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A NOTE ON WAVELET CORRELATION AND COINTEGRATION

JAVIER FERNÁNDEZ-MACHO

Abstract. In a recent paper Leong and Huang [6] proposed a wavelet-correlation-based approach to test
for cointegration between two time series. However, correlation and cointegration are two different concepts
even when wavelet analysis is used. It is known that statistics based on nonstationary integrated variables
have non-standard asymptotic distributions. However, wavelet analysis offsets the integrating order of
nonstationary series so that traditional asymptotics on stationary variables suffices to ascertain the statistical
properties of wavelet-based statistics. Based on this, this note shows that wavelet correlations cannot be
used as a test of cointegration.
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Unit roots; Wavelet Analysis.
JEL Classification: C22, C12.

1. Introduction

When relationships among nonstationary integrated time series are considered, distinguishing between

the different, although related, concepts of correlation and cointegration still seems to be a source of

confusion among empirical researchers. As Johansen [5] points out ‘the important paper by Phillips [8]

solved the problem of finding the asymptotic distribution of correlation and regression coefficients, when

calculated from a class of nonstationary time series. Thus the problem and its solution has been known

for a long time but we still find numerous examples of misunderstandings in applied and theoretical work.’

He further illustrates the point with some recent examples of these misunderstandings [see also 4].

In a recent paper Leong and Huang [6] (L&H in what follows) proposed a wavelet-based approach

to analyse bivariate spurious and cointegrated time series relationships. They based their approach on

the empirical properties of wavelet covariances and correlations obtained via Monte Carlo simulation of

some spurious and cointegrated regressions.

Wavelet analysis uses generalised differences of sufficient length that will effectively offset the in-

tegrating order of nonstationary time series. Therefore, after a fashion, it reverses theoretical analysis

back to traditional asymptotics on stationary variables. This may sometimes be confusing if practitioners

are not aware. In what follows, it will be shown that L&H proposal cannot in fact be used as a test of

cointegration.

2. Discrete wavelet transform

In short, the discrete wavelet transform (DWT) can be thought of as an energy (variance) preserving

transform that uses a pair of high-pass and low-pass filters to decompose a subsampled input series

into the detail achieved by the wavelet filter and the corresponding smooth approximation. The level of

decomposition can be escalated by subsampling and transforming recursively the previous approximation

so that a new vector of wavelet coefficients associated with changes at an ever higher scale (lower

frequency) is produced alongside a remainder associated with an even smoother approximation of the
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(a) D(4) MODWT filter gains.
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(b) Spectral densities of wavelet decomposition of a I(1)
series using the D(4) MODWT, log (dB) scale.

Figure 1.

original series at the new scale. Common examples are members of Daubechies [1, 2] family of compact

support filters that are best described through their low-pass squared gain functions

|G(λ)|2 = 21−L/2(1 + cos λ)L/2
L/2−1∑

s=0

2−s
(
L/2 − 1 + s

s

)
(1 − cos λ)s, λ ∈ [0, π],

where the filter length L is a positive even number [cf. 7, p. 105]. Furthermore, different spectral

factorisations of the frequency response function G(λ) give rise to D(L) (extremal phase or minimum

delay) and LA(L) (least asymmetric) groups of Daubechies filters, of which the D(4) is probably the most

popular and the one used by L&H as well as in empirical results of this note.

The DWT succinctly described above uses the least number of coefficients conveying the same amount

of information as the original series. However, it can only be applied to dyadic samples whilst, in certain

applications, it is convenient that the number of coefficients remains the same as the original length T

at each level of decomposition. An alternative transform, the maximal overlap DWT (MODWT), is

obtained by not subsampling the filtered series. Using the MODWT has a number of advantages over the

DWT [7, p159], one of which is crucial here since the variance of MODWT-based estimators of wavelet

covariances and correlations are, unlike DWT-based estimators, known to be invariant with respect to the,

usually unknown, lag between time series [3, p253].

