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Abstract

The present thesis is focuses on the problem of Simultaneous Localisation and
Mapping (SLAM) using only visual data (VSLAM). This means to concur-
rently estimate the position of a moving camera and to create a consistent
map of the environment.

Since implementing a whole VSLAM system is out of the scope of a degree
thesis, the main aim is to improve an existing visual SLAM system by comple-
menting the commonly used point features with straight line primitives. This
enables more accurate localization in environments with few feature points,
like corridors.

As a foundation for the project, ScaViSLAM 1 by Strasdat et al. [46] is used,
which is a state-of-the-art real-time visual SLAM framework. Since it cur-
rently only supports Stereo and RGB-D systems, implementing a Monocular
approach will be researched as well as an integration of it as a ROS 2 package
in order to deploy it on a mobile robot.

For the experimental results, the Care-O-bot service robot developed by Fraun-
hofer IPA will be used.

Key words: visual SLAM

1Source code available at https://github.com/strasdat/ScaViSLAM
2Robot Operating System, more information available at www.ros.org
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Chapter 1

Motivation

Simultaneous Localization and Mapping [49], better known as SLAM, is a
technique used by mobile robots and autonomous vehicles. It refers to the
problem of concurrently building a map and localizing itself in an unknown
environment. SLAM is an essential problem to be solved for autonomous
mobile robots to explore unknown environments. Moreover, it is a key problem
to be solved in order to spark a revolution in the field of robotics, whose impact
on humanity will be comparable to the ones of the industrial revolution. We
will see more and more autonomous robots perform everyday tasks to improve
the quality of human life. While nowadays robots are usually designed for
performing special tasks, some belief that general purpose service robots will
be developed, causing an unpredictable impact. One of the obstacles on the
road to that revolution is to solve SLAM efficiently with cheap hardware in
real time and unlimited sized environments.

2D sensors like laser range finders and sonars [21] have been traditionally used
for navigation algorithms. Due to the fact that these can only detect obstacles
in its same plane, alternative sensors have been explored which provide richer
3D information, like 3D Flash LIDAR [32]. In recent times, there has been a
growing interest in performing SLAM with cameras instead of lasers, because
cameras have become much cheaper than lasers. This variant is called visual
SLAM. Moreover, low-cost depth imaging cameras like the Microsoft Kinect
[22] have made dense 3D point clouds available to everyone. The Kinect cam-
era provides not only point clouds, but also color images. Point clouds are
very useful to create a map of the environment by aligning consecutive point
clouds, for instance via the Iterative Closest Point (ICP) and RANdom SAm-
ple Consensus (RANSAC) algorithms for instance. Color images on the other
hand, can be exploited to determine if the robot has already visited a place,
which is known as loop closure problem.
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16 Chapter 1. Motivation

On the other hand, monocular SLAM [19] has also been getting a lot of at-
tention. The reason for this is that, monocular cameras would help driving
down the manufacturing cost of robots even more than RGB-D systems. The
downside of monocular SLAM is that it is more challenging. Similar to stereo-
camera systems, a monocular camera needs to view the same scene from two
different viewpoints in order to triangulate and estimate depth information.

Visual SLAM typically makes use of visual cues, such as feature point de-
scriptors [16] in images, and tries to match them in consecutive frames. As
lines provide richer information of the environment and are more robust to
viewpoint changes and occlusions, they can be a good complement to feature
points.

Because of the aforementioned reasons, the use of lines in monocular cameras
and RGB-D cameras like the Kinect will be explored, in order to improve
existing SLAM techniques.



Chapter 2

Preliminaries

Contents
2.1 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Mathematical Definition of SLAM . . . . . . . . . . 20

2.1.2 EKF SLAM . . . . . . . . . . . . . . . . . . . . . . . 22
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2.1.4 Graph based SLAM . . . . . . . . . . . . . . . . . . 27
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2.3 g2o Framework . . . . . . . . . . . . . . . . . . . . . 31
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2.5.1 Plücker Coordinates . . . . . . . . . . . . . . . . . . 37

2.1 SLAM

SLAM is commonly referred to as a chicken and egg problem. On the one
hand the robot’s pose has to be known to build a map. On the other hand, an
accurate map is needed in order to perform localization. SLAM is challenging
because an inaccurate estimation of the egomotion will have a negative im-
pact on the map quality, which again will negatively influence the subsequent
egomotion estimate and so on.

17



18 Chapter 2. Preliminaries

From a theoretical point of view, SLAM has been solved for small sized environ-
ments. SLAM systems have been used for promising prototypes in indoors and
outdoors robots, even for aerial [13] and underwater [41] autonomous systems.
Nevertheless, there are still some practical issues which need to be addressed
in order to be used in commercial and industrial applications. Some of these
issues are, the size of the maps when performing large scale SLAM and their
representation, performing in dynamic environments with moving objects and
multi-robot SLAM.

Because of the inherent noise of the sensor measurements, SLAM is best de-
scribed with probabilistic distributions [49]. The concept of using probability
distributions in this domain can be better understood with an example, such
as the popular Markov Localization (ML) algorithm used for robot navigation.
In figure 2.1 the classic Markov Localization example is illustrated, in a one
dimensional corridor. At the beginning, the robots starts with a uniform prob-
ability distribution, as it considers itself equally likely to be at any point in
space along the corridor. After detecting with its exteroceptive sensors that
it is beside a door, it assigns higher probabilities to the positions/cells near
the doors. After moving one meter forward, the new belief is smoother due
to the inherent noise in robot motion, because the uncertainty has increased.
Besides, the robot’s motion is estimated using its proprioceptive sensors like
wheel encoders. Next, it detects that it is besides a door again. When it sees
the second door, the probability to be at the second door rises sharply because
it is the only option according to its environment model, thus it diminishes its
belief to be at the locations close to the other doors.

The Markov Localization and its extension to particle filters known as Monte
Carlo Localization (MCL) [20], form the foundation of modern probabilistic lo-
calization. Virtually all localization and SLAM algorithms rely on the Markov
property Eq. 2.1, which gives its name to the Markov Localization algorithm,
to model their probability distributions. The Markov property assumes that
the current state’s probability distribution depends only on the previous state
and that the future state depends only upon the present state and not on any
sequence of past states. This only holds if the environment is static and doesn’t
change with time. Such an assumption is not realistic for typical human envi-
ronments. If a moving object is erroneously associated as a landmark in the
map, the localization will often fail and the map will deteriorate. The usual
approach to cope with dynamic landmarks like humans is to classify objects
as static or dynamic [53]. This way the static landmarks are used to build the
map and the dynamic landmarks are tracked separately.

p(xt+1|x0...xt) = p(xt+1|xt) (2.1)
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Figure 2.1: Markov Localization. From Thrun et al. [51]
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2.1.1 Mathematical Definition of SLAM

Let us assume that the robot travels along a path given by x1:T = {x1, ..., xT}
in an unknown environment. While moving, the robot acquires a sequence of
odometry measurements u1:T = {u1, ..., uT} and observations z1:T = {z1, ..., zT}.
Two main forms of the problem are distinguished in the literature, full and
online SLAM. Solving the full SLAM consists of estimating the posterior prob-
ability of the robot’s path x1:T together with the map m given the initial
location x0, the measurements u1:T and the observations z1:T :

p(x1:T ,m|z1:T , u1:T ) (2.2)

On the other hand, online SLAM tries to recover the current robot location
instead of the whole path:

p(xt,m|z1:T , u1:T ) (2.3)

Two more mathematical models are necessary to solve either SLAM problems.
On the one hand, a model that relates measurements zt to the map m and
the robot location xt: zt = h(xt,m), and on the other hand, a model that
relates the odometry ut to the robot locations xt−1 and xt: xt = f(xt−1, ut). A
graphical model of the SLAM problem can be seen at figure 2.2.

Figure 2.2: Graphical model of SLAM. Arcs indicate causal relationships, and
shaded nodes are directly observable to the robot. From Thrun et al. [49]

Note that on purely visual SLAM systems, such as the ScaViSLAM framework
[46] this thesis is built upon, odometry information is not available. Instead,
visual odometry techniques such as optical flow are used to estimate the cam-
era’s pose. Contrary to classical SLAM approaches where the robot’s pose is
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tracked in the two dimensional ground plane, in visual SLAM the pose of the
camera is estimated in 3D.

Regarding the poses, they usually are represented in the space of SE(2) or
SE(3) rigid transformations, depending on the dimensions. The map can be
represented in many different ways. Some of these representations, which can
be seen at figure 2.3 , are point clouds, topological maps, occupancy grids in
2D or 3D like OctoMap and elevation maps.

(a) Extended Elevation Map by Pfaff
et al. [40]

(b) 2D occupancy grid

(c) OctoMap by Hornung et al.[28]

Figure 2.3: Examples of different map representations.

Next, the three major paradigms for solving feature based SLAM will be dis-
cussed briefly: EKF SLAM, Particle Filter SLAM and GraphSLAM.
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2.1.2 EKF SLAM

This is the earliest and the most studied approach, which relies on the extended
Kalman Filter (EKF) to estimate the current robot’s pose. EKF is an extension
of the popular Kalman Filter for non-linear systems. As any EKF algorithm,
EKF SLAM makes a Gaussian noise assumption for the robot motion and
perception. As it can be seen in Eq. 2.4, all the past information is summarized
in an extended state vector which includes the robot’s pose and the position
of the n landmarks/features: µt = (~xt, θt,m1...mn). Associated with the state
vector is a covariance matrix Σt. This covariance matrix is quadratic on the size
of the state vector and thus makes the algorithm computationally expensive
for large areas.

p(xt,m|z1:T , u1:T ) ∼ N(µt,Σt) (2.4)

Three covariances appear in the matrix, which can be seen at Eq. 2.5. The
top left submatrix in yellow represents the uncertainty in the estimation of the
robot’s pose. The off-diagonal elements in green of the matrix represent the
correlations in the estimates of the different variables like landmark’s and the
robot’s pose. Finally, the submatrix in blue represents the map.

N(µt,Σt) =



x
y
θ
l1
l2
...
ln


,



σ2
x σxy σxθ σxl1 σxl2 · · · σxln

σxy σ2
y σyθ σyl1 σyl2 · · · σyln

σxθ σyθ σ2
θ σθl1 σθl2 · · · σθln

σxl1 σyl1 σθl1 σ2
l1

σl1l2 · · · σl1ln
σxl2 σyl2 σθl2 σl1l2 σ2

l2
· · · σl2ln

...
...

...
...

...
. . .

...
σxln σyln σθln σl1ln σl2ln · · · σ2

ln


(2.5)

At first, when the first measurements are taken, the covariance matrix is filled
assuming that the features are uncorrelated, so the off-diagonal elements are
zero. As the robot moves and takes more measurements, the features start
becoming correlated. While moving, the uncertainty about the robot’s egopose
grows. Consequently, this gets reflected in the increasing uncertainty about
the landmark’s location over time.

It gets interesting when the robot sees an already mapped landmark and per-
forms a loop closure. Thanks to this observation, the error of its pose is reduced
as it can be seen in figure 2.4. Also, this observation helps reducing the esti-
mate of other landmarks thanks to the correlation expressed in the covariance
matrix. This means that any information gain about the robot’s pose propa-
gates through the map, improving the localization of the other landmarks. On
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the other hand, it is obvious that false data associations can have disastrous
effects on the map because of the correlation.

Figure 2.4: If the robot revisits an area and sees an already known landmark
again, it can reduce the uncertainty about its location and also the uncertainty
about other landmarks. At the end of the loop closure the error ellipses are
much smaller. From Hertzberg et al. [27]

To summarise, the key limitation of EKF SLAM is the size of the covariance
matrix, which grows quadratically with the number of landmarks/features,
which it makes computationally expensive for large scale environments. The
approach to solve this problem is to sparsify the matrix via approximations.
Besides, EKF SLAM assumes that the data association problem is solved and
is not robust to false data associations. Taking all this facts into account, it is
not surprising that EKF SLAM has recently lost popularity.
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2.1.3 Particle Filter SLAM

Particle Filter SLAM also addresses the problem of online SLAM. If EKF
SLAM represented the uncertainties as a normal distribution, Particle Fil-
ters enable to represent any kind of distribution and to estimate non-linear,
non-Gaussian processes. Particle Filters represent a distribution as a set of
particles, which have been sampled randomly, from the state space and have
an associated weight. In other words, a particle represents a concrete guess of
the state, which includes the positions of the landmarks.

The algorithm of a particle filter works as follows:

1. Sample initial particles

2. Apply motion predictions to each particle

3. Make measurements

4. Compare each particle’s prediction with the actual measurements and
assign the normalized weights accordingly, giving particles with a good
prediction higher weights.

