a} (Res) sel ev set�0 = {aU ¬p}

Γ2
0 = {� p,¬p ∨ ◦(aU ¬p), ◦(aU ¬p), � ¬a} (Sbm)

Γ�
0 = Γ3

0 = {� p, ◦(aU ¬p), � ¬a} (unnext)

Γ1 = Γ0
1 = {� p, aU ¬p, � ¬a} (U Set) sel ev set1 = {aU ¬p}

Γ1
1 = {� p, � ¬a,¬p ∨ a,

¬p ∨ ◦(bU ¬p), � ¬b}
(Res) sel ev set�1 = {bU ¬p}

Γ2
1 = {� p, � ¬a,¬p ∨ a,¬p ∨ ◦(bU ¬p),

� ¬b, a}
(Res)

Γ�
1 = Γ3

1 = {� p, � ¬a,¬p ∨ a,¬p ∨ ◦(bU ¬p),
� ¬b, a,⊥}

Figure 4.13:SystematicTRS-refutation for the set of clauses{� p,�¬p}

Γ0
0 = {� p, �¬p} (Res)

Γ1
0 = {� p, �¬p,⊥}

Figure 4.14:Non-systematicTRS-refutation for the set of clauses{� p,�¬p}
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Γ0 = Γ0
0 = {(pU q) ∨ � r, � ¬p, � ¬q} (U Set) sel ev set0 = {pU q}

Γ1
0 = {q ∨ p ∨ � r, q ∨ ◦(a1U q) ∨ � r,

� ¬p, � ¬q, � ¬a1}
(� Fix) sel ev set�0 = {a1U q}

Γ2
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ � r, � ¬p, � ¬q, � ¬a1}
(� Fix)

Γ3
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r, q ∨ ◦(a1U q) ∨ ◦� r,
� ¬p, � ¬q, � ¬a1}

(Res)

Γ4
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r, q ∨ ◦(a1U q) ∨ ◦� r,
� ¬p, � ¬q, � ¬a1, p ∨ r}

(Res)

Γ5
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r, q ∨ ◦(a1U q) ∨ ◦� r,
� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r}

(Res)

Γ6
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r, q ∨ ◦(a1U q) ∨ ◦� r,
� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,
◦(a1U q) ∨ r}

(Res)

Γ7
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r, q ∨ ◦(a1U q) ∨ ◦� r,
� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,
◦(a1U q) ∨ r, ◦(a1U q) ∨ ◦� r}

(Res)

Γ8
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r, q ∨ ◦(a1U q) ∨ ◦� r,
� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,
◦(a1U q) ∨ r, ◦(a1U q) ∨ ◦� r, q ∨ r}

(Res)

Γ9
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r, q ∨ ◦(a1U q) ∨ ◦� r,
� ¬p, � ¬q, � ¬a1, p ∨ r, p ∨ ◦� r,
◦(a1U q) ∨ r, ◦(a1U q) ∨ ◦� r,
q ∨ r, q ∨ ◦� r}

(Res)

Γ10
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r, q ∨ ◦(a1U q) ∨ ◦� r,
� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,
◦(a1U q) ∨ r, ◦(a1U q) ∨ ◦� r,
q ∨ r, q ∨ ◦� r, r}

(Res)

Figure 4.15:SystematicTRS-derivation for the set of clauses{(pU q) ∨ � r, � ¬p, � ¬q} (Part 1 of 2)
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Γ11
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r, q ∨ ◦(a1U q) ∨ ◦� r,
� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,
◦(a1U q) ∨ r, ◦(a1U q) ∨ ◦� r,
q ∨ r, q ∨ ◦� r, r, ◦� r}

(Sbm)

Γ12
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

q ∨ ◦(a1U q) ∨ r,
� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,
◦(a1U q) ∨ r, ◦(a1U q) ∨ ◦� r,
q ∨ r, q ∨ ◦� r, r, ◦� r}

(Sbm)

Γ13
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,
◦(a1U q) ∨ r, ◦(a1U q) ∨ ◦� r,
q ∨ r, q ∨ ◦� r, r, ◦� r}

(Sbm)

Γ14
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,
◦(a1U q) ∨ ◦� r,
q ∨ r, q ∨ ◦� r, r, ◦� r}

(Sbm)

Γ15
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦� r,

� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,
q ∨ r, q ∨ ◦� r, r, ◦� r}

(Sbm)

Γ16
0 = {q ∨ p ∨ r, � ¬p, � ¬q, � ¬a1,

p ∨ r, p∨ ◦� r,
q ∨ r, q ∨ ◦� r, r, ◦� r}

(Sbm)

Γ17
0 = {� ¬p, � ¬q, � ¬a1, p ∨ r, p∨ ◦� r,

q ∨ r, q ∨ ◦� r, r, ◦� r}
(Sbm)

Γ18
0 = {� ¬p, � ¬q, � ¬a1, p ∨ r,

q ∨ r, q ∨ ◦� r, r, ◦� r}
(Sbm)

Γ19
0 = {� ¬p, � ¬q, � ¬a1, p ∨ r,

q ∨ r, r, ◦� r}
(Sbm)

Γ20
0 = {� ¬p, � ¬q, � ¬a1, p ∨ r, r, ◦� r} (Sbm)

Γ21
0 = {� ¬p, � ¬q, � ¬a1, q ∨ r, r, ◦� r} (Sbm)

Γ�
0 = Γ22

0 = {� ¬p, � ¬q, � ¬a1, r, ◦� r} (unnext)

Γ1 = Γ0
1 = {� ¬p, � ¬q, � ¬a1, � r} sel ev set1 = ∅

. . .

Figure 4.16:SystematicTRS-derivation for the set of clauses{(pU q) ∨ � r, � ¬p, � ¬q} (Part 2 of 2)
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{(a1U q) ∨ � r, � ¬p, � ¬q, � r, � ¬a1}

andsel ev set1 = {(a1U q)}. Indeed, every setΓi (such thati ≥ 1) obtained afteri unnext-
steps would be of the form

{(ai U q) ∨ � r, � ¬p, � ¬q, � r} ∪{� ¬ah | 1 ≤ h ≤ i}

andsel ev seti = {(ai U q)}. Consequently, it would be impossible to obtain two setsΓj and
Γk such that0 ≤ j ≤ k and now(Γj ) = now(unnext(Γ�

k)). Hence, the resolution process
would not stop. Actually, from the eleven applications of the rule(Sbm) in Figure 4.16, only
the application of the rule(Sbm) to the setΓ14

0 is crucial. This application removes the clause
◦(a1U q) ∨ ◦� r and yields the setΓ15

0 . Note that the other ten clauses removed, respectively,
by the remaining ten applications of the rule(Sbm) would also be removed by the application
of the operatorunnext. This example shows that the rule(Sbm) is needed for completeness of
theTRS-system.

Example 4.6.7.For the unsatis�able set of clauses{(pU q) ∨ (rU s), � ¬p, � ¬q, � ¬s}, if the
�rst selected eventuality ispU q then the same problem as in Example 4.6.6 happens, but with
(ai U q)∨ (rU s) instead of(ai U q)∨ � r, whereai is a fresh variable. This example shows that
the rule(Sbm) is also needed for refutational completeness of theTRS-system.

One could think that if there are more than one eventuality that can be selected by the
fair selectoperation, then it could be that not all of the eventualitieswere right choices (e.g.
because the program prevents the satisfaction of some of them). This view leads to the idea that
wrong choices will have to be repaired by backtracking to thechoice point and changing the
selection. Moreover, sometimes one eventualityϕ must be necessarily ful�lled before another
eventualityψ. In those cases, one could think that selectingψ before selectingϕ could end
up requiring backtracking. In the next example we illustrate thatTRS-resolution does not need
backtracking (independently of the selection strategy).

Example 4.6.8.We consider the satis�able set of clausesΓ = {� q, �r, � (¬q ∨ � ¬r)}. There
are two eventualities,� q and � r, that must be ful�lled, but the third clause� (¬q ∨ � ¬r)
states that once the eventuality� q is ful�lled, the eventuality� r cannot be ful�lled. So that,
the eventuality� r must be ful�lled before the eventuality� q is ful�lled. The selection function
fair selectcould �rst select the eventuality� q or could �rst select the eventuality� r. However,
if fair select�rst selects� q, it does not mean that� q is ful�lled before� r is ful�lled. Actually,
since� rmust be ful�lled before� q, that is what happens. The correspondingcycling systematic
TRS-derivation is shown in detail in Figures 4.17 and 4.18 (it issplit due to space reasons).

After the �rst selection,sel ev set0 = {� q}. Then the application of the rule(�Set) with
context{� r} generates the clausesq ∨ ◦(aU q) and � (¬a ∨ � ¬r) wherea is a fresh propo-
sitional variable. At the same time, the value ofsel ev set�0 is set to{aU q}. Then, the rule
applications that correspond to the�x closeoperation (see Figure 4.10, line 8) are carried out
and theTRS-closed set of clausesΓ12

0 is obtained. Next, by the application of the operator
unnext, the setΓ0

1 is generated. Since the literalaU q belongs toevent(Γ0
1), it remains as the

selected literal and, consequently, the rule(U Set) is applied toΓ0
1 with aU q as selected lit-

eral (i.e., sel ev set1 = {aU q}) and with empty context, obtaining the set of clausesΓ1
1 and

settingsel ev set�1 to {bU q}, whereb is a fresh propositional variable. The operation�x close
that yields theTRS-closed setΓ7

1 from Γ1
1, encapsulates several applications of the rule(Res)

and the rule(Sbm). The setΓ0
2 is obtained fromΓ7

1 by using the operatorunnext. Since the
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Γ0 = Γ0
0 = {� q, �r, � (¬q ∨ � ¬r)} (�Set) sel ev set0 = {� q}

Γ1
0 = {� r, � (¬q ∨ � ¬r), q ∨ ◦(aU q),

� (¬a ∨ � ¬r)}
(�Fix) sel ev set�0 = {aU q}

Γ2
0 = {� (¬q ∨ � ¬r), q ∨ ◦(aU q),

� (¬a ∨ � ¬r), r ∨ ◦� r}
(� Fix)

Γ3
0 = {q ∨ ◦(aU q), � (¬a ∨ � ¬r), r ∨ ◦� r,

� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r)}
(� Fix)

Γ4
0 = {q ∨ ◦(aU q), r ∨ ◦� r, � (¬q ∨ ¬r),

� (¬q ∨ ◦� ¬r), � (¬a ∨ ¬r),
� (¬a ∨ ◦� ¬r)}

(Res)

Γ5
0 = {q ∨ ◦(aU q), r ∨ ◦� r, � (¬q ∨ ¬r),

� (¬q ∨ ◦� ¬r), � (¬a ∨ ¬r),
� (¬a ∨ ◦� ¬r), r ∨ ¬q}

(Res)

Γ6
0 = {q ∨ ◦(aU q), r ∨ ◦� r, � (¬q ∨ ¬r),

� (¬q ∨ ◦� ¬r), � (¬a ∨ ¬r),
� (¬a ∨ ◦� ¬r), r ∨ ¬q,¬q}

(Res)

Γ7
0 = {q ∨ ◦(aU q), r ∨ ◦� r, � (¬q ∨ ¬r),

� (¬q ∨ ◦� ¬r), � (¬a ∨ ¬r),
� (¬a ∨ ◦� ¬r), r ∨ ¬q,¬q, r ∨ ¬a}

(Res)

Γ8
0 = {q ∨ ◦(aU q), r ∨ ◦� r, � (¬q ∨ ¬r),

� (¬q ∨ ◦� ¬r), � (¬a ∨ ¬r),
� (¬a ∨ ◦� ¬r), r ∨ ¬q,¬q, r ∨ ¬a,¬a}

(Res)

Γ9
0 = {q ∨ ◦(aU q), r ∨ ◦� r, � (¬q ∨ ¬r),

� (¬q ∨ ◦� ¬r), � (¬a ∨ ¬r),
� (¬a ∨ ◦� ¬r), r ∨ ¬q,¬q, r ∨ ¬a,
¬a, ◦(aU q)}

(Sbm)

Γ10
0 = {q ∨ ◦(aU ), r ∨ ◦� r, � (¬q ∨ ¬r),

� (¬q ∨ ◦� ¬r), � (¬a ∨ ¬r),
� (¬a ∨ ◦� ¬r),¬q, r ∨ ¬a,¬a, ◦(aU q)}

(Sbm)

Γ11
0 = {q ∨ ◦(aU q), r ∨ ◦� r, � (¬q ∨ ¬r),

� (¬q ∨ ◦� ¬r), � (¬a ∨ ¬r),
� (¬a ∨ ◦� ¬r),¬q,¬a, ◦(aU q)}

(Sbm)

Γ�
0 = Γ12

0 = {r ∨ ◦� r, � (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),
� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r),¬q,¬a,
◦(aU q)}

(unnext)

Figure 4.17:Cycling systematicTRS-derivation for{� q, � r, � (¬q ∨ � ¬r)} (Part 1 of 2)
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Γ1 = Γ0
1 = {� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),

� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r), aU q}
(U Set) sel ev set0 = {aU q}

Γ1
1 = {� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),

� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r),
q ∨ a, q ∨ ◦(bU q), � ¬b}

(Res)

Γ2
1 = {� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),

� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r),
q ∨ a, q ∨ ◦(bU q), � ¬b, q ∨ ¬r}

(Res)

Γ3
1 = {� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),

� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r),
q ∨ a, q ∨ ◦(bU q), � ¬b, q ∨ ¬r,¬r}

(Res)

Γ4
1 = {� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),

� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r), q ∨ a,
q ∨ ◦(bU q), � ¬b, q ∨ ¬r,¬r, a∨ ◦� ¬r}

(Res)

Γ5
1 = {� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),

� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r), q ∨ a,
q ∨ ◦(bU q), � ¬b, q ∨ ¬r,¬r, a ∨ ◦� ¬r,◦� ¬r}

(Sbm)

Γ6
1 = {� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),

� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r), q ∨ a,
q ∨ ◦(bU q), � ¬b,¬r, a∨ ◦� ¬r,◦� ¬r}

(Sbm)

Γ�
1 = Γ7

1 = {� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),
� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r), q ∨ a,
q ∨ ◦(bU q), � ¬b,¬r,◦� ¬r}

(unnext)

Γ2 = Γ0
2 = {� (¬q ∨ ¬r), � (¬q ∨ ◦� ¬r),

� (¬a ∨ ¬r), � (¬a ∨ ◦� ¬r), � ¬b, � ¬r}
(Sbm) sel ev set2 = ∅

Γ1
2 = {� (¬q ∨ ◦� ¬r), � (¬a ∨ ¬r),

� (¬a ∨ ◦� ¬r), � ¬b, � ¬r}
(Sbm) sel ev set�2 = ∅

Γ�
2 = Γ2

2 = {� (¬q ∨ ◦� ¬r), � (¬a ∨ ◦� ¬r),
� ¬b, � ¬r}

now(unnext(Γ2
2)) = now(Γ0

2)
{¬q, r,¬a} 7→ {q,¬r,¬b} 7→ {¬r,¬b} 7→ {¬r,¬b} · · ·

Figure 4.18:Cycling systematicTRS-derivation for{� q, � r, � (¬q ∨ � ¬r)} (Part 2 of 2)
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setevent(Γ0
2) is empty, the value ofsel ev set2 as well as the value ofsel ev set�2 is the empty

set. Therefore no context-dependent rule is applied toΓ0
2 and we get theTRS-closed setΓ2

2 by
applying the rule(Sbm) twice. At this point the derivation is cycling with respect to j = 2 and
k = 2 (see De�nition 4.6.1). In particular this means thatnow(unnext(Γ2

2)) = now(Γ0
2). The

setsΓ�
0 = Γ12

0 , Γ�
1 = Γ7

1 andΓ�
2 = Γ1

2 characterize a collection of models for the initial set of
clausesΓ. All the models of such collection make true the literals{¬q, r,¬a} in s0, the literals
{¬r,¬b} in s1 and also the literals{¬r,¬b} in all the statessj such thatj ≥ 2. Additionally,q
must be true insk for somek ≥ 1. Therefore, if we choose to makeq true as soon as possible,
i.e. in the states1, we can obtain an ultimately periodic modelM of Γ with statess0, s1, s2, . . .
such thatVM (s0) = {r}, VM (s1) = {q} andVM (sj ) = ∅ for everyj ≥ 2.

In Example 4.6.8 we can see that the strategy for selecting eventualities does not compro-
mise the completeness ofTRS-resolution. However it can affect ef�ciency. In particular, if we
had selected the eventuality� r instead of the eventuality� q, the derivation would have been
considerably longer.

Remark 4.6.9. Note that whenΓ is a satis�able set of (non-temporal) classical propositional
clauses, the derivationD(Γ) obtained by the algorithmSR is of the formΓ0

0 7→ . . . 7→ Γh0
0 Z⇒

Γ0
1, and it can also be represented as(Γ0,Γ�

0) Z⇒ (Γ1,Γ�
1), whereΓ0 = Γ0

0 = Γ, Γh0
0 = Γ�

0,
Γ1 = Γ�

1 = unnext(Γ�
0) = ∅. The setΓ0

1 –which is at the same timeΓ1 andΓ�
1– is TRS-closed

and additionaly produces a cycle becauseD(Γ) veri�es the three items of De�nition 4.6.1 and,
in particular the second one sincenow(unnext(Γ�

1)) = now(Γ1). So the cycle is fromΓ0
1 to

Γ0
1. Sets of temporal clauses, e.g. the singleton{◦P}, can also give rise to this kind of cycling

derivation ended in an empty set. However, the singleton{� P} produces a cycle with non-
empty set of clauses. In general, every systematic derivation that is not a refutation becomes
cyclic.

Along the rest of the chapter, we will denote byD(Γ) any derivation of the form(Γ0,Γ�
0)

Z⇒ (Γ1,Γ�
1) Z⇒ . . .Z⇒ (Γj ,Γ�

j ) Z⇒ . . .Z⇒ (Γk ,Γ�
k) obtained bySR with initial set Γ0 = Γ. In

particular,D(Γ) may be a refutation or a cycling derivation with respect toj andk.

4.6.3 Termination

In this subsection we show that the algorithmSR always obtains either a refutation or a cycling
derivation after a �nite number of iterations. Remember that we assume thatSR uses a fair
strategy for selecting eventualities.

The rule(U Set) introduces new eventualities involving fresh variables. In order to justify
that derivations that (potentially) use the rule(U Set) are �nite, we have to show that, when-
ever a refutation is not obtained, the cycling conditions inDe�nition 4.6.1, in particular its third
requirement, will be satis�ed after a �nite number of iteration steps. In other words, the ter-
mination proof ofSR requires to show that the algorithm cannot generate an in�nite number
of new propositional variables. A priori, there are two waysfor generating new propositional
variables inSR. The �rst is the translation toCNF applied in the output to the rule(U Set).
However, no new variable is introduced bySR in this way. The reason is that the translation to
CNF is applied to a formula that only needsDtNF-rules to be inCNF andDtNF-rules do not
use extra variables (see Proposition 4.2.6).

The second source of new propositional variables is the explicit occurrence of a fresh vari-
able in the consequent of the rule(U Set). However, as we will show, the sequence of new
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eventualities produced by successive applications of the rule(U Set) is always �nite. There is a
twofold reason for the latter. On one hand, the clauses de�ning a new variable (see functiondef
in Figure 4.5) are always-clauses, which are excluded from the negated context. On the other
hand, in the algorithmSR, the rule(U Set) is always applied to sets where the propositional
variables introduced (as fresh) by previous applications of (U Set) are also out of the context.

In order to prove the termination result, we �rst de�ne the set univlit(Γ) (De�nition 4.6.10)
formed by all the literals that could appear in the clauses obtained fromΓ by means of all the
TRS-rules with the exception of the rule(U Set) (and the derived rule(�Set)). Then the closure
of a set of clausesΓ (De�nition 4.6.11) is formed by all the clauses that can be generated from
the literals inunivlit(Γ).

De�nition 4.6.10. Let Γ be a set of clauses. The setunivlit(Γ) is the smallest set of literals
de�ned as follows7

• Lits(Γ) ⊆ univlit(Γ)

• If L ∈ univlit(Γ), theneL ∈ univlit(Γ)

• If P1U P2 ∈ univlit(Γ), then{◦(P1U P2), P1, P2} ⊆ univlit(Γ)

• If P1RP2 ∈ univlit(Γ), then{◦(P1RP2), P1, P2} ⊆ univlit(Γ)

• If �P ∈ univlit(Γ), then{◦�P, P } ⊆ univlit(Γ)

• If � P ∈ univlit(Γ), then{◦� P, P } ⊆ univlit(Γ)

• If ◦L ∈ univlit(Γ), thenL ∈ univlit(Γ).

The setunivlit(Γ) is �nite for any set of clausesΓ since we only consider �nite sets of
clauses and �nite clauses. Now, we de�ne the closure of a set of clauses.

De�nition 4.6.11. Let Γ be a set of clauses. The setclosure(Γ) is the set formed by all the
clausesC such thatLits(C) ⊆ univlit(Γ).

As a consequence of the �niteness ofunivlit(Γ) and of the fact that clauses do not contain
repeated literals, the setclosure(Γ) is also �nite.

We additionally consider the notions ofdirect descendantandsequence of descendants.

De�nition 4.6.12. LetD(Γ) = (Γ0,Γ�
0) Z⇒ . . . Z⇒ (Γk ,Γ�

k) be the derivation constructed by
the algorithmSR (Figure 4.10). We say that an eventualityT 0 is thedirect descendantof an
eventualityT in D(Γ) iff for somei ∈ {0, . . . , k}: sel ev seti = {T} andsel ev set�i = {T 0}.
LetS = T0, T1, . . . , Tn be a sequence of eventualities. We say thatS is thesequence of descen-
dantsof T0 inD(Γ) iff Ti +1 is a direct descendant ofTi inD(Γ) for all i ∈ {0, . . . , n− 1}.

For example,�¬p, aU ¬p, bU ¬p is the sequence of descendants of�¬p in the derivation
in Example 4.6.5.

Next we �rst show that for allD(Γ) and every selected eventualityT inD(Γ), the sequence
of descendants ofT in D(Γ) is �nite (Lemma 4.6.13). The proof is based on the fact that the
algorithmSR follows a speci�c strategy with two crucial features. First, the algorithm keeps at

7 Remember thatLits( �
b(L1 _ . . . _ Ln)) = f L1, . . . , Lng andLits(�) =

S
C2 Γ Lits(C).
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most one selected eventuality to which the rule(U Set) can be applied and when a new even-
tuality is generated, by application of(U Set), that new eventuality has priority to become the
selected eventuality for the next application of the rule(U Set) (after an unnext-step). Second,
the rule(U Set) is applied before any other rule in each iteration step. As a consequence of these
two crucial features of the strategy followed by the algorithmSR, when the rule(U Set) is ap-
plied with selected eventualityT , eventualities generated by previous applications of(U Set)
do not appear in the set of clausesΦ (see Figure 4.5) and the propositional variables introduced
(as fresh) by previous applications of(U Set) appear only in always-clauses. Hence, the con-
text (De�nition 4.3.3) is always a subset of the closure set,which is �nite. Therefore, since the
number of possible different contexts is �nite, if the sequence of descendants of an eventuality
were in�nite, some context would be repeated, but context repetition produces the end of the
sequence of descendants (as shown in the proof of Lemma 4.6.13).

Lemma 4.6.13.For all D(Γ) and every selected eventualityT inD(Γ), the sequence of descen-
dants ofT in D(Γ) is �nite.

Proof. Let T beP0 U P . Suppose thatT occurs in the setΓ0
0 in D(Γ), sel ev set0 = {P0U P}

and the sequence of descendants ofT in D(Γ) is in�nite. When the rule(U Set) is applied to
a partition ofΓ0

0 of the formΦ0 ∪ Γ0
0 � {P0U P}, the setΓ0

0 � {P0U P} is replaced with the
union of the following �ve disjoint sets of clauses

Ψ1
0 = {P ∨ P0 ∨N0 | � b((P0U P ) ∨N0) ∈ Γ0}

Ψ2
0 = {P ∨ ◦(a1U P ) ∨N0 | � b((P0U P ) ∨N0) ∈ Γ0}

Ψ3
0 = {� (◦(P0U P ) ∨ ◦N0) | � ((P0U P ) ∨N0) ∈ Γ0}

Ψ4
0 = {� (¬a1 ∨ P0)}

Ψ5
0 = CNF(� (¬a1 ∨ ¬now(Φ0)))

whereΨ4
0 ∪Ψ5

0 corresponds toCNF(def(a1, P0, now(Φ0))) (see Figure 4.5).
Hence, the setΓ1

0 is the union ofΦ0 and the above �ve sets, and the new selected eventuality
is a1 U P , i.e., sel ev set�0 = {a1U P}. The fresh variablea1 only occurs inΨ2

0 andΨ4
0∪Ψ5

0.
The latter is a set of always-clauses, and the occurrences ofa1 in Ψ4

0 ∪Ψ5
0 are not preceded by

◦. Consequently, after the operations�x closeandunnext (lines 8 and 10 in Figure 4.10), all
the occurrences ofa1 in the setΓ0

1 are either in an always-clause or in a now-clause that comes
from Ψ2

0. Hence, the only now-clauses wherea1 occurs inΓ0
1 are of the formN ∨a1U P , where

a1U P is the new selected eventuality. Hence, the next application of the rule(U Set) does
not introduce any occurrence ofa1 in the negated context, because always-clauses and clauses
containinga1U P are both excluded from the context. Moreover,CNF(� (¬a1 ∨ ¬now(Φ0)))
does not contain any other fresh variable (apart froma1). The reason is thatDtNF(� (¬a1 ∨
¬now(Φ0))) is already in conjunctive normal form, so the only transformation that uses new
fresh variables –which is detailed in the proof of Theorem 4.2.7– is left out.

