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Abstract

This paper studies an allocation procedure for coalitional games
with veto players. The procedure is similar to the one presented by
Dagan et al. (1997) for bankruptcy problems. According to it, a
player, the proposer, makes a proposal that the remaining players
must accept or reject, and conflict is solved bilaterally between the
rejector and the proposer. We allow the proposer to make sequential
proposals over several periods. If responders are myopic maximizers
(i.e. consider each period in isolation), the only equilibrium outcome
is the serial rule of Arin and Feltkamp (2012) regardless of the order
of moves. If all players are farsighted, the serial rule still arises as the
unique subgame perfect equilibrium outcome if the order of moves is

such that stronger players respond to the proposal after weaker ones.
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1 Introduction

Dagan et al. (1997) introduced a noncooperative bargaining procedure for
bankruptcy problems. In this procedure the player with the highest claim
has a distinguished role. He makes a proposal and the remaining players
accept or reject sequentially. Players who accept the proposal leave the
game with their share; if a player rejects the proposal this conflict is solved
bilaterally by applying a normative solution concept (a "bilateral principle"
based on a bankruptcy rule) to a two-claimant bankruptcy problem in which
the estate is the sum of the two proposed payoffs. They show that a large class
of consistent and monotone bankruptcy rules can be obtained as the Nash
equilibrium outcomes of the game. They describe this kind of procedure as
consistency based: starting from a consistent solution concept, they construct
extensive forms whose subgames relate to the respective reduced cooperative
games and by finding the equilibrium of the extensive form they are able to
provide noncooperative foundations for the consistent solution of interest.

The model above can be extended to other bargaining situations in the
following way. Suppose we have a multilateral bargaining situation with one
distinguished player (the most senior creditor in the bankruptcy case, the
chair of a committee, the manager of a firm...). The distinguished player
negotiates bilaterally with each of the other players. Negotiations are con-
strained by a fairness or justice principle that is commonly accepted in society
and can be enforced (possibly by an external court). Players are assumed to
be selfish, hence they only appeal to this principle when it is in their mate-
rial interest to do so. To what extent does the bilateral principle determine
the global agreement? In Dagan et al. (1997) the answer is that the bilat-
eral principle completely determines the outcome: if a particular bankruptcy
rule can be enforced in the two-player situation, the outcome is the same
bankruptcy rule applied to the case of n creditors.

Dagan et al.’s paper focuses on bankruptcy games, hence their justice
principles are also restricted to this class. The question arises of what the
appropriate justice principle should be for general TU games. In this paper
we use the (restricted) standard solution of a reduced game between the two
players. The idea behind this principle is that each of the two players gains



(or loses) the same amount with respect to an alternative situation in which
the two players cannot cooperate with each other (unless this would result in
a negative payoff for one of the players, in which case this player gets zero).

Using this bilateral principle, Arin and Feltkamp (2007) studied the bar-
gaining procedure in another class of games with a distinguished player,
namely games with a veto player. A veto player is a player whose coopera-
tion is essential in order for a coalition to generate value. Games with a veto
player arise naturally in economic applications. Examples include a produc-
tion economy with one landowner and many landless peasants (Shapley and
Shubik (1967)), an innovator trading information about a technological in-
novation with several producers (Muto (1986), Muto et al. (1989), Driessen
et al. (1992)) and hierarchical situations where a top player’s permission is
necessary in order for a project to be developed (Gilles et al. 1992). Arin
and Feltkamp (2007) found that the equilibrium of this bargaining procedure
is not always efficient: the proposer may be strictly better-off by proposing
an allocation that does not exhaust the total available payoft.

In the present paper, we modify the above procedure by allowing the
proposer to make a fixed number of sequential proposals, so that players can
continue bargaining over the remainder if the first proposal did not exhaust
the value of the grand coalition. Each period results in a partial agreement,
and then a new TU game is constructed where the values of the coalitions
take into account the agreements reached so far; the final outcome is the
sum of all partial agreements. We assume that the number of available
bargaining periods T is at least as large as the number of players n. In order
to analyze this multiperiod game, we start by a simplified model in which
responders behave myopically, that is, we initially assume that responders
consider each period in isolation, accepting or rejecting the current proposal
without anticipating the effects of their decision on future periods. The
proposer is assumed to behave farsightedly, taking into account the effect of
his actions on future periods and also taking into account that the responders
behave myopically. We refer to this kind of strategy profile as a myopic best
response equilibrium.

It turns out that all myopic best response equilibria are efficient and lead



to the same outcome, which is the serial rule of Arin and Feltkamp (2012).
This solution concept is based on the idea that the strength of player ¢ can
be measured by the maximum amount a coalition can obtain without player
1, denoted by d;. Since it is impossible for any coalition to obtain a payoff
above d; without ¢’s cooperation, player ¢ can be viewed as having a veto
right over v(N) — d;. The serial rule divides v(/V) into segments, and each
segment is equally divided between the players that have a veto right over it.

We then turn to the analysis of subgame perfect equilibrium outcomes
and show that they may differ from the serial rule. The order of moves
may be such that the proposer is able to hide some payoff from a stronger
player with the cooperation of a weaker player: the proposal faced by the
stronger player is not too favorable for the proposer so that the stronger
player cannot challenge it, but later on a weak player rejects the proposal
and transfers some payoff to the proposer; the weak player may have an
incentive to do so because of the effect of this agreement on future periods.
However, if the order of moves is such that stronger players have the last
word in the sense that they respond to the proposal after weaker ones, the
only subgame perfect equilibrium outcome is the serial rule. Hence, myopic
and farsighted behavior of the responders lead to the same outcome in this
case.

2 Preliminaries

2.1 TU games

A cooperative n-person game in characteristic function form is a pair (N, v),
where N is a finite set of n elements and v : 2V — R is a real-valued function
on the family 2V of all subsets of N with v()) = 0. Elements of N are
called players and the real-valued function v the characteristic function of
the game. We shall often identify the game (N, v) with its characteristic
function and write v instead of (IV,v). Any subset S of the player set N is
called a coalition. The number of players in a coalition S is denoted by |S|. In
this work we will only consider games where all coalitions have nonnegative



worth and the grand coalition is efficient, that is, 0 < v(S) < v(N) for all
S CN.

A payoff allocation is represented by a vector x € R"™, where z; is the
payoff assigned by z to player i. We denote Y z; by z(S). If z(N) < v(N),
x is called a feasible allocation; if x(N) :zGS(N ), x is called an efficient
allocation. An efficient allocation satisfying x; > v(i) for all i € N is called
an imputation and the set of imputations is denoted by I(N,v). The set of
nonnegative feasible allocations is denoted by D(N,v) and formally defined

as follows
D(N,v) :={z €R": 2(N) <v(N) and z; >0 foralli € N}.

A solution ¢ on a class of games I' is a correspondence that associates
with every game (N,v) in I a set ¢(N,v) in RY such that z(N) < v(N)
for all € ¢(N,v). This solution is called efficient if this inequality holds
with equality. The solution is called single-valued if it contains a unique
element for every game in the class. A single-valued solution ¢ satisfies the
aggregate monotonicity property (Meggido, 1974) on a class of games I' if
the following holds: for all v,w € I' such that v(S) = w(S) for all S # N
and v(N) < w(N), then ¢,(v) < ¢,(w) for all i € N. Increasing the value of
the grand coalition never leads to a payoff decrease for any of the players.

The core of a game is the set of imputations that cannot be blocked by
any coalition, i.e.

C(N,v) :={z € I(v):x(S) >wv(S) for all S C N}.

A game with a nonempty core is called a balanced game. A player i is a
veto player if v(S) = 0 for all coalitions where player i is not present. A
game v is a veto-rich game if it has at least one veto player and the set of
imputations is nonempty. A balanced game with at least one veto player
is called a veto balanced game. Note that balancedness is a relatively weak
property for games with a veto player, since it only requires v(N) > v(S) for
all S C N.



Given a game (N, v) and a feasible allocation z, the excess of a coalition
S at z is defined as e(S, z) := v(S) — x(.5). Its mirror concept, the satisfac-
tion of a coalition S at x, is defined as f(S,z) := z(S) — v(S). We define
fij(z, (N, v)) as the minimum satisfaction of a coalition that contains ¢ but
not j.

fij(x,(N,v)) ==  min {z(5) —v(9)}.

