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ABSTRACT

In this thesis we propose a new approach to deduction mefbotisnporal logic. Our proposal
is based on an inductive de nition of eventualities that if§edent from the usual one. On the
basis of this non-customary inductive de nition for evedlities, we rst provide dual systems
of tableaux and sequents for Propositional Linear-timegdanal Logic PLTL). Then, we adapt
the deductive approach introduced by means of these duebtabnd sequent systems to the
resolution framework and we present a clausal temporalutsn method forPLTL. Finally,
we make use of this new clausal temporal resolution methoestablishing logical foundations
for declarative temporal logic programming languages.

The key element in the deduction systems for temporal lagto ideal with eventualities
and “hidden” invariants that may prevent the ful Iment ofentualities. Different ways of
addressing this issue can be found in the works on dedugtgiams for temporal logic.

Traditional tableau systems for temporal logic generatawtiliary graph in a rst pass.
Then, in a second pass, unsatis able nodes are pruned. ticydar, the second pass must
check whether the eventualities are ful lled. The one-paddeau calculus introduced by S.
Schwendimann requires an additional handling of infororaiin order to detect cyclic branches
that contain unful lled eventualities. Regarding traditial sequent calculi for temporal logic,
the issue of eventualities and hidden invariants is tackiedanaking use of a kind of infer-
ence rules (mainly, invariant-based rules or in nitaryasil that complicates their automation.
A remarkable consequence of using either a two-pass agplzsed on auxiliary graphs or a
one-pass approach that requires an additional handlindarfnation in the tableau framework,
and either invariant-based rules or in nitary rules in theggent framework, is that temporal
logic fails to carry out the classical correspondence beihtableaux and sequents. In this the-
sis, we rst provide a one-pass tableau methauh that instead of a graph obtains a cyclic
tree to decide whether a setPETL-formulas is satis able. IITT™ tableaux are classical-like.
For unsatis able sets of formulasrm produces tableaux whose leaves contain a formula and
its negation. In the case of satis able sets of formulemy builds tableaux where each fully
expanded open branch characterizes a collection of modethé set of formulas in the root.
The tableau methouT™m is complete and yields a decision procedureRaif L. This tableau
method is directly associated to a one-sided sequent aalcalledrTc. SinceTTwm is free from
all the structural rules that hinder the mechanization afud¢ion, e.g. weakening and contrac-
tion, then the resulting sequent calcutuse is also free from this kind of structural rules. In
particular,TTC is free of any kind of cut, including invariant-based cut.oiffrthe deduction
systemrTC, we obtain a two-sided sequent calcutkmsc that preserves all these good freeness
properties and is nitary, sound and complete RITL. Therefore, we show that the classical
correspondence between tableaux and sequent calculi etidraled to temporal logic.

The most fruitful approach in the literature on resolutioathods for temporal logic, which
was started with the seminal paper of M. Fisher, deals RItFL and requires to generate in-
variants for performing resolution on eventualities. Iisttihesis, we present a new approach



to resolution forPLTL. The main novelty of our approach is that we do not generatarin
ants for performing resolution on eventualities. Our mdtiobased on the dual methods of
tableaux and sequents fBLTL mentioned above. Our resolution method involves trarmsiati
into a clausal normal form that is a direct extension of dtad<CNF. We rst show that any
PLTL-formula can be transformed into this clausal normal fornief, we present our tem-
poral resolution method, callexks-resolution, that extends classical propositional resmiu
Finally, we prove thatrrs-resolution is sound and complete. In fact, it nishes foy amput
formula deciding its satis ability, hence it gives rise tmaw decision procedure f&LTL.

In the eld of temporal logic programming, the declarativ@posals that provide a complete-
ness result do not allow eventualities, whereas the prépdsat follow the imperative future
approach either restrict the use of eventualities or dedl thiem by calculating an upper bound
based on the small model property BLTL. In the latter, when the length of a derivation
reaches the upper bound, the derivation is given up and tzeglhg is used to try another possi-
ble derivation. In this thesis we present a declarative gstdjpnal temporal logic programming
language, calledeDiLog, that is a combination of the temporal and disjunctive pigrad in
Logic Programming. We establish the logical foundationswfproposal by formally de ning
operational and logical semantics fieDiLogand by proving their equivalence. SinteDiLog

is, syntactically, a sublanguage BLTL, the logical semantics ofeDiLog is supported by
PLTL logical consequence. The operational semanticedfiLogis based orrrs-resolution.
TeDiLog allows both eventualities and always-formulas to occurlause heads and also in
clause bodies. To the best of our knowledgeDiLog is the rst declarative temporal logic
programming language that achieves this high degree oésgmeness.

Since the tableau method presented in this thesis is abletextdthat the ful llment of
an eventuality is prevented by a hidden invariant withowobling for it by means of an extra
process, since our nitary sequent calculi do not includeaimant-based rules and since our
resolution method dispenses with invariant generationsayethat our deduction methods are
invariant-free.
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1. INTRODUCTION

Temporal logic plays a signi cant role in computer sciensigce it is an appropriate tool for
specifying object behaviour, cooperative protocols, tieasystems, digital circuits, concurrent
programs and, in general, for reasoning about dynamic mgstenose states change over time
(see e.g. [46, 56, 57, 86, 90, 91]). In particular, severatepts which are useful for the spec-
i cation of properties of dynamic systems —such as fairnemm-starvation, liveness, safety,
mutual exclusion, etc— can be formally stated in tempomgildasing very concise and readable
formulas. Several different temporal logics have beengisli-as formalisms for representing
dynamic systems— that mainly differ in their underlying rabdf time and in their expressive-
ness. Regarding time modeling there are linear vs. braggcldiscrete vs. dense, future vs.
past-and-future, nite vsin nite, etc. Regarding expriegsess, they involve different temporal
connectives and logical constructions (such as, quarstj eariables, xpoint operators). For a
recent survey on temporal logics we refer the reader to [85].

Propositional Linear-time Temporal LogiPI(TL) is one of the most widely used temporal
logics?®. This logic has, as the intended model for time, the stanchardiel of natural numbers.
Different contributions in the literature on temporal loghow its usefulness in computer sci-
ence and other related areas. For a recent and extensivegraphoonPLTL techniques and
tools, we refer the reader to [44], where sample applicatidong with references to speci c
works that use this temporal formalism to represent dynamiities in a wide variety of elds
—such as Program Speci cation, System Veri cation, RobstiReactive Systems, Databases,
Control Systems, Agent-based Systems, etc— can be founel.miimal language foPLTL
adds to classical propositional connectives two basic teadronnectives (“next”) and U
(“until”) such thatey is interpreted as “the next state malegue” andd U i is interpreted as
“¢ is true from now untilp eventually becomes true”. Many other useful temporal cotives
can be de ned as derived connectives, d.dl'eventually”), (“always”) andR (“release”).

Automated reasoning for temporal logic is a quite recemtdrdn temporal logics, as well
as in the more general framework of modal logic, differemgfrmethods are starting to be
designed, implemented, compared, and improved. Spe@icand veri cation methods for
PLTL —and also for other temporal logics— are mainly based oretkireds of proposals: au-
tomata, tableaux and resolution. Automata are related tbehahecking whereas tableaux and
resolution are the main methods for proof theory. Other fptbeoretic approaches fétLTL
include its rst axiomatizationa la Hilbert presented &3]. See [110] for a good survey about
theorem-proving irPLTL and its extensions. The most developed approach is modekiclge
([30, 31]), which is automata-based. In fact, model chegkifitemporal formulas is tradition-
ally carried out by a conversion to Blichi automata (see[&2)]). In model checking, temporal
logic is used for speci cation purposes, whereas the sys&asften implemented in a different
language, hence veri cation requires to manage differemtantic domains. Model checking

! Probably, the most used temporal logic is Computation Tiegid (CTL), especially for model checking pur-
poses.
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focuses on the problem of deciding whether a concrete madel) of a system satis es a
logical formula or not. This approach is reasonably ef d¢ifor nite state systems and there is
a large body of research in this area. The interested readefeirred to [44] (Section 4.4.7 and
Chapter 5) for a recent work that describes model checkictgnigues. However, the automata
approach is not well suited for automated deduction, in &mese that it is not able to generate
proofs or deductions of a conclusion from a set of premisebriéf and clarifying discussion
about model checking versus deductive temporal veri gatian be found in [35].

Automated deduction foPLTL, and related logics, is mainly based on tableaux and reso-
lution. Indeed, there are recently published works conmggimplementations of the different
tableau and resolution procedures RUTL and similar logics (see e.g. [69, 77, 78]).

In this thesis we propose new deduction method<PiofL. In particular, we introduce a
tableau method, two sequent calculi and a resolution proegidr PLTL. On the basis of the
resolution procedure, we also present a declarative tamhfomic programming language.

Eventualities and Invariants

In every deduction method for temporal logic, the centrpldds how to deal with eventualities
and “hidden” invariants that can prevent the ful liment ofemtualities. Eventualities directly
state that a property will eventually hold whereas invadgastate, often in an intricate way, that
a property holds at every time instant from some moment odsvar

The use of the customary inductive de nitions of the tempoaanectives as the only mech-
anism for detecting the existence of an invariant that prssthe ful liment of an eventuality,
leads to incomplete deduction systems. The reason is thatcsistomary inductive de nitions
make possible to inde nitely postpone the ful liment of amentuality and, consequently, they
make possible to inde nitely postpone the contradictiotnmsn an eventuality that states that
a propertyp will eventually hold and an invariant that states ttpawill never hold. Therefore,
more elaborated mechanisms are needed.

Next, we review how this issue is tackled by the main appreagdh the tableau, sequent,
resolution and temporal logic programming frameworks. ifiddally we describe our contri-
bution to each of these frameworks.

Tableau systems

Traditional tableau systems for temporal logic, in patac®LTL, are based on the usual induc-
tive de nition of eventualities (see e.g. [128, 73, 8, 87, 89]). In order to obtain completeness,
they rst build an auxiliary nite graph by using tableau rd. Since in these systems, the num-
ber of different sets of formulas that can be produced froenitifitial set is nite, the graph is
always nite. Once the graph is completed, it is checked tedethe existence of unful lled
eventualities. Nodes that do not belong to in nite pathg tjige rise to models, are pruned.
These tableau methods are known as two-pass methods. Thmss@pproach proposed in
[117] is also based on the usual inductive de nition of eustities. The method yields cyclic
trees. The second pass is avoided by associating additifoaination to nodes. Part of the
information is generated in a top-down manner, while thatias are being built. But there are
also information that is obtained in a bottom-up mannergeahe branch has been completed.
The information obtained in a bottom-up manner is necedsatigal with cyclic branches that
are not ful lling on their own but yield a ful lling cycle if mmbined with other accessible
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branches. From a theoretical point of view, one of the drakbaf the two-pass approach and
the above mentioned one-pass approach is that a clas&ie#dbleau is not obtained. We mean
that, unsatis able sets of formulas do not always produosedll branches whose last nodes
contain a formula and its negation, instead cycles that dtead to models must be detected by
using an extra process. Our proposal is based on a non-carstamductive de nition of even-
tualities. The rule obtained from this alternative induetde nition of eventualities, together
with a speci ¢ strategy for applying the tableau rules, giviese to a tableau method, namely
TTM, where tableaux are cyclic trees and unsatis ability islesively detected —like in clas-
sical tableau methods— by means of closed branches thatie@formula and its negation in
its last node. Additionally, by controlling cycles that giidelong to a single branch, a decision
procedure is obtained. Our approach was rst presenteddhdfid then extended in [61]. A
preliminary prototype is accessible irttp://www.sc.ehu.es/jiwlucap/TTM._html. A
report about this prototype is presented in [62].

Sequent systems

Traditional sequent systems for temporal logic (see e.04,[105, 121]) are also based on the
usual inductive de nition of eventualities. In order to dedth eventualities and invariants, they
either include an in nitary rule or a rule that requires t@piously nd an adequate invariant.
On one hand in nitary rules are not effective. On the othendhainvariant-based rules are
specialized cut rules that prevent from obtaining cla$dika cut-free proofs. As a consequence
of using either two-pass methods based on auxiliary graphsome-pass system that requires
an additional handling of information in the tableau fraroeky and either in nitary rules or
invariant-based rules in the sequent framework, is thatssical duality between tableau and
sequent proofs does not hold. The nitary sequent systesgnted in [20] does not require an
invariant-based rule but annotated formulas are used.efoasiulas do not properly belong to
the logical language, so that an extra-logical feature éslu8y following our approach based
on a non-customary inductive de nition of eventualitie® propose a nitary sequent calculus
that does notinclude either invariant-based rules or thigscontain extra-logical features such
as annotated formulas. Moreover, our tableau and sequstansy are dual in the sense that
from every tableau construction a sequent derivation castiaégghtforwardly obtained. Our
proposal was rst materialized by means of the sequent sy§t€ presented in [58], which is
the rst nitary sequent system foPLTL that is free from cut- and invariant-based rules. Later
on, the sequent systemsc and GTC were directly obtained from the tableau methov
([61]). AlthoughFC andGTc are basically identical, the completeness proofdoc is based
on its duality with respect totm and —unlike in the completeness proofef— structural rules
such as weakening and contraction are not used.

Clausal Resolution

The clausal resolution methods fBLTL presented in [126] and [40] (see also [45]) require
invariant generation in order to deal with eventualitielse Tormer does not tackle the invariant
generation issue whereas the latter provides an algorifiira.resolution system in [40] gives
rise to a decision procedure fBLTL, but it contains an extra-logical feature to resolve even-
tualities. The clausal resolution method introduced in ot intended for fullPLTL and
the approach is based on the exhaustive analysis of all th&lge transformations (in a nite



1. Introduction 4

scope) of eventualities into formulas that only containtle®nnective. The non-clausal resolu-
tion system presented in [1] is based on a non-customarygfivdude nition of eventualities that
is different from the one we consider in the above mentioabteiu and sequent frameworks.
However, the problem of satis able input sets is not addrdds [1] and therefore a decision
procedure folPLTL is not provided. Our clausal resolution method, nantelg, is de ned by
adapting thertm approach for tableaux to the clausal resolution framewGdasequently, the
keys of our approach to temporal resolution are a rule thesdeth eventualities and a strategy
formalized by means of a systematic resolution algorithat gives rise to a resolution-based
decision procedure fdPLTL. This resolution method is also described in detail in [82pro-
totype forTrs-resolution can be found inttp://www.sc.ehu.es/jiwlucap/TRS.html.

Temporal Logic Programming

The idea of directly executing logical formulas and, theref using logic as a programming
language —already proven successful in classical Logiglmoming— has also been tackled in
the case of temporal logic. Temporal Logic Programming igles a single framework in which
dynamic systems can be speci ed, developed, validated ariccet by means of executable
speci cations that make possible to prototype, debug angrine systems before their nal
use. In classical Logic Programming, the underlying exeouytrocedure is based on (classical)
clausal resolution ([88, 89]). The extension of this apploe Temporal Logic Programming
faces three main challenges: the undecidability of radarrtemporal logic [92, 122, 121], the
dif culty for dealing with eventualities and invariants dtthe complexity (even for the proposi-
tional fragment [119]).

Consequently, different proposals that can be classi e¢d iwo groups have arisen. One
of the groups is formed by the languages that are based omgerative future approach (e.g.
[94, 9, 93]). In these languages programs are formulas tenrin temporal logic— that state
which literals must be true in the next state. So the exenwtimsists in explicitly building the
model for the program, state by state. The other group isddriy the languages that are based
on the declarative approach. The declarative languages@xassical Logic Programming
for reasoning about time. However, some of the declaratinguages are not purely based on
temporal logic (e.g. [83, 74, 21, 50, 114]). The declarakiveyuages that are purely based on
temporal logic extend classical Logic Programming by idahg temporal connectives in the
atoms and by also extending classical resolution ([2, 12, 92, 55]). Here we only analyze
the languages that belong to the imperative future appraadtithe declarative languages that
are purely based on temporal logic. The languages that ddlmithe imperative future ap-
proach either restrict the use of eventualities (e.g. [#3) Or use the nite-model properfy
for xing an upper bound that indicates that an eventualapmot be ful lled (e.g. [9]). The
declarative languages that are purely based on tempoialddber directly avoid eventualities
([2, 12, 127, 99]) or do not provide completeness result]f[553f the clausal temporal res-
olution method presented in [40] were considered as a basia fleclarative temporal logic
programming language, its execution would require invdrigeneration. In the same way, the
sequent-based logical foundation for declarative tempogic programming provided in [106]
includes an invariant-based rule. We propose a (proposifjaeclarative temporal logic pro-
gramming language, namd@eDilLog, whose execution mechanism is based as-resolution.
Consequently there are no restrictions regarding the usweftualities. Moreover, we deal

2 Also known as small model property.
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with eventualities without requiring invariant generati@ preliminary version of this proposal
was presented in [64].

Invariant-Freeness

In order to sum up and highlight the distinctive feature of approach to temporal deduction
we can say that:

< Our tableau method is classical-like in the sense that i e require an extra process

(a second pass or an additional handling of informationjifstecting the unsatis ability
of a set of formulas where an invariant prevents the ful Imef an eventuality.

e Our nitary sequent systems do not include invariant-baseels.

< Our resolution method dispenses with invariant generation

= The resolution procedure underlying our temporal logigpamming language does not
require either invariant generation or invariant detatby means of upper bounds.

Consequently, we say that our approach is invariant-free.

Outline of the thesis

This thesis is organized in six chapters (including this)@ssfollows:

< In Chapter 2, we provide the preliminaries of the thesis, that is, thadiastions about
PLTL that are used in the remaining chapters.

In Chapter 3, we rst introduce our one-pass tableau methaai. This tableau method
includes a new tableau rule for dealing with eventualiti€éhe completeness result of
TTM is based on this rule and the strategy formalized by mearsedfytstematic tableau
algorithm that we also present in this chapter. Such rulettugy with the mentioned
strategy are the core of our proposal, which leads to a nevoapp to temporal deduction
and gives rise to a new decision procedure RofL. From 1T™M, we obtain the one-
sided nitary sequent calculustc that is cut-free and invariant-free. On the basis of
TTC, we nally de ne the two-sided sequent calculagsc, which is also nitary, cut-free
and invariant-free. Moreover, bottmtc and GTC are weakening-free and contraction-
free. By means of these tableau and sequent systems we paivae classical duality
between tableau and sequent systems exteridkTh. At the beginning of Chapter 3 we
review related work to motivate our research. At the end efdhapter, we compare our
approach with related work with the aim of remarking the rigee of our contribution.
The contents of this chapter are strongly based on [58, 6631

Chapter 4 is devoted to our clausal temporal resolution metmad. First, we brie 'y
review previously existing approaches to motivate our woflhen, we introduce our
clausal normal form and the steps required to transfornPaiy. formula into this clausal
form. Next, we provide the rule system and the notion of @dgidn. The crucial rule for
eventualities and the systematic resolution algorithmltred to the completeness result
and to the new resolution-based decision procedure, aginglt by adapting the key
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rule and the systematic tableau algorithm from the previtwagpter to the clausal setting.
The major novelty of the resolution methods is that, unlike the main approach in the
literature ([40, 45]), it dispenses with invariant geniemat The last section of this chapter
is used to compare our contribution with previously exigtapproaches. The content of
this chapter is based on [62].

In Chapter 5, we present a declarative propositional temporal logigmmming lan-
guage calledeDiLog First we introduce the syntax d&DiLogwhich is an adaptation
of the clausal form introduced in the previous chapter toltiggc programming style.
Then we provide operational and logical semanticsTeiLog and prove their equiva-
lence. The operational semantics is based orrtteresolution presented in Chapter 4
and the logical semantics is founded BRLTL logical consequence. At the beginning of
the chapter previous approaches are reviewed to motivateank and at the end of the
chapter our contribution is compared with such approachis. content of this chapter
extends [64].

In Chapter 6, we expose the main contributions and results of this thegisther with
the publications and remarkable research activity canigdluring the preparation of this
thesis. Besides, we also discuss future work.



2. PRELIMINARIES

In this chapter we provide the basic notions relate@ltdL and we also introduce some nota-
tion that is used in this thesis. Sections 2.1 and 2.2 aretdé\o the syntax and the semantics
of PLTL. Section 2.3 introduces the notions of soundness, refutaticompleteness and com-
pletenes for deduction systems. Finally, Section 2.4 thtoes the notion of invariant formula

for PLTL.

2.1 Syntax ofPLTL

The syntax ofPLTL extends the syntax of classical propositional logic bywailm the use
of temporal connectives. Different temporal connectivas be considered in order to obtain
the full expressiveness #fLTL. In this thesis we choose the temporal connectivémext”)
and U (“until”) as primitive temporal connectives. Therefore way thatPLTL-formulas are
built by using the nullary connective (i.e. the constantpropositional variables (denoted by
lowercase letterp, q, . ..) from a setProp, the classical connectivesand [_dnd the temporal
connectives and U . In the sequelformulameansPLTL-formula. A lowercase Greek letter
(¢, W, X, V,...) denotes a formula and an uppercase aneX, I', ¥, Q, .. .) denotes a nite set
of formulas. As usual other connectives can be de ned in $eofithe previous ones: = —F,
¢ Lyl = =(=¢ L), dRY = =(=oU-y), [ = TUP, ¢ = —[dp. Note that
¢ = FR¢. As can be observed in the above de nitions, the linear-tonanectivesR
(“release”), L(Jeventually”) and (“always”) can be de ned in terms of the connectitde.

The connectives, LR and are the dual connectives of the connectires, U and []
respectively. The connectiveis its own dual.

The above de ned connectives will be used as abbreviationsdadability in the tableau
method and the sequent calculi but dual connectives aressagein the clausal resolution
method. For technical convenience, we use the nullary aiivea= as part of the minimal
language folPLTL. However, its use can be avoided by considering thean be expressed
asy [=lp, wherey [Hrop. In fact, in the clausal resolution method we dispense with t
constants and T and we consider thatdl = -pU ¢ and ¢ = —-p R ¢. In the clausal
resolution method the empty clause is denoted syntagtiaalland [

Formulas of the forng, -y and-¢, wherey [{¥, T} [Piop, are callecelementaryAlso
sets of elementary formulas are called elementary.

We denote by", " and [M] with n = 0, the sequences of connectives>, and [ ]
respectively. However, these kinds of superscripts aratiwot, hence they are not part of the
syntax.

iven a set of formula® = {4, . . ., dn} we use~® to denote the formula(dp1 1 [h])
and @ to denote the formuld, C_1. Cd}. In particular, wherp is empty,—~® is the constant
F in the tableau and sequent systems (Chapter 3) and the etapsedn the resolution system
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\Y,
(Chapters 4 and 5). On the other hand, wikeis empty, @ is the constant in the tableau
and sequent systems (Chapter 3).

2.2 Semantics and Model Theory oPLTL

Formally, aPLTL-structureM is a pair(Sy , Vm ) such thatSy is a denumerable sequence of
statessg, 1, Sz, ...andVy isamapVy : Sy - 2P™P. Intuitively, Vy (sj) speci es which
atomic propositions are (necessarily) true in the sate

Formulas are interpreted in the state®bf L-structures. The formal semantics of formulas
is given by the truth of a formulé in the states; of a PLTL-structureM, which is denoted by
M, s; L= ¢. This semantics is inductively de ned as follows:

-« MM, s [EF

M, s; k= piff p [y (s5) for p [PYop

- M, s; = ¢ iff W, s; LEE ¢

- M, s; (k= ¢ CQliff M, s; L= ¢ and M, sj L=
e M, s ¢ iff M, 541 = ¢

« M, s ¢ Uy iff there existsk = j such thatlM, sy (=  and for everyi [1
{j,....,k—=1}itholds[W, s; (k= ¢.

The extension of the above formal semantics to the de nedhectives yields:
- [, S Eﬂ: T
» M, s; = ¢ CQliff OM, s; CF= ¢ or M, s L=

M, s; [ ¢ Ry iff for every k = j it holds eitherW, sy = ¢ or OM, s; [}~ ¢ for
somei [{],...,k—1}

- W, s; CF= Lliff OM, sx = ¢ for somek = j
e M, sj = ¢ iff OV, sy}~ ¢ for everyk = j.

If W, s, (= ¢ then we say thap is true in the satey, of the PLTL-structureM.

Note that the truth ofh U ¢ and [l in a states; of a PLTL-structureM requires that}
must eventually be true in some stateof M with k = j, and also that the eventual truth of
=) is required for= | and—(¢ R ) to be true. Consequently

De nition 2.2.1. Aneventualityis a formula of the forngp U ¢ or Lilor = g or =(¢p R ). In
particular, formulas of the fornp U () are also calleduntil-formulas

The semantics is extended from formulas to sets of formultsa usual wayiW, s; L= @
iff IM,s;F vy forally @ We say thatM is a model of®, in symbolsM | o, iff
M, sg[Cf= @. A satis able set of formulas has at least one model, oth&mtiis unsatis able.

De nition 2.2.2. Two sets of formula® andW¥ are equisatis ablewhenever® is satis able if
and only ifW is satis able.
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€0 €1 €2 ek

Figure 2.1:Cyclic sequence

Thelogical consequenceelation between a set of formulésand a formulgy, denoted as
® [ X, is de ned in the following way:

® = x iff forevery PLTL-structureM and everys; [ Sl :
if [N/l,Sj Eﬂ: thhenIIN/I,sj Eﬂ: X

The above notion of logical consequence is usually cadledl logical consequencd here
is a weaker notion calledlobal logical consequenaghich demandg to be true at all states
in M if @ is true at all states ilM. This latter notion is also interesting for many applicatio
[48].

In order to construct models for satis able sets of formulas usecyclic (also calledul-
timately periodi¢ PLTL-structures that we de ne in terms of either in nite pathsowycling
sequences (Chapters 3 and 4) or in nite sequences (Chapteabh element of such sequences
is associated with a set of formulas. An in nite path (or int@sequence) becomes the sequence
of states of &@LTL-structure. The propositional variables that belong tostits associated with
the states de ne the may. Finally we ensure that BLTL-structure built in this way makes
true, at each statg, the formulas associated with the stste

Any in nite sequencesg, ey, . . ., €k, . . . involves an implicit successor relation, nam&ly
such tha(e;, ej+1) CRIfor alli CIN. When convenient, we writeR e®to denote(e, €9 [R.

A nite sequence gives also a corresponding implicit susoeselation with a pair for each
element except for the last one. A nite sequerge= eg, €4, ..., e is said to becyclic iff
its successor relation extends the implRitwvith a pair (e, ¢j) for somej [D,...,K} (see
Figure 2.1). Theng;, ..., e is called thdoopof S, g; is called thecycling elemenof S, and
thepathoverS is the in nite sequence

path(S) =eg,e1,...,€ 1§, €1,..., ek

where_ - _is the in x operator of concatenation of sequences bBnddenotes the in nite se-
guence that results by concatenation of the sequdrinenitely many times. Naturally, for any
non-cyclic nite sequenc& we consider thgpath(S) = S.

A PLTL-structureM is cyclic or ultimately periodidf its (in nite) sequence of stateSy
is a path over a cyclic sequence of states.

Ensuring that #LTL-structure constructed from an in nite sequerke eg, €1, ...,€k, ...
makes true the eventualities that appear in the sets asstieeacte; in S is the key step of the
model construction process. In order to carry out this steypge ne the notion oful liment of
eventualities. We say that in S ful lls an eventuality ¢ U @ that belongs to the set associated
with ej, whenever there exists, with h = i such thatp belongs to the set associated with
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en and¢ belongs to the set associated wathfor everyg {1, ..., h — 1}. We particularize
and precisely de ne the notion of ful llIment for every dedimn system in the corresponding
chapter.

2.3 Decidability of PLTL: Sound, Refutationally Complete and Complete
Deduction Systems

It is well known thatPLTL is a decidable logic (see e.g. [87]). Therefore, giveRLAL-
formulay, there exists a procedure that is able to decide, in a niteamhof time, whethety
is satis able or unsatis able.

Whenever a new deduction system is proposed for a decidagie, lit must be assessed
whether the deduction system yields a decision procedurenitédry deduction system gives
rise to a decision procedure whenever it@mplete A deduction system is complete if it is
able to decide both satis ability and unsatis ability. Tlkempleteness of a deduction system is
established by provingoundnesgerminationandrefutational completeness

Soundness means that a deduction system is correct in tihe Heat if a formula) is
classi ed as unsatis able by such deduction system, thénunsatis able. A deduction system
is refutationally complete if whenever a formulais unsatis able, then the system classi gs
as unsatis able. However, soundness and refutational tetempess do not guarantee that the
satis ability of a formula is decidable. That is, given afiaunlay, if  is unsatis able, then a
sound and refutationally complete deduction system wilhble to classifyp as unsatis able,
butif Y is satis able, then the deduction system may not termirfselerivation process, i.e. the
deduction system may not give any answer. For that reasomintgtion is additionally required
in order to have completeness, i.e, in order to decide bdik ahility and unsatis ability.
However, it is customary to use the term completeness to tefeefutational completeness
in refutational systems where termination is not addressedaach chapter of this thesis we
precisely de ne the meaning of the term completeness fan eacluction system.

The notion of deciding the satis ability of a formulp extends to a nite set of formulas
® ={d,, ..., dn} in a straightforward manner, sindeis understood a$; 1. ).

A logic is said to becompactwhen it veri es that, given any set of formulas, if every
nite subset of®d is satis able ther® is satis able. It is well known thaPLTL is a non-compact
logic. For example, the in nite set of formula = {='p | i [N} ({1 =b} is not satis able
but every nite subset ofV is satis able. As a consequence, any complete deductiotesys
that is able to deal with in nite sets of formulas should banitary. However in nitary systems
do not yield decision procedures that are able to decideatie ability or unsatis ability of a
formula in a nite amount of time. Since we are interested mitary deduction systems, we
only deal with nite sets of formulas.

2.4 Invariant Formulas in PLTL

One of the features AILTL (and temporal logic in general) is the ability to expresséwality
properties and invariant properties. Eventuality prapsrstate that a formula will eventually
become true. Eventuality properties are directly expigtbgeneans of speci ¢ connectives (e.g.
U and D) that give rise to the so-called eventualities (see Deamnit2.2.1), which are trivially
detectabled U g, [, etc). Invariant properties state that a formula is always {from some
moment onwards). Invariant properties are expressed Byofdormulas that, often, are not
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trivially detegtable. If the set of formulaB expresses and invariant property, then we say that
the formula @ is aninvariant formula(invariant, in short). Moreover® could also be a
subset of another set of formulas, hence we say that, usirathriants are “hidden” in a set
of formulas. Formally, a formul¥ is an invariant if and only if the formulax [=) is true
at every state of everyLTL-structure. Since “hidden” invariants can prevent the lfatent of
eventualities, the key issue in the nitary deduction sysifor PLTL (and temporal logic in
general) is to deal with eventualities and invariants.

In order to illustrate the concept of invariant, let us cdesithe following three sets of
formulas

Ay ={ (=do LoWp), ..., (~n [=ln)}
Do ={ (Yo [5),..., (~¥n L5V}
Az ={ (Yo L L. Lh),..., (~¥n L L. Ldh)}

The formulass -y and (¢o 1. [Cd)},) are logical consequences of the set

2 ={¢o L. Loh} LA LA, LA

Additionally, for the formulax = v 2, it holds that—x [=e) is true in every state of every
PLTL-structure. Thereforg is an invariant that states, in an intricate way, that thexmadity
Lylcannot be true from the next state onwards. Note also thébtheila (—=(po C_1. L)) [
o(do L1 []})) is alogical consequence &; [N, 2. So that, if we restrict ourselves to
the set of models of\; 2N, [\, we could say that the formullyy 1. [}, is an invariant
with respect to such models.

Since the sek can be formed by an arbitrary number of formulas, the invaa(unlike
eventualities) cannot be trivially detected. Additiogal could just be a subset of another set
of formulas.

More details about invariants can be found in e.g. [45, 105, 106].

Given a set of formula¥ and an eventuality.y] the crucial element for every refutationally
complete nitary deduction system f&?LTL is to detect whethe# contains an invariant that
prevents the ful liment ofy.






3. DUAL SYSTEMS OF TABLEAUX AND SEQUENTS FOR PLTL

3.1 Introduction

Tableau systems are refutational proof methods that plagraipent role in the development of
automated reasoning for temporal logic (and many othec&)gin addition, in the case of de-
cidable logics, such &BLTL, tableau methods serve as decision procedures for theabitty

of (sets of) formulas. The rst tableau method BLTL was introduced by P. Wolper in [128]
and it is atwo-pass methadin the rst pass, it generates an auxiliary graph by apmiyime
tableau rules. This graph is checked and possibly prunedécand pass that analyzes whether
the eventualities are ful lled. As stated in De nition 22.an eventuality is a formula that as-
serts that something does eventually hold. For example fath in the graph to ful lip U g,
the formulap must eventually appear in the path. Hence, any maximalgly@onnected com-
ponent in the graph that contaip) | in the label of one of its nodes, but does not contain
in the label of any of its nodes and from which no other maxistangly connected component
can be reached, is pruned. At the end, an empty graph meaassuaisility. Since Wolper's
seminal paper [128], several authors (e.g. [73, 8, 87, 79 e proposed and studied tableau
methods for different temporal and modal logics inspired/Mgiper's tableau (see [71] for a
good survey). In addition, Wolper's two-pass tableau hanhesed in the development of de-
cision procedures or proof techniques for logics that exfldl'L to some decidable fragment
of the rst-order temporal logic (e.g.[84]), or to the brdmiag case or with other features, such
as agents, knowledge, etc (e.g. [70]). In the case of tws-tetdeau methods the auxiliary
graph and the second pass prevent the association of a $ealmrus proof to each tableau
refutation.

Sequent calculi provide a general deductive setting thiédumly embeds refutational meth-
ods and other deduction techniques such as goal-directedspor natural deduction. Tradi-
tional sequent calculi for temporal logic (e.g. [104, 1081]) usually include some inference
rules that complicate the automation of temporal deductioparticular, temporal sequent cal-
culi either need some form of cut (classical cut or invaraased cut) or they include in nitary
rules. Cut rules imply the “invention” of lemmata, calledt éarmulas, for their application.
Invariant formulas are particular cut formulas for proviegnporal eventualities. In [104] and
[121], two sequent calculi for temporal logic with invartamased rules are presented. In fact,
in both approaches, a system that includes also a cut rutesepted and then a cut elimination
proof is provided. However, invariant-based rules for temapconnectives cannot be avoided.
In [105] various sequent calculi are presented for tempogit without the until connective
U (this means that the considered logic has a limited tempxtessive power). In [105]
completeness and cut-elimination proofs, together witthous interesting reductions among
various calculi are provided. However, every calculusudels either some in nitary rule or
some invariant-based rule.

A remarkable consequence of using auxiliary graphs thairea second pass in the tableau
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framework and either invariant-based rules or in nitaryasiin the sequent framework is that
temporal logic fails to carry out the classical correspaoradbetween tableaux and sequents. In
classical logic, and even in some non-classical logics (@any-valued logics), each step in a
tableau construction corresponds to an inference in thessgqalculus. Therefore, there is an
easy, useful and well-known correspondence that assediatie each closed tableau a sequent
proof, which is a refutation.

In this chapter, we present a tableau system together witlabotit-free and invariant-free
nitary sequent calculus foPLTL. We rst provide atemporalrableaumethod, calledrTm,
which does not require auxiliary graphs to decide if a setoofulas is satis able. Instead,
there is a tableau rule that prevents from inde nitely delgythe ful Iment of eventualities.
The tableau methodT™ is sound, refutationally complete and also complete. Theze it
gives rise to a decision procedure fILTL. The tableau methotrwm is directly associated with
a one-sided (or Tait style) sequent calculus that wergatl(from Tait-styleTemporalcalculus).
SinceTTM is free from all the structural rules that hinder the mechatidn of deduction, e.g.
weakening and contraction, then the resulting sequentiicedcTC is also free from this kind
of structural rules. In particular;Tc is free from any kind of cut, including invariant-based cut.
From the deduction systemTc, we obtain the two-sided sequent calcutusc (from Gentzen-
styletemporalcalculus) that preserves all these good freeness propartteis nitary, sound
and complete foPLTL. Therefore, we show that the classical correspondencesieettableaux
and sequent calculi can be extended to temporal logic. Sachspondence is mainly enabled
by a new style of inference rule for eventualities which a@alinces a new kind of temporal
deduction. This new kind of temporal deduction is based enfdlat that if a set of formulas
A [ U P} is satis able, then it must exist a modifl (with statessg, sy, . . .) that is minimal
in the following sense:

M satis es eitheiA C{P} or A L, o ((¢ (=N) U )}

whereA = {¢1,...,0n} and=-A = =(d; 1. [d}). In other words, in a minimal model
M of A [{p U Y}, if Y is not true insp then the so-calledontextA cannot be true frons;
until the rst state whera) is true. In order to clarify this fact, let us consider a moh4P
with statessg, s, . .. such thas (with j = 2) is the rst state in whichy is true and there
is at least one state in the seques@e . ., s? in which A is true. Now, letk be the greatest
z [{L,...,j} such thatA is true insQ. Then, the structure given tsf,sp,,, ... is also a
model ofA [{¢ U ¢} that is minimal in the above sense.

The tableau methodT™ and the sequent calcutirc and GTc (rst presented in [61])
extend and improve the work introduced in [60, 58].

In addition to the traditional approaches to tableau andieseigsystems for temporal logic
mentioned above, there are two approaches whose resultéoasdy related to ours. On one
hand, in [117] a one-pass tableau calculus that producéis tyges is introduced by Schwendi-
mann. This tableau calculus avoids the second pass by addirainformation to the nodes
in the tableau. Some of this information must be synthesigtbm-up and it is needed be-
cause tableau branches are not independent from each lotiparticular, a cyclic branch may
contain an unful lled eventuality that can be ful lled if ber accessible cyclic branches are
considered for generating a wider cycle. Hence, it carrigsaa on-the- y checking of the ful-
llIment of every eventuality in every branch. Our method & bbased on an on-the- y checking
of eventualities. As mentioned above, in our tableau method, there is a tableau rule that
prevents from inde nitely delaying the ful Iment of eveaglities. InTT™M branches are in-
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dependent from each other and the ful liment of an eventydhat appears in a branch does
not depend on other branches. Additionatiym tableaux are classical-like in the sense that
unsatis able sets of formulas give rise to closed tableabhrr® every leaf contains either a for-
mula and its negation or the constantBy contrast, Schwendimann's approach does not yield
classical-like tableaux in the sense that unsatis ablge setormulas may produce non-ful lling
cyclic branches whose last nodes do not contain an explicitisistency (i.e. a formula and its
negation). Consequently, such approach requires an axtcass for deciding whether a cyclic
branch is ful lling or not. Schwendimann's approach hasdieen applied to other logics such
as e.g.CTL ([5]) andPDL ([72]).

On the other hand, at the time of the publication of [60], toknowledge the rst published
invariant-free nitary sequent calculus f®LTL, we learned about the work of K. Briinnler and
M. Lange (see [20]), which provides an interesting altéweadpproach to the proof theory
of PLTL. The calculus presented in [20] has the analytic superfamproperty. Actually, in
[20], the strategy that leads to prove the completenesseoBdyuent system —which lies in
fairly selecting exactly one eventuality and sticking tauitil it is ful lled— is incorporated
in the sequent system by means of the so-called annotatediffas (which do not belong to
the logical language). The completeness proof of our sysesiso based on the mentioned
strategy but such a strategy is not incorporated in the sydtethis way different strategies can
be used. We differentiate between the systematic derivdtihich guarantees completeness)
and the many other derivations that usually are feasibl&ektion 3.7 we compare, in a more
detailed way, our approach with the above mentioned aphesac

Outline of the chapter In Section 3.2 we introduce the notions of sequent and sgque
system and we point out the relationship between tableaiersgsand sequent systems. In
Section 3.3 we present the tableau systam. Subsection 3.3.1 introduces the basic tableau
structure. Subsection 3.3.2 provides the rule system.estibs 3.3.3 contains the de nitions of
inconsistent node and open and closed branches. In Sulrs8c3i.4 we establish the notion of
TTM tableau which includes the key concepts of expanded brartbxpanded tableau. Finally,
in Subsection 3.3.5 we show some examples of tableaux.0Be&:# is devoted to the soundness
and completeness results. The soundnessmfis proved in Subsection 3.4.1. In Subsection
3.4.2 we propose an algorithm for systematically obtainfagany set of formulag, a nite
tableau that proves that is either satis able or unsatis able. In particular we pide the
termination result and the worst case complexity for thedtgm. Examples that illustrate the
application of the systematic tableau algorithm are shawetlibsection 3.4.3. In Subsection
3.4.4 we prove the completenessraiv. In Subsection 3.4.5 we suggest some improvements.
In Sections 3.5 and 3.6, we introduce, respectively, thesited sequent systentc and the
two-sided sequent systeaTC. The rule system, the soundness and completeness restilts an
some illustrative examples are provided for each of thesedaquent systems. Finally, in
Section 3.7 we deal with related work and we compare somerfesaf our approach with
other approaches.

3.2 Sequent-based Deduction Systems and Tableaux

Sequent calculus, rstintroduced by Gentzen ([65]), isti@st elegant and exible system for
writing proofs. Each line of a sequent calculus proof is aused,. Asequentvas (originally)
formed by two sequences of formulas separated by some kiad@iv (for instance[)1The
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intended meaning of a sequeat, ¢o, ..., dn [k, Yo, ..., Uy is the formula

m m

di - Y

i=1 i=1
where - is the classical connective of implication (i.x - y = =X [y). The sequence
b1, 92, .. ., Oy is called theantecedenof the above sequent and the sequapgal,, . .., Um
is called itsconsequentor succedent). Since the seminal work of Gentzen, manwtianis of
the notion of sequent have been explored to provide differequent-based deduction systems.
A sequent calculus is a proof system given by a set of rulels tat each rule indicates that a
sequent may be inferred from a set of sequents. That is, tafy)irule consists of aumerator
formed by a ( nite) set of sequent, ..., S, and adenominatolS separated by a horizontal
line, next to which is the name of the rdile

Sl,...,Sn
S

In a rule(r) as above, each sequéitis called goremiseandsS is theconclusion Traditionally,
a sequent calculus consists of structural rules and coeeales (rules for the connectives).
The conclusion of a connective rule haprncipal formulathat is affected by the inference.
For example
( D:J A’ ¢1 l‘IJ m
A ¢ L X
is a rule for conjunction )-Whose principal formula i$ [l However, in structural rules,
the inference is guided by the whole conclusion. An examplstructural rule is classical
weakeaning
A M

FAWANH IRV

There are many variations of sequents. The simplest oneté&nall by allowing the an-
tecedent and consequent to be a (multi)set instead of asegudhis choice (of sequences,
multisets or sets) is directly related to the classicaldtmal rules of exchange and contraction.
In particular, the exchange rule only makes sense in segtlgawed sequent calculi, whereas
the contraction rule, which is well-founded for sequencebraultisets, leads to some confusion
when sets are considered. More precisely, the classicédamtion rule (on the left):

A ¢ ¢ LA
A, ¢ LN

makes no sense when the antecedent is a set, however sohaplagation of connective rules
could hide a contraction. For example, the inference

¢ Col¢,p LH
¢ Lqirxd

1 Sometimes, due to space reasons, the rule is formattediasdol
S1

(WK)

Sn
S
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could result from a legal application of the above ruld) for A = {¢ [[i}. In classical logic
this kind of hidden use of the contraction does not harm, lvewin temporal logié we must
be more careful on this matter. The sequent systems we ang twiintroduce are based on
sets. The notatioA\, ¢ stands forA [} where¢ [CA. This convention clearly disallows
hidden contraction. In particular, it disallows the aboméeience that uses the ru{&L) for
A={¢ Cyf

Another simple variation of sequent is related to the calitinof the consequent. That is,
sequents can be either multiple-conclusioned or singtelogioned, or even one-sided, respec-
tively depending on whether the consequent is a set, a simgte empty? One-sided sequents
were rst used by Schitte [116] with multisets and by Tai28] with sets, hence when a new
system is presented it is usual to point out whether it is atZeenSchitte style calculus or
whether it is a Tait style calculus. There are really two kinflone-sided sequents: left-handed
(empty consequent) and right-handed (empty antecedemt)hid thesis, we use left-handed
sequents because they are very close to tableau systenast,|wé present the tableau system
TTM™ that is directly related to the left-handed sequent cakuitc. Besides, the established
results for the calculusTc can be easily extended to the two-sided sequent calaiias We
have preferred to formulate the calcul@asc by means of single-conclusioned sequents, in-
stead of multiple-conclusioned sequents, because in dafompsingle-conclusioned sequents
are closer to natural deduction and capture better outiotuin logical reasoning. A multiple-
conclusioned system can be easily obtained faora.

3.3 The Tableau MethodTTMm

In this section we present a tableau system, calied, for PLTL. In TTw™, tableaux are essen-
tially trees but branches can end in a leave that represdémdganto another node in its branch.
Our tableaux are one-pass in the sense of [117], that is,dbayot require a second pass to
check an auxiliary graph of states in order to determine érg\eventuality is ful lled. As a
consequence, temporal stages are represented insideatiehbs of the tableaux instead of in
an auxiliary graph. The contents of this section are dividén ve subsections. In Subsection
3.3.1 we introduce preliminary concepts related to thestblstructure. In Subsections 3.3.2,
3.3.3 and 3.3.4 we present the rules for constructing taklee notion of inconsistency in
nodes and the notion of tableau itself, respectively. Bmnad 3.3.5 we provide some detailed
examples of tableaux.

3.3.1 Pre-tableaux

AtableauT for a nite set of formulagd is a tree-like structure where each nodis labelled
with a set of formulad_(n). The root is labelled with the s€t whose satis ability we wish to
check. The children of a nodeare obtained by applying one of the rules to one of the forsula
in L(n). Nodes are organized in branches, so that the rules senith&w enlarge the branch
(with one new child) or split the branch with two new childrém order to formalize the notion
of branch we recall the concept of strongly generated set.

2 In general, in modal logic.
3 There are more sophisticated variants of sequents thataaed, for example, by adding structure or labels
into sequents, but they are out of the scope of this thesis.
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De nition 3.3.1. LetNodesbe a nite non-empty set of nodesa node inNodesandNodes
the set of all non-empty sequences of elementdoides A non-empty seéB [ NodesS is
strongly generatedith respect tatNodesandn iff it veri es the following conditions:

1. Ifng,Nny,...,ng (B, thenn; 8 n; foralliandj suchthal<i<j <k

2. Ifng,nq,...,ng B, thenng =n

3. Ifng,Nnq,...,ng (B, thenng,ny,...,n; (Bliforalli ({0,...,k—1}

4. For every noden [Nodesthere is a unigue sequency, Ny, ..., Ny [B such that
N =m.

We denote byreegNodes n) the collection of all subsets dfodes that are strongly gen-
erated with respect thodesandn. Let B [fdeegNodesn), each sequende (B is called
a branch. A branch® = ng,nq,...,n; is apre x of another branclh = ng, nq, ..., ng if
0 < i <k. If, besidesj £ k, we say thab®is aproper pre x of b. A branchb is maximal
wheneveb is not proper pre x of any other branch B.

Note that, in the above De nition 3.3.1, condition 1 meanatth node cannot appear more
than once in a branch, condition 2 means that the rst elerirertery branch is the nodg,
condition 3 means that a strongly generated set is closdédrespect to non-empty pre xes and
condition 4 states that every node must be the last node oflgxane branch, which may not
be maximal. Note also thateegNodesn) is nite and every sequende [H is nite for any
B [CfreegNodesn).

Now we de ne the concept of pre-tableau for a set of formulas.

De nition 3.3.2. (Pre-tableau) A pre-tableaufor a nite set of formulasd is a tupleT =
(Nodesn , L, B, R) such that:

1. Nodesis a nite non-empty set of nodes

2. n is anodeinNodes called initial node

w

. L : Nodes - 2 is the labelling function wher€ is a set of formulas that containg
such that the initial node is labelled lay, thatisL(n ) = ®

4. B is a strongly generated set treegNodesn ), called the set of branches

5. Ris the successor relation ovBlodes R should be coherent witB in the sense that for
all n,n® [CNodes (n,n% [R iff there exists a sequency, Ny, ..., Ny [A such that
n = n; andn®= n;;; for soma C{D,..., k—1}.

