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This paper is devoted to the study of convergence properties of distances between points and the existence and uniqueness of best
proximity and fixed points of the so-called semicyclic impulsive self-mappings on the union of a number of nonempty subsets
in metric spaces. The convergences of distances between consecutive iterated points are studied in metric spaces, while those
associated with convergence to best proximity points are set in uniformly convex Banach spaces which are simultaneously complete
metric spaces. The concept of semicyclic self-mappings generalizes the well-known one of cyclic ones in the sense that the iterated
sequences built through suchmappings are allowed to have images located in the same subset as their pre-image.The self-mappings
under study might be in the most general case impulsive in the sense that they are composite mappings consisting of two self-
mappings, and one of them is eventually discontinuous. Thus, the developed formalism can be applied to the study of stability of a
class of impulsive differential equations and that of their discrete counterparts. Some application examples to impulsive differential
equations are also given.

1. Introduction

Fixed point theory has an increasing interest in research in
the last years especially because of its high richness in
bringing together several fields of Mathematics including
classical and functional analysis, topology, and geometry [1–
8]. There are many fields for the potential application of
this rich theory in Physics, Chemistry, and Engineering, for
instance, because of its usefulness for the study of existence,
uniqueness, and stability of the equilibrium points and for
the study of the convergence of state-solution trajectories
of differential/difference equations and continuous, discrete,
hybrid, and fuzzy dynamic systems as well as the study
of the convergence of iterates associated to the solutions.
A basic key point in this context is that fixed points are
equilibrium points of solutions of most of many of the above
problems. Fixed point theory has also been investigated in

the context of the so-called cyclic self-mappings [8–20] and
multivalued mappings [21–32]. One of the relevant problems
under study in fixed point theory is that associated with 𝑝-
cyclic mappings which are defined on the union of a number
of nonempty subsets 𝐴

𝑖
⊂ 𝑋; ∀𝑖 ∈ 𝑝 = {1, 2, . . . , 𝑝} of metric

(𝑋, 𝑑) or Banach spaces (𝑋, ‖‖). There is an exhaustive back-
ground literature concerning nonexpansive, nonspreading,
and contractive 𝑝-cyclic self-mappings 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→

⋃
𝑖∈𝑝

𝐴
𝑖
, for example, [8–20], including rational contractive-

type conditions and [20, 33], and references therein, and
for various kinds of multivalued mappings. See, for instance
[21–32] and references therein. A key point in the study of
contractive cyclic self-mappings is that if the subsets 𝐴

𝑖
for

𝑖 ∈ 𝑝 are disjoint then the convergence of the sequence of
iterates 𝑥

𝑛+1
= 𝑇𝑥

𝑛
; ∀𝑛 ∈ Z

0+
(Z

0+
= Z

+
∪ {0}), 𝑥

0
∈

⋃
𝑖∈𝑝

𝐴
𝑖
, is only possible to best proximity points. The

existence of such fixed points, its uniqueness and associated
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properties are studied rigorously in [11–13] in the framework
of uniformly convex metric spaces, in [14–17], and in [12,
19] for Meir-Keeler type contractive cyclic self-mappings.
In this paper, we introduce the notions of nonexpansive
and contractive 𝑝-semicyclic impulsive self-mappings and
investigate the best proximity and fixed points of those maps.
The properties of boundedness and convergence of distances
are studied in metric spaces, while those of the iterated
sequences 𝑥

𝑛+1
= 𝑇𝑥

𝑛
; ∀𝑛 ∈ Z

0+
, 𝑥

0
∈ ⋃

𝑖∈𝑝
𝐴
𝑖
, are

studied in uniformly convex Banach spaces. It is also seen
through examples that the above combined constraint for
distances is relevant for the description of the solutions of
impulsive differential equations and discrete impulsive equa-
tions and for associate dynamic systems. The boundedness
of the sequences of distances between consecutive iterates
is guaranteed for nonexpansive 𝑝-semicyclic self-mappings
while its convergence is proved for asymptotically contractive
𝑝-semicyclic self-mappings. In this case, the existence of a
limit set for such sequences is proved. Such a limit set contains
best proximity points if the asymptotically contractive 𝑝-
semicyclic self-mapping is asymptotically 𝑝-cyclic, (𝑋, 𝑑) is
a complete metric space which is also a uniformly convex
Banach space (𝑋, ‖ ‖), and the subsets 𝐴

𝑖
⊂ 𝑋; ∀𝑖 ∈ 𝑝 are

nonempty, closed, and convex. It has to be pointed out
that the standard nonexpansive and contractive cyclic self-
mappings may be viewed as a particular case of those
proposed in this paper since it suffices to define the map so
that any point of a subset is mapped in one of the adjacent
subsets in the cyclic disposal and to define the second self-
mapping of the composite impulsive one as identity.

2. Nonexpansive and Contractive 𝑝-Semicyclic
and 𝑝-Cyclic Impulsive Self-Mappings

Consider a metric space (𝑋, 𝑑) and a composite self-mapping
𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
of the form 𝑇 = 𝑇

+
𝑇
−, where 𝐴

𝑖
, 𝑖 ∈

𝑝 are 𝑝(≥ 2) nonempty closed subsets of 𝑋 with 𝐴
𝑛𝑝+𝑖

≡ 𝐴
𝑖
;

∀𝑖 ∈ 𝑝, ∀𝑛 ∈ Z
0+

(in particular,𝐴
𝑝+1

≡ 𝐴
1
) having a distance

𝐷
𝑖
= 𝑑(𝐴

𝑖
, 𝐴

𝑖+1
) ≥ 0 between any two adjacent subsets 𝐴

𝑖

and 𝐴
𝑖+1

of𝑋; ∀𝑖 ∈ 𝑝. In order to facilitate the reading of the
subsequent formal results obtained in the paper, it is assumed
that 𝐷 = 𝐷

𝑖
; ∀𝑖 ∈ 𝑝. Some useful types of such composite

self-mappings for applications together with some of their
properties inmetric spaces are studied in this paper according
to the following definition and its subsequent extensions.