S:eSCN\{j}

If there is no confusion we write f;;(z) instead of f;;(x, (N, v)). The higher
fij(x), the better 7 is treated by the allocation = in comparison with j. The
kernel can be defined as the set of imputations that satisfy the following
bilateral kernel conditions:

fii(x) > fi;(z) implies z; = v(j) for all 4, j in N.

Note that, if j is a veto player, fi;(z) = x;.!

Let O(x) be the vector of all excesses at = arranged in non-increasing
order of magnitude. The lexicographic order < between two vectors z and
y is defined by x < y if there exists an index k such that x; = y, for all
[ < k and z < y; and the weak lexicographic order <, by z <, y if x <, y
or z = y. Schmeidler (1969) introduced the nucleolus of a game v, denoted
by v(N,v), as the imputation that lexicographically minimizes the vector of
non-increasingly ordered excesses over the set of imputations. In formula:

{v(N,v)} :={x € I(N,v)|0(z) <1 0(y) for all y € I(N,v)}.

For any game v with a nonempty imputation set, the nucleolus is a single-
valued solution, is contained in the kernel and lies in the core provided that
the core is nonempty. The kernel and the nucleolus coincide for veto rich
games (see Arin and Feltkamp (1997)).

'An equivalent definition of the kernel is based on the mirror concept of fij,
which is the surplus of ¢ against j at z (terminology of Maschler, 1992), s;;(z) =

S) —x(S)}. The k 1 is the set of i tations such that s;; i
S:iersr'lgajif{\{j} {v(S) —z(9)} e kernel is the set of imputations suc at s;j(x) > sj:(x)

implies 2; = v(j). We found it more convenient to work with f;;(.) rather than s;;(.).



2.2  One-period bargaining (Arin and Feltkamp, 2007)

Given a veto balanced game (N, v) where player 1 is a veto player and an
order on the set of the remaining players, we will define an extensive-form
game associated to the TU game and denote it by G(N,v). The game has n
stages and in each stage only one player takes an action. In the first stage,
a veto player announces a proposal z! that belongs to the set of feasible and
nonnegative allocations of the game (N, v). In the next stages the responders
accept or reject sequentially. If a player, say i, accepts the proposal x*!
at stage s, he leaves the game with the payoff 25~ and for the next stage
the proposal * coincides with the proposal at s — 1, that is 2°~!. If player 4
rejects the proposal, a two-person TU game is constructed with the proposer
and player 7. In this two-person game the value of the grand coalition is
2571+ 2571 and the value of the singletons is obtained by applying the Davis-
Maschler reduced game? (Davis and Maschler (1965)) given the game (N, v)
and the allocation z*~!. Player ¢ will receive as payoff the restricted standard
solution of this two-person game®. Once all the responders have played and
consequently have received their payoffs the payoff of the proposer is also
determined as z7.

Formally, the resulting outcome of playing the game can be described by
the following algorithm.

2Let (N,v) be a game, T a subset of N such that T # N, , and x a feasible allocation.

Then the Davis-Maschler reduced game with respect to N \ T and z is the game (N \

T, vév \T) where

0 if S=10
oM\ (9) = v(N)—a(T) if S=N\T
max {v(SUQR) —z(Q)} for all other S C N\ T'.

Note that we have defined a modified Davis-Maschler reduced game where the value of
the grand coalition of the reduced game is z(N\T) instead of v(N) — z(T). If z is efficient
both reduced games coincide. See also Peleg (1986).

3The standard solution of a two-person TU game v gives player i = 1,2 the amount
v(i)+ % The restricted standard solution coincides with the standard solution
except when the standard solution gives a negative payoff to one of the players, in which
case this player receives 0 and the other player receives v(1,2).

7



Input : a veto balanced game (N, v) with a veto player, player 1, and an
order on the set of remaining players (responders).
Output : a feasible and nonnegative allocation =" (N, v).

1. Start with stage 1. Player 1 makes a feasible and nonnegative proposal
x! (not necessarily an imputation). The superscript denotes at which

stage the allocation emerges as the proposal in force.

2. In the next stage the first responder (say, player 2) says yes or no to
the proposal. If he says yes he receives the payoff 23, leaves the game,

and 22 = x!.
If he says no he receives the payoff*

1
Y2 = max {0, 3 (2] + 23 — v (1)] } where

va(1):i=  max {v(S) —2'(S\{1})}

1€SCN\{2}
r1 + 23 —yo for player 1
Now, 27 = o for player 2
2l if i £1,2.

(2

3. Let the stage s where responder k plays, given the allocation 257! If

he says yes he receives the payoff z{~!, leaves the game, and 2* = 2°~ 1.

If he says no he receives the payoff
1
Y, = max {0, 3 (257" + 2y = vgeea (1)] } where

vps-1(1) = max  {w(S) “HS\{1h)}-

1€SCN\{k}

"+ a5 — vy, for player 1
Now, z} = Yk for player k£ .
it ifi 41,k

7

4Note that, since 1 is a veto player, v, (i) = 0 for any proposal z* and any player i # 1.



4. The game ends when stage n is played and we define 2" (N, v) as the

vector with coordinates (x?)je N

In this game we assume that the conflict between the proposer and a
responder is solved bilaterally. In the event of conflict, the players face a
two-person TU game that shows the strength of each player given that the
rest of the responders are passive. Once the game is formed the allocation
proposed for the game is a normative proposal, a kind of restricted standard
solution®.

The set of pure strategies in this game is relatively simple. Player 1’s
strategy consists of the initial proposal z', which must be feasible and non-
negative. A pure strategy for the responder who moves at stage s is a function

s=1 and each possible

that assigns "yes" or "no" to each possible proposal x
history of play. Players are assumed to be selfish, hence player i seeks to

maximize ;.

2.3 Nash equilibrium outcomes of the one-period game

The set of bilaterally balanced allocations for player i is
F;(N,v) :={x € D(N,v) : fji(x) > fij(x) for all j # i}

while the set of optimal allocations for player i in the set F;(N,v) is
defined as follows:

B;(N,v) := argmax z;.
z€F;(N,w)

In the class of veto-balanced games, F;(N,v) is a nonempty and compact
set for all 7, thus the set B;(V,v) is nonempty.

Theorem 1 (Arin and Feltkamp, 2007) Let (N,v) be a veto balanced TU
game and let G(N,v) be its associated extensive form game. Let z be a

feasible and nonnegative allocation. Then z is a Nash equilibrium outcome if
and only if z € By(N,v).

In some sense the game is a hybrid of non-cooperative and cooperative games, since
the outcome in case of conflict is not obtained as the equilibrium of a non-cooperative
game.



The idea behind this result is the following. As shown in Arin and
Feltkamp (2007), the restricted standard solution that is applied if player
i rejects a proposal in stage s results in fi;(z®) = fi;1(2®), unless this would
mean a negative payoff for player ¢, in which case f;;(x*) > f1;(2°) and x = 0.
Hence, rejection of a proposal leads to a payoff redistribution between 1 and
7 until the bilateral kernel condition is satisfied between the two players. It
is in player 4’s interest to reject any proposal with fi;(z571) > fi(2571)
and to accept all other proposals. Since player ¢ rejects proposals with
fri(@*™Y) > fiu(z*') and this rejection results in fi;(z%) = fi;(z°), the
proposal in force after ¢ has the move always satisfies fi1(z®) > fi:(z*).
Subsequent actions by players moving after ¢ can only reduce fi;(.), hence
fa(x™) > fri(z™). Conversely, player 1 can achieve any bilaterally balanced
payoff vector by proposing it. Player 1 then maximizes his own payoff under
the constraint that the final allocation has to be bilaterally balanced.

The nucleolus is a natural candidate to be an equilibrium outcome since it
satisfies the Davis-Maschler reduced game property, and indeed the nucleolus
is always in F3(V,v). However, the elements of B;(N,v) are not necessarily
efficient. Furthermore, there are cases in which the set By (N, v) contains no
efficient allocations. The existence of an efficient equilibrium is not guaran-
teed because the nucleolus does not satisfy aggregate monotonicity for the
class of veto balanced games. If (IV,v) is such that decreasing the value of
the grand coalition (keeping the values of other coalitions constant) never
increases the nucleolus payoff for player 1, the nucleolus of the game is a
Nash equilibrium outcome (Arin and Feltkamp, 2007, theorem 13).