As usual,R* andR respectively denote the transitive closure and the re estransitive
closure of any binary relatioR.
3.3.2 Tableau Rules

A tableau rule is applied to a set of formulaén) labelling a nodan (which is the last node of
a branch). Each rule application requires a previous chafiedormula fromL(n). We call the
setL(n) \ {¢}, whered is the chosen formula, thentextand it is denoted byA.
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Rule a A(0)

| ¢ 19}
(D] ¢ Cl | {¢,y}
(==) | =¢ | {-—¢}

Rule B B1(B) B2(B)
(=D (¢ L@ {-¢} {~y}

EU) | ~@UY) | {0, -0} | {$. Y, (¢ UY)}
(Ux| oUW {v} {$. ~0, «(¢U )}
Rule | B | Bi(B) B2(B.4)

(U)o | oUW | {0} | {$.~y,=((¢ L=A)U )}

whereA\ stands for the context

Figure 3.1:Primitive TTM-Rules

As usual, therTm-rules are based on a classi cation of the formulas into goajive and
disjunctive, which are respectively nameda$ormulas and3-formulas. In Figure 3.1, any
a-formulaa is decomposed in a unique set, callk(), and anyB-formulaf is decomposed
into two constituent setB; andB»,. The seB; depends on the considered formflavhereas
the setB, can also depend on the contéxt 4

This classi cation gives raise to the tableau rules whosaemare also given in Figure 3.1.
Every rule, excepfU )-, is well known in the literature. It is worth noting th@t ); and(U ),
affect the sam@d-formula, but not in the same way. The rul& ), can be considered quite
peculiar, sincd3,(3, A) includes a formula which depends on the whole set of forminltise
node. Moreover( U ), leads to a new tableau construction style that allows usspedise with
the auxiliary graph. This rule is based on the fact that if mnigla ¢ U | is satis able in a
given context), it is because there exists a modelfoi{$ U Y}, with satesg, sy, .. ., thatis
minimal in the sense that# (with j = 0) is the rst state in which} is true themA is not true
inthe states that belong to the sequesics,, . . ., s; 1. More precisely, the crucial idea behind
the rule(U ), is based on the following equisatis ability result thatatds two eventualities.

Proposition 3.3.3. Let A be a set of formulasz; = A {pU Y}l andZ, = A Y (¢ (1
(-P) C=(¢ =N) U P))}, wherep U Y LA, are equisatis able.

Proof. In order to show thak; andX, are equisatis able, let us suppose tlixt is a model
of ;. If IV, soJF= A LW}, thenM is also a model o>,. Otherwise,[M, soJ=
A H, -y, °(pUY)} and there exists a stagg with j = 1 such thatlW, s; (= ¢ and
WM, sk ¢ for everyi [{D,...,j — 1}. Letk be the greatedt such that) < h < j
and M, sp[F A [{p U P}. We can ensure the existencekobecause at leasiV, so[ =
A [ {PU P}. As a consequence of the choicelgfit holds thatl, sy (= {$, -, o((¢ 1
=A) U §)}. Then, thePLTL-structureM®= (Sy o, Vi o) such thaBy o = sg, 59, . .. ands] =

4 Remember that is always assumedto be a nite set and that is F whenever is empty.
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Rule a A(0)

) ¢ {9, ¢}
(=D -Cd | {=¢, o~L4l}

Rule B B1(B) B2(B)
(R) dRY 0.0} | {=¢,0, (¢ RY)}
(D4l Ll {9} {~¢, - L}
(G - ¢ {-¢} 1§, >~ ¢}
=R)1| ~(dRY) | {0} | {=¢.¢.~(dRY)}
Rule B B1(B) B2(B.4)
(D4 Ll {9} {=¢, o((=A) U §)}
(= )2 - ¢ {-¢} {9, °((=A)U ~$)}
(=R)2 | ~(¢RY) | {~0} | {=¢. 0, (((=¢) L=A) U -~y)}

whereA stands for the context

Figure 3.2:Some Derived' TM-Rules

Sk+g andVy 0(88) = Vm (Sk+g) for everyg = 0 is a model ofA {, -y, o((¢ [(=N) U Y)}.
Hence, M° = X,. In the converse direction, any modelDj is itself a model of ;. n

The above property is applied to the tableau constructiombgns of the rul¢U),. The
proof of Proposition 3.3.3 re ects the intuition behind tlude (U )». In fact, Proposition 3.3.3 is
used in Lemma 3.4.1 to prove the correctness of the(fully. The use of the ruleU ), makes
possible to prevent the repetition of contexts (i.e. set®whulas) from the node in which
(U), is applied to an eventualityg U ¢ [TI(n) until the rst noden®for which y [CT(n9),
provided that the number of possible contexts is nite. Gangently, the ruld U ), makes
possible not to allow the inde nite postponement of the pres ofy (i.e. the ful Iment of
¢ U @) in the sequence of nodes obtained franprovided that the number of possible contexts
is nite.

One may wonder whether the rul®) ), is essential for completeness. Our completeness
proof usesiit, but it is an open problem whether there existt@rnative proof disregarding the
rule (U),. However, we conjecture th@t) ); is essential for completeness. Anyway, from a
practical point of view it is better that the system incluttes rule( U )1, since(U ), is costly
to use.

Besides the above primitiverm-rules, the methodT™ also uses the operatannextto
convert the labelling sdt(n) of a noden into another setinnext(L(n)) that labels a new node
and that intuitively represents the jump from one time insta the next one.

De nition 3.3.4. For any set of formula¥:
unnext(¥) = {y | ey ¥}

Note thatunnext(¥) could be the empty set, which we denotelby
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From the primitiverTm-rules we can derive rules for the de ned connectives likedhes
in Figure 3.2. However, along the chapter, most technidalildeare given only for the primitive
rules, in particular for the ruléU ),.

3.3.3 Consistent and Inconsistent Nodes and Closed and OpBranches

Tableaux are constructed with the aim of refuting the ihget of formulas. The search for a
refutation is carried out by decomposing formulas intortbenstituent sets of formulas in order
to nd out whether an inconsistent set of formulas can be iolkth

De nition 3.3.5. A noden is consistent ife I LI(n) and there is nap such that{$p, ¢} 1
L(n). Otherwisen isinconsistent

Note that, in De nition 3.3.5, the formul# is not required to be an atom. Indeed, by
demandingp to be atomic the completeness ofmM would be lost. For example, the set of
formulasW = {pUq,~(pUq)} would not be refutable, if the lab&l(n) of an inconsistent
noden should satisfyr [I1(n) or {y,-y} [II(n) such thaty [Rrop. In fact, using
the tableau rules there is no way to achieve such atomic gis@mcy. Howevert must be
inconsistentin order to achieve completeness. It is alsthwmting that a node labelled iy =
{pUdq, (=p) R (—-q)} (which is equivalent t&¥) is not inconsistent (in the sense of De nition
3.3.5). The set of formula® can be refuted by our tableau method, but using the (noniatom
inconsistency o{°((=p) R (=0q)), =>((=p) R (=q))}.

When a branch contains an inconsistent node we say thiatclosed Any closed branch is
trivially unsatis able. Branches that are not closed atid sabeopen However, open branches
are not necessarily satis able. In particular, an open tinazould be a pre x of a closed one.

3.3.4 Semantic Tableaux

The tableau rules given in Subsection 3.3.2, together \Witmbtion of consistent node (De -
nition 3.3.5), allow us to determine when a pre-tableau &lbdetiu. Along this subsectidn
stands for a pre-tableau férgiven by a tupl§Nodesn , L, B, R).

De nition 3.3.6. (Coherent pre-tableau) A pre-tableauT is coherent if and only if every
noden in a non-maximal branch iB is consistent and exactly one of the following items holds
for every branchh = ng, Ny, ..., Nj, Nj+1, ..., Nk andevenyi [{D,...,k—1}:

(1) L(ni+1) = A(a) LL{n;) \ {o} for somea LIXn;)

(2) There exist exactly one nod® [N \ {n;.1 } and one branch®= ng, n4, ..., n;, n°
such that for som@ [ILIn;) either

 L(ni+1) = B1(B) C(ni) \ {B} andL(n% = C(B, L(n;)) CL(n;) \ {B} or
* L(ni+1) = C(B, L(n;)) C(ni) \ {B} andL(n%) = B1(B) LL(n;) \ {B}
whereC(B, L(ni)) is B2(B) or B2(B, L(ni) \ {B}).
(3) L(Nni+1) = unnext(L(n;)).
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In items (1) and (3), every branch B with proper pre xng, nq, ..., n; must also have pre x
No, N1, ..., Nj, Nj+1, whereas in (2) every branch B with proper pre xng, n4, ..., n; has also
pre X Ng, N1, ..., Nj, Nj+1 Of pre X Ng, Ny, . .., N, N°

In a coherent pre-tableau branches whose last node is iistamsdo not accept more en-
largements or splittings. Every enlargement or splittihg branch corresponds to the applica-
tion of aTT™M-rule or theunnextoperator to its last node. The application ofanule enlarges
a branchng, ..., nj with a new noden;+; that includes, in the label, the constituents of the
treated formulan, but nota itself. So that, the application scheme for threules is

A

|
A, A(0)

wherea [LA. The application of $-rule splits a brancimg, . . ., n; with two new node®;+1
andn®in such a way that the label of one of the new nodes includesdhstituents irB1(B)
and the label of the other new node includes the constiturr®{3, A), whereC(p, A) is
eitherB,(B) or B2(B, A), but the treated formul@ is not included in the labels of the two new
nodes. So that, the application scheme forfikales is

A, B

A,Bi(B) A,C(B.A)

wherep [TA. The application of theinnextoperator enlarges a branop, . . ., n; with a new
noden;+1 whose label isinnext(L(n;)). The application scheme for thmnextoperator is

A

|
unnext(A)

In order to ensure when an open branch describes a model avwitlethe notions of stage,
cyclic branch, saturated set and ful lling branch.

If we can ensure that the number of different labels usederctinstruction of a coherent
pre-tableadl' is nite, then any in nite branch must contain in nitely mandifferent nodes
with the same label. In particular, when a repetition arises open branch

no,nl,...,nj 1,nj,...,nk
i.e. whenL(ng) = L(n; 1) forsomej [{1,...,k}, thenan in nite branch of the form
no,nl,...,nj 1,nj,...,nk,nj,...,nk,...

can be obtained. In fact, this will be a cyclic branch thattd nitely represented.

De nition 3.3.7. If b = ng, Ny, ..., Nk is an open branch such that(n,) = L(n; 1) for some
j 4,...,k}, thenbis cyclic and we de ne

cyclgb) =nj, Nj+a, ..., Nk
path(b) = ng, Ny, ..., N 1+ 0@, Nja1, ..., Nk

In other words, we consider that the implicit successortiefaonb is extended withy, Rn; .
If a (closed or open) brancbPis not cyclic therpath(b® = b°
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The last node whose label appears previously in the branch is intentipaalded to the
branch because this repetition is what we will use in theesyatic tableau for detecting the
loop (see Subsection 3.4.2).

Every branch (cyclic or not) of a coherent pre-tableau casdsn as divided intetages
according to the applications of the operatmnext In other words, a stage is a sequence of
consecutive nodes between two consecutive applicatiotireafperatounnext

De nition 3.3.8. Given a branchb, every maximal subsequenag, Ng+1, ..., Ny of path(b)
such thatL(n*) & unnext{(L(n- 1)) for every[(I {§ + 1,..., h}, is called astage The func-
tions rst andlastrespectively return the rstand the last node of a given stadye denote by
stagegbh) the sequence of all staged a branchb. The successor relation astagegb) is in-
duced by the successor relationjath(b). That is, ifs ands®are respectively stage®, . . ., n;
andnj, ..., n?in path(b) thensRs®wheneven; Rng. Hence, ib = ng, N, ..., N;j,...,Nkisa
cyclic branch such thatyclgb) = nj, nj+1, ..., Nk (@ndj = 1), thenstagegb) is a non-empty
nite sequence of stages, s1, ..., Sm such thatlast(s, )R rst (s;) for somez [{L,...,m}
and n belongs tocyclgb) for everyy [{z,...,m} and every node in sy. For such a
cyclic branchb, we respectively denote Byagegcyclgb)) and path(stagegb)) the sequences
S;,...,Sm andsg,...,S;, 1-&),...,Sm

The following example serves to illustrate the notionsstagesand path by means of a
sample branch.

Example 3.3.9. Consider a cyclic branch = ng, n1, ny, N3, Nng such thatL(ng) = L(Nny).
Then,path(b) = ng, Ny, Ny - [Ms, N4l Let us suppose thdt(ni) = unnext(L(ng)) and
L(ns) = unnexi{L(n3)). Then,stagegb) is formed by three stagessy; = [MphLIds; =
[0y, Ny, NngCAnd s, = [Ml, gL Therefore, the induced relatioR on stagegb) is given by
soRs1, s1Rs, ands;Rs,. Hence path(stagegb)) = so, s1 - [ShC1

With a slight abuse of notation, the labelling functibns extended from nodes to stages in
the natural way. That is, for any stagie

L(s) = [ L(n).

n2s

The general notion of ful liment is introduced at the end @&tc8on 2.2. Now we adapt such
notion to our tableau system.

De nition 3.3.10. LetS be a sequence of stagas[ Sland$ U ¢ [CLXs), we say thath U
is ful lled in S iff there existss® such thatsR s®andy [CI(sY. A sequenc& of stages is
ful lling iff for all s S everyd U Y [CL(s) is ful lled in S. A branchb is ful lling iff the
sequenc@ath(stagegb)) is ful lling.

The concept of ful lling branch together with the followirgpncept ofa3-saturated stage
is crucial for determining when branches are able to deseritmodel.

De nition 3.3.11. A stages is ap-saturatedf and only if for everyp [CILXS):
1. If ¢ is ana-formula thenA(¢) [CLAS)

2. If ¢ is aPB-formula thenB1(¢p) [LIS) or Bo(¢d) [LIs) or Bo(¢p,A) [CLIs), where
A =L(n) \{¢}for somen; [Skuchthath =xUy [CLKn;).
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Now, we give a suf cient condition to consider that an opearmh is (suf ciently) ex-
panded. Thatis, itis able to describe a collection of madHtss condition can be syntactically
checked. For the construction of systematic tableaux (sbseftion 3.4.2), we will re ne this
suf cient condition to a simpler one (see Remark 3.4.8).

De nition 3.3.12. An open branctb is expandedf and only ifb is ful lling, cyclic and each
stages [Csllagegb) is af3-saturated.

For example, an expanded branch of a coherent pre-tabledu fbp} can be formed by
the sequence of stages, s1,S2 whereL(sg) = {rUp,p} andL(s1) = L(sp) = [JAc-
tually that branch is ful lling, cyclic andaf-saturated, hence it is expanded. Also the se-
guence of stagesg, X1, X2, X3 whereL(Xg) = {rUp,r,=p,o(rUp)}, L(X1) = {rUp,p}
andL(x3) = L(x4) = [i$ an expanded branch. It is worth noting that expanded besnc
can be enlarged. For instance an expanded branch of a copeeetableau fo{ (rU p)}is
given by the sequence of staggsz, whereL(zg) = L(z1) ={ (rUp),e (rUp),ruUp,p}.

But the sequence of stages, z1, 2o, 23, 4 WhereL(zg) and L(z1) are as abovel_(z;) =
{ (rUp),e (rUp),rUp,r,=p,°(rUp)}, L(zz) = L(zp) andL(z4) = L(z») is an ex-
panded branch too.

Remark 3.3.13. Enlargement of expanded branches is used in Subsectichf8r4he system-
atic construction of tableaux in order to ensure the condian of ful lling branches without
checking directly whether a branch is ful lling (see Remark.8).

When constructing a tableau, only open branches (expandedneexpanded) can be en-
larged. A completely expanded tableau is constructed foidilgg if the original set of formu-
las is satis able or not, respectively depending on whethere is at least one expanded open
branch or all its branches are closed.

De nition 3.3.14. (Tableau) A tableaufor a set of formula$® is a coherent pre-tableau fab.
Anexpanded tableas a tableau where every maximal branch is either expandediozed. An
expanded tableau is open if it has at least one open maxinaaldbr, otherwise it is closed.

3.3.5 Examples of Tableaux

In this subsection, we give some examples of tableaux. Esukdu is showed by means of
a gure formed by a par(a) and a parib). The(a) part of the gure is a tree that contains
the sets of formulas that label each node of the tableau antb}ipart of the gure is a tree
that shows the rules applied at each step. For space reéise(a) and(b) part may appear in
the same gure or in different gures. For readability, wesalunderline the formula which the
TTM-rule is applied to. When thennextoperator is applied, we do not underline any formula.
In the nodes in which we apply the rl& ), or the rule( D2, we only underline the eventuality
to which the rule is applied. Branches with the m&tlare closed branches. In the last nodes of
closed branches, we underline the formulas that cause sigstency. However, when a node is
inconsistent for more than one reason, we only point out dtteeon. Note that, when a formula
is treated at a node of a stages, this formula does not appear in the label of any successor of
n that belongs to the stagg although it remains belonging to the labelsof Hence, already
treated formulas cannot be used to expand a branch againg(aatme stage). Additionally,

5 which is expanded.
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Figure 3.3:Closed tableau for the set of formulgsU F}
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Figure 3.4:Non-expanded tableau for the set of formufad) F}

since open expanded branches are cyclic, we mark the legharidternal repeated node with
the same superscript of the forfh wherei = 1.

Example 3.3.15.In Figure 3.3 a closed expanded tableau for the unsatis agteof formulas
{p U F}is showed.

Note that the rightmost branch consists of two stages, tieone is formed by the two
higher nodes. The remaining three nodes form the secone sfage branch.

The set of formulagp U F} also serves to show that by using only the r(l&); the ful-
[Iment of an eventuality can be inde nitely delayed. In pigular, the set of formulagp U F}
cannot betrTm-refuted without using the ruléU ), (see Figure 3.4). The rightmost branch,
namelyb, of the tableau in Figure 3.4 is cyclic and is made up of tw@etxy andx;. The
rst two nodes form the stagey and the third and second nodes form the stageTherefore
path(stagegb)) = X, - Xy [l Although the branclb is open and cyclic and each stage is
af-saturatedb is not an expanded branch because it is not ful Iling.

Example 3.3.16.In Figure 3.5 an open expanded tableau for the satis ablecfebrmulas
{p, ==p, =F U —p} is showed. The tableau has two closed branches and one exghana:n
branch, which is the central one. This open branch, whictevee refer to a$, describes a
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Figure 3.5:0pen expanded tableau for the set of formylasc—p, -FU —p}
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Figure 3.6:0pen expanded tableau for the set of formy{lagp Cr)}

collection of models. The rst statg of those models should make true the formulas labelling
the rst stage (let us sayp) of the branch which is formed by the rsttwo nodes. In parti,

p should be true at the rst stateg. The second stage, is given by the third and fourth
nodes of the branch, in particulasp should be true in the second stase)of such collection

of models. In fact, any in nite sequence of states pre xedhsse two statesy and sy, is

a model of the root of the tableau since the third and fourtilges of the branch, namekp

and x3, are given by the fth and sixth nodes that are labelled by ¢nepty set. Note that
path(stagegb)) = Xo, X1, X2 - X[l

Example 3.3.17.In Figure 3.6 we show an open expanded tableau for the sdile aet of
formulas{ (p [C@)}. This tableau has two expanded (open) brandhe®n the left) anc,
(on the right). Regarding the brandh, the rst three nodes form a stage and the fourth
node together with the second and third nodes form anotlagrest; and path(stagegb1)) =

Xo - Xt [l This open branch describes a collection of models. Thestate of those models
should make true the formulas labelling the rst stage andte other states should make true
the formulas labelling the second stage. In particygaghould be true in all the states of those
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Figure 3.7:0pen expanded tableau for the set of form{iasl q, [=d} (Part 1 of 2)

models. The case of the branichis symmetric with the difference thashould be true in all
the states of the models describedpy

Example 3.3.18.The tableau in Figure 3.7 is an open expanded tableau for dlis able set

of formulas{p U q, [=g}. Due to space reasons, tlfe) part of the tableau is in Figure 3.8.
Note that the derived rule§l)4 and (D2 —which are shown in Figure 3.2— are used. This
tableau has three expanded open branches describing tliffeestht collections of models. The
leftmost open branch, that here we refer tobas represents the class of models with a rst
state wherg and —q are true and a second state wheayés true. Inb; the rst three nodes
form a stage, let us saxp, the fourth and fth nodes form a stage, and the sixth and seventh
nodes form, respectively, stages and x3. Since the cycle df; is formed by the seventh
node, path(stagegb1)) = Xo, X1, X2 - X[l In the rst state of the models represented by
the central open branchy, the propositional variablg is true, whereas in the second one
holds. As in the branchy, in the branch, we can differentiate four stages, namelly. . ., ys,
and the cycle is formed by the last node of the branch. Theestags formed by the last
node of the branch angath(stagegb,)) = vo,V1,Y2 - L1 Finally, the rightmost open
branch, b3, represents models whose rst three states respectivekertraie the literalg, g
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Figure 3.8:0pen expanded tableau for the set of form{iasl q, [=d} (Part 2 of 2)

and-q. In the branchbs, the four applications of theannext operator give rise to ve stages,
Zo, ..., Z4. The cycle obs, as well as the stage,, are formed by the last node of the branch
andpath(stagegbs)) = zo, 71, 22, z3 - [Z4[1

3.4 Soundness and Completeness Dfm

In this section we rst adapt, to the eld of tableau methottee notions of soundness, refuta-
tional completeness and completeness introduced in $e&80 Then, we prove that the tableau
systemTT™ is sound, refutationally complete and also complete.

A tableau method isoundf, whenever a closed tableau exists fgrthen® is unsatis able.
A tableau method isefutationally completéf, whenever® is unsatis able, a closed tableau for
® can be constructed. Therefore, a sound and refutatioraiiyptete tableau method guarantees
that, given a set of formula®, a refutation (i.e. a closed tableau) is obtained if and drtlye
set® is unsatis able. A tableau method mompleteif both satis ability and unsatis ability
are decidable. However, soundness and refutational coemges do not guarantee that for
satis able sets of formulas such satis ability is decidablA termination proof is additionally
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required in order to prove completeness.

Subsection 3.4.1 is devoted to soundness. In Subsectidhw@edntroduce an algorithm for

the construction of systematic tableaux together with thecepts and results that the algorithm
and its correctness give rise to. In particular, we dischestthe analytic superformula property
and present our notion of closure, which serves to proofttiatlgorithm terminates for any
nite set of formulas. The worst case complexity is also bEthed. In Subsection 3.4.3 we
give some examples of systematic tableaux. In Subsectiba ®e prove the completeness of
TTM, by proving, as a rst step, its refutational completendssSubsection 3.4.5 we provide a
practical improvement of the rufgJ ),.

3.4.1 Soundness

In this section we rst show that therm-rules preserve equisatis ability (De nition 2.2.2) and
that theunnextoperator preserves satis ability. Then, soundness isgatdn Theorem 3.4.2.

The soundness of a system can be guaranteed rule by rulese whele is sound whenever
it preserves the satis ability.

Lemma 3.4.1. For every set of formula®, anya-formulay and anypB-formulax:

1. ® [y} is satis ableiff® CAly) is satis able
2. © A} is satis able iff® [BL(x) or ® [BL(X) or ® [Bh(X, P) is satis able.

3. If @ is satis able therunnext(®) is satis able.

Proof. The case of the rul€U ), is proved by using Proposition 3.3.3. The remaining cases
are straightforwardly proved by using the semantics of tmectives and the operatamnext,
presented in Section 2.2, and De nition 3.3.4. n

Hence, soundness can be proved.

Theorem 3.4.2.1f there exists a closed expanded tableauddhen® is unsatis able.

Proof. Let T be a closed expanded tableau for The set of formulas labelling each leaf is
inconsistent and therefore unsatis able. Then, by Lemmadl3each node il is labelled with
an unsatis able set of formulas, in particular the root. fdiere® is unsatis able. n

3.4.2 Systematic Tableaux

In this subsection we provide an algorithm for systemadlijdaliilding an expanded tableau.
We also study the main properties that our systematic tatdatis es and we proof that the
algorithm terminates for any set of formulas given as input.

Unlike in complete tableau methods for propositional dtzddogic, the nondeterministic
application of thertm-rules and thainnext operator does guarantee neither refutational com-
pleteness nor completeness. In order to guarantee refiughtiompleteness and completeness
we provide an algorithm that, given a set of formudasconstructs an expanded tableaudor
that we denote by . The tablead will be closed if® is unsatis able and open otherwise.

The systematic tableau algorithm is depicted by a whilegmam in Figure 3.9. The system-
atic tableau construction provides a proof search proesfturautomated deduction.
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Input: A nite set of formulas®
Output: An expanded tableali = (Nodesn ,L,B,R) for ®

1 Nodes:={n }; L:={(n ,®)}; B:={n }; R:= Celfun:={(n , D}
2 while unmarkedbranche¢B) & [lbop
3 choosey [Cuhmarkedbranche¢B)

4 ny := last.nodgb);

5 if selfun(ny) = [Cihen fair_selecth, T , selfun end if

6 if L(nk) \ selfun(ny) is not elementary

7 then choosey [LIng) \ selfun(ny)

8 nonselectexpandy, b, T , selfun

9 else ifselfur(ng) is neither empty nor elementary

10 then selectexpandb, T , selfun

1 else{L(ny) is elementary unnextexpandb, T , selfun)
12 end if

13 endloop

Figure 3.9:Systematic Tableau Algorithm

The construction of  consists in a systematic extension of branches usimyrules for
decomposingx- and B-formulas into their constituents. When the current stdge rfition
3.3.8) becomesif3-saturated (De nition 3.3.11), and consequently, theand 3-rules cannot
be applied, the operatamnext (De nition 3.3.4) is used to jump to a new stage. Regarding
the use of the rule§U ); and(U ),, a speci c strategy is followed. During the construction of
each stage, one eventuality —if there is any—is xed as safe@igure 3.9, line Sair_selec).
Then thetT™m-rules (excepti( U ),) are nondeterministically applied until we obtain a set of
formulas where every formula, except the selected eveahtui elementary (see Subsection
2.1). However, at each iteration step only one formula issenqFigure 3.9, line 7) for apply-
ing the corresponding rule (Figure 3.9, linen®nselectexpand and, consequently, in general
several iteration steps are needed to obtain a set wheretlmmlgelected eventuality is non-
elementary. At that point, the rulgl ), is applied to the selected eventuality (Figure 3.9, line
10, selectexpand, if there is any (what is checked in line 9). Whéb ), is applied, new
non-elementary formulas may appear. Consequentlyrtierules (excep{U ),) are nonde-
terministically applied again until we obtain an elementset of formulas. Note that again,
in general, several iteration steps will be needed to olatainlementary set. The construction
of a stage stops if an inconsistent node (De nition 3.3.%bsained because the corresponding
branch is marked as closed and only unmarked branches asigleced for further enlargements
or splittings (Figure 3.9, line ynmarkedbranche}. If all the nodes of the stage we are con-
structing are consistent and the label of the last node oftdge is elementary, then the operator
unnextis applied (line 11unnextexpand and the construction of the next stage begins.

When, during the construction of a stage, the (We), is applied to the selected eventuality
¢ U Y with contextAg, the branch is split into two branches, let us Bayandb,. The label of
the last node in the brandh is Ag [P} and the eventualitgp U U is ful lled in this branch.
Therefore it represents an attempt to makédrue in this state. Howeveh; could still be
the pre x of a closed branch. If following the enlargementbafthe next stage is created,
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i.e., if the branch does not close before applying the opetatnext, another eventuality must
be selected, if there is any available eventuality. Thellab¢he last node in the brandh

is Ag o, U, o((¢ =) U Y)}. Therefore, in the branchy, the ful llment of ¢ U Y is
postponed, but in the next stage, if the next stage is cretliedeventualit(d =) U Y

will be necessarily the selected one. In other words, tha ideo select an eventualityU ()

and to apply( U ), only to ¢ U ¢ and to the eventualities generated from it in the branch &her
the inclusion ofy, i.e., the ful liIment of ¢ U Y is postponed. The eventualities generated from
¢ U  can be described as follows:

(¢ (=) U Y (¢ (=g (=) U Y e (0 =N (= L) =) Uy

where4; is the context at the moment of applyi ), to (¢ (=g [(=4\; C1 =4\ 1) U .
Those eventualities are generated in different (consesjgtages.

Since new eventualities are built up during the process, wstmuarantee termination.
Classical propositional tableaux satisfy thébformula propertySP):

For every formulap used in the construction of any tableau farthere exists some
formulay such that} is a (possibly negated) subformulayaf

This property ensures the termination of the constructioany tableau for a ( nite) set of
formulas. Most tableau systems for modal and temporal $dgdl to satisfy the SP, since some
of their rules introduce formulas that are not subformulashe principal formula of the rule.
Hence, termination of modal/temporal tableaux is not obsidHowever, most tableau systems
for modal and temporal logics, satisfy thralytic superformula propertfASP):

For every nite set of formulasp, there exists a nite set that contains all the for-
mulas that may occur in any tableau fbr

Such set is usually called the closuredaf The ASP also ensures the non-existence of in nite
branches where all the nodes have different labels. Hegamriirolling loops, the niteness of
proof search can be ensured. In our case, as a consequersiagthe rulg(U )., the tableau
systemTTM™ fails to satisfy the ASP. However,Tm satis es a slightly weaker variant that is
enough for ensuring completeness and that we callwbak analytic superformula property
(WASP):

For every nite set of formulasp, there exists a nite set that contains all the for-
mulas that may occur in arsystematic tableafor @.

Our algorithm (Figure 3.9) constructs a systematic tableafor any ® such thatrtm satis es
the WASP with respect to the sdb(®) (closure ofd) (see De nition 3.4.9).

In order to satisfy the WASP, the algorithm keeps at most etected formula to which the
rule (U ), can be applied and when a new eventuality is generated intage, by using U )-,
that new eventuality is the selected eventuality in the séxge. In this way, when the rule
(U). is applied with contextA;,, the eventualities previously built by usifdy ), are never in
/. Consequently there are only a nite number of differenttesits and this leads to the fact
that after a nite process it must happen that when the ¢ul§, is applied to the set

A o (=0 =0 01 =1 1)U g}

the contextd is equal to some&; with j [{D,...,i— 1}. In such a case, the new set of
formulas that corresponds to the branch that postponesithemént of ¢ U g is
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A o T3 =0 T =5 1, Y, o((d (20 (=N O =1 1 =) U )}

and a contradiction is generated fraly and—-4Ay [(=\; 1. =\, 1. This ensures that
the branch where the ful llment ap U U is always postponed will eventually close. Regarding
the branch that does not postpone the ful llmentof |, the new set i€\; [({P} and it does
not contain any eventuality generated by the iUle), and there are only nite different sets
of this kind, so repeated labels, that give rise to cyclesstmecessarily appear after a nite
number of tableau expansion steps. This strategy guamttiaea nite amount of steps is
suf cient to decide whether the selected eventuality cariubdied or not. If the eventuality
cannot be ful lled, the corresponding branches close. & éwentuality can be ful lled, when
the eventuality is ful lled another eventuality is seledt@nd the process goes on. This selection
must be done in a fair manner, i.e., an eventuality that fromes stage onwards appears as
an eligible eventuality whenever an eventuality must beaet, cannot remain inde nitely
unselected. For handling selected formulas the algoritbes a selection functiaelfun Along

the construction of the systematic tableau, the fundfunassociates to every nodeone of
the following three possible sets of formulas:

1. the empty set
2. anon-elementary singleton of the fofth U ¢}
3. an elementary singleton of the fodm(¢ U Y)}.

The case 1 means that no until-formula is selected. Iseffunyields the set containing the
selected until-formula to whictiU ), will be applied in the current stage. The case 3 happens
for every noden of a stages that has been created after the applicatiofldd, in a noden® s1
and in which the ful liment of the eventuality iselfun(n% has been postponed. Therefore, case
3 means that(¢p U ) is the formula that has been obtained by applying the g, to a
formulax U ¢ Csélfun(n9 and that in the next stagieU ¢ will be the selected eventuality. At
the beginningselfunassociates the empty set to the initial node.

In order to construck , our algorithm nondeterministically chooses, at each, stepaximal
branch to be extended. The algorithm ends when every madimaalch is marked either as
closed or as expanded.

The procedurainmarkedbranchesyields the maximal branches that are not marked yet.
For extending the chosen branch, the algorithm uses thoeeegures. First, a procedunen
selectexpandthat applies the correspondimgm-rule, excepting U )», to a formula that has
been nondeterministically chosen from the set of non-sedormulas in the last nodeof the
branch, i.e., from the s&t(n) \ selfur(n). Second, when therm-rules other thaifU ), cannot
be further applied, the procedwselectexpandapplies the rul¢ U ), to the until-formula that is
selectedby the functionselfun if there is some. The proceduiiar_selectupdates the function
selfunusing a fair strategy. Third, when the node is labelled by lamentary set, then the
operatorunnextis applied using the procedutmnextexpand Let us give a more detailed
explanation of all the procedures used by the algorithm.

last. nodg(b) gives the last node added to a given bramch

nonselectexpandy, b, T , selfur) applies to the branchthe a- or 3-rule (exceptingd U )»)
that corresponds to the formula In both cases, the formula selected by the function
selfunis preserved. That s, fory = lastnodgb):
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- If y is ana-formula, create a new nodgeand a new branch’ = b - n according to
the corresponding-rule such that.(n) = (L(nk) \{y}) CAly) and extendelfun
andR to beselfun(n) = selfun(nk) andngRn.

« If y is a (non-selected}-formula, create two new noded andn®and two new
branche$®= b - n"°andb®= b - n%according to the correspondifigrule such that

L(n% = (L(nk)\{y}) Bl(y)andL(n® = (L(nk)\{y}) CBh(y). Extendselfun
andR to beselfur(n® = selfur(ny), selfur(n®y = selfun(ny) andn,RN° n RN

selectexpandb, T , selfur) applies the rulé U ), to an until-formulap U U that is selected by
the functiorselfun The functiorselfunyields the empty set for the new node that contains
 since the until-formula has been ful lled. In the other beahnthe new selected formula
ise((¢ (=) U ). That is, forng = last.nodgb):

Let selfur(ny) = {¢ U Y}. Create two new nodes’ andn®and two new branches
b%=b-nandb®= b-n%such that_(n% = (L(nx) \{$ U ¢}) P} andL(n®§ =
L) \{oUy}) P, —, o((¢ LIA)U )} whereA = L(n) \ {dpU y}.
ExtendselfunandR to beselfun(n® = C3elfur(n®y = {~((¢ =) U )} and
nkRN% ngRN%

unnextexpandb, T , selfun) creates a new node and a new branch® = b - n such that
L(n) = unnext(L(nk)) and extendselfunandR to beselfun(n) = unnext(selfunny))
andngRn whereny, = last.nodgb).

unmarkedbranche$¢B) returns the set of unmarked maximal branches in a given §eaothes
B.

fair_selectb, T , selfur) selects an until-formula, if there is some in the last nodk. of hat
is, for nx = lastnodg(b), wheneverselfunny) = [@ndL(nk) contains at least one
until-formula, it updateselfun(ny) with a singleton{¢ U U} such thath U ¢ [CLI(ny).
Otherwise selfun(ng) remains the empty set. If the node contains more than onk unti
formula, the selection performed Wgir_selecton L(nyx) should befair, in the sense
that no until-formula that from some stage onwards appesanaeligible eventuality
whenever an eventuality must be selected, could remairsetatted inde nitely.

Let us give some useful results about the systematic talle#hat this algorithm constructs
for any set of formula$.

Proposition 3.4.3.1If {¢, ¢} [L{s) for some stagein a branchb of T , then every maximal
branch ofT pre xed byb is closed.

Proof. By structural induction onp. It is easy to see that the applicationTafv-rules to two
complementary formulas that belong to the same stage, luteuessarily to the same node,
should generate complementary constituents until theyrdodthe same node or, at most, they
become elementary. "

Inthe next propositionwe show that non-satis ed unseketeentualities are keptin branches
at least until they are ful lled or they become selected.
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Proposition 3.4.4. Letb be a branch of T , andsg, s1,S», . . ., Sk be any initial subsequence
of path(stagegb)). If the setL(last(sy)) is elementary, angpU ¢ [II(s;) for somei [
{0,...,k}, andd U ¢ is not selected in the sequerse. . ., sk, andy [TLO(s;) 1. CI{sk),
then{¢, -y, o(¢ U p)} [I{s;j)forall j C{d,...,k}.

Proof. By the construction off , since non-selected eventualities are handled by proeedur
nornselectexpandusing the rulg U ); . "

It is worth noting that in the above Proposition 3.4.4, thguieement ofL(last(sk)) be-
ing elementary is necessary. In order to illustrate thig, @t us consider the set of formulas
{pUg, (pUQ),ruv, (ruv)}andthebranch= ng,ny, ny such that

L(no) ={pUq, (pUq),ruv, (ruv)}
L(ny) ={pUqg,° (pUq),ruv, (ruv)}
L(nz) ={pUqg,° (pUq),ruv,e (ruv)}

where, additionallyselfun(ng) = selfur(n;) = selfun(n,) = {pU q}. The branctb contains
only one stagsy = ng, Ny, N2 andL(ny) is non-elementary. For the sequence of stages
holds thatr U v [CIXsg), r U v is not selected isg andv [I1Xsg). However{r, =v, o(r U v)}
is not a subset df (sg).

Next, we give a more detailed description of the syntactimfof the formulas appearing
in sequences of stages where a selected eventuality reonafiidled. Under that proviso, at
each stage, there is exactly one selected eventuality axtdlgone node to which the procedure
selectexpandis applied. We also call this node teelected nodef that stage. The fact that, at
each stage, there is exactly one selected eventuality axdlgone node to which the procedure
selectexpandis applied, is crucial for de ning the notion of closure witspect to whichrT™m
satis es the WASP. We rst de ne some auxiliary sets of sulmdasuper-formulas of a given
set of formulasd. Let sf(®) denote the set of all the subformulas of the formulagiand
their negations. Then, the preclosuredgfprecld®), is the set of formulas that extensf§d)
with all the superformulas that are generated ff(®) by means of all theTm-rules with the
exception of the rul€ U ),. That is

preclq®) = sf(®) L H(¢U ), ~o(dU W), >~(¢U ) [ dU Y Lsk(®)}
L X{o=¢ | ~=¢ LsH(®)}.

Note thatprecld @) cannot be used as closure only because it does not captugegldor-
mulas generated by the application of the rl&),. In order to capture these superformulas,
we de ne the following set of conjunctions of negated comgex

conj#) = { | ¢ | ¢UyY Lsi(®)} [neget(P)}
wherenegct(®) = {-A | A Cpreclq®)}

That is,negct(®) is the set of all possibleegated contextandconj(®) is formed by all the
possible conjunctions of formulas megct(®) and the left-hand side subformulas of all the
until-formulas insf(®). In particular,F [Cnkgct(P) andr, =F [Ccbnj(P), sincer and—-F are
respectively the disjunction and the conjunction of the gmspt of formulas. Note also that, by
de nition, in the conjunctions o€onj(®) every element ohegct(®) occurs at most once.

5 The branch could be cyclic or not, so th@ath(stages(b)) could respectively be in nite or nite.
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Proposition 3.4.5. Letb be a brancRof T , letsg, S1, Sp, . . ., Sk be any initial subsequence of
path(stagegb)) and¢ U ¢ [si(®P) such thai is the least natural number such treslfur(n) =
{dU U} for somen [sg. If the label of the last node df is an elementary set angl 11

L(si) [ CL{sk), then for all CT{O, ... k —i}:
{6, P, >+ UP)} CLysi+)

Y,
wheredg = ¢ andoé-4; = & [xlfor somex [Cnkgct(®). Moreover, ifs = I for somel”
such thaty [Tlthen every maximal branch ©f pre xed bysy, ..., S+ is closed.

Proof. Since the label of the last nodelois elementary, we can ensure, by De nition 3.3.8, that
no node of belongs to two different stages. Consequently, if a stagavithh [, ..., k},
contains a noden such thatselfur(m) is a singleton formed by an eventuality of the form
Y1 U gy, then, by construction df , s, also contains a noda®(generated later tham) whose
label has been obtained by application of the ulg),.

On one hand, the procedwselectexpandyields two branches such that each branch either
contains{d-, =, =(6-+1 U Y)} or containgp. Note that, by construction af , if selfur(n) =
{=(8+1 U )} for somen L[S}, -, thenselfur(n® = {&-+1 U Y} for the rst noden® S} .1,
for all CI{D, ...,k —i—1}. Thereforepo = ¢ and forallj > 0: §; =9; 1 [=K\; 1 where
-/ 1 [nkget(®) and4 1 is the contextL(n) \ selfur(n) of the selected node of the
stagesi+j 1. Hence, by induction o, ® [cbnj(®) holds for allCT{0, ...,k —i}.

On the other hand, sin\g(e is the negation of the context of the selected nodé 9] -,
if 41 = 6 [dandd = T for somel such thaty [, then every branch pre xed by
So, ..., Si+* contains at the same stage (possibly at different nofdes)y} for some formula
y. Hence, by Proposition 3.4.3, every maximal branch pre kgdo, ..., Sj+  isclosed. =

It is worth noting that if in the above Proposition 3.4.5 tlabél of the last node of the
branchb is non-elementary, then the result is not guaranteed. leraaillustrate this fact,
let us consider the set of formuldpUqg,> (pUq),rUv,e (ruv)} and the branch =
Ng, N1, N2, N3, N4, N5 such that

L(no) ={pUq,° (pUq),ruv,e (ruv)}

L(ny) ={pUqg,° (pUq),r,v,o(ruv),~ (ruv)}
L(n2) ={g,° (pUQ),r,=v,o(ruv),e (ruv)}
L(ns) ={ (pUq),ruv, (ruv)}

L(ng) ={ (pUqg),ruv,e (ruv)}

L(ns) ={pUqg,° (pUq),ruv,e (ruv)}

where, additionallyselfur(ng) = selfur(ni) = {pU g}, selfu(n,) = [@Andselfun(ng) =

selfur(ns) = selfur(ns) = {r U v}. The branctb gives rise to two stages = ng, Ny, N, and
S1 = nNng, N4, Ns, N1, No. If we consider the sequence of stagesit holds thatselfun(nz) =

{rU v} andv [Il(s1). However,L(s1) does not contain the formukg(d; U v) mentioned in
Proposition 3.4.5.

Corollary 3.4.6. If b is a cyclic branch off and the label of the last node bis elementary,
then every selected eventualitybiis ful lled.
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Proof. By Proposition 3.4.5 since, whenever there is an unful |klected eventuality in a
branch, the presence of the formutasnakes impossible the existence of a loop. "

Itis trivial, by construction, that every stage in a cycliabch ofT is af3-saturated. Hence,
by Proposition 3.4.4 and Corollary 3.4.6, we can re ne thécgnt conditions for being an
expanded branch df (see De nition 3.3.12) as follows

Proposition 3.4.7. Letbh be an open branch af , if b satis es the following three conditions:
(i) bis cyclic

(ii) for every eventuality [preclq®) such thaty LK rst (s)) for all s [slagegcycldb)),
there exists som& [Cslagegcyclgb)) such thasselfur( rst (s9) = {y}

(i) the label of the last node bfis elementary
thenb is an expanded branch.

Proof. By Proposition 3.4.4, non-selected unful lled eventuaktare preserved from one stage
to its successor. In addition, by Corollary 3.4.6, everyestdd eventuality in a cyclic branch
whose last node is labelled by an elementary set, is ful.lléténce, by condition (ii), every
eventuality fromprecld®) that occurs inL( rst (s)) for everys [Cstagegcyclgb)) should be
selected (at least) once and, hence, should be ful lled. n

Consequently, we use the three conditions in Propositibi7 30 re ne the implementation
of the procedurenmarkedbranches

Remark 3.4.8. Whenever a branch satis es conditions (i), (ii) and (iii) of Proposition 3.4,
the procedurainmarkedbranchesconsiderd to be marked as expanded.

Note that a branch can satisfy the conditions stated in D®ni3.3.12 without satisfy-
ing conditions (i), (ii) and (iii) of Proposition 3.4.7. Thimeans that sometimes the sys-
tematic algorithm does not detect that a branch is alreagareked and goes on extending
it until conditions (i), (i) and (iii) of Proposition 3.4.are satis ed. For example, an ex-
panded branch forthesgiUq,> (pUq),rUv,= (rUv)}isgivenbythe sequence of nodes
b = ng, n1, Ny, N3, N4, N5 such that

L(no) ={pUq,° (pUq),ruv,e (ruv)}
L(ny) ={pUqg,° (pUq),v,° (ruv)}
L(n2) ={q,° (pUq),v,> (rUuv)}
L(ns) ={ (pUq), (ruv)}

L(ng) ={ (pUqg),ruv,e (ruv)}
L(ns) ={pUqg,° (pUq),ruv,e (ruv)}

whereselfur(ng) = selfun(ny) = {pU q}, selfun(n,) = selfunnz) = [Candselfunng) =
selfur(ns) = {rUv}. The branchb gives rise to two stagesy = ng,ni, Ny ands; =
Nz, N4, Ns, N1, Na. The branch is cyclic, ful lling and the stages arei-saturated. Conse-
guently,b satis es the conditions in De nition 3.3.12, btdoes not satisfy condition (iii) in
Proposition 3.4.7 and consequently the algorithm has targalthe branch. For instance, the
systematic algorithm can build the brarthng, n;7 such that
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L(ne) ={g,° (pUq),ruv,o (ruv)}
L(n7) ={g,° (pUQ),v,° (ruv)}

andselfun(ng) = {rU v} andselfur(ny) = [The stages of the branth ng, ny arexg =
No, N1, N> andXy, = Nz, Na, Ns, Ng, N7, additionally,path(stagegb)) = Xo - X4 1. The branch
b - ng, N7 satis es conditions (i), (ii) and (iii) in Proposition 3.4.

By Corollary 3.4.6 and Remark 3.4.8TMm satis es the WASP with respect to the following
notion of closure.

De nition 3.4.9. Let ® be a set of formulas. The closure®f clo(®), is the following set of
formulas:

clo(®) = precld®) [Lcanj(P)
where

Q={(y: D)UY, o((y1 ) UY) | $U ¢ Lsi(®) andyy,y2 Lconj(P)}

Since in the systematic tableaux the formulas of the form
o((¢ (=N [(=N; 1. =) UY)

built up by using the rul€ U ), can only contain one repetition of a negated context, iigces
there can only exist at most two valuggndh such thatl < g < h < k and-Ag = -Ay,

y1 andy, are enough to represent such possible repetition of a riegateext. In other words,
L(n) [C<cIb(®) holds for all noden in T , by Corollary 3.4.6 and Remark 3.4.8. In addition,
the closure set of a nite set of formulas is nite.

Proposition 3.4.10.1f @ is a nite set of formulas, thenlo(®) is also nite.

Proof. It is easy to see that, [preclq®)| = n then|negct(®)| [A(2"). As a consequence
|conj(®)|, |clo(®)| COI(2°¢Y). .

The above results jointly with the fairnessfafr_select allows us to ensure that the algo-
rithm in Figure 3.9 nitely computes an expanded tabl@aufor any input®.

Lemma 3.4.11. The algorithm in Figure 3.9, for any inpdt, stops leaving ifT an expanded
tableau.

Proof. By Konig's lemma, the only possibility for in nite iteratin would be the in nite expan-
sion of (at least) one branch, namaly By Propositions 3.4.5, 3.4.7 and 3.4.10, the branch
b should contain an eventuality that is never selected, wharttradicts the fairness of the
fair_selectprocedure. "

Note that the use of a fair strategy for selecting the evdititegin each branch of the tableau
is essential for proving that the algorithm in Figure 3.9sheés.

We would like to remark that previous tableau method$XofL, with the exception of the
one-pass proposal of [117], for obtaining a model of a satite set of formulas (when deciding
satis ability) should generate the whole graph of poss#iiges and all the successive tableaux
required for constructing this graph. However, we can useld rst strategy and, as soon
as a branch is marked expanded, the algorithm could stopdingva model for the original
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Figure 3.10:Systematic closed tableau for the set of formy{las F}

set of formulas. It is also worth noting that in the tablealcwlas introduced by Schwendi-
mann in [117], the ful liment of eventualities may dependmiore than one cyclic branch, and
consequently, unlike imTm, a fully expanded cyclic branch may not yield a model by ftsel

3.4.3 Examples of Systematic Tableaux

In this subsection, we give four expanded tableaux built fipgithe systematic tableau algo-
rithm in Figure 3.9. In order to show each tableau we folloeszsdhme notation as in Subsection
3.3.5. The only difference is that in the systematic tabteaue also manage the selection func-
tion selfun So that, the formulas selected by the functetfunappear between the quotation
marks “ and ”. When in a node of ti{@) part there is a formulg between the quotation marks
“and”, i.e. “X”, that means that the value sélfunfor such node i{x}. If a node does not
contain any formula between the quotation marks, then theeaf selfunfor such node id.1

In the rst two examples we provide the systematic expan@ddetux that correspond to
the tableaux showed in Example 3.3.15 (Figure 3.3) and Ela#B.16 (Figure 3.5) in Section
3.3.5.

Example 3.4.12.In Figure 3.10 the systematic expanded tableau for the ismahte set of
formulas{p U F} is showed. This tableau is closed.