Definition 1. The composite self-mapping 𝑇(≡ 𝑇
+
𝑇
−
) :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is said to be a 𝑝-semicyclic impulsive self-

mapping if the following conditions hold:

(1) 𝑇− : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is such that 𝑇−𝐴

𝑖
⊆ 𝐴

𝑖
∪

𝐴
𝑖+1

; ∀𝑖 ∈ 𝑝 satisfies the constraint 𝑑(𝑇−𝑥, 𝑇−𝑦) ≤

𝐾𝑑(𝑥, 𝑦) + (1 − 𝐾)𝐷; ∀𝑥 ∈ 𝐴
𝑖
, ∀𝑦 ∈ 𝐴

𝑖+1
, and ∀𝑖 ∈ 𝑝

for some real constant 𝐾 ∈ R
0+
;

(2) 𝑇+ : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is such that 𝑇+𝑇−(𝐴

𝑖
∪

𝐴
𝑖+1
) ⊆ 𝐴

𝑖
∪ 𝐴

𝑖+1
; ∀𝑖 ∈ 𝑝 satisfies the constraint

𝑑(𝑇
+
(𝑇

−
𝑥), 𝑇

+
(𝑇

−
𝑦)) ≤ 𝑚(𝑇

−
𝑥, 𝑇

−
𝑦)𝑑(𝑇

−
𝑥, 𝑇

−
𝑦)

for some given bounded function 𝑚 : (⋃
𝑖∈𝑝

𝐴
𝑖
) ×

(⋃
𝑖∈𝑝

𝐴
𝑖
) → R

0+
.

Note that 𝑝-semicyclic impulsive self-mappings satisfy
the subsequent combined constraint as follows:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑚 (𝑇
−
𝑥, 𝑇

−
𝑦) [𝐾𝑑 (𝑥, 𝑦) + (1 − 𝐾)𝐷] ,

∀𝑥 ∈ 𝐴
𝑖
, ∀𝑦 ∈ 𝐴

𝑖+1
, ∀𝑖 ∈ 𝑝;

(1)

then 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
which follows after combining

the two ones given in Definition 1.
The following specializations of the 𝑝-semicyclic impul-

sive self-mapping 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
of Definition 1 are

of interest.

(a) It is said to be nonexpansive (resp., contractive) 𝑝-
semicyclic impulsive if, in addition, 𝐾 ∈ [0, 1] (resp.,
if 𝐾 ∈ [0, 1)) and𝑚(𝑇

−
𝑥, 𝑇

−
𝑦) ≤ 1.

(b) It is said to be 𝑝-cyclic impulsive if 𝑇𝐴
𝑖
⊆ 𝐴

𝑖+1
, ∀𝑖 ∈

𝑝. It is said to be a nonexpansive (resp., contractive)
𝑝-cyclic impulsive if, in addition, 𝐾 ∈ [0, 1] (resp., if
𝐾 ∈ [0, 1)) and𝑚(𝑇

−
𝑥, 𝑇

−
𝑦) ≤ 1.

(c) It is said to be strictly 𝑝-semicyclic impulsive self-
mapping if it satisfies the more stringent constraint

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝐾𝑚 (𝑇
−
𝑥, 𝑇

−
𝑦) 𝑑 (𝑥, 𝑦)

+ (1 − 𝐾𝑚 (𝑇
−
𝑥, 𝑇

−
𝑦))𝐷,

∀𝑥 ∈ 𝐴
𝑖
, ∀𝑦 ∈ 𝐴

𝑖+1
, ∀𝑖 ∈ 𝑝.

(2)

A motivation for such a concept is direct since 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is nonexpansive (resp., contractive) if

𝐾𝑚(𝑇
−
𝑥, 𝑇

−
𝑦) ≤ 1 (resp., if 𝐾𝑚(𝑇

−
𝑥, 𝑇

−
𝑦) < 1), ∀𝑥 ∈ 𝐴

𝑖
,

∀𝑦 ∈ 𝐴
𝑖+1

, and ∀𝑖 ∈ 𝑝. This motivates, as a result, the
concepts of nonexpansive and contractive strictly 𝑝-semicyclic
impulsive self-mappings and the parallel ones of nonexpansive
and contractive strictly𝑝-cyclic impulsive self-mappings for the
particular case that 𝐴

𝑖
⊆ 𝐴

𝑖+1
, ∀𝑖 ∈ 𝑝.

Remark 2. Note that if 𝑚(𝑇
−
𝑥, 𝑇

−
𝑦) ≤ 1, ∀𝑥 ∈ 𝐴

𝑖
, ∀𝑦 ∈

𝐴
𝑖+1

, and ∀𝑖 ∈ 𝑝, then 𝑚(𝑇
−
𝑥, 𝑇

−
𝑦)(1 − 𝐾)𝐷 ≤ (1 −

𝐾𝑚(𝑇
−
𝑥, 𝑇

−
𝑦))𝐷, ∀𝑥 ∈ 𝐴

𝑖
, ∀𝑦 ∈ 𝐴

𝑖+1
, and ∀𝑖 ∈ 𝑝, and

this holds if 𝐷 = 0 (i.e., ⋂
𝑖∈𝑝

𝐴
𝑖
̸= 0) irrespective of the value

of𝑚(𝑇
−
𝑥, 𝑇

−
𝑦), ∀𝑥 ∈ 𝐴

𝑖
, ∀𝑦 ∈ 𝐴

𝑖+1
, and ∀𝑖 ∈ 𝑝.

The subsequent result follows directly from Remark 2.

Proposition 3. Assume that any of the two conditions below
holds:

(1) ⋂
𝑖∈𝑝

𝐴
𝑖
̸= 0;

(2) ⋂
𝑖∈𝑝

𝐴
𝑖
= 0 and 0 ≤ 𝑚(𝑇

−
𝑥, 𝑇

−
𝑦) ≤ 1, ∀𝑥 ∈ 𝐴

𝑖
,

∀𝑦 ∈ 𝐴
𝑖+1

, and ∀𝑖 ∈ 𝑝.
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Then, the self-mapping 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is

(i) strictly 𝑝-semicyclic if it is 𝑝-semicyclic;

(ii) strictly nonexpansive (resp., contractive) 𝑝-semicyclic if
it is nonexpansive (resp., contractive) 𝑝-semicyclic;

(iii) strictly 𝑝-cyclic if it is 𝑝-cyclic;

(iv) strictly nonexpansive (resp., contractive) 𝑝-cyclic if it is
nonexpansive (resp., contractive) 𝑝-cyclic.

It is of interest the study of weaker properties than
the above ones in an asymptotic context to be then able
to investigate the asymptotic properties of distances for
sequences {𝑥

𝑛
}
𝑛∈Z0+of iterates built through 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝

𝐴
𝑖
according to 𝑥

𝑛+1
= 𝑇𝑥

𝑛
for all 𝑛 ∈ Z

0+
and some

𝑥
0
∈ ⋃

𝑖∈𝑝
𝐴
𝑖
as well as the existence and uniqueness of fixed

and best proximity points.