5. Perform resampling/bootstrapping (draw with replacement from the last
particle set) with unitary weights, in order to avoid the problem of de-
generacy of the algorithm, which means that all but one weights are close
to zero.

The key problem of Particle Filters in the context of SLAM is, that the number
of needed particles grows exponentially with the dimension of the state space.
At first this seems as a big disadvantage over EKF SLAM, since Gaussians
scale between linearly and quadratically with the number of dimensions of the
estimation problem. The trick to make this approach amenable to SLAM was
first discovered by Murphy et al. [36] in 1999 and exploited by Montemerlo et
al. [34] in the FastSLAM algorithm in 2002. FastSLAM solves the posterior
using a factorization called Rao-Blackwellization. The factorization, shown in
Eq. 2.6, exploits the dependency between the map and the poses of the robot.
Given the robot’s pose, mapping is not that difficult. The first term of the
factorization represents the robot’s pose posterior, which can be computed
with the Monte Carlo Localization algorithm for instance. The second term
represents the position of the landmarks. Then, if the robot’s true path is
known, the position of the landmarks are independent between them as can be
seen in figure 2.5. Thus, the second term can be computed efficiently, with two
dimensional EKFs for each landmark in the case of FastSLAM. This drastic
reduction of the state space dimension makes Particle Filtering SLAM possible.
As a consequence, FastSLAM can be implemented in O(N logM).
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p(x1:T , l1:n|z1:T , u1:T ) = p(x1:T |z1:T , u1:T ) · p(l1:n|z1:T , u1:T ) (2.6a)

= p(x1:T |z1:T , u1:T ) · p(l1:n|x1:T , z1:T , u1:T ) (2.6b)

= p(x1:T |z1:T , u1:T ) · p(l1:n|x1:T , z1:T ) (2.6c)

= p(x1:T |z1:T , u1:T )
n∏
i=1

p(li|x1:T , z1:T ) (2.6d)

(2.6e)

Figure 2.5: SLAM illustrated as a Bayes Network graph. Given the robot’s
path, the landmark variables are all disconnected (i.e. conditionally indepen-
dent). From Thrun et al. [49]

FastSLAM makes data-associations on per particle basis, which allows the
exploration of multiple hypothesis. This makes FastSLAM more robust to
ambiguity in data association or even allows for delays until the uncertainty
shrinks.

One of the sampling techniques that can be used for Particle Filter SLAM is
importance sampling, which is illustrated in figure 2.6c. Importance sampling
enables taking samples from another distribution and making inferences rather
than from the distribution of interest. In case of FastSLAM 1.0, the proposal
distribution is the motion model xt ∼ p(x1:t|x1:t−1, u1:t). One problem of this
approach arises when the uncertainty from the robot’s motion is bigger than
the measurement noise. In such cases, the sampled particles are spread very
widely, but very few will fit with the measurements likelihood, resulting in a
highly probable termination of the particles after the resampling phase.

In order to overcome this deficiency, an improved FastSLAM 2.0 algorithm
was developed by Montemerlo et al.[35], which also considers measurements



26 Chapter 2. Preliminaries

during sampling and consequently draws from xt ∼ p(x1:t|x1:t−1, u1:t, z1:t). This
enables more accurate sampling and maps and the reduction on the number
of particles needed.

(a) Random sampling. Source: Martin Lauer

(b) Random weighted sampling. Source: Martin Lauer

(c) Importance sampling: p is the target distribution and q the proposal
sampled distribution. Source: Martin Lauer

Figure 2.6: Illustration of different sampling strategies.

To summarize, FastSLAM can represent multimodal beliefs due to its particle
filter and scales very well with the number of landmarks (over 1 million) thanks
to the Rao-Blackwell factorization. Also, it is robust to ambiguities in data-
association.
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2.1.4 Graph based SLAM

Graph based SLAM techniques recover not only the current robot’s pose, but
all the path, solving the full SLAM problem by using nonlinear sparse op-
timization methods. The basic idea of GraphSLAM is that SLAM can be
represented as a sparse graph of nodes and constraints between nodes. The
nodes represent landmarks and robot locations. There are two types of edges:
edges with odometry information between two robot poses and the arc be-
tween a pose and a landmark observation. Thus, we have motion arcs and
measurement arcs. These nonlinear constraints should not be thought of as
rigid constraints, but as soft contrainst that act like “springs” in a spring-mass
system.

Consequently it is possible solve the full SLAM problem by relaxing these
constraints and by computing the state of minimal energy of the network.
In other words, after building the graph, one seeks for a node configuration
which minimizes the constraint’s error. This yields a maximum likelihood
map and a corresponding set of robot poses. This means that graph based
SLAM is usually divided in two tasks: a frontend which builds the graph, and
a backend which tries to estimate the robot’s pose given the edges by using
graph optimization techniques. The frontend depends heavily on the sensor
used, but the backend usually relies on some abstract data representation that
is sensor agnostic. An example of this is the g2o framework [31], which will be
discussed later. Due to the fact that there are more observations than states,
the backend has to solve an overdetermined system using standard least squares
optimization techniques like Gauss-Newton or Levenberg-Marquardt.

In order to linearize the nonlinear constraints, a sparse information matrix was
used in the GraphSLAM algorithm by Thrun et al. [50] which was presented in
2006. Using an information matrix has the advantage that for large scale maps,
many of the off-diagonal components of the normalised information matrix are
near zero. The GraphSLAM algorithm allows setting these values to zero,
sparsifying the matrix and enabling more efficient information estimates and
updates. Figure 2.7 illustrates how the information matrix is constructed and
factorized.

If the robot senses landmark m1, a value, representing an arc, is added to the
elements between x1 and m1, as shown in 2.7a. After the robot moves, an
odometry reading u2 leads to an arc between nodes x1 and x2 (2.7b). Consec-
utive application of these two basic steps leads to a graph of increasing size,
as illustrated in 2.7c. Nevertheless this graph is sparse, in that each node is
only connected to a small number of other nodes. The number of constraints
in the graph is at worst linear in the time elapsed and in the number of nodes
in the graph.
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(a) Observation ls landmark m1

(b) Robot motion from x1 to x2

(c) Several steps later

(d) The removal of m1 changes the link
between x1 and x2

(e) The removal of m3 introduces a new
link between x2 and x4

(f) Final result after removing all map
features

Figure 2.7: Illustration of the graph construction and factorization of the in-
formation matrix. Taken from Thrun et al. [50]

After constructing the information matrix, the matrix is factorized by elim-
inating the direct links between a pose and a landmark by introducing new
constraints between the poses. At last, the robot’s path can be recovered by
inverting the information matrix. Finally, the landmark locations can be re-
covered one after another, using the original pose-to-landmark information.
More details can be consulted in [50] and [49].

One of the advantages of graph based SLAM techniques over filtering meth-
ods is that it allows to revisit all data when building the map. This enables
performing lazy data-association, i.e. to revisit old data-association in light of
new information. Graph style techniques have usually a constant update-time
and the required memory is linear with the number of landmarks. On the other
hand, in EKF both factors scale quadratically with the number of features. As
a disadvantage of GraphSLAM, if the robot’s path is long, the optimization
can be computationally expensive.
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2.2 Visual SLAM

Visual SLAM is the research subfield of solving SLAM by just using visual
information from different camera sensors, such as stereo-camera systems,
monocular cameras or RGB-D cameras. Digital cameras are currently much
more affordable than range/bearing sensors. Therefore, having a robust visual
SLAM system would enable lowering the manufacturing cost of autonomous
systems such as service robots.

Visual SLAM is closely related to the photogrammetry and Structure-from-
Motion computer vision research fields. This research areas aim to infer the
3D structure from different photographs. The main technique used in these
disciplines has been bundle adjustment, which is an iterative batch optimisation
technique. First, given a set of corresponding points in images taken from
different viewpoints, a 3D point cloud is created. Bundle adjustment boils
down to minimizing the reprojection error of the three dimensional model and
the associated points in the image. To achieve this, nonlinear least-squares
algorithms like Levenberg–Marquardt have proven successful.

However, historically filtering methods have been favoured for real time vi-
sual SLAM applications due to the computational complexity of batch graph
optimisation techniques. In 2007, Klein and Murray presented PTAM [30],
a real time monocular SLAM system. They splitted tracking and mapping
in two separate tasks. The frontend tracked the camera motion in real time
and extracted a carefully chosen set of keyframes. The backend, which can
operate at a lower frequency, concurrently creates a map by performing Bun-
dle Adjustment over all the points in the map using some keyframes. One
of the limitations of PTAM has been, that it doesn’t scale well with bigger
workspaces.

Visual SLAM techniques can be usually categorized as either filtering based
ones or Bundle Adjustment based ones. Strasdat et al. [48] have recently
shown that keyframe bundle adjustment outperforms filtering, since it gives
the most accuracy per unit of computing time.

With the advent of powerful commodity GPGPU processors, dense methods
for visual SLAM have been recently favoured in contrast to feature based
approaches. Some of the advantages of dense, every pixel, methods like DTAM
or KinectFusion by Newcombe et al. [38] [37], is that the created maps contain
very rich and detailed 3D models of the environment and therefore can be used
as input for other tasks like robotic grasping, in the case of service robots.
Feature based maps on the other hand, have no environmental information
between the tracked features. This leads to reliance on other sensors, like laser
scanners, to find out if an obstacle exists between the features for instance.
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2.2.1 ScaViSLAM

ScaViSLAM 1 by Strasdat et al. [47] is a state-of-the-art real-time visual SLAM
framework based on keyframe Bundle Adjustment. Besides, it is the foundation
of this thesis.

ScaViSLAM can be used with stereo-systems and RGB-D cameras. Despite
a monocular camera being the most affordable of all visual sensors, it is also
the most complicated to perform SLAM. This extra difficulty originates from
the fact, that one has to estimate the depth of a feature point by triangulating
from two different frames and perspectives.

None of the SLAM solutions already described are appropriate for small and
large scale environments. Opposite, the focus of ScaViSLAM is to present a
unified visual SLAM solution for small and large scale environments, which
until now have been tackled separately. To achieve this, a double window
approach is used, which is illustrated in figure 2.8. The inner window is filled
with point-pose constraints (as in bundle adjustment) and the outer window
with pose-pose constraints (as in pose graph optimisation). The algorithm
automatically builds a suitable connected graph of keyposes and constraints,
dynamically selects inner and outer window membership and optimises both
simultaneously in constant time. Optimisation if performed by using the g2o
framework [31] as the backend.

For loop closures, ScaViSLAM handles loopy local browsing by combining
metric loop closures with top-down feature search in local neighbourhoods
of the graph topology. Besides, large scale loop closures are handled with
appearance-based place recognition, which is a standard bag of visual words [12]
using SURF features.

Despite ScaViSLAM being a state-of-the-art visual SLAM framework, it crashes
everytime the tracker gets lost or when the camera performs a sudden fast
movement. Therefore, the aim of this thesis is to improve upon ScaViSLAM
by also tracking lines, in order to cope with textureless environments.

Strasdat et al. claim to have implemented a modified version of PTAM as
the frontend of ScaViSLAM for monocular systems. Apparently, distributing
this implementation is not possible due to PTAM ’s licence. There seems to
be some confusion with this licence, because modified versions of PTAM that
are freely available as open source exist. For example, ETHZ’s version2 for
unmanned micro aerial vehicles [55].

1Source code available at https://github.com/strasdat/ScaViSLAM
2Source code available at https://github.com/ethz-asl/ethzasl_ptam

https://github.com/strasdat/ScaViSLAM
https://github.com/ethz-asl/ethzasl_ptam
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(a) Example graph (time step 1) (b) Example graph (time step 2)

Figure 2.8: Illustrations of the Double Window Optimization (DWO) frame-
work. Keyframes and points in the inner window are shown in red, while
keyframes in the outer window are shown in blue. The current reference
keyframe is shown in green. From Strasdat et al. [46]

2.3 g2o Framework

g2o is a C++ framework for performing the optimization of nonlinear least
squares problems that can be embedded as a graph or in a hyper-graph3. A
hyper-graph is an extension of a graph where an edge can connect not only
two, but multiple nodes.

2.3.1 Least Squares Optimization

A least squares minimization problem can be described by the following equa-
tions:

F(x) =
∑
k∈C

ek(xk, zk)
TΩkek(xk, zk)︸ ︷︷ ︸
Fk

(2.7)

x∗ = argmin
x

F(x). (2.8)

Here

• x = (xT1 , . . . ,x
T
n )T is a vector of parameters, where each xi represents

a generic parameter block.