By following the algorithm for systematic tableau constiae, the only available eventu-
ality, pU F, is selected. Hence the value of the selection funa@funfor the rst node is
{pU F}. Then theB-rule (U ), is applied to the formula U F with the empty set of formulas
as context. The application ¢t ), splits the branch into two branches. The branch on the left
is closed because the label of its last node containBor the branch on the right, the label of
the new node contains the new formalg@p [E) U F). The formular that appears on the left
hand-side of the formula((p [CE) U F) corresponds to the negation of the empty set of formu-
las. The value of the selection functiselfunfor this second node in the branch on the right
is{=(pU F)}. Since the label is elementary, the operatonextis applied in order to jump to
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Figure 3.11:Systematic expanded tableau for the set of form{ias-p, -FU —p}

the next state. The value of the selection funcselfunfor the new node (the third one in this
branch) is{(p CE) U F}. By applying the rul€ U ),, the branch is split into a closed branch
on the left and a branch with a new node whose label contam$atimulac((p CEICE) U F).
The second from the left, in the formula((p CE1[E) U F), corresponds to the negation of
the empty set of formulas, which was the context in this skapplication of the rulg U ),.
Finally by applying thex-rule ( Db the formulgp [E]) an inconsistent node is generated.

It is worth noting that in the construction of the tableau ilg&re 3.3 the ruleg U ), and
(U), are used whereas the systematic tableau in Figure 3.10 data@sclude any application
of the rule(U ).

Example 3.4.13.In Figure 3.11 we provide the systematic expanded tableatnéosatis able
set of formulag[p, °=p, =FU —=p}. In the rst application of the rule(U),, the context is
{p, e=p} and in the second application of the ru{&) ),, the context i—-p}. The negations
of these two sets of formulas are used to generate, respigtihe formulas ((-F C=(p [
°o=p)) U p) ande((—-F C=(p [=hp) [=hp) U p) obtained by means of the two applications
of the rule(U),. The central open branch represents the collection of nsdeplained in
Example 3.3.16.

Note that the formula-F U —p can also be expressed hsb.
The next two examples are related to the induction on times&rexamples illustrate the
use of both the derived ruld)J in Figure 3.2 and the ruleU ), in Figure 3.1.

Example 3.4.14.In Figure 3.12 and Figure 3.13 we depict a systematic cloabteaiu for the

setd = {p, (—p [=p), [=b}. The subsek = {p, (—-p [=p)} states, by means of{pe So-
calledinduction on timethat p holds. Hence is unsatis able. Note that the formula =
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Figure 3.12.Systematic closed tableau ffp, (—p [=b), [=h} by using(Dzland(U ), (Part 1 of 2)



3. Dual Systems of Tableaux and Sequents$forL 41

(b) (|)
(D
N
# (D2l
TN
# ("|")
unnext
|
(|)
(D
/\
#  (U)

N
# ()

|
=D
PN
# (-DJ
P
H H#

Figure 3.13Systematic closed tableau ffp, (—p [=b), [=h} by using(Dzland(U ), (Part 2 of 2)

is an invariant that contradicts the eventualifydp. The sets of formulas that label the nodes
appear in Figure 3.12 whereas the rules applied at each spgyear in Figure 3.13.

The algorithm for systematic tableau construction, rdests the only available eventuality
[=p. So the value of the selection functisglfunfor the rst node is{ [ =p}. Then thea-rule
( ) is applied to the formula (-p [=p) enlarging the branch with a new node (the second
one). In the second node, tBerule ( Dbk applied to the formulasp [ep and two new nodes
are generated. The one on the left is inconsistent and itlyial closed branch. In the one
on the right every formula, with the exception of the setbeteentuality, is elementary and
consequently the ruleU ), is applied to[=b with context\g = {p, °p, > (=p [=p)}. The
application of the rulg( U ), splits the brach by creating two new nodes. The one on thisleft
inconsistent and gives rise to another closed branch. Ferrtew node on the right, the new
value of the selection functiaelfunis {<((—=Ag) U p)}. Since the set that labels the node on
the right is non-elementary —because of the formutep— thea-rule (=-) is applied and a
new node with elementary label is obtained. Consequeh#ypperatorunnextis applied and
the branch is enlarged with a new node. The value of the sefefitnctionselfunfor this node
is {(=Ap) U —p}. The following two steps are like the two initial steps,,itbe a-rule ( )
enlarges the branch and tigerule ( D dplits the enlarged branch giving rise to a closed branch
and a branch where only the selected eventudltf\g) U —p is non-elementary. So the latter
branch is split again by applying the ru(eJ ), with contextA; = Ag. The node in the left is
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Figure 3.14Non-systematic and non-expanded open tableafifor (-p [=p), [=p}

inconsistent and the branch is closed. The label of the nodé®right is non-elementary and
the value of the selection functi@elfunis {=((-A¢ [=A;) U p)}. Moreover, the repetition
of the context, i.eA; = Ay, leads to inconsistency since the label of this node costthia
formulas{p, °p, ey, =(p C=fd C=1))}. Firstthe branch is enlarged by means of the rale and
nally, two consecutive applications of thgrule (- Dproduce three closed branches.

It is worth noting that by using only the rulgU )1, the ful Iment of an eventuality can
be inde nitely delayed. As shown in Figure 3.14, the®et {p, (—p [=p), [=b} cannot
be TT™M-refuted without using the ruled)Jd and (U ),. In the third branch from the left, we
obtain the initial set after applying the operatonnext Although the branch is cyclic, it is not
ful lling, so it is not expanded. If the rule6l)d and (U ), are not properly used as shown in
Figure 3.12 and Figure 3.13, the process will give rise to amite branch. Obviously, this
derivation does not follow the algorithm for systematidésn construction.

Example 3.4.15.1n Figure 3.15 we depict a systematic expanded tableau ®s#tis able set
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Figure 3.15Systematic expanded tableau {@, (—p [=p), Lp} obtained by using ).l
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W ={p, (-p Cep), [p}. The tableau is formed by four branches. Three of them aedo
and one is open (the third one from the left). The open bralethys call ith, contains seven
nodes, so that, it is of the formy, ..., ng whereL(n3) = L(ng). The branchy is cyclic, the
label of its last node is elementary and in the cycle therenareventualities, hence the suf cient
conditions for the algorithm to mark it as an expanded brahotd. We mark the leaf dfand
the internal repeated node with the supersciiBt This open branch is formed by two stages
Xo = No, N1, N2, N3 andXy = Ng, N5, Ng andpath(b) = X, - X4 (Iwhich describes a model in
whichp is true in every state becaupel 11xq) andp [IXX1).

3.4.4 Completeness

In this subsection we prove the refutational completenéssa by showing that if® is satis-
able then we can associate to any expanded brénahthe systematic tableau fdr a cyclic
PLTL-structureGy, that yields a model ob.

De nition 3.4.16. For any expanded brandh we de ne thePLTL-structureG, = (Sg,, Vg,)
such thalSg, = path(stagegb)) andVg,(s) = {p | p CIs) andp [Prop}.

Note that termination of the systematic tableau constads guaranteed by the niteness
of the closure (see Proposition 3.4.10) together with thmédas in selecting until-formulas.
Consequently, since every maximal branchTofis closed or expanded, then any expanded
branch must have two nodes with the same label (see Rema# @Hich necessarily belong
to two different stages, since one stage cannot containdestical nodes. Summarizing, any
expanded branch df has at least two nodes, at least two stages, and is cyclitielnest of
this subsection we will assume that= ny, ..., Nk is an expanded branch @f , henceb is
cyclic, and thaty is the cyclicPLTL-structure associated bo

In the previous Subsection 3.4.2 we prove some properti@stabe behaviour of eventual-
ities along the branches @f , that obviously can be applied 8. The next proposition shows
the behaviour of negated eventualitiein

Proposition 3.4.17.Lets; [Sk, such that=(¢ U ) [LKs;). Then, every nite subsequence
M =S§j,Sj+1,.-.,Sk 0f Sg, satis es one of the two following properties:

@) {¢, ", ~(¢U )} LLis) foralli LY, ..., k}

(b) There exist$ [{],...,k}suchthaf-¢, -0} CLis;) and{}, =y, —=(dU PY)} CLis)
forall CI4,...,i—1}.

Proof. By induction onk —j. The casd = j is trivial. Fork —j = 1, the induction hypothesis

guarantees that’= s;, sq,..., Sk 1 satis es one of the propertiga) or (b). If n%satis es(b),
so doest. If n%satis es(a) then, byap-saturation, we havéd, -, ==(¢p U P)} [CLIsk) or
{=¢, -y} CI{sk). Hence veri es (a) or (b), respectively. "

Therefore, we can prove that each stat€gsatis es its labels, that is the set of formulas
labelling all nodes that constitute the concerned stage.

Lemma 3.4.18.For everys Sk, if ¢ [LXs) then(Gy, sCE= ¢.
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Proof. By structural induction oip. The case of literals is trivial by de nition d®p,.

For formulas of the form—¢, ¢ [l =(¢ 1), ~¢ and—=¢ the property holds because every
stage inSg, is af-saturated and the induction hypothesis{d}, {¢, ¢}, {-¢, -y}, {¢} and
{—¢}, respectively.

For¢ U U, by Propositions 3.4.4 and 3.4.5, there should exist a sitlesequenc®), S1, . . ., Sn
of Sg, such thatsp = s,y [sh and¢ L[s] for everyi [{D,...,n— 1}. By the induction
hypothesis[Gh, s, [ Y and [Gy, siCF ¢ for everyi [{D,...,n — 1} and consequently
[Gp, SCEE O U Y.

For (¢ U ) formulas, by the above Propositions 3.4.3 and 3.4.17 anththection hypothe-
sis, there does not exist any nite pagh, 1, ..., Sn in Sg, such thasg = s, [Gy, S, L= Y and
[Gy, Si [ ¢ for everyi [{D,...,n — 1}. ConsequentlyG,, sCIE ¢ U ¢ and hencdG, s[]

F-(eUy). =

Corollary 3.4.19. Gy E @

Proof. Immediate consequence of Lemma 3.4.18. "

By means of the collection of results proved in this sectioa provide an alternative proof
of the result that states that “every satis able sefPaffL-formulas has a cyclic model” (see
Theorem 7.1 in[128] and Theorem 1 in [15]). Our proof is camstive in the sense that it gives
a tableau-based procedure that constructs the cyclic nggdel any satis able®.

Now, we prove the refutational completeness of the tablgsiemTTM™.

Theorem 3.4.20.If ® is unsatis able then there exists a closed tableaudfor

Proof. Suppose that it does not exist any closed -tableau ford. Then the systematic tableau

T would be open and there would be at least one expanded bramdh . By Corollary 3.4.19,

Gp | ®. Consequentlyp would be satis able. "
Moreover, the tableau methadwm is also complete.

Theorem 3.4.21.If ® is satis able then there exists a ( nite) open expanded ¢alol for®d.

Proof. The systematic tablealu suf ces to prove this fact. "

Hence, the systemrm can be used as a satis ability decision procedureorL.

3.4.5 Improving Eventuality Handling

The application of the ruléU ), builds up complex formulas that involve the whole context.
Hence, for practical purposes, it is interesting to sinydlilese formulas as much as possible. In
this subsection we are going to show some ideas for avoidihgndant formulas in the negated
context produced by application of the rfld ),. That is, we introduce a new ru(eJ )s (see
Figure 3.16) that is an improvement@f ), that prevents two kinds of redundancy:

1. Disjuncts stating that the next stage fails to satisfyranfda which the context ensures
forever.

2. Duplication of formulas.
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The rst kind of redundancy is related to the logical equerade of the formulas 6, [
o((d [ o1 C=D))UWY) and 0 [={(¢p [=by)U Y). By means of this improvement,
formulas of the forn®' ¢ and syntactical variants (which are called persistent fdasin the
forthcoming De nition 3.4.24 and Proposition 3.4.23) aeftlout of the context. The second
kind of redundancy corresponds to the equivalenat afplandd.

At the end of this subsection, we analyze the gain of the néswrith respect to the older
one.

In order to deal with the rst kind of redundancy, we intro@uthe following notion of
persistence.

De nition 3.4.22. A formula¢ is calledpersisteniff for all M and alls; Sl , if M, s; k=
¢ then, sy (= ¢ forall k > j.

When decomposing formulas in a systematic derivation g®seme syntactical patterns
may be used to detect persistent formulas. That is the cabe édrmulas of the form ¢ and
o ¢. By taking also into account that

ChE-Lgl=-(TUd) =-(-FUP) =FROG=-TR¢

it is easy to prove the following result which constitutegatactical characterization of a subset
of persistent formulas.

Proposition 3.4.23. Every formula that matches one of the following patterns:

o ¢, o' =Ll o' [, o' =(TU §), =o' (TU ¢),
o'~(=FU ¢), =o' (=FU ¢), °'(FR §), T, -F

is persistent "

Note that we have characterized a proper subset of the sktloé @ersistent formulas. For
example,~((=(¢ =) U ) is a persistent formula which does not match any of the above
syntactic patterns.

De nition 3.4.24. For any set of formula®, we writepersistch(®) to denote the set of all
y [@such thaty ts one of the forms considered in Proposition 3.4.23.

On one hand, in order to avoid the inclusion of persistennhfdas in the negation of the
context, we de ne the following operator:

A = -(A\ persistch(AQ))

Therefore, to get rid of the above rst kind of redundancye ttule (U )3 applies this new
operatore instead of the previous operate(_) to the context.

On the other hand, we de ne an operatainlorder to prevent duplication of formulas. First,
we need to extract all the negative conjuncts of a formulae 3étcnjts(¢d) consists of all the
conjuncts ofp and is recursively de ned as follows:

cnjts(¢p) = Eg)j;s(d)l) rents(e2) gtﬁ;rsvji)éem
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Rule | B | Bi(B) B2(B.4)
(U)s | oUW | {3} | {0, (9 CAYUY)}
(Dd | Lo | {¢} {=9. ~(AU 9)}

Figure 3.16 The Ruleq U )3 and (D3l

Then, the set of all negative conjunctsipfs
negcnjt{¢) = {Y | ¢ Cchjts(p) andy is F or a formula of the formy}
Consequently, the operatariside ned as follows:

if (A\ persistch(A)) = CarF [Cnkgcenjt($)

if A Cenjts(p) | ~¢ Cnegenjt(d)}

if (A\ persistch(A)) CLeEnjts(Y) | =@ Cnkgenjtd)}
¢ (A otherwise

¢ LAI=

"W W 00
m T T

Now we give some details to clarify the four cases in the domi of ¢ [A. First of all, let us
consider the set

21 =Xt Xno Y- Yms @20, o((¢ E=lXxa Col Db D T Dvh)) U )}

wherepersistch(Z1) = {X1, ..., Xn}. The sex; is equivalent to the set

2o =Xt Xno Yo -0 Y, @20, o((¢ [=llyr Co). D)) U b))}

Consequently, in the de nition o A, we can exclude the persistent formulasAnthat
belong topersistch(A). In the rst case, on one hand, 4 \ persistch(A) = [then, since
the negation of the empty set is we consider the equivalende CEl = F. On the other
hand, ifF [Cnegcnjtg¢$) then we consider the equivaleneel_ql = F. In the second case,
if A C{enjts(P) | - [Cnegenjtdd)} thend is of the form¢py 1. Cdk with k = 1 and
¢; = -Aforsomej [{1,...,k}. Therefore, we could consider the equivalefcE=\ = ¢
and state that in the second cad_A is ¢. However,{x, (y (=) U A} is equivalent to
{X, FU A} for any formulasy, y andA and, consequently, we choogel_Al to ber. The third
case is like the second one, but without considering thagierd formulas. The fourth case is
the general case where the only simpli cation consists avieg out the persistent formulas.

By taking into account the above explanation, it is easy ¢otbat the following two sets of
formulas are logically equivalent:

A (¢ CA) U )} andA CE((¢0 L=0) U g)}

The rule(U )3 in Figure 3.16 re nes the ruléU ), in Figure 3.1 since the second premise
o((¢ C=N) U ) of the rule(U ), is substituted by ((¢ CAN) U ) in the rule(U )s. Itis easy
to derive, from the new ruléU )3, the corresponding rulgl)sl for the de ned connectivé ]
Now, let us give two examples that make use of these two nexs (i)l and( U )3 showed
in Figure 3.16. In these examples, the tableaux are builtsiyguthe systematic tableau algo-
rithm in Figure 3.9 and the rulgd)d and(U )3 instead of the ruleé)2 and(U ),. In order to
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show each tableau we follow the same notation as in Subsegio3 (and Subsection 3.3.5).
As in the applications of the rulé$). and(U )», in the applications of the ruldd)dand( U )3
we only underline the eventuality to which the rule is apglie

Example 3.4.25.In Figures 3.17 and 3.18 we depict a systematic tableafifor [p} obtained
by using the ruleg )3 and (U )3. As expected from the satis ability of the root set, the ¢aloi

is open. Concretely, there are two cyclic (expanded) braschith a common repeated node.
Both rules(DJ and (U )3 are used twice. In the rst application (from the top) of thde
(D4, the persistent formula Lplis left out of the negation of the context. Consequently; onl
the negation op is considered in the formula((—p) U p), which belongs to the label of the
child on the right. In the second application of the rylE)d, again the persistent formula
o [plis left out of the negation of the context. Since there are neerformulas, the set of
non-persistent formulas is empty and the formefa U p) is in the label of the child on the
right. In both applications of the ruléU )3, the selected eventuality isU p. In both cases,
the corresponding context contains at least one formulaithaot persistent but, by de nition
of the operator[,the formulae(F U p) is produced in both cases because of the fornsuiia
FUp.

The left-most open brachg, is formed by six nodey, . . ., ns whereL.(n,) = L(ns), and
yields two stagessg = ng, N1, N> andx; = Nz, Ng, Ns. Consequentlpath(b;) = xg - Xy [0
The right-most open brach,, is formed by ten nodes, . . ., ng whereL(nJ) = L(n3) and
gives rise to three stagegs = n3, n%,nd, y1 = nJ,ng, n? andy, = ng,...,nJ. Therefore

path(b,) = yo - ¥k, o[l In the models described by, p is true in all the states. In the models
described by, p is true in the statesg, S, S4, . . . Whereas—p is true in the remaining states

(S]_, S3, S5, .. )

Example 3.4.26.By means of Figures 3.19 and 3.20, we show a systematic dalkau for
the unsatis able se{p, (—-p [=p), [=b}. In this tableau we use the rulé$)d and (U )s.

In the nodes wheré3l and (U )3 are applied the context i§p, °p, > (—=p [=p)} and the
setpersistch({p, ep, > (=p =p)}) = {p, °p}. Therefore, when the rulg)d is applied, the
considered set of formulas &g = {p, °p} and the formulae((—=Ag) U —p) is obtained. In
the same way, when the rul& )3 is applied, the considered set of formulagis = {p, °p}.
However, sincé\g = A, the application of the ruléU )3 yields the formula(F U —p) instead
of the formulae((-A¢ [=A;) U =p) generated by the ruléU ), in Figure 3.12. As can be
appreciated in the de nitions ad\p andA\,, the persistentformula (—p C=p) is left out of the
context in the applications of the rulé¢g)d and (U )3. Additionally, the application of the rule
(U )3 avoids the repetition d\g and obtains a simpli ed formula by usirg As a consequence
of these improvements the tableau has one branch less thdalitleau constructed in Example
3.4.14 and the longest branch contains one node less thdangest branch in Example 3.4.14
(Figure 3.12).

Finally, we formally analyze the gain of using the rlé )3 instead of the rul€ U ),. This
analysis yields a small difference between both worst ¢adtough the improvement is very
useful for practical implementation.

We reformulate the notion of closure for the systegmm \{(U ),}) QU )3}. To this end,
we also need to rede ne some other previously de ned setswhéilas. However, other auxil-
iary sets, e.g. preclosure, remain de ned as before. Inrdadstress which sets are rede ned,
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(@ p,|_lfal
p, “LpP, Lpl
W@ p o [ .
| > [p]
Tm -p,
o (DU o)
‘@ SRR
W p,o [p =p, © I?QI|“°(FU p)”
_Dpl*FUP”
|
LpJo [pl“FUp

o [pl < [p]  =p,p, -p,-0p

°(FUp) ~[p] F-° [p
# o [pl “e(FUpP)”

Figure 3.17Systematic expanded tableau {@; L[p} by using([)d and(U )3 (Part 1 of 2)
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(b) (|)
(D4

M@ (unnex #
|
( | )
(D4

@ (unnexi)

Figure 3.18Systematic expanded tableau {@;, L[p} by using([)d and(U )3 (Part 2 of 2)

we use the pre xnew.. The new de nitions for the sets of negated contexts anduwstjons
are:

new negct(®) = {-A | A [(grecld®) \ persistch(preclq®)))}.

newconj(®) ={ & | [Cndwnegcty®) andl is adequatp
2

where we say thdt [Cnéw_negct(®) is adequateff
cnjts(d) £ cnijts(39 for every pair(=3, 6% [L1x I" such thad £ 5°
Now, the closure ofb can be rede ned as follows:

new clo(®) = preclq®) [néw.conj(d)
where

Q={¢ AU, >((¢ YU Y),FUY,>(FUY) | Uy Lsi(®) andy [new.conj(®)}

Hence, the cardinality of this closure is a bit smaller thiatesl in Proposition 3.4.10. Actually,
if |precld®)| = n then|new.negct(®)| CA(2"). Therefore

[new_conj(®)], [new.clo(®)| CAI(22™).

Recall thafclo(®)| CQI(2°G™).
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e

#  p,ep, p,°p,° (-=p C=b),
oy, -, “o((=Do) U —p)”
—|p |

E P, °p, ° (_'p Iﬂ))|, “o((_'AO) U _'p)”
p, (=p Cop), “(=ADo) U —p”
|
p, p [Cep, o (=p C2p), “(=Do) U —p”

R

where ¢ = (-p [=p)
Do = Aq = {p, °p}
Do = =0y = =(p Leop)

p, —p, p,°p, e (=p C=p),
oy, “(=o) U =p”
“(=Ao) U —p” /\
#
E’ P, <P,
°p, o (=p Ceop),
qu1 _'(p Iﬂ)% _'__'p1
-p “o(FU =p)”
# |
P, °p,
o (=p Ceop),
—(p Cep),
p, °p, p, °p,
qu1 _'_p1 qu1 —1°ep,
“o(FU=p)” “o(FU-p)”
# #

Figure 3.19.Systematic closed tableau ffp, (—p [=b), [=h} by using(Dzland(U )3 (Part 1 of 2)
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Figure 3.20Systematic closed tableau ffp, (—p [=b), [=h} by using(Dzland(U )3 (Part 2 of 2)

3.5 The Sequent CalculusTc

In this section we introduce the sequent calcufus that directly corresponds to the previously
introduced tableau systemtm. It is a reformulation offTM as a one-sided sequent calculus
that serves as a bridge fromm to the two-sided sequent calculasc that we introduce in the
next section (Section 3.6).

The sequent calculusrc follows the left-handed one-sided approach (also knowreits T
style, [123]), where sequents are formed by a set of formu\&g, write A [Td rgpresent a
sequent whose set of formulasfssand whose intended meaning isA - F,i.e.=( A).

The rules ofrTC (see Figure 3.21) are obtained essentially fronthe-rules writing them
upside down with the difference thatirc we have left-handed sequents andim we have
simply sets of formulas. The only exception is the r{sigthat corresponds to the application of
the operatounnextin TTM. This direct relation between both systems makes possilabtain
aTTC-proof from any closedTMm-tableau in a straightforward manner.

The strong similarity between tableau refutations andHaftded sequent proofs that are
cut-free, contraction-free and weakening-free is evidekg a consequencea;rC is cut-free,
invariant-free, weakening-free and contraction-free.

We have split the primitive rules afrc into three packages. Two of them consist of rules
for classical and temporal connectives, respectively.séhales follow the traditional style of
introduction of the connective and its negation in the sagua addition, we need two structural
rules which form the third package.
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Rules for the Classical Connectives

Ao ] Ao,y ] A0 A -y
(=) N (Di—liq) (-D4 A~ ) [
Rules for the Temporal Connectives
_y_unnex(A) 1 A = Ao, -y, o(dUY) ]
C)— A7 (U AUy ]
(=) A, o= [ (V) AV A,y (6 =n)UY) [
A, —od ] 2 AoUY [
Uy D0 T A6, ~o(@UY) [
A -(pUyp) L1
Structural Rules
(Cds) N T . (Cdy) AFC]

Figure 3.21Primitive TTC-Rules

As TTC is sound and complete (Theorems 3.5.1 and 3.5.3), given af $etmulasA, it
holds thatA is unsatis able if and only if there is arc-proof forA [

A TTC-derivation is a possibly in nite tree labelled with seq@eand built according to the
inference rules irrTc. A TTC-proofis a nite derivation where the sequent to be provdzkla
its root and the leaves are labelled with axioms (which alesrwithout premises).

A set of formulad™ is TTC-consistenif and only if there is no anyTc-proof for the sequent
r 1

The soundness afrc means that everytc-provable sequent, namely [ ik correct re-
garding to satis ability. In particular, every satis abket of formulad™ is TTC-consistent.

In the TTC sequent calculus all the non-structural rulesiavertible with the exception of
the rule(e). A rule is invertible when it holds that if the conclusion igpable, so are the
premises.

Theorem 3.5.1. (Soundnesdjor any set of formulak, if I is notTTC-consistent, i.e., if there
exists artc-proof, thenl” is unsatis able.

Proof. By induction on the length of therc-proof, it suf ces to prove that every primitive rule
of TTC (see Figure 3.21) is correct in the sense that if the set ofidtas of each premise is
unsatis able then the set of formulas of the conclusion isatis able. The only dif cult case



3. Dual Systems of Tableaux and Sequents$forL 54

is the case of the ruleU ),. The justi cation for that case is already given in Theore.2. =

Next, we prove thatTc is a complete calculus by relating its completeness to thepbete-
ness ofrT™.

Proposition 3.5.2. For any set of formula®, if T is a closed expanded tableau forthen
there exists aTc-proof for the sequend []

Proof. Since eachlrtMm-rule has its correspondingrc-rule, thettc-proof is directly obtained
from the closed T™-tableau ford. "

Theorem 3.5.3. (Completenesdjor any set of formula®, if ® is unsatis able, then there
exists artc-proof for®.

Proof. If ® is unsatis able then there exists a closeu -tableau ford. Hence, by Proposition
3.5.2 there exists arc-proof for ®. "

As in the case ofiTMm, the exhaustive application of the rules in the calcutus, with-
out any additional restriction or strategy, does not yieldeaision procedure fdPLTL. The
reason is thatTc, by itself, does not satisfy the weak analytic superfornmuaperty (WASP)
(see Subsection 3.4.2). Remember that the systematiatablgorithm of Subsection 3.4.2
incorporates a strategy for the application(&f), which contributes to the satisfaction of the
WASP.

When building arTc-derivation we can use primitive rules, derived rules ars @dmis-
sible rules. The admissible rules are new sound rules timtotde derived from the primitive
rules of TTc, but do not add deductive power to the system. That is, & $gtconsistent with
respect tortc if and only if @ is consistent with respect torc plus the admissible rules. In
other words, for everyrtc-proof that includes the use of some admissible rules thestse
anotherrTc-proof that does not use any admissible rule.

The derived rules can be used as a shortcut for several lfsafs that are built by using
only primitive and admissible rules.

Among the admissible rules the most outstanding ones afelibe/ing classical structural
rules of Weakening and Cut:

AL Ao A-¢

(Wk) AN (Cut) AT

The sequent calculusrc is cut-free since we have already proved its soundness anglete-
ness and the cut rule is omittedimc. SinceTTc is complete without the cut rule, the cut rule
is admissible inrTc. However, the classical syntactical techniques for cumiglation cannot
be applied here because of the context used in the(te. Hence, we have been unable to
give a syntactic proof of cut elimination. However, we areassvof the work of K. Briinnler,
who introduced the notion afeep sequernd gave a cut-elimination procedure for modal logic
([19]). It remains open to see whether the same techniguéedpp our calculi (extended with
the cut rule) could yield a syntactical cut-elimination gedure forPLTL.
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ALl Ay L] Aoy LI A-dy,(¢Ry) L]
(O3 A, b Cq ] (R) AGRY [
FANESTO BESTIT N I A 1 A=), P, o(=0U ) ]
(-DZ!A,_'@E@ — Rk A -GRY) ]
(GR), Y T A0, 4, (=¢ TS U )
A -(9RY) [
N, ¢ [ AL A -d,o(TU) I
( )—A, o 1 (D4 A Gl
A, ¢, —oLgl ] A¢ L1 A o((=A)UG) ]
(_'II! A,_lej (II’-I A,ml:l
A, —l(l) 1 A,(I), °(TU —l(l)) 1
= N Y
A, —l(l) 1 A,(I), 0(—lAU —l(l)) 1
(= )2 A= ¢

Figure 3.22:Some Derived Rules fartc

The weakening ruléW k) is non-invertible so it must be used carefully. The ryte¥ and
(—F), that appear below, are particular cases of the (\Weéx) but they are invertible. So they
can be used to eliminate the formutagnd—rF knowing that the equivalence with respect to the
TTC-consistency is preserved:

ALl A L]

D20 Maro

SinceTTC is also contraction-free, admissible rules could be olethiby associating to
every non-structural ruléR) the rule(RC) that produces an (implicit) contraction {RR). For
example, the rule belo@lC) is the admissible rule that corresponds to the primitive (i1

Ao L¢P L]
A ¢ L]

Regarding derived rules, rst we use the usual abbreviatafrde ned connectives in order
to derive the rules in Figure 3.22. It is easy to check tHatik derived from(— DAnd (——);
(-Dfrom (=-) and( ;A R) from (= U ) and(—=-); for i [{1, 2}: (= R); is derived from

(LC)
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E—I:(ICdZ) F,-F,°o(FUF) cd2)

U)s
FUE T
= = R G I
(o0 (p CS)UF ] ) )s
2 - I ©
0 IR CIE I

q,pUF [

Figure 3.23:11C-proof for the set of formula§g, pU F}

(==) and(U);; fori L1, 2}: (Dylis derived from( U ); and(T); (= Dis derived from(=U ),
(1), (==) and(Cd)y; ( ) from (=D1(==), (T) and(=°); and fori [{L,2}: (= ); from
(=), (Ddand(T).

The soundness and invertibility of these derived rules éggteed by the fact that they have
been obtained using only sound and invertible rules. Naeithhe rule(W k) is used instead
of (T) for deriving the previous rules their invertibility coul@dnbe directly guaranteed.

It is well known that the connectivll is not expressible in temporal logic with ondy |
and [_ds temporal connectives (cf. [80, 53]). As a consequencejrglete calculus for the
sublogic that use§_ihstead ofU cannot be derived (by abbreviation) fromc, since the rule
(D4 needs the connectivie for expressing its second premise.

Finally, let us recall the respective re nemeiftis)d and (U )3 of the rules(DJdand(U ),
that allow us to avoid the inclusion of persistent formulag duplications in the negation of the
context (see Subsection 3.4.5):

Ad Ayl
A, -, (AU ¢) [ (V) A d, Y, (¢ CAYUY) [
A, LH ] 3 AU L1

Now, let us illustrate theTc-style of reasoning by means of some examplesrtaf-proofs.
In order to enhance readability, we have underlined, at stegh the principal formula. How-
ever, when the rulée) is applied, we do not underline any formula. In the nodes iictvive
apply the ruleg U )2, (D2, (U )3 or (D4, we only underline the eventuality to which the rule is
applied.

Actually, each derivation can be seen as an inverted closedableau.

(D4l

Example 3.5.4. TheTtTtc-proof in Figure 3.23 shows that the set of formu{@sp U F} is un-
satis able.

Note that in the rst application (from the bottom) of the e(lU )3 the obtained premises
coincide with the ones that we would obtain by using the (lWég,. By contrast, in the second
application of the rulg( U )3, the right-hand premise is different from the one that we ldiou
obtain by using the ruléU ),. By using( U ) we would obtain the sequemtl =, —F, o((p [
—q [E)U F) LCidstead of the sequept (=}, —F, o(FU F) [t is also worth noting that this
TTC-proof does not exactly follow the strategy formalized byanseof the systematic tableau
algorithm in Figure 3.9. In particular, in the second ap@imn (from the bottom) of the rule
(°) the sequert [ =y, —F, »(FU F) [O9 not formed only by elementary formulas.
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p, =—q, =, °(FU @), Oﬂlillflcsgl
9, ~°Lg]—q q o Lglg 0 p [=hq, =g, o(FU q), Oﬂlillflu
( L5h)UG I~ (V)
(p C=h0) U g, no[g) —q Ifl
(p C=hg) U —-Iillil( -0
__(cdy) Sl ()
91"_1""'1”:(' p, =0, °((p [=ha) U q), o= Lgl 0
pUq,ﬂq,OﬂlJ_@Jlilﬁo) (V)
pUq,ﬂq,ﬂolJ_@Jlfl

Figure 3.24:11c-proof for the set of formulagp U q, = Lq]-q}

_ (cd
—|_p’0 —|p’E I:EI )l) Cd )
—p,p 1 B b, =(FUp) L2

-p,FUp [ (U)s
> -p ﬂpplﬂ X o(FU )
, ) —p, =p, >(FU p) )
| |:| —|,—|,0 U
_p.p p, =p, °(FU p) 03

—p, Cpl

Figure 3.25TTC-proof for the set of formulag -p, Lp}

Example 3.5.5.In Figure 3.24 we depict aTc-proof for the unsatis able set of formulas
{pUq, - Lg] -q}.

Note thatin the rstapplication (from the bottom) of the @lU )3, we avoid to consider the
permanent formula—- Lglin the negation of the context. Consequently in the rightelfremise
we obtain the sequemt, —q, o((p [C=kq) U q), o= Lgl Cidstead of the sequept —q, ((p [
-—q [=k-[g)Uq), e~ Lgl Cfhat we would obtain by using the ru(dJ ),. In the second
application of the rule(U )3, we obtain the sequemt [=hq, —q, o(FU q), e~ Lgl [aks the
right-hand premise because we dispense with the persikienula .- [gland because the
negation of~q (i.e. the negation of the context without persistent foam)is a conjunct of the
left-hand subformula ofp C=hq) U g.

Example 3.5.6.In Figure 3.25 we show atc-proof for the unsatis able set of formulas
{ -p, [p}.

Note that, when the ruléDdl is applied to the sequent—-p, Lpl [dhe formula -p is
left out of the negation of the context. Therefore the negatif the context without persistent
formulas isF. When the ruld U )3 is applied to the sequent-p, FU p L[_on one hand the
formula -p is left out of the negation of the context. On the other hane rtegation of the
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context without persistent formulasis However,F is not repeated in the new formula that
contains the connectivd , i.e., the new formula is(F U p) instead of ((F CEJU p), which we
would obtain if the rulg( U ), were used. Note also that thigc-proof does not exactly follow
the strategy formalized by means of the systematic tablgauithm in Figure 3.9, because the
rules(U )3 and(DJ are applied to sets of formulas that are not elementary.

Example 3.5.7. The T1C-proof in Figure 3.26 shows that the set of formulgs (—-p [
°p), [=b} is unsatis able. Actually, this proof can be obtained bydring the closed tableau
built in Example 3.4.14 (Figures 3.12 and 3.13). Note thatrewet;, withi [{D,...,5},is
inconsistent and the rul@Cd,) is used for each of them. In particular, sés, ..., >3 contain

p and-p, >4 containsep and—ep and X5 containse) and—ey where) = (=p [=p).

3.6 The Sequent CalculusTcC

In this section we present the sequent calcdus (see Figure 3.27) that is two-sided and one-
conclusioned (or asymmetric). We prove the soundnessrafand, then, we discuss about
admissible and derived rules. Afterwards, we prove the detapess ofsTc with the help of
some previously derived rules. Finally, we give four exaespfGcTC-proofs.

The calculussTc (see Figure 3.27) is straightforwardly obtained from thevjus calculus
TTC. Actually, almost each primitive rule ofrc has a counterpart ioTc that results from
adding a conclusiol to each sequent in the rule. The only exception are the rutesanthe
context is combined with the principal formula to produce equents in the numerator, where
X (or better=x) behaves as part of the context. Moreover, admissible avatkrules inGTc
are the same kind of counterpartsrafc rules as the primitive ones.

The soundness @fTC means that evergTc-provable sequent, namdly [l is correct re-
garding to logical consequence. In particular, every sdils set of formulas issTc-consistent.

Theorem 3.6.1. (Soundnesdjor any set of formula§ CLX}, if T [ is GTc-provable then
MEx

Proof. By induction on the length of theTc-proof, it suf ces to prove that every primitive rule
of GTC (see Figure 3.27) is correct in the sense of preserving tiedbconsequence relation
between the antecedent and the consequent.

The correctness proof of most rules is just routine. Actu#lle only correctness proof that
poses some dif culties is the proof of the rul& L),. Hence, we only give the details for this
rule.

We prove, by contradiction, that ¥ is a logical consequence of the antecedents of the
premises of the rulé¢ U L), then, x is also a logical consequence O&f [{p U Y}. Let us
assume thag is not a logical consequence of the set of formuas{p U P}, i.e. the set
A {d U P, -} is satis able. Then, by Proposition 3.3.3, the €t L, —-x} or the set
A 0, U, o((d [(=A IFHX})) U b)), =x} (at least one them) is satis able. Consequengly,
is not alogical consequencef CLP} or x is not a logical consequencef (L, =, o((¢ [
(A {Fx3})) U )} So that, we can build a countermodel for some of the two peswf the
rule (U L),. "
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z—dCdl) z—dCdl)
TP b g Ty g 0D
p.op, =0, =(p Csp L), o L1 D
S o o, ==p, ~(p Cop o), ¢ =)
5, T P, °p, °Y, (=Ag) U=p [ (V)
p,—p Lep, o (=p Leop), (=Ag) U —p Ii(l )
p, (=p Lep), (=Ao)U—p [ )
p,°p,° (=p L=op), °((=Ao) U —p)
5, o0 pop.> (=P L5B), ~p, *(~Lo) U ~p) L)
p,°p,° (=p Cep), [F5p ] (hd

p, p Cep, e (—p IE;IJ),E(I (b

p, (=p [C=p), (I

where ¢ = (—-p C=p)
¢ = o((-Ao [(=A1) U —p)
Do =Ny ={p,°p, Y}
~Do = -1 = —(p Cep o)
3o ={p, 7p, ¥, [Fb}
>3 ={p, °p, °Y, -p}
> ={p, =p, Y, (=Ao) U =p}
23 ={p, °p, Y, =p, °((~Ao [=A;) U —p)}
>4 =4p, °p, °Y, =op, >((=Ap [=A;) U —p)}
25 ={p, °p, °Y, =y, °((=Ao [=A;) U =p)}

Figure 3.26:TTC-proof for the set of formulagp, (—p [=p), [=h}
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Rules for the Classical Connectives
A Cd A, ¢ CE
DA A=
Ay LA ALY ALy
(DZemmix " amgmm
Rules for the Temporal Connectives
. A, o [N . unnext(A) Cql . A [T
CDZR=ex ®Y A R A re
Ay X A ¢y, o(pUY) LN
(UL)y AUy X
RU) L0 TH A0, ~c(0UY) LU

ALQUY

AP A Y, (¢ LA H{EHX})) U Y) XA

(UL): AUy X

Structural Rules

(As) Ao Lo P

Figure 3.27 Primitive Rules for the Sequent Calculasc
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A O
(FL) 7A, ] (CdL) —A, -6 O (--L) —A, T
FANESTO I IRY A - . unnext(A) CEl
"X ~6¢ o cx DA tx

A, -, -y [ A, ¢, Y, o(¢Uy) K
A, ~(9UY) LM

(-uD)

Figure 3.28:Some DerivedsTC-Rules

The calculussTc is more versatile thamTc, in particularcTc allows not only refutation
proofs, but also goal-directed proofs or, in general, thesegquent can directly be used as prin-
cipal formula incTc-proofs. As a consequence,@Tc, we can derive rules that have no sense
in one-sided systems. For example, the contrapositios:rule

A A, ¢ L
A -y Chl A -y CHb

which can be derived in the usual way from the primitbmec-rules for the classical connectives.
The derived rules in Figure 3.28 are useful for proving thenpleteness o&1c. They are

easily derived with the help of the above ru{€@pl) and(Cp2). Itis easy to check thgFL) is

derived from(Cd) and(As); (CdL) from (=L) and(As); (°L) from (eF) and(R-°L); (-—L)

from (Cpl) and(Cp2); (- L) from (Cpl) and(R D;nd(=U L) from (Cpl) and(RU ).
Now, we can associate to eachc-proof agTc-proof.

(Cp1) (Cp2)

Proposition 3.6.2. If ® [[0d TTC-provable therd [Elis GTc-provable.

Proof. Suppose thab [[id TTCc-provable. Then, by admissibility of the ru{e:r) (see Section
3.5),®, —F [[O9 alsoTTC-provable.

It is easy to see that for eaattc-rule there is a closely related (primitive or derivexfjc-
rule. In particular,TTc-rules arectc-derived rules or single instances efc-rules. More
precisely, theaTc-rules(—=-), (DL A= 0D,1°), (U)1, (U)2, (=°), (=U), (Cd1) and(Cdy), re-
spectively correspond {e-—-L), ([L), (- [}, (eL), (U L)1, (U L)y, (=°L),(=UL), (CdL)
and(FL). As a consequence, we can construetra-proof of the two-sided sequett -F [El
Therefore, using theTc-rule (Cd), the sequent [CH is alsocTc-provable. "

Theorem 3.6.3. (Completenesdjor any set of formulag CLX}, if I | X thenlm [ is
GTC-provable.

Proof. If ' [ is notGTc-provable, then by ruléCd) the sequenkt [{+x} [His notGTC-
provable. By Proposition 3.6.Z, [{+x} [id notTTC-provable, which is a contradiction by
Theorem 3.5.3. "
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Using the abbreviationkqland ¢ for TU ¢ and—[=¢, respectively, we are also able to
derive the following useful rules:

A,$ X A,¢ X
A, —¢,°o(TU ) [N A, —¢, o(=(A X} U ¢) X
(L)1 A L9 T (L2 A, 0 0
RO (DS O
A C@ A L
R ) D °(‘;UI;(|I)3) =) R ) 2 o(ﬂﬁuzﬂlcg) =

In addition, thetTc-rules (U )z and (D4 produce the correspondirgrc-rules whereA® =

ANEE )¢ >

Ay X A ¢ Cx
A, ¢, -y, (¢ LY U y) Cx (D), 20 o(hoU ¢) [
AUy Y s A, TH Ox

and it is easy to derive the following ru{® )3 for the de ned connective :

A L4l
A, (AU -¢) (S5
A 1o

(UL)3

(R )3

Note that, by( L) and(CdL), the following contradiction rule is also derivable:

(Cd )

A, ¢, ¢ LN

Let us now illustrate theTc-style of reasoning by means of some exampleswf-proofs.
In order to enhance readability, we underline, at each shepprincipal formula. However,
we do not underline any formula in the applications of thesyR-L), (°F) and(-L). Both
primitive and derived rules are used in the derivations.

Example 3.6.4.ThecTc-proof in Figure 3.29 shows that the formujas a logical consequence
of the set of formulagp U g, =< Lq}. ThisGTc-proof is similar to therTc-proof showed in
Example 3.5.5 (Figure 3.24).

Note that in the rst application (from the bottom) of theeylU L)3 the persistent formula
o= [qglis left out of the negation of the context. In the second apfitin of the rulg(U L)z we
obtain, in the right-hand premise, the formuér U q) because we dispense with the persistent
formula~>—Lgland because the negation-6{ is a conjunct of the subformufa [=hq in the
formula(p (=hq) U q.
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(CdL)

(D
(UL)s

(As) p, =0, =, °(FU q), o= Lgl gl
q, ~o Lgl gl p [=hq, =g, °(FU q), o= LglCql

(p q)Uq,OﬂIEIIII(ﬁoL)

(p Q)Uq’ﬂm(Rm

(p C=hg) U g gl (=L)

(p C=hq) U g, - [glCH
p, =0, °((p [=hq) U q), o= [gl ok
q q p, =0, °((p [=ha) U q), °=Lgl gl
pUq, -~LqiCe) (UL
pUq ~-giig D)

Figure 3.29.cTc-proof that shows that the formudgis a logical consequence §p U g, —= La}

Example 3.6.5. TheGTc-proof in Figure 3.30 shows that the formutée_plis a logical conse-
guence of the set of formulds —p}. ThiscTc-proof is similar to thertc-proof in Example
3.5.6 (Figure 3.25).

Note that, when applying the ru{d_L); and (U L)3, the persistent formulas—p and-F
are left out of the negation of the context. As in the case efrtic-proof in Example 3.5.6
(Figure 3.25), thiscTc-proof does not strictly follow the strategy presented byanseof the
systematic tableau algorithm in Figure 3.9, because theg(lU L)z and ([L)3 are applied to
sets of formulas that are non-elementary.

Example 3.6.6. By means of theTc-proof in Figure 3.31, we show that the formula is a
logical consequence of the set of formuf{as (—-p [=p)}. The setz;, withi [{D,...,5},
are inconsistent since they contain a formula and its nega#ind the derived rul€CdL) is
applied to each of them. Although the structure of the predhe same as therc-proof in
Figure 3.26 of Example 3.5.7, the <& is different and the sef; appears only once. In the
place of the rst appearance (from the left) of the &atin Figure 3.26 of Example 3.5.7 now,
in Figure 3.31, we use the structural ru{é\s).

Note that, since we usgr ), and (U L),, the persistent formulap = o (-p [=p)
is included in the negation of the context and that repetgiare not avoided in the formula
¢ = o((=QAo [=A1) U =p). However, the formulay could be left out of the negation of the
context and the repetition id could also be avoided as shown in Example 3.6.7.

Example 3.6.7. As well as the proof given in Example 3.6.6, thec-proof in Figure 3.32
shows that the formulap is a logical consequence ¢p, (—-p [=p)}. However, in Figure
3.32 we use the rulgRR )3z and (U )3z whereas in Figure 3.31 the ruld®k ), and(U ), are
used. Additionally, the approach in Figure 3.32 is more “@d@rected” in the sense that in
order to prove that the formula p follows from the set of formulap, (—-p [=p)}, in the
rst derivation step p is the principal formula. By contrast, therc-proof in Figure 3.31 is
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e (CdL)
_1 1_ L
-p,p CH - =p, E, —p, o(FU p) CEl
-p,FUp CH
e =p,=p,°(FUp) [=F
-p,e —p,p CE o =p,-p,°(FUp) CE
—p,=p, °(FUp) CE
ﬂmg“ﬂ(
—-p (3Ll

(FL)
(UL)s

(ReL)
(°F)
(L
(D3

R-)

Figure 3.30.GTc-proof that shows that the formutal_plis a logical consequence §f —p}

a direct adaptation of theTc-proof in Figure 3.26 and is not driven by the “goal”, i.e. bgd
formula p, which we want to proof frofip, (—-p Cep)}.

The cTc-proof in Figure 3.32 does not strictly follow the strategegented by means of
the systematic tableau algorithm in Figure 3.9. In orderatddw such strategy, either the rule
(U L)z ortherule(U L), should be used instead of the rlg L);.

3.7 Related Work

In Section 3.1 we have brie y surveyed the main represereatof the different approaches in
the tableau and sequent frameworks. In this section we add details about these related
proposals.

3.7.1 Tableau Systems

The traditional tableau methods for temporal logic (e.®8173, 8, 87, 79, 81]) are based on
the usual inductive de nitions of the temporal connectivéstraditional rule system for the
tableau framework can be obtained framm (Figure 3.1) by just removing the ruleJ ),.

In such systems an auxiliary graph is built in a rst pass. Fmtance, an auxiliary graph
for the set of formula{p, (—-p [=p), [T} is very similar to the right-most branch of the
tableau in Figure 3.14a). Edges would be directed downwards and instead of the lakt no
of the branch, there would be an edge from the previous nodleetooot node. So that, the
whole auxiliary graph would be a strongly connected compbngade up of ve nodes. The
second pass serves to check whether an in nite path thatygelmodel for the root set can be
built from the graph. With that purpose, maximal stronglyicected components that are not
ful lling for some eventuality and from which no other maxahstrongly connected component
can be reached, are deleted. This process is repeated aimtdde can be eliminated. In the
above mentioned example, the only maximal strongly comaecomponent (i.e. the whole
auxiliary graph) would be removed because it is not ful gifor the eventualityl =p and no
other nodes can be reached from it. Since the result woulchbergty graph, the root set
would be classi ed as unsatis able. Our tableau methath is one-pass. In Figure 3.12 it



p,°p,° (=p C=p) Cp

p,=p Cop, o (=p Cop) Cp — (B

p, (=p [Cep) Cp
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where ¢ = (—-p C=p)
¢ = o((-Ao [(=A1) U —p)
Do =Ny ={p,°p, Y}
~Ao = -1 = —(p Cop o)
2o ={p, 7p, °W}
> ={p, °p, °Y, -p}
> ={p, =p, °Y, (=Ao) U =p}
23 ={p, °p, °Y, 7p, °((=Ao [=A;) U —p)}
>4 =4p, °p, °Y, =°p, o((=Ap [ =) U —p)}
25 ={p, °p, °Y, =y, °((=Ao [=A;) U =p)}

55 (CdL) NS (cdL)
5 0a ) ey s . o A
(cdL) P, °p, Y, =(p Lop C=b), ¢ LE (ﬁ(:)m
(cdL) >, [ P, °p, oY, ==p, =(p Lep Lob), ¢ LE (UL),
>, [El P, °p, °Y, (=Ag) U —p LEl

p,—p Cep, o (=p Lep), (=Ag) U —p IE( 0

(As) p, (=p C=p), (-Ag) U —p LE (-L)

(cdL) p.°p, ey Lpl p,°p,° (=p L=p), o((=Ao) U =p) [=p R )

Figure 3.31:GT1c-proof that shows that the formulap is a logical consequence of the set of formups (—p [=p)} (1st version)
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wherey is (—p Cep)

Figure 3.32:GT1C-proof that shows that the formulap is a logical consequence of the set of formups (—p [=p)} (2nd version)
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can be appreciated that, by using tha1-rules([)Jdand( U ), and by following the systematic
tableau algorithm in Figure 3.9, we are able to close all thathes without a second pass.
The rst one-pass tableau method BLTL was presented by Schwendimann in [117] and
it avoids the second pass by adding extra information to tltes in the tableau. This method
is also based on the usual inductive de nition of the tempooanectives. As irrTm, branches
can be seen as sequences of stages;, ..., s where each stagg is a sequence of nodes

n°, nt ni . Each application of the ruldl exttime (which corresponds to an application

TR
of the operatounnextin TTM) to an elementary set of formulas gives rise to a new stageh Ea

noden" of a tableau is labelled with a triple of the for(A!", Save', Res{") where
- M'isa nite set of formulas.