Lemma 4. Consider the 𝑝-semicyclic impulsive self-mapping
𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
with 𝐾 ∈ [0, 1], and define

𝑚
󸀠
(𝑇

−
𝑥, 𝑇

−
𝑦) = 𝑚 (𝑇

−
𝑥, 𝑇

−
𝑦) − 1,

𝛿
𝑘 (𝑥) = 𝑚

󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥)

× (𝐾𝑑 (𝑇
𝑘
𝑥, 𝑇

𝑘−1
𝑥) + (1 − 𝐾)𝐷) ,

(3)

for 𝑥 and 𝑦 in adjacent subsets 𝐴
𝑖
and 𝐴

𝑖+1
of𝑋 for any 𝑖 ∈ 𝑝.

Then, the following properties hold.
(i)The sequence {𝑑(𝑇𝑘+𝑛𝑝+𝑗𝑥, 𝑇𝑘+𝑛𝑝+𝑗−1𝑥)}

𝑘∈Z0+ is bounded
for all 𝑘 ∈ Z

0+
, and ∀𝑛 ∈ Z

+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} if

− 𝑑 (𝑇
𝑘+1

𝑥, 𝑇
𝑘
𝑥) ≤ ∑

𝑖∈𝑆+(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥)

− ∑

𝑖∈𝑆−(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥) < ∞

∀𝑘 ∈ Z
0+
, ∀𝑛 ∈ Z

+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

(4)

where

𝛿
𝑘 (𝑥) = 𝑚

󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥)

× (𝐾𝑑 (𝑇
𝑘
𝑥, 𝑇

𝑘−1
𝑥) + (1 − 𝐾)𝐷) ,

∀𝑘 ∈ Z
0+
,

(5)

𝑆
+
(𝑘, 𝑛, 𝑗)

= {𝑖 ∈ Z
+
: (𝑖 ≤ 𝑛𝑝 + 𝑗)

∧ (𝑚
󸀠
(𝑇

(𝑘+𝑛𝑝+𝑗−𝑖+1)−
𝑥, 𝑇

(𝑘+𝑛𝑝+𝑗−𝑖)−
𝑥)) > 0} ,

𝑆
−
(𝑘, 𝑛, 𝑗)

= {𝑖 ∈ Z
+
: (𝑖 ≤ 𝑛𝑝 + 𝑗)

∧ (−1 ≤ 𝑚
󸀠
(𝑇

(𝑘+𝑛𝑝+𝑗−𝑖+1)−
𝑥,

𝑇
(𝑘+𝑛𝑝+𝑗−𝑖)−

𝑥)) < 0} ,

∀𝑘 ∈ Z
0+
, ∀𝑛 ∈ Z

+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(6)

If, furthermore, 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is 𝑝-cyclic then

the lower-bound in (4) is replaced with 𝐷 − 𝑑(𝑇
𝑘+1

𝑥, 𝑇
𝑘
𝑥).

If 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is a nonexpansive 𝑝-semicyclic

impulsive self-mapping (in particular, 𝑝-cyclic), then
{𝑑(𝑇

𝑘+𝑛𝑝+𝑗
𝑥, 𝑇

𝑘+𝑛𝑝+𝑗−1
𝑥)}

𝑘∈Z0+ is bounded, ∀𝑘 ∈ Z
0+
, and

∀𝑛 ∈ Z
+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}.

(ii) If, furthermore, 𝐾 ∈ [0, 1), then

0 ≤ lim sup
𝑛→∞

𝑑 (𝑇
𝑘+𝑛𝑝+𝑗

𝑥, 𝑇
𝑘+𝑛𝑝+𝑗−1

𝑥)

≤ 𝐷 + lim sup
𝑛→∞

𝑛𝑝+𝑗

∑

𝑖=1

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥)

≤ 𝐷 + lim sup
𝑛→∞

( ∑

𝑖∈𝑆+(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥)

− ∑

𝑖∈𝑆−(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥)) < ∞,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(7)

If, in addition,𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is 𝑝-cyclic, then the

lower-bound in (7) is replaced with𝐷.
If 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is contractive 𝑝-semicyclic, then

0 ≤ lim sup
𝑛→∞

𝑑 (𝑇
𝑘+𝑛𝑝+𝑗

𝑥, 𝑇
𝑘+𝑛𝑝+𝑗−1

𝑥) ≤ 𝐷,

∀𝑘 ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} , ∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
.

(8)

If 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is contractive 𝑝-cyclic, then

there exists lim
𝑛→∞

𝑑(𝑇
𝑘+𝑛𝑝+1

𝑥, 𝑇
𝑘+𝑛𝑝

𝑥) = 𝐷, ∀𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
.

Proof. Build a sequence of iterates {𝑇
𝑘
𝑥}

𝑘∈Z according to
𝑇𝑇

𝑘−1
𝑥 = 𝑇

+
𝑇
−
𝑇
𝑘−1

𝑥 with 𝑇
0−
𝑥 = 𝑥, 𝑇0𝑥 = 𝑇

0+
𝑇
0−
𝑥 = 𝑥,

for any given 𝑥 ∈ 𝐴
𝑖
and any 𝑖 ∈ 𝑝 that is,𝑇 = 𝑇

0+
= 𝑇

0−
= 𝑖𝑑

so that

𝑑 (𝑇
𝑘+1

𝑥, 𝑇
𝑘
𝑥) ≤ (1 + 𝑚

󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥))

× 𝑑 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥)
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≤ (1 + 𝑚
󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥))

× (𝐾𝑑 (𝑇
𝑘
𝑥, 𝑇

𝑘−1
𝑥) + (1 − 𝐾)𝐷)

= 𝐾𝑑 (𝑇
𝑘
𝑥, 𝑇

𝑘−1
𝑥) + (1 − 𝐾)𝐷 + 𝛿

𝑘 (𝑥) ,

∀𝑘 ∈ Z
0+
.

