PROGRAMACION LINEAL POSIBILISTICA

Mariano Jiménez
Dpto. de Economía Aplicada I
Universidad del País Vasco

M. Mar Arenas
Amelia Bilbao
M. Victoria Rodríguez
Dpto. de Economía Cuantitativa
Universidad de Oviedo

INDICE

1. INTRODUCCIÓN ... 104; 2. UN MODELO GENERAL DE PROGRAMACIÓN LINEAL POSIBILISTICA... 105; 3. CASO EN EL QUE EL DECISOR ESPECIFICA UNA META.... 109; 4. CONCLUSIONES.... 119

Resumen

En este trabajo, partiendo de las ideas de Buckley, estudiamos un programa general de programación lineal posibilista en el que todos los parámetros pueden ser fuzzy, así como las restricciones. Obtenemos la distribución de posibilidad de la solución en función del grado de cumplimiento de las restricciones. Con esta información se le plantea al decisor que especifique una meta para su objetivo, y estudiamos cómo alcanzar dicha meta con un nivel satisfactorio sopesándolo con el grado de cumplimiento de las restricciones.

Palabras Clave: Distribución de posibilidad, Principio de extensión, Programación lineal fuzzy, Toma de decisiones.
1. Introducción

Presentamos en este trabajo una extensión de la programación lineal posibilística. Desde que Zadeh [17] introdujo la teoría de posibilidad se han desarrollado muchos trabajos en este campo. Los modelos de decisión posibilista han jugado un importante papel en el tratamiento de problemas prácticos de decisión. Nuestro trabajo se enmarca dentro de las aplicaciones de la teoría de la posibilidad a problemas de programación lineal con coeficientes imprecisos o inciertos, pero cuya distribución de posibilidad puede ser estimada, de manera que sus valores vienen delimitados por la función de pertenencia de un número fuzzy. Estos problemas han sido objeto de varios trabajos con enfoques alternativos [13]. Por ello parece necesario precisar cual va a ser nuestro entorno de trabajo:

Nosotros partimos fundamentalmente de los artículos de Buckley [3, 4, 5, 7] y Julien [11]. Estos autores plantean un programa lineal posibilístico (PLP) utilizando la siguiente notación:

\[
\begin{align*}
\text{max } Z &= \tilde{c}x \\
\text{s.a. } \tilde{A}x &\leq \tilde{b} \\
x &\geq 0 \quad (1)
\end{align*}
\]

donde \(\tilde{c} = (c_1, \ldots, c_n)\) es un vector \(1 \times n\) de números fuzzy\(^1\), \(\tilde{b} = (b_1, \ldots, b_n)\) es un vector \(m \times 1\) de números fuzzy y \(\tilde{A} = [\tilde{a}_{ij}]\) es una matriz \(m \times n\) de números fuzzy.

\[
\begin{align*}
\text{max } Z &= cx \\
\text{s.a. } Ax &\leq b \\
x &\geq 0 \quad (2)
\end{align*}
\]

\(^1\)A lo largo de este trabajo emplearemos indistintamente la denominación fuzzy o borroso.
de manera que si \(Z^* \) es el valor máximo de \(Z \) y \(\Pi(c, A, b) \) es la distribución de posibilidad conjunta de todos los parámetros. Entonces la posibilidad de que un determinado valor \(z \) sea solución es la siguiente

\[
\Pi(Z^* = z) = \sup_{c, A, b} \{ \Pi(c, A, b) \mid \text{la solución de (2) es } z \}
\]

una observación respecto al enfoque utilizado por Buckley, es que no es necesario definir una relación de orden entre números fuzzy, ya que la desigualdad \((\leq)\), que aparece en el problema (1), se ha de interpretar como un simbolismo que hace referencia a la desigualdad ordinaria del problema (2).

Puede demostrarse que bajo condiciones poco restrictivas la distribución de posibilidad de \(Z^* \), se corresponde con un número fuzzy [2].

2. **Un modelo general de programación lineal posibilística**

Trataremos en este trabajo de abordar un problema lineal posibilista más general que el estudiado por Buckley, en el cual el decisor permita una cierta violación de las restricciones. Este programa lo denotaremos así:

\[
\begin{align*}
\max Z &= \tilde{c}x \\
s.a. \quad \tilde{A}x &\leq \tilde{b} \\
&\quad x \geq 0
\end{align*}
\]

La desigualdad \(\leq \) la interpretamos a partir de un vector fuzzy de tolerancia máxima \(\tilde{t}_0 \), dado por el decisor.