The above reasoning about the construction ofΓ0
1 from Γ0

0 can be generalized to the con-
struction ofΓ0

i +1 fromΓ0
i with selected eventualityai U P to obtain a direct descendantai +1 U P

as follows. When the rule(U Set) is applied to a partition ofΓ0
i of the form Φi ∪ Γ0

i �
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{ai U P}, then the consequentΓ1
i is the union ofΦi and the following �ve disjoint sets

Ψ1
i = {P ∨ ai ∨Ni | � b((ai U P ) ∨Ni ) ∈ Γi }

Ψ2
i = {P ∨ ◦(ai +1 U P ) ∨Ni | � b((ai U P ) ∨Ni ) ∈ Γi }

Ψ3
i = {� (◦(ai U P ) ∨ ◦Ni ) | � ((ai U P ) ∨Ni ) ∈ Γi }

Ψ4
i = {� (¬a1 ∨ P0), � (¬a2 ∨ a1), . . . , � (¬ai ∨ ai � 1), � (¬ai +1 ∨ ai )}

Ψ5
i = CNF(� (¬ai +1 ∨ ¬now(Φi )))

where(Ψ4
i \ Ψ4

i � 1)∪Ψ5
i corresponds toCNF(def(ai +1 , ai , now(Φi ))) wheneveri ≥ 1 (see

Figure 4.5). Now, the fresh variablesa1, . . . , ai , ai +1 occur in the above �ve setsΨj
i . The oc-

currences of fresh variables inΨ2
i ∪Ψ4

i ∪Ψ5
i are not �ltered to the negated context inΓ0

i +1 by
the reasons explained above forΓ0

1. Regarding the occurrences ofai in the setΨ1
i , since they

are not preceded by◦, no one of them can be �ltered toΓ0
i +1 . Additionally,Ψ3

i is empty for all
i ≥ 1. To realize this fact, it suf�ces to check the following three facts. First, whenever the rule
(U Set) is applied to the setΓ0

i � 1, by considering the partitionΦi � 1∪(Γ0
i � 1 � sel ev seti � 1),

the new literal◦(ai U P ) appears only in now-clauses. Second, the remaining basic rules (reso-
lution, subsumption and �xpoint rules), that are applied toobtain theTRS-closed setΓ�

i � 1 from
Γ1

i � 1, cannot introduce (inΓ�
i � 1) an always-clauseC such that◦(ai U P ) ∈ Lits(C). Third,

sinceΓ0
i is obtained fromΓ�

i � 1 by unnext, thenΓ0
i cannot include an always-clauseC such that

◦(ai U P ) ∈ Lits(C).
Consequently, every fresh variablea` is not inLits(now(Γ0

h)) for all h ≥ ` and all` ≥ 1. There-
fore, fresh variables do not occur in any context of any application of the rule(U Set). So that,
the successive contexts are exclusively formed by formulasfrom the closure ofΓ0

0.
Since the setclosure(Γ0

0) is �nite, if the sequence of descendants ofP0 U P were in�nite, there
would necessarily be two setsΓ0

g andΓ0
h such thatg < h andnow(Γ0

g \ Γ0
g � sel ev setg) =

now(Γ0
h \ Γ0

h � {ah U P})8. Without loss of generality, we considerg = 0 andh = i. By
repeatedly applying the rule(Res) to now(Γ0

0 \Γ0
0 � {P0U P}) andCNF(� (¬a1 ∨¬now(Γ0 \

Γ0 � {P0U P}))), the algorithmSR obtains¬a1 which resolves with� (¬a2 ∨ a1) produc-
ing ¬a2. Then¬a2 resolves with� (¬a3 ∨ a2). At the end of this process¬ai � 1 resolves
with � (¬ai ∨ ai � 1) producing¬ai . This literal resolves with every clause in{P ∨ ai ∨ Ni |
(ai U P ) ∨Ni ∈ Γi } producing the clauses in{P ∨Ni | (ai U P ) ∨ Ni ∈ Γi} which subsume
the clauses in{P ∨ ◦(ai +1 U P ) ∨ Ni | (ai U P ) ∨ Ni ∈ Γi}. Therefore, the selected tempo-
ral literal ai +1 U P disappears after the following unnext-step. Hence,ai +1 U P cannot be the
selected eventuality at the next step, i.e.,sel ev seti +1 6= {ai +1 U P}. This is a contradiction
because the sequence of descendants ofP0U P has been supposed to be in�nite.

In the above proof we have considered that(U Set) is always applied with a non-empty
context. The proof for possibly empty contexts is just a especial case. Note also that the ap-
plication of the subsumption rule, together with the subsequent use of the operatorunnext, is
essential in the above proof.

Theorem 4.6.14.The algorithmSR, for each inputΓ, terminates giving a resolution proof.

Proof. Suppose thatSR does not produce� b⊥. On one hand, by Lemma 4.6.13,SR cannot
generate an in�nite sequence of descendants of any selectedeventuality. Besides, when the se-
quence of descendants of one eventuality �nishes because the last one, namelyT , ceases to be

8 sel ev setg = f P0 UPg if g = 0 , andsel ev setg = f ag UPg if g > 0.
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the selected eventuality inΓi for somei ≥ 1 (i.e. sel ev set�i � 1 = {T} andsel ev seti 6= {T}),
then the setnow(Γi ) is included inclosure(Γ) because the fresh variables introduced by(U Set)
only occur inalw(Γi ). If the process continues and the algorithmSR selects another eventual-
ity, �niteness of sequences of descendants (Lemma 4.6.13) guarantees the existence ofΓg, with
g > i, such thatnow(Γg) is included inclosure(Γ). As the closure is �nite, there must exist
j andk such thatj ≤ k and the set of now-clauses ofΓj is exactly the set of now-clauses of
unnext(Γ�

k).
On the other hand, fairness ensures that the third conditionin De�nition 4.6.1 must be satis�ed
at some moment.

4.6.4 Complexity

In order to analyze the worst case complexity of the algorithm SR, we �rst consider the
set closure(Γ) (see De�nition 4.6.11) of all the possible clauses formed using the literals in
univlit(Γ) (see De�nition 4.6.10).

Proposition 4.6.15.The number of clauses inclosure(Γ) is 2n , wheren is the number of literals
in univlit(Γ).

Then, the set of all possible sets of clauses that could appear as context when applying
(U Set) has double-exponential size inn.

Proposition 4.6.16. Let contexts(Γ) = {∆ | ∆ ⊆ closure(Γ)}, then the number of sets in
contexts(Γ) is 22n

.

Therefore, the worst case complexity of the algorithmSR can be bounded toO(2O(2n)).

Proposition 4.6.17. The number of clauses generated by the resolution method is bounded
byO(2O(2n)) and the number of new variables is also bounded byO(2O(2n)) wheren is the
number of literals inunivlit(Γ).

Proof. In the worst case, each clause inclosure(Γ) contains a selected eventuality that generates
a sequence of descendants with an eventuality for each possible context incontexts(Γ) plus a
repeated context. That is, each of the2n initial clauses may generate1 + 22n

clauses with new
eventualities. So,f(n) = 2n × (1 + 22n) = 2n + 2n+2 n

is the maximum number of different
clauses (with new eventualities) that can appear in a derivation. Since, each new eventuality
is associated to a new variable,2n + 2n+2 n

also bounds the number of fresh variables. In the
worst case, the de�nition of each new variable generates2n new clauses. So that,g(n) =
22:n + 22:n+2 n

bounds the number of clauses de�ning new variables. To sum up, the worst case
is bounded to

2n + f(n) + g(n) = 2n + 2n + 2n+2 n
+ 22:n + 22:n+2 n

where the leftmost2n stands for the size of the closure which bounds the initial set of clauses.
That is, in the worst case, the number of clauses is inO(2O(2n)) and the number of new variables
is inO(2O(2n)) .
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4.7 Completeness

A resolution method isrefutationally completeif, whenever a set of clausesΓ is unsatis�able, a
refutation forΓ can be constructed. In our case we prove the refutational completeness ofTRS-
resolution showing that there exists a model ofΓ whenever the resolution proofD(Γ) obtained
by the algorithmSR is a cycling derivation. This result together with the proofof termination
(Theorem 4.6.14) shows that our algorithm for systematic resolution (Figure 4.10) is complete
and, hence, a decision procedure forPLTL.

For the rest of this section we �x the derivation

D(Γ) ≡ (Γ0,Γ�
0) Z⇒ (Γ1,Γ�

1) Z⇒ . . . Z⇒ (Γj ,Γ�
j ) Z⇒ . . . Z⇒ (Γk ,Γ�

k)

to be cycling with respect toj andk. In order to prove the existence of a model ofΓ from the
existence ofD(Γ) we will show that the setsΓ�

i in D(Γ) can be extended (with literals of their
own clauses) preserving its local consistency. These extensions, denoted ascΓ�

i , are literal-closed
in the sense that they contain at least one literal from each clause inΓ�

i . Remember that the sets
Γ�

i in D(Γ) areTRS-closed (see De�nition 4.4.6) which, in particular, means thatBTL(Γ�
i ) = ∅

(De�nition 4.2.3). Actually, inside the collection of all the locally consistent literal-closed (lclc,
in short) extensions of eachΓ�

i , we de�ne the subclass of the so-calledstandard extensions. In
particular, standard lclc-extensions of the setsΓ�

i inD(Γ) allow us to ensure the model existence.
We de�ne asuccessor relationon lclc-extensions of the setsΓ�

i that gives rise to in�nite paths
of standard lclc-extensions. These in�nite paths can be used to characterize or de�nePLTL-
structures. Finally we show that at least one of those paths satis�es the suitable conditions
for de�ning a model ofΓ. Hence, this section is divided into a �rst subsection devoted to the
notion of lclc-extensions of sets of clauses and their main properties, including the existence of
a non-empty subclass of standard lclc-extensions for any locally consistent andTRS-closed set
of clauses. In the second subsection, we de�ne the notion of successor and prove the existence
of in�nite paths. Lastly, in the third subsection, we prove the existence of a model ofΓ.

4.7.1 Extending Locally ConsistentTRS-Closed Sets of Clauses

In this subsection we show that everyTRS-closed set of clauses has at least one locally consistent
extension that is literal-closed and standard. We gradually de�ne the notions and prove the
results.

De�nition 4.7.1. A set of clausesΓ is literal-closediff Γ ∩ Lits(C) 6= ∅ for everyC ∈ Γ.9

Besides,lclc(Γ) denotes the collection of all locally consistent sets of clausesbΓ such thatΓ ⊆
bΓ ⊆ Γ∪ Lits(Γ) andbΓ is literal-closed. We say that eachbΓ ∈ lclc(Γ) is anlclc-extensionof Γ.

Note that if� b⊥ is in Γ thenlclc(Γ) = ∅ by local inconsistency. Besides, since only literals
included in some clause inΓ are used to build the elements inlclc(Γ), if no clause inΓ includes
any (basic) temporal literal (i.e.BTL(Γ) = ∅, see Subsection 4.2.1) then everybΓ ∈ lclc(Γ) also
satis�es thatBTL(bΓ) = ∅. In particular, ifΓ = ∅ thenlclc(Γ) = {∅}.

Next, we show that for every locally consistent set of clausesΓ that does not contain (basic)
temporal literals there exists at least one lclc-extensionof Γ.

Proposition 4.7.2. If Γ is a locally consistent set of clauses such thatBTL(Γ) = ∅ then
lclc(Γ) 6= ∅.

9 Note that literals inLits(C) are viewed as singleton clauses.
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Proof. We will show that there exists a sequenceS = Ω0,Ω1,Ω2, . . . ,Ωg such thatg ≥ 0,
Ω0 = Γ andΩh+1 = Ωh ∪{L} (for everyh ∈ {0, . . . , g − 1}) for someL ∈ Lits(C) and
someC ∈ Ωh such thatLits(C) ∩ Ωh = ∅ andΩh ∪{L} is locally consistent. In addition,
Ωg ∈ lclc(Γ) whereasΩh 6∈ lclc(Γ) for all h ∈ {0, . . . , g − 1}. Since the number of clauses is
�nite, this inductive construction is also �nite and shows thatlclc(Γ) 6= ∅.

We have to show that, for everyh such thatΩh 6∈ lclc(Γ), there exists a locally consistent
Ωh+1 that extendsΩh with a new literal from some clause inΓ. SinceΩh 6∈ lclc(Γ) there exists
(at least one) clauseC = � b(L1 ∨ . . . ∨ Ln ) ∈ Ωh such thatLi 6∈ Ωh for all i ∈ {1, . . . , n}.
Suppose thatΩh ∪{Li} is not locally consistent for alli ∈ {1, . . . , n}. Then, by Proposition
4.4.14, there exists a local refutationDi for Ωh ∪{Li} that is linear with respect toLi , for every
i ∈ {1, . . . , n}. From thesen local refutations we are able to construct a local refutationD for
Ωh that is linear with respect toC, contradicting the assumption thatΩh is locally consistent.
Hence,Ωh ∪{Li}must be locally consistent for somei ∈ {1, . . . , n}.

De�nition 4.7.3. Let Γ be a set of clauses such thatlclc(Γ) 6= ∅ and letΛ ⊆ Lits(Γ). We say
thatΛ representsΓ if bΓ∩Λ 6= ∅ for all bΓ ∈ lclc(Γ). If, in addition, for everyΛ0 ( Λ there exists
bΓ ∈ lclc(Γ) such thatbΓ ∩ Λ0 = ∅, then we say thatΛ minimally representsΓ.

The following result shows that the minimal representatives of aTRS-closed set of clauses
Γ are included (as clauses) inΓ.

Proposition 4.7.4. For everyΛ that minimally represents a non-empty locally consistentTRS-
closed set of clausesΓ there is a clauseC ∈ Γ such thatLits(C) = Λ.

Proof. First we will show thatΓ must contain at least one clauseC such thatLits(C) ⊆ Λ. We
partitionΓ into the following two sets:

Π1 = {C ∈ Γ | Lits(C) ∩ Λ = ∅}
Π2 = {C ∈ Γ | Lits(C) ∩ Λ 6= ∅}

We split the clauses inΠ2 into the sub-clauses formed by literals that do not appear inΛ and
the sub-clauses formed by literals that appear inΛ. These sets of clauses respectively are the
following setsΣ1 andΣ2.

Σ1 = {N | � b(N ∨N0) ∈ Π2, Lits(N ) ∩ Λ = ∅ andLits(N0) ⊆ Λ}
Σ2 = {N0 | � b(N ∨N0) ∈ Π2, Lits(N ) ∩ Λ = ∅ andLits(N0) ⊆ Λ}

SinceΓ is locally consistent,Π1, Π2 and also their proper subsets are locally consistent. In
addition,Γ is TRS-closed, henceBTL(Γ) = ∅ and every set of clauses considered along the rest
of this proof does not contain any clause that includes any (basic) temporal literal.

Now we show, by contradiction, that⊥ ∈ Π1 ∪Σ1 and, sinceΠ1 is locally consistent, it
follows that⊥ ∈ Σ1 and, consequently, there exists a clauseC ∈ Γ such thatLits(C) ⊆
Lits(Σ2), i.e.,Lits(C) ⊆ Λ.

Let us suppose that⊥ 6∈ Π1 ∪Σ1. First, suppose thatΠ1 ∪Σ1 is locally consistent. By
Proposition 4.7.2, the setlclc(Π1∪Σ1) is non-empty and for everyΨ ∈ lclc(Π1∪Σ1) the set
Ω = Γ∪{L | L ∈ Ψ} is in lclc(Γ) and satis�esΩ ∩ Λ = ∅. This contradicts thatΛ minimally
representsΓ.

Second, suppose thatΠ1∪Σ1 is locally inconsistent, there exists some minimal locally
inconsistent subsetΦ of Π1 ∪Σ1 (i.e. Φ does not contain locally inconsistent proper subsets
of Π1∪Σ1). Since every subset ofΠ1 is locally consistent, thenΦ ∩ Σ1 6= ∅. LetN be any
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clause inΦ∩Σ1. By Proposition 4.4.14, there exists a local refutationD for Φ that is linear with
respect toN . By using the original clauses inΠ2 instead of their sub-clauses inΦ ∩Σ1, we can
build fromD a derivationD0 whose last set contains a clauseC such thatLits(C) ⊆ Lits(Σ2).
Hence,⊥ ∈ Σ1 and this contradicts that⊥ 6∈ Π1∪Σ1.

So, since considering⊥ 6∈ Π1 ∪Σ1 leads to a contradiction when we consider thatΠ1∪Σ1

is locally consistent and when we consider thatΠ1∪Σ1 is locally inconsistent, it follows that
⊥ ∈ Π1∪Σ1. Therefore⊥ ∈ Σ1 becauseΠ1 is locally consistent and, consequently, there are
a clauseC ∈ Γ such thatLits(C) ⊆ Λ.

Finally, Lits(C) cannot be a proper subset ofΛ becauseLits(C) also representsΓ and that
would contradict the minimality of the representation ofΓ by Λ (see De�nition 4.7.3). Hence-
forth, Lits(C) = Λ.

Next we introduce the notion ofstandardlclc-extensions of a set of clauses.

De�nition 4.7.5. LetΓ be a locally consistentTRS-closed set of clauses. We say thatbΓ ∈ lclc(Γ)
is standardiff it satis�es the following conditions:

(a) If ◦L ∈ bΓ, then there exists a clause� b(◦L ∨ ◦N ) ∈ Γ

(b) For every propositional literalP ∈ Lits(Γ), if bΓ∪{P} is locally consistent, thenP ∈ bΓ.

(c) If ◦L ∈ bΓ, thenΓ∪ (bΓ \ {◦L}) is not literal-closed.

The following lemma ensures the existence of at least one standard lclc-extension of any
locally consistentTRS-closed set of clauses.

Lemma 4.7.6. Let Γ be a locally consistentTRS-closed set of clauses. There exists at least one
standard set inlclc(Γ).

Proof. We �rst prove that there existsΩ ∈ lclc(Γ) that satis�es item(a) in De�nition 4.7.5.
Second, we show that there existsΣ ⊇ Ω such thatΣ ∈ lclc(Γ) and satis�es(a) and (b) in
De�nition 4.7.5. Third, we show that there exists∆ ⊆ Σ such that∆ ∈ lclc(Γ) and satis�es
(a), (b) and(c) in De�nition 4.7.5.

1. By Proposition 4.7.2,lclc(Γ) is non-empty. Now, let us suppose that for every set in
lclc(Γ) there exists a literal of the form◦L such that◦L 6∈ Lits(� b◦N ) for every clause
� b◦N ∈ Γ. Then, for everybΓ ∈ lclc(Γ), there exists someL ∈ bΓ that belongs to the
following set

Ψ = {◦L ∈ Lits(Γ) | ◦L 6∈ Lits(� b◦N ) for every clause� b◦N ∈ Γ}

HenceΨ representsΓ and there should exist someΛ ⊆ Ψ that minimally representsΓ.
Therefore, by Proposition 4.7.4, there exists a clauseC ∈ Γ such thatLits(C) = Λ. This
is a contradiction because the literals inΨ, and in particular the literals inΛ, do not belong
to any clause of the form� b◦N in Γ. Therefore, there exists some setΩ in lclc(Γ) that
satis�es De�nition 4.7.5(a).

2. SinceΩ is locally consistent andBTL(Ω) = ∅, the sequenceΩ0,Ω1,Ω2, . . . ,Ωg in the
proof of Proposition 4.7.2 is easily adapted for ensuring that eachΩi satis�es De�nition
4.7.5(a) and thatΩg satis�es De�nition 4.7.5(b). So thatΣ = Ωg.
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3. We show thatΣ should contain a subset∆ that satis�es the lemma. SinceΣ belongs to
lclc(Γ), veri�es De�nition 4.7.5(a) and(b) and is a �nite set, we can ensure the existence
of a �nite sequenceΣ0,Σ1,Σ2, . . . ,Σr such thatr ≥ 0, Σ0 = Σ, Σr \ {◦L} 6∈ lclc(Γ)
for all ◦L ∈ Σr , andΣh+1 = Σh \ {◦Lh} for some◦Lh ∈ Σh andΣh+1 ∈ lclc(Γ)
for everyh ∈ {0, . . . , r − 1}. Therefore,Σh satis�es De�nition 4.7.5(a) and(b) for all
h ∈ {0, . . . , r} andΣr additionally satis�es(c). Hence,Σr is the set∆ we were looking
for.

For locally consistentTRS-closed sets, the subclass of their standard lclc-extensions repre-
sents the whole class of their lclc-extensions with respectto sets of next-literals in the sense
shown by the following proposition.

Proposition 4.7.7. Let Γ be any locally consistentTRS-closed set of clauses andΛ ⊆ Lits(Γ)
be a set such that every literal inΛ is of the form◦L. If bΓ ∩ Λ 6= ∅ for every standard set
bΓ ∈ lclc(Γ), thenΛ representsΓ.

Proof. Consider anyΛ that satis�es the hypothesis but does not representΓ. Hence, there exists
some non-standard setΨ ∈ lclc(Γ) such thatΨ ∩ Λ = ∅. Now, let

Π = {N | � b(N ∨N0) ∈ Γ, Lits(N ) ∩ Λ = ∅ andLits(N0) ⊆ Λ}
Φ = {N ∈ Π | no clause inΠ subsumesN}

Then,Φ is TRS-closed and locally consistent. The former holds becauseΓ is TRS-closed. For
the latter suppose thatΦ is not locally consistent. By Proposition 4.4.10,⊥ ∈ Φ. Hence, by
de�nition of Φ, there exists a clauseC ∈ Γ such thatLits(C) ⊆ Λ. But this contradicts the
assumptionΨ ∩ Λ = ∅ becauseΨ is an lclc-extension ofΓ and, consequently,Lits(C) ∩ Ψ
cannot be empty.

SinceΦ is TRS-closed and locally consistent, by Lemma 4.7.6, there is some Ω ∈ lclc(Φ)
that is standard. Hence, considerΣ = Γ∪{L | L ∈ Ω} for some standardΩ ∈ lclc(Φ). First,
Σ is an lclc-extension ofΓ becauseLits(Ω) ⊆ Lits(Γ) and because for every clauseC ∈ Γ
there exists a clauseN ∈ Φ such thatLits(N ) ⊆ Lits(C). Second,Σ is standard becauseΩ is
a standard lclc-extension ofΦ andΛ contains only literals of the form◦L, so thatΣ satis�es
De�nition 4.7.5. Consequently,Σ is a standard lclc-extension ofΓ such thatΣ ∩ Λ = ∅. This
contradicts thatbΓ ∩ Λ 6= ∅ for all standardbΓ ∈ lclc(Γ). Therefore,Λ representsΓ.

4.7.2 Building In�nite Paths of Standard Lclc-Extensions

In order to build sequences of standard lclc-extensions of theTRS-closed setsΓ�
i –in the cycling

derivationD(Γ)– that represent models ofΓ, such sequences must be coherent with respect
to the meaning of temporal connectives. We mean that, e.g. if◦p belongs to a setΩ in the
sequence, thenp must belong to the set that is the successor ofΩ in the sequence. Similarly, for
eventualities where also the selections performed alongD(Γ) are relevant. As a consequence
a successor relation is de�ned for the lclc-extensions of the TRS-closed sets that appear in the
derivationD(Γ):

(Γ0,Γ�
0) Z⇒ (Γ1,Γ�

1) Z⇒ . . . Z⇒ (Γj ,Γ�
j ) Z⇒ . . . Z⇒ (Γk ,Γ�

k)

which is cycling with respect toj andk. This successor relation on

{lclc(Γ�
i )× lclc(Γ�

i +1 ) | 0 ≤ i < k} ∪ (lclc(Γ�
k )× lclc(Γ�

j ))
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is presented in De�nition 4.7.8. Along the rest of this chapter, cΓ�
i denotes a member oflclc(Γ�

i ).

De�nition 4.7.8. Let i = h + 1 if h ∈ {0, . . . , k − 1} and let i = j if h = k, we say that
cΓ�

i is a successorof cΓ�
h or that cΓ�

h is a predecessorof cΓ�
i if for every◦L ∈ cΓ�

h there is some
S ∈ nxcloi (◦L) such thatS ⊆ cΓ�

i , wherenxcloi is de�ned as follows

• nxcloi (◦P ) = {{P}} whereP is a propositional literal.