(9)

Through a recursive calculation with (4), one get:

0 ≤ 𝑑 (𝑇
𝑘+𝑛𝑝+𝑗

𝑥, 𝑇
𝑘+𝑛𝑝+𝑗−1

𝑥)

≤ 𝐾𝑑 (𝑇
𝑘+𝑛𝑝+𝑗−1

𝑥, 𝑇
𝑘+𝑛𝑝+𝑗−2

𝑥)

+ (1 − 𝐾)𝐷 + 𝛿
𝑘+𝑛𝑝+𝑗−1 (𝑥)

≤ 𝐾
2
𝑑 (𝑇

𝑘+𝑛𝑝+𝑗−2
𝑥, 𝑇

𝑘+𝑛𝑝+𝑗−3
𝑥)

+ 𝐾 [(1 − 𝐾)𝐷 + 𝛿
𝑘+𝑛𝑝+𝑗−2 (𝑥)]

+ (1 − 𝐾)𝐷 + 𝛿
𝑘+𝑛𝑝+𝑗−1 (𝑥)

≤ ⋅ ⋅ ⋅ ≤ 𝐾
𝑛𝑝+𝑗−1

𝑑 (𝑇
𝑘+1

𝑥, 𝑇
𝑘
𝑥)

+ (1 − 𝐾
𝑛𝑝+𝑗−1

)𝐷 +

𝑛𝑝+𝑗

∑

𝑖=1

𝐾
𝑖
𝛿
𝑘+𝑛𝑝+𝑗−𝑖 (𝑥) ,

∀𝑘 ∈ Z
0+
, ∀𝑛 ∈ Z

+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(10)

If 𝐾 = 1, then

0 ≤ 𝑑 (𝑇
𝑘+𝑛𝑝+𝑗

𝑥, 𝑇
𝑘+𝑛𝑝+𝑗−1

𝑥) ≤ 𝑑 (𝑇
𝑘+1

𝑥, 𝑇
𝑘
𝑥)

+ ∑

𝑖∈𝑆+(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑛𝑝+𝑗−𝑖 (𝑥) − ∑

𝑖∈𝑆−(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑛𝑝+𝑗−𝑖 (𝑥) ,

∀𝑘 ∈ Z
0+
, ∀𝑛 ∈ Z

+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(11)

Take any 𝑘 ∈ Z
0+
, any 𝑛 ∈ Z

+
, and any 𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
.

Since 𝑑(𝑇
𝑘+1

𝑥, 𝑇
𝑘
𝑥) is finite and (4) holds, it follows that

0 ≤ 𝑑(𝑇
𝑘+𝑛𝑝+𝑗+1

𝑥, 𝑇
𝑘+𝑛𝑝+𝑗

𝑥) < ∞. If, in addition, 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is 𝑝-cyclic, then the zero lower-bound

of (7) is replaced with 𝐷. If 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is

𝑝-semicyclic (in particular, 𝑝-cyclic) nonexpansive, then (4)
always holds since𝑚(𝑇

(𝑘+𝑛𝑝+𝑗+𝑖)−
𝑥, 𝑇

(𝑘+𝑛𝑝+𝑗+𝑖−1)−
𝑥) ≤ 1, −1 ≤

𝑚
󸀠
(𝑇

(𝑘+𝑗+𝑛𝑝−𝑖+1)−
𝑥, 𝑇

(𝑘+𝑗+𝑛𝑝−𝑖)−
𝑥) ≤ 0 so that

∑

𝑖∈𝑆+(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥) − ∑

𝑖∈𝑆−(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥)

= ∑

𝑖∈𝑆−(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥) ≤ 0,

(12)

if 𝑚(𝑇
(𝑘+𝑗+𝑛𝑝−𝑖+1)−

𝑥, 𝑇
(𝑘+𝑗+𝑛𝑝−𝑖)−

𝑥) = 1 and {𝑑(𝑇
𝑘+𝑛𝑝+𝑗+1

𝑥,

𝑇
𝑘+𝑛𝑝+𝑗

𝑥)}
𝑘∈Z0+ is always bounded; ∀𝑘 ∈ Z

0+
, ∀𝑛 ∈ Z

+
, and

∀𝑗 ∈ 𝑝 − 1 ∪ {0}. Property (i) has been proven. If 𝐾 ∈ [0, 1),
then

0 ≤ 𝑑 (𝑇
𝑘+𝑛𝑝+𝑗

𝑥, 𝑇
𝑘+𝑛𝑝+𝑗−1

𝑥)

≤ 𝐾
𝑛𝑝+𝑗−1

𝑑 (𝑇
𝑘+1

𝑥, 𝑇
𝑘
𝑥) + (1 − 𝐾

𝑛𝑝+𝑗−1
)𝐷

+ ∑

𝑖∈𝑆+(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥) − ∑

𝑖∈𝑆−(𝑘,𝑛,𝑗)

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥)

(13)

0 ≤ lim sup
𝑛→∞

𝑑 (𝑇
𝑘+𝑛𝑝+𝑗

𝑥, 𝑇
𝑘+𝑛𝑝+𝑗−1

𝑥)

≤ 𝐷 + lim sup
𝑛→∞

𝑛𝑝+𝑗

∑

𝑖=1

𝛿
𝑘+𝑗+𝑛𝑝−𝑖 (𝑥) .

(14)

If, in addition, 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is 𝑝-cyclic, then

the zero lower-bound of (13)-(14) is replaced with𝐷.
If 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is contractive 𝑝-semicyclic,

then (14) becomes 0 ≤ lim sup
𝑛→∞

𝑑(𝑇
𝑘+𝑛𝑝+1

𝑥, 𝑇
𝑘+𝑛𝑝

𝑥) ≤

𝐷 from (12). If, in addition, 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖

is contractive 𝑝-cyclic, then 𝐷 ≤ lim sup
𝑛→∞

𝑑(𝑇
𝑘+𝑛𝑝+1

𝑥,

𝑇
𝑘+𝑛𝑝

𝑥) ≤ 𝐷, ∀𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
so that there is lim

𝑛→∞

𝑑(𝑇
𝑘+𝑛𝑝+1

𝑥, 𝑇
𝑘+𝑛𝑝

𝑥) = 𝐷, ∀𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
. Property (ii) has

been proven.

The following result establishes an asymptotic property of
the limits superiors of distances of consecutive points of the
iterated sequences which implies that 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→

⋃
𝑖∈𝑝

𝐴
𝑖

is asymptotically contractive, and the limit
lim

𝑛→∞
(∑

𝑛𝑝+𝑗−2

𝑘=0
(∏

𝑛𝑝+𝑗−2

ℓ=𝑘
[𝐾

ℓ+𝑖
]) (𝑚 (𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥)−1)) =

0, ∀𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1∪ {0} exists. In particular, it is not

required that𝑚(𝑥, 𝑦) ≤ 1 for any 𝑥 ∈ 𝐴
𝑖
, 𝑦 ∈ 𝐴

𝑖+1
, and ∀𝑖 ∈

𝑝 as in contractive and, in general, nonexpansive 𝑝-semi-
cyclic impulsive self-mappings.