= Save!' is a pair of the form(EV]", Br;) that serves to store history information. More
precisely,Evjh is a set of formulas representing the eventualities thafudidied in the
nodesn?, n', ..., n, andBr; (which only depends on the stage) is the sequence of pairs

(ko EvEo), (T, EVEY), .., (r}‘j 5 Evjkj .") representing the current branch. Note that
r'gg is the set of formulas of the last node of the stagéor everyg [{0,...,j —1}.

= Resl' is a pair of the form(r]", uev") that is used to store partial result information.
More preciselyrjh is a natural number that represents the earliest mjdge. x < j)
that is reachable fromjh. On the other handﬁlevjh is the set formed by thendul lled
ewventualities of the current branch.

The information inSaveJ-h is produced in a top-down manner, from parent to child, waere
the information inResJ-h is synthesized bottom-up, from children to parent. Thedotup
synthesis of information starts once a terminal rule is igolpli.e. a leaf is generated). The
information synthesized bottom-up R\esjh is needed because an eventuality that appears in a
cyclic branch butis not ful lled directly in such branch,rche ful lled in some other reachable
branch.

In TT™ the ful liment of an eventuality depends only on one bran€onsequently, given a
satis able set of formulas as root set, an expanded operchrgrlds a model for the root set in
TT™M whereas in [117] more than one cyclic branch may be requorethtain a cycle that gives
rise to a model for the set of formulas in the root. Additidpalodes inTTm do not require so
much extra information. Moreover, given an unsatis ableafdormulas, instead of expanded
non-ful lling cyclic branches,TTm obtains closed branches (whose last nodes are inconsistent
see De nition 3.3.5). For instance, if we consider the setoomulas{p, (-p [=p), [=b},
Schwendimann's tableau method would obtain a tree thaagmthe same nodes as the tableau
in Figure 3.14(a), but with the above indicated extra information in each notleen, in the
right-most branch, the bottom-up synthesis would be necggs detect that =p cannot be
ful lled. By contrast, TTM obtains the closed tableau showed by means of Figures 3dl2 an
3.13. The rulg( U ), together with the strategy expressed by means of the syStetaaleau
algorithm in Figure 3.9 are the key for this different dedwetpproach foPLTL.

In order to detect whether an open cyclic branch is exparidedn order to decide whether
a cyclic branch is ful lling, the systematic tableau algbrn for TTm does not directly check
whether each eventuality is ful lled, instead it checks wter the eventualities that belong to
the rst node of each stage of the cycle have been selected) éte cycle (see De nition 3.3.12
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and Remarks 3.3.13 and 3.4.8). This is another remarkafiézatice with respect to the above
mentioned approaches.

The complexity of the two-pass methods is exponential (émghe average case) due to
the fact that the size of the graph is exponential in the sizbaset of formulas in the root,
although some improvements such as not building the unaddeinodes can be considered (see
e.g. [81]). The worst case complexity for Schwendimanrtddau method andTtm is doubly
exponential. However, it has been shown by means of expetahanalysis (see e.g. [76])
that, in some cases, doubly exponential algorithms caneoiatpn exponential ones because
the occurrence of the worst case in the doubly exponentakihms is rare. We are convinced
that a practical implementation that incorporates the Biogtions explained in Section 3.4.5
may compete with traditional methods in several cases -whgen most of the formulas (in
the context) are always-formulas— and even be faster irgteey. when satis ability can be
detected without constructing the whole graph. Of courde} af experimental work needs
to be done in order to precisely compare the performanceeasfethlifferent approaches. As
a rst step, we have implemented a preliminary prototypetf@1T™ tableau method which
is available online irhttp://www.sc.ehu.es/jiwlucap/TTM.html. A report about the
implementation details of this prototype for them tableau method can be found in [63].

3.7.2 Sequent Systems

The sequent calculusC introduced in [60] is the rst nitary sequent calculus f&LTL that
dispenses with the cut rule and also with invariant-baskxbrirhis cut-freeness and invariant-
freeness is achieved by means of the ule), and the strategy represented by the systematic
tableau algorithm fortm. The sequent calculudsC is very similar tocTc. However, in order
to prove the completenessBt, the weakening ruléW k), as well as a hidden contraction, are
used in [60] (in Lemma 22 and Lemma 11, respectively). By @stf the sequent calculasc
is weakening-free and contraction-free. In this sensectingpleteness result obtained farc
is an improvement of the completeness result obtaineéfar This improvement is achieved
by using the duality o6 Tc with the tableau systemrm.

Traditional sequent systems include either an in nitareror an invariant-based rule. For
instance, in one of the sequent calculi presented in [105¢ave nd an in nitary rule that, in
terms of this dissertation, i.e., with non-relevant mingmtsictical changes, is as follows:

AGIH DN AN
A, [P Y
Note that the above rule contains in nite premises.

We can also nd an invariant-based rule in the sequent caltinbduced in [105] which, in
our notation, can be presented as follows:

ALy P Lol Y Ll
AT

The above formulg is called the invariant formula. These kinds of invariaaséd rules require
an additional search for the invariant that is not addressethe sequent calculi. A similar
invariant-based rule can be found in e.g. [104, 121].

The cut-free and also invariant-free sequent calcliligsfor PLTL introduced in [20] is right
handed. So that, sequents are of the fargd, . . ., 5. The meaning of a sequehiify, ..., Yn
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isT - Y1 L1 1) or equivalentiyp, 1. . This sequent calculus is dual to our sequent
calculusTTC in the sense that arc-proof for A [States thaf is unsatis able whereas an
LT2-proof for [CA states thai\ is valid, i.e.,A is true in every state of eve®LTL-structure.
Additionally, theLT2-rule that corresponds to them-rule (U ), deals with annotated formulas
of the form¢ R y , / where the annotation or histoly is a nite set of nite sets of formulas
{r1,....,h}. f T ={1,...,dm}, the meaning of; is ¢1 [_1. [}, and the corresponding
formula forH is 'y 1. [I},. The formula represented by the annotated fornquR 1 U is

(6 [(=H) R (¢ [=H). The key rule that deals with the annotated formulas is deviat

m!d’!_'H m! o((l)RH; lIJ),(I),—IH
I11(I)RHqJ

whereH, A meansH [C{A\} in the subindex of the connectiv® . This rule is similar to our
rule (U ),. As already mentioned in Section 3.1, the idea behind theimwagich eventualities
are dealt with and the strategy that leads to completenésside in the sequent calculiT2
andTtTc, even in the fairness requirement in the selection of eaities. However, unlikeTc,
the sequent calculus 2 incorporates the selection of eventualities in the ruléesysby means
of a rule that carries out the selection of an eventuality bgegating an annotated formula
¢ R. ¢ from a formuladp R . Additionally, the strategy of sticking to a selected eveity
—which is an annotated formula— until it is ful lled, is al$lecorporated in the system sequent
by not allowing more than one annotated formula in each sdoofea derivation. Note also
that annotated formulas do not belong to the logical langudg other words, an additional
variable —or annotation— for saving the history is usetlig whereas inrtc all the formulas
belong to the logical language and no extra variable is useldi$tory management. Moreover,
in TTC, the restrictions that lead to completeness are not incatpd in the sequent system. As
a consequence, we allow different strategies and diffeterivations, although we follow the
systematic tableau algorithm to guarantee completeness.

” Note that the use of the connectiie on the right-hand side of a sequent correspondsto the use obhnective
U on the left-hand side. So that, a formula of the foprR ¢ on the right-hand side of a sequent represents an
eventuality.






4. INVARIANT-FREE CLAUSAL TEMPORAL RESOLUTION FOR  PLTL

4.1 Introduction

In this chapter, we deal with clausal resolutionRITL. The method of resolution, invented by
J.A. Robinsonin 1965 ([111]), is an ef cient refutation pfanethod that has provided the basis
for several well-known theorem provers for classical Isgi&s well as tableau methods, in the
case of decidable logics, resolution methods yield decipimcedures for the satis ability of
sets of formulas.

Different approaches have been proposed in the literaturadapting the classical reso-
lution method to temporal logic but without consensus in ¢leisal normal form or in the
temporal resolution itself. The earliest temporal redolutnethod [1] uses a non-clausal ap-
proach, hence a large number of rules are required for handineral formulas instead of
clauses. There is also early work (e.g. [12, 29]) relatedicdogal resolution for (less expressive)
sublogics ofPLTL. In the language considered in [12] there are no eventesdt all, whereas
in [29] the authors consider the strictly less expressivd#aguage oPLTL de ned by using
only e and [as temporal connectives. The early clausal method prasen{#26] tackles full
PLTL and uses a clausal form similar to ours, but completenessysaghieved in absence of
eventualities. More recently, a fruitful trend of clausainporal resolution methods, starting
with the seminal paper of M. Fisher [40], achieves complessrfor fullPLTL by means of a
specializedemporal resolutiorrule that needs to generate an invariant formula from a set of
clauses that behaves as a loop. The methods and techniquedspael in such an approach
have been successfully adapted to Computation Tree L&Ji€) (see [18]) and some exten-
sions of CTL such a£CTL andECTL" (see [17, 16]), but not to Full Computation Tree Logic
(CTL?). It is remarkable that the clausal normal forms used in,[{29], [126] and [40] are
quite different.

In this thesis, we introduce a new clausal resolution metiad is sound and complete
for full PLTL. Our method is based on the dual methods of tableaux and rstsdfioe PLTL
presented in the previous chapter. On this basis we are@plertorm clausal resolution in the
presence of eventualities avoiding the requirement ofiamageneration. We de ne a notion of
clausal normal formand prove that everl LTL-formula can be translated into an equisatis able
set of clauses. Our resolution mechanism explicitly sitmdahe transition from one world to
the next one. Inside each world, we apply two kinds of rul&¥the resolution and subsumption
rules and (2) the xpoint rules for decomposing temporatills. The latter split a clause with
a temporal literal into a nite number of new clauses. We grtlat the method is sound and
complete. In fact, it nishes for any set of clauses decidisgun)satis ability, hence it gives
rise to a new decision procedure fBLTL. In Section 4.8 we compare our approach with the
methods in [29, 1, 126, 40]. We also give more details on thiom betweerrrs-resolution
and therTm tableau method that is its forerunner.

Outline of the chapterln Section 4.2 we introduce the syntactic notion of claiBebsec-
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tion 4.2.1), we show that arBLTL-formula can be transformed into a set of clauses (Subsectio
4.2.2) and we analyze the complexity of this transformaubsection 4.2.3). In Section 4.3
we introduce the systemrs of inference rules in two subsections: the rst one prestmda-

sic rules and the second one presents the rule for solvingusities in a way that prevents their
inde nite delay. Then, in Section 4.4, we present the notbmrs-derivation, provide some
sample derivations and study the relationship betweaesiresolution and classical (proposi-
tional) resolution. The soundnessts is proved in Section 4.5. In Section 4.6 we propose an
algorithm for systematically obtaining, for any set of daal’, a nite derivation that proves
thatl” is either satis able or unsatis able. We also show some exias of application of the
algorithm in Subsection 4.6.2. An important issue for thigpéathm is to prove its termination
for every input. This proof is presented in Subsection 4.th3Subsection 4.6.4 we provide a
bound of the worst-case complexity of the algorithm. In #ect.7, we prove the completeness
of TRs-resolution on the basis of the algorithm that outputs aerderivation for every set of
clauses. Finally, in Section 4.8 we discuss signi canttedlavork.

4.2 The Clausal Language

In this section we rst de ne the conjunctive normal form of@mula. This is the basis for our
notion of clause. In the second subsection we explain howtoeart any formula into a set of
clauses. Thirdly, we give the worst case complexity of thastation.

4.2.1 Conjunctive Normal Form for Formulas

Our notion of literal extends the classical notion of prdporal literal. This extension intro-
duces both temporal literals and (possibly empty) pre xbdins of the connectivein front of
temporal and propositional literals. That is, using theal8NF-notation:

Pu=p]|-p

T = P1UP2|P1RP2||E|| P

Lu=oP | oT
wherep [Propandi [CN. P stands for a propositional literal, for a (basic) temporal literal
andL for a literal. In the sequel, we use the term literal in thegiasense and only if needed we
will specify whether a literal is propositional or tempaotabub- and superscripts are used when

necessary.
We extend the classical notiontbfe complemert of a literal L as follows:

e=-p, fp=p, SL=-B PIUP,=P;RP, and PiRP,=P,UP,

It is easy to see thdlP = and@Pl = P. Although[[P and P can be respectively
de ned by U P andP R P, we have intentionally introduceldPl and P as temporal literals
because of technical convenience.

A now-clauseN is a nite disjunction of literals (above denoted by:

N = [JL [N

! Note thate is the only temporal connective that does not occur in theadied (basic) temporal literals.
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where [rdpresents the empty disjunction (or the empty now-claugés identify nite dis-
junctions of literals with sets of literals. Hence, we assuhat there are neither repetitions nor
any established order in the literals of a clause. This aptiomis especially advantageous for
presenting the resolution rule, because it avoids fadaird ordering problems. However, for
readability, we always write the disjunction symbol betwéee literals of a clause.

A clause is either a now-clause or a now-clause precededggottnective

C:=N]|] N

A clause of the form N is called amalways-clauseln this chapter, we use the superschpt

varying in{0, 1} to represent a formula with or without a pre xed unary corthex(in particular

a clause with or without a pre xed ). For instance, P¢p is ¢ wheneveb is 1 andp whenever

b is 0. Along the rest of the chapter superscripts starting liyom bit) range in{0, 1}. These

kinds of superscripts are notation, hence they are not panecsyntax. Note that the formula
b represents the two possible syntactic forms of the emptyselzas now- or always-clause.

For a claus€ = P(L, 1. [1}) weéjenote by its(C) the sef{L,,...,Ly} and for a
set of clause§ we denote by its(I') the set ~, Lits(C).

De nition 4.2.1. The set of all clauses in that contain the literaL is denoted by [JL}, i.e.
r L} ={C [ L [CLis(C)}.

Sincee distributes over disjunction, for a given now-clabde= L, 1. [L},, we denote
by N the now-clausel1 []. [CeL,. We say that a clausg is o-free if Lits(C) does not
contain any literal of the formL.

De nition 4.2.2. Given a set of clausds wede nealw(lN) ={ N | N [Tl andnow() =
M\ alw(l).

Note that a formula of the form P, can be understood as a now-clause consisting of one
temporal literal or as an always-clause consisting of onegsitional literal. If a set of clauses
I contains this kind of formulas, by convention those formswdee considered to be aw(l").

De nition 4.2.3. For any set of clauses

(@) drop (") =nowm(N) N | N Caw(l)}.
(b) BTL(IM) ={T | T [N Cdiop (N}

(c) unnext(") = aw(") [N | P(-N) CTB.

The setdrop (IN) is formed by all the now-clauses Ihtogether with the inner now-clause
of all the always-clauses in.

BTL(IN) is the set of all the (basic) temporal literals that occuFinHence,BTL(IN) is a
subset olits(I"). It is worth noting that any literal ihits(I") that does not belong BTL(I")
is either a propositional literd® or a literal of the formeL, according to the grammar at the
beginning of this subsection.

The setunnext(I") consists of all the clauses that should be satis ed at th¢ staxe of a
state that satis ef. This de nition of unnextis an adaptation to clauses of the operatumext
presented in De nition 3.3.4. Note also thatnext implicitly uses the equivalence between

N and{N, °N}.
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A formula is inconjunctive normal formvhenever it is a conjunction of clauses. For sim-
plicity, we identify a set of clauses with the conjunctiontbé clauses in it. Concretely, we
identify any formula in conjunctive normal form

Ni [Nb L0 CNE L INpyg o1 T INg

with the set of clauses
{N11N21---1Nr1 NI’+11---1 Nk}

where eachN; is a now-clause&k = 1 andr {0, ..., k}.

4.2.2 Transforming Formulas into CNF

In this subsection we present a transforma@dFwhich maps any formulé to itsconjunctive
normal formCNH¢). First, we show that any formuld can be transformed into another
formula NNF(¢), called thenegation normal formof ¢, such that every connective is in
front of a proposition. Second, we introduce an intermediaition of normal form, called
distributed normal formdenotedtNF (¢) for input formulad. The transformationsINF and
DtNF preserve logical equivalence. Finally we present the fomnmsation of any formula to
its conjunctive normal form. The formulgsandCNH¢) are equisatis able (De nition 2.2.2)
although, in general, they are not logically equivalent.

Proposition 4.2.4. For any formulad there exists a logically equivalent formuiNF(¢$) such
thatx [Propfor every subformula diINF(¢) of the form—x.

Proof. NNF(0) is obtained by repeatedly applying to any subformulé tiie following reduc-
tion rules until no one can be applied

~-p &% ~(1 Cp) 8% gy =l
o 8% oy (1 CIib) B2 -y (Sl
~pEs -y ~(W1U g2) B~ R
-y = ~(W1 R Y) 8% g U -

It is routine to see that the relatioi (de ned above) preserves logical equivalence and the

process of repeatedly applying the transformatibh stops after a nite number of steps.
Therefored andNNF(¢) are logically equivalent. "

Now, in the distributed normal form, every connectivés in front of a propositional vari-
able, every connectivé_ig distributed over,_femporal connectives that are distributive over
[Cahd [ate distributed, for formulas of the forgnU (6 U ) and of the formp R (6 R ) the
subformulash andd are different and non-empty sequences of the farth. [_dnd of the form

are of lengtHL.

De nition 4.2.5. A formula is indistributed normal fornif it has the form(y; . Iﬁfl) 1
... Oy . yfr) where eacly) denotes a formula of one of the following forms

e oIP
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- o'(aRP) for somex andP & a Ry for anyy
- o'(BU a) for someB anda & B U Y for anyy
e o Bforsomel 8 y foranyy
- o [alfor somea & [l for anyy

wherea and 3 denote two special cases of distributed normal form. Cdebre3 stands for
a formula of the forn(y} 1. Cyf*) with k; = 1 and a stands for either a formulg} or a
formula(y} C21 Oyft) [l LA C1 [yf§") withn = 2 andky, = 1 foreveryh [{1,...,n}.

Note that if a formula is in distributed normal form then itilso in negation normal form.

Proposition 4.2.6. For any formulag there exists a logically equivalent formUudNF (¢) such
that DINF (@) is in distributed normal form.

Proof. First, we transforng into NNF(¢) and then we repeatedly applyMiNF() the follow-
ing reduction rules

(1 Cb) C@EY (o1 CT) (D, L) W C(d: Chp) 8% (v Cl) T Ch)
o(¢1 Cb) B o1 oty o(¢1 [hb) 8% o9y oty

WU (¢1 Chb) B2 (WU d1) T U d2) WR (¢1 CPp) B (@R d1) COR ¢2)
(01 T Uy 87 (91U ) CTd2U p) (01 CE) Ry BY (01 R W) T2 R )

Cb: Cp) B7 Chh T, (61 Cp) B2 o1 Tl
W1 U (1 U g2) 8% gy U gy Y1 R (W1 R W2) B2 gy Ry,
(T & p &y

It is routine to see that this reduction always terminateggia formula in distributed normal
form. Additionally, it must be proved that eve%”l-rule preserves logical equivalence. For

that, the only non-triviaBi", -rules are the ones for transformigd) (d1 CPd), (d1 ) U U,
¢ R (¢1 b), and(Pp1 Cdb) R Y. Here, we give the proof details for the rst one. The re-
maining three are similar.

Suppose thaiiv, s; [ Y U (¢1 Lg}). Then, there existe = j such thatlW, sy [k ¢; [}
and [, s; (=  for everyi such thalj < i < k. Hence, for suckk, either[I, sy (k= ¢, or
M, sk L= ¢2. Inthe former casdM, s; L= Y U ¢4, whereas inthe latteiV, s; Ch= @ U ¢o.
ThereforelM, s; L= (YU ¢1) LW U o).

Conversely, ifliW, s; L= (YU ¢1) LU ¢2), then eithed, s; L= (Y U ¢1) or W, s; CF=
(W U 7). Hence, there exists = j such thatlW, s; = ¢ for all i such thaj < i < k and
W, sy (= &1 or (M, sy [E= ¢2. Then, [, sy (= ¢1 Cdp andW, s; [Cf= Y for everyi such
thatj < i <k. Therefore[, s; L= Y U (b1 Cpb). "

As the following theorem shows, we will use the distributedmal form as a preliminary
step for transforming a formula into its conjunctive norrfaain.
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Theorem 4.2.7.For any formula¢ there exists an equisatis able formu@NH¢) such that
CNHK®) is in conjunctive normal form.

Proof. First, we transformp into DtNF(¢). Second, we repeatedly apply the following rules
until no one can be applied. In the rules bellgws the whole formula (in distributed normal
form) and the expressions of the fonia  [[3]Henote the formula obtained by simultaneously
replacing all the occurrences of the subformala Y by the formulaB3, wherea is any non-
literal subformula of any conjunct af that is not a clause yet.

P S Yo' (01U ¢2) = 01U p2)] CONF( (-p1 ChE)) CONF( (-p2 L))
0 &% Yo' (91 Rd2) =1 Rp2)] CONR (~py [BL)) CONF( (-=p2 CHb))
g &% g[o' y C=p] CANK (-p [V))

g &% y[o' [yl £ CONK (-p [¥)

&% g (v CX Ty Cp)] CONK (-p £X))

o &% gl ( x 0D =0 p OP] CONK (-p X))

wherep, p1 andp, are fresh new propositional variables and the formyignot a propositional
literal. Note that the new conjunctions of the fo@NH (-1 [1})) serve to de ne the fresh
new symbolsp;. We will prove that the transformation frognto CNH¢) stops after a nite

number of steps and both formulas are equisatis able.

On one hand, each application off’ -rule reduces the depth of (at least) one non-literal
subformula of a formula iDtNF-form. Additionally, the number of fresh new variables is
bounded by the number of subformulas. These two facts etsuménation.

On the other hand we prove, by structural induction, thafah@ulas in both sides of each

&" rule are equisatis able. Here we only show the detailsi@r tst rule above (the remaining
rules are similar or particular cases). Supposeliiiats; Lf= @ wherey is in distributed normal
form ande' (¢, U ¢>) is a non-literal subformula of any conjunct gfthat is not a clause yet.
Then, since, andp; are freshpq, p> Iy (sk) for all k = 0. Therefore, we de ndM°to be
the extension oM such thap, [Vl o(sg) iff IV, sx[(}= ¢n forallk = 0 andh {1, 2}.
As a consequence, for &l = 0, OV, sy °'(¢1 U ¢p) iff MO <'(p1 U p) and
M6 sP=  (—p1 C@l) LK —p2 Cpp). Hence,

W0 s (= Wle' (1 U d2) = p U pa)] CK-p1 L) C_K-pz2 Cb).

By the induction hypothesis, the transformation dfp; C@d) and (—p2 Lgd) to conjunctive
normal form preserves equisatis ability.

Conversely, consider any mod®l of the right-hand part of the rst™ -rule. If W, s E
o' (p1 U p2), then M, spCinust satisfy some other disjunct in every conjunct of theniala s
whereo' (p1 U p,) occurs in. Therefor®M is also a model o If IV, soCf= ©' (p1 U p2), then
there exists § = i such thatliV, s; [C}= p, and M, sy [}~ p; for all k such thati < k < j.
Additionally, for allk = 0, M, sk (= (=pn Cgh) for h {1, 2}. Therefore W, s; L= ¢2
and M, sy = ¢4 for all k such thai < k < j. Hence,IM, so= °' (¢1 U ), which means
thatM must be a model aof. "
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Example 4.2.8.Let us consider the following formua= —(p ¥ —(p ) C=(p L))
Note that¢ is equivalent to~ (p ) by means of induction on time. First, we transfopm
into

NNF(¢) = —p I CriC={-p [=F))

Then, its distributed normal form is
DINF(d) = —p (I CriC(d—-p [=hr))
Finally, the conjunctive (or clausal) normal form ¢fis

CNH¢d) = (-p [Th) CCNK (-a [(d CrICE-p Cehr)))) =
=(=p [1h) [ -a [p) K -a ) K -a Cehp C=hr)

where a new propositional variabke ["Prop has been introduced and new clauses that de ne
the variablea have been added. The formuaNH¢@) can also be understood as the set of

claused{(—p [1h), (-al[p), (—-aLlxr), (—-a [=hp C=hr)}.

4.2.3 Complexity of the Translation

In this subsection we show that the worst case of the traosléd CNF is bounded by an
exponential on the size of the input formula.

De nition 4.2.9. Given a formulab, we de ne the size ap, namelysiz€ ), as the number of
connectivesnt() plus the number of propositional variablgsi(¢) in ¢.

Proposition 4.2.10. For any formula, siz§ CNF(¢)) 292 )

Proof. The complexity of the rst transformation froih to NNF(¢) is linear because the worst
case is when the connectiveappears only once and it occurs as the outermost conndative,
¢ is of the form—y for some formulap. In such a cases will end up appearing in front of
every propositional variable. Henaazg NNF($)) = cnt(d) — 1 + 2 < pv(d) which is smaller

or equal thar? x sizd¢).

In the second transformation BtNF(¢), each use of the distribution laws can almost double
the size of the initial formula. So, we only can ensure #iag DINF(¢$)) < 25Z&NNF()) or
equivalently thasizg DINF(¢)) [CQ(25724" ),

Finally, the last transformation ©NH @) has again linear complexity. This is basically because
—in the rules of Theorem 4.2.7— each new variable replacabfasnula of a formulap that is
already inDtNF form.

Summarizingsiz§ CNF(¢$)) [CQ(20(size ))) = 20(size )) .

We would like to remark that the exponential blow-up is onlyed-as in classical cnf- to
the distribution laws and it can be prevented using frestakes as it is made in the so-called
de nitional cnf (see [39]). Therefore, as in classical cnf, for practicalpmses, we could use
new variables to achieve a transformation to clausal fortineair complexity.
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b(L CNI) Y& CNO
b bO(N ENI%

(Res)

Figure 4.1:The Resolution Rule

(Sbm) { PN, PNA 8- { °N% if NO N

Figure 4.2:The Subsumption Rule

4.3 The Temporal Resolution Rules

In this section, we present the rules of our temporal resmiglystem. In addition to a resolution-
like rule (Res), the_ Temporal Resolution §stemTRrs includes a subsumption ru{&bm) and
also the three so-called xpoint ruleg R Fix), (U Fix) and(U Set)- for decomposing tem-
poral literals. The ruléShm) is a natural extension of (traditional) clausal subsummtibhe
rules(R Fix) and(U Fix) are based on the usual inductive de nition of the connestiiRe
and U, respectively, whereasU Set) is based on a more complex inductive de nition of
(already explained in the previous chapter of this theba)is the basis of our approach. There-
fore, this section is split into two subsections. The rsbsaction is devoted to the rst four
rules which we calBasic RulesThe details about the rufdJ Set) are explained in the second
subsection. The corresponding derived rules fand [are showed in both subsections. In the
sequel, the rules explained in this section are catkesirules and the system is calleés.

4.3.1 Basic Rules

Considering thal is the current set of clauses, the resolution (Res) in Figure 4.1 is applied
to two clauses (the premises)linand obtains a new clause (the resolvent). The (Rles) is
a very natural generalization of classical resolution ferags-clauses, and it is written in the
usual format of premises and resolvent separated by a mbaiziine. (Res) applies to two
clauses (the premises) that contain two complementamalite Both premises can be headed
or not by an always connective (depending on supersdrigisib®whose range i§0, 1}). By
means of the produdt =< b®in the superscript of the resolvent, only when both preméses
always-clauses, the resolvent is also an always-clausgarticular, wherN andNare both
[ fhe resolvent is P & [ ik. either [Cad [The resolvent is added fowhile the premises
remain inl. That is, each application of the ru{®es) adds a clause to the current set of
clauses. On the contrary, the remainirrs-rules replace a set of clausks [T lwith another
set of clauses, namel/. We write them as transformation rulgsE@ W. The set andW¥
are respectively called the antecedent and the consequéétti@y are in general equisatis able
but in some cases logically equivalent. So that, each agtjiic of these transformation rules
removes the clauses Ifrom the current set of clauses and adds the clausés in

The rst transformation rule is the subsumption rg&m) in Figure 4.2, which generalizes
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(RFix) { P(P1RPp) [N)} 8- { PP, [N)
b(P; [=(P; RP,) [N)}

(UFix) { P((P1UPp) [N} B- { (P, [P [N)
(P, =P, U P,) CNI)}

Figure 4.3:The Fixpoint Ruleg R Fix) and(U Fix)

( Fix){ °( P LD} 8- { P [N), °(= P [N)}

([Bix) { d([A N} 8- { (P =[P [N)}

Figure 4.4.The Fixpoint Rule€ F ix) and( LElix)

classical subsumption to always-claude$his rule can be applied to any set that contains a
clause of the form °N and a clause of the form®N ¢ such thatN® [CNI. The application of
the rule(Sbhm) eliminates the clause®N while the clause PN °remains. Regarding these two
clauses in the antecedent, it is said that the cla¥¢ is subsumed by the clauséNC Our
resolution mechanism requires the r(@»m) for completeness. Actually, subsumption is used
in Lemma 4.6.13 which allows to prove Theorem 4.6.14.
The xpoint rules( R Fix) and(U Fix) in Figure 4.3 serve to replace a clause of the form

b(T [NI) with a logically equivalent set of clauses. The r(R F ix) splits the temporal literal
P1 R P, by using the well-known inductive de nition of the conne@iR: P1RP, = P, [1
(P1 ={P1 R Py)). Likewise, the rulg U Fix) uses the inductive de nition of the connective
U:PiUPy; =P, [(B1 [=0P1U Py)). In both cases, a simple distribution gives the equivalent
set of two clauses that is shown in the consequent of eachlruterder to illustrate this point
let us consider the case of the connecitive By the inductive de nition ofU and distributivity
of Caver L1

P1UP2 =P,y LB [o(P1UPy)) = (P2 [P1) L(B2 [L=(P1U Py)).
Hence, °((P.U P,) [N)is logically equivalent to the conjunction of the two clasis@(P, [
P, CNl) and P(P, (=P, U P,) [NI). So that, the antecedent of the r@lé F ix) is logically
equivalent to the conjunction of the two clauses in the cqueat.
Since the connectives and [chn be seen as particular casefoandU respectively, the
rules in Figure 4.4 constitute the corresponding speciabins of the rules in Figure 4.3.

4.3.2 The Rule( U Set)

The rule( U Set) in Figure 4.5 is an adaptation to the resolution system ofrthe-rule (U ),
presented in Figure 3.1. The construction of the consequietiie rule (U Set) takes into

2 Note that the same supersctigiccurs in both clauses.
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(USet) & [O{ B((PLUP) [N)|1<i<n}

5. ¢ [P, [P} [N | 1<i<n}
(P, [o(@aUP2) [N} | 1=i=n}
[CONHdef(a, P1, A))
CO (e(PLUPy) C=Nj) | bj=landl<i<n}

wheren = 1
A = now(P)
a [Propis fresh
def(a,P1,A) = (-a (B, [SN)IfAE [
def(a,P1,A) = -aif A= 1

Figure 4.5:The Rule(U Set)

account, not only a (non-empty) set whose clauses includenadral atonP, U P,, but also
the remaining clauses. Consequently, the antecedent aflédh€U Set) is

® [P ((P1UP) [Nh) |1<i=n}

wheren = 1 and® stands for the set consisting of all the remaining claus#sdrset to which

(U Set) is applied. The antecedent b Set) must be interpreted as a partition of the whole
set of clauses (on which we are applying temporal resolyifitio two sets. The second set

{ Bi((PLUP,) W) | 1 <i < n}inthe antecedent is a non-empty set of clauses that contain
the same (basic) temporal litefdi U P,. It is worth noting that the literalP; U P, can also
occur in®. The opposite restriction is not required for soundnesswever, for achieving
completeness the rulgJ Set) is applied over a partition of the current set of clauses &nset
formed by all the clauses that incluBg U P, and the remaining clauses.

Example 4.3.1.Let us apply the rul¢ U Set) to the eventuality U s in the set of clauses

{p,°q, u, ((rus) LEH)}.

Then® = {p,°q, u} andA = now(®) = {p, °q}, wherenow is the operator on sets of
clauses introduced in De nition 4.2.2. Therefore, the aamsent of thig U Set) application is

{p,°q, u} [I3 [riCet,s[=(aUs) [t}
({1 (-a [7), (-a [=p Coho)}
L0 ((e(rUs)) C@et))}

wherea is the fresh variable andef(a, r,A) = { (-a [1), (-a [=hq)}. Below we
justify the construction o = nowm(®) for excluding always-clauses from the de nition of the
fresh variablea. We callA the context. Let us give a clue on context handling througg th
example. If we used the whole getnstead ofA in the de nition ofa, then the second clause
in def(a, r, ®) would be (-a [=ohq [THu). However, since uis in ®, the clause u
also belongs to the consequent. Therefore, the disjunkt of the above clause, would never
be satis ed.
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Next, we explain the intuition behind the ru{& Set) and introduce the de nition ofon-
text

The crucial idea behind the rulgJ Set) (and, hence, behind thers resolution system)
is based on the equisatis ability result presented in Psijian 3.3.3 (Section 3.3.2). Here we
provide an adaptation of Proposition 3.3.3 to the clausajuage.

Proposition 4.3.2. Let A be a set of formulag,; = A [P, [P} [(B]P, [=(P, U P,) (B}
and, = A [P, [P] [B]P, [=2((P1 (=) U Py) [B}. ThenXx; andX, are equisatis able.

Proof. Suppose thak; has a modeM. If IV, so[ = A [P} or M, so[f= A [P}, then
M is also a model ok,. Otherwise [, so[}= {P1, °(P1 U P2)} andP, should be satis ed
in some state; with j = 1 andPy is true in all the states, such thahD < h < j. Letk be
the greatest index if0, . . ., J — 1} such that, sy [l= A andA is not satis ed in the states
Sk+1,.--,Sj 1 0f M. Then, we can construct a mode1® of A by simply deleting the states
So,...,Sk 1in M. As a consequence of the choice&kothePLTL-structureMPis also a model
of {P1, o((P1 [=N) U P»)}. Hence MP = =,. Conversely, any model &, is a model of> ;.

Now, we transform the antecedent(df Set) into its consequent, while preserving equisat-
is ability (indeed, logical equivalence is preserved atshsteps).
The rst transformation step is based on the equivalenge= ) [Je. Consequently, each
clause % ((P1U P,) [N;) such that; = 1 is split (while clauses witlh; = 0 remain un-
changed). So that, the set in the antecedefitofet):

Wo=0 [K B(PUP) W) |1<i<n}
is equivalent to

W, =0 [CK(P1UPy) N |1SiSn}
CK B(PLUP) W) |bj=11<i<n}

Then, as explained for the ru{eJ Fix), the set¥; is equivalent to the set

Y, =0 |:|{P2|:E!_|:|S||i| 1SiSn}
[XP, [s{P1UP,) [N | 1<i<n}
X P(c(PLUP,) [=Nj)|b=1landl<i<n}

LetY be the last set in the description8$, that is
Y ={ Pi(e(PLUPy) [=N;) | b =1landl<i<n}

we replace the above underlined set (insidg with the following set

{P2 [2((P1 [S(® [Y))UP2) [N | 1=i=n} (4.1)

Hence, we obtain

W3=0¢ [CKXP,[PI[Ni| 1l<i<n}
CKP2 [o(P1 [A(® [Y))UP) [N | I1<i=n}
CX Bi(e(PLUPy) [=N;)|bj =1landl<i<n}

By Proposition 4.3.2, the set$, andW3 are equisatis able. Additionally, any set of the form
{ X1, Xz-ooy Xm,o((d CH X1 X2 L1 Xm))U )}
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is equivalent to the set

{ Xx&, X2o-- Xm,o((¢ YUY}

because if the formulags, X2, . . ., Xm are true from now forever, then the truth of the formula
°((¢ Ly X1 X2 L Xm)) U W)

does not depend on the truth of the disjunctionyy X2 L Xm Which should be
false. Consequently, it is not necessary to consider thesekathat belong talw(®) [YI(see
De nition 4.2.2) in the subset o¥3 considered in (4.1) because only clausesndm(®) are
needed. Therefore, we replace the subformu(é@ [Y) with =now(®) in W3 and we obtain
the following (logically equivalent) set

Yy=0 D{PzEELEN]il l<i=n}
CXP, [o{(Py [Showm(®))UP,) [N} | 1<i<n}
CX %(e(PLUP,) [=N;)|bj =1landl<i<n}

The logical equivalence ¢P3 andW, motivates the following notion of context.

De nition 4.3.3. In an application of the ruld U Set) (see Figure 4.5) to an antecedent that is
partitioned in the two set® and{ P((PLUP,) [N}) | 1 < i < n}, we say tha\ = now(d)
is thecontext 2

Since the above formula((P1 C=how(®)) U P,) is not (in general) a literal, we should
transformW¥, into clausal form. For that, we substitute the subfornRjal_=how(®) by the
fresh variablea and we add the clauses that de ne the meanirgy dtis gives the following set
W5 wheredef(a, P1, now(®)) is the result of transforming the formula(—a [L(A; [(=how(®)))
to a set of clauses (whose de nition is given in Figure 4.5):

W= [KP, [P} ENIil l<i=n}
CXP, [e{aUP,) [N} | 1<i<n}
[C_ICNF(def(a, P1, now(®)))
C¥ Bi(e(PLUP,) [aN;)|bj=1landl<i<n}

Finally, let us check that the sét5 andWs are equisatis able. On the one hand, siaaoes not
appear i, a modeM of W5 can be built from a modéW of W, by just de ningVy o(s?) as
Vwm (sj) da} if Py [=thow(®) is true in the stats; of M and by de ningVyy o(SJ-O) asVu (sj)\
{a} if P1 [=how(®) is not true in the statg of M. On the other hand, since every model of
W5 satis es the formula (-a (B, [=how(®))), we can ensure th&®; [=how(®) is true in
any states of a model of¥s whenevenr is true ins. Consequently ((P1 C=how(®)) U Py) is
true in any stats of a model of¥5 whenever(aU P») is true ins. Therefore, every model of
Ys is also a model o¥4.

At rst sight it could seem that the de nition of the fresh vablea should be given by the
cnf form of the formula (—a (B, [(=how(®))) [{a [=(P1 [=how(®d))). However, as can be
seen in the above reasoning, the clauses that correspdmalftrimula (a [(=(P; [=how(®)))
are not needed for equisatis ability. Therefore, we do nid #he clauses that correspond to

(a [=(P1 [=how(®))).
To summarize, the initial s&¥y —which is the antecedent of the ryl& Set)— and the last set
W5 —which is the consequent of the rl& Set)— are equisatis able.

3 The operatonow is introduced in De nition 4.2.2.
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(CSet) & CI{ (A N)|1<i<n}

B o [{P [=(aUP) [N | 1<i=n}
[CONF(def(a, A))
[{1 (¢[A [sN;) | b =1landl<i=<n}

wheren = 1
A = now(P)
a [Propis fresh
def(a,A) = (-a [=R)IfAE [
def(a,A) = -aifA=[]1

Figure 4.6:The Rule( [Skt)

The correctness of the ru{dJ Set) is shown in detail in the proof of Proposition 4.5.2.

The rule(U Set) leads to a complete resolution method that does not requiagiant gen-
eration. This is mainly due to the above explained manageofetie so-called contexts by
means of the rulé U Set). An adaptation to clauses of the strategy followed in theesyatic
tableau algorithm fortm (Figure 3.9), prevents from postponing inde nitely theisttction
of P1U P,. Example 4.4.4 in Section 4.4 illustrates how contexts aredled to cause incon-
sistency whenever the ful liment of an eventuality couldibanitely delayed. There is a nite
number of possible different contexts and the repetitioa pfevious context, while postpon-
ing an eventuality, also causes inconsistency. Theretbhere is a clear strategy to achieve
termination and completeness.

The rule( LSket) in Figure 4.6 is the specialization 60 Set) that corresponds to the equiv-
alence of[Pl = B U P. Consequently, along the rest of the chapter, the (LEket) is treated
as a derived rule, in the sense that most technical detalgigen only for the general rule
(U Set).

4.4 Temporal Resolution Derivations

A classical resolution derivation for a set of propositibclausesl” is a sequence of sets of
clauses
MBS Mo ...0r

wherel” =g and eacH j+1 is obtained fronT; by means of a resolution-step that consists in
applying the (classical) resolution rule. The sequence @rftbn eithef y contains the empty
clause [—ad every application of the resolution rule on formuladinyields a formula that is
already inlk. For classical propositional logic, resolution is soumdiitationally complete and,
even, complete. Soundness and refutational completenems that the method obtains a set
Ik that containsL_far somek [N if and only if [ is unsatis able. Moreover, in classical
propositional resolution the sequence obtained is alwaite (if the pairs of clauses for apply-
ing the resolution rule are selected fairly) and consedyefdssical propositional resolution is
also complete and serves as a decision procedure.
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In this section we rst extend the classical notion of defiwa —to the temporal case of
PLTL- introducingrrs-derivations. We also provide some sampis-derivations. The notion
of TRs-derivation is the basis of the sound, refutationally coetgl and complete resolution
mechanism that is presented in this chapter. In the secdrsgstion we prove technical results
on the relationship betweams-resolution and classical (propositional) resolution.

4.4.1 TRsS-Derivations and Examples

Our notion of derivation explicitly simulates the trangitifrom one state to the next one, in the
sense that whenever in the current set of clauses no moreitiesaesolvents can be added,
then we use the operatannext (see De nition 4.2.3) to get the clauses that must be sadis e
in the state that follows (is next to) the current one. Ingdeh state, thers-rules are applied,

hence the so-called local derivations are (roughly speglan extension of classical derivations.

De nition 4.4.1. A TrRs-derivationfor a set of clauseE is a sequence
D=RorRo.crardorio.. . oMmzaz_aartorio...

where

(@ rg=r

(b) B represents the application ofers-rule

(c) A_redresents the application of the operatomext

If any setr‘i in D contains P CthenD is called arefutationfor . We say that arRs-
derivation is alocal derivationf it does not contain any application of the operatomext A
local derivation is called docal refutationif it is a refutation.

Note that we use two different symbols (and4A ) falhighlight the difference between the
application of arrs-rule and the application of the operatoinext The former applications
produce set§‘i *1 from r{ and are calledrs-steps The latter applications yield®,; from rihi
and are calledinnext-steps

In the sequel we only use the prers- whenever confusion might result, otherwise we
simply say derivation.

Now we give four examples of refutations. For readability tlerivations are represented
as vertical sequences of rule applications with the namiees@ipplied rule at the right-hand side
of each step. In addition, the clauses to which each ruletaffeave been underlined. However,
we do not underline any formula in the applications of therafm¥ unnext The rst example
shows that in some cases, even if temporal literals arevadothe refutation is achieved using
only the resolution rul€¢Res) and the operatounnext The second example illustrates that
sometimes the rul@U Set) is not necessary and the r{lg Fix) is enough. The third example
shows how contexts are handled to cause inconsistency waretihe ful llment of an eventu-
ality could be in nitely delayed. Finally, in the fourth ereple, the rulg U Set) is applied to a
proper subset of the set of clauses that contain the lipdval. In general, it can be applied to
any non-empty subset.

Example 4.4.2.In Figure 4.7 atrs-refutation for the unsatis able set of clauses
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={ (r ), o-r,e —p, (or CTh), p Cad-q}  (unnexd
= { (r CIp), e-r,ar, -p, (er CTh)} (Res)
ri={ (r ), e-r,-r,_-p, (°r = CTP), [p} (Res)
rf={ (r CR), L] e-r,=r, -p, (or 0= COR), 01

Figure 4.7 T1RrRs-refutation for the set of clausds (r CIh), o-r,e -p, (°r C1h), p Cq1-q}

MB=1{ -p, (rup),(-r)u p} (UFix)
F={ -p,(=nNU p, (pLCr), (pC=(ryup)} (UFix)
3= {_-p, (PO, (p=(ry p)),p [k p C=((-r)U p)} (Res)
s=4{ -p, (pLCx), (pL=(ryU p)),pL=t,pC=f(-r)U p), r} (Res)

§={ -p, (pLCr), (pC=(ru p)),p=rpC=((=-r)U p),_r =r} (Res)
i=1{ -p, (pCD, (pLC=rU p),p =t pC=((-r)U p), r,-r, O

Figure 4.8:TrRs-refutation for the set of clausds —-p, (rU p),(=r)U p}

{ (r Em, °oar, e -, (Or Em,p I11_'(1}

is provided. It is worth remarking that in thers-step that yield$ from '} the formula —p
is treated as a now-clause formed by a temporal literal. éligph (basic) temporal literals are
involved in the derivation process, the rules for decompptgmporal literals are not needed.

Example 4.4.3.In Figure 4.8 atrs-refutation for the unsatis able set of clauses

{ -p, (rU p),(=r)u p}

is showed. In this example the formulasp and r are treated as always-clauses formed
by one propositional literal. Although literals that coiniethe connectivedl are involved, the
refutation is obtained without using the rul& Set). The rule( U Fix) is enough in this case.

Example 4.4.4.Letl'§ = { (=p C=p), p, rU —p}. Then, by applyingU Set) tor U —pin I
where® = { (—p [=p), p} andA = {p}, we obtain
r5=1{ (-p C=p),p,-p CEl-p [=(al-p), (-a[=p), (-alO)}

wherea is the fresh variable whose meaning is de ned torbE=b by the last two clauses.
Note that—-p is =A. Then, by four applications of the ru{®es) that respectively resolve the
singleton clause with the four occurrences ofp, we obtain

3 ={ (=p C=p), °p,r,p,=p CCl-p C=(al —p), >(al -p), -a, (-a [=b), (-a CO)}.
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MB={ ((PUg) [T, ((PUq) CTE), -q,_=s} (Res)
5={ (PUg) D, ((pPUQ) CTE), -q, -s,(pUq)} (U Set)
5={ (PUg) D, ((pUq) CTE), -q, -s,q [p] (Res)

q L=(aUq), -a}
i ={ ((PUq) [0, ((pUq) CIE), -q, -s,q [pJ (unnex)

q L=(aUq), -a-(auq)}
rf={ ((pU0) C0), ((pUq) LIE), —-q, -s, —a,alg} (U Set)

ri={ ((pPUg) Cr), ((PUg) [IE), -q, -s,_-aqlal (Res)
q CegbUq), —b}

2=4{ ((pUq) CO), ((pUq) CIK), -q, -s, —-a,qlal (Res)
q Le(bUq), -b,q}

= { ((pUg) CD, ((pUq) CIE), -q, -s, -a,q [a]
q [C=(bUq), —b,q, O

Figure 4.9:Trs-refutation for the set of clausds ((pU q) [r), ((pUgq) CIK), -q, -s}

Now, the operatounnextproduces

i ={ (-p Csp),p,aU-p, (-a[=p), (-a [O)}.

Hence, the application ofU Set) to aU —p in r‘l) where® = { (-p [=b),p, (-a [
—-p), (-a )} andA = {p} yields

ri={ (-pC=p),p,~p [A)-pLobU-p), (-b[=p), (-bla), (-al=p), (-alD}

where the fresh variable is de ned asa by the clauses (=b [=p), (=b [a). Then,
the application o{Res) to p and—p [Calyieldsa. Finally, the resolution op and (—-a [=b)
yields—a. Hence, the empty clause is immediately obtained frand —a.

Roughly speakinga holds whenever the satisfaction-ep (or equivalently the full Iment of
rU —p) is postponed. Howevea,means [=h, where—p is the negated context. So that, the
part of the de nition ofa given by the clause (-a [=b) allows the inference ofa, which
leads to the inconsistency.

