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This paper sets out an optimum synthesis methodology for wheel profiles of railway vehicles in 

order to secure good dynamic behaviour with different track configurations. Specifically, the 

optimisation process has been applied to the case of rail wheelsets mounted on double gauge 

bogies, that move over two different gauges, which also have different types of rail: the Iberian 

gauge (1668 mm) and the UIC gauge (1435 mm). Optimisation is performed using Genetic 

Algorithms and traditional optimisation methods in a complementary way. The objective 

function used is based on an ideal equivalent conicity curve which ensures good stability on 

straight sections and also proper negotiation of curves. To this end the curve is constructed in 

such a way that it is constant with a low value for small lateral wheelset displacements (with 

regard to stability), and increases as the displacements increase (to facilitate negotiation of 

curved sections). Using this kind of ideal conicity curve also enables a wheel profile to be 

secured where the contact points have a larger distribution over the active contact areas, making 

wear more homogeneous and reducing stresses. The result is a wheel profile with a conicity that 

is closer to the target conicity for both gauges studied, producing better curve negotiation while 

maintaining good stability on straight sections of track. The paper shows the resultant wheel 

profile, the contact curves it produces, and a number of dynamic analyses demonstrating better 

dynamic behaviour of the synthesised wheel on curved sections with respect to the original 

wheel.  

 

Keywords: Wheel profile optimisation, Genetic Algorithms, wheel-rail contact, double gauge 

vehicles. 

 

1. Introduction 

The geometry of wheel-rail contact is a key feature in resolving the dynamics of a rail 

vehicle. It is well known that the shape employed to design both the wheel profile in the 

rolling area and the railhead substantially conditions the vehicle's response from the point of 

view of a number of factors such as stability, absence of vibrations, curve negotiation 

ability, wear of wheels and rails and ride safety, among others [1,2]. Hence, therefore, the 

need to secure the best possible profiles for the intended ride conditions. This leads to a 

better dynamic response, increasing the vehicle's stability, for instance, or reducing wear on 

the profiles and the forces transmitted to the track on curved sections. 

Designing a wheel profile that will produce good dynamic behaviour is no easy task. The 

vehicle's dynamics are highly sensitive to the geometry of the profiles, and although the 

same wheel profile may perform satisfactorily on a certain vehicle or track, it may 

nevertheless produce a poor response when changes are made to the ride conditions. There 

is an additional factor which introduces particular complications to the process of obtaining 

an optimised profile: the inevitable wear that will ensue on the profile itself as a result of 
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operation over the first few thousand kilometres. Wear is not only an adverse circumstance 

from the economic viewpoint (material is eliminated, and the wheels must be reprofiled or 

replaced periodically, and thus minimising wear in all cases is a constant concern); it also 

brings about changes in the shape of the profile originally obtained [3-5]. To a greater or 

lesser extent, this culminates in premature loss of the dynamic wheel-rail contact 

characteristics that the initial profile design phase attempted to establish. If wheel wear 

occurs rapidly, the profile which was obtained during the design phase and performed well 

will only prove useful over a short period of time, and consequently this will not be a good 

design. In addition to other parameters, therefore, any methodology which seeks to optimise 

rolling profiles for rail dynamics must take account of homogeneous wear on the profile. 

Until a few years ago the design process was manual, and based on the designer's 

experience, but IT progress has now made it possible to use specific optimisation methods 

to try to adjust the profiles to specific ride conditions. The great sensitivity of contact curves 

to minor changes in rolling profiles, however, makes optimisation by means of traditional 

methods problematic in these cases. Conventional optimisation methods alone may not 

produce satisfactory results, and frequently lead to relative minima that may be far from the 

optimum solution. Genetic Algorithms (GAs) can help to avoid local minima being 

obtained, which barely improve the initial behaviour of the wheel, and constitute a 

particularly useful method for this type of problem [6-8]. 

In Spain, the gauge used for all intercity tracks has traditionally been 1668 mm (Iberian 

gauge), as distinct from most European systems, where the gauge is generally 1435 mm 

(UIC gauge). When high speed railway lines were introduced in 1992, however, it was 

decided that the new high speed trains would use the international 1435 mm gauge 

employed in the rest of Europe. The result is that Spain now operates conventional 1668 

mm gauges and high speed 1435 mm gauges, both with a rail cant of 1:20 (which also 

differs from most European tracks, with rail cants of 1:40). 

In order to put to good use the advantages of high speed tracks for conventional railway 

vehicles, at the present time vehicles are also in operation which can adapt to two different 

gauges and make one portion of the journey on the conventional track and the other portion 

on high speed track, thereby making best use of rail infrastructures. These vehicles use what 

are known as double gauge bogies, where the wheelset wheels change position and adapt to 

the new setup on the gauge changers built for this purpose. These special vehicles can reach 

operating speeds of up to 250 km/h on both track gauges. 

This therefore introduces a situation in which the same wheelset moves over tracks with 

different gauges at high speed. Nor is the type of rail used on the two gauges the same: a 54 

E 1 rail is used on the 1668 mm gauge, and a 60 E 1 rail for the 1435 mm gauge. Both 

factors can lead to major differences in wheel-rail contact conditions, making the design of 

the wheel profile particularly important in this case. In order to get the vehicle providing a 

good dynamic response for both sets of ride conditions, the wheel profile must be designed 

in due consideration of the two different contact situations. 

This paper presents a synthesis methodology of wheel profiles optimised for two specific 

ride conditions (Table 1): a Spanish high speed railway track with a 1435 mm gauge, a 60 E 

1 rail, and a rail cant of 1:20 (UIC case), and a conventional Spanish track with a 1668 mm 

gauge, a 54 E 1 rail, and a rail cant of 1:20 (Iberian case). In Table 1, wheel base refers to 

the lateral distance between the nominal rolling points on the two wheels of a wheelset. 