As shown by Dagan et al. (1996) for bankruptcy games and Arin and
Feltkamp (2007) for veto balanced games, the set of Nash equilibrium (NE)
outcomes and the set of subgame perfect equilibrium (SPE) outcomes coin-
cide for this bargaining procedure. This contrasts sharply with bargaining
situations as simple as the ultimatum game (see Giith et al. 1982), which has
a unique SPE outcome but a continuum of NE outcomes. The reason for this
difference is the unavailability of incredible threats: in the ultimatum game
the responder can take actions that hurt both himself and the proposer, but
here any action that hurts the responder would benefit the proposer.

10



3 A new game: sequential proposals

3.1 The model

We extend the previous model to T' periods where 7' is assumed to be at
least as large as the number of players n. The proposer can now make T
sequential proposals, and each proposal is answered by the responders as in
the previous model. We will denote a generic period as ¢t and a generic stage
as s. The proposal that emerges at the end of period ¢ and stage s is denoted
by x%%, and the proposal that emerges at the end of period ¢ is denoted by
a2t := ab". Given a veto balanced game with a proposer and an order on
the set of responders we will construct an extensive form game, denoted by
GT(N,v).

Formally, the resulting outcome of playing the game can be described by
the following algorithm.

Input : a veto balanced game (N,v) with a veto player, player 1, as
proposer, and an order on the set of the remaining players (responders) which
may be different for different periods.

Output : a feasible and nonnegative allocation .

1. Start with period 1. Given a veto balanced TU game (N, v) and the
order on the set of responders corresponding to period 1, players play
the game G(N,v). The outcome of this period determines the veto
balanced TU game for the second period, denoted by (N, vz"'”l), where
v2*(S) := max {0, min {v(N) — z'(N),v(S) — 2'(S)}} and z' is the
final outcome obtained in the first period. Note that by construction,
the game (N, v“l) is a veto balanced game where player 1 is a veto
player. Then go to the next step. The superscripts in the characteristic
function denote at which period and after which outcome the game is
considered as the game in force. If no confusion arises we write v?
instead of v

2. Let the period be ¢ (t < T') and the TU game (N, v"* ). We play the
game G(N,v"*" ") and define the veto balanced TU game (N, v!t1+")

11



where v (S) := max {0, min {v!(N) — zt(N),v'(S) — 2*(S)}} and
2! is the final outcome obtained in period ¢. Then go to the next step.

3. The game ends after stage n of period T. (If at some period before T
the proposer makes an efficient proposal (efficient according to the TU
game underlying at this period) the game is trivial for the rest of the
periods).

4. The outcome is the sum of the outcomes generated at each period, that

: T
is, v := Y ,_, .

3.2 A serial rule for veto balanced games

We now introduce a solution concept defined on the class of veto balanced
games and denoted by ¢. Somewhat surprisingly, this solution will be related
to the non-cooperative game with sequential proposals.

Let (N, v) be a veto balanced game where player 1 is a veto player. Define
for each player i a value d; as follows:

d; := max v(9).
SCN\{i}

Because 1 is a veto player, d; = 0. Let d,41 := v(/V) and rename the
remaining players according to the nondecreasing order of those values. That
is, player 2 is the player with the lowest value and so on. The solution ¢
associates to each veto balanced game, (N, v), the following payoff vector:

n

dis1 — d;
¢, = Z% for all 1 € {1,...,n}.

i=l
The following example illustrates how the solution behaves.

Example 1 Let N = {1,2,3} be a set of players and consider the following
3-person veto balanced game (N, v) where

50 if S ={1,2}
)10 s =13}
U =9 s 5=

0 otherwise.

12



Computing the vector of d-values we get:

(dl, dg, dg, d4) == (O, 10, 50, 80)
Applying the formula,

b, = d21d1+ dsgdz_i_ da—dz  _ 4
¢2 ds;dz_‘_ da—ds  _ 3
35 = Lot = 10

The formula suggests a serial rule principle (cf. Moulin and Shenker,
1992). Since it is not possible for any coalition to obtain a payoff above d;
without player i’s cooperation, we can view player ¢ as having a right over
the amount v(N) — d;. The value v(N) is divided into segments (dy — dj,
d3 —da, ...,v(N) —d,) and each payoff segment is divided equally among the
players that have a right over it.

In the class of veto balanced games, the solution ¢ satisfies some well-
known properties such as nonemptiness, efficiency, anonymity and equal
treatment of equals among others. It also satisfies aggregate monotonicity.’

The next section shows that ¢(N,v) is the unique equilibrium outcome
assuming that all responders act as myopic maximizers and the proposer
plays optimally taking this into account.

3.3 Myopic Best Response Equilibrium

We start our analysis of the non-cooperative game with sequential proposals
by assuming myopic behavior on the part of responders. Responders be-
have myopically when they act as payoff maximizers in each period without
considering the effect of their actions on future periods.

Suppose all responders maximize payoffs myopically for each period and
that the proposer plays optimally taking into account that the responders

SFor a definition of those properties, see Peleg and Sudholter (2003). It is not the aim
of this paper to provide an axiomatic analysis of the solution. Arin and Feltkamp (2012)
characterize the solution in the domain of veto balanced games by core selection and a
monotonicity property.

13



are myopic maximizers. Formally, player ¢ # 1 maximizes x} at each period
t whereas player 1 maximizes Zle zi. We call such a strategy profile a
myopic best response equilibrium (MBRE). We will show in this section that
all MBRE lead to the same outcome, namely the serial rule.

3.3.1 MBRE and balanced proposals

The notion of balanced proposals will play a central role in the analysis of
MBRE.

Definition 1 Let (N,v) be a veto balanced TU game, and GT(N,v) its as-
sociated extensive form game. Given a period t, a proposal x is balanced if it
is the final outcome of period t regardless of the actions of the responders.

We will start by showing that any payoff the proposer can attain under
myopic behavior of the responders can also be attained by making balanced
proposals: player 1 can cut the payoff of other players until a balanced pro-
posal is obtained at no cost to himself (lemma 2). Hence, from the proposer’s
point of view there is no loss of generality in restricting the analysis to bal-
anced proposals. We will then show that the highest payoff the proposer can
achieve with balanced proposals is ¢;. Finally, we will show that the only
way in which the proposer can achieve ¢, requires all players to get their
component of the serial rule, so that the only MBRE outcome is ¢(N,v).

If there is only one period in the game, myopic and farsighted behavior
coincide. This means that the following lemma holds if responders behave
myopically.

Lemma 1 (Arin and Feltkamp, 2007, lemmas 2 and 3) Let (N,v) be a veto
balanced TU game, and GT (N, v) its associated extensive form game. At any
period t and stage s, the responder (say, i) will accept x5~ if fiy (245715 0t) >
fri(xt 0t and will reject it if fi (x5 00 < fi (24710 in a MBRE. If
fu(zb* 5ot = f(xb~10t), the responder is indifferent between accepting
and rejecting since both decisions lead to the same outcome. Also, the final
outcome x' of any period t is such that fi(x';v") > fu(xt;0') for alli.

14



We have established that myopic behavior of the responders leads to
fir(zh0t) > fri(2h;0h), or equivalently to at > fi;(zf,v"). We now show that
the proposer can obtain the same payoff with balanced proposals in all such
cases.

Lemma 2 Let (N,v) be a veto balanced game. Consider the associated game
with T periods GT(N,v). Let z =31 a' be an outcome resulting from some
strategy profile. Assume that the final outcome of any period t, zt, is such
that for any player i, =t > fi;(z',v"). Then there exists y such that y; = z1,
Yy = Z{ q" where q' is a balanced proposal for period t.

Proof. If (z!,22,...,27) is a sequence of balanced proposals the proof is
done.

Suppose that (2!, 22, ..., 27) is not a sequence of balanced proposals. This
means that for some z' and for some ¢ # 1 it holds that z¢ > fy;(a?,v")
and x! > 0. Let k be the first period where such result holds. Therefore,

(zt, 22, ..., k1)

is a sequence of balanced proposals. We will construct a
balanced proposal where the payoff of the proposer does not change.