Example 4.4.5. In Figure 4.9 we show aRrs-refutation for the unsatis able set of clauses
{ ((pUqg) X)), ((pUqg) [LE), -g, =-s}. Notethattheformula —sis treated as a literal
in I and as an always-clause iij. Besides, it is worth noting that ifij there are three
occurrences op U g, but the rule( U Set) is applied by considering the sétto be formed by

the rstfour clauses, i.esp ={ ((pUq) ), ((pUq) 1K), -g, =s}. So that,inthis
case the sedb includes clauses that contain the litegaU g.
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4.4.2 RelatingTtrs-Resolution to Classical Resolution

In this subsection we de ne the notion of linear local detion and, based on it, we establish
a relation betweemnRrs-resolution and classical resolution that enables us tonskeknown
results from classical propositional logic.

De nition 4.4.6. A set of clauseF is closedwith respect torrs-rules (shortly,TRs-closed) iff
it satis es the following three conditions:

(a) BTL(IN) = [{.e. any literal inl" is either propositionall§ or —p) or starts by-)*
(b) The subsumption rubm) cannot be applied t&

(c) Every clause obtained fromby application of the resolution rulgRes) is already inl" or
it is subsumed by some clausdin

De nition 4.4.7. LetI be a set of clauses, we denotdbyany set such that there exists a local
derivationr @ ... 3 I and either ° IO or I is TRs-closed.

Note that, in general, given a set of clau$esa local derivation that yields a sEt that
either contains the clause? [al is TRs-closed, may include some applications of the rules
(U Set) and( [Skt).

De nition 4.4.8. LetI” be a set of clauses, the non-deterministic operation thedtlgi” from
I without any application of the rulgaU Set) and ([Sket) is denoted byx _close

In the algorithm presented in Figure 4.10 (Section 4.6) wethe procedurex _closethat
implements the operatior _closeduring the construction of a derivation.

De nition 4.4.9. A set of clauseF is locally inconsisteniff there exists a local refutation for
. Otherwise it idocally consistent

Proposition 4.4.10. For any TRs-closed set of clausds if P [CIICthenr is locally consis-
tent.

Proof. If I" is TRs-closed, every clause that can be obtained by means of théRab) is al-
ready inl” or is subsumed by some other claus€idf P [dslnotinl™ then there is no way to
obtain it by means of a local derivation. "

The following notion is an adaptation of the conceptinéar resolution based on a clause
(see e.g. Section 2.6 in [115]).

De nition 4.4.11. A local derivationD for I" is linear with respect to a claus€ [11 iff it
satis es the following three conditions

(a) EveryTtrs-stepinD is an application of the ruléRes)
(b) C is one of the premises f@gRes) in the rst TRs-step

(c) For everyTrs-step inD, with the exception of the rst one, one of the premises is the
resolvent obtained in the previougs-step.

4 see Subsection 4.2.1.
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Next, we formulate a useful relationship betwaas-resolution and classical propositional
resolution.

De nition 4.4.12. LetT be a set of clausegrop(l') is the set that results fromrop (I") by
replacing all the occurrences of each non-propositionaral L [Lits(drop (IN)) with a fresh
propositional literal in a coherent way, in the sense thaingdementary literals are replaced
with complementary propositional literals.

Proposition 4.4.13.Let T be a set of clauses such trBTL(IN) = [
(i) drop (IN) is locally inconsistent ifprop(I") is inconsistent (in classical logic).
(ii) T is locally inconsistentiffirop (I') is locally inconsistent.

Proof. (i) For the left to right implication, sincBTL(I") = [f drop (I") is locally incon-
sistent then there exists a local refutation dioop (I") where everyrrs-step is an ap-
plication of the rule(Res) or the rule(Sbm). Hence, we can trivially build a classical
refutation forprop(I") with the same number of steps and using classical resolatidn
subsumptioninstead §Res) and(Sbhm), respectively.

Conversely, ifprop(I") is inconsistent then by completeness of classical propositres-
olution there exists a refutation f@rop(l") where only the classical resolution rule is
used. Then, it is easy to obtain a local refutationdoop (I") applying the resolution
rule (Res) to the corresponding clauses.

(ii) SinceBTL(IN) = Lf I is locally inconsistent then there exists a local refutafiofor
where everyrrs-step is an application of the ru{®es) or the rule(Sbhm). FromD we
can build a local refutatio®® for I where everyrrs-step is an application of the rule
(Res). It suf ces to remove fronD theTrs-steps in which the rul€Sbm) is applied and
to keep (or add) the clauses subsumebDihy the applications of the rulgbm). From
D°we can obtain a local refutation fdrop (I) in a trivial manner, by using a claudé
whenever the original derivatidd®uses the corresponding\ .

If drop (IN) is locally inconsistent then, by (i) and the completenessladsical propo-
sitional resolution, there exists a refutatibnfor prop(l") where everyrrs-step is an
application of the classical resolution rule. Fr@mit is straightforward to obtain a local
refutationD®for drop (I") where everyrrs-step is an application of the ru{®es). This
local refutation is trivially convertible into a local retation for I', by using the clause
N [Tinstead ofN [Cdiop (I") whenevemN [Tl "

Next, we provide a basic result that is used in Section 4.pfoving completeness. This
resultis an adaptation of the completeness of classicztiresolution (see Section 2.6 in [115])
that states

Given a consistent set of propositional clau®es for a propositional clausp
the se® [{P}isinconsistentthen there exists a refutationdor {P} thatis linear
with respect to the clauge

Proposition 4.4.14.LetI" be a locally consistent set of clauses such ®aL (") = [@nd let
C be a clause that is not il such thaBTL({C}) = Lf ' LT} is locally inconsistent then
there exists a local refutation fdr CLT} that is linear with respect to the clauge
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Proof. If ' LT} is locally inconsistent, by Proposition 4.4.13 themetp(IT [(LT}) is incon-
sistent and, by completeness of classical linear resaifiee above), there exists a refutation
DO for prop(I” C{T}) that is linear with respect to the clau€8 Cprop(I” [(LT}) that corre-
sponds to the clause. FromD?, it is trivial to build a local refutatiorD for ' LT} that is
linear with respect t&. "

4.5 Soundness

A resolution system isoundif, whenever a refutation exists for a set of clauseshenl”

is unsatis able. The soundness of a system can be guaranteedy rule, where a rule is
sound whenever it preserves the satis ability. Often sooles preserve stronger properties
than satis ability. In this section, we analyze each rutenfrthe point of view of soundness and
stronger properties and prove that the resolution systesis sound.

Proposition 4.5.1. The Basic Rules of Subsection 4.3.1 are sound. Moreovey, apglication
of these rules yields a new set of clauses that is logicalijv@dent to the initial set.

Proof. When(Res) is applied to two clauses (the premisesXL [N) and bo(E N9 in
I, the resolvent P ®(N N9 is a logical consequence §f °(L [N), Y(E CN9} and,
consequently, the new set of claugs@s= I (1P (N N9} is logically equivalent to the
set of clauses§.

For soundness @Sbm), suppose that °N and PN Care inl" and thaN®( N. Itis trivial
that any model of is also a model oF \ { PN} and vice-versa.

Given a set of clauseE, the rule(U Fix) replaces a clause?((P1U P,;) [CN) [T
with two clauses P(P, [Py [N) and P(P, [=[P;UP,) [N) obtaining a new sef®
= (T\{ °((P1UP2) CN)}) C{IP(P, [Py [N), °(P, [=(P1UP;) [N)}. The two
sets,I” and "% are logically equivalent since the clause that contaiesliteral of the form
P1U P, is replaced with the clauses obtained by taking into accthuminductive de nition
of the connectivel). Similarly, the rule( R Fix) replaces a clause?((P1 RP,;) [N) [1
I" with two clauses °(P, [CN) and °(P; [=[P; RP,) [N) obtaining a new sef? =
(F\{ °((PLRPy) [N)}) {1°%P, [N), P(P; [=(P1RP,) [N)}. The sets” and
% are logically equivalent because the clause that conthimditeral of the formP; R P, is
substituted by the clauses obtained by using the inductveitibn of the connectiveR. In
particular, every application of the rulés F ix) and( [Hix) yields a new set of clauses that is
logically equivalent to the initial set. Therefore, theg atso sound. "

Proposition 4.5.2. The rule( U Set) is sound. Moreover, the initial and the target sets of every
application of( U Set) are equisatis able.

Proof. When the rulg U Set) is applied to a set of claus€s a non-empty subset
{ B(PUP, [N)) |1<i<n}

is replaced with a set of clauses
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W= {P, [Pl [N, P, [s(aUPy) [N} | 1<i=<n}
[CONF(def(a, P1, A))
[{1 (¢(P1UP,) [=N;) | bj =landl <i=<n}

whereA = nom(F \ { P(P1UP, [N) | 1 <i < n}), a [Propis fresh,def(a, P1, A) =
(—a (@, [=N)) if A 8 [@nddef(a, P1,A) = -aif A= L1
So the new sdilis
(\{ %(PLUP, [N} |1<i<n}) W
We rst show, in item(a), that if [0is satis able theri™ is satis able and then, in iter¢b),
we show that ifl is satis able theris satis able:

(a) By Theorem 4.2.7, the st and the following seY are equisatis able:

Y= {P, [Pl [N, P, [s{aUPy) [N | 1<i<n}
[Cdef(a, Py, A)
{1 (¢(PLUPy) [=N;) | by =landl<i<n}

Consequently, the s€P and the set
M= ((r\WY) ) =((r\{ %"P.UP, [N |1<i<n}) [}

are equisatis able. LefM%s3% = M9 sincea does appear neither in the [N}'s nor
in I, we build a modeM of I in the following two cases:

1. If MMt E= P, [N foralli {1, ..., n}, then we can de ne the modé¥ for
I" as follows
» alllVl (sj) foreveryj [N
« p LV (s)) iff p My ofsY for all j LN and allp [CPropsuch thap & a.

2. 1f MN9sJTE P, CNI for somei [{1,...,n}, then it should be thaW1°%s3? =
{P1,°(aU P,)}. Letx be the least = 1 such thatM%9s0% = P,. If x = 1 then,

sincea does not appear iR, and MW1%s3% = P4, the modelM of I" can be built
just as in the case 1 of this ite(a). If x > 1, then

M9s)¥ = {a} [def(a, P1, A)
for everyy such thatl <y < x. Note thatA cannot be the empty séfdecause in
such casea would not be true for any such thatl <y < x. As a consequence,

W2s0t = {a} P (=N}

for everyy such thatl =y < x.
So that the moddM of I can be built just as in the case 1 of this itéa).

(b) Now we show the converse implication. LidW1, so[[}= I', sincea does not appear in the
N;'s, we build a modeM?of in the following two cases.
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1. Let us consider thdiV, sg[(}= N; for all i [{L,...,n}. Then we can dene a
modelM°for as follows:
- a V) o(sf) for everyj [N
e p [Vy o(SJ-O) iff p C\Vy (sj) forall j [N and allp [CPropsuch thap £ a
2. If MM, so[CE N; for somei [H1,...,n}, then it should be thafiV, so[ =
P1U P,. Letx be the least = 0 such thati¥, s,[}= P,. If x = 0 then, sincea

does not appear iR,, a modelMP of "% can be built just as in the case 1 of item
(b). If x >0, lety be the greatest such that <z < x and

M, s, (= nom(F\ { %(PLUP, [N}) |1<i=<n}) ({P,UP,}

Note that at least = 0 must satisfy the above set of clauses. As a consequence of
the choice ok andy, it holds that

M, sy (b= {P1, =P2, o((P1 =how(M\{ "(PLUP, [N]) | 1 <i=<n}))UPy)}.

Besides,[M, sy L= now(I" \ { Bi(P,UP, [N) | 1 <i < n}). So that, we can
de ne a modelM®for M as follows

e p [y o(SJ-O) iff p My (sj+y) forall j [N and allp [CPropsuchthap & a
- a [Vl o(s))
= a [V o(s)) for everyj [{1,...,x—y—1}
* a iV o(s)) for everyj = x —y. .
As a particular case of Proposition 4.5.2, the derived fllget) is also sound.
Proposition 4.5.3. The operatounnext(see De nition 4.2.3) preserves satis ability.

Proof. If M is a model of” thenunnext(I") is true in the state; of M, which obviously gives
a model forunnext(I). "

Note that the equisatis ability, in general, of initial anidrget sets ofinnext cannot be
ensured. For exampl€p, —p, °q} is unsatis able, butinnext({p, —p, °q}) = {q} is satis able.

As a direct consequence of the above Propositions 4.5.2, dtll 4.5.3, we have the fol-
lowing soundness theorem:

Theorem 4.5.4.If the resolution systemRrs produces a refutation frorfi, thenrl” is unsatis -
able. "

4.6 The Algorithm SR for SystematicTRS-Resolution

The nondeterministic application of the settefs-rules yields sound derivations but it does not
guarantee completeness, even with the proviso of fairiedhis section we rst introduce an
algorithm for gystematic esolution derivation calle@ R that uses the systemrs in a more
(not fully) deterministic way which ensures completenéBisen, in the second subsection we
provide some detailed examples of applicatiors&. In the third and fourth subsections we
respectively provide the termination and the worst casepbexity results forSR.
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Input: A nite set of claused”
Output: A resolution proof fol™ calledD(I")

v MY:=T;i:=0; j:=0;

. selev.se := fair_selec(9);

s loop

4 if selev.set 8 [

5 then (I, selev_set ) := apply.U _Set(I'?, selev.set); j :=1;
6 elseselevset := [

7 end if;

8 r. .= x_close(ri);

9 if P 1) or is_cycling(D(IM)) then exit;, end if;

10 o, = unnex(r,);

u if selev_set n even(?,; ) = [then selev.set,; = fair_selec(l'?,, );
12 elseselev.set,; = selev._set

13 end if;

14 i=i+1 J:=0;

15 end loop

Figure 4.10The AlgorithmSR for Systematiacrs-Resolution

4.6.1 The AlgorithmSR

The algorithnS R, for any input set of clausds obtains a niteresolution proof-calledD (IN)—
of the form

Mo..orards ..o z2_J213a8 ...8 rf«

As we will respectively show in Subsection 4.6.3 and Sectiah D(I") is always nite and
D(IN) is a refutation whenever the input deis unsatis able. When convenient, we represent
D(IN) by sequences of pairs

(Mo, M) A (M1, M) 414 (@}, 1))

wherel’; andl"; coincide with™? andrihi respectively, for every [{0,...,k}.

Derivations (refutations) obtained by means of the alpaniSR are called systematic
derivations (refutations) and systematiks-derivations (refutations).

The construction oD(IM), for any inputl’, is expressed by means of a while-program in
Figure 4.10, called the algorith8IR, which we explain next. In order to ensure tiafl) is
nite, the rule (U Set) is applied exactly to one eventuafitgif there is any) between each two
consecutive unnext-steps (see Subsection 4.4.1). Foptinabse, the algorithi@8R keeps two
variablesselev_set andselev_set for everyi = 0. Both variableselev_set andselev_set
take as value a set that is a singleton or empty, dependinghether? contains at least one

5 see De nition 2.2.1.
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eventuality or not, respectively. The varialdelev_set stands for the selected eventuality in
riO, whereaselev_set corresponds to the eventuality selected in every set ofdtyeence from
L until [,

The algorithmSR (see Figure 4.10) initializes both the set of clauses fatiatathe derivation
S to be the input sef and the variablselev_sef to be either, a fairly selected eventuality
in 'Y if there is any, or empty, otherwise. The expresihjnselec(ré) encapsulates thair
selection of an eventuality if,, where fairness means that if an eventuality appears dsblei
(from some moment onwards) for being selected wheneveremteslity must be selected, such
eventuality cannot remain inde nitely unselected.

After initialization, each iteration-step of the algonttg R serves to extend the derivation from
O tol;, by means of the following process:

= The lines 4 to 8 serve to extend the derivation fri5frto I, .
First, by lines 4-7, the ruléU Set) is applied exactly to the selected eventuality provided
that selev.set & [1More precisely, ifselev.set = {T}, then the rule(U Set) is
applied to a partition of ¥ of the form® (T [$elev_set),® producing the seff! in
D(I"). Additionally, as part of this application of the r(l&J Set), the variableselev_set
gets the valuga U P} wherea U P is the new eventuality introduced by the rlg Set)
with a fresh variabl@. Otherwise, ifselev_sef is empty, the rul€ U Set) is not applied
andselev_set gets the valug.] _
Second, by line 8, the remainingrs-rules are repeatedly applied If{) (wherej =0 or
J = 1) to construct’; . The operationx _closeis introduced in De nition 4.4.8. Hence,
I; is eitherTrs-closed (see De nition 4.4.6) or contains the empty claldereover, the
variableselev_set is not changed by the operation_close Hence, at line 11 the value
of selev_set is the same as atline 7.

= Inline 9, the loop is exited if either the empty clause hasmtedded td; or a cycle in
D(IN) is detected according to the following de nition.

De nition 4.6.1. LetD = (I'o,p) 4, ,) A 14T, Ir)) 1A (T}, T))
be a derivation (wheré < j < k), we say thaD is cyclingwith respect tg andk iff D
satis es the following conditions

1. brimn for everyi [{D, ..., k}

2. nowm(unnext(l",)) = now;)

3. For every eventuality such thaflT [Llts(now('y)) forall g {4, ..., Kk}, there
existsh [{], ..., k} such thaselev.set, = {T}.

The functionis_cycling(line 9) is supposed to implement a test of the conditions(2)
(3) in De nition 4.6.1 on the current derivatidd(I") = (o, y) 414 (), T;).

« Otherwise, if the loop is not exited, the operatmmext (De nition 4.2.3) is applied to
theTRs-closed sef; toyieldI?,; (line 10), which will be the® of the next step, after
increasing (line 14).

6 See De nition 4.2.1.
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< Finally, the lines 11 to 13 serve to initialize the variabtdev_sef .1 . Note that, after the
application of the subsumption rule and/or of the operatorext, every clause that in-
cludes the selected eventualiglev_set could have disappeared from the curréf; .
In other words, although(aU P) occurs in somet“i , it could happen that the selected
eventualityaU P does not occur il?,; . The functionevent(line 11) returns the set of
all eventualities occurring in an input set of clauses, that

De nition 4.6.2. LetW be a set of clausesyen(¥) = {P, U P»| P((PLUP,) [NI) [
Wl

Therefore, ifselev_set n even(I',; ) is non-empty, then the selected eventuality remains
selected. Otherwise, the functifamir_selectis used to fairly select an eventuality from
even(r?,, ).

We would like to remark the following three issues about thestruction ofD(I") by the
algorithmSR

1. Although(Sbm) can be correctly applied whenever it is possible, in ordeguarantee
termination it suf ces to apply(Sbm) just before testing for a cycling derivation. This
can be seen in the proof of Lemma 4.6.13.

2. For achieving completeness the operatanext must always be applied tors-closed
sets. Otherwise, equisatis ability is not guaranteed heeghe operatamnextpreserves
satis ability (Proposition 4.5.3) but, in general, doed peeserve unsatis ability.

3. Intheintermediate sel‘é'? of the process for obtaining from I, literals can appear that
are neither if; norinl;. This fact can be easily observed applying the algorigir
to (e.g.) thesef = {pUq,q}.

4.6.2 Examples

In this subsection we apply the algoritt8iR to some illustrative examples. As in the examples
showed in Subsection 4.4.1, the clauses to which each ridetsfhave been underlined but
we do not underline any formula in the applications of therafm unnext Since thesers-
derivations are built by using the algoritt8iR, in each gure we show the value of the variables
selev_set andselev_set .

Example 4.6.3. The derivation in Figure 4.11 is a refutation of the unsagisle set of clauses
{p, (—p [=p), [=b} that has been obtained following the algoritla®R. First of all, in I,
i.e., inTY the selected eventuality is9p and consequentlyelev.sety = {[Sp}. Then, the
application of the ruld [Skt) with contex{p} (always-clauses are excluded from the negation
of the context) introduces a new propositional variadknd transforms the claudep into the
last two clauses iff3, -p [={aU —p) and (—a [=p). Additionally, the value aelev_set,
is setto{a U —p}. Then, the rule applications that correspond to the operatk _close(line 8,
Figure 4.10) are performed and thi®s-closed sef3, i.e., I, is obtained. In order to obtain the
TRs-closed sef§ from I} the resolution rulgRes) is applied three times and the subsumption
rule (Sbm) is applied once. In the application of the rulRes) to the sef 3, the clauseg and
(-p C=p) are the premises and the resolvent is the last claysi® 3. Then the rulgRes)
is applied to the rstand third clauses iiZ, giving the last clause(aU —p) in 3. Again, by
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o= o= {p, (-p C=p), [(=h} ([Set) selevsep = {{(=h}
rg= {p, (=p C=p),-p C=faU -p), (Res)  selev.set = {aU -p}
(-a [=h)}
5= {p, (-p C=p),-p C=fau -p), (Res)
(-a [=p), °p}
= {p, (-p C=p),-p C=fau -p), (Res)
(-a [=p), op, >(aU -p)}
= {p, (-p C=p),-p C=faU -p), (Sbm)
(-a [=b), op, o(aU —p), ~a}
o= T3={p. (=p =p), (-a [=h),ep, (unnexd

°(@u -p), ~a}
r=r9={ (-p C=p), (-a [=hp),p,aU-p} (USet) selevsey ={aU-p}

rt=4{ (-pLCsp), (~al=p),p,—plal (Res) selevset ={bU-p}
—p L=fbU -p), (=b [a),
(=b C=h)}

r% = { (_'p Iﬂ))! (_'a )191 Y Lal (RES)
=p LefbU —-p), (=b [a),
(=b [=h), a}

8= { (-p=h), (-a[=p),p,-pLCal (Res)
—p CebU —-p), (=bL[a),
(=b [=h), a, ~a}

rl = r;.‘ = { (_'p Iﬂ))! (_'a )1p1_'p II‘
=p LefbU —-p), (=b [a),
(=b [=h), a, —a, [

Figure 4.11.Systematiars-refutation for the set of claus¢®, (-p [=p), [=b}
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resolution of the rst and fourth clauses Ifﬁ we obtain the clausea in rg. By subsumption,
the third clause is dropped, since it is subsumed by the sirth yieldinglg. Then, since
no other rule can be applied, the operatannext transforms therrs-closed sef3 into I';.
The latter represents the clauses that must be satis edersthtes;, provided that the state
Sp satis eslMy. SinceaU —p belongs taeven(}), the value of the setelev set is {aU —p}.
Since the selected eventuality must be immediately ha(efted the application of the operator
unnex?, the rule(U Set) is applied tol'; = Y. Note that, the context is agafip}. Then,
' contains four new clauses that substitute the claaige~p. A new propositional variable
occurs in the new clauses ardlev_set; is{b U —p}. Finally, by three consecutive applications
of the rule(Res) —which correspond to the operation_close- to the three underlined pairs of
clauses, the empty clause is obtainedfn Note that the repeated contextlig andI"; leads
to nd a contradiction.

In the previous example, if we had used the rlEElix) and( U Fix) instead of the rules
(CSkt) and (U Set), we would have not obtained the empty clause. The followxay®le
illustrates this fact.

Example 4.6.4.1n Figure 4.12 we show a derivation whose initial $&t coincides with the
initial unsatis able set considered in Example 4.6.3 (Fig4.11). Whereas in the refutation
presented in Figure 4.11 we rst apply the rul&Skt), we start the derivation in Figure 4.12 by
applying the rulg( LHix). Then the resolution ruléRes) is applied twice and the subsumption
rule (Sbm) once, obtaining thers-closed sef’. The application of the operatamnextto
the setl"§ yields the sef which contains the same clauseslds By repeating this process,
we could obtain an endless resolution derivation. Indeadwi never obtain the empty clause
unless we use the rulé&Sket) and( U Set) in an appropriate manner. Obviously, the derivation
in Figure 4.12 does not follow the algorith&R.

The next example shows how the systemats-resolution deals with clauses of the form
P.

Example 4.6.5.In Figure 4.13 we provide a systematirs-refutation for the unsatis able set
of clauses{ p, [=b}. Since the procedur _closein the algorithmSR uses the function
BTL (see De nitions 4.2.3 and 4.4.8) in order to decide whethesetof clauses isrs-closed

(De nition 4.4.6) and sinceBTL is based on the functiodrop (De nition 4.2.3), clauses of
the form P are considered always-clauses formed by one propositiiteahl and not now-

clauses formed by one (basic) temporal literal. So follapntime algorithmSR we obtain the

refutation in Figure 4.13. But we would like to remark thatvié do not follow the algorithm
SR, itis possible to build the refutation in Figure 4.14.

The following two examples show that the subsumption ¢8lam) is required to guarantee
the termination of the algorithi@R. In the case of Example 4.6.6 the concerned set of clauses
is satis able, whereas in Example 4.6.7 is not.

Example 4.6.6. Let us consider the derivation for the satis able set of das{(pUq) [
r, -p, -Qq} that is showed split (due to space reasons) in Figures 4.1b4m6. The
derivation is only developed until the rst application dfe operatorunnext, which yields the
setl?.
It is worth noting that if the rulgSbm) were not applied to the sets frofig* to I'3%, then
the setl; would be
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= {p
= Ap
= Ap
= {p
= A{p
M= {p

(—p C=p), [=b}
(=p C=p), ~p =1 =b}

(—p C=p), ~p =1 =b, °p}
(—p C2p), =p =l b, op, o [Fp}

(=p [=p), °p, < L=b}
(=p [=p), [=b}

([Hix)
(Res)
(Res)
(Sbm)

(unnexi

Figure 4.12Non-systematiars-derivation for the set of clausdp, (—p [=p), [=b}

r0: r8:{ p1}

rg={ p,-p C=aU-p), -a}

2= { p,—p C=(au -p),(au -p),

r0 = rg = { p1 O(aU _'p)1 _'a}

r=r={ p,au-p,

—|a}

r={p -a-plal
—p Ce(bU-p), —b}

2= { p,_-a,-p Cal-p C=fbU-p),

—b, a}

r,=r3={ p, —a-pal-p =bU-p),

—lb, a, III

—|a}

([Set)
(Res)
(Sbm)
(unnex®
(U Set)
(Res)

(Res)

selev.sety = {[Fp}
selevsef, = {aU —p}

selev.set; = {aU —p}

selevset = {bU —p}

Figure 4.13Systematicrrs-refutation for the set of clausds p, [=p}

re= {_p, =h}
3= { p, Gh, O

(Res)

Figure 4.14Non-systematigrs-refutation for the set of clausds p, [=p}
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Mo=ry= {(pUg) ¥, -p, —-q} (USet) selevsety={pUq}
ri= {q CplC_¥,q Ce(a; Uq) T, ( Fix) selevset ={a1Uq}
—|p, —|q, —|a1}
5= {q CpiCrlg CpiCelr, ( Fix)
q Le(aaUqg) L, —-p, —-q, -ai}
r3= {q CpiCrlg CpiCel T, (Res)
q [efa;Uq) Crlg Ceqa, U q) Cel o,
_'p1__'q1 _'al}
rg= {o Cpclg CplCel r, (Res)

q [efa;Uq) Crlg Cefa, U q) Cel o,
P, 0, —ai,p m

5= {q CpICTlq CplCelr, (Res)
q [e(a1Uq) Crlg Le(a;Uq) L=l
-p, —q, —ai,p LLlp C=lr}

rg= {q CplCrlq CplCelr, (Res)
q [efa;Uq) Crlg Cefa,Uq) Celr,
-p, —q, =-ai,p CClp =,
°(arUq) [}

r{= {q CpiCrlq CpiCel r, (Res)
q Le(aaUq) Crlg Cefa;Uq) L=,
;p1 -, —ag,pP IIIp [l r,
°(arUq) Crle(asUq) =1 r}

r8= {g CpICElg CpiC=l, (Res)
q [e(a1UQq) g C=fa; Uq) L=,
_=p, —q, -ag,p [Elp Cel,
o(arUq) Crle(apUq) C=1r,q [}

= {q CpICTlg CpIC=l r, (Res)
q Le(aaUq) Crlg CefaUq) L=,
-p, —q, —ai,p Lrlplelr,
o(a1Uq) [rle(aiUq) =1,
q Lrlg L=l r}

re’ = {q CpICTlg CpICed , (Res)
q Le(aaUq) Crlg Cefa;Uq) L=,
-p, —q, -ay,p [Flp Celr,
°(aUq) Crle(aUq) =1,
q Lrlg Lol r,r}

Figure 4.15:Systematicrrs-derivation for the set of clausd¢pU q) I, -p, -—q} (Part1 of 2)



4. Invariant-Free Clausal Temporal ResolutionFaiL

99

r5t = {qg CplCriq CpIC=d T, (Sbhm)
q Le(aaUq) Crlg CefaUg) Celr,
-p, g, —ag,p IIIp Lelr,
°(a1Uq) [rle(aiUq) =1,
q Lrlg Celrr,e 1}

32 = {q CplCrlq CpiCelr, (Shm)
q C=fa;Uq) ]
-p, 0, —ag,p IIIp Lelr,
°(atUq) Crle(a;Uq) =1,
q [Clg C=dr,r,e 1}

r3 = {q CplCrjq CpiCelr, (Sbm)
-p, 70, —ap,p IIIp Lelr,
o(apUq) [rle(aiUq) =,
q [rlg Celr,re r}

r5* = {q CplCriq CpIC=l , (Sbhm)
-p, —q, —ay,p CElp C=1r,
o(azUq) =1,

q g C=Ir,re r}

r3° = {q Cplrlq CpiCel r, (Sbm)
-p, —Q, -ag,p LLlp Celr,
q CClg =1 r,r,e r}

r3¢= {g CRCE) -p, —q, —ay, (Sbm)
p Lrlp Lelr,
q [Clg C=Ir,r,° 1}

r5"={ -p, -q, -a,pCClp =1, (Sbm)
q [Clg Cel r,r,e r}

8= { -p, -q, -a,p L] (Sbm)
q [rlg Cel r,r,o 1}

r°={ -p, -q, -ap,p L] (Sbm)
q Crlr,> r}

r®={ -p, —q, -ay,pLCLlr,> r} (Sbm)
3= { -p, -0, -ay,qLCEr> r} (Sbm)

o=Trg={ -p, -0, -agr-e r} (unnexd

M=r= { -p, -q -a;, r} selev.set; = []

Figure 4.16:SystematicrrRs-derivation for the set of clausdgp U q) [,

—|p’

—q} (Part 2 of 2)
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{(atUq) Cr, =-p, —-q, r, -ar}

andselev.set, = {(a1U q)}. Indeed, every sdf; (such thati = 1) obtained afteri unnext-
steps would be of the form

{@VUqg) I, =p, ~q, r}-a,|l<h<i}

andselevset = {(a; U q)}. Consequently, it would be impossible to obtain two Sgtand

¢ such thatd < j < k andnow(l’;) = now(unnext(l",)). Hence, the resolution process
would not stop. Actually, from the eleven applications ef thle (Sbm) in Figure 4.16, only

the application of the rul¢Shm) to the set§* is crucial. This application removes the clause
o(a; U q) =1 r and yields the set3°. Note that the other ten clauses removed, respectively,
by the remaining ten applications of the rul@bm) would also be removed by the application
of the operatounnext This example shows that the ry®@bm) is needed for completeness of
the TRS-system.

Example 4.6.7.For the unsatis able set of clausd¢p U q) ({dUs), -p, =-qg, -s}, ifthe

rst selected eventuality ip U q then the same problem as in Example 4.6.6 happens, but with
(ai U q) (U s) instead of(a; U q) [T, whereq; is a fresh variable. This example shows that
the rule(Sbm) is also needed for refutational completeness ofttke-system.

One could think that if there are more than one eventuality tan be selected by the
fair_selectoperation, then it could be that not all of the eventualitiese right choices (e.g.
because the program prevents the satisfaction of somero)tAdis view leads to the idea that
wrong choices will have to be repaired by backtracking tocheice point and changing the
selection. Moreover, sometimes one eventuapitmust be necessarily ful lled before another
eventuality. In those cases, one could think that selectinbefore selectingy could end
up requiring backtracking. In the next example we illugdtatTrs-resolution does not need
backtracking (independently of the selection strategy).

Example 4.6.8. We consider the satis able set of claudess {[q) [r] (-g [}r)}. There
are two eventualities| gland [r] that must be ful lled, but the third clause(—-q [I-r)
states that once the eventualitylis ful lled, the eventualityL rlcannot be ful lled. So that,
the eventuality_rlmust be ful lled before the eventualifyglis ful lled. The selection function
fair_selectcould rst select the eventualitiglor could rst select the eventualiti.r] However,
if fair_select rst selects Lq] it does not mean thdiglis ful lled before [rlis ful lled. Actually,
sincel.rImust be ful lled beford_g] that is what happens. The corresponding cycling systemati
TRS-derivation is shown in detail in Figures 4.17 and 4.18 (isfdit due to space reasons).
After the rst selectionselev.sefy = {[q}. Then the application of the ruld_Set) with
context{ L1} generates the clausgs[={aU q) and (-a [}r) wherea is a fresh propo-
sitional variable. At the same time, the valuesetev_set, is set to{aU q}. Then, the rule
applications that correspond to the _closeoperation (see Figure 4.10, line 8) are carried out
and theTRs-closed set of clausesy? is obtained. Next, by the application of the operator
unnext, the setr is generated. Since the literalu q belongs toeven{I?), it remains as the
selected literal and, consequently, the rqle Set) is applied tol§ with aU q as selected lit-
eral (i.e., selev.sety = {aU q}) and with empty context, obtaining the set of clausgsind
settingselev_set; to {b U q}, whereb is a fresh propositional variable. The operation_close
that yields therrs-closed sef] from '}, encapsulates several applications of the r(fRes)
and the rule(Sbm). The sef™S is obtained fronT} by using the operatounnext Since the
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)

r3=

=I5 =

{Lg) [x] (=g L)}

{Ld (=g C}r),q C=(aUq),
(-ma R}

{ (=q L_hr),q C=(aUq),
(—ma [Ir),r C=1r}

{g C=auUq), (—a [1r),r =1r]

(-q [=F), (-q [=1 -}

{q C=(aUq),r C=l1] (-q =),
(=g £=1-n), (-a [=h),

(—|a <]l —-r)}

{a C=(aUq), r (517 _(-q [=h),
(-q =1 -n), (-a =),
(ma =1 =), r [k}

{q C={aUq), r Cs1F (g (=),
(-q =1 -n), (-a =),
(=a =1 =), r [=h, ~q}

{q C=@aUq), r (517 (q (=),
(-q =1 -n), _(-a [3h),

(_'a Lol _'r)1 r 1_'q1

{g C=auq).r (511 (-q (=),
(- C=1 ), (-a (=),

(-a =1 =), r ,—-_q, r [=h, -a}

{q C=faUq),r C=lr] (—-q =),
(~q C=1 =), (-a [=),
(—a =1 =r),r [=h, ~q, r [=h,

-a, >(al q)}

{g C=(aV),r [0 (-q (=),
(-q =1 ), (-a C5h),

(—a =1 =r),-q,r [=h, -a, ~(auq)}

{a C=(auq).r (517 (-q (=),
(- C=1 ), (-a =),
(ma =1 1), ~g, ~a, =(aU )}

{r Celx] (=q C=F), (=q =1 =),

(_'a )1 (_'a Lel _'r)1 —q, 7a,
°(auq)}

([(Skt) selev.sey = {La}
([Hix) selevsety ={aUq}

( Fix)

( Fix)

(Res)

(Res)

(Res)

(Res)

(Res)

(Shm)

(Shm)

(Shm)

(unnexi

Figure 4.17 Cycling systematiars-derivation for{ Lq] [r] (-~q [C1-r)} (Part 1 of 2)
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F1=

-
N
I

M= { (ng =),
(ma =),

rt={ (-q =),
(—a =),

(=q =1 =),
(-a =1 =r),alq}

(=q =1 =),
(—a =21 =),

q Calg C=(bUq), -b}

{ (=q =),
(—a =),

q Calg C=(bUq),
(=q =21 =),

{ (=q [=1),
(—a =),

g [alg C=(bUq),

{ (=g =),
(-a =),
q [=(bU q),
{ (=g =),
(-a =),
q [=(bUq),
{ (=g =),
(—a =),
q [=(bUq),
{ (=g =),
(—a =),
q [=(bUq),

= 3= { (-q [=h),

(-a =),

3= { (-q =1 =),

(=q =1 =),
(—a =21 =),
—|b,q }

(—a =21 =),
—b,q C=F, —r}
(—q =1 =),
(—a 21 =r),q [a)

=b,q =k, =r,a L2l —r

(=q =1 =),
(—a 21 =r),q [a)
=b,q =k, ar,a 2l =r,e =r}

(—q =1 =),
(—a 21 =r),q [a]
=b,—r,a =l =r,° —r}

(—q =1 =),

(—a 21 =r),q [a])
—b,—r, e —ar}

(=q =1 =),
(—a =21 =),

—b, _-r}
(—a =),

(-a =1 =r), =b,_-r}

r3={ (-q = ),

—|b' —|r}

(—a =21 —r),

now(unnext(3)) = now(I"3)
{-q,r,-a} 3 {q,-r,-b} B {-r,-b}B {-r,-b}- -

(U Set)

(Res)

(Res)

(Res)

(Res)

(Sbm)

(Sbm)

(unnext)

(Sbm)

(Sbm)

selev.sepy = {aUq}

selev_seb = [

selev_set, = [

Figure 4.18Cycling systematiars-derivation for{ Lq] [r] (-~q [C_1-r)} (Part 2 of 2)
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seteven(I"9) is empty, the value afelev.set as well as the value afelev_set, is the empty
set. Therefore no context-dependent rule is applieédtand we get thers-closed sef’3 by
applying the rulg(Sbm) twice. At this point the derivation is cycling with respezjt= 2 and

k = 2 (see De nition 4.6.1). In particular this means thadpw(unnext(I'3)) = now(I'9). The
setsl'y = '}, I, = '] andl", = '} characterize a collection of models for the initial set of
claused". All the models of such collection make true the litedalg, r, —a} in sg, the literals
{-r, -b}ins; and also the literal{-r, —b} in all the states; such thafj = 2. Additionally,q
must be true irsi for somek = 1. Therefore, if we choose to makérue as soon as possible,
i.e. in the states;, we can obtain an ultimately periodic mod¥ of I with statessg, s1, So, . . .
such thaty (so) = {r}, Vm (s1) = {a} andVy (s;) = Libreveryj = 2.

In Example 4.6.8 we can see that the strategy for selectiagtealities does not compro-
mise the completeness oks-resolution. However it can affect ef ciency. In particulé we
had selected the eventualityrlinstead of the eventualiti,q] the derivation would have been
considerably longer.

Remark 4.6.9. Note that wher™ is a satis able set of (hon-temporal) classical propositid
clauses, the derivatioB(I") obtained by the algorithi8R is of the form} 3 ... 3 rgo 41
9, and it can also be represented @S, o) 2_(T},I;), wherello = T =T, rgo =Ty

M = I, = unnext(I'y) = [rhe sef’{ —which is at the same tinde, andI";— is TRs-closed
and additionaly produces a cycle becal3@") veri es the three items of De nition 4.6.1 and,
in particular the second one sing@w(unnexi(I";)) = now(I';). So the cycle is from? to
9. Sets of temporal clauses, e.g. the singlgteR}, can also give rise to this kind of cycling
derivation ended in an empty set. However, the singl¢toR } produces a cycle with non-
empty set of clauses. In general, every systematic desivdltiat is not a refutation becomes
cyclic.

Along the rest of the chapter, we will denote BYI") any derivation of the fornglo, I')
M, r)a . 1M [@,r)ad . @A (4, obtained bySR with initial setl'o = I". In

particular,D(I") may be a refutation or a cycling derivation with respeg smdk.

4.6.3 Termination

In this subsection we show that the algoritBiR always obtains either a refutation or a cycling
derivation after a nite number of iterations. Rememberttve assume tha8R uses a fair
strategy for selecting eventualities.

The rule( U Set) introduces new eventualities involving fresh variablesotder to justify
that derivations that (potentially) use the r(le Set) are nite, we have to show that, when-
ever a refutation is not obtained, the cycling condition®@nition 4.6.1, in particular its third
requirement, will be satis ed after a nite number of itei@t steps. In other words, the ter-
mination proof ofSR requires to show that the algorithm cannot generate an @ number
of new propositional variables. A priori, there are two wysgenerating new propositional
variables inSR. The rst is the translation t&€NF applied in the output to the rulgU Set).
However, no new variable is introduced 8RR in this way. The reason is that the translation to
CNFis applied to a formula that only nee@dNF-rules to be inCNF and DtNF-rules do not
use extra variables (see Proposition 4.2.6).

The second source of new propositional variables is thaa@kptcurrence of a fresh vari-
able in the consequent of the rul& Set). However, as we will show, the sequence of new
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eventualities produced by successive applications ofuled tJ Set) is always nite. Thereis a
twofold reason for the latter. On one hand, the clauses dg @inew variable (see functiclef

in Figure 4.5) are always-clauses, which are excluded fitoemegated context. On the other
hand, in the algorithn$ R, the rule( U Set) is always applied to sets where the propositional
variables introduced (as fresh) by previous applicatidrdbSet) are also out of the context.

In order to prove the termination result, we rst de ne the saivlit(I") (De nition 4.6.10)
formed by all the literals that could appear in the clauseaiobd froml" by means of all the
TRs-rules with the exception of the ru{eJ Set) (and the derived rule[ Sket)). Then the closure
of a set of clauseE (De nition 4.6.11) is formed by all the clauses that can bagated from
the literals inunivlit(I").

De nition 4.6.10. LetI be a set of clauses. The astivlit(I") is the smallest set of literals
de ned as follow$

e Lits(I") Cunivlit(l)

 If L Cwhivlit(l), thenE Cahivlit(I)

e If PL U P, Cuhivlit(), then{e(P1 U P3), Py, P>} [Cunivlit(l")

e If P1 R P, Cuhivlit(l), then{>(P1 R P2), P1, P2} Cumivlit(I")

e If [Pl Cuhivlit(l), then{~ [P, P } Cumivlit(I")

e If P [Cuhiviit(l), then{> P,P } Cunivlit(I")

e If oL [Cuhivlit("), thenL Cuahivlit(l).

The setunivlit(I") is nite for any set of clause$ since we only consider nite sets of
clauses and nite clauses. Now, we de ne the closure of a elamises.

De nition 4.6.11. Let " be a set of clauses. The sdbsurdl) is the set formed by all the
clausesC such thatits(C) [Cugivlit(I).

As a consequence of the nitenessuofivlit(I") and of the fact that clauses do not contain
repeated literals, the selbsurdl) is also nite.
We additionally consider the notions direct descendardndsequence of descendants

De nition 4.6.12. LetD(I") = (o, g) 4——1 (I}, I,) be the derivation constructed by
the algorithmSR (Figure 4.10). We say that an eventuality is thedirect descendartf an
eventualityT in D(I") iff for somei [0, ..., k}: selev.set = {T}andselev.set = {T%.
LetS =Tg, T4,..., Tn be a sequence of eventualities. We say $higtthesequence of descen-
dantsof Tg in D(I) iff Ti+1 is a direct descendant @ in D(I) forall i [(0,...,n—1}.

For example,[=h, aU —p, b U —p is the sequence of descendantd edp in the derivation
in Example 4.6.5.

Next we rst show that for alD(I") and every selected eventualityin D(I"), the sequence
of descendants of in D(IN) is nite (Lemma 4.6.13). The proof is based on the fact that th
algorithmSR follows a speci ¢ strategy with two crucial features. Fjr$te algorithm keeps at

S
" Remember thatits( °(L: _ ... Ln))= fL1,..., LngandLits() = car Lits(C).
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most one selected eventuality to which the rleSet) can be applied and when a new even-
tuality is generated, by application 6t Set), that new eventuality has priority to become the
selected eventuality for the next application of the (UleSet) (after an unnext-step). Second,
the rule( U Set) is applied before any other rule in each iteration step. As@equence of these
two crucial features of the strategy followed by the aldoritSR, when the rulg U Set) is ap-
plied with selected eventualify, eventualities generated by previous applicationébSet)

do not appear in the set of clausegsee Figure 4.5) and the propositional variables introduce
(as fresh) by previous applications @fl Set) appear only in always-clauses. Hence, the con-
text (De nition 4.3.3) is always a subset of the closure gdtich is nite. Therefore, since the
number of possible different contexts is nite, if the segoe of descendants of an eventuality
were in nite, some context would be repeated, but contegetiéion produces the end of the
sequence of descendants (as shown in the proof of Lemmé&1.6.1

Lemma 4.6.13.For all D(I") and every selected eventualityin D(I"), the sequence of descen-
dants ofT in D(I) is nite.

Proof. Let T bePo U P. Suppose thaf occurs in the seff in D(I"), selev.sey = {PoUP}
and the sequence of descendant$ af D(I") is in nite. When the rule( U Set) is applied to
a partition of"J of the form®, M3 [(Po U P}, the set™) [Py U P} is replaced with the
union of the following ve disjoint sets of clauses

Wi ={P [Py [(No| °((PoUP) [Np) [Th}

Wi ={P [=(a;UP) [Nb| P°((PoUP) [Np) LTh}
W ={ (o(PoUP) C=No) | ((PoUP) [Ng) CTh}
Wi ={ (-a; CPb)}

W8 = CNF( (-a; [=how(®g)))

whereW$ CPP corresponds t&NH(def(ay, Po, now(®g))) (see Figure 4.5).

Hence, the selfé is the union ofpy and the above ve sets, and the new selected eventuality
isa; UP, i.e.,selevsety = {a; U P}. The fresh variable; only occurs inW3 andWg C®f.
The latter is a set of always-clauses, and the occurrencasiof?g CWPP are not preceded by
o, Consequently, after the operatiomscloseandunnext (lines 8 and 10 in Figure 4.10), all
the occurrences d in the sef™ are either in an always-clause or in a now-clause that comes
from w%. Hence, the only now-clauses whereoccurs inr‘f are of the formN [agdU P, where
ai U P is the new selected eventuality. Hence, the next applicatfche rule( U Set) does
not introduce any occurrence af in the negated context, because always-clauses and clauses
containinga; U P are both excluded from the context. Moreov@NH (—a; C=how(®y)))
does not contain any other fresh variable (apart fean The reason is thddtNF( (-a; [
—-now(®y))) is already in conjunctive normal form, so the only transfation that uses new
fresh variables —which is detailed in the proof of Theoreth#- is left out.

The above reasoning about the constructiomdfrom I can be generalized to the con-
struction ofl %, ; from I'? with selected eventualiy U P to obtain a direct descendamt; U P
as follows. When the rul¢U Set) is applied to a partition of ¥ of the form®; [P [
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{a U P}, then the consequeht is the union of®; and the following ve disjoint sets

Wl ={P [al [N} | °((aUP) W) (O}

W2 ={P [C=fa+1 UP) [N | °((aUP) CN) [T}

W3 ={ (o(aUP) [=N;)| ((aUP)[N) CTI}

Wi ={ (-ay [B}), (-ap [ad),..., (—a [&)1), (-ai« Cal}
WS = CNF( (-aj+1 [=how(®;)))

where (W} \ Wt ) CPP corresponds t€NFdef(aj+1 , ai, now(®;))) wheneveri = 1 (see
Figure 4.5). Now, the fresh variables, ..., aj, aj+1 occur in the above ve set!#‘i . The oc-
currences of fresh variables W¢ C®f CPP are not Itered to the negated contextlil,; by
the reasons explained above fd}. Regarding the occurrences afin the set¥l, since they
are not preceded by, no one of them can be Itered t,, . Additionally, 3 is empty for all
i = 1. To realize this fact, it suf ces to check the following tleréacts. First, whenever the rule
(U Set) is applied to the seft? ;, by considering the partitio®; ; [(I° ; [$elev.set 1),
the new literak (a; U P) appears only in now-clauses. Second, the remaining bdsf (teso-
lution, subsumption and xpoint rules), that are appliedtain therrs-closed sef’; ; from
ril 1, cannot introduce (if; ;) an always-claus€ such thate(a; U P) [Lits(C). Third,
sincel? is obtained fronT; ; by unnext thenl? cannot include an always-clauSesuch that
°(a; UP) [Lits(C).

Consequently, every fresh varialaleis not in Lits(now(rﬁ)) forallh = [@nd allZ= 1. There-
fore, fresh variables do not occur in any context of any ajapion of the rulg U Set). So that,
the successive contexts are exclusively formed by formfutes the closure of .

Since the setlosurgl)) is nite, if the sequence of descendantsRfU P were in nite, there
would necessarily be two sef§ and ") such thaty < h andnow(I'g \ I'§ Cselev_sely) =
now(F2 \ 2 [{an U P})8. Without loss of generality, we considgr= 0 andh = i. By
repeatedly applying the rul@es) to nom(F§ \ ' (IPo U P}) andCNF( (—a; [=how(Ip \
N ({PoU P}))), the algorithmSR obtains—-a; which resolves with (-a, [a]) produc-
ing —ap. Then-a, resolves with (—az [a}). At the end of this processa; 1 resolves
with (—-a; [Cal 1) producing-a;. This literal resolves with every clause{ [al [N |
(a UP) [Ny [T} producing the clauses ifP [N | (a; U P) [N [T} which subsume
the clauses i{P [={aj+«; UP) [N | (& UP) [Ny [CI1}. Therefore, the selected tempo-
ral literal aj+1 U P disappears after the following unnext-step. Herge, U P cannot be the
selected eventuality at the next step, iselev.seti; & {aj+1 UP}. Thisis a contradiction
because the sequence of descendan® Of P has been supposed to be in nite. "

In the above proof we have considered thHtSet) is always applied with a non-empty
context. The proof for possibly empty contexts is just a espease. Note also that the ap-
plication of the subsumption rule, together with the sulbseduse of the operatannext, is
essential in the above proof.