Unlike traditional methods, optimisation is carried out by minimising an objective function 

using Genetic Algorithms (GAs) together with conventional optimisation methods. The 

objective function is based on the least squares error between a target conicity curve and the 
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calculated conicity curve for a given variable setting. The target conicity chosen is an ideal 

conicity curve which reflects good performance of the vehicle on both straight sections and 

curves, low wear, realistic geometry of the profile, and uniform distribution of contact 

points on the wheel profile. 

 
Table 1: Parameters corresponding to the two gauges 

 

 Track gauge (mm) Wheel base (mm) Rail Rail cant 

UIC case 1435 1500 60 E 1 1:20 

Iberian case 1668 1734 54 E 1 1.20 

 

The bibliography contains a number of previous papers concerning the optimisation of 

rolling profiles and the utilisation of GAs. One of the first was drawn up by Persson et al. 

[6], in which GAs were used to optimise the rolling profile of a railway wheel, using the 

minimisation of several adverse ride parameters as a criterion. Persson subsequently used a 

similar methodology to study the potential optimisation of a rail profile on a suburban train 

[7]. In 2007 Novales et al. [8] used similar methodology and software to optimise a rail 

profile for two different types of track: railway and light rail tracks. The objective function 

considered three ride quality parameters, evaluated through dynamic simulations: wear 

index, risk of derailment and contact stresses. In 2008 Shevtsov et al. [9] employed a 

conventional optimisation method to synthesise a wheel profile considering the Rolling 

Radii Difference function (RRD), and demonstrated the improvements secured for a 

particular case of operation. The RRD function has continued to be used as the optimisation 

basis in more recent works - for example, Markine [10] and Shen [11] - improving contact 

conditions at low computational cost. In 2009 Polach [12] demonstrated it was possible to 

design a wheel profile with the aim of adjusting to a suitable conicity curve and achieving a 

wide contact spreading over the wheel profile (thereby helping to prevent concentrated 

wear). This synthesis method is a direct process (with no optimisation) which calculates the 

geometry of the profile that creates a certain conicity function in a certain operating 

situation. In 2011 Dabin Cui et al. [13] used a conventional optimisation procedure to obtain 

a wheel profile which minimised a new objective function: weighted wheel/rail gap. The 

aim of this minimisation process is, as in [12], to secure a distribution of contact points over 

the wheel profile for a certain type of track. Very recently, Pålsson et al. [14] successfully 

applied the GAs method to optimisation of the geometry of a crossover to reduce wear. The 

geometry of the entire crossover is described on the basis of only 4 definition parameters, 

and optimisation is carried out considering both travel directions. 

The main new feature of this work lies in the optimisation of a wheel profile for two 

different gauges, where the operating speed of the vehicle is very high in both cases, and 

thus its stability becomes an extremely important condition. Methods such as that which 

focuses exclusively on a study of wheel/rail gap, or those which concentrate mainly on 

obtaining uniform distribution of contact points over the profile, or which only take account 

of the minimisation of certain parameters not directly related to stability, produce solutions 

with equivalent conicities that are too high and cannot be used in this case. Considering 

equivalent conicity as an objective function makes it possible from the outset to impose the 

condition that the conicity values for minor wheelset displacements must be extremely low, 

guaranteeing the stability of the vehicle. The work shows how considering this function can 

improve the vehicle's negotiation of curves, maintaining equivalent conicity within a certain 

range of values. Optimisation for two different track conditions at once also makes it 
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impossible to use direct methods for designing the geometry, as set out in [12,15], and 

renders the optimisation process more costly. 

Furthermore, all profile optimisation projects utilise moving interpolation points and 

spline curves or NURBS curves [16] to define the optimised geometry. This paper, 

however, uses an approach similar to that used in [14], but applied to the wheel profile, 

constructing the geometry with definition parameters that enable the number of variables in 

the problem to be reduced and optimisation efficiency to be increased. 

The following sections of the paper provide an explanation of the selection of this objective 

curve, the optimisation methodology, and the improvements achieved with the new wheel 

profile obtained. For the purpose of these comparative analyses dynamic simulations were 

performed on a type vehicle fitted with both the currently used and the new wheel profiles, 

and studies conducted on the levels of wear on curves of different radii. The work presented 

was commissioned by the Spanish Ministry of Development, as part of a project to design a 

wheel profile with low track aggressiveness, and was continued on a project by the Spanish 

Research Ministry (MICINN). 

2. Problem description 

2.1 Current wheel profile 

Figure 1 shows the wheel profile currently used by vehicles travelling on the two co-

existing gauges. Since stability of the vehicle is of such importance in these cases, the 

profile must have low conicity across a broad range of lateral wheelset displacements. Since 

this must also occur on two types of gauge, the wheel tread, which is composed of a straight 

section with a 2.5% gradient, extends to areas in proximity to transition to the flange. This 

means that the contact point with the rail remains on this straight section over a considerable 

range of lateral displacements of the wheelset and for different types of rail, and that 

equivalent conicity is constant and low (matching the gradient of the straight section) within 

this range. This is all very much to the benefit of the vehicle's stability, which is not the case 

with other profiles, where the straight section of the wheel tread begins to curve well before 

it approaches the wheel flange. 

 
 

Figure 1. Wheel profile in current use. 
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In the case of the wheel shown in Figure 1, it may also be observed that the profile is 

composed of a concatenation of successive straight sections and circumference arcs. 

Specifically, in the active zone the profile comprises a straight section on the wheel tread, 

two circular sections, and a straight section corresponding to the flange. 