Theorem5. Consider the following generalization of condition
3 of Definition 1:

𝐷 ≤ 𝑑 (𝑇
2−
𝑥, 𝑇

−
𝑦) ≤ 𝐾

𝑖
𝑑 (𝑇𝑥, 𝑥) + (1 − 𝐾

𝑖
)𝐷, (15)

for any given 𝑥 ∈ 𝐴
𝑖
, ∀𝑖 ∈ 𝑝, and define𝐾 = ∏

𝑝−1

𝑖=1
[𝐾

𝑖
]. Define

𝐾̂

= 𝐾 sup
𝑥∈⋃
𝑖∈𝑝

𝐴𝑖

max
𝑛∈Z0+

(

(𝑛+1)𝑝−1

∏

𝑖=𝑛𝑝+1

[𝑚 (𝑇
(𝑖+1)−

𝑥, 𝑇
𝑖−
𝑥)])

=

𝑝−1

∏

𝑖=1

[𝐾
𝑖
] sup
𝑥∈⋃
𝑘∈𝑝

𝐴𝑘

max
𝑛∈Z0+

(

(𝑛+1)𝑝−1

∏

𝑖=𝑛𝑝+1

[𝑚 × (𝑇
(𝑖+1)−

𝑥, 𝑇
𝑖−
𝑥)]) ,

(16)

such that 𝐾̂ ∈ [0, 1). Then, the following properties hold.
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(i)

𝐷
0
≤ lim sup

𝑛→∞

𝑑 (𝑇
𝑛𝑝+𝑗

𝑥, 𝑇
𝑛𝑝+𝑗−1

𝑥)

≤ (1 +
1

1 − 𝐾̂
(

𝑗−1

∏

ℓ=0

[𝐾
𝑖+ℓ
])

× sup
𝑥∈⋃
𝑘∈𝑝

𝐴𝑘

max
ℓ∈Z0+

󵄨󵄨󵄨󵄨󵄨
𝑚
󸀠
(𝑇

(ℓ+1)−
𝑥, 𝑇

ℓ−
𝑥)
󵄨󵄨󵄨󵄨󵄨
)𝐷,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0},

𝐷
0
≤ 𝑑 (𝑇

𝑛𝑝+𝑗
𝑥, 𝑇

𝑛𝑝+𝑗−1
𝑥)

≤ (

𝑗−1

∏

ℓ=0

[𝐾
𝑖+ℓ
]) 𝐾̂

𝑛
𝑑 (𝑇𝑥, 𝑥)

+ [

[

(1 − (

𝑗−1

∏

ℓ=0

[𝐾
𝑖+ℓ
]) 𝐾̂

𝑛
)

+
1 − 𝐾̂

𝑛

1 − 𝐾̂
(

𝑗−1

∏

ℓ=0

[𝐾
𝑖+ℓ
])

× sup
𝑥∈⋃
𝑘∈𝑝

𝐴𝑘

max
ℓ∈Z0+

󵄨󵄨󵄨󵄨󵄨
𝑚
󸀠
(𝑇

(ℓ+1)−
𝑥, 𝑇

ℓ−
𝑥)
󵄨󵄨󵄨󵄨󵄨
]

]

𝐷,

∀𝑥 ∈ 𝐴
𝑖
, ∀𝑖 ∈ 𝑝, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

(17)

where 𝐷
0
= 0 if 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is 𝑝-semicyclic and

𝐷
0
= 𝐷 if 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is 𝑝-cyclic.

(ii) If, furthermore, there is a real constant 𝜀
0
≥ −1 such

that

lim sup
𝑛→∞

(

𝑛𝑝+𝑗−2

∑

𝑘=0

(

𝑛𝑝+𝑗−2

∏

ℓ=𝑘−1

[𝐾
ℓ+𝑖
])

× (𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥) − 1)) ≤ 𝜀

0
,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

(18)

then

𝐷
0
≤ lim sup

𝑛→∞

𝑑 (𝑇
𝑛𝑝+𝑗

𝑥, 𝑇
𝑛𝑝+𝑗−1

𝑥)

≤ 𝐷 (1 + 𝜀
0
) , ∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
,

∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(19)

Proof. Since 𝐾̂ ∈ [0, 1), one has through iterative calculation
via (15)

𝑑 (𝑇
2
𝑥, 𝑇𝑥) ≤ 𝑚 (𝑇

2−
𝑥, 𝑇

−
𝑥) (𝐾

𝑖
𝑑 (𝑇𝑥, 𝑥) + (1 − 𝐾)𝐷)

= (𝑚 (𝑇
2−
𝑥, 𝑇

−
𝑥)𝐾

𝑖
) 𝑑 (𝑇𝑥, 𝑥)

+ (1 − 𝑚 (𝑇
2−
𝑥, 𝑇

−
𝑥)𝐾

𝑖
)𝐷

+ 𝑚
󸀠
(𝑇

2−
𝑥, 𝑇

−
𝑥)𝐷,

𝑑 (𝑇
𝑝
𝑥, 𝑇

𝑝−1
𝑥)

≤ (

𝑝−1

∏

𝑖=1

[𝑚 (𝑇
(𝑖+1)−

𝑥, 𝑇
𝑖−
𝑥)])𝐾𝑑 (𝑇𝑥, 𝑥)

+ (1 − (

𝑝−1

∏

𝑖=1

[𝑚 (𝑇
(𝑖+1)−

𝑥, 𝑇
𝑖−
𝑥)])𝐾)𝐷

+ (

𝑝−2

∑

𝑘=0

(

𝑝−2

∏

ℓ=𝑘−1

[𝐾
ℓ+𝑖
])𝑚

󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥))𝐷

𝑑 (𝑇
𝑛𝑝+𝑗

𝑥, 𝑇
𝑛𝑝+𝑗−1

𝑥)

≤ (

𝑛𝑝+𝑗−1

∏

𝑖=1

[𝑚 (𝑇
(𝑖+1)−

𝑥, 𝑇
𝑖−
𝑥)])(

𝑗−1

∏

ℓ=0

[𝐾
𝑖+ℓ
])

× 𝐾
𝑛

𝑑 (𝑇𝑥, 𝑥)

+ (1 − (

𝑛𝑝+𝑗−1

∏

𝑖=1

[𝑚 (𝑇
(𝑖+1)−

𝑥, 𝑇
𝑖−
𝑥)])