De forma que el siguiente problema lineal posibilista con coeficientes imprecisos: \(\tilde{c}, \tilde{A}, \tilde{b} + \tilde{t} \),

\[
\begin{align*}
\max Z &= \tilde{c}x \\
s.a. \quad \tilde{A}x &\leq \tilde{b} + \tilde{t} \\
&\quad x \geq 0
\end{align*}
\]
con \(\tilde{t} = (1 - \beta)\tilde{t}_0 \), se entenderá que es una concreción de (3) cuando se cumplen las restricciones con un grado igual a \(\beta \).

Al igual que hicimos entre (1) y (2), para determinar la distribución de posibilidad de la solución del problema (4), consideramos el siguiente programa crisp

\[
\begin{align*}
\text{max } Z &= cx \\
\text{s.a. } Ax &\leq b + t \\
x &\geq 0
\end{align*}
\]

(5)

Con el fin de darle al decisor la capacidad de admitir un mayor o menor grado de cumplimiento de las restricciones (véase apartado 3), daremos a \(\beta \) un tratamiento distinto al de otros grados de pertenencia y no lo integraremos en la función de pertenencia global. Aplicando el principio de extensión determinamos la distribución de posibilidad de la solución \(Z^*_\beta \) para cada valor del parámetro \(\beta \):

\[
\Pi \left(Z^*_\beta = z_\beta \right) = \sup \left\{ \Pi (c, A, b + t) | \text{la solución de (5) es } z_\beta \right\}
\]

(5')

y según lo comentado anteriormente la distribución de posibilidad de cada \(Z^*_\beta \) se corresponde con un número fuzzy.

Entonces si consideramos algunos valores para el grado de cumplimiento de las restricciones: \(\beta = 0, 0.25, 0.50, 0.75, 1 \), obtendríamos un resultado similar a lo representado en la siguiente figura (obsérvese que cuanto mayor sea el grado de cumplimiento de las restricciones menor será el valor óptimo):
Este gráfico aporta una información muy valiosa para decisor.

Ejemplo numérico

Con el fin de comparar nuestra aproximación al problema con la propuesta por Delgado, Verdegay y Vila [9, 10], vamos a estudiar el ejemplo numérico propuesto por los mencionados autores:

$$\text{max } Z = 5x_1 + 6x_2$$

s. a. $\tilde{3}x_1 + \tilde{4}x_2 < \tilde{18}$

$\tilde{2}x_1 + \tilde{1}x_2 < \tilde{7}$

$x_1, x_2 \geq 0$

donde:

$\tilde{3} = (3, 2, 4), \quad \tilde{4} = (4, 2.5, 5.5), \quad \tilde{18} = (18, 16, 19)$

$\tilde{2} = (2, 1, 3), \quad \tilde{1} = (1, 0.5, 2), \quad \tilde{7} = (7, 6, 9)$

el decisor permite un límite máximo para la violación de cada restricción de:

$\tilde{r}_1 = (3, 2.5, 3.5), \quad \tilde{r}_2 = (1, 0.5, 1.5)$

Obsérvese que en este ejemplo los coeficientes que intervienen en la función objetivo son ordinarios (no fuzzy). En el método de resolución de Delgado, Verdegay y Vila esto debe ser así, sin embargo con el método propuesto en el presente trabajo no es necesario.

Basándonos en el principio de extensión utilizamos las operaciones con α–cortes, Buckley [6], Arenas, Bilbao, Jiménez, Rodríguez [1], para determinar las distribuciones de posibilidad \tilde{Z}_β^* de la solución de (3), para cada valor β de cumplimiento de las restricciones, (nosotros consideraremos $\beta=0, 0.25, 0.5, 0.75, 1$).