Since f;1(2%) = 2%, by reducing the payoff of player i we can construct a
new allocation y* such that fi;(y*) = fir(y*) or fi;(y*) < fi(y*) and yF = 0.
In any case, 2% = y¥ and the payoff of the proposer does not change. Note
also that reducing ¢’s payoff can only lower f1,(y"), so it is still the case that
Fi(y") < fin(y*) for all j.

Now, if there exists another player [ such that fi;(y*) < fi(y*) and
yF > 0 we construct a new allocation 2* such that fi;(2%) = f1(2*) or
f1i(z%) < fi (%) and 2F = 0. Note that 2¥ = y}. Repeating this procedure
we will end up with a balanced allocation ¢*.

The TU game (N, w**1) resulting after proposing ¢* satisfies that w***(S) >
v*TH(S) for all S 3 1. Therefore, fi;(z, w* ™) < fi;(z,v*1) for any feasible
allocation x, and x} ™ > f; (2%, wk+1) for all L.

Consider the game (N, w"!) and the payoff z Rl

i

k+1 >

fri(z**1) for some i # 1 and xf“ > (. We can repeat the same procedure of
k+1

. Suppose that x

period k£ until we obtain a balanced allocation ¢ . The procedure can be
repeated until the last period of the game to obtain the sequence of balanced

1.2 k-1 T
proposals (z', z* ... z" ' ¢" ...,q¢"). m
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Some interesting properties of balanced proposals:

Lemma 3 If 2! is a balanced proposal, any player i with xt > 0 will be a
veto player at t + 1.

This is because if z' is balanced we have fi;(z%,v") = zf, so that all
coalitions that have a positive v but do not involve i have v*(S) < z*(S).
Thus, after the payoffs 2! are distributed any coalition with positive value
must involve i. Note that this result requires x! to be a balanced proposal
and not merely the outcome of a MBRE. In a MBRE it may be the case that
fri(zt, o) < 2t and we cannot conclude anything about the sign of fi;(a?, v").

Balanced proposals coincide with the nucleolus (kernel) of special games.
In the class of veto-rich games (games with at least one veto player and a
nonempty set of imputations) the kernel and the nucleolus coincide (Arin
and Feltkamp, 1997). Therefore we can define the nucleolus as

v(N,v):={x € I(N,v): fi;(z) < fji(z) = z; =0}.

We use this alternative definition of the nucleolus in the proof of the
following lemma.

Lemma 4 Let (N,v) be a veto balanced TU game. Consider the associated
game GT(N,v). Given a period t, a proposal z* is balanced if and only if it
coincides with the nucleolus of the game (N, w"), where w'(S) = v*(S) for all
S # N and w'(N) = z*(N).

Proof. Assume that z' is a balanced proposal in period ¢ with the game
(N, v").

a) Let [ be a responder for which 2! = 0. If whatever the response of
player [ the proposal does not change then fy;(z') <0 =z} = f;1(z).

b) Let m be a responder for which zf > 0. If whatever the response of
player m the proposal does not change then f1,,(z") = 2!, = f,.1(2).

Therefore, the bilateral kernel conditions are satisfied for the veto player.
Lemma 12 in Arin and Feltkamp (2007) shows that if the bilateral kernel

16



conditions are satisfied between the veto player and the rest of the players
then the bilateral kernel conditions are satisfied between any pair of players.

Therefore, z* is the kernel (nucleolus) of the game (N, w'). The converse
statement can be proven in the same way. m

3.3.2 The serial rule can be achieved with balanced proposals

We now show that, by making balanced proposals, the proposer can secure
the payoff provided by the serial rule ¢.

Lemma 5 Let (N,v) be a veto balanced TU game and G*(N,v) its asso-
ciated extensive form game with T > n. The proposer has a sequence of
balanced proposals that leads to ¢(N,v).

Proof. The sequence consists of n balanced proposals. At each period
t, (t € {1,...,n}) consider the set S; = {l : | < t} and the proposal z*, defined
as follows:
t
!

Gtz for all | € S,
0 otherwise.

whenever z! is feasible and propose the 0 vector otherwise.

It can be checked immediately that in each period the proposed allocation
will be the final allocation independently of the answers of the responders
and independently of the order of those answers. The proposals are balanced
proposals.

For example, in period 1, the proposal is (ds, 0, ...,0). Because 1 is a veto
player, fi1(.) = 0 for all i. As for fi;(.), because all players other than 1
are getting 0, the coalition of minimum satisfaction of 1 against ¢ is also the
coalition of maximum v(S) with ¢ ¢ S. Call this coalition S*. By definition,
v(5*) = d; = dy and fy;(.) = z(5")—v(5") = do—d; < 0. Thus, fu(.) = fu(.)
for all ¢ and the outcome of period 1 is (ds, 0, ..., 0) regardless of responders’
behavior.

In period 2 we have a game v* with the property that v?(S) > 0 implies
v%(S) = v}(S) — dy for all S. Thus, player 2 is a veto player in v2. Player 1

dz—ds

proposes (@, @,0, ...,0)‘ If player 2 rejects, we have fis(.) = %52 —
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0 = f21(.). As for other players i # 1,2, when computing fi; we take into
account that any coalition of positive value must include 1 and 2. Since
players other than 1 and 2 are getting 0, the coalition 1 uses against @ is
S* € argmaxg.¢sv(S). By definition, v(S*) = d; and v*(S*) = d; — d,.
Then f1;(.) = 2(S*) — v*(S*) = (d3 — d3) — (d; — d3) = d3 — d; < 0.

In period 3, player 3 has become a veto player and the same process can
be iterated until period n.

Therefore, this strategy of the proposer determines the total payoff of
all the players, that is, the final outcome of the game GT(N,v). This final
outcome coincides with the solution ¢. m

Remark 1 The serial rule can also be obtained by making balanced proposals
if the game has n — 1 periods.

This is because the proposer can combine the first two proposals in the
proof of lemma 5 by proposing (ds + @, ‘13—;"[2, 0,...,0) in the first period.

This proof, together with lemma 4, suggests a new interpretation of the
serial rule. At each period the proposal coincides with the nucleolus of a
veto-rich game. Formally,

Remark 2 The serial rule is the sum of the nucleolus allocations of n auzx-
tliary games, namely

d(N,v) = ZV(N, w’)

where the games (N, w') are defined as follows: w'(N) = dy and w'(S) =
v(S) otherwise. Fori:2 ..n:

w'(S) == max {O,wi‘l(S) — > (N, wi—l)} otherwise.
leS

3.3.3 The proposer cannot improve upon the serial rule

Theorem 2 Let (N,v) be a veto balanced TU game and GT(N,v) the as-
sociated extensive form game with T > n. Let z = ZIT x' be an outcome
resulting from a MBRE of GT(N,v). Then z = ¢(N,v).
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We have already shown that ¢(N,v) can be achieved with balanced
proposals. We now show that the proposer cannot improve upon ¢. Let
z = Z{ 2! be an outcome resulting from balanced proposals. Our objective
is to show that z; > ¢, implies z; > ¢, for all 7. This result, together with the
efficiency of the serial rule, leads to z = ¢ being the unique MBRE outcome.
We start by establishing the result not for the original game (N, v), but for
the sequence of auxiliary games (N, w") (lemma 8). We then check that the
sum of the serial rules of the games w' cannot exceed the serial rule of the
original game (NN, v) (lemma 9).

The following lemma establishes a relationship between balanced propos-
als in GT(N,v) and the serial rule. Suppose z' is a balanced proposal in
period t. Consider the game w', where w'(S) = min{v*(S),z*(N)}. The
serial rule of w' and the balanced proposal ! do not coincide in general.
However, the set of players who receive a positive payoff in x! coincides with
the set of players who receive a positive payoft according to the serial rule of
w7
Lemma 6 Let (N,v) be a veto balanced TU game. Consider the associated
game GT(N,v). Let z = ZlT xt be the outcome resulting from some strategy
profile with balanced proposals. Consider period t, its outcome x' and the
game (N, w") where w*(S) = min{v*(S),2*(N)}. Then it holds that i > 0
if and only if ¢ (N, w') > 0.

Proof. a) If 21, > 0 we need to prove that di(N,w") < z'(N), so that
the serial rule of w' assigns a positive payoff to k.