× (

𝑗−1

∏

ℓ=0

[𝐾
𝑖+ℓ
])𝐾

𝑛

)𝐷

+ (

𝑛𝑝+𝑗−2

∑

𝑘=0

(

𝑛𝑝+𝑗−2

∏

ℓ=𝑘−1

[𝐾
ℓ+𝑖
])𝑚

󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥))𝐷,

∀𝑥 ∈ 𝐴
𝑖
, ∀𝑖 ∈ 𝑝, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

(20)

with the convention (∏
−1

ℓ=0
[𝐾

𝑖+ℓ
]) = 1, ∀𝑖 ∈ 𝑝. Then, one

gets (17), and Property (i) has been proven. To prove Property
(ii), use the indicator sets (6) and, since𝑚󸀠

(𝑇
2−
𝑥, 𝑇

−
𝑥) ≥ −1,

∀𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
, one also gets from (15)-(16)

𝐷
0
+ [

[

lim inf
𝑛→∞

( ∑

𝑘∈𝑆−(𝑘,𝑛,𝑗−2)

(

𝑛𝑝+𝑗−2

∏

ℓ=𝑘

[𝐾
ℓ+𝑖
])

×
󵄨󵄨󵄨󵄨󵄨
𝑚
󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥)
󵄨󵄨󵄨󵄨󵄨
)]

]

𝐷
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≤ lim sup
𝑛→∞

𝑑 (𝑇
𝑛𝑝+𝑗

𝑥, 𝑇
𝑛𝑝+𝑗−1

𝑥)

+ [

[

lim inf
𝑛→∞

( ∑

𝑘∈𝑆−(𝑘,𝑛,𝑗−2)

(

𝑛𝑝+𝑗−2

∏

ℓ=𝑘−1

[𝐾
ℓ+𝑖
])

×
󵄨󵄨󵄨󵄨󵄨
𝑚
󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥)
󵄨󵄨󵄨󵄨󵄨
)]

]

𝐷

≤ 𝐷[

[

lim sup
𝑛→∞

(1 + ( ∑

𝑘∈𝑆+(𝑘,𝑛,𝑗−2)

(

𝑛𝑝+𝑗−2

∏

ℓ=𝑘−1

[𝐾
ℓ+𝑖
])

× 𝑚
󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥)))]

]

,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

(21)

and (19), and then Property (ii), follows from (18).

Note from (19) in Theorem 5 that if 𝐷
0
= 𝐷 = 0, that is,

⋂
𝑖∈𝑝

𝐴
𝑖
̸= 0, and 𝜀

0
∈ [− 1,∞), then ∃lim

𝑛→∞
𝑑(𝑇

𝑛𝑝+𝑗
𝑥,

𝑇
𝑛𝑝+𝑗−1

𝑥) = 0, ∀𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} from (19)

since 𝐾̂ ∈ [0, 1). In this case, 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is

an asymptotically contractive 𝑝-cyclic (and also 𝑝-semicyclic
since 𝐷 = 0) self-mapping on the union on intersecting
closed subsets of 𝑋. A close property follows if 𝐷

0
= 𝐷 ̸= 0,

and 𝜀
0
= 0 implying from (19) that

lim sup
𝑛→∞

(

𝑛𝑝+𝑗−2

∑

𝑘=0

(

𝑛𝑝+𝑗−2

∏

ℓ=𝑘−1

[𝐾
ℓ+𝑖
])

× (𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥) − 1))

= lim
𝑛→∞

(

𝑛𝑝+𝑗−2

∑

𝑘=0

(

𝑛𝑝+𝑗−2

∏

ℓ=𝑘−1

[𝐾
ℓ+𝑖
])

× (𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥) − 1)) = 0,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}

(22)

and leading to ∃ lim
𝑛→∞

𝑑(𝑇
𝑛𝑝+𝑗

𝑥, 𝑇
𝑛𝑝+𝑗−1

𝑥) = 𝐷 such that 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is a contractive 𝑝-cyclic self-mapping

on the union on disjoint closed subsets of 𝑋. The above
discussion is summarized in the subsequent result.

Corollary 6. Assume that (15) holds with 𝐾̂ defined in (16)
being in [0, 1), and assume also that

∞ > 𝜀
0

≥ max(lim sup
𝑛→∞

(

𝑛𝑝+𝑗−2

∑

𝑘=0

(

𝑛𝑝+𝑗−2

∏

ℓ=𝑘−1

[𝐾
ℓ+𝑖
])

×(𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥)− 1) ,−1)) ,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}.

(23)

Then, the following properties hold
(i) If ⋂

𝑖∈𝑝
𝐴
𝑖
̸= 0, then 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is an

asymptotically contractive 𝑝-cyclic impulsive self-mapping so
that there is the limit

lim
𝑛→∞

𝑑 (𝑇
𝑛𝑝+𝑗

𝑥, 𝑇
𝑛𝑝+𝑗−1

𝑥) = 0,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(24)

(ii) If ⋂
𝑖∈𝑝

𝐴
𝑖
= 0, 𝑑(𝑇𝑥, 𝑇𝑦) ≥ 𝐷, ∀𝑥 ∈ 𝐴

𝑖
, ∀𝑦 ∈ 𝐴

𝑖+1
,

and ∀𝑖 ∈ 𝑝 and the following limit exists:

lim
𝑛→∞

(

𝑛𝑝+𝑗−2

∑

𝑘=0

(

𝑛𝑝+𝑗−2

∏

ℓ=𝑘−1

[𝐾
ℓ+𝑖
])

× (𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥) − 1)) = 0;

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}

(25)

then 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is an asymptotically contractive

𝑝-cyclic impulsive self-mapping so that the limit

lim
𝑛→∞

𝑑 (𝑇
𝑛𝑝+𝑗

𝑥, 𝑇
𝑛𝑝+𝑗−1

𝑥) = 𝐷,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} 𝑒𝑥𝑖𝑠𝑡𝑠.

(26)

A particular result got from Theorem 5 follows for con-
tractive 𝑝-semicyclic and 𝑝-cyclic impulsive self-mappings
𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
.

Corollary 7. Theorem 5 holds with 𝐷
0
= 0 if 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝

𝐴
𝑖
is contractive 𝑝-semicyclic and with 𝐷

0
= 𝐷 if the

impulsive self-mapping 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is contractive

𝑝-cyclic provided that 𝐾 = ∏
𝑝−1

𝑖=1
[𝐾

𝑖
] ∈ [0, 1).