The counterpart to this wheel design, extremely stable regardless of the type of rail or 

gauge, emerges on curved sections. For a rail vehicle to negotiate a curve, there must be a 

certain difference in the rolling radii of the two wheels on the wheelset. If this radii 

difference does not emerge, the contact point is located over the wheel flange, leading to 

major sliding and higher risk of derailment. To correct the vehicle's curve negotiation, the 

necessary value of the radii difference must be obtained before the flange makes contact 

with the rail. 

Figure 2 represents the contact conditions of the wheel in Figure 1 on both types of 

gauge. The graphs were calculated considering the wheel and the rail as rigid solids and 

with a zero yaw angle, since on these types of tracks with high operating speeds and large-

radius curves, this angle is always very small and its influence on the geometric contact 

parameters is negligible. The upper figures show the distribution of contact points on 

profiles for different lateral wheelset displacements. As may be observed, in both cases the 

contact points are concentrated on a small strip of the wheel tread, giving rise to low, almost 

constant conicity. When the value of lateral displacement is very high and clearance is 

exhausted, the contact point shifts abruptly to the flange with barely any intermediate points 

on the wheel. The lower figures show the RRD function and the conicity function as a result 

of lateral displacement of the wheelset, for the two tracks. It will be observed that the RRD 

value increases very slowly and practically constantly over a large range of lateral wheelset 

displacements. It is not until the wheel flange makes contact with the rail (where y = 

approximately 6.6 mm) that the value of the RRD function suddenly increases. The 

conicities show a similar pattern of behaviour. Conicity is calculated by means of 

expression (1), where rl and rr are the left and right rolling radii respectively, and y is the 

wheelset's lateral displacement. 

y

rr
y rl

2
)(

−
=λ

                (1) 

All this indicates that the wheelset will undergo major lateral displacements when 

negotiating curves, and that the wheel flange will contact the rail for most curve radii, with 

the exception of very open curves. The difference observed in wheel-rail clearance between 

the two curves (the sudden increase in the function occurs at values showing an appreciably 

difference to y) is because the increased wheel back-to-back distance is not exactly the same 

as the increase in the gauge (Table 1), and because the rail is also different. 

The considerable distance between the contact point on the flange and the preceding 

points constitutes an adverse factor from the point of view of railway dynamics. When the 

wheel flange makes contact with the rail, a double contact point situation will arise in which 

one contact area will be located over the wheel tread and another over the flange, at a 

considerable distance from each other. This entails a great deal of wear on the flange contact 

point, in addition to other negative effects. Moreover, this situation will arise for curve radii 

which are not very small, since the profile's low conicity is unable to generate an RRD value 

that will prevent contact with the wheel flange. 
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Figure 2. Contact conditions for the current wheel. Distribution of contact points in the case of a) the UIC 

gauge and b) the Iberian gauge. c) Rolling Radii Difference function for both gauge cases. d) Conicity function 

for both gauge cases. 

 

From these results it may be concluded that the wheel profile analysed provides excellent 

stability on straight sections, but there is opportunity for improvement for negotiation of 

curved sections by attempting to increase the RRD function. Furthermore, the fact that the 

contact zone is reduced to a small region on the wheel profile will lead to uneven wear, with 

the result that the shape of the wheel will change rapidly and the dynamic characteristics of 

the nominal profile will not be maintained over time. The following sections investigate the 

possibility of producing a wheel profile that maintains major stability at all times and 

succeeds in increasing the value of the RRD function to improve performances on curves. 

3. Optimisation methodology 

3.1 Objective function 

The objective function formulated in this paper is a curve with optimum equivalent 

conicity. Unlike other projects in which the reference curve is the RRD rolling radii 

difference curve [9-11], the conicity curve supplies information in high speed applications 

which is more useful in terms of stability, since this enables equivalent conicity values to be 

accurately set that are permissible for slight lateral displacements of the wheelset. The shape 

of the curve also enables it to be deduced whether the profile will produce higher values of 

RRD in connection with negotiation of curves, thereby maintaining its advantages. It should 

be pointed out that basing optimisation on this type of contact curve has a much lower 

computational cost than selecting optimisations based on dynamic simulations. Where 

dynamic simulations are included, calculation time can take weeks [8], whereas in the cases 

set out in this paper it is reduced to a matter of hours. The counterpart naturally lies in the 
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fact that the use of contact curves contemplates global optimisation of dynamic behaviour, 

whereas with dynamic simulations it is possible to specify or elaborate on the reduction of 

specific parameters (risk of derailment, contact stresses) on a given curve radius or a 

representative routing. 

Figure 3 shows the conicity curve presented as the target for the optimisation process. 

The curve corresponding to the Iberian gauge is shown by way of example. The curve 

maintains a constant value of λ = 0.025 up to y = 4 mm. This conicity matches the 

inclination of the tread on the original wheel, and ensures good vehicle stability. As of 4 

mm, conicity increases (to increase the value of RRD), though smoothly. The smoothness of 

the curve will lead to a gradual lateral displacement of the wheelset as it moves over the 

curve, a smooth movement of the contact area over the wheel profile, minimisation of 

double contact point situations, and greater vehicle stability. Finally, the target curve is 

brought to an end at the same point as the original conicity curve (Figure 2d), since this 

value now corresponds to a contact point located on the wheel flange. As will be observed 

below, the wheel flange remains unalterable during optimisation, and thus this optimised 

wheel conicity value will almost completely match that of the original wheel, and cannot be 

changed. The curve finally portrayed in figure 3 depicts a fit to a simple exponential 

function beyond 4 mm, producing the necessary smoothness and an ever greater increase in 

the function as it approaches the final point, which will secure good dynamic results. 
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Figure 3. Target equivalent conicity. 

