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Abstract

The seasonal stability tests of Canova & Hansen (1995) (CH) provide a method com-

plementary to that of Hylleberg et al. (1990) for testing for seasonal unit roots. But the

distribution of the CH tests are unknown in small samples. We present a method to com-

pute numerically critical values and P -values for the CH tests for any sample size and any

seasonal periodicity. In fact this method is applicable to the types of seasonality which are

commonly in use, but also to any other.
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1 Introduction

Seasonality is one of the key characteristics of economic time series. When seasonal time series

are included in a regression, seasonal unit roots may affect the properties of estimators in the

same way as unit roots in the trend (zero frequency). The structure of the seasonal pattern

is important for modelling and prediction. In the specification of a model it is necessary to

properly identify the nature of the seasonal component: deterministic, stochastic dominated by

transitory features or by permanent stochastic cycles (seasonal unit roots).

Several tests for seasonal unit roots and seasonal stability may be found in the literature.

Among the methods for testing seasonal unit roots one of the more used is that proposed by

Hylleberg, Engle, Granger & Yoo (1990), which test for seasonal unit roots separately for each

frequency. Canova & Hansen (1995) (hereinafter CH) proposed a method to test the stability of

the seasonal pattern of a series against an alternative of one or several seasonal unit roots. This

method is based on the representation of the series in the state-space. As mentioned in Canova

& Hansen (1995, page 238), their tests are based on a Lagrange multiplier as a tool to test the

significance of the variance in the state equation.

The distribution of the CH tests are unknown in small samples. We present a method to

compute numerically critical values and P -values for the tests for any sample size and any

seasonal periodicity.

2 Seasonal stability tests

Let yt be a real valued variable observed S times per year. The Canova-Hansen tests for stability

are based on the residuals of the following auxiliary regression:

yt = µ+ x′tβ + Seast + εt, t = 1, 2, . . . , T (1)
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where T is the number of observations or sample size, xt is a k × 1 vector of explanatory

variables, Seast is a deterministic seasonal component and εt ∼ (0, σ2) is an error uncorrelated

with xt and Seast. The dependent variable yt must bee free of unit roots at the zero frequency,

so Canova and Hansen suggest to difference the observed series in order to eliminate the zero

frequency unit root.

The deterministic seasonal component may be specified into two different ways: seasonal

dummies or trigonometric terms. In the first case the auxiliary regression (1) is:

yt = x′tβ + d′tα + εt (2)

where dt is an S × 1 vector of seasonal dummy indicators and α is an S × 1 parameter vector,

being S the seasonal periodicity (S = 4 for quarterly data, S = 12 for monthly data,... ).

To study whether the seasonal intercepts α change over time, Canova and Hansen consider

stochastic variation of a martingale form: A′αt = A′αt−1 + ut where α0 is fixed and ut is a

martingale difference sequence (MDS) with covariance matrix E(utu
′
t) = τ 2G. A is an S × a

selection matrix which serve to select the elements of α that we allow to stochastically change

under the alternative. Testing stability of the jth intercept can be achieved by choosing A to be

the unit vector with a 1 in the jth element and zeros elsewhere.

The equation (1) may be also specified in a form equivalent to (2) defining the seasonal

component by means of trigonometric terms. In this case, the auxiliary regression may be

written as:

yt = µ+ x′tβ +

q∑
j=1

f ′jtγj + εt, (3)

where q = [S/2] is the integer part of S/2 and fjt is the deterministic cyclical process at the

seasonal frequency θj = 2πj
S
, j = 1, . . . , q, which, defining S∗ as S/2 − 1 if S is even and
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(S − 1)/2 if S is odd, may be defined as:

f ′jt =

 (cos(θjt), sin(θjt)) j = 1, . . . , S∗

cos(θjt) j = S/2 (only for S even)
(4)

Stacking the q elements of the previous sum in a vector γ = (γ1, . . . γq)
′, ft = (f1t, . . . , fqt)

′

the equation (3) may be expressed as:

yt = µ+ x′tβ + f ′tγ + εt. (5)

For example for quarterly data, S = 4, q = 2, S∗ = 1 and f ′t =
(
cos(π

2
t), sin(π

2
t), cos(πt)

)
.

Under (5), the seasonal pattern is stable and γ is a vector of S − 1 seasonal coefficients

which are constant over time. To setup the tests of seasonal stability against seasonal unit roots

Canova and Hansen propose for γt the process A′γt = A′γt−1 + ut with γ0 fixed and ut a MDS.

Where A is a (S − 1) × a selection matrix such that, for example, A = IS−1 may be used to

test whether the entire vector is stable, A = (0̃ I2 0̃)′ (commensurate with γi) to test for a

unit root only at a specific frequency j ( 6= π) and A = (0̃ 1)′ serve for testing a unit root at

frequency π.