La tabla 1 corresponde a los resultados obtenidos para algunos α–cortes. La figura 2 representa los resultados de dicha tabla.
<table>
<thead>
<tr>
<th>α</th>
<th>\tilde{Z}_0^*</th>
<th>$\tilde{Z}_{0.25}^*$</th>
<th>$\tilde{Z}_{0.5}^*$</th>
<th>$\tilde{Z}_{0.75}^*$</th>
<th>\tilde{Z}_1^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.5</td>
<td>19.1</td>
<td>18.8</td>
<td>18.2</td>
<td>17.5</td>
</tr>
<tr>
<td>0.25</td>
<td>22.5</td>
<td>21.7</td>
<td>21.1</td>
<td>20.3</td>
<td>19.6</td>
</tr>
<tr>
<td>0.5</td>
<td>25.3</td>
<td>24.5</td>
<td>23.7</td>
<td>22.8</td>
<td>21.9</td>
</tr>
<tr>
<td>0.75</td>
<td>28.6</td>
<td>27.7</td>
<td>26.7</td>
<td>25.1</td>
<td>24.7</td>
</tr>
<tr>
<td>1</td>
<td>32.6</td>
<td>31.5</td>
<td>30.3</td>
<td>29.1</td>
<td>28.0</td>
</tr>
</tbody>
</table>

Tabla 1

El resultado obtenido lo representamos en el siguiente gráfico:
Comparemos estos resultados con los obtenidos por Delgado, Verdegay y Vila: dependiendo del criterio de clasificación de números fuzzy empleado, estos autores obtienen los siguientes resultados:

\[z^{(18)} = 28 + 4.6(1 - \beta) \]

\[\delta \]

\[z^{(19)} = 17.53 + 2.56(1 - \beta) \]

Puede observarse que estos resultados son un caso particular de los obtenidos por nosotros:

\[z^{(18)} \] se corresponde con los núcleos de las diferentes distribuciones de posibilidad obtenidas por nosotros. Es decir en este caso el decisor estaría contemplando las situaciones de mayor posibilidad de ocurrencia dentro de cada grado de cumplimiento de las restricciones.

\[z^{(19)} \] se corresponde con la situación más pesimista es decir con los extremos inferiores de los 0-cortes de cada \(\tilde{Z}^*_\beta \).

Como vemos nuestro enfoque permite al decisor obtener mayor información, puesto que existen otras muchas posibilidades, que el decisor también debe sopesar.

3. Caso en el que el decisor especifica una meta

Cuando se presentan restricciones flexibles, es frecuente en la literatura admitir que el decisor se plantea la resolución del problema como la obtención de un determinado nivel de aspiración \([18, 19]\). Sin embargo como dicen Cadenas y Verdegay \([8]\), "no es realista empezar por pedirle al decisor que proporcione la meta y su máxima tolerancia, sin proporcionarle ninguna información acerca de la misma".

A la vista de la información contenida en la figura 1, se le solicita al decisor que especifique una meta \(\bar{G} \) y su límite de tolerancia \(G \). De forma que si \(z^* \geq \bar{G} \), le resultará completamente satisfactorio, pero si \(z^* \leq G \), su grado de satisfacción será nulo. Es decir la meta viene expresada mediante un conjunto fuzzy \(\tilde{G} \), cuya función de pertenencia es la siguiente:
\[
\mu_{\tilde{G}}(z^*) = \begin{cases}
0 & \text{si } z^* \leq \underline{G} \\
\lambda \in [0,1] & \text{si } \underline{G} \leq z^* \leq \overline{G} \\
1 & \text{si } z^* \geq \overline{G}
\end{cases}
\]

Figura 3

El decisor, lógicamente, pedirá obtener un grado de satisfacción máximo. Ahora bien, la consecución de un valor mayor para la función objetivo será a costa de un menor nivel de cumplimiento de las restricciones. En estas condiciones puede que el decisor se conforme con un menor grado de satisfacción en sus aspiraciones a cambio de que las restricciones se verifiquen en mayor grado.

Vamos pues a establecer un criterio que permita al decisor sopesar el nivel \(\beta \) de cumplimiento de las restricciones, con la consecución de la meta en un grado satisfactorio. Para ello nos planteamos comparar el subconjunto fuzzy \(\tilde{G} \), que representa la aspiración del decisor con cada \(\tilde{Z}^*_\beta \), que representan las distribuciones de posibilidad del óptimo obtenido para los diferentes grados de cumplimiento de las restricciones.

Si superponemos la figura 3 sobre la figura 1, obtenemos lo siguiente:
Como hemos dicho debemos establecer un índice que nos permita comparar cada \tilde{Z}_β^* con \tilde{M}, es decir que nos proporcione el grado en el que \tilde{Z}_β^*, cumple las expectativas del decisor.