 

In the case of the UIC gauge, flange contact arises with a slightly greater lateral 

displacement of the wheelset. This point on the curve cannot be changed during the 

optimisation process either, and thus the function shown in Figure 3 must be adapted when 

the UIC case is analysed. The modification merely consists of a displacement to the right of 

the curve, until the final point matches the value of y at which contact is made with the 

flange in the case of the UIC gauge. 

Although for the purposes of computation of the representative equivalent conicity of a 

wheelset the custom is to employ y = 3 mm (as stipulated in UIC Leaflet 518 [17]), this 

project requires low conicity up to 4 mm in order to ensure that the stability of the optimised 

wheel is practically the same as that of the original wheel. It is assumed that improvements 

in terms of curve negotiation will emerge in the case of wheelset displacements greater than 

4 mm, increasing the conicity curve from this point onwards. 

The objective function f is calculated by comparing the optimum conicity curves in 

Figure 3 to the conicity curves obtained with the real wheel analysed, on the basis of Least 



Design of an optimised wheel profile for rail vehicles operating…                     9 

 

Mean Squares. The comparison is carried out twice for each wheel analysed, once for each 

gauge case. The value of f arises from the weighted sum of the squared vertical differences 

between the two curves, as shown in Equation (2), where λj
obj

(yi) and λj
obt

(yi) are 

respectively the objective and obtained conicities for a lateral displacement yi in the case of 

gauge j, and p(yi) is a penalisation coefficient varying with y. For the purposes of calculating 

f, lateral displacements yi were considered every 0.2 mm up to the flange, and thus m = 36. 

The geometric contact model used to calculate the f function is a rigid model, where only 

one contact point on each wheel-rail profile is considered for each lateral displacement of 

the wheelset, and this enables calculation time to be shortened considerably. 

 

( )[ ]∑∑
= =

⋅−=
2

1 1
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ii
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ji

obj

j ypyyf λλ            (2) 

In this type of optimisation it is essential for the sum of squared differences to be 

corrected using a weighting factor p(y) (Equation (3)). Non-consideration of this weighting 

factor inevitable leads to solutions which are not valid from the practical viewpoint. This is 

because certain conicity curves which are a good fit for the reference curve do not represent 

good wheel profiles. This is the case, for instance, of a curve that is a good fit for the 

reference curve for y > 3 mm, but with conicity values that are moderately high for shorter 

displacements. Although the sum of squared differences may be low, the wheel is unsuitable 

for high speed operations since it does not have low conicity for small lateral displacements.  

There is also a possibility of using relative error instead of the absolute differences 

between the curves, thereby making the errors obtained for small conicities greater than 

those obtained for large conicities, with no need for an additional penalty function. In this 

project, however, it was considered appropriate to use the weighted absolute differences 

with a suitable penalty function which, for instance, would permit variable penalisation to 

be deployed for the area of constant conicity. Here it must be pointed out that it is the 

conicities of lateral displacements in proximity to the centred position which exert the most 

influence on the vehicle's stability [18,19]. The weighting function therefore penalises 

differences between curves for the y < 4 mm range decreasingly, so that penalisation is 

greater the lower the value of y. The penalisation, moreover, is only applied if the actual 

conicity does not lie within a certain range of values considered admissible. Although 

conicity must not increase above a certain value for stability to be guaranteed, nor is it 

advisable for it to be reduced too much since this may cause low-frequency vibrations on 

the vehicle [12]. This paper has considered conicity to be admissible between 0.022 and 

0.05.  

The weighting function acts within the y > 4 mm range, penalising the squared vertical 

differences to a greater extent if the conicity obtained is lower than the target conicity. The 

intention is to direct the optimisation process towards a wheel which can actually obtain a 

rolling radii difference above y = 4 mm. It was observed during this work that introducing 

this weighting coefficient greatly improved the results obtained. Likewise, it would also be 

possible to add a weighting function to penalise any solutions that are unsatisfactory from 

the point of view of curvature ranges or gradients required for the profile depending on the 

zone, though it was not necessary for this work. 
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3.2 Definition of the optimisation variables 

Each wheel is represented by a vector with optimisation variables x. The xi variables must 

unequivocally define the wheel profile they represent. Normally these variables are 

allocated to a number of points on the wheel profile plane that are interpolated subsequently 

to generate the complete profile. For example, it is possible to select n points on the y axis 

and allocate a variable z coordinate to each, and these coordinates constitute the vector of 

design variables [6-10,13]. The profile is unequivocally defined by performing interpolation 

of the points, with spline curves, for example. 

This paper shows a novel approach for the definition of the wheel profile in the context 

of an optimisation algorithm: the curve is defined on the basis of the successive connection 

of rectilinear sections and circular arcs, which must meet some specific boundary 

conditions. Only the active section of the wheel profile is defined, the section to be 

optimised. As shown in Figure 4, the section being optimised runs from the straight section 

on the wheel tread to the straight section on the flange. The left-hand section plays no part 

in wheel dynamics because the contact point is not located within this area. The wheel's 

flange also plays a major role in terms of running safety. Both the flange angle and the total 

thickness are parameters which exercise a decisive influence on running safety [20]. The 

profile is therefore left with the same shape as the original wheel as of the straight section at 

70º, thus retaining the properties of the original wheel against the risk of derailment. 

 

yo y1
y2

R1
R2

R3

1:40
δ = 70º

y

z

 

Figure 4. Wheel profile section to be optimised, and definition variables. 

 

The boundary conditions to be met are as follows (see Figure 4):  

a) The first section is a straight section with a 2.5% gradient which starts at the same 

point as the original wheel tread.  

b) The last section must arrive at an inclination of 70º to the first point on the straight 

section comprising the wheel flange. 