The variance-covariance matrix of ut is E(utu
′
t) = τ 2G where G is a full rank a× a matrix

and τ 2 ≥ 0 is real valued. When τ 2 = 0 γt = γ0 and the model has no seasonal unit roots.

When τ 2 > 0, yt has a unit root at the seasonal frequencies determined by A.

Considering the hypothesis test of H0 : τ 2 = 0 against H1 : τ 2 > 0 they propose a LM test

statistic which takes the form:

L =
1

T 2
tr

(
(A′Ω̂fA)−1A′

T∑
t=1

F̂tF̂
′
tA

)
, (6)
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where F̂t =
∑t

j=1 fj ε̂j , Ω̂f is a consistent estimate of the long run covariance matrix of ftεt,

Ω̂f =
k=m∑
k=−m

w

(
k

m

)
1

T

T∑
t=1

ft+kε̂t+kf
′
t ε̂t (7)

and w() is a kernel which gives a positive semidefinite matrix, such as the Bartlett kernel.

When testing stability of the jth intercept (in the model with dummy variables) ft should be

substituted by dt in (6) and (7).

The large-sample distribution of L was studied by Nyblom(1989) and Hansen(1990,1992),

establishing that underH0, L
d→ VM(a), the generalized Von Mises distribution with a degrees

of freedom which is tabulated in the Canova-Hansen paper. In spite of new studies of these

asymptotic distributions, as Harvey (2005) for example, not much has been done in obtaining

tools to be used for small samples.

3 Numerical distribution functions

The finite sample distribution functions of four different CH statistics for testing seasonal sta-

bility are studied here.

1. In model (5), and for even values of S, the statistic L for the individual stability test of

the cycle with frequency π, which will be denoted Lπ. In this case A = (0̃ 1)′, a = 1

and the asymptotic distribution of Lπ is a VM(1) (which corresponds to the first row of

Table 1 in Canova & Hansen (1995)).

2. In the same model, for any S, the statistic L for testing stability at any other individual

frequency θj 6= π, which will be denoted as Lj . Now A = (0̃ I2 0̃)′ has two columns,

so a = 2 and Lj follows asymptotically a VM(2) distribution whose values can be found
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at the second row of the mentioned table.

3. In model (2) (with dummy variables), we will study also the distribution of the L statistic

for testing stability in an individual season, i.e. stability of the coefficient of a specific

season. This statistic will be denoted LD and as stated in CH (Theorem 4) has also a

VM(1) asymptotic distribution.

4. The statistic L for a joint test of stability at all the seasonal frequencies may be created

from the model (5) with trigonometric terms. This statistic will be denoted Lf . In this

case A = IS−1 and the large sample distribution of this statistic is VM(S − 1). Table 1 in

CH contains critical values for this distribution for S − 1 = 1 . . . , 13.

We present here a procedure, based on response surface regressions, that allows to obtain

critical values and P -values for these tests for any sample size and any seasonal periodicity.

The first step in implementing the response surface regressions is to estimate the relevant

quantiles of the distributions of the statistics for several combinations of T and S from a large

set of Monte Carlo simulations. Following MacKinnon (2002), the process is then repeated M

= 100 times for each value of T to obtain more accurate results. Each experiment consists of

a great number of replications (in particular N = 100,000 are used here), where a series yt is

generated by the data generation process yt = εt with εt ∼ nid(0, 1) and the equation estimated

is the auxiliary regression (2) or (5).

For each set of replications the quantiles of the relevant statistics are calculated for two

alternative deterministic seasonal terms: trigonometric and seasonal dummies and it is conve-

nient also to consider the possibility of a linear trend in the auxiliary regression and a lag of

the dependent variable. This implies that for each pair of T and S four different deterministic

components will be considered and eight different DGPs will be simulated and estimated.
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There is another parameter that is also involved in the calculation of the CH statistics: the

truncation lag, m, for the long-run covariance matrix. For determining m we used two alterna-

tive automatic criteria1 that satisfy the condition recommended that m → ∞ as T → ∞ such

that m5/T = O(1): m1 = [0.75
√
T ] and m2 = [4(T/100)2/9].

The quantiles obtained from the simulations are then used as values for the dependent vari-

able in a regression depending on T and S, the surface response regression. This estimated

regression is used to calculate forecasts of a quantile for given values of T and S and, based on

these forecasts, estimations of the critical values and P -values may be obtained.