Let S € argmaxycn ry v'(T). Since 2! is balanced we have fi(z') =
xt > 0 and that implies z*(S) > v*(S) (otherwise S could have been used

"For example, consider the game with N = {1,2,3,4}, v(1,2) = v(1,3) = 2, v(1,2,3) =
6, v(1,2,3,4) = 10 and v(S) = 0 otherwise. The proposal = (2,1.5,1.5,0) is a balanced
proposal with a total payoff distributed of 5 (and, because of lemma 4 and the uniqueness
of the nucleolus, it is the only balanced proposal that distributes a total payoff of 5). The
game w associated to this proposal is identical to v except that w(1,2,3) = w(N) = 5. Its
serial rule is (3,1, 1,0), which is different from the balanced proposal but gives a positive
payoff to the same set of players.
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to complain against k). Hence, z'(N) > z!(S) > v'(S) = di(v") = dp(w?),
where the last equality follows from lemma, 3.%

b) If 2t = 0 we need to prove that di(N,w') = 2'(N). Since z' is
balanced, fi(zf,v") < 0. Let P be a coalition associated to fix(x!,v").
Because f1x(z!,v") <0, 2'(P) < v!(P). Coalition P must contain all players
receiving a positive payoff at z' (otherwise z* is not balanced since P can
be used against any player outside P). Therefore z/(N) = z'(P) < v*(P).
Because of the way w' is defined it cannot exceed z'(N), so x'(N) = w'(P) =
di(w') and k receives 0 according to the serial rule of w'. m

The following lemma concerns a property of the serial rule. By definition,
the serial rule is such that dj, is divided among players {j € N,j < k}. Above
di, player k and any player j < k get the same payoff.

Lemma 7 For any player k we have 3 ;. 5 1y ¢; = di+(k—1)¢,,. Hence,
Zie{l,Z,...,kfl} ¢; > di + ¢p.. The latter inequality is strict except if k = 2 or
¢, = 0.

The next lemma tell us that, given a strategy profile with balanced pro-
posals, the proposer cannot get more than the serial rule of the games w?.

Lemma 8 Let (N,v) be a veto balanced TU game. Consider the associated
game with T periods GT(N,v). Let z = Z? zt be an outcome resulting
from balanced proposals. Consider period t, its outcome x' and the game
(N,w") where w'(S) = min{v'(S),2"(N)}. Then zt > ¢,(N,w") implies
xt > ¢;(N,w") for alll € N.

Proof. Let T be the set of veto players in (N, w'), and let M = {ly, ..., 1,,}
be the ordered (according to the d—values of (N, w")) set of nonveto players
that have received a positive payoff at xf. That is, d;, < ... < dq,,.°

8Because ! is a balanced proposal, the d—values of w! coincide with the d—values
of vt for all players receiving a positive payoff. Any player j that is receiving a positive
payoff at ¢ will be veto at ¢ +1 (lemma 3). The values d;(w") and d;(v") can only differ if
v'(S) > a!(N) for some S such that j ¢ S, but then player j would not be veto at ¢ + 1.

9Recall that, because x! is a balanced proposal, the d—values of w! coincide with the
d—values of v for all players in M.
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Suppose z} > ¢, (N, w"). Since 2" is balanced, =t = z! for all i € T, thus
if ) > ¢, (N,w") it follows that z! > ¢;(N,w") for all 7 € T.

We now want to prove that 2t > ¢,(N,w") for all i € M. We will do it
by induction.

Consider the responder [;. Since z* is balanced we have fy;, (z') = ] .
If the coalition associated to fi;, has a value of 0, it follows that 2] = zj,
so xj, > ¢y, (N,w'). If the coalition 1 is using has a positive value, all veto
players must be in it, so its payoff must be at least |T'|¢, (N, w'), and its value
(by definition of d;,) cannot exceed d;,. Hence, f1;,(z") > |T|dy (N, w") —dy,.
Because of lemma 7, |T'|¢ (N, w") — dj, > ¢, (N, w').

Now suppose the result 2t > ¢,(N, w') is true for all i € {ly,...,lx_1}. We
will prove that ; > ¢, (N,w'). Let S be a coalition such that fy, (z*) =
z'(S) — v'(S). As before, the result follows immediately if v*(S) = 0. If
v'(S) > 0 it must be the case that T C S, but S need not involve all players
in {ly,...,lx_1}. Denote {l1,...,lx_1} by Q. We consider two cases, depending
on whether @) C S.

1£Q C 8, we have 2}, = fiu,(2') = 2(5)—0'(S) = Trepu 6:(N, ) —dy,
where the last inequality uses the induction hypothesis. The set T'U @
contains all players with d; < d;,. Hence, by lemma 7, >, 5 ¢;(N,w') —
dlk > (blk (Nv wt)'

If @ € S, there is a player [, < [ such that [, ¢ S. Because z' is
a balanced proposal, a:fp = fu,(2"). Because the veto player can use S to
complain against l,, fi,(z") < fu,(2") = wy,, hence z;, < z;,. By the
induction hypothesis, z;, > ¢, (N,w"). Since d;, < d;, we also know that
¢y, (N, w") > ¢, (N, w'), so that

zy, = fu (2') > fu, (@) = 21, > ¢ (N, w') > ¢, (N, w).

So far we have discussed the set of veto players and the set of nonveto
players that are getting a positive payoff in x*. For players in N\(T' U M),
we have shown in lemma 6 that 2% = 0 implies ¢;(N,w") = 0, hence z% >
¢;(N,w") for all players. m

Corollary 1 If z = ZIT xt is an outcome resulting from balanced proposals,
i > ¢ (N, w') implies i = ¢,(N,w") for alll € N.
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This corollary follows directly from lemma 8 and the efficiency of the
serial rule. Lemma 8 states that 2} > ¢, (N, w") implies a} > ¢,(N,w") for
all [ € N. By definition of w', ),y 2] = w'(N). By the efficiency of the
serial rule, >,y ¢;(N,w') = w'(N). Hence, the only way in which player
1 can obtain the serial rule of (N, w") with balanced proposals is that all
players in the game obtain their serial rule payoff.

Finally, the sum of the serial rules of the games w' cannot exceed the
serial rule of the original game. This is due to the following property of the
serial rule:

Lemma 9 Consider the veto balanced TU game (N,v) and a finite set of

k

positive numbers (ay, ...,ax) such that Y a; = v(N). Consider the following
i=1

TU games: (N,w"), (N,w?), ..., (N,w*), where

wl(S) . :{ aq ZfS:N

min{ay,v(S)} otherwise

2 S) . asg ZfS =N
wi(S) : = min{as, max [0,v(S) — > ,cq &:(N,w")|} otherwise

! aj if S=N
wi(S) - min{a;, max [0, u(S) = St ies Gi(N, wm)}} otherwise

Then ¢(N,v) = Zle d(N,w').

In the lemma, we take v(N) and divide it in k positive parts, where k is
a finite number. Then we compute the serial rule for each of the k games,
and see that each player gets the same in total as in the serial rule of the
original game.

The k games are formed as follows: w*(N) is always ay; the other coali-
tions have v(.S) minus what has been distributed so far according to the serial
rule of the previous games, unless this would be negative (in which case the
value is 0) or above w*(N) (in which case the value is ay,).

The idea of the proof is that player ¢ cannot get anything until d; has
been distributed, and from that point on ¢ becomes veto. This happens
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regardless of the way v(N) is divided into k parts. For the same reason, if
Zle a; < v(N), player 1 will get less than ¢, (N, v).

Note that lemma 9 refers to a sequence of TU games such that each game
is obtained after distributing the serial rule payoffs for the previous game;
the games w! in lemma 8 are obtained by subtracting balanced proposals from
w'™L. It turns out that the TU games involved are identical in both cases: the
sequence w' depends only on the total amounts distributed z!'(N), ..., z"(N)
(denoted by ay, ..., a, in lemma 9). This is because the set of players that
get a positive payoff at period ¢ is the same in both cases (lemma 6) and all
these players become veto at period ¢t + 1 (lemma 3). Hence, any coalition
with positive value at ¢ has w'(S) = min(w'*(S) — z*"}(N), z!(N)) in both
cases.