• nxcloi (◦◦L) = {{◦L}}

• nxcloi (◦(P1U P2)) =

8
<

:

{{P2}, {P1, ◦(P1U P2)}} if P1U P2 6∈ sel ev seti
{{P2}, {P1, ◦(aU P2)}} otherwise
whereaU P2 ∈ sel ev set�i

• nxcloi (◦�P ) =

8
<

:

{{P}, {◦�P}} if �P 6∈ sel ev seti
{{P}, {◦(aU P )}} otherwise
whereaU P ∈ sel ev set�i

• nxcloi (◦(P1RP2)) = {{P2, P1}, {P2, ◦(P1RP2)}}

• nxcloi (◦� P ) = {{P, � P}, {P, ◦� P}}.

The set of successors of a given setcΓ�
h is denoted bysucc(cΓ�

h).

The de�nition of nxcloi (◦� P ) arises from the fact that the literal◦� P can be either a
singleton now-clause or a literal properly contained in a clauseC. In the �rst case,Γi contains
the always-clause� P which will not be affected by the rule(� Fix). Consequently, in such a
caseΓ�

i contains necessarily� P . However, in the second case, the literal◦� P is introduced by
application of the rule(� Fix) to the clauseC.

The existence of in�nite paths of standard lclc-extensionsis based on the existence of a
predecessor for each standard lclc-extension of aTRS-closed set in the derivation which is a
standard lclc-extension of the previousTRS-closed set in the derivation.

Proposition 4.7.9. For everyi ∈ {1, . . . , k} and every standardcΓ�
i ∈ lclc(Γ�

i ), there exists a
standarddΓ�

i � 1 ∈ lclc(Γ�
i � 1) such thatcΓ�

i ∈ succ( dΓ�
i � 1).

Proof. LetW` = {cΓ�
` ∈ lclc(Γ�

` ) | cΓ�
` is standard} for each̀ ∈ {0, . . . , k}. If there exists some

dΓ�
i � 1 ∈Wi � 1 such thatdΓ�

i � 1 does not contain any clause of the form◦L, thencΓ�
i ∈ succ( dΓ�

i � 1)
for all cΓ�

i . Otherwise, every setdΓ�
i � 1 ∈ Wi � 1 contains at least one clause of the form◦L. We

proceed by contradiction. Let us suppose thatcΓ�
i is a member ofWi such thatcΓ�

i 6∈ succ( dΓ�
i � 1)

for all dΓ�
i � 1 ∈Wi � 1. Hence, there exists at least one◦L in every dΓ�

i � 1 ∈Wi � 1 such thatS 6⊆ cΓ�
i

for all S ∈ nxcloi (◦L). Therefore, the set

Λ = {◦L | ◦L ∈
S

d� �
i� 12 Wi� 1

dΓ�
i � 1 such thatS 6⊆ cΓ�

i for all S ∈ nxcloi (◦L)}
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satis�es thatΛ ∩ dΓ�
i � 1 6= ∅ for all dΓ�

i � 1 ∈ Wi � 1. Therefore, by Proposition 4.7.7,Λ represents
Γ�

i � 1 and, consequently there exists some setΩ ⊆ Λ that minimally representsΓ�
i � 1. By Propo-

sition 4.7.4, there exists a clauseC = � b(◦L1 ∨ . . .∨ ◦Lr ) in Γ�
i � 1 such thatLits(C) = Ω and

r ≥ 1. Sinceunnext({C}) ⊆ Γi , then the clauseC0 = L1 ∨ . . .∨ Lr is in Γi . Now, let

{S1, . . . , Sn} =
r[

g=1

nxcloi (◦Lg)

(note thatn ≥ 1) and let{C1, . . . , Cm} be the set of all clauses of the formL1 ∨ . . . ∨ Ln

such thatLh ∈ Sh for all h ∈ {1, . . . , n}. By subsumption,Γ�
i contains a non-empty set of

(non-empty) clauses{D1, . . . , Dm} such thatLits(Dt) ⊆ Lits(Ct ) for all t ∈ {1, . . . , m}. By
constructionS 6⊆ cΓ�

i for all S ∈ nxcloi (◦Lg) and allg ∈ {1, . . . , r}. Hence, for each pair(g, S)
such thatg ∈ {1, . . . , r} andS ∈ nxcloi (◦Lg), we can choose at least one literalL such that
L ∈ S andL 6∈ cΓ�

i . As a consequence, there exists a clauseDt ∈ Γ�
i with t ∈ {1, . . . , m} such

thatLits(Dt) ⊆ Lits(Ct ) whereDt ∩ cΓ�
i = ∅. This contradicts the fact thatcΓ�

i contains at least
one literal from each clause inΓ�

i .

Proposition 4.7.10.For everyi ∈ {1, . . . , k} and every standardcΓ�
i , there exists a sequence

cΓ�
0, cΓ�

1, . . . , cΓ�
i of standard sets such thatcΓ�

h ∈ succ( [Γ�
h� 1) for everyh ∈ {1, . . . , i}.

Proof. By Lemma 4.7.6 and Proposition 4.7.9.

Proposition 4.7.11.For every standardcΓ�
j there exists at least one standardcΓ�

k such thatcΓ�
j =

succ(cΓ�
k ).

Proof. The proof is very similar to the one of Proposition 4.7.9, butusing thatnow(Γj ) =
now(unnext(Γ�

k )) instead ofΓi = unnext(Γ�
i � 1) and also using the fact that the set{N |

� ◦N ∈ Γ�
k} is contained into the setnow(unnext(Γ�

k )) (by de�nition of the operatorunnext).

We construct pre-models ofΓ by means of sequences of standard lclc-extensions of the sets
in D(Γ) which will be ordered by the successor relation. For that, weneed some notation on
such sequences. Forg andh, where0 ≤ g ≤ h ≤ k, we denote byD(Γ)[g::h], the set of

all intervalsof standard lclc-extensionscΓ�
g, [Γ�

g+1 , ..., cΓ�
h such thatcΓ�

i ∈ succ( dΓ�
i � 1) for every

i ∈ {g + 1, . . . , h}. The functions�rst andlast respectively return the �rst and the last set of a
given interval. We use superscripts notation to denote subsequences of an intervals ∈ D(Γ)[g::h]
as follows. Forn andm such thatg ≤ n ≤ m ≤ h, the subsequencesn::m denotes the
subsequence formed by the setscΓ�

n , [Γ�
n+1 , . . . , cΓ�

m of s. In particular, ifn = m we write
sn instead ofsn::n and intentionally confuse the sequence of one set with the set itself. For
s ∈ D(Γ)[g::h], we denote byrange(s) the set of natural numbers{n | g ≤ n ≤ h}. Since
D(Γ) is cycling with respect toj andk, the two sets of intervalsD(Γ)[0::j � 1] andD(Γ)[j::k ] are
respectively calledinitial andinner. Note that, sincej could be0, the setD(Γ)[0::j � 1] could be
empty, butD(Γ)[j::k ] is non-empty for anyD(Γ).

Proposition 4.7.12.For each standardcΓ�
j there existss ∈ D(Γ)[j::k ] such thatcΓ�

j ∈ succ(last(s)).

Proof. By Propositions 4.7.10 and 4.7.11.
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Note that in the above propositioncΓ�
j and�rst (s) can be different.

Now, we de�ne when a sequence of elements fromD(Γ)[j::k ] forms a cycle, which is called
aD(Γ)-cycle. Then we prove that there exists at least oneD(Γ)-cycle.

De�nition 4.7.13. AD(Γ)-cycle is a �nite non-empty sequences0, s1, . . . , sn such that

(i) si ∈ D(Γ)[j::k ] for all i ∈ {0, . . . , n}

(ii) �rst (si +1 ) ∈ succ(last(si )) for all i ∈ {0, . . . , n− 1} and

(iii) �rst (s0) ∈ succ(last(sn )).

Proposition 4.7.14.There exists at least oneD(Γ)-cycle.

Proof. By Lemma 4.7.6, there exists at least one standard set inlclc(Γ�
j ). Let us consider any

standardcΓ�
j in lclc(Γ�

j ). By Proposition 4.7.12, there exists an intervalr0 ∈ D(Γ)[j::k ] such that
cΓ�

j ∈ succ(last(r0)). Additionally, by repeatedly applying Proposition 4.7.12, we can build an
in�nite sequence of intervalsr0, r1, . . . in D(Γ)[j::k ] such that�rst (ri � 1) ∈ succ(last(ri )) for
everyi ≥ 1. SinceD(Γ)[j::k ] is �nite, rg = rh must hold for someg andh such that0 ≤ g < h.
Then, the reverse of the sequencerg, . . . , rh� 1, i.e. the sequencerh� 1, . . . , rg is aD(Γ)-cycle.

Note that the minimal cycles consist of exactly one intervals ∈ D(Γ)[j::k ] such that�rst (s) ∈
succ(last(s)).

4.7.3 Model Existence

In this subsection we prove that there exists at least one model of Γ on the basis of the cy-
cling derivationD(Γ). First, we de�ne a graph structureGD(�) whose nodes are intervals in
D(Γ)[0::j � 1] andD(Γ)[j::k ]. There is a (directed) edge(s, s0) in GD(�) whenever�rst (s0) ∈
succ(last(s)). Note that every node inGD(�) is related to a node fromD(Γ)[j::k ]. Second, we
de�ne a notion of self-ful�lling path in this graph. Then, weprove thatGD(�) contains at least
one strongly connected component (aD(Γ)-cycle) that is self-ful�lling. Finally, we de�ne a
model ofΓ on the basis of this strongly connected component inGD(�) .

De�nition 4.7.15. We associate toD(Γ) the graphGD(�) that is formed by the following set of
nodesSD(�) and the following edge-relationRD(�) onSD(�) :

• SD(�) = D(Γ)[0::j � 1]∪D(Γ)[j::k ]

• sRD(�) s0 iff s0∈ D(Γ)[j::k ] and�rst (s0) ∈ succ(last(s)).

Paths and strongly connected components inGD(�) are de�ned as usual in graph theory. The
notion ofD(Γ)-cycle (see De�nition 4.7.13) has an obvious extension toGD(�) . Therefore, by
Proposition 4.7.14, the graphGD(�) has at least one cycle. The minimal graphsGD(�) consist of
exactly one noden with one edge fromn to n.

We would like to remark that, from a locally consistent literal-closed set, interleaved unnext-
steps andTRS-steps could yield aTRS-refutation. As a consequence, there could exist some
interval s in SD(�) such that nos0 ∈ SD(�) satis�es sRD(�) s0 and, hence, there could exist
lclc-extensions that do not belong to any interval inSD(�) .
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The paths inGD(�) are formed by standard lclc-extensions ofTRS-closed sets which do not
include any (basic) temporal literal. Consequently, any occurrence of an eventuality in the states
of GD(�) must be preceded by a connective◦. This fact leads us to de�ne the following notion
of eventuality ful�llment in the paths ofGD(�) .

De�nition 4.7.16. Let π = s0, s1, . . . be a path inGD(�) such that◦(P1U P2) ∈ si
g for some

g ≥ 0 andi ∈ range(sg). We say thatπ ful�lls ◦(P1U P2) iff either

• there existsh ∈ range(sg) such thath > i, P2 ∈ sh
g andP1 ∈ s`

g for all ` ∈ {i +
1, . . . , h− 1}, or

• there existr > g andh ∈ range(sr ) such thatP2 ∈ sh
r andP1 ∈ s`

z for all (z, `) such
thatg < z < r and` ∈ range(sz) andP1 ∈ s`

r for all ` ∈ {j, . . . , h − 1} andP1 ∈ s`
g

for all ` ∈ {i+ 1, . . . , m} wherem is the maximum inrange(sg).

A pathπ is self-ful�lling iff π ful�lls every ◦(P1U P2) that occurs in any of its sets. Besides, a
D(Γ)-cycleσ in GD(�) is self-ful�lling if the pathσ! is self-ful�lling.

Since◦�P and◦( eP U P ) are equivalent, the ful�llment notion for◦�P is a particular case
of De�nition 4.7.16.

The next three propositions are auxiliary results about theful�llment of eventualities, which
are useful for proving the Lemma 4.7.20.

Proposition 4.7.17.Lets be an interval inD(Γ)[g::k] for someg ∈ {0, . . . , k−1}. If ◦(PgU P ) ∈
sg andPg U P ∈ sel ev setg+1 , thenP ∈ si for somei ∈ {g + 1, . . . , k}.

Proof. Let us suppose thatP 6∈ si for every i ∈ {g + 1, . . . , k}. Then, sinces is an inter-
val, si ∈ succ(si � 1) for everyi ∈ {g + 1, . . . , k}. Hence, by De�nition 4.7.8, there exists a
sequence of literals of the formPg+1 U P, . . . , Pk U P such thatsel ev set�h = {Ph U P} for
everyh ∈ {g + 1, . . . , k} andPh U P is the direct descendant ofPh� 1 U P in D(Γ) for every
h ∈ {g + 1, . . . , k}. Sincesk is standard, by item(a) in De�nition 4.7.5, there exists a clause
of the form◦N ∈ Γ�

k such that◦(Pk U P ) ∈ Lits(◦N ). Consequently, sinceD(Γ) is a cycling
derivation with respect toj andk, there existsN ∈ Γj such thatPk U P ∈ Lits(N ). This
contradicts the fact thatPk is (according to the rule(U Set)) a fresh variable that cannot appear
in the setΓj .

Proposition 4.7.18.Lets be an interval inD(Γ)[g::h] for someg andh such that0 ≤ g < h ≤
k − 1. If ◦(PgU P ) ∈ sg, Pg U P ∈ sel ev setg+1 andP 6∈ si for all i ∈ {g + 1, . . . , h}, then
Pg ∈ si for all i ∈ {g + 1, . . . , h}.

Proof. If h = g+1 thenPg ∈ sh becausesh is a successor ofsg (see De�nition 4.7.8). Now, in
the case ofh ≥ g+2, let us suppose that there exists somer ∈ {g+2, . . . , h} such thatPg 6∈ sr .
Sinces is an interval,s` ∈ succ(s` � 1) for every` ∈ {g+ 1, . . . , h}. Hence, by De�nition 4.7.8,
there exists a sequence of literals of the formPg+1 U P, . . . , Ph U P such thatP` U P is the
direct descendant ofP` � 1 U P in D(Γ), sel ev set�` = {P` U P} and{P` � 1, ◦(P` U P )} ⊆ s`

for every ` ∈ {g + 1, . . . , h}. Then,Pr � 1 ∈ sr . Additionally, by construction ofD(Γ),
there exists either a clause of the formCi = � (¬Pi ∨ Pi � 1) or Ci = � ¬Pi in sr for every
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i ∈ {g + 1, . . . , r}.10 Since we are supposing thatPg 6∈ sr , then{¬Pg+1 , . . . ,¬Pr } ⊆ sr must
hold becausesr is literal-closed. Then,¬Pr � 1 is also insr . Therefore{Pr � 1,¬Pr � 1} ⊆ sr ,
which contradicts the fact thatsr is locally consistent.

Proposition 4.7.19.Letπ = s0, s1, . . . , sn be aD(Γ)-cycle. If there exists a literal◦(P0U P ) ∈
univlit(Γ) such that◦(P0 U P ) ∈ si

` for somè ∈ {0, . . . , n} and somei ∈ {j, . . . , k}, and the
pathπ! does not ful�ll ◦(P0U P ), thenP0U P 6∈ sel ev setg and{P0, ◦(P0U P )} ⊆ sg

h for
everyh ∈ {0, . . . , n} and everyg ∈ {j, . . . , k}.

Proof. Sinceπ is aD(Γ)-cycle andπ! does not ful�ll ◦(P0U P ), we can ensure, by Def-
initions 4.7.13, 4.7.8 and 4.7.16 thatP0 ∈ sg

h andP 6∈ sg
h for every h ∈ {0, . . . , n} and

everyg ∈ {j, . . . , k}. Therefore, by using Proposition 4.7.17 and Proposition 4.7.18, we can
ensure thatP0 U P 6∈ sel ev setg for every g ∈ {j, . . . , k}, since otherwiseπ! would ful-
�ll ◦(P0 U P ). Consequently, by De�nition 4.7.8 and De�nition 4.7.13, wecan ensure that
{P0, ◦(P0U P )} ⊆ sg

h for everyh ∈ {0, . . . , n} and everyg ∈ {j, . . . , k}.

Next, we prove that everyD(Γ)-cycle inGD(�) is self-ful�lling. As a consequence, we know
that there exists at least one self-ful�lling in�nite path in the graphGD(�) .

Lemma 4.7.20.For any cycling derivationD(Γ), the graphGD(�) contains at least one self-
ful�lling D(Γ)-cycle.

Proof. By Proposition 4.7.14 there is at least oneD(Γ)-cycle inGD(�) . We show, by contra-
diction, that everyD(Γ)-cycle inGD(�) is self-ful�lling. For that, let us suppose that there is
aD(Γ)-cycleπ = s0, s1, . . . , sn in GD(�) that is non-self-ful�lling, i.e., the pathπ! does not
ful�ll a literal ◦(P0U P ) ∈ si

` for some` ∈ {0, . . . , n} and somei ∈ {j, . . . , k}. Then, by
Proposition 4.7.19,P0 U P 6∈ sel ev setg for everyg ∈ {j, . . . , k} and{P0, ◦(P0U P )} ⊆ si

`
for every` ∈ {0, . . . , n} and everyi ∈ {j, . . . , k}. Sincesg

h is standard for everỳ∈ {0, . . . , n}
and everyi ∈ {j, . . . , k}, we conclude that, for everyi ∈ {j, . . . , k}, the setΓ�

i contains a clause
C = � b◦N such that◦(P0U P ) ∈ Lits(C) and, consequently,P0 U P ∈ Lits(now(Γi )) for ev-
ery i ∈ {j, . . . , k}. Therefore, by De�nition 4.6.1(3),D(Γ) is not a cycling derivation, which is
a contradiction.

The particular case of Propositions 4.7.17, 4.7.18 and 4.7.19 and Lemma 4.7.20 for eventu-
alities of the form�P follows easily.

Next, we introduce pre-models as a kind of paths alongGD(�) .

De�nition 4.7.21. PMod(GD(�) ) is the collection of all �nite pathsπ = s0, s1, s2, . . . , sn in
GD(�) such that

(a) s0 ∈ D(Γ)[0::j � 1] andσ = s1, s2, . . . , sn ∈ cycles(GD(�) ), if D(Γ)[0::j � 1] 6= ∅

(b) π = s0, s1, . . . , sn ∈ cycles(GD(�) ), if D(Γ)[0::j � 1] = ∅

wherecycles(GD(�) ) is the collection of all the self-ful�lling cycles inGD(�) .

10 The form of the clause respectively depends on whether the context is empty or not when the rule( USet) is
applied to� i.
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As a direct consequence of Propositions 4.7.10 and 4.7.14 and Lemma 4.7.20, there exists
at least one pre-model in the graphGD(�) .

Proposition 4.7.22.PMod(GD(�) ) is non-empty.

Finally, the above pre-model allows us to construct a model of Γ. This proves the complete-
ness of ourTRS-resolution system.

Theorem 4.7.23.For any set of clausesΓ, if Γ is unsatis�able then there exists aTRS-refutation
for Γ.

Proof. Suppose that there is noTRS-refutation forΓ, then the algorithmSR in Figure 4.10
produces a cycling derivationD(Γ). By Proposition 4.7.22, there exists a pre-modelπ =
s0, s1, s2, . . . , sn in PMod(GD(�) ). If D(Γ)[0::j � 1] = ∅ we de�ne σ as the in�nite pathπ! .
Otherwiseσ = s0 · ρ! whereρ = s1, s2, . . . , sn . Now, we de�ne thePLTL-structureM� =
(σ, VM σ) where the states are the standard lclc-extensions that formthe intervals inσ which can
be seen as

Ω0
0, . . . ,Ω

r
0,Ω

j
1, . . . ,Ω

k
1,Ω

j
2, . . . ,Ω

k
2, . . . ,Ω

j
n, . . . ,Ω

k
n ,Ω

j
` , . . . ,Ω

k
` , . . .

wherer = j − 1 and` = 1 if D(Γ)[0::j � 1] 6= ∅, whereasr = k and` = 0 if D(Γ)[0::j � 1] = ∅.
Additionally,Ωg

h is in lclc(Γ�
g) andVM σ(Ωg

h) = {p ∈ Prop | p ∈ Ωg
h} for everyg ∈ {0, . . . , k}

and everyh ∈ {0, . . . , n}. It is routine to see that〈M� ,Ωi
h〉 |= C holds for allC ∈ Γ�

i . Since
any lclc-extension contains at least one literal ofC, this is made by structural induction on the
form of the literal and using De�nition 4.7.8 and the fact that σ is self-ful�lling (by Lemma
4.7.20). In particular,M� is a model ofΓ�

0 and, by Propositions 4.5.1 and 4.5.2, the setΓ0 is
satis�able. Hence, sinceΓ = Γ0, the set of clausesΓ is satis�able.

4.8 Related Work

In this section we describe the contributions in the literature that are more closely related to our
approach to clausal temporal resolution. First, we explainthe relation with the tableau method
TTM (presented in the previous chapter) that inspiredTRS-resolution. And then, we discuss
and compare the four clausal resolution methods ([29, 1, 126, 40]) that are more similar to
TRS-resolution.

4.8.1 TheTTM Tableau Method [58, 61]

The TRS-resolution method is strongly inspired in theTTM tableau method introduced in the
previous chapter (see also [58, 61]). Indeed, theTRS-rule (U Set) is a clausal variant of the
TTM -rule (U )2. In Chapter 3 (see also [60, 61]), the idea behind the rule(U )2 is used for
achieving cut-freeness (in particular, invariant-freeness) in the framework of sequent calculi
for PLTL. In particular, the cut-free sequent calculusGTC that is dual to the one-pass tableau
methodTTM is presented.

The crucial point –in both rules(U )2 and(U Set)– is the fact that whenever a set of for-
mulas∆∪{ϕU ψ} is satis�able, there must exist a modelM (with statess0, s1, . . .) that is
minimal in the following sense:



4. Invariant-Free Clausal Temporal Resolution forPLTL 118

M satis�es either∆∪{ψ} or ∆∪{ϕ, ◦((ϕ ∧ ¬∆)U ψ)}

In other words, in a minimal modelM such that〈M, s0〉 6|= ψ, the so-calledcontext∆ cannot
be true from the states1 until the state whereψ is true. Regarding tableaux, the rule(U )2

–which is crucial in our approach for getting a one-pass method– allows to split a branch con-
taining a node labelled by∆∪{ϕU ψ} into two branches respectively labelled by∆∪{ψ} and
∆∪{ϕ, ◦((ϕ ∧ ¬∆)U ψ)}. Hence, the negation of the successive contexts∆ will be required
by the postponed eventuality. Provided that the number of possible contexts∆ is �nite, the ful-
�llment of ϕU ψ cannot be inde�nitely postponed, without getting a contradiction. Of course,
the procedure must fairly select an eventuality to ensure termination. Tableau rules handle gen-
eral formulas, whereas resolution needs a preliminary transformation to the clausal language
before the rules can be applied. The rule(U Set) introduced in this chapter is an adaptation –to
the clausal language setting– of the tableau rule(U )2, in the sense that(U Set) is applied to a
set of clauses and the eventuality is inside a clause whereasin (U )2 the eventuality is itself a
formula.
Regarding worst-case complexity, the upper bound given forTTM in Proposition 3.4.10 co-
incides with the one forTRS-resolution (see Proposition 4.6.17). The computational cost of
introducing the negation of the context in postponed eventualities not only depends on the size
of the context but also on its form. As pointed out in Subsection 3.4.5, there are syntactically
detectable classes of formulas that can be disregarded whennegating the context. In particular
the most remarkable class is formed by formulas of the form� ϕ. The rule(U Set), by de�ni-
tion, does not consider the always-clauses when negating the context. Since often most of the
clauses are always-clauses, i.e. formulas of the form� ϕ whereϕ is in clausal normal form, the
rule (U Set) is speci�cally well suited for clausal resolution.