The xi design variables are the curvatures of the circular arches that shape the profile 

(zero for straight sections) and the y coordinates of the boundary points separating one arc 

from the next. Although one may use as large a number of sections as one likes, the 

utilisation of 3 intermediate sections with constant curvature (apart from the initial 
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rectilinear section with a 2.5% gradient) produces a good compromise between flexibility in 

terms of definition of the wheel and convergence in the optimisation process. Figure 4 

represents this definition. To do this, it is necessary to define only 4 design variables: the 

curvatures of the first two sections (1/R1 and 1/R2), the point where the first section starts 

(yo) and the point where the second section starts (y1). The tangency condition on the flange 

imposes two conditions which assume that both the third curvature (1/R3) and the point of 

separation between the second and third section (y2) are set when the other 4 variables have 

been defined. The x vector is finally defined as shown in Equation (4). 
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There are two main alternatives for defining the profiles: using curves such as B-Splines, 

Beziers, NURBS; or using sections of curves. Both have their advantages and peculiarities. 

With respect to definition of the profile using circumference arcs, which is the option used 

in this paper, the following observations may be made: 

a) Appropriate flexibility has been obtained, and a wide range of possible solutions 

covered with 4 design variables. In the specific case of the GAs, 4 variables is a very 

suitable number for convergence and produces good results [14]. 

b) As in the case of using an interpolation with B-splines, the result obtained matches 

the final actual wheel profile, with no need to smooth out the curve subsequently or correct 

the position of certain points in order to eliminate irregularities or unrealistic areas. 

c) The wheel profile is defined in a simple manner using the circumference arcs of 

which it is made up. 

d) It is not necessary to implement any additional restrictions on the optimisation 

process such as, for example, restrictions concerning the relative position of the points, the 

variation in the profile's gradient or changes in the sign of curvatures, although not all 

possible combinations of variables guarantee tangency on the flange, and these solutions 

must be eliminated using a high penalty. 

The disadvantage in comparison to the utilisation of interpolating points to define the 

profile lies in a possible loss of flexibility. This loss of flexibility, however, is only relative, 

since it is always possible to increase the number of defining sections by extending the 

range of solutions, and additionally it has been observed that with these 4 variables alone it 

is possible to obtain a spectrum of profiles that will suffice to meet the needs of an 

optimisation process of the type presented in this paper. 

3.3 Optimisation method 

The wheel is optimised through minimisation of the objective function f. This function is 

characterised by the abrupt changes to its value when the wheel profile undergoes slight 

variations, and hence the utilisation of optimisation methods is applied with problems and 

difficulties. The deployment of Genetic Algorithms (GAs) proves particularly useful in this 

case. They have been successfully applied in other disciplines, and also in a number of 

related projects. GAs are based on Darwin's theory of evolution, in which the finest 

specimens and those that adapt best to their surroundings show higher levels of 

reproduction, and thus the positive characteristics are passed on to subsequent generations.  

In the optimisation process described in this paper, each individual in the same 

generation is a certain wheel, represented mathematically by x, and aptitude is measured 
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logically through the objective function described in the preceding section. The optimisation 

problem is thus set out in the following terms: 

 

Minimise:  f(x),    x∈R
n
       

 Subject to: Ai < xi < Bi                    (5) 

Where:            x = {x1, x2, ... xn}
T
,     i=1,...,n    

Upper and lower limits are specified for the vector with the design variables x in order to 

reduce the search space to realistic and feasible solutions. 

GAs optimisation is performed in the MATLAB environment using the appropriate 

toolbox [21], using the ga function. Satisfactory results were obtained using a linear 

crossover type and a mutation rate of 30%. The intention in using such a high rate of 

mutation is that, with an objective function such as that established in this paper, the 

solution will not rapidly converge towards a relative minimum, but that solutions which 

have not been analysed will continue to be explored during each generation. The property of 

elitism is also employed, so that the best specimen in each generation is preserved and the 

solution is not lost. 

During the optimisation process, some of the individuals generated (in the initial 

population randomly generated and also through crossovers and mutations) are not valid 

from the geometric viewpoint. In other words, there are values of x within the boundaries 

stipulated in Equation (5) with which a wheel profile cannot be built. This is because, for 

certain combinations of curvatures and boundary points, tangency cannot be secured at the 

point where the wheel flange commences. In these cases, a particularly high value is 

allocated to the objective function so that these wheels are eliminated from successive 

generations. 

The final result was obtained using an initial population of 500 individuals, and 

calculating 12 successive generations. The greater computational cost is associated with 

evaluation of the objective function of each individual. Practically all calculation time is 

expended on these evaluations, which require a detailed geometric analysis of profiles in 

contact for a large number of lateral positions of the wheelset (in each individual and in 

each generation), and the computational cost of the other tasks is marginal. The objective 

function was programmed in FORTRAN, and an appropriate communication link between 

the two languages was designed. The result was a calculation time of approximately 4 

seconds for the evaluation of each individual, using an Intel Core Duo T9900 at 3.06 GHz 

with 4 GB of RAM. The time required for a full calculation is approximately 6.5 hours, a 

short calculation period in comparison to other wheel optimisation processes. This is 

because using the conicity curve as an objective function eliminates the need to conduct a 

dynamic analysis of the vehicle, which is much more costly in computational terms. 