Proponemos el siguiente índice:

$$K_\tilde{G}(\tilde{Z}_\beta^*) = \frac{\int_{-\infty}^{\infty} \mu_{\tilde{Z}_\beta^*}(z^*) \cdot \mu_{\tilde{G}}(z^*) \, dz^*}{\int_{-\infty}^{\infty} \mu_{\tilde{G}}(z^*) \, dz^*}$$

(6)
Obsérvese que al utilizar este índice estamos definiendo la intersección \(\tilde{G} \cap \tilde{Z}_B^* \), por medio de la t-norma "producto"

\[
\mu_{\tilde{G} \cap \tilde{Z}_B^*}(z^*) = \mu_{\tilde{Z}_B^*}(z^*) \cdot \mu_{\tilde{G}}(z^*)
\]

El operador producto tiene las siguientes propiedades:

1) efecto acumulativo: dos grados de pertenencia menores que 1 son peores que uno solo:

\[
\mu_{\tilde{G} \cap \tilde{Z}_B^*}(z^*) \leq \min \{ \mu_{\tilde{Z}_B^*}(z^*), \mu_{\tilde{G}}(z^*) \}
\]

si \(\mu_{\tilde{Z}_B^*}(z^*) < 1 \) y \(\mu_{\tilde{G}}(z^*) < 1 \)

2) interacción: el efecto de una disminución en el grado de posibilidad \(\mu_{\tilde{Z}_B^*}(z^*) \) sobre \(\mu_{\tilde{G} \cap \tilde{Z}_B^*}(z^*) \), depende del valor de \(\mu_{\tilde{G}}(z^*) \), (y viceversa).

3) compensación: el efecto de una disminución de \(\mu_{\tilde{Z}_B^*}(z^*) \) puede ser compensado por un aumento de \(\mu_{\tilde{G}}(z^*) \) (salvo que \(\mu_{\tilde{G}}(z^*) \) valga 1).

Además el índice propuesto tiene las siguientes cualidades: robustez, racionalidad, poder de discriminación y expresión fuzzy o lingüística de la relación de preferencia [Yuan]

Llegados a este punto el decisor deberá sopesar dos criterios: el grado de satisfacción de la meta \(K_{\tilde{G}}(\tilde{Z}_B^*) \) y el grado \(\beta \) en que permita que se violen las restricciones.

A la vista de la información contenida en la figura 4, se concluye que una mayor consecución de la meta será a costa de un menor grado de cumplimiento de las restricciones. Para decidir que grado de cumplimiento es más conveniente podemos utilizar el siguiente procedimiento:
se elegirá el valor β^* tal que

$$
\beta^* \cdot K_G (\tilde{Z}_\beta^*) = \max_\beta \left\{ \beta \cdot K_G (\tilde{Z}_\beta^*) \right\}
$$

(7)

recordemos que, como hemos dicho anteriormente, el operador producto (en esta caso $\beta \cdot K_G (\tilde{Z}_\beta^*)$, tiene las siguientes propiedades: efecto acumulativo, interacción y compensación entre criterios.

Una vez elegido β^*, es decir el grado de cumplimiento de las restricciones admitido, podremos decir que el correspondiente \tilde{Z}_β^* representa la distribución de posibilidad de la solución del problema (3) inicialmente planteado.

Si estamos interesados en un resultado ordinario (no fuzzy), proponemos desfuzzificar el resultado obtenido \tilde{Z}_β^* utilizando alguna de las técnicas que tan buen resultado proporcionan en los controladores fuzzy [14]. En particular como el resultado \tilde{Z}_β^* es un conjunto fuzzy convexo, parece más conveniente la utilización de la técnica del centro de gravedad:

$$
Z^0 = \frac{\int_{-\infty}^{\infty} z^* \cdot \mu_{\tilde{Z}_\beta^*} (z^*) \, dz^*}{\int_{-\infty}^{\infty} \mu_{\tilde{Z}_\beta^*} (z^*) \, dz^*}
$$

(8)

Una vez admitido que Z^0 es una solución satisfactoria la siguiente pregunta es: ¿Qué valor ordinario debemos asignar a las variables de decisión x para obtener como resultado Z^0? [4].