3This introduction has been taken literally from the official documentation, available at
https://github.com/RainerKuemmerle/g2o/blob/master/doc/g2o.pdf

https://github.com/RainerKuemmerle/g2o/blob/master/doc/g2o.pdf
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• xk = (xTk1 , . . . ,x
T
kq

)T ⊂ (xT1 , . . . ,x
T
n )T is the subset of the parameters

involved in the kth constraint.

• zk and Ωk represent respectively the mean and the information matrix
of a constraint relating the parameters in xk.

• ek(xkzk) is a vector error function that measures how well the parameter
blocks in xk satisfy the constraint zk. It is 0 when xk and xj perfectly
match the constraint. As an example, if one has a measurement function
ẑk = hk(xk) that generates a synthetic measurement ẑk given an actual
configuration of the nodes in xk. A straightforward error function would
then be e(xk, zk) = hk(xk)− zk.

If a good initial guess x̆ of the parameters is known, a numerical solution of
Eq. 2.8 can be obtained by using the popular Gauss-Newton or Levenberg-
Marquardt algorithms. The idea is to approximate the error function by its
first order Taylor expansion around the current initial guess x̆

ek(x̆k + ∆xk) = ek(x̆ + ∆x) (2.9)

' ek + Jk∆x. (2.10)

Here Jk is the Jacobian of ek(x) computed in x̆ and ek
def.
= ek(x̆). Substituting

Eq. 2.10 in the error terms Fk of Eq. 2.7, we obtain

Fk(x̆ + ∆x) (2.11)

= ek(x̆ + ∆x)TΩkek(x̆ + ∆x) (2.12)

' (ek + Jk∆x)T Ωk (ek + Jk∆x) (2.13)

= eTkΩkek︸ ︷︷ ︸
ck

+2 eTkΩkJk︸ ︷︷ ︸
bk

∆x + ∆xT JTkΩkJk︸ ︷︷ ︸
Hk

∆x (2.14)

= ck + 2bk∆x + ∆xTHk∆x (2.15)

With this local approximation, the function F(x) given in Eq. 2.7 can be
rewritten as

F(x̆ + ∆x) =
∑
k∈C

Fk(x̆ + ∆x) (2.16)

'
∑
k∈C

ck + 2bk∆x + ∆xTHk∆x (2.17)

= c + 2bT∆x + ∆xTH∆x. (2.18)

The quadratic form in Eq. 2.18 is obtained from Eq. 2.17 by setting c =
∑

ck,
b =

∑
bk and H =

∑
Hk. It can be minimized in ∆x by solving the linear

system

H ∆x∗ = −b. (2.19)
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H is the information matrix of the system and is sparse by construction, having
non-zeros only between blocks connected by a constraint. Its number of non-
zero blocks is twice the number of constrains plus the number of nodes. This
allows to solve Eq. 2.19 with efficient approaches like sparse Cholesky factor-
ization or Preconditioned Conjugate Gradients (PCG). The linearized solution
is then obtained by adding to the initial guess the computed increments

x∗ = x̆ + ∆x∗. (2.20)

The popular Gauss-Newton algorithm iterates the linearization in Eq. 2.18,
the solution in Eq. 2.19 and the update step in Eq. 2.20. In every iteration,
the previous solution is used as linearization point and as initial guess.

The Levenberg-Marquardt (LM) algorithm is a nonlinear variant to Gauss-
Newton that introduces a damping factor and backup actions to control the
convergence. Instead of solving directly Eq. 2.19 LM solves a damped version
of it

(H + λI) ∆x∗ = −b. (2.21)

Here λ is a damping factor: the larger the λ, the smaller are the ∆x terms.
This is useful to control the step size in case of non-linear surfaces. The idea
behind the LM algorithm is to dynamically control the damping factor. At
each iteration the error of the new configuration is monitored. If the new error
is lower than the previous one, lambda is decreased for the next iteration.
Otherwise, the solution is reverted and lambda is increased.

The procedures described above are a general approach to multivariate func-
tion minimization. The general approach, however, assumes that the space of
parameters x is Euclidean, which is not valid for several problems like SLAM
or bundle adjustment. This may lead to sub-optimal solutions.

2.3.2 Least Squares on Manifolds

To deal with parameter blocks that span over a non-Euclidean spaces, it is
common to apply error minimization on a manifold. A manifold is a mathe-
matical space that is not necessarily Euclidean on a global scale, but can be
seen as Euclidean on a local scale.

For example, in the context of SLAM problem, each parameter block xi consists
of a translation vector ti and a rotational component αi. The translation ti
clearly forms a Euclidean space. In contrast, the rotational components αi span
over the non-Euclidean 2D or 3D rotation group SO(2) or SO(3). To avoid
singularities, these spaces are usually described in an over-parameterized way,
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e.g., by rotation matrices or quaternions. Directly applying Eq. 2.20 to these
over-parameterized representations breaks the constraints induced by the over-
parameterization. The over-parameterization results in additional degrees of
freedom and thus introduces errors in the solution. To overcome this problem,
one can use a minimal representation for the rotation (like Euler angles in 3D).
This, however, is then subject to singularities.

An alternative idea is to consider the underlying space as a manifold and to
define an operator � that maps a local variation ∆x in the Euclidean space to
a variation on the manifold, ∆x 7→ x � ∆x. With this operator, a new error
function can be defined as

ĕk(∆x̃k)
def.
= ek(x̆k � ∆x̃k) (2.22)

= ek(x̆ � ∆x̃) ' ĕk + J̃k∆x̃, (2.23)

where x̆ spans over the original over-parameterized space, for instance quater-
nions. The term ∆x̃ is a small increment around the original position x̆ and is
expressed in a minimal representation. A common choice for SO(3) is to use
the vector part of the unit quaternion.

In more detail, one can represent the increments ∆x̃ as 6D vectors ∆x̃T =

(∆t̃
T

q̃T ), where ∆t̃ denotes the translation and q̃T = (∆qx ∆qy ∆qz)
T is the

vector part of the unit quaternion representing the 3D rotation. Conversely,
x̆T = (t̆T q̆T ) uses a quaternion q̆ to encode the rotational part. Thus, the
operator � can be expressed by first converting ∆q̃ to a full quaternion ∆q and
then applying the transformation ∆xT = (∆tT ∆qT ) to x̆. In the equations
describing the error minimization, these operations can nicely be encapsulated
by the � operator. The Jacobian J̃k can be expressed by

J̃k =
∂ek(x̆ � ∆x̃)

∂∆x̃

∣∣∣∣
∆x̃=0

. (2.24)

Since in the previous equation ĕ depends only on ∆x̃ki ∈∆x̃k it is possible to
further expand it as follows:

J̃k =
∂ek(x̆ � ∆x̃)

∂∆x̃

∣∣∣∣
∆x̃=0

(2.25)

=
(
0 · · ·0 J̃k1 · · · J̃ki · · ·0 · · · J̃kq0 · · ·0

)
. (2.26)

With a straightforward extension of notation, we set

J̃ki =
∂ek(x̆ � ∆x̃)

∂∆x̃ki

∣∣∣∣
∆x̃=0

(2.27)
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With a straightforward extension of the notation, it is possible to insert Eq. 2.23
in Eq. 2.13 and Eq. 2.16. This leads to the following increments:

H̃ ∆x̃∗ = −b̃. (2.28)

Since the increments ∆x̃∗ are computed in the local Euclidean surroundings
of the initial guess x̆, they need to be re-mapped into the original redundant
space by the � operator. Accordingly, the update rule of Eq. 2.20 becomes

x∗ = x̆ � ∆x̃∗. (2.29)

In summary, formalizing the minimization problem on a manifold consists of
first computing a set of increments in a local Euclidean approximation around
the initial guess by Eq. 2.28, and second accumulating the increments in the
global non-Euclidean space by Eq. 2.29.

2.4 Kinect Camera Sensor

At the end of 2010, Microsoft launched its structured light camera called
Kinect, illustrated in figure 2.9, as a peripheral for the Xbox 360 console and
has sold over 24 million devices as of February 2013. The Kinect camera
has sparked a revolution in perception and robotics, because it offers accurate
depth information with a low cost price, several orders of magnitude cheaper
than range laser sensors.

The depth sensor produces a 640×480 depth map, with up to 1 cm accuracy,
and the RGB camera produces a 8 bit VGA (640×480) video stream. Both
sensors operate at 30Hz frame-rate. The ranging limit is between 1.2 and 3.5
m and the camera also features a multi-array microphone and a motorized
pivot.

Figure 2.9: The Microsoft Kinect camera. Picture taken by Evan-Amos and
distributed under public domain on Wikipedia.

The camera embodies an Infra-Red projector which emits a LightCoding pat-
tern onto the environment. If a point in the pattern is detected in the camera
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image, the depth of the corresponding pixel can be estimated using triangu-
lation. An IR monochrome CMOS sensor then receives the projected pattern
and processes it within an embedded PS1080 chip. More details about Light-
Coding can be found on the patent by Javier Garcia et al.[24].

While the quality of the depth map is remarkable, there are usually holes,
due to to materials that don’t reflect IR or very fast camera motion for in-
stance. Nevertheless, the Kinect has been given many applications since its
introduction. Some of these applications include robotics mobile navigation
[17], reconstruction of 3D environments [37] and visual SLAM [22].

2.5 Straight Line Representations

As already mentioned, the main goal of this thesis is to include lines into the
visual SLAM problem, in order to enable more robust localization in texture-
less environments like corridors, where few feature points can be found. Such
primitives are especially numerous in man-made structured or semi-structured
environments. Feature points appearance changes significantly with the cam-
eras motion. Eventhough invariant feature point descriptors like SIFT [33]
can be used, they come at the expense of computational cost. Besides, feature
points are prone to occlusions or can be blurred by fast camera motion. Lines
have the advantage that they provide richer information of the environment
and are more robust to viewpoint changes and partial occlusions. Therefore,
they can be a good complement to feature points.

A line is defined by the join of two points or the intersection of two planes.
Consequently, lines have 4 degrees of freedom in 3-space (i.e. 3D euclidean
space). Lines are difficult to represent in 3-space since a natural representation
for an object with 4 degrees of freedom would be a homogeneous 5-vector. The
problem is, that a homogeneous 5-vector cannot easily be used in mathematical
expressions together with the 4-vectors representing points and planes. To
overcome this, a number of line representations have been proposed [26], from
which Plücker coordinates have been chosen for this thesis. The reason for
this is, that there is apparently no other closed form line representation as
a parameter vector. Instead of using two points, intersection of planes etc.
Plücker coordinates allows using directly linear algebra and matrices, similar
to the case of using feature points.

On the one hand, overparametrized line representations can cause numerical
instabilities and increase computational complexity. On the other hand, using
a non minimal line representation might simplify the implementation. Next,
an introduction to Plücker Coordinates will proceed, after all they have been
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used intensively in this thesis.

2.5.1 Plücker Coordinates

A line is represented by a 4×4 skew-symmetric homogeneous matrix4. In
particular, the line joining the two points A, B is represented by the matrix L
with elements:

lij = AiBj −BiAj

or in vector notation:

L = ABT − BAT (2.30)

The matrix L is illustrated in 2.31:

L =


0 l12 l13 l14

−l12 0 l23 l24

−l13 −l23 0 l34

−l14 −l24 l34 0

 (2.31)

The matrix L has following important properties:

• The representation has the required 4 degrees of freedom for a line. This
accounted as follows: the skew-symmetric matrix L has 6 independent
non- zero elements, but only their 5 ratios are significant, and further-
more because det(L) = 0 the elements satisfy a quadratic constraint.
The net number of degrees of freedom is then 4.

• The matrix L is independent of the points A, B used to define it, since
if a different point C on the line is used we obtain the same matrix L.

The Plücker line coordinates are the six non-zero elements of the 4×4 skew-
symmetric Plücker matrix in 2.30, namely5

L = {l12, l13, l14, l23, l42, l34} (2.32)

This is a homogeneous 6-vector, and thus is an element of P5. It follows from
evaluating det(L) = 0 that the coordinates satisfy equation Eq. 2.33

4This introduction to Plücker Coordinates is based on Hartley and Zissermans excellent
Multiple View Geometry book [26]

5The element l42 is conventionally used instead of l24 as it eliminates negatives in many
of the subsequent formulae
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l12l34 + l13l42 + l14l23 = 0. (2.33)

A 6-vector L only corresponds to a line in 3-space if it satisfies the Plücker
constraint Eq. 2.33.