4.8.2 The Resolution Method of Cavali& Fari ñas del Cerro [29]

The complete resolution method presented in [29] deals witha language that is strictly less ex-
pressive than fullPLTL since only the temporal connectives◦, � and� are allowed. The normal
form is based only on distribution laws, and renaming is not used to remove any nesting of op-
erators. Consequently, their translation into the normal form does not introduce new variables,
at the price of achieving little reduction of nesting of classical and temporal connectives. A
formula in Conjunctive Normal Form is a conjunction of clausesC1 ∧ . . . ∧ Cr where every
clauseCj has the following recursive structure

L1 ∨ . . .∨ Ln ∨ � δ1 ∨ . . .∨ � δm ∨ � κ1 ∨ . . .∨ �κh

Here eachLj is of the form◦ip or ◦i¬p with p being a propositional atom, eachδj is a clause
and eachκj is a conjunction where every conjunct is a clause. The resolution method is based on
considering different cases in order to check whether formulas that must be satis�ed at the same
state are contradictory or not. For instance, for deciding whether{� ϕ, �ψ} is unsatis�able,
the unsatis�ability of{� (ϕ ∧ ψ)} is analyzed. Similarly, in order to decide whether{�ϕ, �ψ}
is unsatis�able, the unsatis�ability of{�ϕ, ψ} and{ϕ, �ψ} is analyzed. Also formulas of the
form ϕ ∨ ◦ϕ ∨ . . .∨ ◦iϕ and of the form¬ϕ ∧ ◦¬ϕ ∧ . . . ∧ ◦i � 1¬ϕ ∧ ◦iϕ are considered for
dealing with�ϕ and formulas of the formϕ∧◦ϕ∧. . .∧◦iϕ for dealing with� ϕ, with i ranging
in a �nite set of the form{0, . . . , g} whereg ≥ 0. These latter cases represent an attempt to
decide whether there exists a future state (in a �nite scope)in which the involved formula (the
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formulaϕ from �ϕ or from � ϕ) does not generate an inconsistency. However, there is not a
clear algorithm to construct derivations and, therefore, complexity cannot be analyzed. In our
approach, the nesting of connectives in the normal form is much more restricted. Our resolution
method is based on reasoning “forwards in time” state by state. And, �nally, our method is
complete for fullPLTL and we provide a terminating algorithm to construct derivations. In [28]
an extension of the resolution method presented in [29] is shown and the full expressiveness
of PLTL is achieved by means of the connectives◦ andP (“precedes”) such thatϕP ψ is
equivalent to the until-formula(¬ψ)U (ϕ ∧ ¬ψ), but the completeness result for the extended
method is not provided.

4.8.3 The Nonclausal Resolution Method of Abadi& Manna [1]

A nonclausal resolution method for fullPLTL is presented in [1] (see also [4]). Eventualities
are expressed by means of the connectives� andP (“precedes”). Since they deal with general
formulas (instead of clauses), the provided rules enable the manipulation and simpli�cation of
subformulas at any level but with some restrictions for preserving soundness. The resolution
rule is of the form

ϕ[χ], ψ[χ] 7−→ ϕ[true] ∨ ψ[false]

where the occurrences of the subformulaχ in ϕ andψ that are replaced withtrue andfalse,
respectively, are all in the scope of the same number of◦'s and are not in the scope of any
other modal operator in eitherϕ or ψ. They also use modality rules, such as e.g.� ϕ, �ψ 7−→
� ((� ϕ)∧ψ) and�ϕ, �ψ 7−→ � ((�ϕ)∧ψ)∨ �(ϕ∧ �ψ), that makes this non-clausal method
very different from our proposal. However, they also introduceinduction rulesfor dealing with
eventualities. These induction rules are very close to our rule (U Set). Here, for simplicity and
clarity, we only describe the induction rule for�, which in terms of the present thesis says

∆,∆0, �ϕ 7−→ ∆,∆0, � (¬ϕ ∧ ◦(ϕ ∧ ¬∆)) if ` ¬(∆ ∧ ϕ)

where∆ and∆0 are set of formulas. This rule states that if∆ andϕ cannot hold at the same
time butϕ eventually holds, then there must be a satesj whereϕ does not hold and at the next
statesj +1 the formulasϕ and¬∆ hold. Hence, the above∆ (called afringe in [1]) resembles
our context, but the technical handling of fringes in [1] is quite different from our treatment
of contexts. The �rst important difference is that induction rules use an aside condition (see
` ¬(∆ ∧ ϕ) above) for choosing the fringe∆. In our approach, contexts are syntactically
determined without any auxiliary derivation. Second, in(U Set) accumulation of the contexts
is made in the non-eventuality part of the until-formula, i.e. the left-hand subformula of the
until-formula. Indeed, the consequent of theTRS-rule (�Set) introduces an until-formula with
the negated context in the left-hand subformula. In contrast, negated fringes are accumulated in
the eventuality part. Third, the method in [1] does not impose any deterministic or systematic
strategy to apply the induction rules although the completeness proof outlines a strategy based
on the �niteness of the set of possible fringes. We provide, by means of the algorithmSR, a
systematic method. Additionally, in our method when a context is repeated, the derivation of
a refutation is straightforward, whereas in [1] obtaining arefutation after a repetition is not so
direct. The reason is that our forward reasoning approach keeps a better structure for detecting
the contradiction between a context and its negation. This fact can be seen by looking at the
following example{p, � (¬p ∨ ◦p), �¬p}. In our method a refutation is easily achieved when
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the context{p} is repeated (see Example 4.6.3). However, by using the induction rule in [1]
with ∆ = {p} and∆0 = {� (¬p ∨ ◦p)}, they get

{p, � (¬p ∨ ◦p), � (¬¬p ∧ ◦(¬p ∧ ¬p))}.

Applying some other rules, which we cannot detail here, thisset is transformed into

{p, ◦p, ◦� (¬p ∨ ◦p), � (p ∧ ◦¬p)}.

The resolution rule is not enough for achieving a contradiction from the latter set. Fourth, [1]
does not address the problem of satis�able input sets, whereas we ensure the existence of a
model for any satis�able input through the notion of cyclingderivation. Finally, complexity is
not discussed in [1, 4] and is dif�cult to assess due to the lack of a clear strategy for applying
the rules.

4.8.4 Venkatesh's Temporal Resolution [126]

The resolution method presented in [126] is very similar to ours in everything but the way of
dealing with eventualities. The normal form and even the wayin which the new variables are
used during the translation process are the same as ours. Theresolution rule and the way of
unwinding temporal literals –in the case of our rules(U Fix) and(RFix)– follow the same
idea. Also the approach of reasoning forwards, i.e., jumping to the next state carrying the
clauses that must be necessarily satis�ed in the next state,appears in both methods. However,
in sharp contrast to ourTRS-resolution, the method in [126] needs invariant property generation
for dealing with eventualities that can unwind inde�nitely(or whose ful�llment can be delayed
inde�nitely). More precisely, cyclic sequences of sets of clauses that contain the so-calledper-
sistent eventualities–eventualities that can be unwound inde�nitely and cannot be satis�ed–
must be detected and the persistent eventualities must be removed. Detecting those cycles can
be seen as �nding an invariant propertyχ that ensures that a given eventualityϕU ψ cannot
be ful�lled because� ¬ψ follows fromχ. Finding the invariant property requires an additional
process whose development is not tackled in [126], therefore the complexity of the method can-
not be directly assessed. Instead of invariant properties,we use the concept of context –in the
applications of the rule(U Set)– for preventing inde�nite unwinding of eventualities.

4.8.5 Fisher's Temporal Resolution [40]

The resolution method presented in [40] is also for fullPLTL. The structure of a formula in the
Separated Normal Form (SNF) is� C1∧. . .∧ � Cr and since it is equivalent to� (C1∧. . .∧ Cr ),
the calculations are made using only the so-calledPLTL-clausesC1, . . . , Cr , without � . Each
Cj is of one of the following three forms

start→ δ κ→ ◦ δ κ→ �λ

where→ is the classical connective of implication (i.e.χ → γ ≡ ¬χ ∨ γ), start is a nullary
connective that is only true in the initial state,δ is a disjunction of propositional literals,κ is
a conjunction of propositional literals andλ is a propositional literal. The use ofstart makes
possible to differentiate the clauses that refer only to the�rst state and the clauses that refer to all
the states. Additionally, in SNF only the temporal connectives◦ and� are kept, since any clause
involving one of the remaining connectives (U , � , etc.) is expressed by a set of new clauses
whose only temporal connectives are◦ and� . A formula and the corresponding set of clauses
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in SNF are equisatis�able but, in general, they are not logically equivalent. The three kinds of
clauses are called, respectively,initial PLTL-clauses,stepPLTL-clauses andsometimePLTL-
clauses. Resolution between the former two kinds of clausesis a straightforward generalization
of classical resolution but the so-calledtemporal resolution rulefor sometimePLTL-clauses is
more complicated:

κ0→ ◦ δ0, . . . , κn → ◦ δn , κn+1 → �λ
SNF(κn+1 → (¬κ0 ∧ . . .∧ ¬κn )Wλ)

where theunlessor weak untilconnectiveW is de�ned asϕWψ ≡ (ϕU ψ)∨ � ϕ. Additionally
the followingloop side conditionsmust be valid

δj → ¬λ andδj → (κ0 ∨ . . .∨ κn ) for everyj ∈ {0, . . . , n}

The idea is that if the setΩ = {κ0 → ◦ δ0, . . . , κn → ◦ δn} satis�es the loop side conditions,
then it follows that(κ0 ∨ . . . ∨ κn ) → ◦� ¬λ. In such a caseΩ is called a loop in� λ and
κ0 ∨ . . . ∨ κn is called a loop formula (also called invariant) in¬λ. So the method is based on
searching for the existence of these invariant properties.This task requires specialized graph
search algorithms (see [45, 33]) and is the most intricate part of this approach. The worst-
case complexity is discussed in [45], where the translationto SNF is proved to be linear in
the length of the input, whereas resolution is doubly exponential in the number of proposition
symbols. An improved and simpli�ed version of the resolution method in [40] can be found
in [32]. The main differences with respect toTRS-resolution method are three. First, although
the technique of renaming complex subformulas by a new proposition symbol is used in both
approaches, in our normal form the temporal connectivesU andR are kept. Second, we follow
the approach of reasoning forwards and jumping to the next state when necessary, whereas the
method presented in [40] involves reasoning backwards. Actually, contradictions are achieved
at the initial state. Third, the most remarkable differenceis the way of dealing with eventualities,
since we dispense with invariant generation by means of the rule (U Set) and the strategy
presented in the algorithmSR.





5. LOGICAL FOUNDATIONS FOR MORE EXPRESSIVE DECLARATIVE
TEMPORAL LOGIC PROGRAMMING LANGUAGES

5.1 Introduction

Temporal Logic Programming (TLP) deals with the direct execution of temporal logic formulas.
Hence TLP provides a single framework in which dynamic systems can be speci�ed, developed,
validated and veri�ed by means of executable speci�cationsthat make possible to prototype,
debug and improve systems before their �nal use. In TLP, the direct execution of a formula
corresponds to building a model for that formula. The idea ofdirectly executing logic formulas
has been thoroughly studied in (classical) Logic Programming (LP). Given a programΠ, the
computation of a goal⊥ ← γ with respect toΠ in an LP system is a search for a refutation
proof ofΠ∪{¬γ}. However, this proof search can also be seen as an attempt to build a model
of Π∪{γ}. This model is (in general) partially speci�ed, because it only determines the truth
value of the atoms (fromΠ) that are involved in the refutation proof. We illustrate this view (of
LP) in the next example.

Example 5.1.1.Let us consider the following (classical) logic program:

q(0)← >
q(X)← q(Y ) ∧X = Y + 1
r(X)← q(Y ) ∧X = Y + 2
w(X)← q(Y ) ∧X = Y + 3

The computationof the goal⊥ ← r(Z) gives rise to the in�nite sequence of answer substitutions
{Z ← 2}, {Z ← 3}, {Z ← 4}, . . . that partially shows the implicit step by step constructionof
the in�nite minimal model{q(j), r(j+ 2) | j ∈ IN} for the body of the goal (i.e.r(Z)) and the
subprogram that contains the �rst three program clauses. However, this model does not specify
which instances ofw(X) are true.

TLP, in a broad sense, means programming in any language based on temporal logic. In
TLP two different approaches have arisen: theimperative futureapproach and thedeclarative
approach. In the imperative future approach a program is a set of rules of the formϕ → ◦ψ
asserting that whenever the formulaϕ is true in a states, the next states0 must make true the
formulaψ. The imperative future approach tries to construct a model of the whole input pro-
gram by using a forward chaining process. By contrast, the declarative approach to TLP is
based on extending classical resolution for dealing with temporal connectives. Hence the (im-
plicit) attempt of constructing a model is driven by the goal. As the above Example 5.1.1 shows,
such model determines only the predicates involved in the refutational process. Next, we brie�y
review the most signi�cant proposals in the literature for both approaches. More discussion
and references about programming languages with capabilities for reasoning about time can be
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found e.g. in [67, 44, 98, 100].

Imperative future TLP languages. The most signi�cant representatives of this approach
are Tempura [94] and MetateM [9]. The language Tempura is based on a fragment of Interval
Temporal Logic with a restricted use of eventualities. The Tempura approach has been contin-
ued ([27, 95]) and extended to Framed Tempura and ProjectionTemporal Logic Programming
[37, 38, 129].
The language MetateM develops the methodology outlined in [54]. MetateM is based on First-
order Linear-time Temporal Logic (FLTL) and formulas are written in the Separated Normal
Form (SNF) presented in [40, 41]. The propositional fragment of MetateM is complete, how-
ever, sinceFLTL is incomplete ([92, 122, 121]), the execution of a �rst-order MetateM program
attempts to build a model, but the success of such construction is not guaranteed (see Example
5.1.4). In MetateM disjunctions are seen as choices and one disjunct is selected from each dis-
junction as part of the process of building a model. If a choice is later shown to be inappropriate,
because it leads to inconsistency, then backtracking is used to return to the last point where a
choice was made. In propositional MetateM the termination is addressed by explicitly consid-
ering the small model property, which allows to calculate anupper bound of forward chaining
steps. If a model is not obtained bellow this upper bound, then the attempt is given up and the
procedure backtracks. MetateM was extended to Concurrent MetateM in [42]. Among its ap-
plications we can mention, e.g., the development of agent systems ([43, 47]). More references
on MetateM, Concurrent MetateM and their applications can be found in [44]. A fragment
of Linear-time Temporal Logic is presented as imperative future TLP language in [93]. This
language, for ef�ciency, restricts the use of eventualities (and also disjunctions). The clausal
normal form and the idea of forward chaining construction ofmodels introduced in MetateM
are used in [6, 7] to obtain a temporal extension of the AnswerSet Programming paradigm
(non-monotonic reasoning).
Finally, we also mention the assembly-like TLP language XYZ/E that was presented in [124,
125] as a vehicle for providing temporal semantics to programs written in conventional imper-
ative programming languages. An imperative program is expressed in XYZ/E on the basis of
the execution sequences that it generates along the timeline. A similar approach can be found in
Chapter 3 of [44].

Declarative TLP languages.There are several works on extending classical LP (in partic-
ular Prolog) for reasoning about time. Some proposals are purely based on temporal logic and
extensions of SLD resolution, but the incompleteness ofFLTL becomes a delicate issue for us-
ing fragments ofFLTL as TLP languages. Also the complexity result is a drawback even for the
propositional fragment (see [119]). Additionally, the interaction between the� (“always”) and
the◦ (“next”) connectives makes possible to encode the so-called induction on timeby means
of loops or hidden invariants (see Section 2.4) that, in an indirect way, state that a formula
is satis�ed in every moment in time. The presence of these loops or hidden invariants makes
necessary to consider quite intricate mechanisms for detecting (un)satis�able eventualities (Def-
inition 2.2.1). Many temporal extensions of LP are not purely founded on temporal logic due to
their extra-logical features for handling eventualities.Next, we summarize representative pub-
lished work concerning the variety of proposals in declarative TLP languages (including some
approaches that are not purely based on temporal logic).
The language Tokio [52, 82, 83, 96] extends Prolog by adding temporal reasoning capabilities
inspired by both Linear-time Temporal Logic and Interval Temporal Logic. In Tokio there are
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restrictions regarding the use of temporal connectives and, unlike Prolog variables, the so-called
temporal variables used in Tokio have state, what makes possible to express properties like
◦Y = Y + 1 stating that the value of the variableY in the next time instant will be its present
value plus one. Obviously, this kind of expressions are no supported by conventional temporal
logic.
A different temporal extension of Prolog was introduced by Hrycej in [74, 75] where time inter-
vals are considered as conceptual primitives. The Hrycej'slanguage is a non-modal approach
based on �rst-order logic with capabilities to deal with time intervals. More precisely, the �rst-
order “rei�ed” logic ([108, 118]) is considered as the basisfor the implementation of the lan-
guage.
Metric temporal operators and dense time are considered in [21, 22, 24, 23, 25, 26] where ex-
ecution is based on translating temporal logic programs into Constraint Logic Programming.
Temporal Annotated Constraint Logic Programming is presented in [50, 49, 51, 107].
The Temporal Prolog presented in [114] extends Prolog by introducing linear-time temporal
connectives. Programs are transformed into a normal form that is similar to the Separated Nor-
mal Form used in MetateM. This transformation removes most temporal connectives by intro-
ducing fresh predicates. The transformation of eventualities yields negated atoms. If negated
atoms (i.e., eventualities) are involved in a program, thenthe Herbrand universe must be �nite
and, in this case, computation is performed on the basis of a nondeterministic �nite automaton
that corresponds to the program. Two implementation options are devised: �rst, by translat-
ing programs into Prolog (if the program contains negation,then a pure Prolog program is not
obtained) and second, asserting the facts which are true at each point in time (although this im-
plementation option is not explained in detail, it resembles, at �rst sight, the imperative future
approach).
A sequent-based proposal for establishing logical foundation for declarative TLP is presented in
[106]. This approach considers a complete fragment ofFLTL where eventualities are allowed.
In order to handle eventualities, the sequent system contains an invariant-based rule.
We �nally review the three existing declarative TLP languages that are based on pure extensions
of classical logic programming languages and resolution, which are Chronolog [127, 99], Tem-
plog [2, 3, 10, 11, 12, 13, 14] and Gabbay's Temporal Prolog [55]. Chronolog and Templog are
the most studied and the most representative languages in the purely declarative approach. The
underlying logic for the languages Templog and Chronolog isFLTL. In the case of Gabbay's
Temporal Prolog, the presented system is intended for both branching-time and linear-time tem-
poral logic. In Chronolog, the connectives�rst (to refer to the states0) andnext (to refer to
the next state) are the only temporal connectives. Templog's syntax allows the always connec-
tive (� ) to occur in clause heads and the eventually connective (�) in clause bodies. However,
Templog programs are expressible by using◦ as the unique temporal connective in clause heads
and bodies ([12, 14]) and consequently it has the same expressive power as Chronolog. This
restriction is so strong that it allows reducing any temporal program to a (possibly in�nite)
classical logic program. Templog and Chronolog have also the same metalogical properties
of existence of minimal model and �xpoint characterization. Gabbay's Temporal Prolog is a
more expressive language that allows eventualities in clause heads (although it does not allow
� in clause bodies). The resolution-based computation procedure outlined in [55] is proved to
be sound, however its completeness has not been addressed. The development of these three
declarative languages was mainly done in the early nineties, in contrast to the imperative future
approach (e.g. Tempura and MetateM) which has been evolvinguntil present days. During the
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last two decades, no other clausal sublanguage of linear-time temporal logic has been proposed
as declarative TLP language. Hence, nowadays, Templog, Chronolog and Gabbay's Temporal
Prolog remain as the most expressive proposals of declarative TLP languages. Later extensions
of Chronolog (e.g. [103, 102, 112, 113, 68]) did not add signi�cant temporal expressiveness. In
the case of Gabbay's Temporal Prolog, although the expressive power was considerably high, it
seems that the lack of completeness was a handicap for further study and development.

In general, it seems that the troublesome solving (in the resolution sense) of the so-called
eventualities has been blocking the steps toward more expressive resolution-based declarative
TLP languages. Indeed, even in the propositional fragment –i.e. inPLTL– the solving of even-
tualities is the most intricate part that often requires techniques such as invariant generation
([40, 45]).

In this thesis, we contribute to the effort of increasing thetemporal expressiveness of declar-
ative TLP languages on the basis of the temporal resolution-based mechanism presented in
the previous chapter (see also [62]) that is complete (in thepropositional setting). As already
explained in Chapter 4, the main novelty of this temporal resolution lies in a new approach
to handle eventualities. We introduce a purely declarativepropositional TLP language, called
TeDiLog, that allows both� and� in clause heads and bodies. Hence,TeDiLogis strictly more
expressive than the propositional fragments of the above mentioned purely declarative propos-
als: Templog [3, 12], Chronolog [127, 99] and Gabbay's Temporal Prolog [55]. Additionally
TeDiLog is as expressive as propositional MetateM [9]. However, MetateM follows the imper-
ative future approach and is not based on resolution. Two crucial differences of our proposal
with MetateM are thatTeDiLog does not need backtracking and the resolution mechanism of
TeDiLogdirectly manages unsatis�able eventualities, hence upperbounds are not needed.

A very preliminary version of the content provided in this chapter was presented at the
Spanish Workshop PROLE 2009 (see [64]).

Along the chapter, we compareTeDiLogwith its most closely related proposals: Templog,
Chronolog, the linear-time Gabbay's Temporal Prolog and MetateM. The technical content of
this chapter is focused on the propositional languageTeDiLog. However, for a better illustration
of the aim of our proposal, we next discuss some �rst-order program examples. They are written
in the natural extension ofTeDiLogwith predicates and variables.

Example 5.1.2.Consider the following program (on Fibonacci numbers):

fib(0)← >
◦fib(1)← >
� (◦2fib(V )← fib(X)∧ ◦fib(Y ) ∧ V = X + Y )

The goal⊥ ← ◦3fib(Z) yields the answer substitution{Z ← 2}. The goal⊥ ← � fib(Z)
produces an in�nite sequence of answer substitutions{Z ← 0}, {Z ← 1}, {Z ← 1}, {Z ←
2}, . . . , that is, the sequence of Fibonacci numbers. Now, consider the goal⊥ ← � fib(Z)
which is not expressible in Templog, Chronolog and Gabbay'sTemporal Prolog. TheTeDiLog
computation does not �nish and does not produce any answer. Note that� fib(j) is not a logical
consequence of the program for anyj ∈ IN .
The above program is expressible in MetateM through a simpletransformation. The MetateM
program execution, which does not need a goal, builds the in�nite model

{fib(0), ◦fib(1), ◦2fib(1), ◦3fib(2), . . .}
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for the above program.

Example 5.1.3.The following program encodes the so-called induction on time (forq(a)):

q(a)← >
� (◦q(X)← q(X))

Hence,q(a) is true at every instant along the time. The goal⊥ ← ◦3q(Z) yields the an-
swer substitution{Z ← a}. The goal⊥ ← � q(Z) generates the in�nite sequence of answer
substitutions{Z ← a}, {Z ← a}, {Z ← a}, {Z ← a}, . . .. The goal⊥ ← � q(Z) also
yields the answer substitution{Z ← a}. The latter goal is neither expressible in Templog,
nor Chronolog, nor Gabbay's Temporal Prolog. The MetateM system builds the in�nite model
{q(a), ◦q(a), ◦2q(a), . . .} for the above program.

Example 5.1.4.The following programshows that, as expected, the natural �rst-order extension
of TeDiLoggives rise to an incomplete system:

q(0)← >
� (◦q(X)← q(X))
� (◦q(X)← q(Y ) ∧X = Y + 1)
� (w(X)← � q(X))

This fact is due to the interaction between the in�nite domain and the connective� in the body
of the last clause. By means of the �rst three clauses, for every i ∈ IN , q(i) holds in all
statessj such thatj ≥ i. As a consequence,w(i) holds in a statesj if i ≥ j. Indeed, the
atomsw(0), ◦w(0), ◦w(1), ◦2w(0), ◦2w(1), ◦2w(2), . . . are logical consequences of the pro-
gram. However, the �rst-order extension of our resolution method will neither yield any answer
for the goal⊥ ← �w(Z) nor for any goal⊥ ← ◦kw(Z) wherek ≥ 0. The reason is that, by
contrast with the previous Example 5.1.3, here the goal⊥ ← � q(V ) does not give any answer
(due to the in�nite domain), and consequently the last program clause cannot be used to pro-
ducew(V ).
In order to obtain a MetateM program, the last program clauseabove is translated into SNF
giving rise to two clauses:� (◦r(X) ← q(X) ∧ ¬w(X)) and � (�¬q(X) ← r(X)), where
r is a fresh predicate symbol. Consequently MetateM attemptsto construct a model for the
following program1:

q(0)← >
� (◦q(X)← q(X))
� (◦q(X)← q(Y ) ∧X = Y + 1)
� (◦r(X)← q(X) ∧ ¬w(X))
� (�¬q(X)← r(X))

Then, the atoms in{q(0), ◦q(0), ◦q(1), ◦2q(0), ◦2q(1), ◦2q(2), . . .} are successively obtained.
In addition, since there is no clause with headw(Z), we can suppose that¬w(X) succeeds in
a time instant for anyX such thatq(X) is true at that time instant. Therefore, the atoms

{◦r(0), ◦2r(0), ◦2r(1), ◦3r(0), ◦3r(1), ◦3r(2), . . .}
1 Actually this program is not in pure SNF yet (see e.g. [41]). Some minor syntactical changes are still needed,

but they are irrelevant for our discussion.
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are also generated. According to the last program clause, the system attempts to satisfy�¬q(X),
however at each step the system must delay this task for the next step. Therefore, MetateM (as
TeDiLog) is not able to generate a model for this program.