Proof. It is a direct consequence of Theorem 5 since 𝐾 =

∏
𝑝−1

𝑖=1
[𝐾

𝑖
] ∈ [0, 1) implies that 𝐾̂ ∈ [0, 1) since 𝑚(𝑇

−
𝑥,

𝑇
−
𝑦) ≤ 1, ∀𝑥 ∈ 𝐴

𝑖
, ∀𝑦 ∈ 𝐴

𝑖+1
, and ∀𝑖 ∈ 𝑝.
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Remark 8. Note that if 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is a non-

expansive 𝑝-cyclic impulsive self-mapping, the following
constraints hold:

𝑚(𝑇𝑥
−
, 𝑇𝑦

−
) ≤ 1,

𝐷 ≤ 𝑚 (𝑇𝑥
−
, 𝑇𝑦

−
) (𝐾𝑑 (𝑥, 𝑦) − 𝐷) + 𝑚 (𝑇𝑥

−
, 𝑇𝑦

−
)𝐷,

∀𝑥 ∈ 𝐴
𝑖
, ∀𝑦 ∈ 𝐴

𝑖+1
, ∀𝑖 ∈ 𝑝,

(27)

and equivalently,

1 ≥ 𝑚 (𝑇𝑥
−
, 𝑇𝑦

−
)

≥
𝐷

𝐾𝑑 (𝑥, 𝑦) + (1 − 𝐾)𝐷

=
𝐷

𝐷 + 𝐾 (𝑑 (𝑥, 𝑦) − 𝐷)
,

(28)

implying that

(a) 1 ≥ 𝑚(𝑇𝑥
−
, 𝑇𝑦

−
) ≥ 0, ∀𝑥 ∈ 𝐴

𝑖
, ∀𝑦 ∈ 𝐴

𝑖+1
, and ∀𝑖 ∈ 𝑝

if𝐷 = 0; that is, if the sets 𝐴
𝑖
intersect ∀𝑖 ∈ 𝑝.

(b) 𝑚(𝑇𝑥
−
, 𝑇𝑦

−
) = 1 if 𝑑(𝑥, 𝑦) = 𝐷; that is, for best

proximity points associated with any two adjacent
disjoint subsets 𝐴

𝑖
, 𝑦 ∈ 𝐴

𝑖+1
for 𝑖 ∈ 𝑝.

On the other hand, note that Corollary 6 (ii) implies the
asymptotic convergence of distances in-between consecutive
points of the iterated sequences generated via 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝

𝐴
𝑖
to the distance𝐷between adjacent sets.This property

does not imply 1 ≥ 𝑚(𝑇𝑥
−
, 𝑇𝑦

−
), ∀𝑥 ∈ 𝐴

𝑖
, and ∀𝑦 ∈ 𝐴

𝑖+1
,

∀𝑖 ∈ 𝑝 as required for nonexpansive (and, in particular,
for contractive) 𝑝-cyclic impulsive self-mappings. However,
it implies 𝑚(𝑇

(𝑛+1)−
𝑥, 𝑇

𝑛−
𝑥) → 1 as 𝑛 → ∞ from (25),

since the sequence defining its left-hand-side sequence has to
converge asymptotically to zero.

Define recursively global functions to evaluate the non-
expansive and contractive properties of the impulsive self-
mapping𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
which take into account the

most general case that the constant 𝐾 in Definition 1 (1)
can be generalized to be set dependent and point-dependent
leading to a combined extended constraint as follows:

𝑑 (𝑇
2
𝑥, 𝑇𝑥) ≤ 𝐾

𝑖 (𝑥, 𝑇𝑥)𝑚 (𝑇
2−
𝑥, 𝑇

−
𝑥) 𝑑 (𝑥, 𝑇𝑥)

+ 𝑚 (𝑇
2−
𝑥, 𝑇

−
𝑥) (1 − 𝐾

𝑖 (𝑥, 𝑇𝑥))𝐷,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
,

(29)

so that

𝐾̂
(𝑗)
(𝑥, 𝑇𝑥)

= (

𝑝−1

∏

𝑖=1

[𝑚 (𝑇
(𝑖+𝑗𝑝+1)−

𝑥, 𝑇
(𝑖+𝑗𝑝)−

𝑥)

× 𝐾
𝑖
(𝑇

𝑖+𝑗𝑝
𝑥, 𝑇

𝑖+𝑗𝑝−1
𝑥)]) 𝐾̂

(𝑗−1)
(𝑥)

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ Z

+
,

(30)

with 𝑥 = 𝑇
0
𝑥 and initial, in general, point-dependent value

𝐾̂
(0)

(𝑥, 𝑇𝑥) =

𝑝−1

∏

𝑖=1

[𝑚 (𝑇
(𝑖+1)−

𝑥, 𝑇
(𝑖)−

𝑥)

× 𝐾
𝑖
(𝑇

𝑖
𝑥, 𝑇

𝑖−1
𝑥)] ,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ Z

+
,

(31)

for each iterated sequence constructed through the impulsive
self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
. The following related

result follows.

Theorem 9. Consider the 𝑝-semicyclic impulsive self-mapping
𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
under the constraint (29) subject to

(30)-(31). If lim
𝑛→∞

𝐾̂
(𝑛)
(𝑥, 𝑇𝑥) = 0, ∀𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
, then the

following properties hold.
(i) If⋂

𝑖∈𝑝
𝐴
𝑖
̸= 0 then

lim
𝑛→∞

𝑑 (𝑇
(𝑛+1)𝑝

𝑥, 𝑇
(𝑛+1)𝑝−1

𝑥) = 0;

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, ∀𝑛 ∈ Z

0+

(32)

so that 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is asymptotically contractive

𝑝-semicyclic cyclic in the sense that, given 𝑥 ∈ 𝐴
𝑖
, there is a suf-

ficiently large 𝑛
0
= 𝑛

0
(𝑥) ∈ Z

0+
such that, together with (32),

𝑇
𝑛𝑝
𝑥 ∈ 𝐴

𝑖
, 𝑇(𝑛+1)𝑝𝑥 ∈ 𝐴

𝑖
∪ 𝐴

𝑖+1
for 𝑛 ≥ 𝑛

0
.