Theorem 4.6.14.The algorithnSR, for each inpuf”, terminates giving a resolution proof.

Proof. Suppose tha®R does not produce ° [_®n one hand, by Lemma 4.6.13R cannot
generate an in nite sequence of descendants of any seleeeduality. Besides, when the se-
guence of descendants of one eventuality nishes becaeskashone, namely, ceases to be

8sel_evsety = fPoUPgif g =0, andsel_ev_sety = fag UPgif g > 0.
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the selected eventuality in for somei = 1 (i.e. selev.set ; = {T} andselev.set 8 {T}),
then the setow(l;) is included inclosurgl™) because the fresh variables introduced bySet)
only occur inalw(l;). If the process continues and the algoritBiR selects another eventual-
ity, niteness of sequences of descendants (Lemma 4.6 U&amtees the existencelqf, with
g > i, such thanhow(l'y) is included inclosur€l’). As the closure is nite, there must exist
J andk such thatj < k and the set of now-clauses bf is exactly the set of now-clauses of

unnext(l", ).
On the other hand, fairness ensures that the third conditibe nition 4.6.1 must be satis ed
at some moment. "

4.6.4 Complexity

In order to analyze the worst case complexity of the algorithR, we rst consider the
setclosurdl") (see De nition 4.6.11) of all the possible clauses formethgghe literals in
univlit(l) (see De nition 4.6.10).

Proposition 4.6.15.The number of clauses alosurél) is 2", wheren is the number of literals
in univlit(I). .

Then, the set of all possible sets of clauses that could amseaontext when applying
(U Set) has double-exponential sizern

Proposition 4.6.16. Let contextqI") = {A | A [closur€l)}, then the number of sets in
contextgI") is 22". .

Therefore, the worst case complexity of the algoritBR can be bounded 1©(2°2™),

Proposition 4.6.17. The number of clauses generated by the resolution methodusded
by O(2°(2™) and the number of new variables is also bounded§g®™) wheren is the
number of literals irunivlit(I).

Proof. Inthe worst case, each clauseclosur€l”) contains a selected eventuality that generates
a seqguence of descendants with an eventuality for eachip@ssintext incontextqI") plus a
repeated context. That is, each of feinitial clauses may generate+ 22" clauses with new
eventualities. Sof(n) = 2" x (1 + 22") = 2" + 2"*2" js the maximum number of different
clauses (with new eventualities) that can appear in a d@ivaSince, each new eventuality
is associated to a new variab®® + 2"*2" also bounds the number of fresh variables. In the
worst case, the de nition of each new variable generatemew clauses. So thag(n) =
220 4 22n+2" hounds the number of clauses de ning new variables. To surthepvorst case
is bounded to

on 4 f(n) +g(n) = N 4 on 4 2n+2n + 220 4 22:n+2n

where the leftmos2" stands for the size of the closure which bounds the initiabfelauses.
That is, in the worst case, the number of cIauses@Qi’P(Z”)) and the number of new variables
is inO0(2°M) . .
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4.7 Completeness

A resolution method isefutationally completd, whenever a set of clausé€sis unsatis able, a
refutation forl” can be constructed. In our case we prove the refutationgbledemess of Rs-
resolution showing that there exists a model affhenever the resolution prof(I") obtained
by the algorithnSR is a cycling derivation. This result together with the probtermination
(Theorem 4.6.14) shows that our algorithm for systemasoltgion (Figure 4.10) is complete
and, hence, a decision procedureRaiTL.

For the rest of this section we x the derivation

D(N) = (o, M) 41, M) 4147, I YA 1A (@}, 1))

to be cycling with respect tp andk. In order to prove the existence of a modelofrom the
existence oD(I") we will show that the setB; in D(I") can be extended (with literals of their
own clauses) preserving its local consistency. These sixtes, denoted 5 , are literal-closed
in the sense that they contain at least one literal from elzttse inl; . Remember that the sets
I, in D(I") areTrRs-closed (see De nition 4.4.6) which, in particular, meahatBTL(I"; ) = [
(De nition 4.2.3). Actually, inside the collection of alhe locally consistent literal-closed (Iclc,
in short) extensions of eadl) , we de ne the subclass of the so-callstndard extensionsn
particular, standard Iclc-extensions of the $et&n D(IN) allow us to ensure the model existence.
We de ne asuccessor relatioon Iclc-extensions of the sel$ that gives rise to in nite paths
of standard Iclc-extensions. These in nite paths can bel usecharacterize or de n®LTL-
structures. Finally we show that at least one of those padtis &s the suitable conditions
for de ning a model ofl". Hence, this section is divided into a rst subsection dedato the
notion of Iclc-extensions of sets of clauses and their medpe@rties, including the existence of
a non-empty subclass of standard Iclc-extensions for arslljoconsistent andrs-closed set
of clauses. In the second subsection, we de ne the notionafessor and prove the existence
of in nite paths. Lastly, in the third subsection, we provetexistence of a model ot

4.7.1 Extending Locally ConsistentrRs-Closed Sets of Clauses

In this subsection we show that evams-closed set of clauses has at least one locally consistent
extension that is literal-closed and standard. We gragubdine the notions and prove the
results.

De nition 4.7.1. A set of clause§ is literal-closediff I n Lits(C) & [Cibr everyC [1.°
Besides]clc(I") denotes the collection of all locally consistent sets otisksP such that™ 1
P COCTCis(r) andP is literal-closed. We say that eaéh Cldc(") is anlclc-extensiorof I".

Note thatif P [islin I thenlclc(I") = CHy local inconsistency. Besides, since only literals
included in some clause Inare used to build the elementslahc(M), if no clause il includes
any (basic) temporal literal (i.8TL(I") = [_$ee Subsection 4.2.1) then ev@ryj?:lc(r) also
satis es thalBTL(b) = [n particular, ifr = Cthenlcle(lM) = {

Next, we show that for every locally consistent set of clalisthat does not contain (basic)
temporal literals there exists at least one Iclc-extenefdn

Proposition 4.7.2. If T is a locally consistent set of clauses such tBaiL (") = [then
lcle(N 8 [

° Note that literals irLits(C) are viewed as singleton clauses.



4. Invariant-Free Clausal Temporal ResolutionfamL 109

Proof. We will show that there exists a sequerSe= Qo, Q1, Q», ..., Qg such thaty = 0,
Qo = INandQp+1 = Qn {1} (for everyh [{D,...,g — 1}) for someL [Tts(C) and
someC [ such thatlits(C) n Q, = [AndQy LI} is locally consistent. In addition,
Qg [Idic(I") whereay, [dic() for all h D, ..., g — 1}. Since the number of clauses is
nite, this inductive construction is also nite and showsatlclc(l) & [

We have to show that, for evetysuch thatQ, [dic(I"), there exists a locally consistent
Qn+1 that extend€), with a new literal from some clause in SinceQy, [Mdc(IN) there exists
(at least one) clauseé = P(L,; 1. [L}) Oy such thal; IOy, foralli C{L,...,n}.
Suppose tha®y, {1} is not locally consistent for ai [{L,...,n}. Then, by Proposition
4.4.14, there exists a local refutatibn for Q, [{IL; } that is linear with respect th;, for every
i [{1,...,n}. From thesa local refutations we are able to construct a local refutaldofor
Qp that is linear with respect t€, contradicting the assumption th@f, is locally consistent.
Hence,Qn {IL; } must be locally consistent for somhd {1, ..., n}. "

De nition 4.7.3. LetT be a set of clauses such tHalc(I") 8 [@nd letA [CLits()). We say
thatA represent§ if P n A 8 Corall P CIdc(I). If, in addition, for everyA\%( A there exists
p [CIdc(I") such that?® n A°= [dhen we say thah minimally represent§.

The following result shows that the minimal representativbaTrs-closed set of clauses
I are included (as clauses)lin

Proposition 4.7.4. For every/\ that minimally represents a non-empty locally consisterg-
closed set of clausdsthere is a claus€ [Tlsuch thatits(C) = A.

Proof. First we will show thal” must contain at least one clauSesuch thaLits(C) [CAl We
partitionI” into the following two sets:

My = {C CO| Lits(C) n A = [}]
M, = {C [T Lits(C) n A E [}

We split the clauses ifl, into the sub-clauses formed by literals that do not appedr amd
the sub-clauses formed by literals that appeaf\.inThese sets of clauses respectively are the
following sets>; and>.

>, ={N| °N N9 I, Lits(N) n A = CandLits(N% A}
>, ={N° P(N [NI9 [T, Lits(N) n A = CandLits(N9 A}

Sincerl is locally consistent11, [, and also their proper subsets are locally consistent. In
addition,[" is TRs-closed, henc8TL(I") = [@nd every set of clauses considered along the rest
of this proof does not contain any clause that includes aagi¢h temporal literal.

Now we show, by contradiction, thdf 1111, [ =} and, sincd1l; is locally consistent, it
follows that (11", and, consequently, there exists a cla@se[1I such thatLits(C) [
Lits(Z>»), i.e.,Lits(C) Al

Let us suppose thal IT1; [>}. First, suppose thdfl; =] is locally consistent. By
Proposition 4.7.2, the sétlc(M, 1) is non-empty and for everyy [Idic(My 1) the set
Q=TI {L|L W}isinlcle(l") and satis ex) n A = [Trhis contradicts thah minimally
represents.

Second, suppose that; =] is locally inconsistent, there exists some minimal locally
inconsistent subseap of M, =} (i.e. ® does not contain locally inconsistent proper subsets
of My [=}). Since every subset é1; is locally consistent, the® n 21 & [lLetN be any
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clause inb n ;. By Proposition 4.4.14, there exists a local refutafibfor ® that is linear with
respect td\ . By using the original clauses i, instead of their sub-clausesdnn %1, we can
build from D a derivationD°whose last set contains a claudesuch thalits(C) CLis(Z,).
Hence, T2}, and this contradicts that M, >].

So, since considering 1, >} leads to a contradiction when we consider tHatC>}
is locally consistent and when we consider thlat[>]} is locally inconsistent, it follows that
11, C=}. Therefore CI12); becausdl; is locally consistent and, consequently, there are
a clauseC [Tlsuch thaLits(C) Al

Finally, Lits(C) cannot be a proper subsetAfbecausd.its(C) also represents and that
would contradict the minimality of the representatioroby A (see De nition 4.7.3). Hence-
forth, Lits(C) = A. "

Next we introduce the notion gtandardclc-extensions of a set of clauses.

De nition 4.7.5. LetI" be a locally consistermrs-closed set of clauses. We say tHaEII:lc(r)
is standardff it satis es the following conditions:

(@) If oL [P then there exists a claus€(cL [=N) [T1
(b) For every propositional literaP [Lits(I"), if P [P} is locally consistent, theR [Pl
(c) If oL B thenr (8 \ {~L}) is not literal-closed.

The following lemma ensures the existence of at least omalatd Iclc-extension of any
locally consistentrs-closed set of clauses.

Lemma 4.7.6. LetI" be a locally consistentrs-closed set of clauses. There exists at least one
standard set irclc(I").

Proof. We rst prove that there existQ [dic(I") that satis es item(a) in De nition 4.7.5.

Second, we show that there exi&s such thatx [Idlc(I") and satis es(a) and (b) in

De nition 4.7.5. Third, we show that there exisfs [>1such thatA [CIdic(I") and satis es
(a), (b) and(c) in De nition 4.7.5.

1. By Proposition 4.7.2lclc(I") is non-empty. Now, let us suppose that for every set in
Icle(IN) there exists a literal of the formL such thatL [ITlts( PoN) for every clause
boN [0 Then, for evenP [Idic(I), there exists somk [P that belongs to the
following set

W = {oL [Lts(MN) | oL MTits( PeN) for every clause PN [T}

HenceW represent$ and there should exist some [CPlthat minimally represents.
Therefore, by Proposition 4.7.4, there exists a clalisel1such thaLits(C) = A. This
is a contradiction because the literal$ipand in particular the literals i, do not belong
to any clause of the form PoN in I". Therefore, there exists some €ketn Iclc(") that
satis es De nition 4.7.5a).

2. SinceQ is locally consistent anBTL(Q) = [ the sequencQo, Q1,Q>, ..., Qq in the
proof of Proposition 4.7.2 is easily adapted for ensurirad #achQ; satis es De nition
4.7.5a) and thatQq satis es De nition 4.7.8b). So that> = Q4.
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3. We show thak should contain a subs£t that satis es the lemma. Since belongs to
Icle(I), veri es De nition 4.7.5(a) and(b) and is a nite set, we can ensure the existence
of a nite sequence&g, 21,25,...,2; suchthar =0, > = X, 2, \ {°oL} [Idic(I")
forall oL A, andXp+1 = Zp \ {°Lp} for someoLy 3}, andZps; [Cdlc(lD)
for everyh [{D,...,r — 1}. Therefore 2y satis es De nition 4.7.5a) and(b) for all
h D, ...,r} andX, additionally satis eqc). HenceZ; is the setA we were looking
for. u

For locally consistentrs-closed sets, the subclass of their standard Iclc-exteas&pre-
sents the whole class of their Iclc-extensions with respeatets of next-literals in the sense
shown by the following proposition.

Proposition 4.7.7. Let " be any locally consistentrs-closed set of clauses ard [Liks(I")
be a set such that every literal ify is of the formeL. If PnAE Cior every standard set
P CIdc(M), thenA represents’.

Proof. Consider any\ that satis es the hypothesis but does not repreEemtence, there exists
some non-standard s¢t CIdc(lN) such that? n A = [_Now, let

N={N| °N N9 CTJLits(N) n A = CandLits(N% A}
® ={N [I| no clause il1 subsume }

Then,® is TRs-closed and locally consistent. The former holds becéuserrs-closed. For
the latter suppose that is not locally consistent. By Proposition 4.4.10, 11dl. Hence, by
de nition of @, there exists a clauge [ such thatLits(C) [CAl But this contradicts the
assumptio? n A = [Becausé? is an Iclc-extension of and, consequently,its(C) n W
cannot be empty.

Since® is TRs-closed and locally consistent, by Lemma 4.7.6, there isesQni_Idic(d)
that is standard. Hence, consider=I" [{IL | L O} for some standar@ [CIdic(®). First,
2 is an Iclc-extension of becausd.its(Q) [Lits(I") and because for every clau€e [T1
there exists a claudd [@ such thatlits(N) [Lits(C). SecondX is standard becausgis
a standard Iclc-extension df and/\ contains only literals of the formL, so that> satis es
De nition 4.7.5. Consequenth is a standard Iclc-extension bfsuch that n A = [IThis
contradicts thal n A 8 [Cfor all standard® CIdc(I"). Therefore A represents. .

4.7.2 Building In nite Paths of Standard Lclc-Extensions

In order to build sequences of standard Iclc-extensionsefrs-closed set§; —in the cycling
derivationD(I")- that represent models &f such sequences must be coherent with respect
to the meaning of temporal connectives. We mean that, e.gp Helongs to a se in the
sequence, thegmmust belong to the set that is the successdl of the sequence. Similarly, for
eventualities where also the selections performed ald@g) are relevant. As a consequence
a successor relation is de ned for the Iclc-extensions efttRs-closed sets that appear in the
derivationD(IN):

(Fo, T4, M)A 12 @, 1)) A__ 14T}, T,)

which is cycling with respect tp andk. This successor relation on

{lclo(;) > lelo(T,, ) 0 < i < K} [(Ilo(T,) x Iele(T; ))
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is presented in De nition 4.7.8. Along the rest of this chepk; denotes a member afic(; ).

De nition 4.7.8. Leti = h+1if h [D,...,k—1} and leti = j if h = k, we say that
F, is asuccessoof F, or thatF, is apredecessoof F; if for everyoL [Fl there is some
S [mkclg(eL) such thatS [E], wherenxclq is de ned as follows

nxclg (°P) = {{P }} whereP is a propositional literal.

nxcla(ecL) = {{-L}}

8
< {{P2},{P1,°(P1UP2)}} if P, U P, ISélev._set
nxclg(e(PLUP2)) = {{P2},{P1,°(aUP2)}} otherwise
whereaU P, [sélev set

g {{P}, {-[P}} if [P [Tseélev.set
nxclg(c[P) = {{P},{-(aUP)}} otherwise
whereaU P [s¢lev_set

nxclg (¢(P1 R P2)) = {{P2, P1},{P2, »(P1 RP2)}}

nxcla(e P)={{P, P}, {P,> P}}.

The set of successors of a givenBgis denoted bgucaF, ).

The de nition of nxclg (e P) arises from the fact that the literal P can be either a
singleton now-clause or a literal properly contained inauskC. In the rst case[l; contains
the always-clause P which will not be affected by the rulé Fix). Consequently, in such a
casel’; contains necessarilyP. However, in the second case, the literalP is introduced by
application of the rulé Fix) to the clause€.

The existence of in nite paths of standard Iclc-extensimbased on the existence of a
predecessor for each standard Iclc-extension okR&closed set in the derivation which is a
standard Iclc-extension of the previotgs-closed set in the derivation.

Proposition 4.7.9. For everyi [{L,...,k} and every standarf; [Idlc(l";), there exists a
standard , CIdc(T; ;) suchthaf; Csiicqd ).

Proof. LetW- = {F. [Idc(l".) | F. is standargd for eachC T {D, ..., k}. If there exists some
M | CW,; ;suchthafd | does not contain any clause of the fori, thenf, [siicq/d )

| |
for all F, . Otherwise, every sé , [W; ; contains at least one clause of the forin. We

proceed by contradiction. Let us suppose ffais a member of¥V; such thaf; ﬂ]ﬁucc(ld- 1)

|
forallld | CW¥; ;. Hence, there exists at leastorlein everyld |, [W; ; suchthas OIE]
forall S [nkclg(eL). Therefore, the set
S
A={oL]|oL Clq

ow, @ 1suchthas OTE] forall S [hkclg (L)}
1 i
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satisesthatA n 1 | & Cfbrall @ | W, ;. Therefore, by Proposition 4.7/ represents
I; , and, consequently there exists somesdi_ Althat minimally represents; ;. By Propo-

sition 4.7.4, there exists a claue= P(eL; []. [=5L,)in I, 4 such thatits(C) = Q and

r = 1. Sinceunnext({C}) [T, then the claus€®= L, 1. [} isinT;. Now, let

r

{S1,...,Sn} = [ nxcla (eLg)
g=1

(note thatn = 1) and let{C4,...,Cn} be the set of all clauses of the forlm [1. L},
such thatLy, S, forall h L, ..., n}. By subsumptionl’; contains a non-empty set of
(non-empty) clausefDy4, ..., Dm} such thatlits(D;) [Lits(C;) forallt [{1,...,m}. By
constructiors IE]forall S [nkcla(eLy)andally C{L1, ..., r}. Hence, for each pa{g, S)
such thag [C{L,...,r}andS [nkclg(-Ly), we can choose at least one litetabuch that
L CSlandL [IZE] . As a consequence, there exists a clddsd T} with t [{1,..., m} such
thatLits(D;) [Tits(C;) whereD; n F; = [This contradicts the fact th&t contains at least
one literal from each clause I} . n

Proposition 4.7.10. For everyi [{L,...,k} and every standar@; , there exists a sequence
Fo. F1. ..., F; of standard sets such thh, I_—smcc(['h ) foreveryh {1,...,i}.

Proof. By Lemma 4.7.6 and Proposition 4.7.9. "

Proposition 4.7.11. For every standard; there exists at least one standdig such thaf; =
sucdF,).

Proof. The proof is very similar to the one of Proposition 4.7.9, being thatnow(l';) =
now(unnexi(l", )) instead ofl; = unnex{(l"; ;) and also using the fact that the gl |
N [T] } is contained into the seiow(unnexi(I", )) (by de nition of the operatounnexy). m

We construct pre-models 6fby means of sequences of standard Iclc-extensions of the set
in D(IN) which will be ordered by the successor relation. For thatneed some notation on
such sequences. Fgrandh, where0 < g < h < k, we denote byD(IN)(g:.n), the set of

all intervalsof standard IcIc-extensior‘rZ‘g, [_g+1 , .., ¥y, such thatf, I_—sUcc(rc! ,) for every

i ({3 +1,...,h}. The functionsrst andlastrespectively return the rst and the last set of a
given interval. We use superscripts notation to denoteespences of an interval LDI(I") gy

as follows. Forn andm such thaty < n < m < h, the subsequencg-™ denotes the
subsequence formed by the sé€ts [_n+l ,..., B, of s. In particular, ifn = m we write

s" instead ofs™" and intentionally confuse the sequence of one set with théssdf. For

s [D(M)g::ny, we denote byangg(s) the set of natural numbefs | g = n < h}. Since
D(I) is cycling with respect tg andk, the two sets of interval®(IN)jo.; 17 andD(I)j;..cp are
respectively calledhitial andinner. Note that, sincg could be0, the seD(IN)o.;; 1; could be
empty, butD (). ; is non-empty for anyp(I").

Proposition 4.7.12.For each standardf; there exists [DI(I")y;.] such thaf; [siicqlast(s)).

Proof. By Propositions 4.7.10 and 4.7.11. "
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Note that in the above propositi(ﬁ"rp and rst (s) can be different.
Now, we de ne when a sequence of elements fidif ;.. ; forms a cycle, which is called
aD(IN)-cycle. Then we prove that there exists at leastiDE)-cycle.

De nition 4.7.13. AD(IN)-cycle is a nite non-empty sequensg Si, . . ., Sy such that
(i) si CO(M)j.« foralli [0,...,n}

(i) rst(si+1) Csiicdlast(s;)) forall i [(f0,...,n—1} and

(i) rst (sp) Cslicdlast(sp)).

Proposition 4.7.14. There exists at least orig(IN)-cycle.

Proof. By Lemma 4.7.6, there exists at least one standard Selc(m‘j ). Let us consider any
standard?j in IcIc(rj )- By Proposition 4.7.12, there exists an intem@l_DI(") ;.. ; such that

Fj [sucdlast(rg)). Additionally, by repeatedly applying Proposition 4.7,.%& can build an
in nite sequence of intervalso, ry, ... in D(IN)j.k 7 such thatrst (r; 1) Cslcqlast(r;)) for
everyi = 1. SinceD(I")jj..c1 is nite, ry = ry must hold for somg andh such thab < g < h.
Then, the reverse of the sequemge. . ., ry 1, i.e. the sequenas, 4,...,rgisaD(I")-cycle.

Note that the minimal cycles consist of exactly one intesvalDI(I") ;.. such thatrst (s) [1
sucqlast(s)).

4.7.3 Model Existence

In this subsection we prove that there exists at least oneshwfd™ on the basis of the cy-
cling derivationD(I"). First, we de ne a graph structu@,y whose nodes are intervals in
D(MNo: 13 andD(MN)«)- There is a (directed) edgs, sY in Gp(y wheneverrst (s% [
sucqlast(s)). Note that every node iip() is related to a node from(I");..c;. Second, we
de ne a notion of self-ful lling path in this graph. Then, warove thatGp () contains at least
one strongly connected component§él)-cycle) that is self-ful lling. Finally, we de ne a
model ofl” on the basis of this strongly connected compone@y) .

De nition 4.7.15. We associate t®(I") the graphGp () thatis formed by the following set of
nodesSp () and the following edge-relatioRp(y onSp) :

* Sp() =D(Mo;j 17 CO(M)kg
* sRp() s?iff s® COI(IM)(.«; and rst (s% Csiicqlast(s)).

Paths and strongly connected componen€gp, are de ned as usual in graph theory. The
notion of D(I")-cycle (see De nition 4.7.13) has an obvious extensioG#@y . Therefore, by
Proposition 4.7.14, the grajiiy () has at least one cycle. The minimal grais) consist of
exactly one node with one edge fronm to n.

We would like to remark that, from a locally consistent liteclosed set, interleaved unnext-
steps andrrs-steps could yield ars-refutation. As a consequence, there could exist some
intervals in Sp() such that ns® [C9p() satis essRp(y s°and, hence, there could exist
Iclc-extensions that do not belong to any intervaby .
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The paths irbp () are formed by standard Iclc-extensionsrefs-closed sets which do not
include any (basic) temporal literal. Consequently, arguoence of an eventuality in the states
of Gp(y must be preceded by a connectiveThis fact leads us to de ne the following notion
of eventuality ful liment in the paths o6p () .

De nition 4.7.16. Letm = so, sy, ... be a path inGp(y such thate(P, U P;) s} for some
g =0andi [rdnggsgy). We say thatr ful lls =(P U Py) iff either

= there existdh [ ranggsg) such thath > i, P, Ijg and Py IEJg for all Il +

1,...,h—1} or

e there existr > g andh [rang4s,;) such thale s andP; IZ; for all (z, D;Isuch
thatg < z < r and CI_tangds,) andP; [S] for all C1Jj,. — 1} andP;y @
forall CI{d + 1, ..., m} wherem is the maximum mange(sg).

A pathr is self-ful lling iff 7 ful lls every =(P1 U P») that occurs in any of its sets. Besides, a
D(IN)-cycleo in Gp(y isself-ful lling if the patha' is self-ful lling.

Sincee [Pl and=(f U P) are equivalent, the ful liIment notion for [Pl is a particular case
of De nition 4.7.16.

The next three propositions are auxiliary results aboufithément of eventualities, which
are useful for proving the Lemma 4.7.20.

Proposition 4.7.17.Lets be an interval irD(I") .. for someg Q(D ,k—=1}. Ifo(PqUP) [
s9andPyU P [sélev.sely:s, thenP [Slforsomei g +1,. k}.

Proof. Let us suppose tha& [Lsl for everyi [{h + 1,...,k}. Then, sinces is an inter-
val, s [sucds' 1) for everyi [{h + 1,...,k}. Hence, by De nition 4.7.8, there exists a
sequence of literals of the forfag:1 UP, ..., Px UP such thatselev.set, = {P,UP} for
everyh Iy +1,...,k} andP, UP is the direct descendant 8 ;U P in D(I) for every
h Ly + 1, ...,k}. SincesK is standard, by itenfa) in De nition 4.7.5, there exists a clause
of the formeN [T} such that(Px U P) [Lits(°N). Consequently, sind®(I") is a cycling
derivation with respect t¢ andk, there existdN [T such thatP, UP [Tits(N). This
contradicts the fact thdy is (according to the ruléU Set)) a fresh variable that cannot appear
in the seftl; . ]

Proposition 4.7.18.Lets be an interval inD(I")g.., for someg andh suchthab < g <h <
k—1. _If °(PgUP) [sY,PqUP [Sklevsely:; andP MSiforalli Ly +1,...,h}, then
Py Cslforalli C{g+1,...,h}.

Proof. If h = g+ 1 thenPy S because" is a successor af (see De nition 4.7.8). Now, in
the case oh = g+2, let us suppose that there exists samie{¢ +2, . . ., h} such thaPy [Ts].
Sinces is anintervals [slics 1) for everyCI{g+1,..., h}. Hence, by De nition 4.7.8,
there exists a sequence of literals of the fdPg1; UP,...,PhUP such thatP- UP is the
direct descendant ¥ ;U P in D(I"), selev.set = {P-UP}and{P: 1,°(P-UP)} L[Sl
for every (1 {g + 1,...,h}. Then,P, 1 . Additionally, by construction oD(I),
there exists either a clause of the fo@n = (=P [P) 1) orC; = =P;j ins' for every
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i L8 +1,...,r}.1%Since we are supposing tg IS, then{-Pg.1 , ..., =P} [STmust
hold because' is literal-closed. ThennP, 1 is also ins". Therefore{P, 1,-P, 1} [S1,
which contradicts the fact that is locally consistent. "

Proposition4.7.19.Letn = s, s1, . .., Sp be aD(I")-cycle. If there exists a literad(Po U P) [1
univlit(l) such thate(Po U P) for someI{D,...,n}and somd [{j,...,k}, and the
pathm' does not ful [l e(Pg U P), thenPqU P [Isklev_sely and{Po, °(PoU P)} Ifsﬁ for

everyh [{0,...,n}andeveryg [,..., k}.

Proof. Sincem is a D(I)-cycle andn' does not ful ll «(PoU P), we can ensure, by Def-
initions 4.7.13, 4.7.8 and 4.7.16 they Cf andP IS for everyh [H0,...,n} and
everyg [IJ,...,k}. Therefore, by using Proposition 4.7.17 and Propositigrl®, we can
ensure thaPoU P [Selev.sely for everyg [, ..., Kk}, since otherwiset' would ful-
I «(PoUP). Consequently, by De nition 4.7.8 and De nition 4.7.13, vean ensure that

{Po, >(PoU P)} CSJiforeveryh [{D,...,n}andeveryg [{,... K} .

Next, we prove that everf(I")-cycle inGp (y is self-ful lling. As a consequence, we know
that there exists at least one self-ful lling in nite path the grapt6p () .

Lemma 4.7.20. For any cycling derivatiorD(I), the graphGp () contains at least one self-
ful lling D(IN)-cycle.

Proof. By Proposition 4.7.14 there is at least dd€l")-cycle inGp(y . We show, by contra-
diction, that everyD(I")-cycle inGp () is self-ful lling. For that, let us suppose that there is
aD(IN)-cyclem = sg,s1,...,Sn in Gp(y thatis non-self-ful lling, i.e., the patm' does not
ful ll a literal o(PgU P) [S! for someI{D,...,n} and somd [{j,...,k}. Then, by
Proposition 4.7.19P, U P [ sklev_sety for everyg [{J, ..., k} and{Po, c(PoUP)}
forevery[(1 {0, ...,n}and evenyi [{,...,k}. Sincesﬂ is standard for every 14D, ...,n}
andevery [{j, ..., k}, we conclude that, for evetiy[{], . . ., k}, the sef’; contains a clause
C = PoN such thar(PyU P) [CLits(C) and, consequentlpo U P CLits(now(I;)) for ev-
eryi [{4,...,k}. Therefore, by De nition 4.6.1(3)P(IN) is not a cycling derivation, which is
a contradiction. "

The particular case of Propositions 4.7.17, 4.7.18 and ¢.and Lemma 4.7.20 for eventu-
alities of the form[PI follows easily.
Next, we introduce pre-models as a kind of paths alégpg, .

De nition 4.7.21. PMod(GD() ) is the collection of all nite pathst = sp,S1,S2,...,Sn IN
Gp() such that

(@) so [D(M)jo;j 7ando =sy,Sy,...,sn [c¥yclegGp(y ), if D(MNo;; 11 & [
(b) m=s0,81,...,50 LcyclegCpy) ), if D(Moj 1= L]

wherecyclegGp () ) is the collection of all the self-ful lling cycles ip () .

1 The form of the clause respectively depends on whether thiexbis empty or not when the rulgJ Set) is
applied to ;.
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As a direct consequence of Propositions 4.7.10 and 4.7.d4.amma 4.7.20, there exists
at least one pre-model in the grapp ) .

Proposition 4.7.22.PMod(Gp () ) is non-empty. "

Finally, the above pre-model allows us to construct a motlEl @ his proves the complete-
ness of ourrs-resolution system.

Theorem 4.7.23.For any set of clausds, if I is unsatis able then there existst&s-refutation
forTl.

Proof. Suppose that there is mirs-refutation forl", then the algorithn8R in Figure 4.10
produces a cycling derivatioP(I"). By Proposition 4.7.22, there exists a pre-modek=
S0,51,52, -, Sn IN PMod(Gp(y ). If D(Mp; 13 = [CWe de neo as the in nite pathr' .
Otherwiseo = sp - p! wherep = s1,S2,...,Sh. Now, we de ne thePLTL-structureM =
(0, Vm ,) where the states are the standard Iclc-extensions thatfemtervals iro which can
be seen as

Q3,...,050,,...,0k0,,...,0k....0,...,0ka, ... k...

wherer = j —land(F 1if D(MNp; 1 8 LWhereag = k and[(ZF= 0if D(MN,; 13 = L]
Additionally, QF is inIcle(I"g) andVy ,(Q7) = {p [Prop|p P} for everyg [, ..., k}
and everyh [0, ..., n}. Itis routine to see thaii , Q; = C holds for allC [T]. Since
any Iclc-extension contains at least one literaCofthis is made by structural induction on the
form of the literal and using De nition 4.7.8 and the fact tlmis self-ful lling (by Lemma
4.7.20). In particularM is a model ofl ; and, by Propositions 4.5.1 and 4.5.2, thelSgts
satis able. Hence, sincE = g, the set of clausds is satis able. n

4.8 Related Work

In this section we describe the contributions in the literathat are more closely related to our
approach to clausal temporal resolution. First, we explagnrelation with the tableau method
TT™M (presented in the previous chapter) that inspired-resolution. And then, we discuss
and compare the four clausal resolution methods ([29, 1, 4@p that are more similar to
TRS-resolution.

4.8.1 ThetT™Mm Tableau Method [58, 61]

The TRs-resolution method is strongly inspired in th&m tableau method introduced in the
previous chapter (see also [58, 61]). Indeed, the-rule (U Set) is a clausal variant of the
TT™M-rule (U),. In Chapter 3 (see also [60, 61]), the idea behind the ¢, is used for
achieving cut-freeness (in particular, invariant-frees)en the framework of sequent calculi
for PLTL. In particular, the cut-free sequent calculsisc that is dual to the one-pass tableau
methodTTM™ is presented.

The crucial point —in both rule§U ), and (U Set)- is the fact that whenever a set of for-
mulasA [{$ U Y} is satis able, there must exist a modefl (with statessg, s1,...) that is
minimal in the following sense:
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M satis es eithetA [P} or A P, o((¢p (=) U Y)}

In other words, in a minimal mod®A such that¥, so[[IE (), the so-calleadtontextA cannot
be true from the stats; until the state wherg is true. Regarding tableaux, the ry& ).
—which is crucial in our approach for getting a one-pass oekttallows to split a branch con-
taining a node labelled k¥x [({¢ U P} into two branches respectively labelled by {P} and

A {9, °((¢ =) U W)}. Hence, the negation of the successive cont&xwsill be required
by the postponed eventuality. Provided that the number séipte context\ is nite, the ful-
lIment of ¢ U g cannot be inde nitely postponed, without getting a conicddn. Of course,
the procedure must fairly select an eventuality to ensurmitgtion. Tableau rules handle gen-
eral formulas, whereas resolution needs a preliminarysfommation to the clausal language
before the rules can be applied. The r(l&Set) introduced in this chapter is an adaptation —to
the clausal language setting— of the tableau ¢€llg,, in the sense th4tU Set) is applied to a
set of clauses and the eventuality is inside a clause whardds ), the eventuality is itself a
formula.

Regarding worst-case complexity, the upper bound givenrios in Proposition 3.4.10 co-
incides with the one forrs-resolution (see Proposition 4.6.17). The computatiooatl of
introducing the negation of the context in postponed ediiieis not only depends on the size
of the context but also on its form. As pointed out in Subsec8.4.5, there are syntactically
detectable classes of formulas that can be disregarded mdgzing the context. In particular
the most remarkable class is formed by formulas of the fogn The rule( U Set), by de ni-
tion, does not consider the always-clauses when negatingahtext. Since often most of the
clauses are always-clauses, i.e. formulas of the fogrwhere¢ is in clausal normal form, the
rule (U Set) is speci cally well suited for clausal resolution.

4.8.2 The Resolution Method of Cavalk Farifias del Cerro [29]

The complete resolution method presented in [29] deals aviinguage that is strictly less ex-
pressive than fulPLTL since only the temporal connectives and [Lalre allowed. The normal
form is based only on distribution laws, and renaming is rs&dto remove any nesting of op-
erators. Consequently, their translation into the norrmahfdoes not introduce new variables,
at the price of achieving little reduction of nesting of dimal and temporal connectives. A
formula in Conjunctive Normal Form is a conjunction of clas€; [ 1. [C} where every
clauseC; has the following recursive structure

L, Ol OO, By ) By, Tk, Co1 1K),

Here eact; is of the formo' p or ol —p with p being a propositional atom, eaghis a clause
and eaclx; is a conjunction where every conjunctis a clause. The réisolmethod is based on
considering different cases in order to check whether féamthat must be satis ed at the same
state are contradictory or not. For instance, for decidilgtver{ ¢, L} is unsatis able,

the unsatis ability of{ L(¢ [} is analyzed. Similarly, in order to decide whetHérdl, [}

is unsatis able, the unsatis ability of L4l ¢} and{¢, Ly} is analyzed. Also formulas of the
form ¢ Cedb 1. C=l¢ and of the form~¢ [ehd 1. [l '~ [=l¢ are considered for
dealing withCqland formulas of the fornp C=¢ 1. =1 for dealing with ¢, with i ranging

in a nite set of the form{0, ..., g} whereg = 0. These latter cases represent an attempt to
decide whether there exists a future state (in a nite scap@hich the involved formula (the
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formula¢ from Ll or from ¢) does not generate an inconsistency. However, there is not a
clear algorithm to construct derivations and, therefocamlexity cannot be analyzed. In our
approach, the nesting of connectives in the normal form islnmiore restricted. Our resolution
method is based on reasoning “forwards in time” state byestéind, nally, our method is
complete for fullPLTL and we provide a terminating algorithm to construct deibrat. In [28]

an extension of the resolution method presented in [29] ésvehand the full expressiveness
of PLTL is achieved by means of the connectiveand P (“precedes”) such thap P ¢ is
equivalent to the until-formulé-y) U (¢ [=lb), but the completeness result for the extended
method is not provided.

4.8.3 The Nonclausal Resolution Method of Abad® Manna [1]

A nonclausal resolution method for fUALTL is presented in [1] (see also [4]). Eventualities
are expressed by means of the connectivakdP (“precedes”). Since they deal with general
formulas (instead of clauses), the provided rules enalgerthnipulation and simpli cation of
subformulas at any level but with some restrictions for preéig soundness. The resolution
rule is of the form

O[], WIX] £~ ¢[true] L false]

where the occurrences of the subformylan ¢ andy that are replaced wittrue andfalse,
respectively, are all in the scope of the same number'ofind are not in the scope of any
other modal operator in eithgror . They also use modality rules, such as e.g, [l 5

LA ¢) pyand Ll Ly & CLP) @) CI{$ L), that makes this non-clausal method
very different from our proposal. However, they also introdinduction ruledfor dealing with
eventualities. These induction rules are very close to aler(tU Set). Here, for simplicity and
clarity, we only describe the induction rule forwhich in terms of the present thesis says

A, 00 [RB- A, A0 [ Co(¢ [=R)) if LA Ch)

whereA andAlare set of formulas. This rule states thatNfand¢ cannot hold at the same
time but¢ eventually holds, then there must be a satevhere¢ does not hold and at the next
statesj+1 the formulasp and-A hold. Hence, the abovA (called afringein [1]) resembles
our context, but the technical handling of fringes in [1] isitg different from our treatment
of contexts. The rst important difference is that inducticules use an aside condition (see
(A [Cq) above) for choosing the fringA. In our approach, contexts are syntactically
determined without any auxiliary derivation. Second( thSet) accumulation of the contexts
is made in the non-eventuality part of the until-formula, ithe left-hand subformula of the
until-formula. Indeed, the consequent of thres-rule ([Skt) introduces an until-formula with
the negated context in the left-hand subformula. In cohtreegjated fringes are accumulated in
the eventuality part. Third, the method in [1] does not inwanry deterministic or systematic
strategy to apply the induction rules although the compless proof outlines a strategy based
on the niteness of the set of possible fringes. We providenteans of the algorithiBR, a
systematic method. Additionally, in our method when a ceinite repeated, the derivation of
a refutation is straightforward, whereas in [1] obtainingefutation after a repetition is not so
direct. The reason is that our forward reasoning approaepka better structure for detecting
the contradiction between a context and its negation. Tddsdan be seen by looking at the
following example{p, (—-p [=p), [=b}. In our method a refutation is easily achieved when
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the contex{p} is repeated (see Example 4.6.3). However, by using the timdurule in [1]
with A = {p} andA®= { (-p [=p)}, they get

{p, (=p C=p), LG—p C={—p [=h))}.

Applying some other rules, which we cannot detail here,dbids transformed into

{p,°p, > (—p C=p), L Cohp)}.

The resolution rule is not enough for achieving a contraalicrom the latter set. Fourth, [1]
does not address the problem of satis able input sets, velsewee ensure the existence of a
model for any satis able input through the notion of cyclidgrivation. Finally, complexity is
not discussed in [1, 4] and is dif cult to assess due to thé& lafca clear strategy for applying
the rules.

4.8.4 \enkatesh's Temporal Resolution [126]

The resolution method presented in [126] is very similartesdn everything but the way of
dealing with eventualities. The normal form and even the imayhich the new variables are
used during the translation process are the same as ourste3dlation rule and the way of
unwinding temporal literals —in the case of our ru{gsF ix) and( R Fix)— follow the same
idea. Also the approach of reasoning forwards, i.e., jugginthe next state carrying the
clauses that must be necessarily satis ed in the next sapf@ears in both methods. However,
in sharp contrast to ours-resolution, the method in [126] needs invariant propeemeayation
for dealing with eventualities that can unwind inde nitélyr whose ful Iiment can be delayed
inde nitely). More precisely, cyclic sequences of sets afuses that contain the so-calleelr-
sistent eventualitieseventualities that can be unwound inde nitely and canreshtis ed—
must be detected and the persistent eventualities mustimvesl. Detecting those cycles can
be seen as nding an invariant propergythat ensures that a given eventualty ¢ cannot
be ful lled because - follows from . Finding the invariant property requires an additional
process whose development is not tackled in [126], theedfuer complexity of the method can-
not be directly assessed. Instead of invariant propestieg)se the concept of context —in the
applications of the rul¢ U Set)- for preventing inde nite unwinding of eventualities.

4.8.5 Fisher's Temporal Resolution [40]

The resolution method presented in [40] is also for RUTL. The structure of a formula in the
Separated Normal Form (SNF) i€C; [_1 [, and since itis equivalentto(C,; 1 [(}),
the calculations are made using only the so-cailed@L-clause<Cy,..., C;, without . Each
C; is of one of the following three forms

start - 0 K-> ©°0 K - [Al

where - is the classical connective of implication (ig. - y = =x [y), start is a nullary
connective that is only true in the initial statejs a disjunction of propositional literalg, is

a conjunction of propositional literals afddis a propositional literal. The use efart makes
possible to differentiate the clauses that refer only torgtestate and the clauses that refer to all
the states. Additionally, in SNF only the temporal connexgt and [_dre kept, since any clause
involving one of the remaining connectived ( , etc.) is expressed by a set of new clauses
whose only temporal connectives arend [_1A formula and the corresponding set of clauses
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in SNF are equisatis able but, in general, they are not laliycequivalent. The three kinds of
clauses are called, respectivahitial PLTL-clausesstepPLTL-clauses andometimePLTL-
clauses. Resolution between the former two kinds of claissgstraightforward generalization
of classical resolution but the so-callszinporal resolution ruldor sometimePLTL-clauses is
more complicated:

Ko — °60,...,Kn — °6n,Kn+l - [Al

where theunlessor weak untilconnectivaV is de ned aspWy = (¢ U ) C1p. Additionally
the followingloop side conditionmust be valid

9 — —Aandd; - (ko [l [K}) foreveryj [{D,...,n}

The ideais that if the s€@ = {Kp - °0g,...,Kn — ©9dn} satis es the loop side conditions,
then it follows that(kg 1. [K}) - ° =A. In such a cas® is called a loop in(Aland

Ko 1. K} is called a loop formula (also called invariant)4. So the method is based on
searching for the existence of these invariant properfigss task requires specialized graph
search algorithms (see [45, 33]) and is the most intricate gfathis approach. The worst-
case complexity is discussed in [45], where the translatio8NF is proved to be linear in
the length of the input, whereas resolution is doubly exptiakin the number of proposition
symbols. An improved and simpli ed version of the resolutimethod in [40] can be found
in [32]. The main differences with respect tas-resolution method are three. First, although
the technique of renaming complex subformulas by a new itipa symbol is used in both
approaches, in our normal form the temporal connectiVend R are kept. Second, we follow
the approach of reasoning forwards and jumping to the naxt sthen necessary, whereas the
method presented in [40] involves reasoning backwardsualigt contradictions are achieved
at the initial state. Third, the most remarkable differeisdbe way of dealing with eventualities,
since we dispense with invariant generation by means of dhke(ilU Set) and the strategy
presented in the algorith®R.







5. LOGICAL FOUNDATIONS FOR MORE EXPRESSIVE DECLARATIVE
TEMPORAL LOGIC PROGRAMMING LANGUAGES

5.1 Introduction

Temporal Logic Programming (TLP) deals with the direct exiEm of temporal logic formulas.
Hence TLP provides a single framework in which dynamic systean be speci ed, developed,
validated and veri ed by means of executable speci catitimst make possible to prototype,
debug and improve systems before their nal use. In TLP, tinectl execution of a formula
corresponds to building a model for that formula. The idedirdctly executing logic formulas
has been thoroughly studied in (classical) Logic ProgramgniLP). Given a programil, the
computation of a goal_d y with respect td1 in an LP system is a search for a refutation
proof of M [(L+y}. However, this proof search can also be seen as an attempildcalbmodel
of M [¥}. This model is (in general) partially speci ed, becauserntyodetermines the truth
value of the atoms (frorfl) that are involved in the refutation proof. We illustratésthiew (of
LP) in the next example.

Example 5.1.1.Let us consider the following (classical) logic program:

q(0) -~ [

gxX) « qY) X=Y +1
r(X) «q(Y) XXI=Y +2
wX) «c q(Y)X=Y +3

The computation of the godl_<l r(Z) gives rise to the in nite sequence of answer substitutions
{Z - 2},{Z - 3}, {Z ~ 4},...that partially shows the implicit step by step constructién
the in nite minimal mode{q(j), r(j +2) | j [N} for the body of the goal (i.e:(Z)) and the
subprogram that contains the rst three program clauseswdwer, this model does not specify
which instances afr(X) are true.

TLP, in a broad sense, means programming in any language lbastmporal logic. In
TLP two different approaches have arisen: itin@erative futureapproach and thdeclarative
approach. In the imperative future approach a program ig afgeles of the formp - oy
asserting that whenever the formuias true in a stats, the next state® must make true the
formulay. The imperative future approach tries to construct a motighe@whole input pro-
gram by using a forward chaining process. By contrast, tletadsive approach to TLP is
based on extending classical resolution for dealing withperal connectives. Hence the (im-
plicit) attempt of constructing a model is driven by the gdd the above Example 5.1.1 shows,
such model determines only the predicates involved in thetatonal process. Next, we brie y
review the most signi cant proposals in the literature fath approaches. More discussion
and references about programming languages with capesilitr reasoning about time can be
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found e.qg. in [67, 44, 98, 100].

Imperative future TLP languages. The most signi cant representatives of this approach
are Tempura [94] and MetateM [9]. The language Tempura isdag a fragment of Interval
Temporal Logic with a restricted use of eventualities. Teenpura approach has been contin-
ued ([27, 95]) and extended to Framed Tempura and Projettéomporal Logic Programming
[37, 38, 129].

The language MetateM develops the methodology outline84ih [MetateM is based on First-
order Linear-time Temporal Logid-(TL) and formulas are written in the Separated Normal
Form (SNF) presented in [40, 41]. The propositional fragnurMetateM is complete, how-
ever, sincd-LTL is incomplete ([92, 122, 121]), the execution of a rst-ordiéetateM program
attempts to build a model, but the success of such congtruiginot guaranteed (see Example
5.1.4). In MetateM disjunctions are seen as choices and isiendt is selected from each dis-
junction as part of the process of building a model. If a chdédater shown to be inappropriate,
because it leads to inconsistency, then backtracking id teseeturn to the last point where a
choice was made. In propositional MetateM the terminatsoaddressed by explicitly consid-
ering the small model property, which allows to calculateupper bound of forward chaining
steps. If a model is not obtained bellow this upper bound) the attempt is given up and the
procedure backtracks. MetateM was extended to Concurretat®M in [42]. Among its ap-
plications we can mention, e.g., the development of agestesys ([43, 47]). More references
on MetateM, Concurrent MetateM and their applications carfdund in [44]. A fragment
of Linear-time Temporal Logic is presented as imperativterie TLP language in [93]. This
language, for ef ciency, restricts the use of eventuaditfand also disjunctions). The clausal
normal form and the idea of forward chaining constructiomafdels introduced in MetateM
are used in [6, 7] to obtain a temporal extension of the Ans8eatrProgramming paradigm
(non-monotonic reasoning).

Finally, we also mention the assembly-like TLP language XY #hat was presented in [124,
125] as a vehicle for providing temporal semantics to progravritten in conventional imper-
ative programming languages. An imperative program isesg®d in XYZ/E on the basis of
the execution sequences that it generates along the tendlisimilar approach can be found in
Chapter 3 of [44].