A dual Plücker representation L∗ is obtained for a line formed by the intersec-
tion of two planes P, Q:

L∗ = PQT −QPT (2.34)

and has similar properties to L. The matrix L∗ can be obtained directly from
L by a simple rewrite rule:

l12 : l13 : l14 : l23 : l42 : l34 = l∗34 : l∗42 : l∗23 : l∗14 : l∗13 : l∗12 (2.35)

Plücker coordinates are useful in algebraic derivations. For instance, they are
often used to map 3D lines into images. This is because, if a line in 3-space is
represented by Plücker coordinates then its image can be expressed as a linear
map on these coordinates. The map between the Plücker line coordinates L
and the image line coordinates l (a 3-vector) is represented by a single 3×6
matrix P , called the line projection matrix. The homogeneous image line
coordinates are then given by:

l = PL (2.36)

The line projection matrix P is computed as follows:

P =

p2 ∧ p3

p3 ∧ p1

p1 ∧ p2

 (2.37)

where PiT are the rows of the point camera matrix P, and Pi ∧ Pj are the
Plücker line coordinates of the intersection of the planes Pi ∧ Pj, which can
be computed using Eq. 2.34.

P =

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 =

P1T

P2T

P3T

 (2.38)

The camera projection matrix is given by:

P = KR[I| − c] (2.39)
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where K is the camera calibration matrix, R is rotation matrix representing the
orientation of the camera coordinate frame and c represents the coordinates of
the camera center in the world coordinate frame. This leads to:

P = KIT =

fx 0 cx
0 fy cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

[ R3x3 t3x1

01x3 1

]
(2.40)

where fx, fy are the cameras focal length expressed in pixel distances and cx,
cy is the principal point, usually the image center, in pixel coordinates. T is a
homogeneous 4x4 camera transformation matrix.

A second and more efficient method exists to project a 3D line into the image.
After calculating the projection matrix P with Eq. 2.40, instead of applying
Eq. 2.37 we compute:

[l]x = PLP T (2.41)

where [l]x is defined for a 3x3 skew-symmetric matrix as follows:

[l]x =

 0 −l3 l2
l3 0 −l1
−l2 l1 0

 (2.42)

Both methods, Eq. 2.37 and Eq. 2.41 were implemented in Matlab and the
results showed that the second method is faster to compute with only 147
operations versus the 177 operations needed for the first one.

The result of both methods is a vector with the homogeneous parameter values
for a general 2 dimensional line equation form Ax+By + C ∗ 1 = 0.
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3.1 Description and goal

The goal of this project is to explore the use of lines in order to improve a
visual SLAM system. Commonly feature points are used as cues for visual
odometry and loop closures, but this approach has the disadvantage that the
localization fails when not enough feature points are found in the environment.

As a foundation for the project, the ScaViSLAM 1 software by Strasdat et al.
[46] is used. This is a state-of-the-art real-time visual SLAM framework based
on Bundle Adjustment. ScaViSLAM currently only supports Stereo and RGB-
D systems. Because monocular cameras are the most affordable camera setup,
implementing a monocular approach will be researched. Besides, in order to
deploy ScaViSLAM on a mobile robot, the integration of it as a ROS 2 package
will also be explored.

1Source code available at https://github.com/strasdat/ScaViSLAM
2Robot Operating System, more information available at www.ros.org

43

https://github.com/strasdat/ScaViSLAM
www.ros.org


44 Chapter 3. Project Scope Statement

Regarding the visual frontend, a line tracker will be implemented. There are
several issues which will have to be researched:

• Adequate line representations

• Transformation and projection of the lines to the next frame

• Search for candidate lines that are near the projection

• Matching lines using a line descriptor

Afterwards, this information should be integrated in ScaViSLAM ’s backend
and its graph optimization process. In order to achieve this, its double window
approach needs to be extended to incorporate line information. For example,
some of the functionalities/methods that have to be rewritten, in order to take
advantage of the line information, are:

• Definition of the inner and outer windows

• Deciding when to add a new keyframe

• Metric loop closures

• Computation of the topological neighborhood of a keyframe

• Defining new covisibility weight: number of feature points and lines that
are visible from the topological neighborhood

To sum up, the broad goals of the thesis are:

• Porting ScaViSLAM to ROS

• Rewriting ScaViSLAM to support Monocular cameras

• Implement a line tracker in the visual frontend of ScaViSLAM

• Integrate the line tracker’s information in ScaViSLAM ’s backend

3.2 Scope

List of deliverables

• Project Scope Statement (PSS)

- Description and goal: project definition.

- Scope: identify which tasks are going to be performed and which
are out of scope
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a) List of deliverables: list of documents needed to finish a part of
the project.

b) List of subtasks: list of all the subtasks included in the project

c) WDS diagram: a structured decomposition of the project’s scope
and processes.

- Planning: time estimation for each task

a) Gantt chart: graphical illustration of a projects schedule.

- Risks: identification of risks and description of prevention and con-
tingency plans.

- Work Methodology: description of the management and planning of
work and archive. Explanation of methodology for decision taking.

• Thesis: document that describes all the project.

List of subtasks

• Education

– T- Training

* T1 Literature research

* T2 ScaViSLAM software

• Tactical Processes

– M- Management

* M1 Meetings

* M11 Perform Meetings

* M2 Archive Management

* M21 Use Git to perform version control management and
backup

– P- Planning

* P1 Do PSS

* P11 Define description and goal

* P12 Scope

* P121 Do Work breakdown structure (WDS)

* P122 Make list of subtasks
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* P123 Make list of deliverables

* P13 Time planning

* P131 Do Gantt chart

* P132 Update Gantt chart

* P133 Do time estimations

* P14 Risk identification

* P141 Make list

* P142 Make contingency plan

* P15 Work methodology

* P151 Specify work methodology

* P2 Plan new iteration

• Operational Processes

– D- Development

* D1 Do requirement gathering

* D2 Do the analysis

* D3 Do the design

* D4 Do the implementation

* D5 Perform tests

• D- Documentation creation

* D1 Write Thesis

• F- Finish

* F1 Prepare presentation

* F2 Do presentation

WDS diagram

3.1 shows the work breakdown structure of the project.
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Figure 3.1: WDS diagram

3.3 Risks

When developing a project, there are some risk factors that can influence upon
the accomplishment of deadlines or milestones, resulting in the failure of the
planning and impacting on the project cost, schedule or performance. Some
of these risk factors can be identified beforehand and contingency plans to
reduce the impact can be elaborated. A list of identified risks and contingency
plans are now presented. However, it is also necessary to take into account the
unforeseen problems that could arise from the inexperience and lack of prior
knowledge when developing this project.

List of Risks

–R1 Technology related

R11 Loss of data

Description The project can loose data caused by software, hard-
ware failures or human mistakes. Examples include the com-
puter falling on the floor and resulting in a broken hard drive,
getting the computer stolen, power going out while working on
a PC or errors in a data transfer. The potential impact and cost
of this risk is very high, because it can force the repetition of
already done work and therefore cause severe delays.

Prevention plan

i. Use GIT 3 to host all the project data in a external reposi-
tory. Consequently we can use GIT as a DVCS as well as a

3GIT is a decentralized version control system(DVCS) created by Linus Torvals



48 Chapter 3. Project Scope Statement

backup system.

ii. Take good care of the hardware.

iii. Use Unix based operating systems, such as GNU/Linux and
Mac OS X, because they are safer than Microsoft Windows.
This results in a lower probability of getting the computer
infected by viruses.

Contingency plan Recover data from the GIT repository.

R12 Camera sensor failure

Description The project relies on camera sensors like the Kinect,
therefore a broken camera would result in the inability to con-
tinue work, causing big delays. In spite of the probability of
breaking the camera being very low, the risk is ranked as medium
since the impact would be very important.

Prevention plan Take good care of the cameras. Besides, it is
possible with ROS to record camera data with the rosbag tool
in order to play this data when there is no camera available.

Contingency plan Replace or buy a new camera as fast as possi-
ble. In the meantime use the with rosbag recorded data.

–R2 Human related

R21 Getting stuck because of lack of knowledge

Description Lack of prior knowledge can result in getting stuck
when programming, leading to delays. Since ScaViSLAM is a
very complex and huge software (> 30000 lines of code) with
scarce documentation, this is expected to happen often. Despite
good prior knowledge of ROS, it can also happen to get stuck
in ROS related issues. The author also has currently not much
prior knowledge about projective geometry. Eventhough it can
affect the quality of the product, this risk is ranked as of medium
level.

Prevention plan ROS uses a community website4 to ask and an-
swers questions. An account should be created there. A copy
of the book Multiple View Geometry book by Hartley and Zis-
serman [26] should be requested at the library for consulting
projective geometry related issues.

4http://answers.ros.org

http://answers.ros.org
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Contingency plan Ask the ROS community4when facing ROS re-
lated questions. For all other issues, ask one of the advisors or
other experts.

R22 Health issues

Description For a long term project like this, it is possible to de-
velop health issues. This can lead to problems meeting dead-
lines. This risk is ranked low, since the probability of suffering
from a health issue for a prolonged period of time is very low.

Prevention plan Non existent, it is out of the projects scope.

Contingency plan After recovering, prioritize the project over other
duties.

–R3 Planning related

R31 Don’t meeting deadlines due to too big workload

Description Due to other duties or commitments it is possible not
to meet a deadline. This can happen often, but the impact is
low.

Prevention plan Try to do a good planning, estimate every week
the number of hours dedicated to the project and try completing
them.

Contingency plan After finishing with other duties and commit-
ments, prioritize the project.

R32 Bad project planning

Description Due to the inexperience of the author, the planning
could be wrong. The impact of this risk is variable, because it
is difficult to estimate the resulting delays.

Prevention plan Expect replanning in the first planning.

Contingency plan Do a replanning of the tasks or the project.
Try minimizing problems.

3.4 Work Methodology

Management and Planning

The student will develop the project at Fraunhofer IPA research centre in
Stuttgart, Germany. This means that two advisors have been assigned to the



50 Chapter 3. Project Scope Statement

student. On the one hand, Elena Lazkano will be the advisor from the home
university and on the other hand Richard Bormann will be the on-site advisor
at Fraunhofer IPA.

As no other university courses or lectures have to be attended by the student,
he will only focus on developing the project.

Regarding communication, emails and meetings will be used with Richard and
emails and Skype with Elena.

Archive Management

The archive will be distributed in different computers. GIT will be used as
a version control system and to provide backups in case of data loss. During
development, Elena Lazkano will not have access to the code. The reason for
this is that, in the repository where the code will be developed, private source
code from Fraunhofer IPA exists. At the end of the project the code might be
open sourced.

The advantage of GIT and generally of all distributed version control systems
is that the whole archive is available locally. This means that you can experi-
ment with local branches, without needing an internet connection, and merge
the new feature easily in the main branch when the code is mature.

The archive has been divided in two repositories. One repository will host all
the development code and the other repository will contain the thesis.
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3.5 Planning

Before starting a project of this size, it is very important to do a good planning
and to monitor it afterwards. First of all, the duration of each task has to be
estimated and on the other side a development model for the project has to
be chosen. Regarding this last one, an iterative and incremental life-cycle has
been chosen. This way, each iteration will extend the project by improving an
existent element or adding new functionalities.

On the other hand, the inexperience of the author regarding project plan-
ning has to be taken into account, resulting in difficult time estimates for the
duration of the tasks. The estimations can be seen at table 3.1.
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Time Estimations

TASK ESTIMATION

Education/Training

Literature research 40
ScaViSLAM software 40

Tactical processes

Management
Meetings 10
Archive management 3

Planning
PSS 10
Plan new iteration 3

Operative processes

Development
Requirements gathering 5
Design 5
Analysis 5
Implementation 262
• Porting of ScaViSLAM to ROS 40
• Rewrite of ScaViSLAM
to support monocular cameras 72
• Implementation of a line tracker in
ScaViSLAM ’s visual frontend 75
• Integration of the line tracker
with ScaViSLAM ’s backend 75

Tests 10
Documentation

Thesis 50
Finishing Presentation 7

Total 450

Table 3.1: Time estimation table
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Gantt Chart

Figure 3.2: Estimated Gantt chart
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4.1 Estimated time and real time

As mentioned before, due to the planning inexperience of the author and the
size of the project it is difficult to make a good planning. As a consequence,
meeting all the planned milestones and deadlines on time can be difficult.
Knowing this, time for replanning has been foreseen from the beginning, in
case that the first plan was inadequate.

In this section, the estimated duration of the tasks will be compared with the
real duration. Besides, the reasons for the difference will be explained.

In the next figure, the estimated and real hours spent on the tasks of the
project are shown.