On the other hand, from the frequency response functions corresponding to the high and low-pass

filters of a MODWT [7, p163] it can be shown that the square gains of these two filters valued at the

origin are equal to 0 and 1 respectively. In particular, this means that, at any given wavelet level j, the

MODWT using a wavelet filter of sufficient length will decompose an I(d) series into two components

associated respectively with high and low frequencies: the first one (x j) will effectively be stationary

while the second (z j) one will retain the I(d) behaviour. Figure 1(a) shows the square gains of D(4)

MODWT high-pass filter (x1) and band-pass filters (x2 . . . x6) for the wavelet details at different levels

and the low-pass filter (z6) for the smooth reminder whilst Figure 1(b) shows the typical spectral densities

resulting from filtering an I(1) series through those wavelet filters. They are all finite at all frequencies in

[0, π] and, in particular, they all can be shown to be zero at the origin.
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Figure 2. D(4) MODWT I(1) spectra: original I(1) series vs. wavelet levels, log (dB)
scale, shaded area: frequencies in the range

[
2− jπ, 21− jπ

)
.

As an empirical example, Figure 2 compares the spectral density (smoothed) estimates for the wavelet

details of an I(1) series of length T = 480 with the estimated spectrum of the original series. It can be

seen that as the wavelet scale λ j = 2 j increases the corresponding wavelet coefficients capture changes

associated with frequencies in the range
[
2− jπ, 21− jπ

)
for j = 1 . . . J. However, their spectra are always

finite, that is, they are all stationary.

Therefore, wavelet analysis offsets the integrating order of nonstationary series and traditional asymp-

totics on stationary variables should suffice to ascertain the statistical properties of wavelet-based statistics.

3. Wavelet correlation and cointegration

L&H claim that “the null hypotheses of zero wavelet covariance and correlation for these series across

the [wavelet] scales” can be used as a test for no-cointegration in the sense that these null hypotheses are

rejected when the bivariate time series is cointegrated whilst, on the other hand, they fail to be rejected in

the case of the spurious regression.

The actual meaning of “the null hypotheses” appears to signify the joint hypothesis of all possible

wavelet correlations (or covariances) being equal to zero under the null. More formally,

H0 : ρ(x,y)(λ j) = 0, ∀ j = 1, . . . , J, (L&H no-cointegration),

Ha : ρ(x,y)(λ j) , 0, for some j, (L&H cointegration).
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Figure 3. H0 vs Ha compared with CI vs spurious regressions.

where ρ(x,y)(λ j) denotes the wavelet correlation for scale λ j and likewise for the test based on covariances

γ(x,y)(λ j).1 However, rejecting H0 does not necessarily means that the bivariate time series is cointegrated

as claimed by L&H since, as sketched in Figure 3, both dichotomies are not equivalent.

In fact it is not difficult to construct spurious regressions whose wavelet coefficients would appear to

be correlated. e.g. consider the single linear regression under the classical assumptions

yt = α + βxt + ut, β , 0.

The variables yt, xt and ut are all I(0) and there is a meaningful relationship between xt and yt as measured

by the regression and the correlation coefficients. On the other hand, the relationships between cumulated

values ∆−d xt, ∆−dyt, d > 0, are clearly spurious since ∆−dut ∼ I(d). However, wavelet coefficients are

obtained as generalised differences of sufficient length that will offset the integrating order d and the

corresponding wavelet correlations

ρ(∆−d x,∆−dy)(λ j) , 0, ∀d > 0.

That is, H0 (L&H no-cointegration) should be rejected in spite of the spuriousness of the relationship,

thus contradicting L&H’s claim. This is illustrated empirically in what follows.