Putting the above lemmas together we can prove theorem 2. First, any
payoft player 1 can achieve in a MBRE can be achieved by balanced proposals
(lemma 2). Second, given that proposals are balanced, the payoff player 1
can get cannot exceed the sum of the serial rules of the games w' (lemma 8).
Since the sum of the serial rules of the games w' cannot exceed the serial rule
of the original game (lemma 9), player 1 can never get more than ¢, (NV,v)
in a MBRE. Also, player 1 can only get ¢, (N, v) if all other players get their
serial rule payoff (corollary 1). Finally, ¢(N,v) is achievable by the sequential
proposals described in lemma 5.

Note that the assumption 7' > n only plays a role in lemma 5. For time
horizons shorter than n — 1, all auxiliary results still hold but player 1 may
not be able to achieve a payoff as high as ¢, (N, v).

As a byproduct of the analysis, we are able to compare the serial rule and
the nucleolus from player 1’s point of view.

Corollary 2 Let (N,v) be a veto balanced TU game. Then ¢,(N,v) >
v1(N,v).

Proof. In a MBRE, ¢,(/N,v) coincides with the equilibrium payoff for
the proposer in the game GT (N, v) when T > n — 1. This equilibrium payoff
is at least as large as his equilibrium payoff in the game G (N, v), because the
proposer can always wait until period 7" to divide the payoff. This equilibrium
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payoff is in turn at least as high as v1(V,v), because v(N,v) is a balanced
proposal. m

3.4 MBRE and SPE may not coincide

The next example illustrates that a MBRE need not be a subgame perfect
equilibrium.

Example 2 Let N = {1,2,3,4,5} be the set of players and consider the
following 5-person veto balanced game (N, v) where

36 if S € {{1,2,3,4} ,{1,2,3,5}}

o(S) = 31 sz.:{1,2,4,5}
51 if S=N
0 otherwise.

The serial rule for this game can be easily calculated given that d; = dy =
0, d3 = 31, dy = d5 = 36 and dg = 51. Player 1’s payoff according to the
serial rule is then ¢, (N,v) = 38 + 381 4 51288 — 191 /6. As we know from
the previous section, this is player 1’s payoff in any MBRE for any order of
the responders. Suppose the order of responders is 2, 3, 4, 5. The following
result holds given this order: If the responders play the game optimally
(not necessarily as myopic maximizers) the proposer can get a higher payoff
than the one provided by the MBRE outcome. Therefore, MBRE and SPE
outcomes do not necessarily coincide.

The strategy is the following: The proposer offers nothing in the first
three periods. In the 4th period the proposal is: (10,10, 5,0,0).

The responses of players 2, 4 and 5 do not change the proposal (even if
the proposal faced by player 4 and 5 is a new one resulting from a rejection of
player 3). If player 3 accepts this proposal, the TU game for the last period

will be:
11 if S e€{{1,2,3,4},{1,2,3,5}}

B 11 if S =1{1,2,4,5}
wiS) =1 o6 S =N
0 otherwise.
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In the last period, myopic and rational behavior coincide, so the out-
come must be an element of B;(/N,w). It can be checked that B;(N,w) =
{(5.5,5.5,0,0,0)} . Therefore, after accepting the proposal in period 4, player
3 gets a total payoff of 5.

If player 3 rejects the proposal, the outcome of the 4th period is (15, 10, 0,0, 0)
and the TU game for the last period is:

11 if S € {{1,2,3,4},{1,2,3,5}}

G if $ ={1,2,4,5}
wS) =9 96 S =N
0 otherwise.

As before, in the last period myopic and rational behavior coincide and the
outcome must be an element of By (N, u). It can be checked that By (N, u) =
{(5.2,5.2,5.2,5.2,5.2)} . Therefore, after rejecting the proposal player 3 gets
a total payoff of 5.2.

Therefore, rational behavior of player 3 implies a rejection of the proposal
in the 4th period. This rejection is not a myopic maximizer’s behavior. After
the rejection of player 3 the proposer gets a payoff of 20.2, higher than 121/6.
Hence, the outcome associated to MBRE is not the outcome of a SPE.

In the example above, the proposer finds a credible way to collude with
player 3 in order to get a higher payoff than the one obtained by player 2
(a veto player). Player 2 cannot avoid this collusion since he is responding
before player 3. If he responded after player 3, collusion between players 1
and 3 would no longer be profitable. This observation turns out to be crucial
as we will see in the next section.

Finally, consider the following profile of strategies: the proposer makes the
sequence of proposals presented in Lemma 5 (and proposes 0 for all players
off the equilibrium path) and the responders behave as myopic maximizers.
This profile is a Nash equilibrium and its outcome is ¢(N, v). Therefore:

Remark 3 The MBRE outcome is a Nash equilibrium outcome. Also, if z

n
is a Nash equilibrium outcome, 2z > ¢ = ===,
i=1
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3.5 The serial rule as an SPE outcome

The previous example shows that, in general, myopic and farsighted (ratio-
nal) behavior do not coincide. However, they do coincide when the model
incorporates a requirement on the order of the responders. We will assume
in theorem 3 that the order of the responders in period t is given by the
nonincreasing order of the d—values of the game v'. That is, the order of
the responders is not completely fixed in advance and can be different for
different periods. Given this order, any veto responder can secure a payoff
equal to the one obtained by the proposer. This was not the case in Example
2, where player 2 is a veto responder responding before player 3.

We start by pointing out some immediate consequences of the results in
section 3.3.

Suppose there is an SPE outcome z that differs from ¢(N,v). If z differs
from ¢(N,v), z1 > ¢1(N,v) (otherwise the proposer would prefer to play the
strategy described in lemma 5, which is available since 7' > n). If responders
are behaving myopically, the proposer can only achieve at least ¢, (V, v) if all
players are getting their serial rule payoffs, that is, if z = ¢(N,v) (theorem
2). Hence, z; is not achievable with myopic behavior of the responders, let
alone with balanced proposals:

Corollary 3 Let (N,v) be a veto balanced TU game and G (N,v) its as-
sociated extensive form game with T > n. Let z = iazt be an outcome
resulting from some SPE of the game GT(N,v). If z c;iﬁ”ers from ¢(N,v)
then z; cannot be achieved by making balanced proposals.

Corollary 4 Let (N, v) be a veto balanced TU game and G* (N, v) its associ-
ated extensive form game with T > n. Let z = ixt be an outcome resulting
from some SPE of the game GT (N, v). If z dz’ﬁ”er; from ¢(N,v) then there ex-

ists at least one period t and one player p for which fi,(x*, (N,v")) > x! > 0.

This is because if 2! > fy;(z*,v") for all [ and ¢, z would be achievable
under myopic behavior of the responders by proposing ! in each period ¢, a
contradiction.
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Since myopic behavior always leads to fi;(z*,v') < ¢ for all ¢ and all ¢
(lemma 1), the presence of a player p for which fi,(2*, (N,v")) > x, indicates
non-myopic responder behavior. This responder may be player p (nonmyopi-
cally accepting a proposal), or a responder moving after p (nonmyopically
rejecting a proposal and transferring payoff to player 1). In example 2, player
3 rejects a proposal nonmyopically and as a result creates the inequality
fr2(zt,v") > 2t at the end of period ¢ = 4.

We are now ready to state our main result.

Theorem 3 Let (N, v) be a veto balanced TU game and G* (N, v) its associ-
ated extensive form game in which T' > n and the responders move following

the order of nonincreasing d—values of v*. Then ¢(N,v) is the outcome of
any SPE.

The rest of this section is devoted to proving this theorem. We will show
in lemma 13 that, if responders move following the order of nonincreasing
d—values of v¥, any SPE outcome z is such that the proposer can obtain z; by
making balanced proposals. Since any SPE outcome z different from ¢ (N, v)
would be unachievable with balanced proposals according to corollary 3, this
will complete the proof.

In order to prove lemma 13 we need several auxiliary results.

We denote by x the proposal that emerges in period ¢ immediately after
i gets the move. The following lemma establishes a property of ¢ that must
be inherited by the final outcome in period ¢, x’.

Lemma 10 Suppose after player i responds to the proposal in period t it
holds that fi;(x%*,v*) > 0. Then f1;(z",v*) > 0 regardless of the responses of
the players moving after 1.