3.1 Design of the experiments

We assume that the distribution functions of the CH test statistics in small samples depend on

the sample size T and the seasonal periodicity S. For estimating the surface responses we need

to carry out a set of Monte Carlo simulations that covers a wide range of the values normally

used in the econometric applications for these parameters. We consider these values:

S = 4, 5, 7, 12, 24, 48, 52

T = 54, 104, 154, 250, 500, 750, 2000, 5000

A full factorial design may be setup for this procedure, and this means to estimate the

auxiliary regressions (2) and (5) for every alternative of the deterministic term and repeat them

for 53 different combinations of T and S (Note than three of the 56 possible combinations above

cannot be made because of lack of degrees of freedom).

Taking into account the necessity of a great number of replications for each simulated model

and the already mentioned repetitions suggested by MacKinnon, it was necessary to evaluate

1Although the Monte Carlo simulations were made with the two formulas, in practice we found a very similar
results for the estimated P -values. Then for simplifying the interface for the user, in the final Gretl algorithm we
decided to use only m1.
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Table 1: D-optimal design

Point: 1 2 3 4 5 6 7 8 9 10 11 12
S: 24 12 7 4 24 7 4 24 24 52 48 7
T : 250 500 250 154 54 154 500 750 2000 250 750 5000

Point: 13 14 15 16 17 18 19 20 21 22 23
S: 52 48 52 5 5 12 52 4 24 12 5
T : 500 104 154 5000 250 54 750 104 154 2000 2000

carefully the computing costs of the entire project (in terms of computing time and money as we

were going to use a computing service that has an economic cost for us). We launched a pilot

project to assess such costs and after analyzing the results, we decided to use a fractional design

with no more than 23 points. For the calculus of the design the response-surface equation

qαi (T, S) = θα∞ + θα1
1

T
+ θα2

1

T 2
+ θα3

S

T
+ θα4

S

T 2
+ ei (8)

was taken as reference model for the distribution of the CH tests. Here qαi (T, S) denotes quantile

α obtained from the i-th experiment with given values of T and S. A D-optimal fractional

design over 15000 runs was calculated making use of the RcmdrPlugin.DoE package of R (see

http://prof.beuth-hochschule.de/groemping/DoE ). The design finally obtained is in Table 1.

3.2 Quantile regressions, P-values and critical values

The Monte Carlo simulations were programmed in Gretl 1.9.11 (See Cottrell & Lucchetti 2013).

From each Monte Carlo experiment a record is made of the 221 quantiles estimated of the

statistics Lj , Lπ, Lf , and LD for probabilities α = 0.0001, 0.0002, 0.0005, 0.001, 0.002, . . .,

0.01, 0.015, . . ., 0.99, 0.991, . . ., 0.999, 0.9995, 0.9998, 0.9999 and the quantiles estimated are

used as dependent variables in response surface regressions. After some experimentation we
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consider for Lj and Lπ rather apropriate the structure of (8) . For LD it seems necessary to

include third degree terms so the best equation in the set we analyzed is

qαi (T, S) = θα∞ + θα1
1

T
+ θα2

1

T 2
+ θα3

1

T 3
+ θα4

S

T
+ θα5

S

T 2
+ θα6

S

T 3
+ ei (9)

Given that the asymptotic distribution of statistic Lf depends on S, it needs a different structure

for the surface-regression. Between the possible alternatives the following one has been proved

to have good properties

qαi (T, S) = θα0 + θα1
1

T
+ θα2

1

T 2
+ θα3

S

T
+ θα4

S

T 2
+ θα5 (S − 1) + θ6(S − 1)2 + ei (10)

In equations (8) and (9) parameter θα∞ represents quantile α of the asymptotic distribution

when T → ∞. In the case of statistic Lf , the surface-response regression (10) shows that the

expectation of qα(T, S) when T →∞ is a function depending on S: θ0+θ5(S−1)+θ6(S−1)2

whose estimation is in good agreement with what we see in Table 1 of Canova-Hansen.

When the parameters of these surface-regression equations are estimated by ordinary least

squares the errors are heteroscedastic with variance depending on T and S, so a weighted

least squares method is recommended here. (Tables in http://bit.ly/CHpval in file

tablas.pdf show the coefficients estimated by weighted least squares for equations (8), (9)

and (10) for the quantiles of probability 0.10, 0.05 and 0.01).

After the surface regression is estimated for the 221 quantiles for every statistic, an inter-

polation between these values may be made using the method by MacKinnon (1996), which is

also used for example in Harvey & van Dijk (2006) and Diaz-Emparanza (2013). Consider the

regression

Φ−1(α) = γ0 + γ1q̂(α) + γ2q̂
2(α) + γ3q̂

3(α) + eα (11)
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where α denotes one of the 221 points at which the quantiles are estimated, with 0 < α < 1,

q̂(α) denotes the estimate of qα and Φ−1(α) is the inverse of the χ2(2) distribution. The surface-

regression equation is usually estimated with a small, odd number of points, `, around the

specified significance level, in particular, ` = 9, 11, 13 or 15 points are considered reasonable.