55
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TASK ESTIMATION REAL

Education/Training

Literature research 40 40
ScaViSLAM software 40 60

Tactical processes

Management
Meetings 10 5
Archive management 3 2

Planning
PSS 10 10
Plan new iteration 3 7

Operative processes

Development
Requirements gathering 5 2
Design 5 2
Analysis 5 2
Implementation 262 320
• Porting of ScaViSLAM to ROS 40 40
• Rewrite of ScaViSLAM
to support monocular cameras 72 100
• Implementation of a line tracker in
ScaViSLAM ’s visual frontend 75 80
• Integration of the line tracker
with ScaViSLAM ’s backend 75 100

Tests 10 10
Documentation

Thesis 50 50
Finishing Presentation 7 7

Total 450 523

Table 4.1: Comparison table between estimated and real duration of tasks
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Figure 4.1: Plot with real and estimated task durations. RE stands for
requirements gathering, A for Analysis and D for Design.
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4.2 Assessment

In the previous chart and tables it seems that the only noticeable deviation of
the original time estimation has been the time spent in development. Well, the
biggest difference is not reflected in those tables, because it was the deadline
for finishing the project. The initial planning was to develop until the end of
July at Fraunhofer IPA and then spend August writing the thesis and doing
the presentation in September. But at beginning of May, the university com-
municated that there had been a mistake and that the author had to present
the thesis on July 18th. Apparently, only bachelor and master students can
present their thesis in September and students from the old degree plan have
to finish before August. This unexpected decision had a big impact on the
project and forced to rush everything and prioritize the project by working
more hours.

So the projects timeline, compared to the initially estimated Gantt chart3.2,
has been as follows:

• February: Literature research was done and the porting of ScaViSLAM
to ROS was started.

• March: The port to ROS was finalized. The rewrite to support monoc-
ular cameras was started.

• April: The realization came that the rewrite of ScaViSLAM to support
monocular cameras was out of the scope of the project. Therefore, the
development of the line tracker was started.

• May: The development of the line tracker was continued and the writing
of the thesis was started.

• June: The development of the line tracker was finished. It was realized
that there was no time for rewriting ScaViSLAM to add line information
properly to its backend and that moreover, this was also probably out of
the scope. As a contingency plan, it was tried to connect directly with
the backend without rewriting ScaViSLAM. Besides, the writing of the
thesis was continued.

• July: The connection between frontend and backend was finished. The
evaluation was started but not finished on time. The thesis was delivered
on July 11th and presented on July 18th.

Regardless of the change of deadlines, two of the initially four proposed goals
were, in the authors opinion, out of the scope due to the complexity and size of
ScaViSLAM with over 30000 lines of scarcely documented code. Also there was
nobody to ask questions regarding the inner workings of ScaViSLAM, which
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was the planned contingency plan for this situations, because the advisors
or the researchers at Fraunhofer had no experience with the software and the
author of ScaViSLAM, Hauke Strasdat, was no longer maintaining the project.

It is also worth mentioning that other two identified risks occurred. Con-
cretely, the author was sick during a week in Mai and to cap it all, the Kinect
camera broke in Juni, but was replaced by a new bought one, as stated in the
contingency plan.

The author wants to thank Richard Bormann for rapidly deciding on buying
a new Kinect camera. This was a difficult decision, because the department
had already bought 5 new Asus Xtion Pro Live cameras, which unexpectedly
didn’t work with the OpenNI driver on GNU/Linux, because apparently Asus
had made some changes, so that only old models would work with the driver at
the time. That is why the alternative would have been to suggest the author
to invest time in writing a driver or fixing the OpenNI driver for the Asus
cameras. This would have had a critical impact on the project, since there
would have been no development for a probably long period of time, when the
author was rushing to finish the project because of the aforementioned change
in deadlines. Thankfully this was avoided by buying a new Microsoft Kinect
camera.
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5.1 Integrating ScaViSLAM into ROS

The first task involved porting ScaViSLAM 1, the visual SLAM software by
Strasdat et al. [46] used as a foundation for this project, to the ROS [39]
platform. The long term goal is to enable testing the implemented improve-
ments in a real mobile robot, like the Care-O-Bot service robot developed by
Fraunhofer IPA.

ScaViSLAM is written in C++ and uses CMake2 to build the software. This
makes it theoretically not too difficult to port it to ROS, since ROS packages
also are usually written in C++ and make use of CMake.

However, there were two main obstacles which made the porting cumbersome.
On the one hand, ScaViSLAM has a lot of external dependencies, which also
had to be ported to ROS by writing wrappers. This means to rosify the
external dependencies, i.e. creating ROS packages for them. On the other
hand, ScaViSLAM made use of the Point Cloud Library [4] (PCL) OpenNI
driver to operate the Kinect Camera, which had to be replaced with the ROS

1Source code available at https://github.com/strasdat/ScaViSLAM
2CMake is a popular cross-platform, open source build system. See http://www.

cmake.org for more details.
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OpenNI driver. The reason for this was, that the PCL ROS package ships
without this driver, because the OpenNI driver is available as a separate ROS
package.

Regarding the ROS release, the Fuerte version was used. Therefore, rosbuild
was used instead of the new catkin build system introduced in the Groovy ROS
version. In this first step, ROS wrappers were written, following this3 tutorial,
for Pangolin[5], VisionTools[8], Sophus[6] and g2o [9]. The other dependencies
could be solved by either using already existing ROS packages or installing
them as system packages and using them via the rosdep tool. The first method
was used to include OpenCV[11], a popular computer vision library. The last
method on the other hand, was used for the Eigen library, Suitesparse, Boost
and OpenGL. Eigen and Suitesparse, which are a linear algebra and sparse
matrices computation library respectively, are heavily used.

5.2 Rewriting ScaViSLAM to support Monoc-

ular Cameras

After finishing the port of ScaViSLAM to ROS and modifying the code to
replace the PCL OpenNI with the ROS OpenNI driver, a monocular rewrite
of ScaViSLAM was explored. The motivation for this was, that monocular
cameras are the most affordable of all camera setups. Therefore, a monocular
visual SLAM system would help driving the manufacturing costs of mobile
service robots even more down.

As mentioned before, Strasdat et al. claim to have implemented a modified
version of PTAM as the frontend of ScaViSLAM for monocular systems. Ap-
parently, distributing this implementation is not possible because of PTAM ’s
licence. There seems to be some confusion with this licence, because modified
versions of PTAM that are freely available as open source exist. For example,
ETHZ’s version4 for unmanned micro aerial vehicles [55].

As it was not possible to obtain the monocular version of ScaViSLAM from
Strasdat et al., the author duplicated efforts by trying to reimplement the same
functionality. The approach followed was the same as described by Strasdat
et al. First to try using PTAM as the visual frontend and then to rewrite the
backend to make use of the Sim(3) group instead of SE(3) lie groups.

In order to integrate PTAM, two approaches were tested. First, integrating

3http://www.ros.org/wiki/ROS/Tutorials/Wrapping%20External%
20Libraries

4Source code available at https://github.com/ethz-asl/ethzasl_ptam

http://www.ros.org/wiki/ROS/Tutorials/Wrapping%20External%20Libraries
http://www.ros.org/wiki/ROS/Tutorials/Wrapping%20External%20Libraries
https://github.com/ethz-asl/ethzasl_ptam
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it directly in the same ROS package and writing ROS wrappers for its de-
pendencies (libCVD [2], TooN [7], GVars [10]). The second approach was to use
ETHZ’s modified PTAM version, which is already available as a ROS package.

Getting PTAM to run inside ScaViSLAM was achieved with both methods,
but there was no time for rewriting ScaViSLAM to make use of PTAM. The
sheer size of ScaViSLAM (>30000 lines of code) and its complexity, would
suggest a much longer time frame than a month to implement such a big
rewrite. After realizing that this task was delaying the start of the actual
development part of the thesis and that it was not going to be finished on
time, it was decided to stop with it. Besides, it was agreed upon to only
continue with the monocular support if after finishing all other tasks there
was still time left.
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6.1 Detection of Lines

The first step to write a Line tracker is to detect line segments in an image.
For this purpose, the Probabilistic Hough Transform [29] is applied. In par-
ticular, the implementation provided by the popular OpenCV[11] library was
used. But in order to use the Probabilistic Hough Transform and get good
results, some preprocessing steps are necessary. The needed steps and their
relationship are shown in figure 6.1.

Equalize Histogram

Gaussian Blur

Canny Edge Detector

Morphological Dilate

Probabilistic Hough Lines Detector

Figure 6.1: The preprocessing necessary for detecting lines in a image.

The individual preprocessing steps will now be briefly introduced.
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6.1.1 Histogram Equalization

First of all, a histogram equalization is performed. A histogram is a graphical
representation of the intensity distribution of an image. Thus, it quantifies
the number of pixels for each intensity value of the image. Equalizing the his-
togram improves the contrast in an image, in order to stretch out the intensity
range. Equalization implies mapping one distribution (the given histogram)
to another distribution (a wider and more uniform distribution of intensity
values), so that the intensity values are spreaded over the whole range. An
example of the process is shown in Figure 6.2.

(a) An image and its histogram

(b) Histogram after equalization and the resulting image

Figure 6.2: Process of histogram equalization. Taken from the official OpenCV
documentation.

6.1.2 Gaussian Blurring

Next, a Gaussian blurring or smoothing is performed in order to reduce noise.
For that, a filter is applied, which can be visualized as a window/matrix sliding
through the image. Gaussian filtering is done by convolving each point in the
input array with a Gaussian kernel/function and then summing them all to
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produce the output array. Applying a Gaussian blur has the effect of reducing
the image’s high-frequency components. Thus, a Gaussian blur is a low pass
filter. The equation of a Gaussian function in two dimension can be seen in
Eq. 6.1.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (6.1)

A graphical illustration of a Gaussian blurring is shown in 6.3.

Figure 6.3: The effects of a small and a large Gaussian blur. Image by Lieu
Song, distributed under public domain on Wikipedia.

Gaussian smoothing is commonly used as a preprocessing step before applying
the Canny Edge Detector.

6.1.3 Canny Edge Detector

The popular Canny Edge Detector was developed by John F. Canny in 1986
[15]. Canny’s aim was to discover the optimal edge detection algorithm. There-
fore the algorithm aims to satisfy three main criteria:

• Low error rate: the algorithm should mark as many real edges in the
image as possible.
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• Minimal response: a given edge in the image should only be marked
once, and where possible, image noise should not create false edges.

• Good localization: The distance between edge pixels detected and real
edge pixels have to be minimized.

To satisfy these requirements Canny used the calculus of variations – a tech-
nique which finds the function which optimizes a given functional. The optimal
function in Canny’s detector is described by the sum of four exponential terms,
but it can be approximated by the first derivative of a Gaussian. The main
stages in the algorithm are:

• Noise reduction by using a Gaussian filter.

• Finding the intensity gradient of the image with the Sobel operator.

• Non-maximum suppression: removes pixels that are not considered to be
part of an edge.

• Hysteresis thresholding to determine if a pixel is accepted as an edge.

In Figure 6.4 an example of the Canny Edge Detector is shown.

Figure 6.4: Application of the Canny Edge Detector. Images distributed under
public domain on Wikipedia.

6.1.4 Morphological Dilation

The morphological dilation operator refers to convoluting an image with a
structuring element, a rectangle in this case, for probing and expanding the
shapes contained in the input image. The aim of this preprocessing step is
to expand objects in order to fill small holes and connect disjoint objects.
The operator works by computing the maximal pixel value overlapped by the
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structuring element and replacing the image pixel in the center structuring
element point position with that maximal value.

(A⊕X)(x, y) = max{A(x+ s, y + t) +X(s, t)|(s, t)εDX} (6.2)

An example of the dilation operator can is shown in figure 6.5.

Figure 6.5: Applying dilation with a circle as a structuring element. Image by
Martin Pfeiffer, distributed under public domain on Wikipedia.

6.1.5 Probabilistic Hough Transform

The Hough Transform is a method for estimating the parameters of a geo-
metrical shape from its boundary points in images. The algorithm can be
applied to estimate parameters of arbitray shapes. Due to imperfections in
either the image data or the edge detector, there may be missing points as
well as spatial deviations between the ideal line/circle/ellipse and the noisy
edge points as they are obtained from the edge detector. For these reasons, it
is often non-trivial to group the extracted edge features to an appropriate set
of lines, circles or ellipses. As a consequence, the Hough Transform algorithm
is applied as the final stage to detect lines in an image.

The algorithm will now be explained briefly for the case of lines, based on the
official OpenCV documentation.

Straight lines are often described with the slope-intercept y = mx+ b formula.
Vertical lines are problematic with this representation because the slope rises
to unbound values in the parameter space. For example, for x = 0, m would
have to be infinite. Therefore polar coordinates are preferred. Figure 6.6 shows
the relations among the coordinates.
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Figure 6.6: Polar coordinates: r represents the distance between the line and
the origin, and θ is the angle of the vector from the origin to this closest point.
Image distributed under public domain on Wikipedia.