In the rest of the chapter we restrict ourselves to the propositional setting. Hence, the logic
that underliesTeDiLog is the well-known Propositional Linear-time Temporal Logic (PLTL),
which is complete and decidable. We endowTeDiLog with logical and operational semantics
and prove their equivalence. The logical semantics is givenby the set of all the (�nite) formulas
of the formα1 ∨ . . . ∨ αn that are logical consequences (inPLTL) of the program and where
eachαj is either a body or a body pre�xed by the connective�. The operational semantics of
TeDiLog is based on theinvariant-free resolution methodthat is presented in detail in Chapter
4 of this thesis (see also [62]) and dispenses with invariantgeneration. We cannot expect to
have the classicalMinimal Model Property(MMP in short) that assigns to any program a min-
imal model, which is the intersection of all its models. The reason for this is twofold. First,
the non-conjunctive temporal connective� appearing in clause heads, and also the non-�nitary
connective� appearing in clause bodies, both (separately) prevent fromholding the MMP (see
[101, 99]). For Gabbay's Temporal Prolog the MMP does not hold because of the use of the
connective� in clause heads. The second reason is that our resolution mechanism produces (in
computation time) disjunctive clauses, soTeDiLog is located in the disjunctive logic program-
ming (DLP) paradigm, which does not enjoy the MMP even in the classical (non-temporal)
case. In the DLP framework, the semantics of a program consists of the collection of all its
minimal models (see e.g. [89]). Temporal disjunctive logicprogramming has previously been
addressed in [68] where Chronolog is extended with DLP features. The satis�ability of a Tem-
plog/Chronolog program can be reduced to the satis�abilityof a classical logic program. As a
consequence, the minimal model characterization of Templog and (Disjunctive) Chronolog (see
[12, 68, 127, 99]) is a straightforward adaptation of the classical (disjunctive) case. In the case of
TeDiLog, due to the fact that syntactical cut elimination seems to beunfeasible inPLTL (indeed,
it is an open problem in [20] and [61]), the collection of minimal models associated to a program
should be related to every possible goal. This results in a too intricate (hence, unseemly) model-
theoretic characterization to be used as declarative semantics for TeDiLog. Indeed, although
a continuous immediate consequence operator can be associated to every program, there are
great dif�culties (related to cut elimination) for using this operator in a customary completeness
proof. Hence, we prove completeness with respect to the logical semantics through a particular
model construction.

Our resolution system requires the expressive power of fulltemporal logic. That is, the
resolution of a�-goal, necessarily generates subgoals involving the strictly more expressive
connectiveU . Hence, we directly formulate our language in terms of the temporal connectives
U and its dual: the connectiveR . We present a complete algorithm which performs resolution
of a goal with respect to a program. This algorithm is based ona natural extension of the classi-
cal LP rule for (binary) resolution in two senses: temporal (� in front of clauses) and disjunctive
(disjunction in clause heads). The algorithm not only performs the standard (linear) resolution
between the current goal and a selected program clause, but also a controlled kind of resolution
callednx-resolution. This nx-resolution is performed to infer (from program clauses) all the
(program) clauses that have a connective◦ in front of every literal. Intuitively, nx-resolution
allows to extract all the implicit information about the next state that is crucial to achieve com-
pleteness.
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L ::= p | ¬p
T ::= LU p | LR p | � p | � p
A ::= ◦ip | ◦iT

H ::= ⊥ | A ∨H
B ::= > | A ∧B
D ::= � b(A ∨H ← B)
G ::= � b(⊥ ← B)

wherep ∈ Prop, i ∈ IN ,⊥ is the empty disjunction,
> is the empty conjunction andb ∈ {0, 1}.

Figure 5.1:Syntax ofTeDiLog

Outline of the chapter. In Section 5.2 we introduce the syntax ofTeDiLog, some preliminary
de�nitions and a sampleTeDiLog speci�cation of a reactive system. In Section 5.3 we present
the system of rules that are the basis for the operational semantics ofTeDiLog. Section 5.4 is
devoted to the operational and logical semantics and their equivalence. In Subsection 5.4.1 we
present the operational semantics ofTeDiLog. Then, in Subsection 5.4.2 we detail some sample
derivations. The logical semantics is described in Subsection 5.4.3. We prove the equivalence
between both semantics in Subsection 5.4.4. Finally, we discuss relevant related work in Section
5.5.

5.2 The LanguageTeDiLog

In this section we introduce the syntax ofTeDiLog along with an illustrative example of a
TeDiLogspeci�cation for a reactive system.

The syntax ofTeDiLog(Figure 5.1) is an adaptation, to the usual logic programming style,
of the clausal normal form previously presented for clausaltemporal resolution (Section 4.2).
The programming languageTeDiLog is a twofold extension of propositional Horn clauses that
incorporates temporal connectives in atoms and disjunctions in clause heads. It is the Temporal
Disjunctive Logic programming language given in Figure 5.1, where the metavariableA de-
notesatom, L stands for (classical) literal,T for temporal atom,H for head,B for body,D for
(disjunctive) program clause, andG for goal clause. As in the previous chapter, we use the su-
perscriptb varying in{0, 1} to represent a formula with or without a pre�xed unary connective
(in particular for the connectives� and� ). So that, along the rest of the chapter superscriptsb
(from bit) range in{0, 1}. These kinds of superscripts are notation, hence they are not part of
the syntax. Due to the superscriptb, the metavariableD represents two kinds of clauses. The
expression� b(H ← B), for b = 0, representsH ← B, which is called anow-clause, whereas
for b = 1, it represents� (H ← B), which is called analways-clause. The same classi�cation
applies to the goal clauses denoted byG. In particular,� b(⊥ ← >) represents the two possible
syntactic forms of the empty clause, as now- or always-clause.

De�nition 5.2.1. Given a set of clausesΦ, the setalw(Φ) is formed by all the always-clauses
in Φ, i.e. all the clauses of the form� (H ← B). In addition, the setnow(Φ) is Φ \ alw(Φ).
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A program is a set of program clauses and a goal is a set of goal clauses.

The set of atoms of a clauseC = � b(A1 ∨ . . . ∨ Am ← A0
1 ∧ . . . ∧ A0

n ) is the set
{A1, . . . , Am , A0

1, . . . , A0
n}. We assume that there is neither repetitions nor established order

in the atoms of a head or a body. An atom is said to be◦-free if it is a temporal atom or a
classical propositional atom. The connective◦ is distributive over every other connective and,
consequently,◦� (A1 ∨ . . . ∨ Am ← A0

1 ∧ . . . ∧ A0
n) is equivalent to� (◦A1 ∨ . . . ∨ ◦Am ←

◦A0
1 ∧ . . . ∧ ◦A0

n ). Given a head, body, program clause or goal clauseψ, we denote by◦ψ the
head, body, program clause or goal clause that is obtained byadding one connective◦ to every
atom inψ. For instance,◦� (p∨q ← ◦r) denotes� (◦p∨◦q ← ◦◦r) and◦� (⊥← ◦r) denotes
� (⊥ ← ◦◦r). Note that◦⊥ is written just⊥ and◦> is written>.

A clause� b(H ← B) is semantically equivalent to the formula� b(H∨¬B). Consequently,
not only the temporal atoms of the form� p andLU p that occur in the headH of the clause
behave as eventualities, but also the temporal atoms� p andLR p in the bodyB, which respec-
tively correspond to (temporal) literals¬� p and¬(LR p). Hence, we de�ne the eventuality
literals of a clause, on the basis of the notion of eventuality (see De�nition 2.2.1).

De�nition 5.2.2. LetC be a clause� b(A1 ∨ . . . ∨ Am ← A0
1 ∧ . . . ∧ A0

n ). Lits(C) denotes
the set{A1, . . . , Am ,¬A0

1, . . . ,¬A0
n} whose elements are called thetemporal literalsof C.

Additionally,EventLits(C) denotes the set of all theeventuality literalsin C, i.e. {N | N ∈
Lits(C) andN is an eventuality}.
Both notations are extended to a set of clausesΨ in the obvious manner:

Lits(Ψ) =
S

C2 	 Lits(C) andEventLits(Ψ) =
S

C2 	 EventLits(C).

Note that eventuality literals from clauses have one of the following four forms:� p, LU p,
¬� p and¬(LR p), wherep is a propositional variable andL a classical literal.

TeDiLogis syntactically a sublanguage ofPLTL, but everyPLTL-formula can be translated
into TeDiLogby using, in general, new propositional variables. The translation yields an equi-
satis�able set of (program and goal) clauses. For example, thePLTL-formula � ¬p ← q (i.e.
� ¬p ∨ ¬q) can be translated intoTeDiLogas the goal⊥ ← q ∧ � p but also as the set formed
by the program clause� r ← q and the goal clause� (⊥ ← r ∧ p) wherer is a fresh proposi-
tional variable. For thePLTL-formula � (x ∨ y) ← z we obtain the program clauses� w ← z
and� (x ∨ y ← w) wherew is a fresh propositional variable. A detailed translation method is
presented in Subsection 4.2.2.

To �nish this section, let us illustrate (with an example) how TeDiLogcan be used to specify
reactive systems and to verify properties that are satis�edby these systems. We also use the next
example to compare the expressiveness ofTeDiLog with the more closely related proposals in
the literature.

Example 5.2.3.Let us consider a system where a device (dv) and a system manager (sm) inter-
act with each other. When the devicedv needs to execute a process, it sends a requestreq dv to
the system managersm to get permission and goes into waiting-state until the system manager
sm sends the acknowledgement signalack sm giving permission to execute the process.

� (waiting dvU ack sm← req dv) (5.1)
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Wheneverdv asks for permission, the system managersm will eventually give permission by
sending the acknowledgement signalack sm in a later state.

� (◦� ack sm← req dv) (5.2)

Once the system manager produces the signalack sm (giving permission), the devicedv goes
into working-state until it communicates the end of the process by means of theeop dv signal.

� (working dv U eop dv ← ack sm) (5.3)

Whenever the device generates theeop dv signal, then it will not be in working-state until it
receives theack sm signal giving permission to execute another process.

� (¬working dvU ack sm← eop dv) (5.4)

From time to time, the system manager generates a control signal ctr sm

� (� ctr sm← >) (5.5)

The interaction generated after the control signalctr sm corresponds to the fact that the system
manager has to regularly control whether the device is correctly connected to the system. This
signalctr sm is always eventually followed by the signalconn sm which is received by the
device.

� (� conn sm← ctr sm) (5.6)

After receiving the signalconn sm, the devicedv answers by sending the signalconn dv to the
system manager.

� (◦� conn dv ← conn sm) (5.7)

The devicedv is considered to be in communicating-state (com dv) while the arising of the
conn dv signal (now or in a future moment) is guaranteed.

� (com dv ← � conn dv) (5.8)

We would like to remark that the clauses (5.2) and (5.5)-(5.7) cannot be expressed neither in
Chronolog nor in Templog because of the eventualities in their heads. However, all of them are
syntactically correct in Gabbay's Temporal Prolog. As for the clauses (5.1), (5.3) and (5.4), they
contain the connectiveU which is not allowed in the above mentioned three declarative TLP
languages.

Now, we can check whether the system speci�ed by theTeDiLogclauses (5.1)-(5.8) veri�es
some properties such as fairness, liveness, safety, mutualexclusion, etc. This is made by writing
the intended property as aTeDiLoggoal and then checking if that goal can be inferred from the
program. For example we would be interested in checking whether the devicedv will always
keep in communicating-state. The corresponding goal wouldbe{⊥ ← � com dv}. Actually,
the refutational mechanism ofTeDiLogchecks the unsatis�ability of the eventuality�¬com dv
with respect to the speci�cation.
None of the just above mentioned three languages (Chronolog, Templog and Gabbay's Temporal
Prolog) allows always-atoms in clause bodies, hence the previous goal is not expressible in any
of these declarative TLP languages.



5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 132

(Res)
� b(A ∨H ← B) � b0(H0← A ∧ B0)

� b� b0(H ∨H0← B ∧ B0)
b, b0∈ {0, 1}

Figure 5.2:The Resolution Rule

The program clauses (5.1)-(5.8) can be expressed in propositional MetateM, although some
translation into SNF is needed. For the resulting speci�cation, the MetateM execution system
builds a model step by step in the imperative future style. The process will stop when a loop
that gives rise to an ultimately periodic model for the program is detected. If we add to the
speci�cation the SNF clauses that correspond to the goal⊥ ← � com dv, then MetateM �nitely
detects the unsatis�ability of the extended speci�cation.

5.3 The Rule System

In this section, we introduce the rule system that constitutes the basis of the operational seman-
tics of TeDiLog. This rule system is a straightforward adaptation ot theTRS-system presented
in Section 4.3. Hence our system includes aResolution Rule, a collection ofTemporal Rulesfor
decomposing temporal atoms, and two auxiliary rules respectively for jumping to the next state
and forsubsumption. We explain these four kinds of rules in the following four subsections.

5.3.1 The Resolution Rule

TheTeDiLog's resolution rule(Res) is a natural generalization of the classical rule for binary
resolution. It is depicted in Figure 5.2 in the usual format of premises and resolvent separated
by an horizontal line. The rule(Res) applies to two temporal clauses such that one of the atoms
in the head of one clause is in the body of the other clause. Thepremises can be headed or not
by an always connective. By means of the productb × b0 in the superscript of the resolvent,
the resolvent is an always-clause if and only if both premises are always-clauses. Note that the
resolvent is in general a program clause, but in particular when the premises respectively are a
single-headed program clause and a goal clause, the resolvent is a goal clause.

5.3.2 The Temporal Rules

The temporal rules serve to transform the set of clauses according to the inductive de�nitions
of temporal atoms. We write them as transformation rulesΦ 7→ Ψ whereΦ andΨ are sets of
clauses, respectivelly called the antecedent and the consequent. Temporal rules are grouped into
two classes. On the one hand, thecontext-free rulesare based on the usual inductive de�nitions
of the temporal connectives. The antecedent and consequentof any context-free rule are logi-
cally equivalent. On the other hand, thecontext-dependentrules come up from a more complex
inductive de�nition of the connectiveU (already presented in the previous chapters), and their
antecedent and consequent are equisatis�able.
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(U H+ ) � b((p1U p2) ∨H ← B)
7−→ {� b(p2 ∨ p1 ∨H ← B), � b(p2 ∨ ◦(p1U p2) ∨H ← B)}

Figure 5.3:The Context-Free Rule(U H+)

(U H� ) � b((¬p1U p2) ∨H ← B)
7−→ {� b(p2 ∨H ← p1 ∧ B), � b(p2 ∨ ◦(¬p1 U p2) ∨H ← B)}

(U B+ ) � b(H ← (p1U p2) ∧B)
7−→ {� b(H ← p2 ∧ B), � b(H ← p1 ∧ ◦(p1U p2) ∧ B)}

(U B� ) � b(H ← (¬p1U p2) ∧B)
7−→ {� b(H ← p2 ∧ B), � b(p1 ∨H ← ◦(¬p1 U p2) ∧B)}

Figure 5.4:The Context-Free Rules(U H� ), (U B+) and(U B� )

Context-Free Rules

In the context-free rules, the antecedentΦ is a singleton and we write directly its unique clause.
The context-free rule(UH+ ) –depicted in Figure 5.3– deals with an atom of the formp1 U p2

that appears in the head of a clause. This rule replaces a clause of the form� b((p1U p2) ∨
H ← B) with a logically equivalent set of (two) clauses according to the well-known inductive
de�nition p1U p2 ≡ p2 ∨ (p1 ∧ ◦(p1U p2)), from which the distribution law guarantees the
equivalence

p1U p2 ≡ (p2 ∨ p1) ∧ (p2 ∨ ◦(p1U p2)) (5.9)

which justi�es that the antecedent(p1U p2)∨H ← B of the rule(U H+ ) is logically equivalent
to the conjunction of the two clauses in its consequent:p2∨p1∨H ← B andp2∨◦(p1U p2)∨
H ← B.
Our system also includes (see Figure 5.4) the rules(UH� ), (U B+ ) and(U B� ) for the re-
spective occurrences of¬p1U p2 in the clause head andp1U p2 and¬p1 U p2 in the clause body.
The rules(U H� ), (U B+ ) and(U B� ) are respectively obtained by using the inductive de�-
nitionLU p ≡ p∨ (L∧ ◦(LU p)) for ¬p1 U p2 in the clause head, andp1U p2 and¬p1U p2 in
the clause body. Additionally, the rules(RH+ ), (RH� ), (RB+ ) and(RB� ) in Figure 5.5
are obtained from the inductive de�nitionLR p ≡ p∧ (L∨ ◦(LR p)) by considering the same
four kinds of occurrences of the release connectiveR in a clause.

Context-Dependent Rules

The context-dependent rules are based on an inductive de�nition of U that takes into account,
not only the clauses where the temporal atom occurs, but alsothe remaining now-clauses in the
antecedent of the rule. The rule(U C+ ) in Figure 5.7 is the context-dependent rule that deals
with atoms of the formp1 U p2 in clause heads. This rule is obtained by a direct adaptation,
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(RH+ ) � b((p1R p2) ∨H ← B)
7−→ {� b(p2 ∨H ← B), � b(p1 ∨ ◦(p1R p2) ∨H ← B)}

(RH� ) � b((¬p1R p2) ∨H ← B)
7−→ {� b(p2 ∨H ← B), � b(◦(¬p1R p2) ∨H ← p1 ∧B)}

(RB+ ) � b(H ← (p1R p2) ∧ B)
7−→ {� b(H ← p2 ∧ p1 ∧ B), � b(H ← p2 ∧ ◦(p1R p2) ∧B)}

(RB� ) � b(H ← (¬p1R p2) ∧ B)
7−→ {� b(p1 ∨H ← p2 ∧ B), � b(H ← p2 ∧ ◦(¬p1R p2) ∧ B)}

Figure 5.5:The Context-Free Rules(RH+), (RH� ), (RB+) and(RB� )

def(a, L, ∅) = {� (⊥ ← a)}
def(a, p,∆) = {� (p← a)} ∪{� (H ← B ∧ a) | H ← B ∈ ¬∆} if ∆ 6= ∅
def(a,¬p,∆) = {� (⊥ ← p ∧ a)} ∪{� (H ← B ∧ a) | H ← B ∈ ¬∆} if ∆ 6= ∅

Figure 5.6:The set of clausesdef(a, L,∆)

to the syntax ofTeDiLog, of the rule(U Set) in Figure 4.5. The antecedent of(U C+ ) must
be interpreted as a partition of the whole set of clauses (on which we are applying temporal
resolution) into two sets. The second set{� bi((p1U p2) ∨ Hi ← Bi ) | 1 ≤ i ≤ n} in the
antecedent is a non-empty set of clauses that contain the same temporal atomp1U p2 in the
head. The �rst set,Ω, is formed by all the remaining clauses. The now-clauses that belong
to Ω form what we callcontext(see De�nition 4.3.3 and Subsection 4.3.2). The crucial idea
behind the context-dependent rule(U C+ ) (and, hence, behind the resolution mechanism of
TeDiLog) is based on the equisatis�ability result in Proposition 4.3.2. The transformation of
such proposition into the syntax ofTeDiLog is trivial because aTeDiLog clause of the form
� b(A1∨. . .∨Am ← A0

1∧. . .∧A0
n ) corresponds to the clause� b(A1∨. . .∨Am∨¬A0

1∨. . .∨¬A0
n )

in the clausal language presented in Chapter 4.
All the rules used inTeDiLog are straightforward adaptations of the rules used in theTRS

resolution system. For instance, the transformation of theantecedent of(U C+ ) into its conse-
quent follows the same steps as the transformation of the antecedent of the rule(U Set) into its
consequent, showed in detail in Subsection 4.3.2.

Our system also includes a similar context-dependent rule(U C� ) for ¬p1U p2 in the head,
which is depicted in Figure 5.8. The context-dependent rules(RC+ ) and(RC� ) in Figure 5.8
are due to the fact that a release atom appearing in the body ofa clauseC is an eventuality literal
of C (see De�nition 5.2.2). The rules forR are explained by its duality withU . Additionally,
by using the de�nitions�ϕ ≡ ¬ϕU ϕ and � ϕ ≡ ¬ϕRϕ, the context-free rules(�H+ ),
(�B+ ), (� H+ ) and(� B+ ) and the context-dependent rules(�C+ ) and(� C+ ) are derived.
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(U C+ ) Ω∪{� bi((p1U p2) ∨Hi ← Bi ) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p2 ∨ p1 ∨Hi ← Bi , p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ def(a, p1, now(Ω))
∪ {� bi (◦(p1U p2) ∨ ◦Hi ← ◦Bi ) | bi = 1 and1 ≤ i ≤ n}

wheren ≥ 1, a ∈ Prop is fresh anddef(a, p1, now(Ω)) is de�ned in Figure 5.6.

Figure 5.7:The Context-Dependent Rule(U C+)

(U C� ) Ω∪{� bi((¬p1U p2) ∨Hi ← Bi ) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p2 ∨Hi ← p1 ∧ Bi , p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ def(a,¬p1, now(Ω))
∪ {� bi(◦(¬p1U p2) ∨ ◦Hi ← ◦Bi ) | bi = 1 and1 ≤ i ≤ n}

(RC+ ) Ω∪{� bi(Hi ← (p1R p2) ∧ Bi ) | 1 ≤ i ≤ n}
7−→ Ω ∪ {Hi ← p2 ∧ p1 ∧ Bi , Hi ← p2 ∧ ◦(¬aR p2) ∧Bi | 1 ≤ i ≤ n}

∪ def(a,¬p1, now(Ω))
∪ {� bi(◦Hi ← ◦(p1R p2) ∧ ◦Bi ) | bi = 1 and1 ≤ i ≤ n}

(RC� ) Ω∪{� bi(Hi ← (¬p1R p2) ∧Bi ) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p1 ∨Hi ← p2 ∧ Bi , Hi ← p2 ∧ ◦(¬aR p2) ∧Bi | 1 ≤ i ≤ n}

∪ def(a, p1, now(Ω))
∪ {� bi(◦Hi ← ◦(¬p1R p2) ∧ ◦Bi ) | bi = 1 and1 ≤ i ≤ n}

wheren ≥ 1, a ∈ Prop is fresh anddef(a, L, now(Ω)) is de�ned is in Figure 5.6.

Figure 5.8:The Context-Dependent Rules(U C� ), (RC+) and(RC� )

These derived rules are depicted in Figure 5.10.

5.3.3 The Rule for Jumping to the Next State

The rule(Unx) in Figure 5.11 applies to a pair formed by a program and a goal,giving a new
pair of program and goal. The expressionunnext(Ψ) stands for the set of all clauses that should
be satis�ed at the next state of a state that satis�es the set of clausesΨ. Note that the de�nition
of the functionunnextimplicitly uses the equivalence� ϕ ≡ ϕ ∧ � ◦ϕ and also that theunnext
target of a program (resp. goal) is also a program (resp. goal). It is worth remembering that>
and⊥ respectively represent the empty body and the empty head, and it holds that every atom
in > and⊥ is of the form◦A. For example,unnext({� (◦r ← >), � (q ← >)}) is the set
{� (◦r ← >), � (q ← >), r← >}.
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def(a, now(Ω)) =
�
{� (⊥← a)} if now(Ω) = ∅
{� (H ← B ∧ a) | H ← B ∈ ¬now(Ω)} otherwise

Figure 5.9:The set of clausesdef(a, now(Ω))

(�H+ ) � b(� p ∨H ← B) 7−→ {� b(p ∨ ◦� p ∨H ← B)}

(�B+ ) � b(H ← � p ∧B) 7−→ {� b(H ← p ∧B), � b(H ← ◦� p ∧ B)}

(� H+ ) � b(� p ∨H ← B) 7−→ {� b(p ∨H ← B), � b(◦� p ∨H ← B)}

(� B+ ) � b(H ← � p ∧ B) 7−→ {� b(H ← p ∧ ◦� p ∧B)}

(�C+ ) Ω∪{� bi (� p ∨Hi ← Bi ) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p ∨ ◦(aU p) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ def(a, now(Ω))
∪ {� bi(◦� p ∨ ◦Hi ← ◦Bi ) | bi = 1 and1 ≤ i ≤ n}

(� C+ ) Ω∪{� bi (Hi ← � p ∧Bi ) | 1 ≤ i ≤ n}
7−→ Ω ∪ {Hi ← p ∧ ◦(¬aR p) ∧Bi | 1 ≤ i ≤ n}

∪ def(a, now(Ω))
∪ {� bi(◦Hi ← ◦� p ∧ ◦Bi ) | bi = 1 and1 ≤ i ≤ n}

wheren ≥ 1, a ∈ Prop is fresh anddef(a, now(Ω)) is de�ned in Figure 5.9

Figure 5.10:Derived Rules for� and�

5.3.4 The Subsumption Rule

The rule(Sbm) is formulated in Figure 5.12. Regarding the clauses in the antecedent, it is said
that the clause� b(H ← B) is subsumed by the clause� b(H0← B0).
Our resolution mechanism requires(Sbm) for completeness. Actually, subsumption is used in
Lemma 5.4.11, which is used in the proof of Proposition 5.4.24 and allows us to prove Theorem
5.4.28.

5.4 TeDiLogSemantics

In this section we summarize our results onTeDiLogsemantics. The �rst subsection is devoted
to the operational semantics that is formalized by means of the algorithm in Figure 5.13. The
second subsection shows three sample derivations. In the third subsection we de�ne the logical
semantics. Finally, in the last subsection we prove the equivalence between the operational and
the logical semantics.
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(Unx) (Π,Γ) 7−→ (unnext(Π), unnext(Γ))

whereunnext(Ψ) = alw(Ψ) ∪ {H ← B | � b(◦H ← ◦B) ∈ Ψ}

Figure 5.11:The Rule(Unx)

(Sbm) {� b(H ← B), � b(H0← B0)}7−→{� b(H0← B0)}

whereH0⊆ H andB0⊆ B.