To account for heteroscedasticity and serial correlation a feasible GLS estimator may be used,

with a symmetric covariance matrix with elements

ω̂ij = s.e
(
θ̂αi
∞

)
s.e
(
θ̂αj
∞

)√αi(1− αj)
αj(1− αi)

, i < j, (12)

where the standard errors of θ̂αi
∞ are obtained from the OLS estimation of equation (11). In

order to calculate the P -value for an observed test statistic, τ∗, it is possible simply to estimate

equation (11) for an small set of values of q̂(α) near τ∗ and then compute P ∗ = Φ(γ̂0 + γ̂1τ∗ +

γ̂2τ
2
∗ + γ̂3τ

3
∗ ). An algorithm prepared by the authors in the gretl scripting language (now called

Hansl) is available for the users in http://bit.ly/CHpval.

To calculate the critical values of the tests the following equation may be used

q̂(p) = δ0 + δ1Φ
−1(p) + δ2(Φ

−1(p))2 + δ3(Φ
−1(p))3 + e∗p (13)

The method consists of first finding the quantile p∗ from the set of 221 mentioned above that is

closest to the probability p whose critical value is to be obtained, then estimating the δ coeffi-

cients in (13) with the (`−1)/2 quantiles above and the (`−1)/2 quantiles below p∗ and finally

evaluating the right hand side of the regression estimated at p to obtain the desired critical value.
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4 Example: International tourism demand

Two quarterly indicators of international tourism demand in Spain are analysed here: foreign

same-day visitors (i.e. people who stay in Spain less than 24 hours) and international tourists

(those who stay at least 24 hours). The sample goes from 1995:1 to 2013:1 (73 observations,

see Figure 1). The data are taken from the FRONTUR survey carried out by the Institute of

Tourist Studies http://www.iet.tourspain.es.

Figure 1: Quarterly visitor entries to Spain
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Table 4 shows the results of the Canova-Hansen tests. The auxiliary model is estimated in

log-differences with a dummy variable for Easter effect. Both series display significant seasonal

patterns but their structure seems to be rather different. The joint test does not reject at a 5%

significance level the presence of an stable seasonal pattern for the same-day visitors series. But

the evidence of instability is strong in the series of tourists, for which the null joint hypothesis

of stability at all seasonal frequencies is rejected. Analysing each frequency individually, we

may see that the tests do not reject the null hypotheses of stability at the biannual (π) frequency

for both of the series. The rejection of the joint test in the tourists series is due to the presence

of a unit root at the annual cycle (π/2 frequency). The test of stability of individual seasonal

intercepts also reinforces this conclusion, showing significant time variations for the tourists

series in three quarters.
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Table 2: Canova-Hansen tests of stability at seasonal frequencies for foreign entries.
Degrees of freedom (T-k) = 67, lag order = 4

Seasonal dummies Seasonal frequencies
Q1 Q2 Q3 Q4 π/2 π Joint

International Tourists
Statistic 0.3072 0.9003∗ 0.7843∗ 0.6767∗ 1.0528∗ 0.1344 1.1336∗

P -value 0.1512 0.0000 0.0000 0.0035 0.0000 0.5016 0.0002

Same-day visitors
Statistic 0.1240 0.3183 0.2974 0.2224 0.3557 0.2621 0.5761
P -value 0.5459 0.1409 0.1606 0.2595 0.2621 0.1898 0.2473
∗ indicates significance at the 5% level

This instability in the seasonal pattern of the tourists series may be caused by changes in the

consumer behaviour, who make more trips along the year but shorter (they tend to have several

shorter holiday periods rather than concentrating them in one month). While the visits shorter

than a day are associated with other factors, for example border proximity, which may be more

stable.

5 Concluding remarks

In this paper a numerical method for calculating the small sample distributions of four statistics

for analyzing the stability of seasonal patterns, proposed by Canova & Hansen (1995), is pre-

sented. The numerical method is based on response surface regressions, following a procedure

similar to that established by MacKinnon (1996).

The main contributions of this paper are two: first, we describe the numerical approximation

and provide a program written in the Gretl scripting language which calculates the Canova-

Hansen statistics and their associated P -values and second, for users of any other software

package, we offer tables of estimated coefficients of the response surface regression for the
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quantiles of probability α = 0.10, 0.05 and 0.01. Both the computer program and the tables (in

pdf format) are available online in http://bit.ly/CHpval.

The main advantage of this procedure is that it provides the P -value of the CH statistics

whatever the periodicity and sample size of the data. This opens the range of applicability of

these tests to a wide range of time series, for example, to high frequency data.
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