When an optimised wheel profile has been obtained, the result may be refined slightly 

more by applying conventional (non-evolutionary) optimisation methods on the basis of the 

solution obtained using GAs. This ensures that the solution obtained is effectively a 

minimum, although obviously it is not possible to guarantee that this is the absolute 

minimum. MATLAB has its own algorithms for this kind of optimisation such as 

fminsearch (non-linear minimisation of a vectorial function based on the Nelder-Mead 

method). In this case calculation time is not so long, and it took 38 minutes to evaluate 100 

iterations. 
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4. Optimised wheel profile for two gauge cases 

When the optimisation process has been carried out (first using GAs and subsequently the 

Nelder-Mead method), a solution wheel profile is obtained. The conicity curves of this 

wheel provides the best fit (also considering the weighting function) for the target conicity 

curves defined for the two gauges. Figure 5 shows the wheel profile obtained, and also the 

curvature radii of the arcs and the y coordinates separating successive sections. This wheel 

profile has been patented by the authors in Spain [22]. It may be observed that the length of 

the straight section of the wheel tread has now been reduced with respect to the original 

wheel, and a section with a small curvature (R1 = 212 mm) starts in a zone still at some 

distance from the flange. This will bring about an increase in the RRD function although, as 

will be observed, this does not affect stability. 
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Figure 5. Wheel profile obtained as a result of optimisation. Results in mm. 

 

Figure 6 represents the equivalent conicity curves of the optimised profile for the UIC 

gauge and the Iberian gauge (shown as unbroken lines) in comparison to the theoretical 

target conicity (broken lines). The result obtained provides a reasonably good fit in both 

cases, and conicity gradually increases as lateral displacement increases. The value of 

conicity also virtually matches that of the original wheel for y values of less than 4 mm. 

This constant value of λ = 0.025 for small lateral displacements ensures the same level of 

stability as the original wheel. 

It should be pointed out here that, in comparison to the optimisation of a profile for a 

single type of track, in this case it may be observed that it is difficult to obtain an accurate 

fit of the conicity curves for both the track types considered. A better fit for one of the 

curves is indeed possible, as the authors have demonstrated in the case of the UIC gauge 

[23], although this entails impairing the fit of the other curve. Thus a compromise solution 

must be found for the best possible balanced approximation to each of the conicity curves. 

Another remarkable aspect is the shift observed between both the optimised curves and also 

between the target curves for each type of track. As already mentioned, this is because the 

clearance between rail and flange is lower in the Iberian gauge than in the UIC gauge. 
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Figure 6. Comparison of the equivalent conicity obtained with the optimised profile (unbroken lines) versus 

the target conicity (broken lines) for the UIC gauge and the Iberian gauge (rigid contact model). 

 

Figure 7 compares the wheel profile obtained after optimisation to the original wheel 

profile. The transition zone between tread and flange shows lesser concavity of the 

optimised profile in comparison to the original profile. 
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Figure 7. Wheel profile obtained after optimisation for double gauge bogies (unbroken line) compared to the 

original profile (broken line). 

 

Figure 8 represents the distribution of contact points on the optimised wheel profile for 

both gauges. A rigid contact model was used to generate the graphs. It may be clearly 

observed that the contact points have been distributed quite uniformly, thereby improving 

the vehicle's behaviour, as will be shown in detail following analysis of the results with the 

elastic contact model. 

In order to to ascertain the advantages of the synthesised profile using an elastic contact 

model and a commercial dynamic simulation software, a file was generated containing the 

data of the profile adapted to the wheel-rail contact module in the SIMPACK dynamic 

simulation package [24]. This module furnishes a proper modelling of the double contact 

point situations that may arise, taking account of the elasticity of the bodies, and the contact 

curves are smoothed out with respect to the rigid model. 
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Figure 8. Distribution of contact points on the optimised wheel profile for the a) UIC gauge and b) the Iberian 

gauge. 

 

Figure 9 represents distribution of the contact points along the wheel profile, comparing 

the optimised profile to the original for both gauge cases. The figures were obtained using 

the SIMPACK elastic wheel-rail contact module. It may be observed that there is a 

substantial improvement in the distribution of contact points between wheel and rail and, 

most importantly for this work, on both gauges. This will entail a smoother ride, greater 

comfort and lower wheel wear, thereby preserving the initial shape of the profile over a 

longer lifespan. This aspect is extremely relevant in that, as wear occurs on a wheel profile, 

the initial design of the profile changes, and the change leads to dynamic responses in the 

vehicle which differ from those originally expected. 

UIC gauge

Iberian gauge

 
Figure 9. Improvement in the distribution of contact points on the wheel profile for the UIC gauge and the 

Iberian gauge. The original wheel is on the left, and the optimised wheel on the right. 
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5. Dynamic simulations with the optimised wheel profile 

5.1 Quasi-static results 

There follow some dynamic results obtained with the optimised wheel in the preceding 

section. The objective is to ascertain that using the optimised wheel is advantageous with 

respect to the original wheel, taking account of aspects such as curve negotiation, wear, 

running safety, maximum contact stresses and Rolling Contact Fatigue (RCF). 

For the purposes of the study, quasi-static analyses were performed on the operating 

conditions of a railway vehicle negotiating representative curves of different radii for both 

gauges: 10000 m, 7500 m, 4000 m and 2500 m for the UIC gauge, and 5000 m, 3500 m, 

2000 m and 1500 m for the Iberian gauge. A number of parameters were calculated for each 

radius to indicate the aspects under examination. 

In accordance with the previous results, as expected the behaviour of the wheel on curved 

sections showed a significant improvement due to the change in the situation of the contact 

points. Figure 10 compares the contact areas obtained as a result of quasi-static analysis of 

the wheel on a curve of radius 4000 m, on the UIC gauge. An operating speed of 250 km/h 

and non-compensated acceleration of 1 m/s
2
 were considered. The DINATREN dynamic 

simulation tool developed by the authors was used for the analysis, and considered a 3-D 

elastic multi-point contact model [25,26]. The case shown in Figure 10 is taken by way of 

example since this is representative in terms of differences in the contact situation, and may 

be extrapolated to other curve radii analysed. It will be observed that two contact patches 

emerge on the two wheels. The contact area of the optimised wheel’s tread is larger than on 

the original wheel, and the second contact point is located at a greater distance from the 

flange. This leads to smoother curve negotiation, with lower wear on the profile in the zone 

around the flange. In Figure 10, N1 and N2 provide a qualitative representation of the normal 

forces associated with each contact zone. 