Figure 5.12:The Rule(Sbm)

5.4.1 Operational Semantics

In this subsection we formulate the operational semantics of TeDiLog. We refer to the refuta-
tion procedure underlyingTeDiLogasIFT-resolution (forInvariant-Free Temporalresolution).
Every step of anIFT-derivation consists in applying one of the rules presentedin Section 5.3.
However, as in the tableau methodTTM and the resolution systemTRS, the nondeterministic
application of those rules does not guarantee completeness. In Figure 5.13 we show theIFT-
resolution procedure that applies the rules in Section 5.3 in a more (not fully) deterministic way
that is complete. The algorithm in Figure 5.13 is an adaptation of the algorithmSR in Figure
4.10 to the languageTeDiLog. Consequently, this subsection is an adaptation of Subsection
4.6.1 into the languageTeDiLog.

The IFT-resolution procedure constructs anIFT-derivationfrom an input programΠ and an
input goalΓ that we callD(Π,Γ) and consists of a (possibly in�nite) sequence

S0 Z⇒ S1 Z⇒ S2 Z⇒ . . .

where eachSj is a �nite sequence of pairs

(Π0
j ,Γ

0
j ) 7→ (Π1

j ,Γ
1
j ) 7→ . . . 7→ (Πhj

j ,Γ
hj
j )

such that

(a) (Π0
0,Γ0

0) = (Π,Γ)

(b) (Π0
k ,Γ

0
k) = (unnext(Πhk� 1

k� 1 ), unnext(Γhk� 1
k� 1 )) for everyk ≥ 1

(c) Every pair(j, i) such thatj ≥ 0 and i ∈ {1, . . . , hj } satis�es one of the following two
conditions

(i) Πi
j ∪Γi

j = Πi � 1
j ∪Γi � 1

j ∪{� b(H ← B)} where� b(H ← B) is the resolvent ob-

tained by applying the rule(Res) to some pair of clauses inΠi � 1
j ∪Γi � 1

j

(ii) Πi
j ∪Γi

j = ((Πi � 1
j ∪Γi � 1

j )\Σ)∪Ψ whereΣ ⊆ (Πi � 1
j ∪Γi � 1

j ) andΣ 7→ Ψ according
to a temporal rule or the subsumption rule.
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1 (Π0
0,Γ0

0) := (Π,Γ); i := 0; j := 0;
2 sel ev set0 := fair select(Π0

0,Γ0
0);

3 loop
4 if sel ev seti 6= ∅
5 then (Π1

i ,Γ1
i , sel ev set�i ) := apply ctx dep(Π0

i ,Γ0
i , sel ev seti ); j := 1;

6 elsesel ev set�i := ∅;
7 end if;
8 (Π�

i ,Γ�
i ) := supportedfree close(Πj

i ,Γ
j
i );

9 if � b(⊥← >) ∈ Π�
i ∪Γ�

i then exit; end if;
10 (Π0

i +1 ,Γ0
i +1 ) := (unnext(Π�

i ), unnext(Γ�
i ));

11 if sel ev set�i ∩ EventLits(Π0
i +1 ∪Γ0

i +1 ) = ∅
12 then sel ev seti +1 := fair select(Π0

i +1 ,Γ0
i +1 );

13 elsesel ev seti +1 := sel ev set�i ;
14 end if;
15 i := i+ 1; j := 0;
16 end loop;

Figure 5.13:The IFT-Resolution Procedure

Note that we use two different symbols (7→ andZ⇒) to highlight the difference between applying
the rule(Unx) and any other rule. We say that anIFT-derivation is alocal derivationif it
does not contain any application of the rule(Unx). Each sequenceSj is a local derivation and
(Unx) serves to jump from eachSj to the next sequenceSj +1 . In other words, the application

of (Unx) yields each(Π0
j +1 ,Γ0

j +1 ) from each(Πhj
j ,Γ

hj
j ).

The IFT-resolution procedure �rst initializes (see line 1 in Figure 5.13) the pair(Π0
0,Γ0

0)
with the input pair(Π,Γ). Then, the procedure iterates extending the derivationD(Π,Γ) with
new pairs and stopping only if the empty clause is obtained (line 9). In this case, the reso-
lution proofD(Π,Γ) is called anIFT-refutation. The IFT-resolution procedure uses a mark-
ing strategy for applying exactly one context-dependent rule between each two consecutive
applications of the rule(Unx).2 For that, it keeps two variablessel ev seti and sel ev set�i
for every i ≥ 0. Both variables,sel ev seti andsel ev set�i , take as value the empty set or
a singleton that contains an eventuality literal, depending on whetherEventLits(Π0

i ∪Γ0
i ) –

see De�nition 5.2.2– is empty or not, respectively. The variable sel ev seti stands for the
selected eventuality literalN in (Π0

i ,Γ0
i ), whereassel ev set�i corresponds to the eventual-

ity literal obtained fromN by the application of the corresponding context-dependentrule,
which remains selected in all pairs from(Π1

i ,Γ1
i ) to (Πhi

i ,Γ
hi
i ). Consequently, in line 2 (Fig-

ure 5.13), the variablesel ev set0 is initialized with a singleton that contains a fairly selected
temporal literal fromEventLits(Π0

0∪Γ0
0) wheneverEventLits(Π0

0∪Γ0
0) is non-empty. On the

contrary, ifEventLits(Π0
0∪Γ0

0) is empty, the variablesel ev set0 is initialized with the empty
set (line 2). The expressionfair select(Π0

h ,Γ
0
h) encapsulates the fair selection of a literal from

EventLits(Π0
h ∪Γ0

h), where fairness means that a literal that belongs to every set in a sequence
of the form

2 Whenever there is at least one eventuality literal, exactlyone is selected as the designated eventuality of the
corresponding context-dependent rule. Otherwise, no context-dependent rule is applicable.
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EventLits(Π0
g ∪Γ0

g),EventLits(Π0
g+1 ∪Γ0

g+1 ),EventLits(Π0
g+2 ∪Γ0

g+2 ), . . .

cannot remain inde�nitely unselected in the derivationSg Z⇒ Sg+1 Z⇒ Sg+2 Z⇒ . . ..
In addition to the above explained marking strategy,IFT-resolution requires a controlled

kind of saturation (with respect to the rules introduced in Section 5.3) before jumping from a
sequenceSj to the next sequenceSj +1 , which is also needed for completeness. Actually, every

pair (Πhj
j ∪Γhj

j ) is IFT-closed (or saturated) in the sense given by the following de�nition.

De�nition 5.4.1. Let Π be a program andΓ a goal. The pair(Π,Γ) is IFT-closed if and only if
it satis�es the following four conditions:

(a) The set of atoms of the clauses inΠ∪Γ is exclusively formed by atoms inPropand atoms
of the form◦A.

(b) The subsumption rule(Sbm) cannot be applied to(Π,Γ).

(c) Every clause that can be obtained by applying the rule(Res) to a clause inΠ and a clause
in Γ, is already in(Π,Γ) or it is subsumed by some clause in(Π,Γ).

(d) Every clause of the form� b(◦H ← ◦B) that can be obtained by means of a local derivation
where in each derivation step the rule(Res) is applied to two program clauses, is already
in (Π,Γ) or it is subsumed by some clause in(Π,Γ).

Items(c) and(d) represent two particular forms of the well-known set-of-support restriction
of resolution3 (see e.g. Section 2.6 in [115] and [34]). Note that, by(c), the pair(Π∪Γ) is
saturated with all the resolvents that can be obtained from aprogram clause and a goal clause.
We callgoal-resolutionto every application of the rule(Res) related to(c). However, by(d),
the programΠ is saturated with all the resolventsR of two program clauses such that every
atom inR is preceded by the connective◦. We callnx-resolutionto every application of the rule
(Res) related to(d). The need ofnx-resolutionis illustrated in Example 5.4.5.

De�nition 5.4.2. Let Π be a program andΓ a goal. We denote by(Π� ,Γ� ) any pair such that
there exists a local derivation(Π,Γ) 7→ . . . 7→ (Π� ,Γ� ) and either� b(⊥ ← >) ∈ Γ� or
(Π� ,Γ� ) is IFT-closed.

Consequently, the lines 4 to 8 (in Figure 5.13) serve to extend the derivation from(Π0
i ,Γ0

i ) to
(Π�

i ,Γ�
i ). First, by lines 4-7, if there is a selected eventuality literal, i.e., if sel ev seti 6= ∅, then

the corresponding context-dependent rule is applied considering thatΩ = (Π0
i ∪Γ0

i ) \ {C ∈
(Π0

i ∪Γ0
i ) | EventLits(C) ∩ sel ev seti 6= ∅}. The value ofsel ev set�i is the singleton that

contains the new eventuality literal that is introduced by the applied context-dependent rule
(i.e. the eventuality literal that appears in the consequent of the applied context-dependent rule
preceded by a◦ connective). If there is no selected literal, none of the context-dependent rules
is applicable in the current iteration step and, additionally, the value ofsel ev set�i is the empty
set. Then, in line 8, denoted assupportedfree close, the context-free rules, the resolution rule
and the subsumption rule are repeatedly and nondeterministically applied until either anIFT-
refutation or anIFT-closed pair (see De�nition 5.4.1) is obtained.

3 Also known asset-of-support strategy for resolution.
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De�nition 5.4.3. Let(Π,Γ) be a pair whereΠ is a program andΓ a goal, the non-deterministic
operation that yields(Π� ,Γ� ) from (Π,Γ) without any application of the context-dependent
rules is denoted bysupportedfree close.

In the algorithm presented in Figure 5.13 we use the procedure supportedfree closethat
implements the operationsupportedfree closeduring the construction of a derivation.

Once anIFT-closed pair is obtained –if a refutation is not found in line9– the rule(Unx)
is applied (line 10). Then, an eventuality literal that belongs toEventLits(Π0

i +1 ∪Γ0
i +1 ), is

fairly selected for the next iteration step (lines 11-14). If sel ev set�i is empty or if the literal in
sel ev set�i does not appear inEventLits(Π0

i +1 ∪Γ0
i +1 ) (line 11), then a new literal that belongs

to EventLits(Π0
i +1 ∪Γ0

i +1 ) is fairly selected for the next iteration step (line 12). Otherwise, the
literal in sel ev set�i is kept as the selected one for the next iteration step (line 13).

5.4.2 Examples

In this section we present three detailed examples that illustrate theIFT-resolution procedure. In
Example 5.4.4 we simply show howIFT-resolution deals with eventualities. The Example 5.4.5
illustrates the need of nx-resolution (De�nition 5.4.1(d)). Finally, Example 5.4.7 shows that
the order in which eventuality literals a selected –by meansof the fair selectoperation– does
not necessarily determine the order in which eventuality literals are ful�lled. Moreover, this
example also serves to illustrate that the ful�llment of eventualities is handled byIFT-resolution
without backtracking. The three sample derivations are showed in the respective �gures, where
we indicate which rule is applied and we underline the clauses designated by the rule application,
except for the rule(Unx). The values ofsel ev seti andsel ev set�i are pointed out too.

Example 5.4.4.We consider the programΠ = {q U r ← >} and the goalΓ = {� (⊥ ← r)}.
The goal clause is equivalent to the formula� ¬r andΠ∪Γ is unsatis�able. In Figure 5.14 we
show anIFT-refutation for(Π,Γ). First,Π0

0 andΓ0
0 are respectively initializedasΠ andΓ. Since

q U r is the only eventuality literal in a clause that belongs toΠ∪Γ, it is selected. Therefore
sel ev set0 = {q U r}. We apply the rule(U C+ ) to Π0

0 ∪Γ0
0 with selected literalq U r and

empty context. Hence, we obtain the new program clausesr∨q ← > andr∨◦(aU r)← > and
the goal clause� (⊥ ← a), wherea is a fresh variable. Since the context is empty (its negation
is⊥), the goal clause� (⊥ ← a) gives meaning to the fresh variablea. The new atomaU r is
the new selected literal, i.e,sel ev set�0 = {aU r}. Then the resolution rule and the subsumption
rule are applied twice, and theIFT-closed pair(Π5

0,Γ5
0) is obtained. These applications of the

rules (Res) and (Sbm) correspond to the operationsupportedfree close(De�nition 5.4.3).
Since a refutation cannot be obtained in this state, the application of the rule(Unx) serves to
jump to the next state, generatingΠ0

1 andΓ0
1. Since the atomaU r appears as eventuality literal

in a clause that belongs toΠ0
1∪Γ0

1, it is kept as selected literal, i.e.,sel ev set1 = {aU r}.
Now the rule(U C+ ) is applied to the setΠ0

1 ∪Γ0
1 with selected literalaU r and empty context.

Then, we obtain two new program clauses,r ∨ a ← > and r ∨ ◦(bU r) ← >, and the goal
clause� (⊥ ← b), whereb is a fresh variable. Nowsel ev set�1 = {bU r}. Two additional
applications of the rule(Res) –that correspond to the operationsupportedfree close– yield
the empty clause⊥ ← >.

In the next example we illustrate whynx-resolution(De�nition 5.4.1 (d)) is necessary for
completeness. This example is an adaptation, toTeDiLog, of the Example 4.6.3 (Figure 4.11).
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Π0
0 = {q U r ← >} Γ0

0 = {� (⊥← r)} (U C+ ) sel ev set0 = {q U r}

Π1
0 = {r ∨ q ← >,

r ∨ ◦(aU r)← >}
Γ1

0 = {� (⊥← r),
� (⊥ ← a)}

(Res) sel ev set�0 = {aU r}

Π2
0 = {r ∨ q ← >,

r ∨ ◦(aU r)← >,
q ← >}

Γ2
0 = {� (⊥← r),

� (⊥ ← a)}
(Sbm)

Π3
0 = {r ∨ ◦(aU r)← >,

q ← >}
Γ3

0 = {� (⊥← r),
� (⊥ ← a)}

(Res)

Π4
0 = {r ∨ ◦(aU r)← >,

q ← >,
◦(aU r)← >}

Γ4
0 = {� (⊥← r),

� (⊥ ← a)}
(Sbm)

Π5
0 = {q ← >,

◦(aU r)← >}
Γ5

0 = {� (⊥← r),
� (⊥ ← a)}

(Unx)

Π0
1 = {aU r ← >} Γ0

1 = {� (⊥← r),
� (⊥ ← a)}

(U C+ ) sel ev set1 = {aU r}

Π1
1 = {r ∨ a← >,

r ∨ ◦(bU r)← >}
Γ1

1 = {� (⊥← r),
� (⊥ ← a),
� (⊥ ← b)}

(Res) sel ev set�1 = {bU r}

Π2
1 = {r ∨ a← >,

r ∨ ◦(bU r)← >,
a← >}

Γ2
1 = {� (⊥← r),

� (⊥ ← a),
� (⊥ ← b)}

(Res)

Π3
1 = {r ∨ a← >,

r ∨ ◦(bU r)← >,
a← >}

Γ3
1 = {� (⊥← r),

� (⊥ ← a),
� (⊥ ← b),
⊥ ← >}

Figure 5.14:IFT-Refutation forΠ = {q U r ← >} andΓ = {� (⊥ ← r)}
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Π0
0 = {q ← >,

� (◦q ← q)}
Γ0

0 = {⊥ ← � q} (� C+ ) sel ev set0 = {¬� q}

Π1
0 = {q ← >,

� (◦q ← q)}
Γ1

0 = {⊥ ← q ∧ ◦(¬aR q),
� (⊥← q ∧ a)}

(Res) sel ev set�0 = {¬(¬aR q)}

Π2
0 = {q ← >,

� (◦q ← q)}
Γ2

0 = {⊥ ← q ∧ ◦(¬aR q),
� (⊥← q ∧ a),
⊥ ← ◦(¬aR q)}

(Sbm)

Π3
0 = {q ← >,

� (◦q ← q)}
Γ3

0 = {� (⊥ ← q ∧ a),
⊥ ← ◦(¬aR q)}

(Res)

Π4
0 = {q ← >,

� (◦q ← q)}
Γ4

0 = {� (⊥ ← q ∧ a),
⊥ ← ◦(¬aR q),
⊥ ← a}

(Res)

Π5
0 = {q ← >,

� (◦q ← q),
◦q ← >}

Γ5
0 = {� (⊥ ← q ∧ a),

⊥ ← ◦(¬aR q),
⊥ ← a}

(Unx)

Π0
1 = {� (◦q ← q),

q ← >}
Γ0

1 = {� (⊥ ← q ∧ a),
⊥ ← ¬aR q}

(RC� ) sel ev set1 = {¬(¬aR q)}

Π1
1 = {� (◦q ← q),

q ← >,
a← q,
� (a← b)}

Γ1
1 = {� (⊥ ← q ∧ a),

⊥ ← q ∧ ◦(¬bR q),
� (⊥← q ∧ b)}

(Res) sel ev set�1 = {¬(¬bR q)}

Π2
1 = {� (◦q ← q),

q ← >,
a← q,
� (a← b)}

Γ2
1 = {� (⊥ ← q ∧ a),

⊥ ← q ∧ ◦(¬bR q),
� (⊥← q ∧ b),
⊥ ← a}

(Res)

Π3
1 = {� (◦q ← q),

q ← >,
a← q,
� (a← b)}

Γ3
1 = {� (⊥ ← q ∧ a),

⊥ ← q ∧ ◦(¬bR q),
� (⊥← q ∧ b),
⊥ ← a,
⊥ ← q}

(Res)

Π4
1 = {� (◦q ← q),

q ← >,
a← q,
� (a← b)}

Γ4
1 = {� (⊥ ← q ∧ a),

⊥ ← q ∧ ◦(¬bR q),
� (⊥← q ∧ b),
⊥ ← a,
⊥ ← q,
⊥ ← >}

Figure 5.15:IFT-refutation forΠ = {q ← >, � (◦q ← q)} andΓ = {⊥ ← � q}
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Now we use the propositional variableq instead of the variablep that is used in Example 4.6.3.

Example 5.4.5. Let us consider the programΠ = {q ← >, � (◦q ← q)} and the goal
Γ = {⊥ ← � q}. The set of clausesΠ∪Γ is unsatis�able. TheIFT-refutation for(Π,Γ) is
shown in Figure 5.15. The goal clause⊥ ← � q contains the only eventuality literal,¬� q,
in (Π,Γ). Hencesel ev set0 = {¬� q} and the application of the rule(� C+ ) with context
{q ← >} generates the goal clauses⊥ ← q ∧ ◦(¬aR q) and � (⊥ ← q ∧ a), wherea is a
new propositional variable. Additionally, we have thatsel ev set�0 = {¬(¬aR q)}. Now the
operationsupportedfree closeis carried out, which consists in three applicationsof(Res) and
one application of(Sbm). By applying the resolution rule to the program clauseq ← > ∈ Π1

0
and the goal clause⊥ ← q ∧ ◦(¬aR q) ∈ Γ1

0, the goal clause⊥ ← ◦(¬aR q) is obtained as
resolvent. Then, by(Sbm), the goal clause⊥ ← q∧◦(¬aR q) is subsumed by⊥ ← ◦(¬aR q).
The second application of(Res), this time with the program clauseq ← > and the goal clause
� (⊥ ← q ∧ a) as premises, yields the goal clause⊥ ← a. Then the rule(Res) is applied to
the two program clausesq ← > and � (◦q ← q) and the program clause◦q ← > is obtained
as resolvent before jumping to the next state by applying therule (Unx) to theIFT-closed pair
(Π5

0,Γ5
0).

Remark 5.4.6. Note that(Π5
0,Γ5

0) is obtained by nx-resolution from(Π4
0,Γ4

0). Let
us explain that this step is essential. In(Π4

0,Γ4
0) goal-resolution is not applicable.

If instead of applying nx-resolution to the clausesq ← > and � (◦q ← q) in Π4
0,

we applied the rule(Unx) to the pair(Π4
0,Γ4

0), then we would obtain the program
Π0 = {� (◦q ← q)} and the goalΓ0 = {⊥ ← ¬aR q, � (⊥ ← a)}. SinceΠ0∪Γ0

is satis�able, the refutation ofΠ∪Γ would never be found.

By applying the rule(Unx) to (Π5
0,Γ5

0), we obtain the pair(Π0
1,Γ0

1). Then, we apply the context-
dependent rule(RC� ) with respect to the selected eventuality literal¬(¬aR q) and the clause
q ← > as context. The pair(Π1

1,Γ1
1) is obtained by replacing the goal clause⊥ ← ¬aR q in

Γ0
1 with the program clausesa ← q and � (a ← b) and the goal clauses⊥ ← q ∧ ◦(¬bR q)

and � (⊥ ← q ∧ b), whereb is a fresh propositional variable. The value ofsel ev set�1 is
{¬(¬bR q)}. In (Π1

1,Γ1
1) the resolution rule is applied with the program clauseq ← > and

the goal clause� (⊥ ← q ∧ a) as premises, obtaining the goal clause⊥ ← a as resolvent. In
(Π2

1,Γ2
1) the resolution between the program clausea ← q and the goal clause⊥ ← a yields

the goal clause⊥ ← q. Finally, sinceΠ3
1 contains the program clauseq ← > andΓ3

1 contains
the goal clause⊥ ← q, the empty clause is obtained by applying the resolution rule (Res) to
these two clauses.

Next we straightforwardly adapt Example 4.6.8 (Figures 4.17 and 4.18) to the syntax of
TeDiLog. Let us recall that this example illustrates that our resolution mechanism does not need
backtracking (independently of the selection strategy carried out by the operationfair select).

Example 5.4.7. We consider the programΠ = {� q ← >, � r ← >} and the goalΓ =
{� (⊥ ← q ∧ � r)}. The setΠ∪Γ is satis�able. There are two eventualities,� q and � r,
that must be ful�lled, but the goal clause states that once the eventuality� q is ful�lled, the
eventuality� r cannot be ful�lled. An in�nite IFT-derivation forΠ∪Γ is shown in detail in
Figures 5.16, 5.17 and 5.18 (it is split due to space reasons). Although the eventuality� q is
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Π0
0 = {� q ← >, � r← >} Γ0

0 = {� (⊥← q ∧ � r)} (�C+ ) sel ev set0 = {� q}

Π1
0 = {� r ← >,

q ∨ ◦(aU q)← >}
Γ1

0 = {� (⊥← q ∧ � r),
� (⊥← a ∧ � r)}

(�H+ ) sel ev set�0 = {aU q}

Π2
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >}
Γ2

0 = {� (⊥← q ∧ � r),
� (⊥← a ∧ � r)}

(�B+ )

Π3
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >}
Γ3

0 = {� (⊥← a ∧ � r),
� (⊥← q ∧ r),
� (⊥← q ∧ ◦� r)}

(�B+ )

Π4
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >}
Γ4

0 = {� (⊥← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r)}

(Res)

Π5
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q}

Γ5
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r)}

(Res)

Π6
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q}

Γ6
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q}

(Res)

Π7
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q,
r ← a}

Γ7
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q}

(Res)

Π8
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q,
r ← a}

Γ8
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Res)

Π9
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q,
r ← a,
◦(aU q)← >}

Γ9
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Sbm)

Figure 5.16:IFT-derivation forΠ = {� q ← >,� r ← >} andΓ = {� (⊥← q ∧ � r)} (Part 1 of 3)
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Π10
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r ← >,
r← a,
◦(aU q)← >}

Γ10
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Sbm)

Π11
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r ← >,
◦(aU q)← >}

Γ11
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Sbm)

Π12
0 = {r ∨ ◦� r ← >,

◦(aU q)← >}
Γ12

0 = {� (⊥← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Unx)

Π0
1 = {aU q ← >} Γ0

1 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r)}

(U C+ ) sel ev set1 = {aU q}

Π1
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >}
Γ1

1 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b)}

(Res) sel ev set�1 = {bU q}

Π2
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
q ← r}

Γ2
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b)}

(Res)

Π3
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
q ← r}

Γ3
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),⊥← r}

(Res)

Π4
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
q ← r,
a← ◦� r}

Γ4
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),⊥← r}

(Res)

Figure 5.17:IFT-derivation forΠ = {� q ← >,� r ← >} andΓ = {� (⊥← q ∧ � r)} (Part 2 of 3)



5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 146

Π5
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
q ← r,
a← ◦� r}

Γ5
1 = {� (⊥ ← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),
⊥ ← r,⊥ ← ◦� r}

(Sbm)

Π6
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
a← ◦� r}

Γ6
1 = {� (⊥ ← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),
⊥ ← r,⊥← ◦� r}

(Sbm)

Π7
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >}
Γ7

1 = {� (⊥ ← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),
⊥ ← r,⊥← ◦� r}

(Unx)

Π0
2 = ∅ Γ0

2 = {� (⊥ ← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),
⊥ ← � r}

(�B+ ) sel ev set2 = ∅

Π1
2 = ∅ Γ1

2 = {� (⊥ ← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),
⊥ ← r,⊥← ◦� r}

(Unx) sel ev set�2 = ∅

...
...