4. Empirical results

Tables 3 to 9 in the appendix provide evidence on the mean, median and 95% c.i. of the wavelet

covariance, correlation and regression coefficients together with their respective bootstrap t-statistics and

percent rejections at the nominal 5% significance for all relevant wavelet levels (with d0 as the original

data). A summary of relevant results regarding L&H test is given in Tables 1 and 2. The reported results

were obtained through Monte Carlo simulation using 1000 replications of size T = 120 from the linear

regression

yt = α + βxt + ut; xt = δxxt−1 + εt, ut = δuut−1 + ηt; δx = I(xt∼ I(1)), δu = I(no-CI),

with α = 10 and β = 0.0, 0.6, 6.0, 60.6, where εt, ηt are uncorrelated iid N(0,1) and I(·) is the indicator

function. A D(4) wavelet filter, i.e. the Daubechies extremal phase compactly supported wavelet of length

L = 4 [2], was use in the decomposition via R routines modwt and brick.wall from waveslim package

version 1.7.1. The tables with β = 0 refer to independent I(0) and I(1) series (Tables 3 and 6), whilst

the tables with β > 0 refer to correlated series that include cointegration (Table 5) and spurious cases

1 They actually write the lhs of both hypotheses as {ρ(x,y)(λ j)} j to denote the “set of all wavelet correlations”, which renders
the expression {· · · } = 0 rather awkward.
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Figure 4. Distribution of the empirical wavelet correlation coefficient for independent
random walks, I(1), and independent cumulated random walks, I(2).

Table 1. Summary: H0 within 95% c.i. of empirical distribution.

I(0) CI(1,1) I(1): spurious regression
β 0 0.6 0.6 0 0.6 6.0 60.6

covariance d0 yes no no yes yes no no
d1–d4 all none (except d4) none all none (except d4) none none

correlation d0 yes no no yes yes no no
d1–d4 all none (except d4) none all none (except d4) none none

regression coef. d0 yes no no yes yes no no
d1–d4 all none (except d4) none all none (except d4) none none

(Tables 7 to 9). We note that the only two cases considered by L&H, independent vs cointegrated I(1), do

not constitute a proper dichotomy in Figure 3.

Figure 4 shows the distribution of the empirical correlation coefficient for independent random walks,

I(1), and independent cumulated random walks, I(2), at different levels of the wavelet decomposition. We

note that whilst the empirical distribution for the original series exhibits the inverted-U and U shapes

associated with spurious cases, the wavelet correlations have the typical bell shape corresponding to

stationary I(0) variables [cf. 9, figs. 16–18]. This is consistent with the fact that, as already mentioned,

wavelet analysis offsets the integrating order of the original series and reverses to traditional asymptotics

on stationary variables.

Table 1 provides a qualitative summary on whether the value set by L&H null hypothesis, e.g.

H0 : ρ(x,y)(λ j) = 0, is included within a 95% c.i. of the corresponding empirical distribution (incorrect

exclusions as a test for no-cointegration in bold type). As expected, wavelet 95% c.i. for correlated cases

exclude H0 inclusive of spurious cases (except level d4 when the correlation is too small for this sample

size, since this wavelet level is left with very few observations after elimination of coefficients affected by

boundary effects), thus showing that this is not a test of cointegration. This is corroborated by Table 2

that shows t-test percent rejections of H0 using the nominal 5% significance critical value of the t-Student
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Table 2. Summary: t-test percent rejections of H0 at 5% significance.

I(0) CI(1,1) I(1): spurious regression
β 0 0.6 0.6 0 0.6 6.0 60.6

covariance d0 5.1 99.9 8.7 2.3 1.3 7.7 8.4
d1–d4 5.5 70.1 78.4 5.4 68.3 85.9 85.9

correlation d0 5.0 100 100 1.9 28.9 100 100
d1–d4 4.8 87.9 98.3 4.5 85.6 100 100

regression coef. d0 5.4 100 100 4.8 13.1 100 100
d1–d4 5.1 81.3 97.7 5.2 77.8 100 100

distribution with T − 2 degrees of freedom (percent rejections in spurious cases higher than 7.5% in

bold type). It is shown that L&H wavelet-based test has a correct size of around 5% for independent

series. However, in cases that are in fact spurious it rejects H0 too often for it to be of any use as a test of

cointegration.