Declarative TLP languages.There are several works on extending classical LP (in partic
ular Prolog) for reasoning about time. Some proposals arelypbased on temporal logic and
extensions of SLD resolution, but the incompletenedsldil. becomes a delicate issue for us-
ing fragments ofLTL as TLP languages. Also the complexity result is a drawbaek &ur the
propositional fragment (see [119]). Additionally, thedraction between the (“always”) and
the o (“next”) connectives makes possible to encode the sodtaiduction on timeéy means
of loops or hidden invariants (see Section 2.4) that, in airéct way, state that a formula
is satis ed in every moment in time. The presence of thespdaar hidden invariants makes
necessary to consider quite intricate mechanisms for tileggcin)satis able eventualities (Def-
inition 2.2.1). Many temporal extensions of LP are not ppfelinded on temporal logic due to
their extra-logical features for handling eventualitiBext, we summarize representative pub-
lished work concerning the variety of proposals in declagaf LP languages (including some
approaches that are not purely based on temporal logic).

The language Tokio [52, 82, 83, 96] extends Prolog by addingpbral reasoning capabilities
inspired by both Linear-time Temporal Logic and Intervaifmral Logic. In Tokio there are



5. Logical Foundations for More Expressive Declarative jeral Logic Programming Languages 125

restrictions regarding the use of temporal connectivesamike Prolog variables, the so-called
temporal variables used in Tokio have state, what makesipgeds express properties like
oY =Y + 1 stating that the value of the variablein the next time instant will be its present
value plus one. Obviously, this kind of expressions are mpstted by conventional temporal
logic.
A different temporal extension of Prolog was introduced biydej in [74, 75] where time inter-
vals are considered as conceptual primitives. The Hrytajiguage is a nhon-modal approach
based on rst-order logic with capabilities to deal with Brimtervals. More precisely, the rst-
order “rei ed” logic ([108, 118]) is considered as the bafkis the implementation of the lan-
guage.
Metric temporal operators and dense time are considere?ilin2, 24, 23, 25, 26] where ex-
ecution is based on translating temporal logic programs @dnstraint Logic Programming.
Temporal Annotated Constraint Logic Programming is presgbim [50, 49, 51, 107].
The Temporal Prolog presented in [114] extends Prolog hydhicing linear-time temporal
connectives. Programs are transformed into a normal foatigtsimilar to the Separated Nor-
mal Form used in MetateM. This transformation removes nmarspbral connectives by intro-
ducing fresh predicates. The transformation of evenigalifields negated atoms. If negated
atoms (i.e., eventualities) are involved in a program, ttienHerbrand universe must be nite
and, in this case, computation is performed on the basis ohdeterministic nite automaton
that corresponds to the program. Two implementation optame devised: rst, by translat-
ing programs into Prolog (if the program contains negatiban a pure Prolog program is not
obtained) and second, asserting the facts which are truechtgoint in time (although this im-
plementation option is not explained in detail, it reserapb rst sight, the imperative future
approach).
A sequent-based proposal for establishing logical founddbr declarative TLP is presented in
[106]. This approach considers a complete fragmerLdfL where eventualities are allowed.
In order to handle eventualities, the sequent system atnéai invariant-based rule.
We nally review the three existing declarative TLP langeadhat are based on pure extensions
of classical logic programming languages and resolutidrigkvare Chronolog [127, 99], Tem-
plog[2, 3, 10, 11, 12, 13, 14] and Gabbay's Temporal Prol&j.[Ehronolog and Templog are
the most studied and the most representative languages putkly declarative approach. The
underlying logic for the languages Templog and ChronologLls$L. In the case of Gabbay's
Temporal Prolog, the presented system is intended for batiching-time and linear-time tem-
poral logic. In Chronolog, the connectivest (to refer to the statgy) andnext (to refer to
the next state) are the only temporal connectives. Tempkgitax allows the always connec-
tive ( ) to occur in clause heads and the eventually connecfivin(clause bodies. However,
Templog programs are expressible by usirag the unique temporal connective in clause heads
and bodies ([12, 14]) and consequently it has the same esitpegsower as Chronolog. This
restriction is so strong that it allows reducing any temppragram to a (possibly in nite)
classical logic program. Templog and Chronolog have algosime metalogical properties
of existence of minimal model and xpoint characterizatioBabbay's Temporal Prolog is a
more expressive language that allows eventualities inseldneads (although it does not allow
in clause bodies). The resolution-based computation groeeoutlined in [55] is proved to
be sound, however its completeness has not been addressedleifelopment of these three
declarative languages was mainly done in the early ningtieontrast to the imperative future
approach (e.g. Tempura and MetateM) which has been evalvitigpresent days. During the
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last two decades, no other clausal sublanguage of line&rtémporal logic has been proposed
as declarative TLP language. Hence, nowadays, Templogn@lag and Gabbay's Temporal
Prolog remain as the most expressive proposals of deslarBttiP languages. Later extensions
of Chronolog (e.g. [103, 102, 112, 113, 68]) did not add sagrit temporal expressiveness. In
the case of Gabbay's Temporal Prolog, although the exp@gsiwer was considerably high, it
seems that the lack of completeness was a handicap for fstiiny and development.

In general, it seems that the troublesome solving (in theluéien sense) of the so-called
eventualities has been blocking the steps toward more ssipeeresolution-based declarative
TLP languages. Indeed, even in the propositional fragmieat in PLTL— the solving of even-
tualities is the most intricate part that often requirehtégues such as invariant generation
([40, 45)).

In this thesis, we contribute to the effort of increasingtéraporal expressiveness of declar-
ative TLP languages on the basis of the temporal resolltas®ed mechanism presented in
the previous chapter (see also [62]) that is complete (ipthpositional setting). As already
explained in Chapter 4, the main novelty of this temporabh&son lies in a new approach
to handle eventualities. We introduce a purely declargiiepositional TLP language, called
TeDilLog, that allows both and Lin clause heads and bodies. HenbeDilLogis strictly more
expressive than the propositional fragments of the abovdiored purely declarative propos-
als: Templog [3, 12], Chronolog [127, 99] and Gabbay's Terap®rolog [55]. Additionally
TeDiLogis as expressive as propositional MetateM [9]. However,at follows the imper-
ative future approach and is not based on resolution. Twoiardifferences of our proposal
with MetateM are thafeDiLog does not need backtracking and the resolution mechanism of
TeDiLogdirectly manages unsatis able eventualities, hence uppands are not needed.

A very preliminary version of the content provided in thisapter was presented at the
Spanish Workshop PROLE 2009 (see [64]).

Along the chapter, we compafeDiLogwith its most closely related proposals: Templog,
Chronolog, the linear-time Gabbay's Temporal Prolog andatM. The technical content of
this chapter is focused on the propositional languBejgiLog However, for a better illustration
of the aim of our proposal, we next discuss some rst-ordegpem examples. They are written
in the natural extension dfeDiLogwith predicates and variables.

Example 5.1.2.Consider the following program (on Fibonacci numbers):

fib(0) — 1
ofib(l) « 1
(=2Fib(V) « Fib(X) C=Fib(Y) CV1= X +Y)

The goal [_d <>fib(Z) yields the answer substitutidiZz ~ 2}. The goal[—d [Fib(Z)
produces an in nite sequence of answer substitutigs— 0}, {Z - 1}, {Z ~ 1}, {Z ~
2}, ..., thatis, the sequence of Fibonacci numbers. Now, denshe goal[—d fib(Z2)
which is not expressible in Templog, Chronolog and Gabba&gtaporal Prolog. Th@eDilLog
computation does not nish and does not produce any answae tidat fib(j) is not a logical
consequence of the program for any_ N .

The above program is expressible in MetateM through a sitrptesformation. The MetateM
program execution, which does not need a goal, builds theiia model

{fib(0), oFib(1), o>Fib(1), =>Fib(2),.. }
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for the above program.
Example 5.1.3.The following program encodes the so-called induction oret{forq(a)):

q@ ~ L1
(ca(X) ~ (X))

Hence,q(a) is true at every instant along the time. The gdald <3q(Z) yields the an-
swer substitutio{Z ~ a}. The goal[—_d [q{Z) generates the in nite sequence of answer
substitutions{Z ~ a},{Z - a},{Z - a}, {Z ~ a},.... Thegoal[d q(Z) also
yields the answer substituticdfz ~ a}. The latter goal is neither expressible in Templog,
nor Chronolog, nor Gabbay's Temporal Prolog. The MetateMtsgn builds the in nite model
{q(a), =q(a), =%q(a), . . .} for the above program.

Example 5.1.4.The following program shows that, as expected, the natustlorder extension
of TeDiLoggives rise to an incomplete system:
q(0) -~ 1

(ca(X) < a(X))

(ca(X) —q(Y) X =Y +1)

(W(X) <« a(X))
This fact is due to the interaction between the in nite domamd the connective in the body
of the last clause. By means of the rst three clauses, foryeve[IN, q(i) holds in all
statess; such thatj = i. As a consequence(i) holds in a states; if i = j. Indeed, the
atomsw(0), ew(0), sw(1), =2w(0), ®w(1), =®w(2), ... are logical consequences of the pro-
gram. However, the rst-order extension of our resolutioathod will neither yield any answer
for the goal [_d [wl(Z) nor for any goal [ okW(Z) wherek = 0. The reason is that, by
contrast with the previous Example 5.1.3, here the gdoall q(V) does not give any answer
(due to the in nite domain), and consequently the last pargiclause cannot be used to pro-
ducew(V).
In order to obtain a MetateM program, the last program claab®ve is translated into SNF
giving rise to two clauses: (cr(X) « q(X) [=Ww(X)) and (L=h(X) « r(X)), where
r is a fresh predicate symbol. Consequently MetateM attetoptenstruct a model for the
following progrant:

q(0) ~ L1
(ca(X) ~ q(X))
(ca(X) « q(Y) X =Y +1)
(er(X) < q(X) [=(X))
(C=0(X) < r(X))

Then, the atoms ifig(0), =q(0), =q(L1), %q(0), =2q(1), =%q(2), . . .} are successively obtained.
In addition, since there is no clause with hea@z), we can suppose thatw(X) succeeds in
a time instant for anyX such thatj(X) is true at that time instant. Therefore, the atoms

{=r(0), =°r(0), °?r(1), =°r(0), °3r(2), *3r(2), .. }

! Actually this program is not in pure SNF yet (see e.g. [41Ppn® minor syntactical changes are still needed,
but they are irrelevant for our discussion.
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are also generated. According to the last program clausestfstem attempts to satidfylg (X)),
however at each step the system must delay this task for #hatep. Therefore, MetateM (as
TeDiLog) is not able to generate a model for this program.

In the rest of the chapter we restrict ourselves to the piitipoal setting. Hence, the logic
that underliesTeDiLogis the well-known Propaositional Linear-time Temporal Lo@PLTL),
which is complete and decidable. We endd@bDiLog with logical and operational semantics
and prove their equivalence. The logical semantics is dgiyetie set of all the ( nite) formulas
of the formay 1. [Cay}, that are logical consequences RhTL) of the program and where
eachaq; is either a body or a body pre xed by the connectivellhe operational semantics of
TeDiLogis based on thavariant-free resolution methaithat is presented in detail in Chapter
4 of this thesis (see also [62]) and dispenses with invaganeration. We cannot expect to
have the classicallinimal Model PropertyMMP in short) that assigns to any program a min-
imal model, which is the intersection of all its models. Tleason for this is twofold. First,
the non-conjunctive temporal connectikg@lppearing in clause heads, and also the non- nitary
connective appearing in clause bodies, both (separately) prevent fralding the MMP (see
[101, 99]). For Gabbay's Temporal Prolog the MMP does notlHmdcause of the use of the
connectivel i clause heads. The second reason is that our resolutidmemisen produces (in
computation time) disjunctive clauses, BeDiLogis located in the disjunctive logic program-
ming (DLP) paradigm, which does not enjoy the MMP even in tlassical (non-temporal)
case. In the DLP framework, the semantics of a program censfghe collection of all its
minimal models (see e.g. [89]). Temporal disjunctive lggiogramming has previously been
addressed in [68] where Chronolog is extended with DLP featuThe satis ability of a Tem-
plog/Chronolog program can be reduced to the satis abdftg classical logic program. As a
consequence, the minimal model characterization of Tegwhal (Disjunctive) Chronolog (see
[12, 68,127, 99]) is a straightforward adaptation of thesieal (disjunctive) case. In the case of
TeDiLog, due to the fact that syntactical cut elimination seems tartfeasible ifPLTL (indeed,
itis an open problem in [20] and [61]), the collection of nmirdl models associated to a program
should be related to every possible goal. This results il éntvicate (hence, unseemly) model-
theoretic characterization to be used as declarative s@adar TeDiLog Indeed, although
a continuous immediate consequence operator can be assbtiaevery program, there are
great dif culties (related to cut elimination) for usingishoperator in a customary completeness
proof. Hence, we prove completeness with respect to thedbgemantics through a particular
model construction.

Our resolution system requires the expressive power oftéufiporal logic. That is, the
resolution of al-doal, necessarily generates subgoals involving thetlgtmeore expressive
connectiveU . Hence, we directly formulate our language in terms of tingpteral connectives
U and its dual: the connectivR . We present a complete algorithm which performs resolution
of a goal with respect to a program. This algorithm is based oatural extension of the classi-
cal LP rule for (binary) resolution in two senses: temporalr{ front of clauses) and disjunctive
(disjunction in clause heads). The algorithm not only parfothe standard (linear) resolution
between the current goal and a selected program clausdsbua eontrolled kind of resolution
callednx-resolution This nx-resolution is performed to infer (from programudas) all the
(program) clauses that have a connectivia front of every literal. Intuitively, nx-resolution
allows to extract all the implicit information about the mexate that is crucial to achieve com-
pleteness.
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L_pl p H = mEEI

L= - B := A [BI
T:o=LUp|LRp|Lpl| p D:= YA [H - B)
A= olp|o'T G:= P([aB)

wherep [Prop, i [N, [Ciskhe empty disjunction,
[islthe empty conjunction ard [0, 1}.

Figure 5.1:Syntax ofTeDiLog

Outline of the chaptern Section 5.2 we introduce the syntaxXi@DilLog, some preliminary
de nitions and a sampl@&eDiLog speci cation of a reactive system. In Section 5.3 we present
the system of rules that are the basis for the operationahseos of TeDiLog Section 5.4 is
devoted to the operational and logical semantics and theivalence. In Subsection 5.4.1 we
present the operational semantic§ebiLog. Then, in Subsection 5.4.2 we detail some sample
derivations. The logical semantics is described in Submeét4.3. We prove the equivalence
between both semantics in Subsection 5.4.4. Finally, waudsrelevant related work in Section
5.5.

5.2 The LanguagéeTeDiLog

In this section we introduce the syntax ®DiLog along with an illustrative example of a
TeDiLogspeci cation for a reactive system.

The syntax offeDiLog (Figure 5.1) is an adaptation, to the usual logic prograngrsigle,
of the clausal normal form previously presented for clatsadporal resolution (Section 4.2).
The programming languagkeDilLogis a twofold extension of propositional Horn clauses that
incorporates temporal connectives in atoms and disjungiioclause heads. It is thermporal
Disjunctive Lodc programming language given in Figure 5.1, where the naetable A de-
notesatom L stands for (classical) literal, for temporal atomH for head,B for body,D for
(disjunctive) program clause, ai@lfor goal clause. As in the previous chapter, we use the su-
perscripth varying in{0, 1} to represent a formula with or without a pre xed unary cortivec
(in particular for the connectives and [).1 So that, along the rest of the chapter superschipts
(from bit) range i{0, 1}. These kinds of superscripts are notation, hence they drpanbof
the syntax. Due to the superscriptthe metavariabl® represents two kinds of clauses. The
expression b(H ~ B), forb =0, representsl — B, which is called anow-clausewhereas
forb = 1, itrepresents (H — B), which is called aralways-clauseThe same classi cation
applies to the goal clauses denoteddyin particular, P( [ Dy répresents the two possible
syntactic forms of the empty clause, as now- or always-elaus

De nition 5.2.1. Given a set of clauseas, the setalw(®) is formed by all the always-clauses
in @, i.e. all the clauses of the form(H ~ B). In addition, the sehow(®) is ® \ alw(D).
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A program is a set of program clauses and a goal is a set of fomes.

The set of atoms of a claue = P(A; 1. Ay, « A 1. CAQ) is the set
{A1,...,An, A}, ..., A%} We assume that there is neither repetitions nor estaklisraer
in the atoms of a head or a body. An atom is said to-Heee if it is a temporal atom or a
classical propositional atom. The connectivis distributive over every other connective and,
consequentlye (A; . (AL, ~ A 1. CAR) is equivalentto (°A; . [eAy «
°A? 1. [=R9). Given a head, body, program clause or goal clausee denote byy the
head, body, program clause or goal clause that is obtaineddiyg one connectiveto every
atominy. Forinstances (p [glJ- °r)denotes (°ep (=g ~ c°r)ande ([ =r)denotes

( ==l =°=r). Note thate [dslwritten just Cadde Cishwritten L1

Aclause P(H < B)issemantically equivalentto the formul®(H [=B). Consequently,
not only the temporal atoms of the forimlandL U p that occur in the heali of the clause
behave as eventualities, but also the temporal atop@ndL R p in the bodyB, which respec-
tively correspond to (temporal) literats p and—(L R p). Hence, we de ne the eventuality
literals of a clause, on the basis of the notion of eventyédi¢e De nition 2.2.1).

De nition 5.2.2. LetC be a clause °(A; 1. [A, ~ A . [AP). Lits(C) denotes
the set{A1,...,An,-Af, ..., =A%} whose elements are called themporal literalsof C.
Additionally, EventLitqC) denotes the set of all theventuality literalsn C, i.e. {N | N [
Lits(C) andN is an eventualit.

Both notations are extended to a set of claugéan the obvious manner:

S S
Lits(W) = , Lits(C)andEventLit{¥) = , EventLitgC).

Note that eventuality literals from clauses have one of ttlewing four forms: [pJ L U p,
= pand-(L R p), wherep is a propositional variable arld a classical literal.

TeDiLogis syntactically a sublanguageBETL, but everyPLTL-formula can be translated
into TeDiLogby using, in general, new propositional variables. Thediation yields an equi-
satis able set of (program and goal) clauses. For exampePLTL-formula —-p ~ q (i.e.

—p [=h) can be translated intbeDiLogas the goall_d q [Thlbut also as the set formed
by the program clauser ~ g and the goal clause( [—d r [p) wherer is a fresh proposi-
tional variable. For th&LTL-formula (x [y¥) ~ z we obtain the program clausesw ~ z
and (x yl— w) wherew is a fresh propositional variable. A detailed translaticetimod is
presented in Subsection 4.2.2.

To nish this section, let us illustrate (with an examplehdeDiLogcan be used to specify
reactive systems and to verify properties that are satibyethese systems. We also use the next
example to compare the expressivenessaidiLog with the more closely related proposals in
the literature.

Example 5.2.3.Let us consider a system where a devibg @nd a system managerf) inter-
act with each other. When the devibeneeds to execute a process, it sends a requgstlv to
the system managem to get permission and goes into waiting-state until theeystanager
sm sends the acknowledgement sigaek_sm giving permission to execute the process.

(waiting_dvU ack_ sm ~ req._dv) (5.2)
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Whenevedv asks for permission, the system managrarwill eventually give permission by
sending the acknowledgement sigaelt_sm in a later state.

(e [atk_sm « reg_dv) (5.2)

Once the system manager produces the sigolalsm (giving permission), the deviak goes
into working-state until it communicates the end of the paschy means of tlep_dv signal.

(working_dv U eop_dv — ack_sm) (5.3)

Whenever the device generates #gop_dv signal, then it will not be in working-state until it
receives th@ck_sm signal giving permission to execute another process.

(=working_dvU ack_sm ~ eop_dv) (5.4)
From time to time, the system manager generates a contnohbigr_sm
(Cctr.sm « D1 (5.5)

The interaction generated after the control sigotrl_sm corresponds to the fact that the system
manager has to regularly control whether the device is attiyeconnected to the system. This
signalctr_sm is always eventually followed by the sigrtahn_sm which is received by the
device.

(Lcdbnn_sm ~ ctr_sm) (5.6)

After receiving the signalonn_sm, the devicalv answers by sending the sigreahn_dv to the
system manager.
(e Lcdbnn_dv ~ conn_sm) (5.7)

The devicadv is considered to be in communicating-stater(_dv) while the arising of the
conn_dv signal (now or in a future moment) is guaranteed.

(com_dv — [conn_dv) (5.8)

We would like to remark that the clauses (5.2) and (5.5))(bahnot be expressed neither in
Chronolog nor in Templog because of the eventualities iir tteads. However, all of them are
syntactically correct in Gabbay's Temporal Prolog. As foetclauses (5.1), (5.3) and (5.4), they
contain the connectiv®) which is not allowed in the above mentioned three declagafiP
languages.

Now, we can check whether the system speci ed byelslLog clauses (5.1)-(5.8) veri es
some properties such as fairness, liveness, safety, masakision, etc. This is made by writing
the intended property asEeDiLoggoal and then checking if that goal can be inferred from the
program. For example we would be interested in checking drethe devicalv will always
keep in communicating-state. The corresponding goal wbaiL—_d com_dv}. Actually,
the refutational mechanism @&DiLogchecks the unsatis ability of the eventualitydcom_dv
with respect to the speci cation.

None of the just above mentioned three languages (Chrondéogplog and Gabbay's Temporal
Prolog) allows always-atoms in clause bodies, hence theigus goal is not expressible in any
of these declarative TLP languages.
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b(A [H — B) P(HO — A [BP

(Res) T TR B T b, b® [0, 1}

Figure 5.2:The Resolution Rule

The program clauses (5.1)-(5.8) can be expressed in prapoal MetateM, although some
translation into SNF is needed. For the resulting speciioat the MetateM execution system
builds a model step by step in the imperative future stylee diocess will stop when a loop
that gives rise to an ultimately periodic model for the pragris detected. If we add to the
speci cation the SNF clauses that correspondto the goall com_dv, then MetateM nitely
detects the unsatis ability of the extended speci cation.

5.3 The Rule System

In this section, we introduce the rule system that constitthe basis of the operational seman-
tics of TeDiLog This rule system is a straightforward adaptation ottke-system presented
in Section 4.3. Hence our system includd®esolution Rulea collection offemporal Ruleor
decomposing temporal atoms, and two auxiliary rules resdyg for jumping to the next state
and forsubsumptionWe explain these four kinds of rules in the following foubseactions.

5.3.1 The Resolution Rule

The TeDiLods resolution rule(Res) is a natural generalization of the classical rule for binary
resolution. It is depicted in Figure 5.2 in the usual formp@mises and resolvent separated
by an horizontal line. The ruléRes) applies to two temporal clauses such that one of the atoms
in the head of one clause is in the body of the other clause pidmaises can be headed or not
by an always connective. By means of the produgt b®in the superscript of the resolvent,
the resolvent is an always-clause if and only if both prem@e always-clauses. Note that the
resolvent is in general a program clause, but in particutamthe premises respectively are a
single-headed program clause and a goal clause, the ras@\aegoal clause.

5.3.2 The Temporal Rules

The temporal rules serve to transform the set of clausegdiogpto the inductive de nitions

of temporal atoms. We write them as transformation rdids ¥ where® andW¥ are sets of
clauses, respectivelly called the antecedent and the goese Temporal rules are grouped into
two classes. On the one hand, tumtext-free ruleare based on the usual inductive de nitions
of the temporal connectives. The antecedent and conseqfiany context-free rule are logi-
cally equivalent. On the other hand, thentext-dependentiles come up from a more complex
inductive de nition of the connectivé) (already presented in the previous chapters), and their
antecedent and consequent are equisatis able.
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(UH:)  ®((p1Up) CH ~ B)
8- { Pp, Cpd CH - B), °(p, C=(p1Up,) CH ~ B)}

Figure 5.3:The Context-Free RulgU H.)

(UH )  °((=p1Up) [H ~ B)
8- { °(p2 [H ~ py [B), "(p, C={-p1Upz) [H — B)}

(UB+) P(H — (p1U p2) CB)
B-{ "(H < p CB), P(H ~ p1 C={p1U pp) CB)}

(UB ) P(H — (=p1Upp) B
B-{ P(H < pp [B), P°(py CH ~ °(=p1Up,) CB)}

Figure 5.4:The Context-Free RulgU H ), (UB4)and(UB )

Context-Free Rules

In the context-free rules, the anteced@ris a singleton and we write directly its unique clause.
The context-free rulé U H. ) —depicted in Figure 5.3— deals with an atom of the f@in p,
that appears in the head of a clause. This rule replaces sectE#uhe form P((p1 U p,o) 1
H ~ B) with a logically equivalent set of (two) clauses accordinghte well-known inductive
de nition py U po = po (1 =(p1 U p2)), from which the distribution law guarantees the
equivalence

p1Up2 = (p2 Cpd) [(d2 Co(p1U p2)) (5.9

which justi es that the antecede(yi; U p») [HI — B of the rule(U H. ) is logically equivalent
to the conjunction of the two clauses in its consequentpd [CHI —~ B andp, [={p;, U po) [
H - B.

Our system also includes (see Figure 5.4) the r@lé¢d ), (U B+ ) and(U B ) for the re-
spective occurrences ef; U p, in the clause head amd U p, and—-p1 U p, in the clause body.
The rules(UH ), (UB+) and(U B ) are respectively obtained by using the inductive de -
nitionL U p = p [(IL =(L U p)) for =p; U p2 in the clause head, amd U p, and—=p1 U p2 in
the clause body. Additionally, the rulé&R H.), (RH ), (RB:) and(R B ) in Figure 5.5
are obtained from the inductive de nitidnR p = p [{Il =L R p)) by considering the same
four kinds of occurrences of the release conneckvén a clause.

Context-Dependent Rules

The context-dependent rules are based on an inductivetitenndf U that takes into account,
not only the clauses where the temporal atom occurs, butlasemaining now-clauses in the
antecedent of the rule. The rul® C. ) in Figure 5.7 is the context-dependent rule that deals
with atoms of the formp, U p2 in clause heads. This rule is obtained by a direct adaptation
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(RH:)  P((p1Rpz) [H - B)
8- { "p. A - B), P(p1 C=(p1Rp2) [H - B)}

(RH) ®(-p1Rpy) [H - B)
B-{ °(p2 (A - B), °(c(=p1Rpy) [H ~ p; (BN}

(RB:) P(H — (p1Rp2) [B)
B-{ °(H < p, Cd [B), °(H ~ p, C=(p1Rp2) CB)}

(RB) PH ~ (=p1Rp2) [B)
B-{ °(ps (A « p [B), P(H « p, C=(-p1Rp2) CB)}

Figure 5.5:The Context-Free RulgR H..), (RH ), (RB+)and(RB )

def(a, L, D= { (Cda)}
def(a,p,A)={ (p - a)} ({I(H - B[A)|H « B [SA}IfAE [
def(a, -p,A)={ (Cdp@}{I(H - B[A)|H - B [IA}IfAE ]

Figure 5.6:The set of clausedef(a, L, A)

to the syntax offeDiLog, of the rule( U Set) in Figure 4.5. The antecedent ) C.) must
be interpreted as a partition of the whole set of clauses (sichwwe are applying temporal
resolution) into two sets. The second §et’((p1Upo) CH; « Bi) | 1 < i < n}inthe
antecedent is a non-empty set of clauses that contain the samporal atonp; U p» in the
head. The rst setQ, is formed by all the remaining clauses. The now-clauseshbing
to Q form what we callcontext(see De nition 4.3.3 and Subsection 4.3.2). The cruciahide
behind the context-dependent ryl& C. ) (and, hence, behind the resolution mechanism of
TeDiLog) is based on the equisatis ability result in Propositio.2. The transformation of
such proposition into the syntax d&DiLog is trivial because deDilLog clause of the form
b(A; 1A} ~ A [1[AY) corresponds to the claus@(A; L1 A}, [=A) L1[=A9)
in the clausal language presented in Chapter 4.

All the rules used infeDiLogare straightforward adaptations of the rules used inTth&
resolution system. For instance, the transformation oftitecedent of U C. ) into its conse-
guent follows the same steps as the transformation of tleadént of the ruléU Set) into its
consequent, showed in detail in Subsection 4.3.2.

Our system also includes a similar context-dependen{tul€ ) for =p1 U p in the head,
which is depicted in Figure 5.8. The context-dependensiR C, ) and( R C ) in Figure 5.8
are due to the fact that a release atom appearing in the badglafiseC is an eventuality literal
of C (see De nition 5.2.2). The rules foR are explained by its duality withd . Additionally,
by using the de nitions[@l = -pU $ and ¢ = —-d R ¢, the context-free rule§[H., ),
([B:), ( H:)and( B.:) and the context-dependent rulgsd.; ) and( C.) are derived.
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(UCy) QrO"((pUpy) H - Bj)|l<i<n}
B- Q [Xp [pd [H ~ By, pp [efaUpy) [H « B | 1<i=n}
[tef(a, p1, nowmQ))
CX P(e(prUp2) C=H; ~ ©B)) | i =landl<i=<n}

wheren = 1, a [Propis fresh andlef(a, p1, nom(Q)) is de ned in Figure 5.6.

Figure 5.7:The Context-Dependent Ru{&J C..)

(UC) Qr{O%((-p1Up) (B ~ B)|1<i=n}
B- Q [Xp> [H ~ py (B, p2 C2faUpy) [H < B | 1=si=n}
[Hef(a, =p1, nowm(Q))
X %(e(-p1Upz) [3H; « °B;) | by =landl<i<n}

(RC:) QI{I%(Hi « (mRpy) [Bl)|1<is<n}
B- Q [CXHi « p2 [nd (B}, Hj « p2 [e(-aRpp) [Bl |[1<i=n}
[Hef(a, =p1, nowm(Q))
K M(oHj « °(p1Rp2) [=B;) |bj =landl<i<n}

(RC) QO{1%(Hi ~ (-p1Rpz) [Bl)|1l=<i=n}
B- Q [Xp: [H « p2 (B}, Hj « p2 [e(-aRpp) [Bl |[1<i=n}
[Hef(a, p1, nom(Q))
K M(oHi « o(=p1Rpy) [=B;) | b =landl<i=<n}

wheren = 1, a [Propis fresh andlef(a, L, now(Q)) is de ned is in Figure 5.6.

Figure 5.8:The Context-DependentRulésl C ), (RC4) and(RC )

These derived rules are depicted in Figure 5.10.

5.3.3 The Rule for Jumping to the Next State

The rule(Unx) in Figure 5.11 applies to a pair formed by a program and a gbahg a new
pair of program and goal. The expressigmext{(V) stands for the set of all clauses that should
be satis ed at the next state of a state that satis es thefsgdtiases¥. Note that the de nition

of the functionunnextimplicitly uses the equivalence¢ = ¢ [ ¢ and also that thannext
target of a program (resp. goal) is also a program (resp.) glhd worth remembering thaE__1
and [rekpectively represent the empty body and the empty heddt hnolds that every atom
in [amd [islof the formeA. For exampleunnext({ (°r « 0D,1(q « [DF)is the set

{ (or- D@ O3 - 0]
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{ (Caa)} if nowQ) = 1

def(a, nom(Q)) = { H-BL[@A|H « B [Zhow(Q)} otherwise

Figure 5.9:The set of clausedef(a, nowm(Q))

(0B.) X[pl[H - B) 8- { °p C=[pI[H - B)}
(B.) °(H-OB)s-{°H -pLB), °H - -CpCBE)}
(H) P pfH-B)B-{ °"(p[H-B), " plH-B)}
(B+) °(H<~ p[B)8-{ °(H - pl=lplB)}
(@) or{a"(plfH - B)|l<i<n}

Bo Q [KplefaUp)[H, B | 1<i=n}

[Hef(a, now(Q))
CX P(e[pl[eH; < °B;) | b =landl<i<n}

(C) QO1%(Hi - p[B)|l=sisn}
B Q [CXH; -« p=(-aRp)[Bl|l<i=n}
[Hef(a, nom(Q))
CK bi(eH; « o p[=Bj)|b=1landl<i<n}

wheren = 1, a [[Propis fresh andlef(a, nom(Q)) is de ned in Figure 5.9

Figure 5.10Derived Rules forl_dnd

5.3.4 The Subsumption Rule

The rule(Sbm) is formulated in Figure 5.12. Regarding the clauses in thecadent, it is said
that the clause °(H — B) is subsumed by the claus@(H° - B9).

Our resolution mechanism requir€dbm) for completeness. Actually, subsumption is used in
Lemma 5.4.11, which is used in the proof of Proposition 3l4ad allows us to prove Theorem
5.4.28.

5.4 TeDiLogSemantics

In this section we summarize our resultsT@DiLogsemantics. The rst subsection is devoted
to the operational semantics that is formalized by meankeftgorithm in Figure 5.13. The
second subsection shows three sample derivations. Initidestibsection we de ne the logical
semantics. Finally, in the last subsection we prove thevadgrice between the operational and
the logical semantics.
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(Unx) (I, N 8- (unnext(I), unnex{l))
whereunnext(¥) = aw(¥) [{H - B| P(cH — B) [#H}

Figure 5.11The Rule(U nx)

(sbm) { °(H - B), °(H°- BY}B-{ °(H°- B}

whereH? [HlandB? Bl

Figure 5.12:The Rule(Sbm)

5.4.1 Operational Semantics

In this subsection we formulate the operational semanfi@GebiLog We refer to the refuta-
tion procedure underlyinfieDiLog asIFT-resolution (forlnvariant-Free Temporalresolution).
Every step of anFT-derivation consists in applying one of the rules preseimesection 5.3.
However, as in the tableau methoadm and the resolution systemrs, the nondeterministic
application of those rules does not guarantee completehedsgure 5.13 we show theT-
resolution procedure that applies the rules in SectionrbaBmore (not fully) deterministic way
that is complete. The algorithm in Figure 5.13 is an adaptadif the algorithnBR in Figure
4.10 to the languag@DiLog Consequently, this subsection is an adaptation of Subsect
4.6.1 into the languag®eDilLog

ThelrT-resolution procedure constructsi@r-derivationfrom an input progranil and an
input goall” that we callD(I1, IN) and consists of a (possibly in nite) sequence

So -S4 S,14 1
where eacl$; is a nite sequence of pairs

hj ~hj
Mmoo @hrhs ..o @ nh)

such that
(@) (M3, 1g) =(M,T)
(b) (MY, T9) = (unnexi(MP™ %), unnex(* 1)) for everyk = 1

(c) Every pair(j, i) such thatf = 0 andi [{l,..., h;} satis es one of the following two
conditions
() nmo=n "0 " a°H « B)} where °(H — B) is the resolvent ob-
tained by applying the rulgRes) to some pair of clauses i, * [T} *

(i) M o= ' o H\E) [Wiwhere> (@ ' 0 Y)and= B Waccording
to a temporal rule or the subsumption rule.
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v (NG, Ty :=(,r); i:=0; j:=0;

> selev.sep := fair_selec(I18, I'Y);

3 loop

4 if selev.set 8 [

5 then (N1, I, selev.set ) := apply.ctx_dep(N?, Y, selev.set); j:=1;
6 elseselevset = [

7 end if;

8 (N, , ;) := supportedfree closd!, );

0 if ([ D L) then exit; end if;

10 (M, T2 ) := (unnext(; ), unnex(I, ));

1 if selev.set n EventLitgN?,, [T¥,,)= 1
12 then selev_set.; := fair_selec(n’,,, %, );
13 elseselev_set1 = selev.set ;

14 end if;

15 i=i+1,j:=0;

1 end loop;

Figure 5.13TheIFT-Resolution Procedure

Note that we use two different symbols (and4-) falhighlight the difference between applying
the rule(Unx) and any other rule. We say that &-derivation is alocal derivationif it
does not contain any application of the rglénx). Each sequencs is a local derivation and
(Unx) serves to jump from eacy; to the next sequenc® +1 . In other words, the application
of (Unx) yields each(%,, , %, ) from each(r,”, IY).

The IFT-resolution procedure rst initializes (see line 1 in FiguB.13) the pai Mg, )
with the input pair(l1, ). Then, the procedure iterates extending the derivddidn, M) with
new pairs and stopping only if the empty clause is obtainie @). In this case, the reso-
lution proof D(IN, I) is called aniFT-refutation The IFT-resolution procedure uses a mark-
ing strategy for applying exactly one context-dependeld hetween each two consecutive
applications of the rul§Unx).? For that, it keeps two variableselev.set and selev_set
for everyi = 0. Both variablesselev_set andselev_set, take as value the empty set or
a singleton that contains an eventuality literal, depegdin whetherEventLitg(Mn° L) —
see De nition 5.2.2— is empty or not, respectively. The ahle selev_set stands for the
selected eventuality literdN in (M9, %), whereasselev.set corresponds to the eventual-
ity literal obtained fromN by the application of the corresponding context-dependeiet
which remains selected in all pairs frogfil, ) to (MM, M), Consequently, in line 2 (Fig-
ure 5.13), the variableelev sey is initialized with a singleton that contains a fairly sekst
temporal literal fromEventLitg(MN3 [T§) wheneveEventLity MY [T§) is non-empty. On the
contrary, ifEventLity1§ [T§) is empty, the variablselev.sey is initialized with the empty
set (line 2). The expressidair_selec{I?, rﬁ) encapsulates the fair selection of a literal from
EventLit N2 [T}), where fairness means that a literal that belongs to everin sesequence
of the form

2 Whenever there is at least one eventuality literal, examtly is selected as the designated eventuality of the
corresponding context-dependent rule. Otherwise, ncegtiaiependent rule is applicable.
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EventLits(Mg [T3), EventLit{Mg,; [T}, ), EventLit{My,, [T§,,), ...

cannot remain inde nitely unselected in the derivatByn4d_Sgl; 4 Sgl, 41

In addition to the above explained marking strategy.-resolution requires a controlled
kind of saturation (with respect to the rules introduced éttin 5.3) before jumping from a
sequencs; to the next sequend .1, which is also needed for completeness. Actually, every

pair(l‘ljhj II:ij) is IFT-closed (or saturated) in the sense given by the followingitien.

De nition 5.4.1. Letl1 be a program and™ a goal. The pail(I'1, IN) is IFT-closed if and only if
it satis es the following four conditions:

(&) The set of atoms of the claused 1 Llis exclusively formed by atomsRrop and atoms
of the formeA.

(b) The subsumption rugbm) cannot be applied t¢r, IN).

(c) Every clause that can be obtained by applying the (Res) to a clause in1 and a clause
in I, is already in(1, IN) or it is subsumed by some clausgim, I').

(d) Every clause of the formP(cH — <B) thatcan be obtained by means of a local derivation
where in each derivation step the rulges) is applied to two program clauses, is already
in (I, N oritis subsumed by some clausd(im, I).

Items(c) and(d) represent two particular forms of the well-known set-gfysort restriction
of resolutior? (see e.g. Section 2.6 in [115] and [34]). Note that,(by the pair(1 [L) is
saturated with all the resolvents that can be obtained frgmogram clause and a goal clause.
We callgoal-resolutiorto every application of the ruléRes) related to(c). However, by(d),
the progranTl is saturated with all the resolven® of two program clauses such that every
atom inR is preceded by the connectiveWe callnx-resolutiorto every application of the rule
(Res) related to(d). The need ohx-resolutionis illustrated in Example 5.4.5.

De nition 5.4.2. Letl1 be a program and” a goal. We denote b§f1 ,I" ) any pair such that
there exists a local derivatiofl1,N) @ ... 3 (M, ) and either P(C_ad DO or
(M, )isiFT-closed.

Consequently, the lines 4 to 8 (in Figure 5.13) serve to ektilea derivation fron{r?, I'°) to
(M, T;). First, by lines 4-7, if there is a selected eventualityrétei.e., ifselev.set 8 [ihen
the corresponding context-dependent rule is applied derisig thatQ = (M° [T§) \ {C [
(NP ¥) | EventLit(C) n selevset £ [} The value ofselev.set is the singleton that
contains the new eventuality literal that is introduced bg aipplied context-dependent rule
(i.e. the eventuality literal that appears in the consetjoktihe applied context-dependent rule
preceded by a connective). If there is no selected literal, none of thetextadependent rules
is applicable in the current iteration step and, additityntiie value ofselev_set is the empty
set. Then, in line 8, denoted agpportedfree close the context-free rules, the resolution rule
and the subsumption rule are repeatedly and nondeterinaligtapplied until either anFT-
refutation or anFT-closed pair (see De nition 5.4.1) is obtained.

3 Also known asset-of-support strategy for resolution.
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De nition 5.4.3. Let (1, ") be a pairwherd1is a program and™ a goal, the non-deterministic
operation that yieldqn , I ) from (MM, ") without any application of the context-dependent
rules is denoted bgupportedfreeclose

In the algorithm presented in Figure 5.13 we use the proesslypportedfreeclosethat
implements the operatidupportedfree closeduring the construction of a derivation.

Once anFT-closed pair is obtained —if a refutation is not found in IBethe rule(U nx)
is applied (line 10). Then, an eventuality literal that e to EventLitgN°,, [TY,,), is
fairly selected for the next iteration step (lines 11-14)sdlev_set is empty or if the literal in
selevset does not appear iBventLityN?,, [T, ) (line 11), then a new literal that belongs
to EventLity(M?°,, [T4,,) is fairly selected for the next iteration step (line 12). thise, the
literal in seLev_set is kept as the selected one for the next iteration step (Ii)e 1

5.4.2 Examples

In this section we present three detailed examples thatilite therT-resolution procedure. In
Example 5.4.4 we simply show hawt-resolution deals with eventualities. The Example 5.4.5
illustrates the need of nx-resolution (De nition 5.4(d)). Finally, Example 5.4.7 shows that
the order in which eventuality literals a selected —by mezrhe fair_selectoperation— does
not necessarily determine the order in which eventualigrdis are ful lled. Moreover, this
example also serves to illustrate that the ful lIment of eugalities is handled byrT-resolution
without backtracking. The three sample derivations arevelddn the respective gures, where
we indicate which rule is applied and we underline the cladesignated by the rule application,
except for the rul€Unx). The values oselev_set andselev_set are pointed out too.

Example 5.4.4.We consider the prografl = {qU r ~ [}dndthegoal = { (L[a r)}.
The goal clause is equivalent to the formular and M [Llis unsatis able. In Figure 5.14 we
show anFT-refutation for(M, I"). First, N3 andl"J are respectively initialized a8 andr". Since

g U r is the only eventuality literal in a clause that belongdid_I] it is selected. Therefore
selevsety = {qU r}. We apply the rulg U C.) to MY [I§ with selected literafj U r and
empty context. Hence, we obtain the new program clauggs— [Caddr [=(aUr) ~ [Cadd
the goal clause ([ a), wherea is a fresh variable. Since the context is empty (its negation
is [, dhe goal clause (4 a) gives meaning to the fresh varialde The new atoma U r is

the new selected literal, i.eelev_sety, = {a U r}. Then the resolution rule and the subsumption
rule are applied twice, and theT-closed pair(1g, I1R) is obtained. These applications of the
rules (Res) and (Sbm) correspond to the operatiosupportedfree close(De nition 5.4.3).
Since a refutation cannot be obtained in this state, theiappbn of the rule(Unx) serves to
jump to the next state, generatifi andl™). Since the atora U r appears as eventuality literal
in a clause that belongs tB? [TY, it is kept as selected literal, i.eselev.setq = {aUr}.
Now the rule( U C. ) is applied to the sefl? [T with selected literaa U r and empty context.
Then, we obtain two new program claused, al - [amdr [Ce{bUr) ~ [ _and the goal
clause (L[—d b), whereb is a fresh variable. Noveelev_.set; = {bU r}. Two additional
applications of the rul€Res) —that correspond to the operatisupportedfree close- yield
the empty clausé_d [ 1

In the next example we illustrate wmx-resolution(De nition 5.4.1 (d)) is necessary for
completeness. This example is an adaptatiofieilLog, of the Example 4.6.3 (Figure 4.11).
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M3

{gur - 031

{r Cqd- L1
r CefauUr) « [}1

{r L1 L1

r efaUr) « L1
q— CF1

{r CefauUr) - L1
q - [F

{r Cefalr) - L1
q- L
°(@ur) « 31

{9 - L1
°(@ur) « 1

{aUr « [}1

{ral- 1
r Ce(bUr) « 1

{r (al- 1
r e(bUr) -« 1
a- [}1

{r (al- 1
r e(bUr) -« L1
a~ [F1

{ (4N}

{ (=dr),
(Ca)}

{ (=),
(Cda)}

{ (=dr),
(Cda)}

{ (=),
(Cda)}

{ (=),
(Ca)}

{ (=),
(Cda)}

{ (=dr),
(Cda),
(Cdh)}

{ (=),
(Cda),
(Cdh)}

{ (=),
(Cda),
(C=4b),
a1

(UC,)

(Res)

(Shm)

(Res)

(Shm)

(Unx)

(UC,)

(Res)

(Res)

selevsey ={qUr}

selevseiy = {aUr}

selevset; ={aUr}

selevset = {bUr}

Figure 5.14:1FT1-Refutation foll = {qU r « [Fandl ={

()}




5. Logical Foundations for More Expressive Declarative jeral Logic Programming Languages 142

M= {o- L33 = {4 g} ( C:+) selevsep ={- q}
(eq < 9)}
Mf= {9~ L1 T15= {CdglC=(-aRq), (Res) selevse={~(-aRq)}
(°q < 9)} (C<dq 2}
M= {q4- L1 T§= {CdqC=(-aRq), (Shm)
(cq < 9)} (C<q ),
Lde(-aRq)}
M= {g- L1 1= { (CdqLa), (Res)
(cq < 9)} LJde-(-aRq)}
Nd= {9 L1 Tri= { (dq 3, (Res)
(cq < 9)} [ Jd-(-aRq),
a}
M= {qg - C = { (Cdq 3, (Unx)
(g < 9), [ Jd-(-aRq),
o « 31 [da}
M= { (¢q-q), M= { (Cdqra), (RC ) selevset = {~(-aRq)}
q - 0 [d-aRq}
Ni= { (cqa-q, M= {(Cdq0a), (Res) selevset; = {~(-b R )}
q- L1 L g Ce(-bRaq),
a <, (C<=lq Ch)}
(a < b}
Ni= { (g0, M= { (Cdq03), (Res)
q - LA g Le(=bRq),
a - q, (Cq [y,
(a < b} [ Jda}
M= { (g0, M= { (Cdq03), (Res)
q- L1 g C=(-bRaq),
a « g, (CJq [y,
(a < b} da,
g}
N{= { (¢q-q), M= { (C3q0ad),
q« L g C={-bRaq),
a«q, (g Chy,
(@ < b} a,
L aq,
(P Iy I S

Figure 5.151FT-refutation forlm = {q « [_1(°q « q)}andlr ={[d q}
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Now we use the propositional varialijénstead of the variable that is used in Example 4.6.3.

Example 5.4.5. Let us consider the prografi = {g -« L[ _—I~q ~ @)} and the goal
r={[d q}. The set of claused [Tlis unsatis able. TharT-refutation for(1,I") is
shown in Figure 5.15. The goal claude_d g contains the only eventuality literak q,
in (M, ). Henceselev.sety, = {~ g} and the application of the rulé C.) with context
{q ~ [denerates the goal clausds_d q [(={-aRq)and ([d g [a), whereais a
new propositional variable. Additionally, we have tis#l ev.set, = {-(-aRq)}. Now the
operationsupportedfreecloseis carried out, which consists in three applicationgRies) and
one application o{Shm). By applying the resolution rule to the program clawse- [T}
and the goal clausd_d q [={-aRq) [T}, the goal clausd_d (-aR q) is obtained as
resolvent. Then, b§Ebm), the goal clausd_<l g [=(ha R q) is subsumed byl °(-a R q).
The second application ¢gRes), this time with the program clause~ [Cand the goal clause

(4 q [@) as premises, yields the goal claused a. Then the rulgRes) is applied to
the two program clauses -« [Cand (°q ~ ) and the program clauseq ~ [islobtained
as resolvent before jumping to the next state by applyingule(U nx) to theirFT-closed pair
(M3, 13).

Remark 5.4.6. Note that(I'3, ') is obtained by nx-resolution frogig, I'3). Let
us explain that this step is essential. (A3, ['}) goal-resolution is not applicable.
If instead of applying nx-resolution to the clauses- [Camd (eq < q)in M,
we applied the rul€U nx) to the pair(Nng, 3), then we would obtain the program
M°={ (oq « @)} andthe goal®= {[—d -aRq, ([—da)}. Sincer®{
is satis able, the refutation offl CT_lwould never be found.

By applying the rul€U nx) to (13, I'3), we obtain the pai(n?, I'Y). Then, we apply the context-
dependent rulé R C ) with respect to the selected eventuality literdha R q) and the clause
q —~ [as context. The paiffi, I't) is obtained by replacing the goal clauded -aR g in
? with the program clauses — g and (a « b) and the goal clause§ d q [=(-bRq)
and ([—d g [h), whereb is a fresh propositional variable. The value sélev_set; is
{~(=bR)}. In (M}, ) the resolution rule is applied with the program clause- [aid
the goal clause ([ q [@) as premises, obtaining the goal clauked a as resolvent. In
(M2, %) the resolution between the program clawse- ¢ and the goal clausd_d a yields
the goal clausel_d g. Finally, sincel3 contains the program clause — [Candl™ contains
the goal clausel _d g, the empty clause is obtained by applying the resolutioe (Rls) to
these two clauses.