Proof. Suppose by contradiction that fi;(«*,v") < 0. This means that
at the end of period ¢ there is a coalition S* such that i ¢ S* and v'(5*) >
2(S*). Because fi; (%, v') > 0 immediately after 7 responds to the proposal,
all coalitions excluding ¢ had a positive satisfaction at that point, and in
particular v'(S*) < 2%/(S*). There must be a player i moving after i such
that h ¢ S* and h has received a payoff transfer from player 1 by rejecting the
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proposal. At the moment of rejection by h we have fi;(zb", v') = 2t > 0.
However, since S* can be used by 1 to complain against h, at the end of
period ¢ we have fi,(2%,v") < 0. There must be another player | moving
after h that has received a payoff transfer from player 1, and this player
cannot be in S*. Then this player is in the same situation as player h: he has
fu(x v') > 0 at the moment of rejection, but at the end of period ¢ he has
fu(z*;v") < 0. Thus there must be another player moving after him that has
caused this change and would himself be in the same situation as player h...
but the number of players is finite. =

Notice that lemma 10 holds for any strategy profile, not necessarily an
equilibrium.

The next auxiliary result will allow us to compare the equilibria of games
with different characteristic functions. If one of the characteristic functions is
"worse" than the other (in the sense of having lower values), player 1 might
still have a greater SPE payoff, but only with nonmyopic responder behavior.

Lemma 11 Let (N,v) and (N,w) be two veto balanced games in which
player 1 is a veto player. Let w(S) > v(S) for any S. Let GT(N,v) and
GT(N,w) be the associated extensive form games with T proposals. If the
payoff provided to the proposer by a SPE outcome of the game G (N,w)
s strictly lower than the payoff provided to the proposer by a SPE out-
come of the game GT(N,v), then the SPE outcome of GT(N,v) is such that
xb < fu(at,vh) for some | and t, which implies that at least one responder is
behaving nonmyopically.

Proof. Suppose the final payoffs are such that =} > fy;(*, v') for all [ and
t. We can then use lemma 2 to construct a sequence of balanced proposals
with the same payoff for the proposer. For any sequence y' of balanced
proposals of the game G (N, v) it holds that ! > fy;(y!, w'), and we can use
lemma 2 again to construct a sequence of balanced proposals for the game
GT (N, w) where the payoff of the proposer does not change, a contradiction.
[ |

The next auxiliary result provides a bound for the payoff difference be-
tween player 1 and player i # 1.
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Lemma 12 Let (N,v) be a veto balanced TU game. Consider the associated
game with T periods GT(N,v). Fiz a period | € {1,...,T} and a subgame
that starts in period | (not necessarily on the equilibrium path), and label the
responders according to the nondecreasing order of d-values in the game v'.
Let ' = ZZT xt be the vector of payoffs accumulated between | and T. Then
yt >yt —d for alli € {2,....n} in any SPE of GT(N,v). Moreover, the

inequality is strict if d. > d.

Proof. Note that, because period T is the last period of the game, myopic
and rational behavior coincide, so I > fi;(vT, 27) for all 4.
Consider player 2. Since players play myopically in period T, it must be

the case that'®

Since v}, > 21 it follows that 3} > ¢y} — db.

Now consider player i # 2. There are two possible cases, depending on
whether ! < d..

If y} < db, the result follows immediately since

yp —dy <yp—dy <0<yl

It is also clear that the inequality is strict if d} < d..

From now on we assume 3! > d5. Note that since we have already shown
that y, > y} —db, it follows that that y5 > 0 in this case. There are again two
possible cases, depending on whether the coalition associated to fi;(zT,vT)
contains 2.

107f S is a coalition associated to fi2(zT), the total payoff of S must be at least z7.

T-1
Also, the total value of S must be at most db — Z zl.
1
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If the coalition contains 2, we have

T-1 T—-1
y 2 ol > fulaToT) 2 ol 4 af - (dé—Zwi—Zwé> )
l l
= b —d >yl —d,

where the last inequality follows from the fact that g} > 0.
If the coalition does not contain 2, we have fi;(27) > fi2(z7). Then

v > a] > fu(@®0") > fra(a” o) 2y —dy >y —d..

Note that the inequality is strict for d. > d,. m

The main building block of the proof is the next lemma, which shows that,
given the particular order of responders we impose, the proposer cannot do
better than with balanced proposals.

Lemma 13 Let (N,v) be a veto balanced TU game. Consider the associated
game GT(N,v) in which the responders move following the order of nonin-

T
creasing d—wvalues of v*. Let z = "2t be an outcome resulting from some SPE
1

of the game GT(N,v). Then the proposer can obtain z; by making balanced
proposals.

Proof. Suppose on the contrary that z; cannot be obtained with balanced
proposals. By Lemma 2 we know that there is a player k£ and a stage ¢ such
that fix(zf,v") > 2t > 0; otherwise the proposer can obtain z; with balanced
proposals.

Let t be the last period!' in which for some responder it holds that
fie(xt,vt) > 2t > 0. Let k be the last responder at ¢ for whom fi;(xt, v') >
xi > 0. We consider two cases:

a) There is a player p with d/, < dj such that fi,(z*,v") < 0. Note
that fig(a',v") > 2t > 0 means that any coalition without player

Tt is clear that ¢ < m, since all responders behave as myopic maximizers in the last
period.

30



k has a positive satisfaction and, in particular any coalition S, €

arg max v'(S). On the other hand since fi,(z%,v") < 0 then there
SCN\{k}

exists a coalition without player p for which the satisfaction is not pos-
itive. Let S be one such coalition (it must contain k). Then we have
the following two inequalities:

2! (Sk) > dy and v'(S}) > z*(S;).
Combining the two inequalities we obtain
2 (Sk) — :pt(S;) > di, — vt(S;) > d; — d; > 0.

The inequality above implies that there are players not in S receiving
a positive payoff in period t¢.

Consider a new allocation, 3", which is identical to z* except that y! = 0
for all i not in Sy (thus y; = =} for all 4 in S;). We now show that
f1(yh,v") <yt for all i € N, so that player 1 can get the same payoff
with balanced proposals by lemma 2.

For any player i it holds that fi;(y', v") < fi:(2f, 0").

Because S can be used against any player outside S;, for any player
outside Sy it holds that fi;(y", v") < fip(y',v") < fip(2!,v") < 0. Thus,
fu(y',v') <y for all i ¢ S

Can there be a player I € Sy for which fy(y*,v") > y;? If so, this
inequality must have existed already for z*, since f1;(y*,v') < fu(zf, v*)
and y{ = x!. Since player k is the last player satisfying the inequality
for z', it must be the case that d} > di, > d;, thus we can repeat the
reasoning above with .S; and S and, given that nothing has changed
for Sy, we would conclude that y*(S;) — y*(S;) > 0, a contradiction
since all players outside S} have zero payoffs. Thus, fi;(y",v") < y; for
all 4.

Note that for this part of the proof no assumption is needed about the
order in which the responders move.!?

12 All we need to assume in this part of the proof is that player k is the "last" player in
the sense of being the player with the lowest d!, not necessarily the one who moves last.
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b) The second case is fi; (2!, v") > 0 for all players moving after k at ¢t. By
assumption, on the equilibrium path from ¢ + 1 onwards all proposals
have an associated balanced proposal. We distinguish two subcases:

bl) The last player to act nonmyopically at ¢ has accepted a proposal.
This player must be player k or a player moving after k. Call this
player p (p moving after k is possible if a myopic rejection by a
player moving after p has restored fi, < z,).
We will show that it is not in p’s interest to accept the proposal.
To do this, we need to analyze two subgames: the subgame on the
equilibrium path in which p accepts the proposal, and the subgame
off the equilibrium path in which p rejects the proposal. We will
talk about the A-path (the equilibrium path) and the R-path.

4t and 2™ the final payoffs in period ¢ depending

Denote by x
on whether player p accepts or rejects the proposal. If player p
rejects the proposal, we take any subgame perfect equilibrium of

A+l Rit+1

that subgame. Denote by v and v the corresponding TU

games at t + 1.

Because fy(z%,v") > 0 for [ € {2,...,p}, on the A-path all players
in {2,...,p} are veto players at ¢ + 1.