Primeramente calculemos la posibilidad de que Z^0 sea la solución del programa lineal fuzzy
\[\max Z = \tilde{c}x \]
\[\text{s.a. } \tilde{A}x \leq \tilde{b} + (1 - \tilde{\beta}^*)\tilde{t}_0 \]
\[x \geq 0 \]

(9)

es decir calculamos \(\mu_{\tilde{z}^*, (Z^o)} = \alpha^o \)

![Diagrama](image)

Figura 6

Entonces de acuerdo con el principio de extensión (véase ec. (5')) debemos resolver el programa lineal crisp que tenga mayor posibilidad de ocurrencia de entre todos los que tienen por solución \(Z^o \). En particular si \(Z^o \) se encuentra a la izquierda del núcleo como muestra la figura 6, debería resolverse el siguiente programa ordinario:

\[\max \ c^L_{\alpha^o} x \]
\[\text{s.a. } A^R_{\alpha^o} x \leq b^L_{\alpha^o} + (1 - \beta)\tilde{t}_0 \alpha^o \]
\[x \geq 0 \]

(10)

Si \(Z^o \) se encontrase a la derecha del núcleo deberíamos resolver el siguiente programa crisp:
max \(c^R_\alpha x \)
\[\text{s.a.} \quad A^L_\alpha x \leq b^R_\alpha + (1 - \beta)t^R_\alpha \]
\[x \geq 0 \]

(11)

donde los superíndices \(L \) y \(R \) indican, respectivamente, el extremo inferior y superior del correspondiente \(\alpha \)-corte.

El resultado obtenido \(x^* \) podría ser una solución de compromiso para el decisor.

Ejemplo económico:

Una empresa tiene tres alternativas de inversión A, B y C, para los dos próximos años. Los valores actuales netos de estas inversiones se estiman, respectivamente, en aproximadamente 15, 13 y 9 millones de pesetas. Las salidas de caja originadas por estas inversiones en los dos próximos años son las siguientes:

<table>
<thead>
<tr>
<th>año</th>
<th>inversión</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>8</td>
<td>aprox. 1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>6</td>
<td>aprox. 1.5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5</td>
<td>aprox. 0.8</td>
</tr>
</tbody>
</table>

Para el primer año la empresa dispone de 12 millones, pero toleraría un aumento en el gasto de unos 3 millones como máximo. Para el segundo año se estima que dispondrá de aproximadamente 3 millones, aunque podría admitirse un incremento de alrededor de 1 millón como máximo. Las tres inversiones son fraccionables y pueden ser repetidas.

El planteamiento del problema como un programa lineal fuzzy es el siguiente:

\[
\text{max} \quad z = 1\tilde{5}x_1 + 1\tilde{3}x_2 + 1\tilde{0}x_3
\]
\[
\text{s.a.} \quad 8x_1 + 6x_2 + 5x_3 \leq 12
\]
\[1x_1 + 1.5x_2 + 0.8x_3 \leq 3 \]

donde
\[1\tilde{z} = (15, 14.5, 15.5), \quad 1\tilde{3} = (13, 12.6, 13.3), \]
\[1\tilde{0} = (10, 9.7, 10.2), \quad \tilde{1} = (1, 0.9, 1.1), \]
\[1.5\tilde{1} = (1.5, 1.3, 1.6), \quad 0.8\tilde{1} = (0.8, 0.7, 0.9), \quad 3\tilde{1} = (3, 2.8, 3.1) \]

siendo el límite máximo de violación de cada restricción:

\[\tilde{t}_1 = (3, 2.9, 3.1), \quad \tilde{t}_2 = (1, 0.9, 1.1) \]

Las distribuciones de posibilidad de la solución, obtenidas para diferentes grados de cumplimiento de las restricciones, son las que se representan en la figura 7.

![Figura 7](image.png)

Donde obsérvese que el resultado que puede obtener la empresa dependiendo del incremento en el gasto que esté dispuesta a asumir, son los siguientes:
<table>
<thead>
<tr>
<th>β</th>
<th>incremento aproximado del gasto</th>
<th>valor actual neto aproximado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>año 1</td>
<td>año 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>0.75</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.25</td>
<td>2.25</td>
<td>0.75</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 2

Con esta información y la de la figura 7 podemos pedirle al decisor que establezca una meta y su límite de tolerancia. Supongamos que en este caso el decisor se muestra plenamente satisfecho si sus inversiones alcanzan un valor actual neto igual a 32 millones o mayor, es decir que $\bar{G}=32$. Y que todo resultado que sea inferior a 26 le resultará completamente insatisfactorio, es decir que $\bar{G}=26$.