With the polar coordinates, a straight line equation can be written as:

y =

(
−cos θ

sin θ

)
x+

( r

sin θ

)
(6.3)

And rearrange it as r = x cos θ+y sin θ. So for each point (x0, y0), it is possible
to define the family of lines that goes through that point as:

rθ = x0 · cos θ + y0 · sin θ (6.4)

Meaning that each pair (rθ, θ) represents each line that passes by (x0, y0). If
for a given point (x0, y0) we plot the family of lines that goes through it, we
get a sinusoid. Besides, the points must satisfy r > 0 and 0 < θ < 2π.

If the curves corresponding to two points are superimposed, the location in the
Hough space where they intersect corresponds to a line in the original image
space that passes through both points. The more curves intersecting means
that the line represented by that intersection have more points. An example
is shown in figure 6.7.

The classic Hough Transform algorithm for lines keeps track of the intersection
between curves of every point in the image. If the number of intersections is
above some threshold, then it declares it as a line with the parameters (θ, rθ)
of the intersection point. On the other hand, the probabilistic variant of the
Hough Transform algorithm returns the start and ending points of the line
(x0, y0, x1, y1) and besides, it is more efficient.

In this thesis, only lines that are at least 80 pixel long and have no gaps
between them are chosen. The reasoning behind it is, that long lines are more
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Figure 6.7: Intersection of different curves, corresponding to a line, in the
Hough Parameter Space

robust against occlusions and are therefore more probable to be found in the
next frames, after the camera has moved.

6.1.6 Evaluation and Future Work

It was found, unsurprisingly, that fitting straight lines to edges with the Canny
edge detector and using the Hough transform are too slow for real-time op-
eration. Therefore, implementing a more efficient approach like the one pro-
posed by Davison et al. [45] or the Line Segment Detector by von Gioi et al.
[25]remains open for future work. Besides, in the brief evaluation made of [25],
no way was found to specify computing only lines that are at least 80 pixel
long and have no gaps between them.

6.2 Plücker Parameters with Linear Regres-

sion

In section 2.5.1, a way of computing the Plücker parameters given two points
were introduced. Due to the inherent noise, it is possible that the computed
parameters aren’t %100 accurate. Besides, the computation can fail, because
the Kinect camera doesn’t have depth information for the starting or ending
points of the line segment. Therefore, a second way of computing the Plücker
parameters was tested. By using multiple points on the line together with
linear regression and Singular Value Decomposition (SVD), it is possible to
achieve a higher accuracy for the computed Plücker parameters.
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The SVD matrix factorization is given by:

A = UΣV T (6.5)

where U is a m×m real unitary matrix, Σ is a diagonal matrix with nonnegative
real numbers and V T is a n×n real unitary matrix (the conjugate transpose of
V ).

We can use the SVD to solve a system of linear equations Ax = b. This is
equivalent with minimizing the squared norm ||Ax − b||2, which is a linear
least-squares optimization problem. In our case, b = 0, thus our minimiza-
tion problem is ||Ax||. Regarding the data matrix A, m > n so we have an
overdetermined system. As we will see later, for each pixel on a line we will
have 4 rows in the data matrix. In general the system Ax = 0 has no exact
solution, so we are interested in an approximation. Besides, we have to impose
a constraint on x to avoid the trivial solution of x = 0. Therefore we want to
find an x that minimizes ||Ax|| subject to ||x|| = 1.

So far, we have:

||Ax|| =


r1

r2
...
rn

→ 0

=
[
r1 r2 . . . rn

]

r1

r2
...
rn

 = r2
1 + r2

2 + . . .+ r2
n → 0

↔rT r = (xTAT )Ax

(6.6)

Therefore our minimization problem boils down to:

||Ax|| → 0

min
x
xTATAx

(6.7)

Besides, U and V T are orthogonal matrices. This is interesting because, an
orthogonal matrix M has a norm-preserving property, i.e. for any vector v:

||Mv|| = ||v|| (6.8)

Another property of orthogonal matrices, which we will make use of, is QQT =
QTQ = I, where I is a identity matrix.
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For this we derive:

xTATAx = xTV ΣT UTU︸ ︷︷ ︸
=I

ΣV Tx

= xTV ΣTΣV Tx

= yTΣTΣy, where y = V Tx

(6.9)

As V T is a rotation matrix and therefore and orthogonal matrix, by using
the norm-preserving property Eq. 6.8 we have |y| = 1. Putting the equations
together, we have:

yTΣTΣy → 0↔ y =


0
0
...
1

→ V y = x, x = V


0
0
...
1

 (6.10)

The diagonal n×n matrix ΣTΣ is formed by σ1 ≥ σ2 ≥ · · · ≥ σn, which are the
singular values of A. Note that they are the square roots of the eigenvalues of
ATA and AAT .

Now to the application to Plücker lines. A point x lies on the line only if
L∗x = 0, where L∗ is the dual Plücker matrix. Therefore we have:

0 l34 l42 l23

l34 0 l14 −l13

−l42 −l14 0 l12

−l23 l13 −l12 0

 ·

X
Y
Z
1

 =


0
0
0
0

⇒


0 l34 l42 l23

l34 0 l14 −l13

−l42 −l14 0 l12

−l23 l13 −l12 0

 ·

X
Y
Z
1

 =


l34Y + l42Z + l23

−l34X + l14Z − l13

−l42X − l14Y + l12

−l23X + l13Y − l12Z

 =

=


0 0 0 1 Z Y
0 −1 Z 0 0 −X
1 0 −Y 0 −X 0
−Z Y 0 −X 0 0

 ·

l12

l13

l14

l23

l24

l34

 =


0
0
0
0



(6.11)

After computing the SVD with OpenCV, the result lies in the sixth row of the
V T matrix.
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6.2.1 Evaluation

After implementing this method, the approach showed to be too slow to com-
pute. At first, all the points on the line were used for the SVD computation.
Being the standard length of a line 100 pixel and obtaining 10-15 lines per
frame, the computation of the Plücker parameters took 0.25 seconds per line.
To put it in a nutshell, it took almost 4 seconds for each frame. In the following
output, the computation of the Plücker coordinates for all lines chosen in one
frame is shown. As a comparison, the Plücker parameters are computed with
the two known approaches. On the one hand, the method of using only the
start and endpoints of the line and on the other hand, taking all the points in
the line. Besides, the time needed for each method is shown.

SVD performed, plücker Line: [-0.041354734, 0.94410014,
0.18098645, -0.23605314, 0.03955368, -0.13008896]
0.277316 s computing SVD
plucker param: 0.0415218 -0.942657 -0.177178 0.235664
-0.0378645 0.14598
euclidean distance: 0.016
------------------------------------------------------
SVD performed, plücker Line: [-0.039483715, 0.94527143,
0.18265331, -0.23557271, 0.040506002, -0.12002322]
0.749766 s computing SVD
-------------------------------------------------------
SVD performed, plücker Line: [-0.057846352, 0.93908143,
0.18991378, -0.24893782, 0.042822231, -0.12210207]
0.365418 s computing SVD
plucker param: 0.0578235 -0.938557 -0.190447 0.24886
-0.0427687 0.125446
euclidean distance: 0.003
------------------------------------------------------
SVD performed, plücker Line: [-0.055870593, 0.93761182,
0.18792956, -0.24962136, 0.041955445, -0.13555101]
0.525342 s computing SVD
------------------------------------------------------
SVD performed, plücker Line: [0.3318308, 0.92997813,
0.14072883, -0.018807858, 0.025961243, -0.064781748]
0.136344 s computing SVD
------------------------------------------------------
SVD performed, plücker Line: [0.32733569, 0.93144321,
0.14176606, 4.1757815e-08, 0.023832871, -0.067817144]
0.125375 s computing SVD
------------------------------------------------------
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SVD performed, plücker Line: [0.14009772, 0.97551262,
0.10771098, -0.10750199, 0.022126563, -0.071418658]
0.098531 s computing SVD
------------------------------------------------------
SVD performed, plücker Line: [0.10433333, 0.9711296,
0.11351357, -0.15389577, 0.027991679, -0.093108244]
0.307274 s computing SVD
plucker param: -0.104225 -0.970539 -0.113551
0.153669 -0.0286435 0.0993076
euclidean distance: 0.006
------------------------------------------------------
SVD performed, plücker Line: [0.10154942, 0.97180349,
0.11528987, -0.1519475, 0.027461063, -0.09028852]
0.301903 s computing SVD
plucker param: -0.101486 -0.971165 -0.114242
0.151869 -0.0281211 0.0981448
euclidean distance: 0.007
------------------------------------------------------
SVD performed, plücker Line: [-0.054181233, 0.93901604,
0.19382325, -0.24748452, 0.044123441, -0.1206259]
0.188463 s computing SVD
------------------------------------------------------
SVD performed, plücker Line: [-0.059585184, 0.94366312,
0.18448827, -0.24960646, 0.043243423, -0.087978922]
0.15013 s computing SVD
plucker param: 0.0596027 -0.944087 -0.184155
0.249676 -0.0434154 0.0837385
euclidean distance: 0.171
------------------------------------------------------
SVD performed, plücker Line: [-0.43723068, 0.69431025,
0.35207877, -0.38754061, 0.056524076, -0.22230734]
0.089843 s computing SVD
------------------------------------------------------
SVD performed, plücker Line: [-0.041632656, 0.94932771,
0.17757563, -0.23752837, 0.040648367, -0.086245239]
0.121903 s computing SVD
plucker param: 0.0419276 -0.946112 -0.182988
0.238659 -0.0415223 0.104633
euclidean distance: 0.019
3.99108 s for computeLines

Since processing one frame using only the two point Plücker method takes
0.07s, the SVD method would need to be 100 times faster to achieve the
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same speed. On the other hand, the mean euclidean distance between both
approaches was only of 0.037. This means, that the result achieved by the two
point algorithm is already pretty accurate. The only downside is, that it is not
always possible to compute, because the sensor may not have 3D information
for one of the starting or ending points.

Reducing the number of pixels for the SVD method was also tried. For exam-
ple, by considering only every fifth pixel, 0.514 seconds were needed for one
frame, and when considering only every fifteenth pixel, 0.225 seconds. As this
was still too much time, sticking with the two point algorithm was decided,
but with some improvements.

As it was already mentioned in the preliminaries, one nice property of Plücker
coordinates is, that the matrix L is independent of the points A, B used to de-
fine it. The reason for this is, that even if a different point C on the line is used
we obtain the same matrix L. As the SVD is computationally too expensive,
but the two point method often fails because of the aforementioned reasons,
an approach that combines the best of both methods has been developed by
exploiting Plücker’s property.

The approach works as follows: if the Kinect doesn’t return 3D data for the
starting point, the coordinates that lie on the line with a distance of k px (in
our case k = 5) are computed. For this, the normalized direction vector is
used, whose computation is detailed in next section’s Eq. 6.14. If sensing the
3D data for this coordinates still fails, the same procedure is repeated until a
maximum of λk px distance, where λ = 4 tries (i.e. a distance of 20 px). For
the ending point, the procedure is the same, with the only difference that the
coordinates are decremented, i.e. (xb, yb) = (xb − rx ∗ 5, yb − ry ∗ 5). This way,
we still have an efficient method for computing Plücker coordinates and can
effectively damp the effect of the sensor’s noise.
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6.3 Development of a new Line Descriptor

A simple line descriptor, that uses local neighbourhood information, has been
developed with the objective of being efficient to compute and later on, to
match two lines. The motivation for developing a new line descriptor was,
that the line descriptors found in the literature are usually computationally too
expensive to be used in a real time SLAM system. This is true for the popular
mean–standard deviation line descriptor (MSLD) by Wang et al. [54], which
uses a SIFT-like strategy. For example, Zang and Koch presented a line-based
SLAM that uses EKF for camera pose estimation and a line-based recovery
method [57]. In their approach MSLD is used for matching line segments
between the current frame and stored key-frames in order to relocalize the
system. As MSLD is quite computationally expensive, they used it only for
recovering.

Other line descriptors, such as the recently presented ones by Fan et al. [23]
and Zhang et al. [58](0.2-0.5s for each descriptor), were also discarded be-
cause of their computational cost. Therefore a new line descriptor has been
developed to meet our requirements. The main idea of the descriptor is to
compare intensity values in the neighbourhood of the line L. The images are
expected to be captured with a high frequency, therefore the displacement of
the lines between frames should not be too big. It follows, that we don’t need
a very sophisticated line descriptor. Moreover, as the line already has a clear
direction, a rotation invariant descriptor like ORB [43] is not needed. The first
approach for the new line descriptor will now be introduced.