The game v is better than the game v**1 (in the sense of
lemma 11). If v41(S) > 0, coalition S must contain all players
in {1,2,...,p}. For this kind of coalition v#**1(S) = vA+1(S9),
since any payoff transfers after rejection occur between members of
{1,...,p} (here the order of moves is essential). Thus, v41(S) <
vFL(S) for all S.

We now show that p is also veto at ¢t + 1 on the R-path.

Suppose p is not veto at ¢t + 1 on the R-path. Then there is a
coalition S, such that p ¢ S, and vf**1(S,) > 0. This can only
happen if v®4(S,) > z(S,), or equivalently fi,(z' v') < 0,
contradicting lemma 10.

Thus, player p is a veto player at ¢ + 1 regardless of whether he
accepts or rejects the proposal. Given the order of moves, veto
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b2)

players can secure at least the same payoft as the proposer. There
is no reason for veto players to act nonmyopically because the
game at t + 2 will be the same regardless of how the payoff is
distributed at t + 1 between veto players; no payoff can go to
anyone else given the order of responders. For the same reason
the proposer will never make a proposal that gives another veto
player more than he gets himself, so that all veto players must
get the same payoff given the order of moves. Let y* be player
1I’s payoft if p rejects the proposal (this is the payoff accumulated
between periods t+1 and n) and y;* be player 1’s payoff if p accepts
the proposal. Because of lemma 11, the only way in which 3¢ can
exceed yl is if there is a nonmyopic move at v+ that leads to
Fra(zAHL gAY s A for some i By assumption this is not
the case. Thus, it was not in p’s interest to accept: rejecting would
yield a higher payoff at ¢, and at least the same payoff in the rest
of the game.

The last player to act nonmyopically at ¢ has rejected a proposal.
Let p be the last player to act nonmyopically at ¢. This player can-
not be player k£ because after any rejection (myopic or otherwise)
it holds that fix(.) < %, and given that the remaining responders
act myopically this inequality would never be reversed. Some-
one moving after £ must have rejected a proposal nonmyopically
(transferring payoff to the proposer) and created the inequality
fie(xt,v") >zt hence player p must be moving after k. We will
show that it is not in p’s interest to reject the proposal. To do
this, we need to analyze two subgames: the subgame on the equi-
librium path in which p rejects the proposal, and the subgame off
the equilibrium path in which p accepts the proposal. We will talk
about the R-path (the equilibrium path) and the A-path.
Because fy;(x!,v") > 0 for [ € {2,...,k}, on the equilibrium path
all players in {2, ..., k} are veto players at ¢ + 1.

The game v is better than the game v*1 (in the sense of
lemma 11). If vf+1(S) > 0, coalition S must contain all players in
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{1,2,...,p}. For this kind of coalition v#!*1(S) = vA++1(S), since
any payoff transfers on the A-path must occur between members
of {1,2,...,p} (again, here the order of moves is essential). Thus,
vEFL(S) < vAHL(S) for all S.

Suppose player p is veto also on the A-path. Then the reasoning of
case bl applies, and there is no reason for p to act nonmyopically

in period t.

Now suppose player p is not veto on the A-path at ¢t + 1. We

define d**! ;= max vA*1(S). Since p is not a veto player at
b SCN\{p} (5) b pay

t + 1 on the A-path, dﬁ’tﬂ > 0. There is a coalition S, such that
v!(S,) —at(S,) = dM > 0. Since by assumption f1,(zf,v") > 0
on the R-path, we also have 2(S,) — v*(S,) > 0. From the two
inequalities we get 2/%4(S,) — 24(S,) > dMH1,

Let a be the payoff player p transfers to player 1 when rejecting the
proposal (part of this payoff may then go to other players between
2 and p— 1 if they myopically reject a proposal). We want to show
that o > 2(S,) —24(S,), which implies @ > d5-**1. This is not
completely obvious because part of the difference could be due to
a player outside S, myopically rejecting on the A-path.

Claim. o > z(S,) — 241(S,) > db+.

Note that ' and 2! are identical for all responders moving
before p. Because of the order of moves, any payoff transfers
due to a change of p’s action from R to A occur within the set
{1,2,...,p}. Denote by T the set {2,...,p — 1}\S,. We can write
oB(S,) + 2BHT) = 2M(S,) + 2M(T) + . All we need to show
is that ;" > xf’t for all h € T (this is obvious if T is empty).
This implies xf¢(T) > x4*(T) and hence zf(S,) — 244(S,) < a.
Suppose there is a player h in T" that has xf’t < .I;?’t. Since this
player is not in S,, S, can be used by player 1 against him.

Player h must have rejected in the A-path (if he had accepted

he would have z/"" > z"')!3. After rejecting he is left with

13By assumption, p is the last player to behave nonmyopically on the R-path. This leaves
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fin(.) = 2 > 0. On the other hand, v*(S,) — z4*(S,) > 0.
Thus, fi,(z4*, ") < 0, contradicting lemma 10.

Now we are in a position to compare payoffs on the A and R-paths
and see that p prefers to accept the proposal.

Since player p is veto on the R-path, he gets y*. On the A-path, he
gets y]f, whereas the proposer gets y{'. Because lemma 12 applies
to all subgames regardless of whether they are on the equilibrium
path, y;' > i — d

In order to have an equilibrium, p must prefer to reject the pro-
posal, thus we need z! +-y{* > xl +a+yt > ol +d 4yt —d
Therefore we need 3 > y{!. Since the game v**! is better than
the game v (in the sense of lemma 11), and by assumption
fri(2!,v!) > 2! never happens on the R-path from ¢ + 1 onwards,
the inequality y& > yi' cannot hold.

We have shown that any SPE outcome is such that the proposer can
always achieve z; with balanced proposals. From the previous section we
know that the best outcome the proposer can achieve with balanced proposals
is ¢(N,v), hence this completes the proof.

As previously mentioned, the set of NE outcomes coincides with the set
of SPE outcomes in the one-period bargaining game. This property does not
carry over to the multi-period game. Theorem 3 rules out alternative NE
outcomes supported by incredible threats on the part of the responders, but
there may be incredible threats available to the proposer. For example, let
N ={1,2}, v(N) =20, v(1) = v(2) = 0 and T" = 2. The only SPE outcome
is (10,10), but this is not the only NE outcome. Consider the following
strategy combination. Player 1 proposes (a,0) in period 1. If period 1’s

us with two possibilities for h on the R-path: myopic acceptance and myopic rejection.
In neither case it is possible for h to get a higher payoff by accepting the proposal on the
A-path.
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20—a 20—a
2 0 2

proposal was rejected, player 1 proposes (0,0) in period 2. Player 2 accepts

proposal is accepted, player 1 proposes ( ) in period 2; if period 1’s
the proposal in period 1 provided that :1:}’1 < a, and behaves myopically in
period 2. By accepting the proposal (a,0), player 2 gets nothing in period 1
20—a - . . . . . . a - . . . .
and =5-* in period 2; rejecting it brings § in period 1 and 0 in period 2. This
strategy combination is a NE provided that a < 10. It rests on an incredible
threat by the proposer, since in the subgame after the proposal has been
rejected it would not be in the proposer’s interest to propose (0, 0).

4 Concluding remarks

We have provided noncooperative foundations for the serial rule ¢(NV,v) in
veto balanced games. Our procedure is based on bilateral bargaining with an
enforceable bilateral principle. Interestingly, the serial rule does not satisfy
the bilateral principle in general (the nucleolus is the only efficient allocation
that does), but it is the sum of n allocations, each of which satisfies the
bilateral principle in the relevant game.

We have also shown that any SPE outcome of our bargaining procedure
is achievable with myopic behavior of the responders if responders move by
increasing strength (lemma 13). This result is independent of the number
of periods. If there are at least n — 1 periods, the only SPE outcome is
the serial rule: the proposer is always able to obtain ¢,(/N,v) by making
balanced proposals, and the only way to obtain this payoff is if all other
players get ¢,(N,v) as well. If there are fewer than n — 1 periods, there
may not be enough periods for the proposer to achieve the serial rule with
balanced proposals. If z is a SPE outcome, it is still true that the proposer
can obtain z; by making balanced proposals, hence all SPE outcomes must
have the same z;, but there may be several SPE outcomes if z; < ¢, (N, v).
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