In conclusion, all this shows that L&H test is just a mere test of correlation that cannot be used as a

test of cointegration.
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Appendix

Table 3. Independent I(0) series, β = 0.0

covariance t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.002 0.001 -0.178 0.183 0.023 0.008 -1.884 2.048 5.1
d1 -0.000 -0.002 -0.111 0.119 -0.005 -0.034 -1.920 1.974 4.8
d2 0.000 0.001 -0.069 0.068 0.007 0.021 -2.008 1.981 5.3
d3 0.001 0.000 -0.048 0.055 0.060 0.016 -1.922 2.228 6.4
d4 -0.000 -0.000 -0.038 0.039 -0.021 -0.014 -2.007 1.999 5.6

correlation t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.002 0.001 -0.170 0.186 0.024 0.009 -1.881 2.027 5.0
d1 -0.000 -0.004 -0.223 0.229 -0.004 -0.033 -1.963 2.089 4.9
d2 0.002 0.003 -0.270 0.271 0.012 0.023 -2.025 2.033 5.5
d3 0.012 0.003 -0.365 0.414 0.061 0.017 -1.880 2.163 5.3
d4 -0.005 -0.006 -0.551 0.572 -0.015 -0.021 -1.848 1.894 3.5

regression coef. t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.002 0.001 -0.177 0.185 0.019 0.009 -1.921 2.032 5.4
d1 -0.001 -0.004 -0.229 0.233 -0.012 -0.030 -2.017 1.880 4.9
d2 0.001 0.003 -0.278 0.265 0.004 0.020 -2.043 1.899 5.4
d3 0.011 0.003 -0.389 0.439 0.053 0.014 -1.947 2.138 6.2
d4 -0.004 -0.007 -0.636 0.648 -0.010 -0.020 -1.912 1.950 4.1

Table 4. Correlated I(0) series, β = 0.6

covariance t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.604 0.598 0.371 0.851 5.093 5.071 3.224 7.141 99.9
d1 0.302 0.298 0.155 0.466 3.914 3.846 2.060 6.128 97.9
d2 0.153 0.150 0.071 0.253 3.421 3.383 1.511 5.556 92.5
d3 0.078 0.074 0.021 0.150 2.410 2.354 0.649 4.689 63.5
d4 0.037 0.034 -0.001 0.097 1.467 1.299 -0.046 3.853 26.4

correlation t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.515 0.519 0.375 0.643 7.677 7.647 5.318 10.006 100.0
d1 0.512 0.516 0.327 0.678 5.905 5.908 3.618 8.038 99.9
d2 0.514 0.524 0.278 0.708 5.104 5.168 2.709 7.092 99.7
d3 0.515 0.529 0.188 0.767 3.513 3.590 1.245 5.418 90.9
d4 0.498 0.538 -0.026 0.841 2.133 2.270 -0.104 3.732 61.0

regression coef. t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.602 0.601 0.423 0.785 6.573 6.547 4.423 8.828 100.0
d1 0.599 0.596 0.371 0.833 5.054 5.077 2.991 7.124 99.8
d2 0.601 0.603 0.322 0.865 4.365 4.384 2.205 6.350 98.6
d3 0.611 0.603 0.211 1.039 3.027 3.004 1.052 5.202 83.2
d4 0.596 0.593 -0.036 1.248 1.808 1.819 -0.105 3.864 43.4
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Table 5. CI(1,1) series, β = 0.6

covariance t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 12.414 8.611 2.175 47.768 0.906 0.682 0.166 2.982 8.7
d1 0.114 0.112 0.041 0.193 3.075 3.049 1.154 5.081 86.0
d2 0.161 0.157 0.077 0.263 3.574 3.482 1.770 5.702 95.7
d3 0.294 0.286 0.130 0.503 3.010 2.931 1.346 5.153 85.6
d4 0.564 0.525 0.162 1.178 2.039 1.889 0.563 4.345 46.3