Π0
2 = Π0

j ,Γ0
2 = Γ0

j ,Π1
2 = Π1

j ,Γ1
2 = Γ1

j and
sel ev setj = sel ev set�j = ∅ for everyj ≥ 3
{¬q, r,¬a} 7→ {q,¬r,¬b} 7→ {¬r,¬b} 7→ {¬r,¬b} · · ·

Figure 5.18:IFT-derivation forΠ = {� q ← >,� r ← >} andΓ = {� (⊥← q ∧ � r)} (Part 3 of 3)
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selected �rst by the operationfair select, the eventuality� r is ful�lled before � q. Note that
backtracking is not used.

After the �rst selection,sel ev set0 = {� q}. Then the application of the rule(�C+ ) with
context{� r ← >} generates the program clauseq ∨ ◦(aU q) ← > and the goal clause
� (⊥ ← a∧� r) wherea is a fresh propositional variable. Additionaly the value ofsel ev set�0 is
set to{aU q}. Then, the rule applications that correspond to thesupportedfree closeoperation
(see Figure 5.13, line 8 and De�nition 5.4.3) are carried outand theIFT-closed pair(Π12

0 ,Γ12
0 )

is obtained. Next, by rule(Unx), the pair(Π0
1,Γ0

1) is generated. Since the atomaU q belongs
to EventLits(Π0

1∪Γ0
1), it remains as the selected literal and, consequently, the rule (U C+ )

is applied to(Π0
1∪Γ0

1) with aU q as selected literal (i.e.,sel ev set1 = {aU q}) and with
empty context, obtaining the pair(Π1

1∪Γ1
1) and settingsel ev set�1 to {bU q}, whereb is a

fresh propositional variable. The operationsupportedfree closethat yields theIFT-closed pair
(Π7

1∪Γ7
1) from (Π1

1∪Γ1
1), encapsulates several applications of the rule(Res) and the rule

(Sbm). The pair(Π0
2,Γ0

2) is obtained from(Π7
1∪Γ7

1) by using the rule(Unx). Since the set
EventLits(Π0

2∪Γ0
2) is empty, the value ofsel ev set2 as well as the value ofsel ev set�2 is the

empty set. Therefore no context-dependent rule is applied to (Π0
2,Γ0

2) and we get theIFT-closed
pair (Π1

2,Γ1
2) by applying the context-free rule(�B+ ). From that point onwards the derivation

is a repetition whereΠ0
j = Π0

2, Γ0
j = Γ0

2, Π1
2 = Π1

j , Γ1
2 = Γ1

j andsel ev setj = sel ev set�j = ∅
for everyj ≥ 3.

The pairs(Π12
0 ,Γ12

0 ), (Π7
1,Γ7

1), (Π1
2,Γ1

2), (Π1
3,Γ1

3), . . . characterize a collection of models
for the initial pair (Π,Γ). All the models of such collection make true the literals{¬q, r,¬a} in
s0, the literals{¬r,¬b} in s1 and also the literals{¬r,¬b} in all the statessj such thatj ≥ 2.
Moreover, the atomq must be true insk for somek ≥ 1. For instance, thePLTL-structureM
with statess0, s1, s2, . . . such thatVM (s0) = {r}, VM (s1) = {q} andVM (sj ) = ∅ for every
j ≥ 2 is a model ofΠ∪Γ.

By means of Example 5.4.7 we would like to stress that the strategy for selecting eventuali-
ties does not compromise the completeness of our resolutionmechanism, although it can affect
ef�ciency. As already pointed out after Example 4.6.8 , if wehad selected the eventuality� r
instead of the eventuality� q, the derivation would have been considerably longer.

5.4.3 Logical Semantics

In this subsection we de�ne the logical characterization ofthe declarative meaning ofTeDiLog
programs.

The logical characterization of the declarative semanticsof a TeDiLogprogramΠ is given,
as usual in Logic Programming, by the set of all the formulas that represent (in a particular
simpli�ed way) negations of goals and that are logical consequences of the programΠ.

In classical LP (see e.g. [88]), and also in some extensions like Templog ([12]) and Chronolog
([127, 103, 99]), where a goal is of the form⊥ ← B, the declarative meaning of a program is
formalized in three equivalent ways:

1. Logically, as the set of bodies that are logical consequences of the program.

2. Model-theoretically, by means of the minimal model of theprogram.

3. By �xpoint characterization, based on the immediate consequence operator.



5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 148

These three formalizations are equivalent in the sense that, on one hand, the bodies that are
logical consequences of the program are just the bodies thatare satis�ed by the minimal model
of the program and, on the other hand, the minimal model of theprogram is the �xpoint of the
immediate consequence operator.

In DLP ([89]), and existing temporal extensions of DLP ([68]), where a goal is of the form
{⊥ ← B1, . . . ,⊥ ← Bn}, the logical characterization of the declarative meaning of a program
is provided by the set of formulas of the formB1 ∨ . . . ∨ Bn (i.e. disjunctions of bodies) that
are logical consequences of the program. The model-theoretic characterization is provided by
means of all the minimal models (in general there is no only one minimal model). The �xpoint
characterization can also be extended to the disjunctive paradigm as shown in [89, 68].

In TeDiLoga goalΓ = {� b1(⊥ ← B1), . . . , � bn(⊥ ← Bn )} is understood as the conjunc-
tion of the goal clauses inΓ. Since a goal clause� b(⊥ ← B) represents the formula¬� bB,
the setΓ is logically equivalent to the formula¬� b1B1 ∧ . . . ∧ ¬� bnBn or equivalently to
¬(� b1B1 ∨ . . .∨ � bnBn ).

De�nition 5.4.8. The declarative semantics of aTeDiLogprogramΠ is logically characterized
as the set of all the formulas of the form� b1B1 ∨ . . .∨ � bnBn that are logical consequences of
Π.

We do not provide model-theoretical and �xpoint characterizations forTeDiLogdue to tech-
nical dif�culties that we explain in the next subsection.

5.4.4 Equivalence between operational and logical semantics

In this subsection we address the soundness and completeness of IFT-resolution with respect to
the logical semantics ofTeDiLog.

Soundness and completeness results guarantee the equivalence between operational and log-
ical semantics.

Soundness is a consequence of the fact that each rule preserves satis�ability (indeed, some
of them preserve logical equivalence).

Theorem 5.4.9. (Soundness)If there exists anIFT-refutation fromΠ with top-goalΓ, then
Π∪Γ is unsatis�able.

Proof. If � b(⊥ ← >) ∈ Γ0 for some(Π0,Γ0) in an IFT-derivation from(Π,Γ), thenΠ0∪Γ0 is
unsatis�able. Therefore, since the rule(Unx) preserves satis�ability and the initial set and the
target set of every application of the remaining rules are equisatis�able,Π∪Γ is also unsatis�-
able.

For more details about the proof of the above theorem see Section 4.5.

In logic programming, completeness proofs are usually addressed through the minimal
model and the immediate consequence operator. In the case ofTeDiLog there are many dif-
�culties for using classical notions of minimal model and immediate consequence operatorT�

in a customary completeness proof. The main reason is related to the contexts that are essential
for IFT-resolution. Concretely, context handling prevents to deduce the refutability ofT n

� (∅)
from the refutability ofT n+1

� (∅) (see e.g. Lemma 4.6 in [12]). As pointed out in Section 5.1,
these dif�culties are closely related to the problem of syntactical cut elimination inPLTL. We
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have explored non-conventional notions of minimal model and immediate consequence oper-
ator, which are not only based on programs, but also need to consider all the possible goals.
Unfortunately, these intricate notions of minimal model and immediate consequence operator
do not facilitate the understanding of the declarative meaning of TeDiLogprograms. Hence, we
decided not to include them in this thesis.

TeDiLog's completeness means that whenever a set of clausesΠ∪Γ is unsatis�able, the
IFT-resolution algorithm gives a refutation for(Π,Γ). Since the algorithm forIFT-resolution
is a straightforward adaptation of the systematic algorithm SR in Subsection 4.6.1, the idea
behind the completeness proof and the involved technical details are very similar with respect
to the ones presented to proof the completeness of theTRS resolution method. The main differ-
ences arise from the fact that, for satis�able sets of clauses, the algorithmSR produces cyclic
derivations whereas the algorithm forIFT-resolution produces in�nite derivations. In this sub-
section, we adapt notions and results introduced in Section4.4, Subsection 4.6.3 and Section 4.7
to TeDiLog. To prove completeness, we build a modelM of any satis�able set of clausesΠ∪Γ
on the basis of the in�niteIFT-derivationD(Π,Γ) obtained by theIFT-resolution algorithm. The
main dif�culty in the construction of the modelM are the eventuality literals. In particular, we
must ensure that the ful�llment of eventualities is not in�nitely delayed in thePLTL-structures
obtained fromD(Π,Γ) and that are intended to give rise to models ofΠ∪Γ. 4 With such a
purpose, we �rst show that the sequence of the so-called descendants of a selected eventuality
is �nite.

De�nition 5.4.10. We say that an eventuality literalN0is adirect descendantof other eventual-
ity literal N with respect to anIFT-derivationD, if sel ev seti = {N} andsel ev set�i = {N0}
in D. Thesequence of descendantsofN with respect toD, is the longest sequenceN0, N1, . . .
such thatN0 = N and for allj ≥ 0: Nj +1 is a direct descendant ofNj with respect toD. Any
literal Nj in that sequence is called a descendant ofN if j ≥ 1.

An in�nite sequence of descendants for the selected eventuality requires the existence of an
in�nite number of different contexts, since the repetitionof a context yields a refutation. An
in�nite number of different contexts is only possible if theIFT-resolution procedure introduces
fresh propositional variables in the context. A priori, there could be two ways for generating new
propositional variables in theIFT-derivation. The �rst is the translation to clausal form applied
in the output to the context-dependent rules (functiondef). However, no new variables are
introduced in this way because classical distribution lawsare enough to obtain the clausal form
(more details in Subsection 4.6.3 and Subsection 4.2.2). The second potential source of new
propositional variables is the explicit occurrence of a fresh variable in the consequent of each
context-dependent rule. However, we can ensure that the newvariables explicitly introduced
by the context-dependent rules are never part of the context. Indeed, it is a consequence of the
following three facts:

1. The clauses de�ning a new variable are always-clauses, which are excluded from the
negated context.

2. The context-dependent rules are always applied just after the application of the rule(Unx)
to sets where the propositional variables introduced (as fresh) by previous applications of

4 Under the assumption that the strategy for selecting eventualities is fair in the sense that every eventuality that
from some moment onwards is available for being selected whenever an eventuality must be selected, is selected at
some time.
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context-dependent rules are also out of the context.

3. The marking strategy prioritizes the selection of the descendants of an eventuality literal
that has previously been selected.

Consequently, the number of possible different contexts is�nite and the construction ofM is
based on the following auxiliary lemma that ensures that clauses containing eventuality literals
can be (�nitely) satis�ed inM.

Lemma 5.4.11.LetD(Π,Γ) be a derivation and letN be an eventuality literal such thatN ∈
sel ev seti for somei ≥ 0. The sequence of descendants ofN with respect toD(Π,Γ) is �nite.

Proof. This is a particular case of Lemma 4.6.13 in Chapter 4.

Next, we construct a modelM of (Π,Γ) from the in�nite IFT-derivationD(Π,Γ). First, we
introduce some auxiliary notions and results. In particular we need to extend (with literals) the
pairs in the derivationD(Π,Γ) in a coherent way that allows us to get models.

De�nition 5.4.12. A local derivation is called alocal refutationif it is a refutation. Given a
programΠ and a goalΓ, the pair(Π,Γ) is locally inconsistentiff there exists a local refutation
for (Π,Γ). Otherwise it islocally consistent.

De�nition 5.4.13. LetΠ be a program andΓ a goal. Aliteral-based extension of(Π,Γ) is any
pair (bΠ, bΓ) of sets that satis�es the following conditions:

(a) Π ⊆ bΠ ⊆ (Π∪Lits(Π)) andΓ ⊆ bΓ ⊆ (Γ∪ Lits(Π∪Γ))

(b) For every literalN ∈ bΠ∪ bΓ, if N is of the formA thenA 6∈ bΓ and ifN is of the form¬A
then¬A 6∈ bΠ.

Given a literal-based extension(bΠ, bΓ) of (Π,Γ), we denote asPG(bΠ, bΓ) the pair formed by the
programΠ∪{A← > | A ∈ bΠ∩Lits(Π)} and the goalΓ∪{⊥ ← A | ¬A ∈ bΓ∩Lits(Π∪Γ)}.

De�nition 5.4.14. LetΠ be a program,Γ a goal and(bΠ, bΓ) a literal-based extension of(Π,Γ).
The pair (bΠ, bΓ) is literal-closediff (bΠ∪ bΓ) ∩ Lits(C) 6= ∅ for everyC ∈ Π∪Γ. Besides,
lclc(Π,Γ) denotes the collection of all the literal-based extensions(bΠ, bΓ) of (Π,Γ) such that
(bΠ, bΓ) is literal-closed andPG(bΠ, bΓ) is locally consistent. We say that each(bΠ, bΓ) ∈ lclc(Π,Γ)
is anlclc-extensionof (Π,Γ).

Proposition 5.4.15.If (Π,Γ) is a locally consistent pair such that the set of atoms of the clauses
in Π∪Γ is exclusively formed by atoms inPropand atoms of the form◦A then,lclc(Π,Γ) 6= ∅.

Proof. Straightforward adaptation of Proposition 4.7.2.

Next we introduce the notion of standard lclc-extensions ofa pair formed by a program and
a goal.

De�nition 5.4.16. Let (Π,Γ) be a locally consistentIFT-closed pair whereΠ is a program and
Γ a goal. We say that(bΠ, bΓ) ∈ lclc(Π,Γ) is standardiff it satis�es the following conditions:

(a) If ◦A ∈ bΠ, then there exists a clause� b(◦A ∨ ◦H ← ◦B) ∈ Π

(b) If ¬◦A ∈ bΓ, then there exists a clause� b(◦H ← ◦A ∧ ◦B) ∈ (Π∪Γ)
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(c) If A ∈ bΠ, then(bΠ \ {A}, bΓ) 6∈ lclc(Π,Γ).

(d) If ¬A ∈ bΓ, then(bΠ, bΓ \ {¬A}) 6∈ lclc(Π,Γ).

The following lemma ensures the existence of at least one standard lclc-extension of any
locally consistentIFT-closed pair(Π,Γ).

Lemma 5.4.17. Let (Π,Γ) be a locally consistentIFT-closed pair. There exists at least one
standard pair inlclc(Π,Γ).

Proof. Straightforward adaptation of Lemma 4.7.6.

We build standard lclc-extensions of eachIFT-closed pair(Π�
i ,Γ�

i ) in D(Π,Γ). Note that
each(Π�

i ,Γ�
i ) is the last pair of the sequenceSi (see Section 5.4.1) for everyi ≥ 0. We denote

by (cΠ�
i , cΓ�

i ) any lclc-extension of(Π�
i ,Γ�

i ). The in�nite sequences of(cΠ�
i , cΓ�

i ) will represent
models ofΠ∪Γ. Such in�nite sequences must be coherent with respect to themeaning of
temporal connectives. To this end, a successor relation is de�ned for the lclc-extensions of the
IFT-closed pairs(Π�

i ,Γ
�
i ). This successor relation on

{lclc(Π�
i � 1,Γ�

i � 1)× lclc(Π�
i ,Γ�

i ) | i ≥ 1}

is presented in De�nition 5.4.18.

De�nition 5.4.18. Let i ≥ 1. We say that a pair(cΠ�
i , cΓ

�
i ) is a successorof ( [Π�

i � 1, dΓ�
i � 1) if

for every◦λ ∈ ( [Π�
i � 1 ∪ dΓ�

i � 1) ∩ Lits(Π�
i � 1 ∪Γ�

i � 1) there is someS ∈ nxcloi (◦λ) such that

S ⊆ cΠ�
i ∪ cΓ�

i , wherenxcloi is de�ned as follows

1. nxcloi (◦p) = {{p}} andnxcloi (¬◦p) = {{¬p}}

2. nxcloi (◦◦A) = {{◦A}} andnxcloi (¬◦◦A) = {{¬◦A}}

3. nxcloi (◦(p1U p2)) = {{p2}, {p1, ◦(p1U p2)}} if p1U p2 6∈ sel ev seti

4. nxcloi (◦(p1U p2)) = {{p2}, {p1, ◦(aU p2)}} if p1 U p2 ∈ sel ev seti and
aU P2 ∈ sel ev set�i

5. nxcloi (¬◦(p1U p2)) = {{¬p2,¬p1}, {¬p2,¬◦(p1U p2)}}.

The de�nition of nxcloi for each of the remaining cases –i.e.◦(¬p1U p2), ¬◦(¬p1 U p2),
◦(LR p), ¬◦(LR p), ◦� p, ¬◦� p, ◦� p and¬◦� p– follows straightforwardly from the cor-
responding equivalence.
If (cΠ�

i , cΓ�
i ) is a successorof ( [Π�

i � 1, dΓ�
i � 1), we also say that( [Π�

i � 1, dΓ�
i � 1) is a predecessorof

(cΠ�
i , cΓ�

i ).
The set of successors of a given pair(cΠ�

j , cΓ�
j ) is denoted bysucc(cΠ�

j , cΓ�
j ).

The existence of in�nite paths of standard lclc-extensionsis based on the existence of a
predecessor for each standard lclc-extension of anIFT-closed pair in the derivation which is a
standard lclc-extension of the previousIFT-closed set in the derivation.

Proposition 5.4.19.For everyi ≥ 1 and every standard pair(cΠ�
i , cΓ�

i ) ∈ lclc(Π�
i ,Γ�

i ), there
exists a standard pair( [Π�

i � 1, dΓ�
i � 1) ∈ lclc(Π�

i � 1,Γ�
i � 1) such that(cΠ�

i , cΓ�
i ) ∈ succ( [Π�

i � 1, dΓ�
i � 1).
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Proof. Straightforward adaptation of Proposition 4.7.9.

Proposition 5.4.20.For everyh ≥ 0 and every standard pair( cΠ�
h , cΓ

�
h) ∈ lclc(Π�

h ,Γ
�
h), there

exists a sequence(cΠ�
0, cΓ�

0), (cΠ�
1, cΓ�

1), . . . , ( cΠ�
h, cΓ

�
h) such that

(i) (cΠ�
j , cΓ�

j ) ∈ lclc(Π�
j ,Γ�

j ) and(cΠ�
j , cΓ�

j ) is standard for allj ∈ {0, . . . , h} and

(ii) (cΠ�
k , cΓ

�
k) ∈ succ( [Π�

k� 1, [Γ�
k� 1) for all k ∈ {1, . . . , h}.

Proof. By induction onh. Forh = 0 it holds trivially. Forh ≥ 1, by Proposition 5.4.19, there
exists a standard( [Π�

h� 1, [Γ�
h� 1) ∈ lclc(Π�

h� 1,Γ
�
h� 1) such that( cΠ�

h, cΓ
�
h) ∈ succ( [Π�

h� 1, [Γ�
h� 1),

therefore, by induction hypothesis on( [Π�
h� 1, [Γ�

h� 1), we can ensure the existence of the se-

quence(cΠ�
0, cΓ�

0), (cΠ�
1, cΓ�

1), . . . , ( cΠ�
h, cΓ

�
h).

De�nition 5.4.21. We associate toD(Π,Γ) the setGD(� ;�) that is formed by all the in�nite

sequences of the form(cΠ�
0, cΓ�

0), (cΠ�
1, cΓ�

1), . . . such that(cΠ�
j , cΓ�

j ) ∈ lclc(Π�
j ,Γ

�
j ) is standard for

all j ≥ 0 and(cΠ�
k , cΓ

�
k) ∈ succ( [Π�

k� 1, [Γ�
k� 1) for everyk ≥ 1.

Proposition 5.4.22.If D(Π,Γ) is an in�nite IFT-derivation, then the setGD(� ;�) is non-empty.

Proof. A direct consequence of Proposition 5.4.20.

De�nition 5.4.23. A sequenceσ ∈ GD(� ;�) is ful�lling for some(cΠ�
j , cΓ�

j ) in σ and some literal

◦(p1U p2) ∈ (cΠ�
j , cΓ�

j ) iff there existsk > j such thatp2 ∈ (cΠ�
k , cΓ

�
k) andp1 ∈ ( cΠ�

h , cΓ
�
h) for all

h ∈ {j + 1, . . . , k− 1}.
The ful�lling notion is extended to literals¬p1U p2, ¬(LR p), � p and¬� p in the obvious
manner. A sequenceσ is ful�lling iff it is ful�lling for every eventuality literal that occurs in any
of its pairs.

The next three propositions are auxiliary results about theful�llment of eventualities, which
are useful for proving Lemma 5.4.27. In the three propositions only the case of eventuality
literals of the formpU q has been considered. The proofs for the remaining cases –i.e. (¬p)U q,
¬(pR q),¬((¬p)R q),� q and¬� q– are very similar.

Proposition 5.4.24.Let σ be a sequence inGD(� ;�) and(cΠ�
j , cΓ

�
j ) a pair in σ such thatj ≥ 0

and◦(pj U p) ∈ cΠ�
j andpj U p ∈ sel ev setj +1 , thenp ∈ cΠ�

k for somek > j.

Proof. Let us suppose thatp 6∈ cΠ�
i for everyi > j. Sinceσ is in�nite and ( cΠ�

h, cΓ
�
h) is a succes-

sor of( [Π�
h� 1, [Γ�

h� 1) for everyh ≥ 1, there exists, by De�nition 5.4.18, an in�nite sequence of
descendants forpj U p contradicting the result obtained in Lemma 5.4.11.

Proposition 5.4.25.Let σ be a sequence inGD(� ;�) and(cΠ�
j , cΓ�

j ) a pair in σ such thatj ≥ 0,

◦(pj U p) ∈ cΠ�
j andpj U p ∈ sel ev setj +1 . If h ≥ j + 1 andp 6∈ cΠ�

k for everyk ∈ {j +
1, . . . , h}, thenpj ∈ cΠ�

k for everyk ∈ {j + 1, . . . , h}.
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Proof. A straightforward adaptation of Proposition 4.7.18.

Proposition 5.4.26.Let σ be a sequence inGD(� ;�) . If {p0U p, ◦(p0U p)} ∩ Lits(Π∪Γ) 6= ∅
and◦(p0U p) ∈ (cΠ�

j , cΓ�
j ) for somej ≥ 0 andσ is not ful�lling for (cΠ�

j , cΓ�
j ) and◦(p0U p), then

p0U p 6∈ sel ev setk and{p0, ◦(p0U p)} ⊆ cΠ�
k for everyk ≥ j + 1.

Proof. Sinceσ belongs toGD(� ;�) , by De�nitions 5.4.18, 5.4.21 and 5.4.23, we can ensure that

p0 ∈ cΠ�
k andp 6∈ cΠ�

k for everyk ≥ j + 1. Therefore, by using Propositions 5.4.24 and 5.4.25,
we can ensure thatp0 U p 6∈ sel ev setk for everyk ≥ j + 1, since otherwiseσ would be ful-
�lling for (cΠ�

j , cΓ�
j ) and◦(p0U p). Consequently, by De�nitions 5.4.18 and 5.4.21, we can also

ensure that{p0, ◦(p0U p)} ⊆ cΠ�
k for everyk ≥ j + 1.

Next we prove that everyσ ∈ GD(� ;�) is ful�lling. As a consequence, we know that there
exists at least one ful�lling sequence inGD(� ;�) .

Lemma 5.4.27.For any in�nite derivationD(Π,Γ), the setGD(� ;�) contains at least one ful-
�lling sequenceσ.

Proof. By Proposition 5.4.22 the setGD(� ;�) is non-empty. We show, by contradiction, that
every sequence inGD(� ;�) is ful�lling. For that, let us suppose that there is a sequence σ in

GD(� ;�) that is non-ful�lling, i. e., σ does not ful�ll a literal◦(p0U p) ∈ cΠ�
j for somej ≥ 0.

Then, by Proposition 5.4.26,p0U p 6∈ sel ev setk for everyk ≥ j+1 and{p0, ◦(p0U p)} ⊆ cΠ�
k

for everyk ≥ j + 1. This contradicts the fairness of the selection operation.

Theorem 5.4.28. (Completeness)For any programΠ and any goalΓ, if Π∪Γ is unsatis�able
then there exists anIFT-refutation for(Π,Γ).

Proof. If there is noIFT-refutation for(Π,Γ), the algorithm in Figure 5.13 produces an in�nite
derivationD(Π,Γ). By Lemma 5.4.27 there exists an in�nite ful�lling sequenceσ in GD(� ;�) .