As the probabilistic Hough Transform gives us starting and ending point of a
line, the pixels on the line are computed using the classic Bresenham algorithm
[14] introduced in 1965. The algorithm is very popular, because it only uses
integer addition, subtraction and bit shifting, all of which are cheap operations
for a computer, making the algorithm very efficient. The next steps are:

1. Compute parallel lines on top (line a) and on the bottom (line b) of the
original line L with a distance of k ·px (where k = 5) by using the normal
of the line.

(a) First compute the direction vector of line L

~r = ~Q− ~P =

(
xq − xp
yq − yp

)
(6.12)

(b) normalize it

r̂ =
~r

‖~r‖
(6.13)
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(c) and compute the normal vector

n̂ =

(
r2

−r1

)
(6.14)

(d) now we can calculate the two parallel lines

(xa, ya) = (xl + nx · k, yl + ny · k) (6.15)

(xb, yb) = (xl − nx · k, yl − ny · k) (6.16)

2. Iterate through these lines by comparing the intensity values a(w) > b(w)
and setting a 1 or 0 in the descriptor accordingly.

3. If there are more cases where b(w) > a(w), then change the direction of
w, in order to identify a line even if it is rotated 180 degrees. Thus, the
brighter side will be always on top.

This steps are illustrated in figure 6.8.

b
~P

L

~Q

a
d=5px

w

n̂

Figure 6.8: Illustration of the developed line descriptor.

The resulting line descriptor can be represented as:

[a(w = 0) > b(w = 0), a(w = 1) > b(w = 1) . . . a(w = n) > b(w = n)] (6.17)

6.3.1 Mean Intensity of Neighborhood

The first approach, suffers from the problem that the descriptor is not distinct
enough to identify a line properly. The reason for this is, that it often contained
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over %85 of one component (1 or 0), resulting this in false positives in the
matching algorithm presented in the next section.

To fix this, the following improvements were made. Instead of only comparing
the number of values where a(w) > b(w), we take the mean intensity of the
neighborhood around a(w) and compare it with the mean intensity of the
neighborhood around b(w), as can be seen in figure 6.11. The neighborhood’s
size is variable, but it must be an odd numbered squared matrix in order for
a(w) or b(w) to be in the center.

Figure 6.9: Mean intensity line descriptor using a 3x3 neighborhood.

The mean intensity line descriptor can be described as:

[ā(w = 0) > b̄(w = 0), ā(w = 1) > b̄(w = 1) . . . ā(w = n) > b̄(w = n)] (6.18)

One drawback of this approach is that a section of the neighborhood may lie
outside the image. In this case, we interpolate the values, using the last known
ones.

To compute the mean intensity of the neighborhood, a summed area table, also
known as integral image, is used. With this trick, the task of calculating the
sum of pixels in some rectangle which is a subset of the original image can be
done in constant time, i.e. O(1) complexity. This concept was first introduced
to computer graphics in 1984 by Frank Crow [18]. In Computer Vision it was
first used within the Viola–Jones object detection framework [52].

As the name suggests, the value at any point (x, y) in the summed area table
is just the sum of all the pixels above and to the left of (x, y), inclusive.



6.3. Development of a new Line Descriptor 85

Furthermore, the summed area table can be computed efficiently in a single
pass over the image, using the fact that the value in the summed area table at
(x, y) is just:

I(x, y) = i(x, y) + I(x− 1, y) + I(x, y − 1)− I(x− 1, y − 1) (6.19)

Once the summed area table has been computed, the task of evaluating any
rectangle can be accomplished in constant time with just four array references.
Specifically, using the notation in the figure below, the value is just:∑

A(x)<x′≤C(x)
A(y)<y′≤C(y)

i(x′, y′) = I(C) + I(A)− I(B)− I(D) (6.20)

Figure 6.10: The sum of the pixels within rectangle D can be computed with
four array references. The value of the integral image at location 1 is the sum
of the pixels in rectangle A. The value at location 2 is A + B , at location 3
is A + C , and at location 4 is A + B + C + D. The sum within D can be
computed as 4 + 1− (2 + 3). Taken from [52].

Luckily, OpenCV comes with a predefined function to calculate an integral
image.

This second approach works better than the first one, but the resulting de-
scriptor is still not distinct enough. Therefore, a Sum of Squared Differences
(SSD) version was implemented.

6.3.2 Sum of Squared Differences

Sum of Squared Differences (SSD) is a well known similarity measure, which is
described as

∑
i,j∈W (I1(i, j)− I2(x+ i, y + j))2. Even though it is computa-

tionally more expensive than the previous approaches, it should also perform
better as a line descriptor. To implement this, two fixed sized 5x3 neigh-
borhood matrices are used, one above the line and the other below it. The
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component a52 of the top matrix, is the pixel on top of the line pixel li and
the component b12 of the down matrix is the pixel under li. The corresponding
pixels of the neighborhood are calculated using the normal vector as seen in
Eq. 6.14. The sum for each matrix is computed using integral images and the
difference between them is saved in the descriptor.

The SSD line descriptor can be represented as:[∑
a(w = 0)−

∑
b(w = 0),

∑
a(w = 1)−

∑
b(w = 1)

. . .
∑

a(w = n)−
∑

b(w = n)
] (6.21)

Figure 6.11: Sum of Squared Differences line descriptor using a 5x3 neighbor-
hood.

Again, a section of the neighborhood may lie outside the image. In this case,
we interpolate the values using the last known ones.

It appears that this line descriptor works better than the previous approaches,
but a quantitative evaluation is necessary to confirm this. Besides, a slight
modification must be done to the matching algorithm that follows.

If the evaluation shows that the line descriptor is still not good enough, some
of the following ideas could be tested:

• Zero-mean Sum of Squared Differences (ZSSD)∑
i,j∈W ((I1(i, j)− I1)− (I2(x+ i, y + j)− I2))2 this is computationally

more expensive than SSD but gives correct results even if there is a
constant offset between the pixel intensities.
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• Transforming one of the image blocks to the other block’s coordinate
system, i.e. perform a perspective warp.

• Trying to emulate the FAST descriptor [42] for lines.
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6.4 Matching of non-SSD Line Descriptors

Given two line descriptors l1 and l2, we seek to determine if they correspond
to the same line in the image. For this, we first check that the size difference
between both descriptors is not too big. Next, the minimal overlapping area
between both descriptors has to be computed. Afterwards, the Hamming
distance is calculated for all possible overlappings, which works as a sliding
window. If the minimum error divided by the number of overlapping pixels is
smaller than a threshold, a match is found. The algorithm can be understood
much easier with the figure shown in 6.12, but is also presented in pseudocode
form in Algorithm 1.

Figure 6.12: Sliding window line matching algorithm. For the sake of illustra-
tion, the arrays hold more numbers than just 0 and 1, which feature in the
non-SSD versions of the line descriptor.
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Algorithm 1: The line descriptor matching algorithm

Input: Line descriptors l1, l1
Output: True if there is a match, false if there is no match
if ((l1.size/l2.size) > 2.0) then

return False
end
winSize← b(min(l1.size, l2.size) · 0.8)c
j ← (min(l1.size, l2.size)− winSize)
twentyPercent, jOld← j; i, iNew, errorCount← 0
maxBound← (max(l1.size, l2.size) + twentyPercent)
initialize vector hammingErrors
while (i < winSize) & (winSize! = maxBound) & (twentyPercent! = −1)
do

if l1[i]! = l2[j] then
+ + errorCount

end
if i == (winSize− 1) then

if jOld! = 0 then
j ← (jOld− 1); i← 0; jOld← j; + + winSize

end
else

i← (iNew + 1); + + iNew; j ← 0
if winSize! = max(l1.size, l2.size) then

+ + winSize
end
else
−− twentyPercent

end

end
hammingErrors.push back(errorCount)
errorCount← 0

end
else

+ + i; + + j
end

end
minError ←findMinimumElement(hammingErrors)
normalizedMinError ← (minError/hammingErrors.size)
if normalizedMinError < 0.25 then

return True
end
else

return False
end
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6.4.1 Matching of SSD Line Descriptors

The SSD line descriptor doesn’t feature just 0s and 1s, but the difference of
the neighborhoods sum. Therefore, a slight modification must be made to
the aforementioned matching algorithm. Instead of incrementing the error if
l1[i]! = l2[j], we sum the squared error (l1[i] − l2[j])2, completing the Sum of
Squared Differences. The rest of the matching algorithm remains the same.

6.5 Guided Search for Matching

So far, a simple line descriptor and a matching algorithm have been presented.
The next step is to maintain a set of tracked lines. For this, the coarse workflow
is:

1. frame = 1: add all the found lines that are at least 80 pixels long and
have no gaps to the tracked list. Each line has a counter with the value
3.

2. The robot/camera has moved.

3. frame = 2: try finding all the tracked lines in the current image. Decre-
ment the counter of the lines that couldn’t been found again.

4. frame = 3, 4: repeat steps from frame 2.

5. frame = 5: deleted lines from the tracked list if they haven’t been found
again three times in a row, i.e. their counter equals zero.

6. When adding a new keyframe, add new lines that weren’t in the tracked
list.

The counter is necessary, because the Hough Transform does not always detect
the same amount of lines, even without camera motion. The reason for this can
be different lighting conditions or perceived intensity values or camera noise.
Moreover, the Canny Edge detector can fail to detect the same edges. To put in
a nutshell, illumination changes, camera noise and failures in the preprocessing
can lead to not detecting the same lines again, despite not moving the camera.

So, if in the first frame 15 lines are detected and in the second frame only 10,
it is not suitable to discard 5 tracked lines directly because Hough failed to
detect them. Besides, even if Hough detected the same line again, it is possible
that the Kinect failed to return depth information for the line’s points. In this
case, the line is discarded when the computation of Plücker coordinates is
not possible. By establishing the policy of only deleting lines if they weren’t



6.5. Guided Search for Matching 91

matched in three consecutive frames, we avoid deleting lines that are still in
the image.

Finally, the reason for adding only new lines when adding a new keyframe
is onefold. ScaViSLAM computes the transformation of the current frame
to the last keyframe. Therefore, if we would allow adding new lines in any
frame, saving an anchorframe for each line would be necessary to transform and
project all the lines to the same coordinate system, increasing the complexity.

The presented line descriptor and matching algorithms have been developed
with computational efficiency in mind. In visual SLAM systems, the aim is to
achieve real time performance. Therefore, it can not be afforded to spend too
much time and resources just to track features.

The presented line descriptor and matching algorithm trade accuracy for com-
putational efficiency. If one tries to match an existing line with all the lines
found in the image, more than one positive match will probably be found. This
happens because the presented line descriptor is not as robust or accurate in
order to distinguish itself among all the lines found in the image. It was al-
ready mentioned, that as the images are expected to be captured with a high
frequency, the displacement of the lines between frames should not be too big.
Thus, a fancy line descriptor is not needed in this case.

Regarding the descriptor, an analogy can be made with SIFT feature points
[33]. SIFT feature points are very robust and accurate, but are computation-
ally very expensive, making their application in real time visual applications
usually infeasible. To solve this, a guided search approach is used in this thesis.
This means, that an estimation/projection over the tracked lines is made to
reduce the number of candidate lines for matching. This can be seen in figure
6.13.

To determine the transformation between two consecutive frames, i.e. how the
camera has moved, visual odometry is used. ScaViSLAM uses a dense tracking
approach based on the Lucas-Kanade optical flow. Especially it implements
the approach used by Newcombe et al. [38] by minimizing the following pho-
tometric energy:

x2 =
∑
u,v

ρ

((
I

[n]
l (u, v)− I [n+1](ẑmono(Tn+1 · yu,v))

)2
)

(6.22)

with respect to the camera pose Tn+1 ∈ SE(3). Il and Ir are rectified images,
yu,v the 3D points and ρ a robust kernel. “One way to interpret this least-
squares method is the following: It estimates an optical flow field which is
forced to be consistent with the dense point model as well as with a rigid
body motion. The least-squares optimisation can be performed very efficiently
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Figure 6.13: Guided Matching: After moving the camera, one seeks to find line
1. With visual odometry, the projection of the old line into the new frame can
be calculated. Then, only lines that are near the projection (i.e. the orange
lines) are considered for matching the descriptors.

on a modern GPU. Afterwards, the pose is refined using motion-only bundle
adjustment on the sparse point cloud. This way we make sure that the pose
remains consistent to the 3D points, which are estimated using double window
optimisation”1.