correlation t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.903 0.917 0.749 0.983 15.216 14.903 11.415 20.922 100.0
d1 0.344 0.345 0.148 0.529 3.625 3.631 1.515 5.637 93.7
d2 0.523 0.529 0.315 0.692 5.520 5.514 3.268 7.626 99.6
d3 0.755 0.767 0.549 0.887 8.759 8.763 6.038 11.335 100.0
d4 0.910 0.926 0.746 0.979 14.805 14.707 10.305 20.343 100.0

regression coef. t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.599 0.599 0.544 0.656 23.982 23.261 18.300 32.538 100.0
d1 0.598 0.595 0.252 0.956 3.394 3.379 1.406 5.552 91.2
d2 0.600 0.596 0.336 0.848 4.755 4.720 2.651 6.909 99.5
d3 0.597 0.596 0.401 0.798 6.050 6.017 4.015 8.448 99.9
d4 0.600 0.600 0.432 0.771 7.028 7.008 4.879 9.452 100.0

Table 6. Independent random walks, I(1) series, β = 0.0

covariance t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.511 0.492 -26.164 29.608 -0.054 0.031 -1.815 1.269 2.3
d1 -0.000 -0.001 -0.037 0.040 -0.006 -0.029 -1.946 1.910 4.7
d2 0.002 -0.000 -0.070 0.079 0.045 -0.007 -1.886 2.152 5.7
d3 0.005 0.004 -0.195 0.215 0.045 0.038 -1.873 2.063 5.1
d4 -0.007 -0.010 -0.653 0.643 -0.018 -0.028 -2.109 2.002 6.1

correlation t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.028 0.046 -0.829 0.850 0.073 0.095 -1.677 1.890 1.9
d1 -0.000 -0.003 -0.199 0.208 -0.004 -0.030 -1.997 1.978 5.1
d2 0.006 -0.001 -0.265 0.299 0.043 -0.006 -1.921 2.176 5.4
d3 0.011 0.008 -0.365 0.401 0.051 0.038 -1.775 1.967 3.7
d4 -0.004 -0.012 -0.623 0.618 -0.014 -0.036 -1.916 1.912 3.8

regression coef. t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.057 0.043 -1.124 1.379 0.071 0.064 -1.749 2.053 4.8
d1 -0.001 -0.003 -0.212 0.204 -0.012 -0.029 -2.090 1.900 4.9
d2 0.005 -0.001 -0.281 0.308 0.033 -0.007 -1.978 2.137 6.1
d3 0.011 0.008 -0.401 0.460 0.047 0.035 -1.844 2.132 5.0
d4 -0.005 -0.011 -0.699 0.715 -0.016 -0.029 -1.955 1.945 4.6

Table 7. Spurious I(1) series, β = 0.6

covariance t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 12.932 8.459 -7.846 61.899 0.476 0.388 -0.429 1.702 1.3
d1 0.114 0.113 0.066 0.169 4.444 4.381 2.559 6.508 99.8
d2 0.162 0.157 0.071 0.275 3.392 3.358 1.413 5.674 92.3
d3 0.300 0.291 0.066 0.572 2.257 2.187 0.502 4.449 58.0
d4 0.558 0.500 -0.068 1.508 1.351 1.196 -0.163 3.812 23.1

correlation t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.495 0.606 -0.489 0.944 1.356 1.522 -1.206 3.328 28.9
d1 0.513 0.515 0.343 0.658 6.708 6.699 4.458 8.943 100.0
d2 0.515 0.523 0.281 0.713 5.030 5.109 2.714 7.021 99.3
d3 0.516 0.530 0.165 0.771 3.297 3.379 1.089 5.177 89.5
d4 0.494 0.534 -0.087 0.859 1.921 2.085 -0.322 3.437 53.5