Entonces si admitimos que la función de pertenencia, del conjunto fuzzy \tilde{G} que describe esta meta imprecisa, es lineal, tendremos que:

$$
\mu_{\tilde{G}}(z^*) = \begin{cases}
0 & \text{si } z^* \leq 26 \\
\frac{z^* - 26}{32 - 26} & \text{si } 26 \leq z^* \leq 32 \\
1 & \text{si } z^* \geq 32
\end{cases}
$$

Si representamos la meta sobre la figura 7, que nos proporcionaba las distribuciones de posibilidad de las soluciones según los grados de cumplimiento de las restricciones, obtenemos el siguiente gráfico:
Podemos proceder ahora a calcular el grado en el que cada \tilde{Z}_β, cumple las expectativas del decisor, (véase ec. (6)):

$$K_G(\tilde{Z}_0^*)=0.98, \quad K_G(\tilde{Z}_{0.25}^*)=0.77, \quad K_G(\tilde{Z}_{0.5}^*)=0.51$$

$$K_G(\tilde{Z}_{0.75}^*)=0.22, \quad K_G(\tilde{Z}_1^*)=0.01$$

Una mayor consecución de la meta será a costa de un menor grado de cumplimiento de las restricciones. Para decidir que grado de cumplimiento es más conveniente admitir se elegirá el valor β^* tal que, (véase ec. (7))

$$\beta^* \cdot K_G(\tilde{Z}_1^*) = \max\{0 \cdot 0.98, 0.25 \cdot 0.77, 0.5 \cdot 0.51, 0.75 \cdot 0.22, 1 \cdot 0.01\} = \max\{0, 0.19, 0.26, 0.17, 0.01\} = 0.26$$

Luego elegiríamos $\beta^*=0.5$. Es decir que el incremento aproximado en el gasto que se estaría dispuesto a admitir es el que corresponde a la fila de $\beta=0.5$ en la tabla 3. Y el valor actual neto aproximado que obtendremos es: $\tilde{Z}_{0.5}^*= (29.25, 27.62, 30.34)$.

Si estamos interesados en un resultado no borroso, proponemos desfuzzificar el resultado utilizando la técnica del centro de gravedad, (véase ec. (8)):
\[Z^0 = \frac{\int_{-\infty}^{\infty} z^* \cdot \mu_{Z_{0.5}}(z^*) \, dz^*}{\int_{-\infty}^{\infty} \mu_{Z_{0.5}}(z^*) \, dz^*} = 29.07 \]

siendo:

\[\alpha^0 = \mu_{\tilde{Z}_{0.5}}(29.07) = 0.84 \]

puesto que 29.07 está a la izquierda del núcleo de \(\tilde{Z}_{0.5} \), a continuación resolvemos el programa (véase ec. (10)):

\[
\begin{align*}
\text{max } & c_{0.84}^L x \\
\text{s.a. } & A_{0.84}^R x \leq b_{0.84}^L + (1 - \beta)l_{0.84}^L \\
& x \geq 0
\end{align*}
\]

cuya solución es \(x_1 = 0, \ x_2 = 2.25, \ x_3 = 0 \). Así pues este sería entonces el plan de inversiones de la empresa.

4. Conclusiones

Hemos abordado en este trabajo un problema lineal posibilista más general que los que suelen estudiarse en la literatura: aquel en el que todos los coeficientes pueden ser fuzzy y además las restricciones son flexibles. Utilizando la teoría de posibilidades hemos calculado la distribución de posibilidad de la solución de este problema para diferentes grados de cumplimiento de las restricciones, y comprobado que algunos de los resultados obtenidos por otros autores pueden considerarse como un caso particular del obtenido por nosotros. Cuando el decisor se plantea la solución del problema como la obtención de un determinado nivel de aspiración, hemos estudiado como alcanzar la meta propuesta en un grado satisfactorio sopesándolo con el grado de cumplimiento de las restricciones.

Referencias