After computing the projection of the tracked line in the new frame, the eu-
clidean distance between all the current lines to the projection is computed.
This way, only lines that are near the projection are chosen to match their
descriptors, as can be seen in figure 6.13. Note that, in projective space, a line
A ∗ x+B ∗ y + C = 0 can be multiplied by a factor K and still represent the
same line. Therefore, in order to compute the euclidean distance, both lines
have to be normalized and the have same signs, in case of k = −1. For ex-
ample, if after normalization we have [−A,B,−C] and [A,−B,C], one of the
lines has to be multiplied by k = −1 before computing the euclidean distance.

The problem with using the euclidean distance to compare linear forms of lines
is, that it is not possible to use a fixed threshold to determine which lines are
near the projection. The reason for this is that steep lines cause the A,B
components to rise by two orders of magnitude. Thus, with horizontal lines,
a good threshold could be < 80, but with steep lines < 20000. Therefore,
instead of using a fixed threshold, we always take the three lines with the
smallest euclidean distance as candidate lines. Exploring the use of other

1Explanation taken from Strasdat’s thesis [46]
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similarity measures which don’t suffer from this problem remains open. An
interesting idea to overcome this problem would be to use polar coordinates,
like the ones used by the Hough Transform.

Before detailing all the algorithm, explaining the transformation of Plücker
lines into the new frame is needed. In section 2.5.1, the computation and
backprojection of Plücker lines into the image were introduced, but assuming
a non-moving camera. Now, before projecting the Plücker lines back into
the image, the aforementioned transformation between two frames has to be
applied. The formula for this is derived in Eq. 6.23 and the meaning of the
used symbols is illustrated in figure 6.14.

Figure 6.14: Transformation of Plücker lines between two different coordinate
systems.

XC1 = TC2
C1
XC2

LC1 = XC1
a XC1T

b −XC1
b XC1T

a

LC2 = XC2
a XC2T

b −XC2
b XC2T

a

LC1 = TC2
C1
XC2
a XC2T

b TC2T
C1
− TC2

C1
XC2
b XC2T

a TC2T
C1

LC1 ' TC2
C1
LC2TC2T

C1

Note: equality only if normalization is introduced.

(6.23)

The algorithm to transform, project and match lines will now be introduced,
in Algorithm 2. The computation related to Plücker coordinates can be found
in section 2.5.1.
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6.5.1 Algorithm

Algorithm 2: Update set of tracked lines every frame

Input: Set of tracked lines in last frame tn−1, TC2
C1

4x4 homogeneous
transformation matrix, linesOnCurrentFrame

Output: Updated set of tracked lines in current frame tn
projectionMatrixP ← KR[I| − c] using TC2

C1
for Eq. 2.40

foreach tracked line L do

transformedP luckerMatrix L′ ← TC2
C1
· LC2 · TC2T

C1

[l]x = PL′P T (see Eq. 2.41)
lineEq = normalize([l]x)
if LineIsInsideFrame(lineEq, intersecPoint1, intersecPoint2) then

nearestLines←
findNearestLinesOnCurrentFrame(lineEq, linesOnCurrentFrame)
foreach nearestLine nL do

matchTwoLineDescriptors(L.lineDescriptor, nL.descriptor)
end

end

end
UpdateTrackedLines

Some notes regarding Algorithm 2. After computing the tranformation and
projection of the line, a check is performed to see if the line is still inside the
current frame. Consequently, if it is not inside the frame anymore, i.e. has at
least two intersection points with the frame’s edges, we can discard the line
and proceed with the next one. In order to calculate if the lines is inside the
frame, we view the four edges of the frame also as lines. For this, since the
coordinates of the edges are known, their Ax + By + C ∗ 1 = 0 line equation
forms are first computed using equation Eq. 6.24.

Given two points ~P and ~Q, the line equation joining both points is defined as:

(Py −Qy)x+ (Qx − Px)y + (Px ·Qy −Qx · Py) = 0 (6.24)

Then, the computation of the intersection between two lines a1∗x+b1∗y+c1 = 0
and a2∗x+b2∗y+c2 = 0, is easy. First, it is necessary to check if an intersection
exists, by checking if they are parallel lines. There exists an intersection only
if

a1 · b2 6= a2 · b1 (6.25)

If an intersection exists, it can be computed using standard linear algebra
(there are two equations and two variables). The result is given by Eq. 6.26:

x = (b2 · c1 − b1 · c2)/(a2 · b1 − a1 · b2)

y = (a1 · c2 − a2 · c1)/(a2 · b1 − a1 · b2)
(6.26)
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Now, the remaining bit is to check if the intersecting point ~P lies inside the
frame. In the case of the Kinect camera, this means that 0 <= Px <= 640
and 0 <= Py <= 480. A line is considered to be inside of the frame, if it has
two valid intersection points with two different edges of the frame.

6.5.2 Qualitative Evaluation

As no objective evaluation has been made of the developed line tracker, an
example will be shown in figure 6.15 and 6.16, in which one line will be tried
to match as the camera moves freely in 3D. Only one line is tracked for the
sake of illustrating the guided search matching method, because when tracking
10-20 lines it is more challenging to visualize the matches.
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(a) Projection and matched line without camera movement.

(b) After translating the camera to the left, the projection and the matched line are still correct.

(c) After translating the camera even more to the left, there is no match because that line wasn’t
detected with Hough, so there are no near candidates. Even if there were candidates, the descriptors
would not match, since the initial line is now not visible anymore.

Figure 6.15: Example of tracking one line with camera translation. Yellow lines
represent lines found on the current frame. The green line is the projection
of the tracked line. Purple lines represent candidate lines that are near the
projection. A white line illustrates the matched line.
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(a) Camera has been rotated 45o and translated. The projection now has drifted a little bit because of
the visual odometry, but the matched line is still correct.

(b) Camera has been rotated 90o and translated. Projection and matched line are correct.

Figure 6.16: Example of tracking one line with camera translation and rotation.
The window on the left with the yellow lines show all the lines found on the
current frame. The green line is the projection of the tracked line. Purple lines
represent candidate lines that are near the projection. A white line illustrates
the matched line.
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Optimization of lines in the
Backend
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7.1 Graph optimization with lines . . . . . . . . . . . . 99
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7.1 Graph optimization with lines

Now that we have a line tracker, we want to use them to improve ScaViSLAM.
This means, that the line’s information should be integrated in ScaViSLAM ’s
backend and its graph optimization process. In order to achieve this, its double
window approach needs to be extended to incorporate line information. For
example, some of the functionalities/methods that have to be rewritten, in
order to take advantage of the line information, are:

• Definition of the inner and outer windows

• Deciding when to add a new keyframe

• Metric loop closures

• Computation of the topological neighborhood of a keyframe

• Defining new covisibility weight: number of feature points and lines that
are visible from the topological neighborhood

Due to project scheduling issues, it was not possible to rewrite ScaViSLAM
completely to integrate the line’s at all levels. Nevertheless, the lines were

99
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incorporated to the optimization graph. At the beginning of the thesis Graph-
SLAM, ScaViSLAM and g2o were introduced to illustrate how the SLAM prob-
lem can be represented as a graph and solved with optimization techniques.
The general workflow of the implemented line integration is:

1. Save for each keyframe the currently tracked lines, i.e. the observations.

2. Maintain a lineTable data structure in the backend, where the optimized
Plücker parameters for all tracked lines are saved. This data structure is
independent from the frontend’s trackedLines data structure. Therefore,
even if a line is deleted from the frontend’s trackedLines, it is not deleted
from the backend’s lineTable.

3. Compute in the backend an active line set, which is made up of all the
unrepeated line’s identifiers (id) that are associated with frames in the
inner window. Even if the same line should appear in more than one
frame, it’s id will be appear only once in the active line set.

4. When ScaViSLAM decides to optimize, we search for lines of the active
line set in all the frames included in the double window. If we find
a match, we retrieve the last optimized Plücker coordinates from the
lineTable and register the line as a vertex in the optimization graph if
it hasn’t been registered yet. If there are no last optimized values, for
instance because it is a new line, we take the observation for initialization
purposes. Next, we connect the Line vertex with the frame/pose vertex
as an edge with the line’s observation from that pose.

5. At the end of the optimization, we update lineTable with new optimized
values. Besides, the optimized values are passed to the frontend to enable
more accurate projection of the tracked lines.

ScaViSLAM still crashes when it sees insufficient feature points, because the
line information was not integrated into its covisibility weight measure. Despite
this problem, with the inclusion of the lines, the estimated pose of the camera
should be more accurate.
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7.2 Evaluation

For evaluation purposes, the optimization can be done by using only points, by
using only lines or using both. A qualitative evaluation was done by running
the software on the Care-O-Bot mobile robot and drawing the resulting poses
in ScaViSLAM’s GUI, as shown in Figure 7.1. Nevertheless, for an quantitative
evaluation it is necessary to compare the estimated trajectory against the real
one. This can be done in two different ways.

Figure 7.1: Image of ScaViSLAM running on the Care-O-Bot mobile robot. On
the left down window, the line tracker is shown. In the middle, the estimated
trajectory of the robot. On the top left window, the lines found on the current
frame.

The first one is by using an already recorded data set, like the outdoors New
College dataset1 of Smith et al. [44]. This dataset was originally used to
test ScaViSLAM. Thus, it would be interesting to run the same tests as Hauke
Strasdat and compare the results. In order to achieve this, it is necessary to use
the same error measure. As ScaViSLAM has no fixed global origin, comparing
absolute poses is meaningless. Therefore, a relative error in terms of relative
differences ∆Tij := TiT

−1
j between two absolute poses is used. Besides, the

root mean square error is defined over the estimated and the true relative
translations,

1http://www.robots.ox.ac.uk/NewCollegeData/

http://www.robots.ox.ac.uk/NewCollegeData/
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√
1

|E|
∑
Eij∈E

(∆t
[est]
ij −∆t

[true]
ij )2 (7.1)

with ∆tij being the translational component of ∆Tij. ScaViSLAM defines the
resulting poses in world coordinates. Therefore, in order to use the aforemen-
tioned error measure, we need to calculate the transformation between two
consecutive poses, as can be seen in figure 7.2.

Figure 7.2: Image illustrating two poses in world coordinates and the trans-
formation between them

This transformation can be computed as follows:

Xw = Tw1 X1

Xw = Tw2 X2

⇒ Tw2 X2 = Tw1 X1

X1 = T−1w
1 Tw2︸ ︷︷ ︸
∆T12

X2

(7.2)

The second method on the other hand, involves creating a new indoor dataset.
In this case, by using the Care-O-bot mobile robot developed by Fraunhofer
IPA, which is illustrated in figure 7.3. The advantage over the New College
dataset is, that inside a building, i.e. in a man-made structured environment,
it is easier to find lines, which leads to getting a better pose estimate by using
line information. As the New College dataset takes place outdoors, not much
lines can be found, which hampers testing the developed improvements which
rely on straight line primitives.

Since our main goal was to improve localization in textureless areas where few
feature points can be found, it makes sense to use such an environment for
evaluation purposes. As the Care-O-Bot has a static map of the environment
and is equipped with laser scanners, its localization should be accurate. In
ROS, we can retrieve the poses through the tf topic.
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Figure 7.3: Image of Care-O-bot mobile robot developed by Fraunhofer IPA

Sadly, it was not possible to perform this quantitative evaluation on time. A
indoor dataset was recorded with the Care-O-Bot, and the developed software
runs with both datasets, but it was not possible to implement the error measure
on time. Nevertheless, the author will try to do this even after presenting the
thesis.
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Future Work

Contents
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8.1 Future Work

Due to already mentioned project scheduling issues, it was not possible to finish
everything on time. Therefore some issues that should or could be addressed
in the future are:

• Finishing a quantitative evaluation of the resulting estimated poses by
using only points information, using only lines or both. The New College
outdoors dataset and a new created indoors dataset could be used.

• Explore the use polar coordinates to find nearby candidates of the pro-
jected line. This would probably help to overcome the limitations of the
euclidean distance as a similarity measure with steep lines. Currently it
doesn’t allow the use of a fixed threshold and therefore we are forced to
always choose the 3 lines with the smallest euclidean error as candidates.

• Do a quantitative evaluation of the line tracker, to see if the descriptor
works as expected or new improvements are necessary. This could be
done by using depth information around a line.

• Extend the use of line information to the remaining parts of ScaViSLAM.
Currently, ScaViSLAM still crashes when it detects to few feature points
because line information is not taken into account in the covisibility
weight. Some areas where line information needs to be included are:

107
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– Definition of the inner and outer windows

– Deciding when to add a new keyframe

– Metric loop closures

– Computation of the topological neighborhood of a keyframe

– Defining new covisibility weight: number of feature points and lines
that are visible from the topological neighborhood

• Finally, implementing a monocular frontend would be interesting. Possi-
ble approaches would be to integrate PTAM or to write an open source
monocular tracker to overcome PTAM’s restrictive license.
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