Now we de�ne thePLTL-structureM� = (σ, VM σ) where the states are the pairs(cΠ�
k , cΓ

�
k) that

form σ, andVM σ ((cΠ�
k , cΓ

�
k)) = {p ∈ Prop | p ∈ cΠ�

k} for everyk ≥ 0. It is routine to see that
〈M� , (cΠ�

k, cΓ
�
k)〉 |= C for all C ∈ (Π�

k ,Γ
�
k) and allk ≥ 0. Since any lclc-extension contains at

least one elementλ that belongs toLits(C), this is made by structural induction on the form of
λ and using De�nition 5.4.18 and the fact thatσ is ful�lling (by Lemma 5.4.27). In particular
M� is a model ofΠ�

0 ∪Γ�
0 and we can ensure thatΠ0∪Γ0 is satis�able because all the rules

other than(Unx) preserve equisatis�ability. Hence, sinceΠ0∪Γ0 = Π∪Γ, the set of clauses
Π∪Γ is satis�able.

5.5 Related work

In Section 5.1, we have already surveyed the main features ofthe works that are more close to
our proposal. In this section we add more details.
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5.5.1 Templog: Abadi & Manna [2] and Baudinet [12]

The only temporal connectives allowed in the TLP language Templog introduced in [2, 12] are� ,
� and◦. An atom is of the form◦iAwhereA is a classical atom. A bodyB is recursively de�ned
as a conjunctionB1 ∧ . . .∧Bn with n ≥ 0 and where eachBi is a classical atomA, a formula
of the form◦B0, i.e., a body preceded by the connective◦, or a formula of the form�B0, i.e.,
a body preceded bay the connective�. Program clauses are of the form� b((� b0◦iA) ← B),
with b, b0 ∈ {0, 1}, and goal clauses are of the form⊥ ← B. Templog does not deal with
eventualities because the connective� appears only in clause bodies. As can be appreciated
in the recursive de�nition of bodies, the nesting of connectives in Templog clauses is not as
restricted as inTeDiLog. Therefore, the structure of clauses is considerably more complex in
Templog than inTeDiLog. For example, we do not allow the connective� to pre�x a conjunction
of atoms. Since this normal form of Templog clauses is not well suited for resolution, the notion
of canonical body is additionally considered in Templog. A canonical body is a body in which
occurrences of the connectives∧ and� cannot appear in the scope of the connective◦ and
every atom of the form◦iA is in the scope of the least possible numbers of�. The equivalences
◦(ϕ ∧ ψ) ≡ ◦ϕ ∧ ◦ψ, ◦�ψ ≡ � ◦ψ and� (��ϕ ∧ �ψ) ≡ � (�ϕ ∧ ψ) are used to obtain
the canonical form of bodies. However, although the bodies of the premises are in canonical
form, the resolvent obtained by a resolution application may yield a clause whose body is not in
canonical form, hence a transformation to obtain the canonical form may be required after each
resolution application. The resolution procedure TSLD ([12]) consists of eight rules obtained
by considering all the possible cases in which temporal atoms of a program clause and a goal
clause can be resolved. For instance, we depict here one of the rules

� (◦j A← B0) ⊥ ← B1 ∧ � (B2 ∧ ◦iA ∧B3) ∧ B4

⊥ ← B1 ∧ � (◦j � iB2 ∧B0 ∧ ◦j � iB3) ∧B4

wherej ≥ i

This resolution rule states that a program clause of the form� (◦j A ← B0) is resolved
with a goal clause of the form⊥ ← B1 ∧ � (B2 ∧ ◦iA ∧ B3) ∧ B4 and the resolvent⊥ ←
B1∧� (◦j � iB2∧B0∧◦j � iB3)∧B4 is obtained, wheneverj ≥ i. Note thatA is a classical atom.
The Templog resolution procedure does not follow the state by state forward reasoning approach
and, consequently, it does not use any rule similar to our rule (Unx). As already mentioned in
Section 5.1, the satis�ability of a Templog program can be reduced to the satis�ability of a
(possibly in�nite) classical logic program. This is easilymade by considering, for instance,
that a clause of the form◦iA ← �B can be expressed by means of the in�nite set of clauses
{◦iA ← ◦j B | j ≥ 0} and, in the same way, a clause of the form(� ◦iA) ← B can be
expressed by means of the in�nite set of clauses{(◦j + iA) ← B | j ≥ 0}. This approach is
possible neither when the connectives� and U appear in the head of a clause nor when the
connectives� andR appear in the body. For instance, note that a clause of the form �A← B
should be replaced with a unique clause◦kA ← B but the value of suchk is unknown. As
a consequence, the minimal model characterization of Templog (see [12]) is a straightforward
adaptation of the classical case. Unlike Templog,TeDiLogdoes not have the classical Minimal
Model Property (MMP in short). The presence of the connectives� and U in clause heads
and� andR in clause bodies (see [101]) as well as the use of disjunctionin clause heads (see
e.g. [89]) prevent from having such property. The compensation for the loss of the MMP is that
TeDiLogis much more expressive than the propositional fragment of Templog.
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In order to study Templog's expressiveness, Baudinet considers in [12, 14] the propositional
fragment TL1 where the connective� is not allowed at all and� is not allowed in clause heads.
Consequently, TL1 program clauses are of the form� b(◦iA0 ← ◦j 1A1 ∧ . . . ∧ ◦j nAn) where
b ∈ {0, 1} andn ≥ 0 and goal clauses are of the form⊥ ← ◦j 1A1 ∧ . . . ∧ ◦j nAn where
n ≥ 0. Baudinet shows that the expressiveness of TL1 and propositional Templog is the same.
On one hand, Templog clauses of the form� ◦ip ← B can be expressed without using the
connective� by introducing a fresh propositional variable. So that, theabove program clause
can be expressed by means of the program clauses{q ← B, � (◦ip ← q), � (◦q ← q)} where
q is fresh. On the other hand, each element of the form� ◦ip in a body of a clause, can be
substituted by a fresh propositional symbolq and then the clauses that de�ne the meaning of
q would be added:{� (q ← ◦ip), � (q ← ◦q)}. Moreover, Baudinet shows that, for instance,
it is possible to de�ne, in TL1, a predicate that holds exactly whenpU q holds, whereas the
connectiveU is not expressible in temporal logic with only◦, � and� (see [80]). So that,
there are predicates that can be de�ned by using TL1 but are inexpressible in temporal logic.
Baudinet also shows that, for instance, the connective� is not expressible in Templog, in the
sense that is not possible to prove� p or to write a Templog program de�ning a predicate that
would hold exactly when� p holds. This last result proves thatTeDiLogis more expressive than
(propositional) Templog, because inTeDiLog � p can be proved, as has been shown in Example
5.4.5 (Figure 5.15).

5.5.2 Chronolog: Wadge [127] and Orgun [97, 99]

In Chronolog ([127, 97, 99]) the only temporal operators arethe unary connectives�rst andnext.
The connective�rst serves to refer to the states0. Therefore the connective� is not needed to
differentiate between always- and now-clauses. TheTeDiLognow-clausesp ← ◦q, � p ← ◦q
andp ← �◦q ∧ r can be expressed in Chronolog as�rst p ← �rst next q, p ← �rst next q and
�rst p← nextq∧ �rst r, respectively. TheTeDiLogalways-clause� (p← ◦q) can be expressed
in Chronolog asp← nextq. Note that in the Chronolog clauses above, there is a hidden tempo-
ral information not made explicit by means of temporal connectives. Regarding always-clauses
of the form � (� p ← ◦q) and � (s ← � r), the translations pointed out to obtain TL1 clauses
in the previous subsection must be considered for� p and� r. Consequently, intricate sets of
Chronolog clauses are needed for expressing interesting properties. InTeDiLog, the explicit use
of temporal connectives, together with the fact that such connectives are more expressive, facil-
itates readability and understanding of program and goal clauses. In [14], Baudinet shows –by
means of TL1– that Templog and Chronolog have the same expressive power. Hence Chronolog
can be considered as a syntactical variant of Templog. In fact, Templog and Chronolog also co-
incide in the metalogical properties of minimal model existence and �xpoint characterization.
The resolution procedure TiSLD that de�nes the operationalsemantics of Chronolog, applies
the resolution rule torigid instancesof program clauses and goal clauses, which are formed by
atoms of the form�rst next n p with n ≥ 0. In [99], the inclusion of the temporal connectives
� and � is discussed. However, by taking into account the results presented in [101], and in
order to keep the metalogical properties of Chronolog, onlythe use of� in clause bodies and
� in clause heads is proposed. This extension would yield a language that would be (syntacti-
cally) very similar to Templog. However, the expressive power would remain unchanged. The
disjunctive extension presented in [68] combines Chronolog with the Disjunctive LP paradigm.
Therefore, only the temporal connectives�rst andnext are used and the results obtained in the
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Disjunctive Logic Programming paradigm are extended to thelanguage presented in [68] in the
same way that the results obtained in classical Logic Programming are extended to Chronolog.

5.5.3 Temporal Prolog: Gabbay [55]

Gabbay's Temporal Prolog allows eventuality literals in clause heads but not in clause bodies.
In particular,� is allowed in clause heads but� is not allowed in clause bodies. A program
clause is either a now-clauseH ← B or an always clause� (H ← B). The headH is either a
classical atomA or a formula of the form◦�C whereC is a conjunction of now-clauses. The
bodyB is a classical atomA, a conjunction of bodies or a formula of the form◦�B0 whereB0

is a body. A goal clause is of the form⊥ ← B whereB is a body. Additionally, a connective
to express “sometime in the past” is also used. So that, the clausal form of Gabbay's Temporal
Prolog is more complex than ours. In particular, the nestingof connectives is not so restricted
as inTeDiLog. Although eventuality literals are allowed in clause heads, the way of dealing
with them is very different from our method. For instance, given a goal of the form⊥ ← ◦� p
the resolution procedure tries to �nd a program clause whosehead is eitherp or ◦� p. If such
clause is found, a forward jump is produced. The resolution procedure ofTeDiLog is based
on a state by state forward reasoning and eventualities are dealt with by means of the context-
dependent rules which do not allow to inde�nitely postpone the ful�llment of such eventualities.
As mentioned above, unlike inTeDiLog, the connective� is not allowed in clause bodies, hence
TeDiLogis more expressive. For Gabbay's Temporal Prolog the MMP does not hold because of
the use of eventualities in clauses heads. Additionally, the completeness proof of the resolution
procedure is not provided. TheIFT-resolution procedure forTeDiLogis complete.

5.5.4 MetateM: Barringer et al. [9]

MetateM programs are sets of clauses in the Separated NormalForm (SNF), where clauses are
of the formϕ → ψ such thatϕ is a conjunction of propositional literals andψ is either of the
form�χ –whereχ is a propositional literal– or a disjunction of propositional literals pre�xed by
the connective◦ (see also Subsection 4.8.5). MetateM is as expressive asTeDiLogand complete
for full PLTL. However, MetateM is based on the imperative future approach and is not based
on resolution. Regarding execution, at each step the MetateM execution procedure must build
the next state by choosing to make true one proposition from theψ part of each clause for which
theϕ part is true in the current state. In this way, a sequence of states is produced with the
aim of building a model for the program. Choices that lead to inconsistency must be repaired
by means of backtracking, which serves to choose another disjunct from the correspondingψ
part. Additionally, the �nite-model property is used to calculate an upper bound of forward
chaining steps and, in this way, to detect model construction processes where the ful�llment
of an eventuality is being inde�nitely delayed. Such upper bound, in the worst case, is25j� j

where|Π| is the size of the initial programΠ (see [9] and Subsection 6.2.4 in [44]). TheIFT-
resolution procedure underlyingTeDiLogdoes need neither backtracking nor the calculation of
upper bounds. As inTeDiLog, the execution mechanism of MetateM must make sure that the
satisfaction of an eventuality is not continually postponed. For a clauseϕ→ ◦� p, it is possible
to make truep or to make true� p in the next state. If there are two clauses of the formϕ→ ◦� p
andϕ0→ ◦�¬p such thatϕ andϕ0 are satis�ed in every state, it is necessary to satisfyp and
¬p in an interleaved way. Therefore, fairness is required whendeciding which eventuality to
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satisfy. This is handled by keeping an ordered list of eventualities (see Subsection 6.2.7 in [44]).

5.5.5 Clausal Temporal Resolution forPLTL: Fisher [40]

The clausal temporal resolution method introduced in [40] (see also [45]) is complete for full
PLTL. Our clausal normal form is different from the Separated Normal Form used in that
method but the crucial difference of our method with respectto that method is thatTeDiLog's
resolution mechanism is powerful enough to deal with eventualities without requiring invariant
generation. See also Subsection 4.8.5 for more details.





6. CONCLUSIONS

This chapter reviews our central results and primary contributions, lists our publications and
relevant research activity related to the results that appear in this thesis and proposes areas for
future research.

6.1 Results and Contributions

In this section, we review the results and contributions that have been presented in previous
chapters.

We have introduced tableau, sequent and resolution methodsthat differ from previously ex-
isting systems in the way eventualities are dealt with. Traditional two-pass temporal tableaux
and the previously existing one-pass tableau method presented by Schwendimann in [117] need
to check the ful�llment of eventualities in cyclic sequences of states. By contrast, our one-pass
tableau methodTTM includes a rule that prevents from inde�nitely delaying theful�llment of
eventualities. As a consequence,TTM generates classical-like tableaux. In the case of unsatis�-
able sets of formulas, closed branches whose last nodes contain a formula and its negation are
obtained inTTM . Regarding satis�able sets of formulas, when an open cyclicbranch is marked
as expanded (i.e, suf�ciently enlarged) inTTM , that branch yields a model. It is worth remark-
ing that given an unsatis�able set of formulas, the tableau method in [117] may yield –unlike in
classical tableaux– cyclic and non-ful�lling (closed) branches whose last nodes do not contain a
formula and its negation. In order to detect that a cyclic branch is non-ful�lling (i.e. closed) and
that, consequently, it cannot yield a model, an additional handling of information is required
in [117] because accessible branches must be checked to ruleout the existence of a ful�lling
cycle that may involve more than one branch. In the case of satis�able sets of formulas, a cyclic
(open) branch –that cannot be enlarged– may not yield a modelby itself in the Schwendimann's
tableau system because the ful�llment of eventualities maydepend on more than one cyclic
branch. The systematic tableau algorithm that we provide gives rise to a decision procedure for
PLTL. On the basis of this new temporal deductive approach, we have de�ned two cut-free and,
in particular, invariant-free �nitary sequent calculiTTC andGTC that are also weakening- and
contraction-free. These tableau and sequent systems allowus to prove that the classical duality
between tableaux and sequents holds also for temporal logic.

By adapting the idea behind the dual tableau and sequent systems to the resolution frame-
work, we have presented a new method for temporal resolutionthat is sound and complete
for PLTL and does not require invariant generation. This feature is acrucial difference of our
method with respect to the clausal resolution method introduced in [40] (see also [45]) which
needs to generate invariant formulas for solving eventualities. We have provided the conversion
of any formula to clausal form, a resolution system calledTRS that extends classical resolution,
and an easily implementable algorithm that decides the satis�ability of any set of clauses. More-
over, together with its yes/no answer, the algorithm provides an (un/)satis�ability proof. That
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is, either a systematic refutation or a canonical model of the set of clauses that has been given as
input. As in the classical case, models are more easily generated from cyclic tableau branches
than from cyclic resolution derivations.

On the basis of the invariant-free resolution methodTRS, we have de�ned the propositional
temporal logic programming languageTeDiLog with the aim of providing a single framework
in which dynamic systems can be speci�ed, developed, validated and veri�ed by means of
executable speci�cations. The languageTeDiLog has a purely declarative nature and mathe-
matically de�ned semantics. This language is strictly moreexpressive than the propositional
fragments of the main declarative TLP languages in the literature ([2, 12, 127, 99, 55, 68]).
TeDiLog's resolution mechanism is powerful enough to deal with eventualities and dispenses
with invariant generation. The most signi�cant imperativeTLP language MetateM ([9]) is as
expressive asTeDiLog. However, MetateM is a very different approach that is not based on res-
olution and uses an upper bound to detect unsuccessful modelconstructions and backtracking.
TeDiLogrequires neither upper bounds nor backtracking. We seeTeDiLogas the propositional
kernel of a new generation of TLP languages based on the invariant-free temporal resolution
methodTRS. In this sense we hope thatTeDiLogcould in�uence the design of future TLP lan-
guages in order to incorporate more expressive temporal features and new resolution procedures
for temporal reasoning.

To sum up, we have contributed new ideas to the proof-theory of PLTL. In particular, we
believe that automated reasoning in temporal logic can takebene�t from the systems presented
in this dissertation.

6.2 Related Publications, Presentations and Research Activity

Below we list the publications, presentations and relevantresearch activity we carried out in
relation to the results provided in this dissertation.

Journal Publications

• Dual Systems of Tableaux and Sequents forPLTL
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
Journal of Logic and Algebraic Programming, 78(8):701–722, 2009.
DOI 10.1016/j.jlap.2009.05.001

• Invariant-Free Clausal Temporal Resolution
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
Journal of Automated Reasoning. To appear.
DOI 10.1007/s10817-011-9241-2
Published online: 2 December 2011

Conference Proceedings

• A Cut-Free and Invariant-Free Sequent Calculus forPLTL
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
J. Duparc, T. A. Henzinger (eds.) Proceedings of Computer Science Logic, 21st
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International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lau-
sanne, Switzerland, 11-15 September 2007, volume 4646 of Lecture Notes in Com-
puter Science, pages 481–495. Springer, 2007.
DOI: 10.1007/978-3-540-74915-8

• Systematic Semantic Tableaux forPLTL
J. Gaintzarain, M. Hermo, P. Lucio and M. Navarro
E. Pimentel (ed.) Proceedings of the 7th Spanish Conferenceon Programming and
Languages (PROLE 2007), Zaragoza, Spain, 11-14 September 2007, Selected Pa-
pers, volume 206 of Electronic Notes in Theoretical Computer Science, pages 59-73,
2008
DOI 10.1016/j.entcs.2008.03.075

• A New Approach to Temporal Logic Programming
J. Gaintzarain and P. Lucio
P. Lucio, G. Moreno, R. Peña (eds.) Proceedings of the 9th Spanish Conference on
Programming and Languages (PROLE 2009), San Sebastián, Spain, 8-11 Septem-
ber 2009, pages 341–350, 2009.
http://www.sistedes.es/�cheros/actas-conferencias/PROLE/2009.pdf
ISBN: 978-84-692-4600-9

• An Implementation of the Context-Based Tableau
J. Gaintzarain, J. A. Hernandez and P. Lucio
P. Arenas, V. M. Gul�́as, P. Nogueira (eds.) Proceedings of the 11th Spanish Con-
ference on Programming and Languages (PROLE 2011), A Coruña, Spain, 5-7
September 2011, pages 169–184, 2011.
http://www.sistedes.es/�cheros/actas-conferencias/PROLE/2011.pdf
ISBN: 978-84-9749-487-8

Contributed Talk

• Invariant-Free Clausal Temporal Resolution
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
Workshop on Modal Fixpoint Logics 2008 (WMFL 2008)
http://staff.science.uva.nl/ yde/m�/
http://staff.science.uva.nl/ yde/m�/contributed/gaintzarain.pdf
Institute for Logic, Language and Computation, Universityof Amsterdam.
Amsterdam, The Netherlands, 25–27 March 2008

Research Seminars

• Invariant-Free Clausal Temporal Resolution
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
http://www2.wmin.ac.uk/bolotoa/HSCSSEMINARS/seminars.html
Department of Computer Science and Software Engineering, School of Electronics
and Computer Science, University of Westminster.
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London, United Kingdom, 27 November 2009

• Invariant-Free Deduction Methods for PLTL
P. Lucio and J. Gaintzarain
Department of Computer Science, University of Liverpool.
Liverpool, United Kingdom, 1 February 2011

Research Visit

• Research Area: Invariant-Free Deduction Systems for Temporal Logic
Research Visitor: Jose Gaintzarain
Supervisor: Alexander Bolotov
Distributed and Intelligent Systems Research Group
School of Electronics and Computer Science, University of Westminster.
London, United Kingdom, from 1 October 2009 to 31 January 2010

Journal Paper Under Review

• Logical Foundations for More Expressive Declarative Temporal Logic Pro-
gramming Languages
J. Gaintzarain and P. Lucio
Submitted (Under review)

6.3 Future Work

We believe that the work presented in this dissertation opens many interesting topics for future
research.
The extension of our invariant-free deductive approach to more expressive logics is a wide area
of work. In particular, we hope that the presented resolution method gives an opportunity to
develop the �rst resolution method for Full Computation Tree LogicCTL?. Although the �rst
complete tableau system forCTL? has been recently published in [109], a resolution procedure
for CTL? is not known yet. Additionally, a tableau method based on theinvariant-free deductive
approach would still be valuable. The extension ofTRS-resolution to the incomplete First-order
Linear-time Temporal Logic (FLTL), besides its own relevance, could produce a new class of
decidable fragments ofFLTL along with their associated decision procedures based onTRS-
resolution. For instance, one may consider the clausalFLTL-language that is obtained from our
clausal language by allowing, as atoms, predicate symbols applied to �rst-order terms, instead
of propositional variables. A syntactical restriction of this clausalFLTL-language would be
decidable provided that the set of all possible different contexts –in any application of the rule
(U Set)– were ensured to be �nite in the restricted language. Moreover, particular syntactical
restrictions could allow to specialize the generalTRS-procedure in order to gain ef�ciency (as
it is done in [35, 36]). TheTRS-resolution method could also be applied to other extensions of
PLTL like spatial, dynamic, etc.

The development of practical automated reasoning tools based on theTTM tableau method
and theTRS resolution system constitutes a broad area of present and future work. At the
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moment, preliminary prototypes for theTTM tableau method and theTRS resolution method
are available online, respectively, inhttp://www.sc.ehu.es/jiwlucap/TTM.html and
http://www.sc.ehu.es/jiwlucap/TRS.html. A report about the implementation of the
prototype for theTTM tableau method is provided in [63]. On one hand, this prototype forTTM

is a direct implementation of the systematic tableau algorithm. On the other hand, the prototype
for the TRS resolution method is a direct implementation of the transformationCNF and the
algorithmSR. There is only a small amount of nondeterminism in these algorithms. Moreover,
the form of nondeterminism in these algorithms is sometimescalledangelicnondeterminism,
in the sense that backtracking is not required to ensure termination. The crucial actions upon
which the implementation of the systematic tableau algorithm and the algorithmSR depends
are the fair selection of eventualities, the application ofeach rule, and the test for termination.
We plan to gradually improve these prototypes and to comparethem with other available auto-
mated reasoning tools forPLTL. In particular with the temporal resolution prover TRP++ [76]
that implements the method introduced in [40]. We are also interested in comparison with the
implementations of the tableau-based methods presented in[79, 117] that are available in the
Logics Workbench Version 1.1 (http://www.lwb.unibe.ch).

The decision problem forPLTL is known to be PSPACE-complete (see e.g. [119]). The
two-pass tableau method presented in [128] works in EXPTIME, hence it is optimal. The worst
case complexity of our tableau and resolution methods (as well as for the tableau method and the
resolution method presented, respectively, in [117] and [40]) is 2EXPTIME, and consequently
suboptimal. However it has been shown by experimental analysis (see e.g. [69, 78]) that for
many randomly generated formulas of some classes, the average performance of a doubly ex-
ponential algorithm can be better than the average performance of an exponential one. The
reason is that, in the former the cases with high complexity rarely occur, while in the latter the
cases with exponential complexity occur very often. The above mentioned classes of formulas
include conjunctions of eventualities, nested eventualities, especial conjunctions of clauses in
Separated Normal Form, etc. The results obtained in the empirical analysis carried out in [77]
give hints about improvements to be considered for a practical implementation. Also the above
mentioned possibility of searching for tractable fragments (see [35, 36]) is open. The accurate
study of the complexity of theTTM tableau method and theTRS resolution method seems to be
also interesting.

We are also considering the possibility of combiningTRS-resolution with the one-pass
tableau methodTTM to produce a kind ofhyper tableauxthat would be interesting for prac-
tical implementation purposes.

The implementation ofTeDiLogremains as future work. The adaptation of the prototype for
theTRS resolution method (http://www.sc.ehu.es/jiwlucap/TRS.html) to TeDiLogis
straightforward, but much experimentation is needed for optimization and improvement. The
worst case complexity forTeDiLog (regarding the generation of a refutation proof) is doubly
exponential.

It is well known (see [11, 12, 13, 14]) that, although logic programs are formulas of a given
logic, a logic programming language may be in some respects more expressive than its under-
lying logic. Intuitively, a logic formula characterizes just the collection of its models whereas
a logic program characterizes the collection of facts that can be inferred from it. The notion of
deduction intervenes and adds the ability to express properties that are not expressible in the un-
derlying logic. In this sense it would be interesting to compare the expressiveness ofTeDiLogto
other formalisms such asPLTL, automata-theoretic formalisms, quanti�edPLTL (i.e. QPTL),
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µTL, etc. We have already tackled the issue of relating different formalisms. Concretely, in
[59] we studied the translation of the propositional fragment of the logic programming lan-
guageHorn � into Boolean circuits, Boolean formulas and conjunctions of propositional Horn
clauses.Horn � is a logic programming language that extends usual Horn clauses by adding
intuitionistic implication in goals and clause bodies.
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[19] K. Brünnler. Deep sequent systems for modal logic.Archive for Mathematical Logic,
48(6):551–577, 2009.
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