(a) (b)

Figure 10. Comparison of the quasi-static contact conditions on a curve of radius 4.000 m on the UIC gauge. a) 

Original wheel b) Optimised wheel. 

 

Figure 11 compares, for all the curve radii considered, the results obtained in terms of the 

wear index and risk of derailment. The wear index W is calculated on the outer wheel on the 

first wheelset on the vehicle's front bogie, the most representative wheel. To calculate the 

wear index, the friction force emerging on the contact is used, according to Equation (6), 

where t represents creep force (calculated using FASTSIM) and νννν the creepage. The risk of 

derailment is calculated by means of the quotient between the lateral force and the vertical 

force applied to the wheelset (L/V), according to Nadal's theory. In all cases non-

compensated acceleration of 1 m/s
2
 was considered, with maximum cant 140 mm and 

maximum speed 250 km/h. 
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νt ⋅=W          (6) 

 

The results show that wear is reduced significantly, especially as the radius of the curve 

diminishes. The substantial wear reduction secured for the optimised wheel with respect to 

the original wheel is as much as 60% - 70% on the UIC gauge, and up to 80% on the Iberian 

gauge.  

 

     
 

     
 

Figure 11. Reduction obtained in terms of wear index and risk of derailment with the optimised wheel, for a 

number of curve radii (quasi-static analyses), on both gauges. 

 

With regard to the derailment coefficient, values were also reduced on the new profile for 

each curve analysed. For the UIC gauge, in the most unfavourable case (a curve with a 

radius of 2500 m) the value was lowered from 0.14 to 0.05, while in the case of the Iberian 

gauge it was reduced from 0.19 to 0.05 over curves with a radius of 1500 m. All cases at 

any rate are far from the maximum value of 0.8 stipulated in UIC Leaflet 518 [17], and thus 

wear reduction is more significant.  

The fact that on some graphs the derailment coefficient does not increase uniformly as 

the curve radius decreases is because on these curves the yaw angle is directed towards the 

inside of the curve. This makes it difficult for the wheel to derail and, as the graph shows, 

the derailment coefficients are extremely small. It is on the curve of radius R = 1500 that the 

yaw angle is directed towards the outside of the curve, and the derailment coefficient 

increases as the curves become tighter. 

Figure 12 compares the maximum stresses emerging in the contact areas for a number of 

curve radii and both gauges. The figures show, for each curve radius, the maximum stresses 

calculated according to Hertz’s theory in each of the two contact patches that may emerge. 

In this figure, s1 refers to the contact area closest to the wheel tread, and s2 to the contact 

area closest to the flange. If only one contact zone appears on the wheel for a curve radius, it 
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is shown as s1. Likewise, for each curve radius the figures show the stresses calculated with 

the original wheel (left) and the optimised wheel (right). As may be observed, a substantial 

reduction of contact stresses is achieved in the optimised wheel, for all cases analysed. 

 

  
 

Figure 12. Reduction obtained in terms of maximum contact stresses with the optimised wheel, for a number 

of curve radii (quasi-static analyses), on both gauges. 

 

Another adverse phenomenon which may emerge on the wheels is RCF. This consists of 

surface fatigue affecting the material on the wheel and also the rail, due to repetitive cycles 

of shear stress, especially on curves. Depending on contact conditions, surface cracks may 

evolve into wear or an RCF phenomenon. The factors determining one condition or the 

other and the severity of this condition are tangential and normal forces, contact stresses, 

creepage and the presence of lubrication fluid. 

Since the risk of RCF is not included in the objective function during the optimisations 

process, it is important to verify that the synthesised wheel does not increase levels of RCF 

in the normal operating conditions intended for the vehicle. To predict the existence of RCF, 

Ekberg [27] proposes a surface fatigue index FIsurf according to Equation (7): 

 

z

surf
F

abk
FI

3

2πµ −=       (7) 

 

where µ is the traction coefficient, a and b are the semi-axes of the Hertz contact ellipse, Fz 

is the normal force and k is the shear yield stress. The traction coefficient is defined as the 

quotient of the tangential force and the normal force on contact, as seen in Equation (8): 

 

z

yx

F

FF 22 +
=µ               (8) 

 

where Fx is the longitudinal force and Fy is the lateral force on contact. The formula predicts 

the emergence of RCF if FIsurf is positive. The normal force Fz, the traction coefficient µ and 

a small contact area would increase the risk of RCF. 

Applying this theory to the case analysed here, Figure 13 shows a representative 

examples of the results obtained for a small-radius curve, comparing the two wheels for 

both the UIC and Iberian gauges. In these figures, s1 and s2 have the same meaning as in 

Figure 12, and 400 MPa was used as the definition of shear yield stress k. This corresponds 

to heat-treated high quality steel, although it is now possible to find premium steels with a 

greater k value. 
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Figure 13. RCF reduction obtained with the optimised wheel, for a small-radius curve (quasi-static analyses), 

on both gauges. 

 

It may be observed in Figure 13 that on the original wheel the surface fatigue index is 

positive at the contact point close to the flange, since the traction coefficient is high and the 

contact patch is small. Not only does the optimised wheel reduce the index, but it even 

manages to render it negative through the new contact conditions, thereby decreasing the 

risk of RCF. The double contact point situation disappears in the case of the Iberian gauge, 

as was also observed in Figure 12. This reduction arises for other curve radii, and thus it 

may be concluded that the new wheel is also well suited in terms of a lower risk of RCF. 