Next we straightforwardly adapt Example 4.6.8 (Figures/4ahd 4.18) to the syntax of
TeDiLog. Let us recall that this example illustrates that our resofumechanism does not need
backtracking (independently of the selection strategyi@diout by the operatiofair_selec).

Example 5.4.7. We consider the prografl = {[gl -« [ Ikl —~ [}and the goall =
{ (3 g Mr)}. The setll [Tlis satis able. There are two eventualitiekgland [r]
that must be ful lled, but the goal clause states that onae eélientualitylglis ful lled, the
eventuality[ rlcannot be ful lled. An in niteiFT-derivation forM [Tlis shown in detail in
Figures 5.16, 5.17 and 5.18 (it is split due to space reasoA&hough the eventualit{glis
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M= {lgd- L 3Arj= { (Cdq I} ([A.) selevseh={L[a}

ng= {d- 1 ri= { (C3aq C1x), ([H.) selevsey ={aUq}
q=(avqg) « 031 (Cada )}
nd= {gC=faVq) - LAMg= { (CdgClH), ([B)
r el 31 (Cda D)}
M= {gl=qalq) - CAM= { (CdallD, ([B:)
r el O3] (Cdgq 1),
(g CeIn)}
Ni= {gsalq) -« LAMg= { (CdqLCr), (Res)
r Celrle [} (C<lg Celr),
(Cda ),
(Cda s}
M= {gC=avq) - CAMg= { (CAqlCr), (Res)
r Celrl- L (Cdq C=11),
r-q} (Cda LI,
(Cda s}
NS= {g=(avq) - CIMg= { (CAqLr), (Res)
rlzm‘— L,—_I (Iquzm1
r—q} (C4da o),
(Cda Csln),
Ca}
M= {gsalq) -« LAMg= { (CdqLCr), (Res)
rlzm‘— L,—_I (Iquzm1
r—aq, (Eam,
r — a} - (Cda C=lD),
Ca}
Ng= {gl=falq) -« L 1M= { (CdqLCr), (Res)
rLelrle L1 (Cdq =1,
r—aq, (Cda ),
r — a} (Cda [Csln),
g, Caa}
M= {gC=aUq) - LMY= { (CAqLC¥), (Sbm)
r Celrle L (Caq C=11),
r<4a, (CJa L),
r—a, (Cda a0,
°(@ulq) « 31 g, Cda}

Figure 5.16:1FT-derivation forl = { Lgl~ C1rl— Fandlr ={ ([aq C)} (Part1 of 3)
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M= {gCsfavq) -« LArg= { (Cdq LD,
r Celrl— ] (g C=11),
r — a, (=l a o),
°(avq) « 31 (Cda =),
[Cdq, L la}
Nt= {qC=(alq) « CLarft= { (Cdq o),
r Celrl- L] (g C=11),
°(alg) -« 31 (Cda [T,
(Cda C=1r),
g, Caa}
ng#= {reld- L1 rg= { (CdqlD,
°(alqg) - 31 (L q C=I1),
(Cga o,
(Cda C=1lr),
g, Caa}
NY= {augq - 01 M= { (C4q LD,
(g C=1r),
(Cga o,
(Cda C=l1)}
ni= {qCal- 1 rn= { (Cagq ),
q C=bUq) « 31 (g C=11),
(C4da n,
(Cda Cely),
(Cb)}
ni= {qCal- L] = { (CJdgqLD,
q [efbUq) « L1 (Cdq =11,
9 < r} (CJa 1),
(Cda C=l1),
(Cdb)}
ni= {g Cal- L = { (C3gq L),
q C=bUq) « L (Cdq C=17),
q« r} (Caa LC[1),
(Cda C=l1),
(Cab), Car}
ni= {q Cal- L M= { (Edq ),
q [efbUq) « L1 (Cdq C=11),
q<r (Cga o,
a<—°|I} (Qalzm,

(C=4db), CAr}

(Shm)

(Shm)

(Unx)

(UC,) selevsey ={aUq}

(Res)

selevset = {bUq}

(Res)

(Res)

(Res)

Figure 5.171FT-derivation forl = { Lql~ CIrl— [Fandlr ={ ([aq C)} (Part 2 of 3)




. Logical Foundations for More Expressive Declarative eral Logic Programming Languages 146

n= {qCa- .1 = { (C3q LD, (Sbm)
q ebUq) -« L (g L1,
q‘_r1 (Eam,
a « oLr} (Cda =10,
(C=ab),
Cdr, CdeLlr}

né= {qral- L1 = { (Cdq LD, (Sbm)
q C=fbUq) - L (Cdq C=11),
ac olr} (Cda ),
(C4da =11,
(Cdb),
Cdr, Cdelr}

ni= {gal- L1 (= { (Cdq 5, (Unx)
q CefbUq) ~ 31 (Edq =1,
(Eda 0o,
(Eda C=l1),
(=),
Cdr, Cdelr}

ng= 1 M= { (C4dq D), ([B,) selevset =[]
(Cdq LoD,
(CdaLlr),
(Cda Celr),
(Lb),
L Lr}

n= 0 3= { (Cdq D), (Unx) selevset, = []
(g C=11n),
(Cda o),
(Cda C=lr),
(L b),
Cdr, Cdelr}

ny=nd,ry=rP,N;=n',r;=r!and
selev.sef = selev.sef = [ibreveryj =3
{—-q, r, —|a} =2 {q, -r, —lb} = {—|r, —lb} = {—|r, —lb}- s

Figure 5.181FT-derivation fornl = { Lql~ C1rl— [Fandlr ={ ([aq )} (Part 3 of 3)
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selected rst by the operatiofair_select the eventualityl_rlis ful lled before [ql Note that
backtracking is not used.

After the rst selectionselev._sefy = {Lg}. Then the application of the ruled, ) with
context{Lr]l — [} _@enerates the program clause[=(aUq) ~ [Cahd the goal clause

([d a [TX) wherea is a fresh propositional variable. Additionaly the valuesefev_set, is
setto{a U q}. Then, the rule applicationsthat correspond to spportedfree closeoperation
(see Figure 5.13, line 8 and De nition 5.4.3) are carried @utd thelFT-closed pair(M3?, §?)
is obtained. Next, by rul@Unx), the pair(M9, I'9) is generated. Since the atant) q belongs
to EventLityM¢ [LY), it remains as the selected literal and, consequently, the ¢U C..)
is applied to(M§ [§) with aU q as selected literal (i.e.selev.set; = {aUq}) and with
empty context, obtaining the pajfl} [T3}) and settingselev.set; to {bU g}, whereb is a
fresh propositional variable. The operatisnpportedfree closethat yields therT-closed pair
(N ) from (N} 1}), encapsulates several applications of the r@Res) and the rule
(Sbm). The pair(M9, I9) is obtained from(N{ [T]) by using the rulgUnx). Since the set
EventLits(N3 [LY) is empty, the value afelev.set as well as the value cfelev set, is the
empty set. Therefore no context-dependent rule is apmi€id$, %) and we get therT-closed
pair (M3, I}) by applying the context-free ru{d B- ). From that point onwards the derivation
is a repetition whereﬂj0 =g, FJ-O =r9,n}= I‘Ijl, ri= rjl andselev.set = selev.set = [
for everyj = 3.

The pairs(Ng?, 132, (N4, 7)), (N3, ), (M3, 3),... characterize a collection of models
for the initial pair (1, IN). All the models of such collection make true the litedatg, r, —a} in
So, the literals{—r, =b} in s; and also the literal{-r, —b} in all the states; such thaj = 2.
Moreover, the atong must be true irsi for somek = 1. For instance, thd’LTL-structureM
with statesso, S1, S, . .. such thatVy (so) = {r}, Vm (s1) = {q} andVy (s;) = Libr every
Jj = 2isamodel ofl [T1

By means of Example 5.4.7 we would like to stress that theéesgjyefor selecting eventuali-
ties does not compromise the completeness of our resolmtémmanism, although it can affect
ef ciency. As already pointed out after Example 4.6.8 , if had selected the eventualityc]
instead of the eventualitlyq) the derivation would have been considerably longer.

5.4.3 Logical Semantics

In this subsection we de ne the logical characterizatiothef declarative meaning deDilLog
programs.

The logical characterization of the declarative semamiasTeDiLog programll is given,
as usual in Logic Programming, by the set of all the formules tepresent (in a particular
simpli ed way) negations of goals and that are logical cansmnces of the prografm.

In classical LP (see e.g. [88]), and also in some extensikm3émplog ([12]) and Chronolog
([127, 103, 99]), where a goal is of the forin_d B, the declarative meaning of a program is
formalized in three equivalent ways:

1. Logically, as the set of bodies that are logical consegeenf the program.
2. Model-theoretically, by means of the minimal model of pnegram.

3. By xpoint characterization, based on the immediate @mugence operator.
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These three formalizations are equivalent in the sensedhatne hand, the bodies that are
logical consequences of the program are just the bodieatbaatis ed by the minimal model
of the program and, on the other hand, the minimal model opthgram is the xpoint of the
immediate consequence operator.

In DLP ([89]), and existing temporal extensions of DLP ([6&here a goal is of the form
{4 B4,..., [ By}, the logical characterization of the declarative meanifg program
is provided by the set of formulas of the fofsx [_l. (B}, (i.e. disjunctions of bodies) that
are logical consequences of the program. The model-theateracterization is provided by
means of all the minimal models (in general there is no onky mimimal model). The xpoint
characterization can also be extended to the disjunctiradigm as shown in [89, 68].

In TeDiLoga goallr = { P:([CdBy),..., " ([dB,)}is understood as the conjunc-
tion of the goal clauses ifi. Since a goal clauseP( [_d B) represents the formuta[PB,
the setl is logically equivalent to the formulaa[®1B; 1. C=I[™1B, or equivalently to
-([IB, . CIPB,).

De nition 5.4.8. The declarative semantics off@DiLogprogramll is logically characterized
as the set of all the formulas of the forfldfiB; [_1. CIPIB, that are logical consequences of
M.

We do not provide model-theoretical and xpoint charactations forTeDiLogdue to tech-
nical dif culties that we explain in the next subsection.

5.4.4 Equivalence between operational and logical semans

In this subsection we address the soundness and completahes-resolution with respect to
the logical semantics dfeDilLog.

Soundness and completeness results guarantee the ego@/b&ween operational and log-
ical semantics.

Soundness is a consequence of the fact that each rule presais ability (indeed, some
of them preserve logical equivalence).

Theorem 5.4.9. (Soundnesdlf there exists anFT-refutation fromIl with top-goall”, then
M [Llis unsatis able.

Proof. If °([—a DT Pfor some(MC Y9 in aniFT-derivation from(M, I"), thenn® C¥is
unsatis able. Therefore, since the rufd nx) preserves satis ability and the initial set and the
target set of every application of the remaining rules argsagis able,lN [Tis also unsatis -
able. "

For more details about the proof of the above theorem seé8ekb.

In logic programming, completeness proofs are usually eskird through the minimal
model and the immediate consequence operator. In the caEDifog there are many dif-
culties for using classical notions of minimal model andrimadiate consequence operator
in a customary completeness proof. The main reason is delatine contexts that are essential
for IFT-resolution. Concretely, context handling prevents tousedthe refutability off " (D1
from the refutability ofT "** (D(see e.g. Lemma 4.6 in [12]). As pointed out in Section 5.1,
these dif culties are closely related to the problem of satical cut elimination irPLTL. We
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have explored non-conventional notions of minimal model Enmediate consequence oper-
ator, which are not only based on programs, but also needrtsider all the possible goals.
Unfortunately, these intricate notions of minimal modetlammediate consequence operator
do not facilitate the understanding of the declarative rirepaf TeDiLogprograms. Hence, we
decided not to include them in this thesis.

TeDiLogs completeness means that whenever a set of cldudeElis unsatis able, the
IFT-resolution algorithm gives a refutation féIrl, ). Since the algorithm forFT-resolution
is a straightforward adaptation of the systematic algoriBR in Subsection 4.6.1, the idea
behind the completeness proof and the involved technidaildeare very similar with respect
to the ones presented to proof the completeness affseesolution method. The main differ-
ences arise from the fact that, for satis able sets of clayge algorithn§ R produces cyclic
derivations whereas the algorithm figir-resolution produces in nite derivations. In this sub-
section, we adapt notions and results introduced in SedtigrSubsection 4.6.3 and Section 4.7
to TeDiLog. To prove completeness, we build a moBdlof any satis able set of clausé$ [11
on the basis of the in niterT-derivationD (I, I') obtained by therT-resolution algorithm. The
main dif culty in the construction of the modé\/ are the eventuality literals. In particular, we
must ensure that the ful liment of eventualities is not iitely delayed in thdPLTL-structures
obtained fromD(I1, ') and that are intended to give rise to modeldbf 1 4 With such a
purpose, we rst show that the sequence of the so-calledeteksmts of a selected eventuality
is nite.

De nition 5.4.10. We say that an eventuality literAl %is adirect descendamif other eventual-
ity literal N with respect to anFT-derivationD, if selev.set = {N} andselev.set = {N%}
in D. Thesequence of descendanfdN with respect td, is the longest sequenddy, Ny, . ..
such thatNp = N and for allj = 0: Nj.1 is a direct descendant ®; with respect td. Any
literal N; in that sequence is called a descendanoif j = 1.

An in nite sequence of descendants for the selected evétytwmaquires the existence of an
in nite number of different contexts, since the repetitioha context yields a refutation. An
in nite number of different contexts is only possible if ther-resolution procedure introduces
fresh propositional variables in the context. A priori,iieould be two ways for generating new
propositional variables in theT-derivation. The rst is the translation to clausal form #pgd
in the output to the context-dependent rules (functief). However, no new variables are
introduced in this way because classical distribution lavesenough to obtain the clausal form
(more details in Subsection 4.6.3 and Subsection 4.2.2% sEeond potential source of new
propositional variables is the explicit occurrence of alfr@ariable in the consequent of each
context-dependent rule. However, we can ensure that thevagables explicitly introduced
by the context-dependent rules are never part of the conlteXeed, it is a consequence of the
following three facts:

1. The clauses de ning a new variable are always-clauseihnre excluded from the
negated context.

2. The context-dependentrules are always applied justthBteapplication of the rul@J nx)
to sets where the propositional variables introduced eshijrby previous applications of

4 Under the assumption that the strategy for selecting ewtititss is fair in the sense that every eventuality that
from some moment onwards is available for being selectededer an eventuality must be selected, is selected at
some time.
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context-dependent rules are also out of the context.

3. The marking strategy prioritizes the selection of thecdadants of an eventuality literal
that has previously been selected.

Consequently, the number of possible different contextsiie and the construction oM is
based on the following auxiliary lemma that ensures thatsga containing eventuality literals
can be ( nitely) satis ed inM.

Lemma 5.4.11.Let D(I, IN) be a derivation and lelN be an eventuality literal such th& [
selev_set for somei = 0. The sequence of descendantdlofvith respect td (1, IN) is nite.

Proof. This is a particular case of Lemma 4.6.13 in Chapter 4. "

Next, we construct a mod@& of (I, IN) from the in nite IFT-derivationD (I, IN). First, we
introduce some auxiliary notions and results. In particula need to extend (with literals) the
pairs in the derivatio® (1, IN) in a coherent way that allows us to get models.

De nition 5.4.12. A local derivation is called docal refutationif it is a refutation. Given a
programl1and a goall, the pair(, I') is locally inconsisteniff there exists a local refutation
for (I, IN). Otherwise it idocally consistent

De nition 5.4.13. LetI1 be a program and™ a goal. Aliteral-based extension ¢f1, I') is any
pair (B, P) of sets that satis es the following conditions:

(a) M A1 (@ CCits(M)) andlr CP1C(0 [Liks(M CT))

(b) For every literaN B [P]if N is of the formA thenA [MPland if N is of the form-A
then-A [IA.

Given a literal-based extensi¢R, P) of (1, 1), we denote aBG(B, P) the pair formed by the
programi (A — CJA [CBIn Lits(M)} and the goal (XTI A | -A [PIn Lits(N D)}

De nition 5.4.14. Let be a program[” a goal and(B, P) a literal-based extension ¢f1, ).
The pair (B, P) is literal-closediff (A ) n Lits(C) 8 [for everyC [ [T1 Besides,
lclc(, ) denotes the collection of all the literal-based extensidAsP) of (M, ) such that
(B, P) is literal-closed and®PG(B, P) is locally consistent. We say that eadh, P) Cldlc(n, )
is anlclc-extensiorof (I, ).

Proposition 5.4.15.1f (1, IN) is a locally consistent pair such that the set of atoms of theses
in M [Llis exclusively formed by atomskrop and atoms of the formA then,Iclc(, M) & [

Proof. Straightforward adaptation of Proposition 4.7.2. "

Next we introduce the notion of standard Iclc-extensions péir formed by a program and
a goal.

De nition 5.4.16. Let (I, ") be a locally consistentT-closed pair wherdl is a program and
I a goal. We say thatl, P) CIdc(Mn, N is standardff it satis es the following conditions:

(@) If oA [H, then there exists a claus@(cA [sH  °B) [T
(b) If =oA [P]then there exists a claus@(eH — oA [=B) [(MN [T)
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(©) If A B, then(B \ {A}, P) IIdc(n, ).
(d) If =A B then(P, P\ {-A}) [Idc(M, ).

The following lemma ensures the existence of at least omalatd Iclc-extension of any
locally consistentrT-closed paiil(l1, I).

Lemma 5.4.17. Let (I, ") be a locally consistenFT-closed pair. There exists at least one
standard pair inlclc(l1, 7).

Proof. Straightforward adaptation of Lemma 4.7.6. "

We build standard Iclc-extensions of eaett-closed pair(T;, ;) in D(I1, ). Note that
each(l; , I';) is the last pair of the sequen8e (see Section 5.4.1) for every= 0. We denote
by (A, F;) any Iclc-extension ofl;, ;). The in nite sequences off; , F;) will represent
models ofl1 [I] Such in nite sequences must be coherent with respect tartbaning of
temporal connectives. To this end, a successor relatioa ied for the Iclc-extensions of the
IFT-closed pairgrl; , I';). This successor relation on

{lcle(M; 4, 4) xlcle(;, ) |i=1}
is presented in De nition 5.4.18.

De nition 5.4.18. Leti = 1. We say that a pai(Fl,, £, ) is a successoof ([, ,,©@ ,) if
for everyeA [(f1, , IZIE!] 1) n Lits(M; , L] ;) there is somes [nixclg (°A) such that
S [ CE), wherenxclq is de ned as follows

1. nxclg(°p) = {{p}} andnxcla (=°p) = {{-p}}
. nxclg(e=A) = {{~A}} andnxclg (==°A) = {{—-°A}}

2
3. nxclg(°(p1U p2)) = {{p2}, {p1, °(P1 U p2)}} if p1 U p, [Tsélev set
4

. nxcla (°(p1U p2)) = {{p2}, {p1, (@l p2)}} if p1 U po Cselev_set and
aU P, [Csélev.set

5. nxclg (=°(p1U p2)) = {{=p2, 7p1}, {=p2, ==(p1 U p2)}}.

The de nition ofnxclg for each of the remaining cases —i.ex(=p1 U p2), ==(=p1 U po),
o(LRp), =o(LRp), cLp] =o[p] = p and—-= p- follows straightforwardly from the cor-
responding equivalence.
If (A, F,) is a successoof (0. ;,M ), we also say tha(fl. ,,[d .) is a predecessoof
(pli 1 Fi )
The set of successors of a given piir , F; ) is denoted bgucdF; , ;).

The existence of in nite paths of standard Iclc-extensianbased on the existence of a
predecessor for each standard Iclc-extension afarclosed pair in the derivation which is a

standard Iclc-extension of the previoes-closed set in the derivation.

Proposition 5.4.19. For everyi = 1 and every standard paifM; , ¢,) Cldlc(M,,T;), there
exists a standard paiffl, ., ,) Cldc(M, ,,T; ;) suchtha(®,,F,) Csbeqfl, @ ).
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Proof. Straightforward adaptation of Proposition 4.7.9. "

Proposition 5.4.20. For everyh = 0 and every standard paif®, , ¢, ) Cldic(M,, ), there
exists a sequend®,, Fy), (A1, F,), ..., (8, F,) such that

) CIdc(M:, T, ) and(FL , ;) is standard for allj D, ..., h}and

() (B¢ , ,

J
(i) (A,,F,) Csweaifl, ., ,)forallk C{1,...,h}

Proof. By induction onh. Forh = 0 it holds trivially. Forh = 1, by Proposition 5.4.19, there
exists a standar¢fl, ,, [, ) Cldle(n, ., ;) such thay@,,F,) Csueql, . £, ).
therefore, by induction hypothesis Qfﬁlh 1 [’h 1), we can ensure the existence of the se-
quencdplo,po),(pll, pl)’ . "(ﬂh’ph)' [ ]

De nition 5.4.21. We associate t@(I1, ") the setGp( .y that is formed by all the in nite
sequences of the for(f,, Fy), (A, Fy), ... such thai(F;, F;) Cldic(M;, T ) is standard for
all j =0and(f,,F,) Csucdlfl, ,, [, ,)foreveryk = 1.

Proposition 5.4.22.1f D(I1, ') is an in nite IFT-derivation, then the sdép .y is non-empty.

Proof. A direct consequence of Proposition 5.4.20. "

De nition 5.4.23. A sequence [Gh ;) isful lling for some(F;, ;) in o and some literal
°(p1Up2) (W, ,F)) iff there existk > j such thap, [C(H,,F,)andp, (8, F,) for all
hg+1,...,k—1}.

The ful lling notion is extended to literalsyp; U p2, =(L R p), [pland = p in the obvious
manner. A sequencris ful lling iff it is ful lling for every eventuality literal that occurs in any

of its pairs.

The next three propositions are auxiliary results aboufithément of eventualities, which
are useful for proving Lemma 5.4.27. In the three proposgionly the case of eventuality
literals of the formp U g has been considered. The proofs for the remaining caseg=pgU q,
-(pRq), ~((-p) Rq), Lgland— g— are very similar.

Proposition 5.4.24.Let o be a sequence iip( .y and (PIJ- ,Fj) a pairino such thatj = 0

ande(p; Up) [E andp; Up Cselevsef.s, thenp [E for somek > j.

Proof. Let us suppose thatTE for everyi > j. Sincea is in nite and (4, F, ) is a succes-

sorof(f1,, ,, £, ;) for everyh = 1, there exists, by De nition 5.4.18, an in nite sequence of
descendants fqy U p contradicting the result obtained in Lemma 5.4.11. "

Proposition 5.4.25.Let o be a sequence iip( ;) and(M;,F;) a pairin o such thaj = 0,

°(p; Up) EEIJ- andp; Up [sklevset;. If h = j +1andp A, for everyk L +
1,...,h}, thenp; X foreveryk [ +1,...,h}.
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Proof. A straightforward adaptation of Proposition 4.7.18. "

Proposition 5.4.26.Let o be a sequence i@y .y . If {poU p, >(poU p)} n Lits(M [T) & [
and=(poU p) (W, , F;) forsomg = 0 anda is not ful lling for (A;, F;) and=(po U p), then
poU p [Isélev.sek and{po, °(poU p)} [H] foreveryk = j + 1.

Proof. Sinceo belongs tdp( 1y by De nitions 5.4.18, 5.4.21 and 5.4.23, we can ensure that

po (X, andp M, for everyk = j + 1. Therefore, by using Propositions 5.4.24 and 5.4.25,
we can ensure thah U p [ Sklev_set; for everyk = j + 1, since otherwise would be ful-
lling for (PIJ- , Fj ) ande(po U p). Consequently, by De nitions 5.4.18 and 5.4.21, we can also

ensure tha{po, °(po U p)} [H] for everyk = j + 1. "

Next we prove that every [ Gh( .y is fullling. As a consequence, we know that there
exists at least one ful lling sequence @ ) .

Lemma 5.4.27.For any in nite derivationD(I1, I'), the setGp( ;) contains at least one ful-
lling sequenceo.

Proof. By Proposition 5.4.22 the s€p( ) is non-empty. We show, by contradiction, that
every sequence iip( .y is fullling. For that, let us suppose that there is a sequendn

Gp( ;) thatis non-fullling, i. e., o does not ful Il a literal =(po U p) EEIJ- for somej = 0.

Then, by Proposition 5.4.26 U p [Sélev_sef for everyk = j +1 and{po, (po U p)} [H}
for everyk = j + 1. This contradicts the fairness of the selection operation. "

Theorem 5.4.28. (Completenes$pr any program’1 and any goal, if I [Llis unsatis able
then there exists amT-refutation for(1, I).

Proof. If there is nolFT-refutation for(I1, IN), the algorithm in Figure 5.13 produces an in nite
derivationD(I1, I'). By Lemma 5.4.27 there exists an in nite ful lling sequenagén Gp( ) .
Now we de ne thePLTL-structureM = (g, Vy ,) where the states are the paif% , F, ) that
form o, andVy ,((A,, F,)) = {p CProp| p [, } for everyk = 0. Itis routine to see that
m , (A, F )= CforallC C(n,,I,)andallk = 0. Since any Iclc-extension contains at
least one elememX that belongs tdits(C), this is made by structural induction on the form of
A and using De nition 5.4.18 and the fact thatis ful lling (by Lemma 5.4.27). In particular
M is a model off1, [T} and we can ensure thBly [T} is satis able because all the rules
other than(U nx) preserve equisatis ability. Hence, sin€k [T§ = N L] the set of clauses
M [Llis satis able. "

5.5 Related work

In Section 5.1, we have already surveyed the main featurteeoforks that are more close to
our proposal. In this section we add more details.



5. Logical Foundations for More Expressive Declarative peral Logic Programming Languages 154

5.5.1 Templog: Abadi & Manna [2] and Baudinet [12]

The only temporal connectives allowed in the TLP languagegleg introduced in [2, 12] are,
[ahde. An atom is of the forme' A whereA is a classical atom. A bod9 is recursively de ned
as a conjunctioB; [_l. [B}, with n = 0 and where eacB; is a classical atom, a formula
of the form=B?, i.e., a body preceded by the connectiver a formula of the formLBC i.e.,

a body preceded bay the connectiveProgram clauses are of the forn?(( booiA) -~ B),
with b, b® 3D, 1}, and goal clauses are of the foriizd B. Templog does not deal with
eventualities because the connectivdppears only in clause bodies. As can be appreciated
in the recursive de nition of bodies, the nesting of coniext in Templog clauses is not as
restricted as imeDiLog. Therefore, the structure of clauses is considerably mongptex in
Templog than iMeDiLog. For example, we do not allow the connectlvi® pre x a conjunction
of atoms. Since this normal form of Templog clauses is not sugted for resolution, the notion
of canonical body is additionally considered in Templog. ahaonical body is a body in which
occurrences of the connectivésahd [_dannot appear in the scope of the connectivand
every atom of the forme' A is in the scope of the least possible number&.dfhe equivalences
o(p ) = op e, ol = [elp and LATIP CTN) = L ¢ 1) are used to obtain
the canonical form of bodies. However, although the bodfab® premises are in canonical
form, the resolvent obtained by a resolution applicatioy giald a clause whose body is not in
canonical form, hence a transformation to obtain the caraform may be required after each
resolution application. The resolution procedure TSLI2[[Xonsists of eight rules obtained
by considering all the possible cases in which temporal atofra program clause and a goal
clause can be resolved. For instance, we depict here one afilds

(~'A < By) 1B, (1B, (1A [Bk) (Bl
CdB, [I¥ 'B, By = 'Bs) (Bl

wherej = i

This resolution rule states that a program clause of the fo(rqfi A <« Bp) is resolved
with a goal clause of the forni_d B; [CII{B, [=1A [Bg) [B4 and the resolvent_d
B, [T 'B, B} [=11'B3) [Blisobtained, whenevgr= i. Note thatA is a classical atom.
The Templog resolution procedure does not follow the statdte forward reasoning approach
and, consequently, it does not use any rule similar to oer(tuhx). As already mentioned in
Section 5.1, the satis ability of a Templog program can beéueed to the satis ability of a
(possibly in nite) classical logic program. This is easityade by considering, for instance,
that a clause of the form' A — [B can be expressed by means of the in nite set of clauses
{~'A —~ °/B | j = 0} and, in the same way, a clause of the fofme'A) ~ B can be
expressed by means of the in nite set of claugés *'A) — B | j = 0}. This approach is
possible neither when the connectiviesind U appear in the head of a clause nor when the
connectives and R appear in the body. For instance, note that a clause of the fél — B
should be replaced with a unique claug®d — B but the value of suck is unknown. As
a consequence, the minimal model characterization of Tegnfglee [12]) is a straightforward
adaptation of the classical case. Unlike TempltapiLog does not have the classical Minimal
Model Property (MMP in short). The presence of the connestivand U in clause heads
and andR in clause bodies (see [101]) as well as the use of disjunatiolause heads (see
e.g. [89]) prevent from having such property. The compeasdbr the loss of the MMP is that
TeDiLogis much more expressive than the propositional fragmeneofplog.



5. Logical Foundations for More Expressive Declarative jeral Logic Programming Languages 155

In order to study Templog's expressiveness, Baudinet densin [12, 14] the propositional
fragment TL1 where the connectitds not allowed at all and is not allowed in clause heads.
Consequently, TL1 program clauses are of the forffe' Ag — </*A; 1. [=I"A,) where
b 0,1} andn = 0 and goal clauses are of the forlid °/*A; 1. [=I"A, where
n = 0. Baudinet shows that the expressiveness of TL1 and propoaiffemplog is the same.
On one hand, Templog clauses of the form'p — B can be expressed without using the
connective by introducing a fresh propositional variable. So that,abeve program clause
can be expressed by means of the program clafises B, (°'p < q), (°q < q)} where
g is fresh. On the other hand, each element of the dep in a body of a clause, can be
substituted by a fresh propositional symigcind then the clauses that de ne the meaning of
g would be added{ (q —~ °'p), (q — =q)}. Moreover, Baudinet shows that, for instance,
it is possible to de ne, in TL1, a predicate that holds exaethenp U g holds, whereas the
connectiveU is not expressible in temporal logic with onty and [(kee [80]). So that,
there are predicates that can be de ned by using TL1 but anepiessible in temporal logic.
Baudinet also shows that, for instance, the connective not expressible in Templog, in the
sense that is not possible to prove or to write a Templog program de ning a predicate that
would hold exactly when p holds. This last result proves thE¢DiLogis more expressive than
(propositional) Templog, becauseliaDiLog p can be proved, as has been shown in Example
5.4.5 (Figure 5.15).

5.5.2 Chronolog: Wadge [127] and Orgun [97, 99]

In Chronolog ([127, 97, 99]) the only temporal operatorstheaunary connectivesst andnext.
The connectiverst serves to refer to the staég. Therefore the connective is not needed to
differentiate between always- and now-clauses. TéieiLog now-clausep « =g, p « °q
andp — [efj [rkan be expressed in Chronologest p — rstnextq,p < rstnext qand
rst p — nextq 3t r, respectively. Th@eDiLogalways-clause (p ~ °q) can be expressed
in Chronolog ap ~ nextq. Note that in the Chronolog clauses above, there is a hidaepd-
ral information not made explicit by means of temporal canives. Regarding always-clauses
oftheform ( p « °q)and (s « Lr), the translations pointed out to obtain TL1 clauses
in the previous subsection must be considered fprand Lr]l Consequently, intricate sets of
Chronolog clauses are needed for expressing interestipgpies. InTeDilLog, the explicit use
of temporal connectives, together with the fact that sucineatives are more expressive, facil-
itates readability and understanding of program and gealsgs. In [14], Baudinet shows —by
means of TL1-that Templog and Chronolog have the same estpegsower. Hence Chronolog
can be considered as a syntactical variant of Templog. ln Tamplog and Chronolog also co-
incide in the metalogical properties of minimal model exigte and xpoint characterization.
The resolution procedure TiSLD that de nes the operatiamhantics of Chronolog, applies
the resolution rule teoigid instancesof program clauses and goal clauses, which are formed by
atoms of the formrstnext™ p with n = 0. In [99], the inclusion of the temporal connectives
[dnd is discussed. However, by taking into account the resultsgated in [101], and in
order to keep the metalogical properties of Chronolog, ¢tméyuse ofL_ih clause bodies and
in clause heads is proposed. This extension would yield guiage that would be (syntacti-
cally) very similar to Templog. However, the expressive powould remain unchanged. The
disjunctive extension presented in [68] combines Chragalith the Disjunctive LP paradigm.
Therefore, only the temporal connectivest andnextare used and the results obtained in the
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Disjunctive Logic Programming paradigm are extended tdahguage presented in [68] in the
same way that the results obtained in classical Logic Progniag are extended to Chronolog.

5.5.3 Temporal Prolog: Gabbay [55]

Gabbay's Temporal Prolog allows eventuality literals iaude heads but not in clause bodies.
In particular, [i$ allowed in clause heads butis not allowed in clause bodies. A program
clause is either a now-claus¢ — B or an always clause (H ~ B). The headH is either a
classical atom or a formula of the forn» [Ld whereC is a conjunction of now-clauses. The
bodyB is a classical atom, a conjunction of bodies or a formula of the fornfiB° whereB°

is a body. A goal clause is of the forri_d B whereB is a body. Additionally, a connective
to express “sometime in the past” is also used. So that, thesal form of Gabbay's Temporal
Prolog is more complex than ours. In particular, the nestingpnnectives is not so restricted
as inTeDiLog Although eventuality literals are allowed in clause headalls way of dealing
with them is very different from our method. For instance/egi a goal of the formi_d < [pl
the resolution procedure tries to nd a program clause whesa is eithep or < Lpl If such
clause is found, a forward jump is produced. The resolutimtedure ofTeDiLogis based
on a state by state forward reasoning and eventualitiesesié dith by means of the context-
dependent rules which do not allow to inde nitely postpome ful liment of such eventualities.
As mentioned above, unlike ifeDiLog, the connective is not allowed in clause bodies, hence
TeDiLogis more expressive. For Gabbay's Temporal Prolog the MM do¢hold because of
the use of eventualities in clauses heads. Additionaleycthmpleteness proof of the resolution
procedure is not provided. TheTt-resolution procedure fofeDiLogis complete.

5.5.4 MetateM: Barringer et al. [9]

MetateM programs are sets of clauses in the Separated N&omal (SNF), where clauses are
of the form¢ — Y such thatp is a conjunction of propositional literals aqdis either of the
form [J—wherex is a propositional literal— or a disjunction of propositabiiterals pre xed by

the connective (see also Subsection 4.8.5). MetateM is as expressitel@itogand complete

for full PLTL. However, MetateM is based on the imperative future appread is not based
on resolution. Regarding execution, at each step the Mdtatecution procedure must build
the next state by choosing to make true one proposition frmw fpart of each clause for which
the ¢ part is true in the current state. In this way, a sequenceatéstis produced with the
aim of building a model for the program. Choices that leachttbnsistency must be repaired
by means of backtracking, which serves to choose anothmdisfrom the corresponding
part. Additionally, the nite-model property is used to calate an upper bound of forward
chaining steps and, in this way, to detect model constrngtimcesses where the ful llment
of an eventuality is being inde nitely delayed. Such uppeubd, in the worst case, & 1
where|l] is the size of the initial prograril (see [9] and Subsection 6.2.4 in [44]). Tiwa-
resolution procedure underlyifig@DiLogdoes need neither backtracking nor the calculation of
upper bounds. As iffieDiLog, the execution mechanism of MetateM must make sure that the
satisfaction of an eventuality is not continually postpdrieor a clausé — o [p] itis possible

to make truep or to make trud_plin the next state. If there are two clauses of the fgrm < [pl
and¢? - o such thatp and¢Care satis ed in every state, it is necessary to satisénd

=p in an interleaved way. Therefore, fairness is required wiheriding which eventuality to
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satisfy. This is handled by keeping an ordered list of evalittas (see Subsection 6.2.7 in [44]).

5.5.5 Clausal Temporal Resolution folPLTL: Fisher [40]

The clausal temporal resolution method introduced in [48f(also [45]) is complete for full
PLTL. Our clausal normal form is different from the Separated midrForm used in that
method but the crucial difference of our method with respet¢hat method is thateDiLogs
resolution mechanism is powerful enough to deal with eaittas without requiring invariant
generation. See also Subsection 4.8.5 for more details.






6. CONCLUSIONS

This chapter reviews our central results and primary cbatidns, lists our publications and
relevant research activity related to the results that apipethis thesis and proposes areas for
future research.

6.1 Results and Contributions

In this section, we review the results and contributions tiave been presented in previous
chapters.

We have introduced tableau, sequent and resolution methatidiffer from previously ex-
isting systems in the way eventualities are dealt with. ifi@ual two-pass temporal tableaux
and the previously existing one-pass tableau method piexsey Schwendimann in [117] need
to check the ful liment of eventualities in cyclic sequesasf states. By contrast, our one-pass
tableau methodTwm includes a rule that prevents from inde nitely delaying flakliment of
eventualities. As a consequent&M generates classical-like tableaux. In the case of unsatis
able sets of formulas, closed branches whose last nodesic@itormula and its negation are
obtained intTm. Regarding satis able sets of formulas, when an open cyxhmch is marked
as expanded (i.e, suf ciently enlarged)imm, that branch yields a model. It is worth remark-
ing that given an unsatis able set of formulas, the tableathod in [117] may yield —unlike in
classical tableaux— cyclic and non-ful lling (closed) biches whose last nodes do not contain a
formula and its negation. In order to detect that a cycliambkais non-ful lling (i.e. closed) and
that, consequently, it cannot yield a model, an additiomaldiing of information is required
in [117] because accessible branches must be checked toututhe existence of a ful lling
cycle that may involve more than one branch. In the case f able sets of formulas, a cyclic
(open) branch —that cannot be enlarged— may not yield a niydgdelf in the Schwendimann's
tableau system because the ful lIment of eventualities rdapend on more than one cyclic
branch. The systematic tableau algorithm that we providesgiise to a decision procedure for
PLTL. On the basis of this new temporal deductive approach, we tiawned two cut-free and,
in particular, invariant-free nitary sequent calcuirc andGTc that are also weakening- and
contraction-free. These tableau and sequent systems adldavprove that the classical duality
between tableaux and sequents holds also for temporal logic

By adapting the idea behind the dual tableau and sequemsygb the resolution frame-
work, we have presented a new method for temporal resoldtianis sound and complete
for PLTL and does not require invariant generation. This featurecisigial difference of our
method with respect to the clausal resolution method intced in [40] (see also [45]) which
needs to generate invariant formulas for solving eventiaaliWe have provided the conversion
of any formula to clausal form, a resolution system caited that extends classical resolution,
and an easily implementable algorithm that decides the abtlity of any set of clauses. More-
over, together with its yes/no answer, the algorithm presidn (un/)satis ability proof. That
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is, either a systematic refutation or a canonical model @6tt of clauses that has been given as
input. As in the classical case, models are more easily gegtefrom cyclic tableau branches
than from cyclic resolution derivations.

On the basis of the invariant-free resolution methied, we have de ned the propositional
temporal logic programming languadeDiLog with the aim of providing a single framework
in which dynamic systems can be speci ed, developed, vaitland veri ed by means of
executable speci cations. The languageDiLog has a purely declarative nature and mathe-
matically de ned semantics. This language is strictly merpressive than the propositional
fragments of the main declarative TLP languages in thedlitee ([2, 12, 127, 99, 55, 68]).
TeDiLogs resolution mechanism is powerful enough to deal with évelities and dispenses
with invariant generation. The most signi cant imperatiVeP language MetateM ([9]) is as
expressive aseDiLog However, MetateM is a very different approach that is nagokon res-
olution and uses an upper bound to detect unsuccessful modstructions and backtracking.
TeDiLogrequires neither upper bounds nor backtracking. WeTe@&gLogas the propositional
kernel of a new generation of TLP languages based on theiamigree temporal resolution
methodTRs. In this sense we hope th&DilLog could in uence the design of future TLP lan-
guages in order to incorporate more expressive temporalrfsaand new resolution procedures
for temporal reasoning.

To sum up, we have contributed new ideas to the proof-thebBL®L. In particular, we
believe that automated reasoning in temporal logic canltake t from the systems presented
in this dissertation.

6.2 Related Publications, Presentations and Research Avity

Below we list the publications, presentations and relevagséarch activity we carried out in
relation to the results provided in this dissertation.

Journal Publications

e Dual Systems of Tableaux and Sequents fdPLTL
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
Journal of Logic and Algebraic Programming, 78(8):701-22109.
DOI10.1016/j.jlap.2009.05.001

e Invariant-Free Clausal Temporal Resolution
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
Journal of Automated Reasoning. To appear.
DOI110.1007/s10817-011-9241-2
Published online: 2 December 2011

Conference Proceedings

e A Cut-Free and Invariant-Free Sequent Calculus forPLTL
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
J. Duparc, T. A. Henzinger (eds.) Proceedings of Computam$e Logic, 21st
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International Workshop, CSL 2007, 16th Annual Conferenicthe EACSL, Lau-
sanne, Switzerland, 11-15 September 2007, volume 4646afitesNotes in Com-
puter Science, pages 481-495. Springer, 2007.

DOI: 10.1007/978-3-540-74915-8

e Systematic Semantic Tableaux folPLTL
J. Gaintzarain, M. Hermo, P. Lucio and M. Navarro
E. Pimentel (ed.) Proceedings of the 7th Spanish Confer@emé&ogramming and
Languages (PROLE 2007), Zaragoza, Spain, 11-14 Septerdb&; 3elected Pa-
pers, volume 206 of Electronic Notes in Theoretical Comp8tgence, pages 59-73,
2008
DOI10.1016/j.entcs.2008.03.075

« A New Approach to Temporal Logic Programming
J. Gaintzarain and P. Lucio
P. Lucio, G. Moreno, R. Pefia (eds.) Proceedings of the S9miSp Conference on
Programming and Languages (PROLE 2009), San Sebastiam,$p11 Septem-
ber 2009, pages 341-350, 2009.
http://www.sistedes.es/ cheros/actas-conferenclREPE/2009.pdf
ISBN: 978-84-692-4600-9

< An Implementation of the Context-Based Tableau
J. Gaintzarain, J. A. Hernandez and P. Lucio
P. Arenas, V. M. Gul'as, P. Nogueira (eds.) Proceedingb®fltlth Spanish Con-
ference on Programming and Languages (PROLE 2011), A @or8pain, 5-7
September 2011, pages 169-184, 2011.
http://www.sistedes.es/ cheros/actas-conferencREPE/2011.pdf
ISBN: 978-84-9749-487-8

Contributed Talk

e Invariant-Free Clausal Temporal Resolution
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
Workshop on Modal Fixpoint Logics 2008 (WMFL 2008)
http://staff.science.uva.nl/ yde/m/
http://staff.science.uva.nl/ yde/m /contributed/geiarain.pdf
Institute for Logic, Language and Computation, UniversityAmsterdam.
Amsterdam, The Netherlands, 25-27 March 2008

Research Seminars

e Invariant-Free Clausal Temporal Resolution
J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas
http://www?2.wmin.ac.uk/bolotoa/HSCSEMINARS/seminars.html
Department of Computer Science and Software Engineeritftn@® of Electronics
and Computer Science, University of Westminster.
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London, United Kingdom, 27 November 2009

e Invariant-Free Deduction Methods for PLTL
P. Lucio and J. Gaintzarain
Department of Computer Science, University of Liverpool.
Liverpool, United Kingdom, 1 February 2011

Research Visit

e Research Area: Invariant-Free Deduction Systems for Temp@l Logic
Research Visitor: Jose Gaintzarain
Supervisor: Alexander Bolotov
Distributed and Intelligent Systems Research Group
School of Electronics and Computer Science, University esivinster.
London, United Kingdom, from 1 October 2009 to 31 January®201

Journal Paper Under Review

e Logical Foundations for More Expressive Declarative Tempaal Logic Pro-
gramming Languages
J. Gaintzarain and P. Lucio
Submitted (Under review)

6.3 Future Work

We believe that the work presented in this dissertation spegny interesting topics for future
research.
The extension of our invariant-free deductive approachdcenexpressive logics is a wide area
of work. In particular, we hope that the presented resofuti@ethod gives an opportunity to
develop the rst resolution method for Full Computation &reogic CTL?. Although the rst
complete tableau system f@TL? has been recently published in [109], a resolution proadur
for CTL” is not known yet. Additionally, a tableau method based onrthariant-free deductive
approach would still be valuable. The extensiorreé-resolution to the incomplete First-order
Linear-time Temporal LogicKLTL), besides its own relevance, could produce a new class of
decidable fragments dfLTL along with their associated decision procedures basetRen
resolution. For instance, one may consider the clabkalL-language that is obtained from our
clausal language by allowing, as atoms, predicate symippliéeal to rst-order terms, instead
of propositional variables. A syntactical restriction bfs clausalFLTL-language would be
decidable provided that the set of all possible differemtterts —in any application of the rule
(U Set)— were ensured to be nite in the restricted language. Mosegvarticular syntactical
restrictions could allow to specialize the generak-procedure in order to gain ef ciency (as
it is done in [35, 36]). Thars-resolution method could also be applied to other extessidn
PLTL like spatial, dynamic, etc.

The development of practical automated reasoning tookscas therTm tableau method
and theTrs resolution system constitutes a broad area of present dncefwork. At the
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moment, preliminary prototypes for them tableau method and thers resolution method
are available online, respectively, bittp://www.sc.ehu.es/jiwlucap/TTM.html and
http://www.sc.ehu.es/jiwlucap/TRS.html. A report about the implementation of the
prototype for thert™m tableau method is provided in [63]. On one hand, this prgefprTTm

is a direct implementation of the systematic tableau algori On the other hand, the prototype
for the TRS resolution method is a direct implementation of the tramadion CNF and the
algorithmSR. There is only a small amount of nondeterminism in theserilgos. Moreover,
the form of nondeterminism in these algorithms is sometioaied angelicnondeterminism,
in the sense that backtracking is not required to ensureination. The crucial actions upon
which the implementation of the systematic tableau algoriand the algorithn$ R depends
are the fair selection of eventualities, the applicatioeath rule, and the test for termination.
We plan to gradually improve these prototypes and to comibe@ with other available auto-
mated reasoning tools f&LTL. In particular with the temporal resolution prover TRP+6]7
that implements the method introduced in [40]. We are alserésted in comparison with the
implementations of the tableau-based methods presen{g®,ii17] that are available in the
Logics Workbench Version 1.h¢tp://www. lwb _unibe.ch).

The decision problem foPLTL is known to be PSPACE-complete (see e.g. [119]). The
two-pass tableau method presented in [128] works in EXPTIMEaCe it is optimal. The worst
case complexity of our tableau and resolution methods (dss/or the tableau method and the
resolution method presented, respectively, in [117] a]) [ 2EXPTIME, and consequently
suboptimal. However it has been shown by experimental aisa(gee e.g. [69, 78]) that for
many randomly generated formulas of some classes, thegavpeaformance of a doubly ex-
ponential algorithm can be better than the average perfmcenaf an exponential one. The
reason is that, in the former the cases with high complexzitgly occur, while in the latter the
cases with exponential complexity occur very often. Thevabmentioned classes of formulas
include conjunctions of eventualities, nested eventigalitespecial conjunctions of clauses in
Separated Normal Form, etc. The results obtained in therarapanalysis carried out in [77]
give hints about improvements to be considered for a prdtigplementation. Also the above
mentioned possibility of searching for tractable fragmsdiste [35, 36]) is open. The accurate
study of the complexity of th&Tm tableau method and tha&s resolution method seems to be
also interesting.

We are also considering the possibility of combinings-resolution with the one-pass
tableau methodTm to produce a kind ohyper tableauxhat would be interesting for prac-
tical implementation purposes.

The implementation ofeDiLogremains as future work. The adaptation of the prototype for
the TRs resolution methodr{ttp://www.sc.ehu.es/jiwlucap/TRS.html)to TeDiLogis
straightforward, but much experimentation is needed fdintipation and improvement. The
worst case complexity fofeDiLog (regarding the generation of a refutation proof) is doubly
exponential.

It is well known (see [11, 12, 13, 14]) that, although logiograms are formulas of a given
logic, a logic programming language may be in some respeate expressive than its under-
lying logic. Intuitively, a logic formula characterizessjuthe collection of its models whereas
a logic program characterizes the collection of facts thattwe inferred from it. The notion of
deduction intervenes and adds the ability to express ptiepehat are not expressible in the un-
derlying logic. In this sense it would be interesting to camgpthe expressivenessTteDilLogto
other formalisms such @LTL, automata-theoretic formalisms, quanti @LTL (i.e. QPTL),
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MUTL, etc. We have already tackled the issue of relating diffieformalisms. Concretely, in
[59] we studied the translation of the propositional fraginef the logic programming lan-
guageHorn into Boolean circuits, Boolean formulas and conjunctiohgropositional Horn

clauses.Horn is a logic programming language that extends usual Horrsekiby adding
intuitionistic implication in goals and clause bodies.
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