regression coef. t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.657 0.643 -0.524 1.979 0.981 0.960 -0.833 2.953 13.1
d1 0.599 0.597 0.388 0.804 5.741 5.726 3.705 7.830 100.0
d2 0.605 0.599 0.319 0.908 4.310 4.278 2.219 6.451 98.6
d3 0.611 0.608 0.199 1.060 2.829 2.803 0.927 4.944 78.2
d4 0.595 0.589 -0.099 1.315 1.622 1.578 -0.277 3.649 34.9
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Table 8. Spurious I(1) series, β = 6.0

covariance t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 124.716 88.805 22.350 474.671 0.871 0.675 0.167 2.745 7.7
d1 1.137 1.129 0.828 1.498 6.878 6.782 5.035 9.072 100.0
d2 1.610 1.581 1.082 2.310 5.181 5.062 3.463 7.412 100.0
d3 2.962 2.881 1.533 4.861 3.410 3.337 1.779 5.598 95.1
d4 5.643 5.157 1.721 11.748 2.097 1.918 0.669 4.347 48.3

correlation t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 0.982 0.991 0.908 0.999 37.572 36.661 20.022 63.709 100.0
d1 0.986 0.986 0.979 0.991 346.922 344.554 284.232 418.351 100.0
d2 0.986 0.987 0.977 0.993 254.213 253.123 208.133 303.542 100.0
d3 0.986 0.987 0.969 0.995 158.134 156.966 122.347 196.516 100.0
d4 0.985 0.988 0.952 0.997 83.869 83.600 55.312 115.129 100.0

regression coef. t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 6.057 6.043 4.876 7.379 9.176 9.093 6.947 11.558 100.0
d1 5.999 5.997 5.788 6.204 57.521 57.400 49.871 66.393 100.0
d2 6.005 5.999 5.719 6.308 42.797 42.678 36.918 49.672 100.0
d3 6.011 6.008 5.599 6.460 27.862 27.758 23.506 32.554 100.0
d4 5.995 5.989 5.301 6.715 16.360 16.198 13.021 20.005 100.0

Table 9. Spurious I(1) series, β = 60.6

covariance t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 1254.97 874.60 220.28 4799.70 0.90 0.69 0.16 2.94 8.4
d1 11.479 11.404 8.401 15.181 6.931 6.822 5.142 9.070 100.0
d2 16.250 15.934 11.043 23.325 5.212 5.106 3.536 7.387 100.0
d3 29.873 29.248 15.659 48.529 3.429 3.360 1.827 5.568 95.3
d4 57.063 52.137 18.546 118.402 2.114 1.946 0.688 4.340 48.3

correlation t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 1.000 1.000 0.999 1.000 3530.3 3414.6 1699.3 6012.5 100.0
d1 1.000 1.000 1.000 1.000 34900.9 34825.4 28394.9 41823.6 100.0
d2 1.000 1.000 1.000 1.000 25561.6 25456.8 20925.9 30661.0 100.0
d3 1.000 1.000 1.000 1.000 15851.2 15817.9 12085.4 19752.6 100.0
d4 1.000 1.000 0.999 1.000 8359.6 8339.6 5335.8 11627.9 100.0

regression coef. t-statistic
level mean median 95% c.i. mean median 95% c.i. % reject

d0 60.657 60.643 59.476 61.979 92.036 91.697 75.521 110.554 100.0
d1 60.599 60.597 60.388 60.804 581.07 578.83 507.52 669.63 100.0
d2 60.605 60.599 60.319 60.908 431.94 430.82 376.73 497.69 100.0
d3 60.611 60.608 60.199 61.060 280.98 280.56 239.51 325.12 100.0
d4 60.595 60.589 59.901 61.315 165.38 164.88 140.26 194.53 100.0
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