5.2 Time - integration results 

To complete the dynamic study of the new wheel, time simulations are carried out to 

analyze the vehicle's behaviour as it negotiates real curves on the routing, on both the UIC 

and Iberian gauges. The aim is to corroborate the improvement to the vehicle's dynamic 

response using the optimised wheel with respect to the original wheel for the intended ride 

conditions. 

In the case of the UIC gauge, the vehicle describes a curve of radius R = 7250 m, with an 

incoming transition curve, a circular section and an exit transition curve of respective 

lengths 460 m, 7056 m and 460 m. A final straight section stabilises the vehicle after the 

curve. The track cant is h = 0 mm, and operating speed V = 250 km/h. 

Figure 14 shows the results obtained over time for a number of indicators of dynamic 

response, in the case of both the original wheel and the optimised wheel. These results were 

obtained using SIMPACK, considering an elastic multi-point contact model and modelling 

the entire car. 

It will be observed that the lateral displacements on the first bogie's wheelsets are smaller 

with the optimised wheel. It will also be noted that, the wear index is significantly lower on 

both the first and the second wheelset. It may also be observed that the first wheelset's yaw 

angle is higher with the optimised wheel, but the positive values on the graphs show that the 

wheelset is directed towards the inside of the curve, so this value is advantageous. The 

derailment coefficient is slightly lower for the optimised wheel, although in practice this 

does not entail any improvement in the operating conditions, since the values are extremely 

small and negligible in both cases. 

In the case of the Iberian gauge, the vehicle describes a curve of radius R = 960 m, with 

an incoming transition curve, a circular section and an exit transition curve of respective 

lengths 160 m, 320 m and 160 m. Track cant is h = 140 mm, and operating speed V = 150 

km/h, causing non-compensated acceleration a = 1 m/s
2
. 
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Figure 14. Results of dynamic simulation for a full vehicle negotiating a curve of R = 7250 m on the UIC 

gauge, performed with SIMPACK. The original wheel is shown as an unbroken line, and the optimised wheel 

as a broken line. a) Lateral displacement of first wheelset. b) Lateral displacement of second wheelset. c) Wear 

index on the left wheel of first wheelset. d) Wear index on the left wheel of second wheelset. e) Derailment 

coefficient of first wheelset. f) Yaw angle of first wheelset. 

 

Figure 15 shows the results obtained in this case. The wheelset displacements on the 

front bogie are similar, slightly smaller with the optimised wheel, and also on the 

transitions. The wear graphs show that, as the vehicle moves over this curve, in the case of 

the original wheel a double contact point is maintained over time on the first wheelset's 

outer wheel. In the case of the optimised wheel, however, this only arises on the transitions. 

The result is a lower wear rate, and also on the contact point on the wheel tread. Total wear 

on the wheel is also shown in this case, the sum of the wear rates on the two contact areas, 

and this is substantially lower on the optimised wheel. Finally, both the yaw angle and the 
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risk of derailment decrease when negotiating the curve, thereby improving its dynamic 

response. 

 

  

  

  
 

Figure 15. Results of dynamic simulation for a full vehicle negotiating a curve of R = 960 m on the Iberian 

gauge, performed with SIMPACK. The results obtained for the original wheel are shown as an unbroken line, 

and those of the optimised wheel as a broken line. a) Lateral displacement of first wheelset. b) Lateral 

displacement of second wheelset. c) Wear index on the left wheel of first wheelset. d) Wear index on tread 

contact and flange contact of the left wheel of first wheelset. e) Derailment coefficient of first wheelset. f) Yaw 

angle of first wheelset. 

 

6. Conclusions 

This paper presents and develops an optimum synthesis methodology for rail wheel profiles 

that can provide a satisfactory dynamic response with different track configurations and 
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high operating speeds. The optimisation process is based on the application of Genetic 

Algorithms as a complement to conventional optimisation methods. The combination 

produces good results in view of the high sensitivity of the wheel-rail contact problem to 

minor changes in the wheel profile. The objective function chosen is based on an ideal 

conicity curve, designed so that values are very low for small lateral displacements of the 

wheelset, increasing smoothly as the displacements become greater. This methodology was 

applied to design a wheel profile suitable for two track gauges, and a solution wheel profile 

was obtained which, in relation to the original wheel, improves the dynamic response of the 

vehicle on curves and maintains high stability on straight sections. It could be interesting as 

future work to combine the procedure explained in this paper with an estimation of the worn 

profile evolution, to ensure the stability of the profile shape over time. 

The main conclusions drawn from the paper are as follows: 

• An objective optimisation function based on an ideal conicity curve offers certain 

advantages in terms of designing wheel profiles for high operating speeds. The 

system produces an extremely low computational cost in comparison to functions 

based on dynamic simulations (the entire optimisation process takes less than 5 

hours) and, as was observed throughout the work, it ensures good stability on 

straight sections, proper curve negotiation, and homogeneous distribution of contact 

points on the profiles. 

• Defining the wheel profiles on the basis of circumference arcs with continuity on the 

first derivative, where the design variables are the curvatures of the arcs and the 

boundary points between them, provides a good compromise between flexibility for 

definition of the profile and the number of variables to be considered (only 4 were 

considered in the example presented). This also prevents unrealistic profiles with 

changes of signs on the gradient or curvature, with no need to introduce additional 

restrictions, although not all combinations of the 4 variables secure tangency on the 

flange. 

• Applying this methodology to the design of a wheel capable of moving at high speed 

over two track configurations (the UIC and Iberian gauges), where not only the 

gauge but also the type of rail varies, has produced a new wheel profile which 

represents a substantial improvement to the dynamic behaviour of the original 

wheel. Quasi-static and dynamic analyses of the vehicle operating with the new 

wheel demonstrate that the optimisation methodology, as proposed in this paper, 

works in an extremely satisfactory fashion, and may be used for other wheel designs 

with different specifications. 
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