(ii) If⋂
𝑖∈𝑝

𝐴
𝑖
= 0 and the limit below exists:

lim
𝑛→∞

𝑛−1

∑

𝑗=0

𝐾̂
(𝑛−𝑗)

(𝑥, 𝑇𝑥)

× (

(𝑗+1)𝑝−2

∑

𝑘=𝑗𝑝

(

(𝑗+1)𝑝−2

∏

ℓ=𝑘+𝑖−1

[𝐾
ℓ
(𝑇

(𝑘−1)
𝑥, 𝑇

𝑘
𝑥)])

× (𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥) − 1)) = 0,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
,

(33)



8 Abstract and Applied Analysis

then

lim
𝑛→∞

𝑑 (𝑇
(𝑛+1)𝑝

𝑥, 𝑇
(𝑛+1)𝑝−1

𝑥) = 𝐷, ∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
,

∀𝑗 ∈ 𝑝 − 1 ∪ {0}, ∀𝑛 ∈ Z
0+
,

(34)

and 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is asymptotically contractive 𝑝-

cyclic in the sense that, given 𝑥 ∈ 𝐴
𝑖
, together with (34), there

is a sufficiently large 𝑛
0
= 𝑛

0
(𝑥) ∈ Z

0+
such that, together with

(34), 𝑇𝑛𝑝𝑥 ∈ 𝐴
𝑖
, 𝑇(𝑛+1)𝑝𝑥 ∈ 𝐴

𝑖+1
for 𝑛 ≥ 𝑛

0
.

(iii) The limit (33) exists and then (34) holds if
𝑚: (⋃

𝑖∈𝑝
𝐴
𝑖
) × (⋃

𝑖∈𝑝
𝐴
𝑖
) → R

0+
satisfies the

identity

𝑚(𝑇
((𝑛+1)𝑝−1)−

𝑥, 𝑇
((𝑛+1)𝑝−2)−

𝑥)

= 1 + 𝜀
𝑛
−

1

𝐾̂(1) (𝑥, 𝑇𝑥) (∑
(𝑛+1)𝑝−2

𝑘=𝑛𝑝
(∏

(𝑛+1)𝑝−2

ℓ=(𝑛+1)𝑝+𝑖−3
[𝐾

ℓ
(𝑇((𝑛+1)𝑝−3)𝑥, 𝑇(𝑛+1)𝑝−2𝑥)]))

× (𝐾̂
(1)

(𝑥, 𝑇𝑥) (

(𝑛+1)𝑝−3

∑

𝑘=𝑛𝑝

(

(𝑛+1)𝑝−2

∏

ℓ=𝑘+𝑖−1

[𝐾
ℓ
(𝑇

(𝑘−1)
𝑥, 𝑇

𝑘
𝑥)]) (𝑚 (𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥) − 1))

+

𝑛−1

∑

𝑗=0

𝐾̂
(𝑛−𝑗)

(𝑥, 𝑇𝑥)(

(𝑗+1)𝑝−2

∑

𝑘=𝑗𝑝

(

(𝑗+1)𝑝−2

∏

ℓ=𝑘+𝑖−1

[𝐾
ℓ
(𝑇

(𝑘−1)
𝑥, 𝑇

𝑘
𝑥)]) (𝑚 (𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥) − 1))) .

(35)

Proof. One gets from (20), (29)–(31) that

𝑑 (𝑇
𝑝
𝑥, 𝑇

𝑝−1
𝑥)

≤ 𝐾̂
(0)

(𝑥, 𝑇𝑥) 𝑑 (𝑇𝑥, 𝑥)

+ (1 − 𝐾̂
(0)

(𝑥, 𝑇𝑥))𝐷

+ (

𝑝−2

∑

𝑘=0

(

𝑝−2

∏

ℓ=𝑘+𝑖−1

[𝐾
ℓ
(𝑇

(𝑘−1)
𝑥, 𝑇

𝑘
𝑥)])

× 𝑚
󸀠
(𝑇

(𝑘+1)−
𝑥, 𝑇

𝑘−
𝑥))𝐷,

(36)

𝑑 (𝑇
(𝑛+1)𝑝

𝑥, 𝑇
(𝑛+1)𝑝−1

𝑥)

≤ 𝐾̂
(𝑛)

(𝑥, 𝑇𝑥) 𝑑 (𝑇𝑥, 𝑥) + (1 − 𝐾̂
(𝑛)

(𝑥, 𝑇𝑥))𝐷

+

𝑛−1

∑

𝑗=0

𝐾̂
(𝑛−𝑗)

(𝑥, 𝑇𝑥)

× (

(𝑗+1)𝑝−2

∑

𝑘=𝑗𝑝

(

(𝑗+1)𝑝−2

∏

ℓ=𝑘+𝑖−1

[𝐾
ℓ
(𝑇

(𝑘−1)
𝑥, 𝑇

𝑘
𝑥)])

× (𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥) − 1))𝐷,

∀𝑥 ∈ 𝐴
𝑖
, ∀𝑖 ∈ 𝑝, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, ∀𝑛 ∈ Z

0+
,

(37)

where 𝑚
󸀠
(𝑇

(𝑛+1)−
𝑥, 𝑇

𝑛−
𝑥) = 𝑚(𝑇

(𝑛+1)−
𝑥, 𝑇

𝑛−
𝑥) − 1. If

lim
𝑛→∞

𝐾̂
(𝑛)
(𝑥, 𝑇𝑥) = 0, ∀𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
and (33) holds, then

𝑑(𝑇
(𝑛+1)𝑝

𝑥, 𝑇
(𝑛+1)𝑝−1

𝑥) → 𝐷 as 𝑛 → ∞, ∀𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
,

∀𝑗 ∈ 𝑝 − 1∪{0}, and ∀𝑛 ∈ Z
0+
.This leads directly to Property

(i) for𝐷 = 0 if⋂
𝑖∈𝑝

𝐴
𝑖
̸= 0 (without the constraint (33) being

needed) and to Property (ii) for𝐷 ̸= 0 if⋂
𝑖∈𝑝

𝐴
𝑖
= 0.

Consider that

𝑛

∑

𝑗=0

𝐾̂
(𝑛+1−𝑗)

(𝑥, 𝑇𝑥)

× (

(𝑗+1)𝑝−2

∑

𝑘=𝑗𝑝

(

(𝑗+1)𝑝−2

∏

ℓ=𝑘+𝑖−1

[𝐾
ℓ
(𝑇

(𝑘−1)
𝑥, 𝑇

𝑘
𝑥)])

× (𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥) − 1))

= 𝐾̂
(1)

(𝑥, 𝑇𝑥)

×(

(𝑛+1)𝑝−2

∑

𝑘=𝑛𝑝

(

(𝑛+1)𝑝−2

∏

ℓ=(𝑛+1)𝑝+𝑖−3

[𝐾
ℓ
(𝑇

((𝑛+1)𝑝−3)
𝑥, 𝑇

(𝑛+1)𝑝−2
𝑥)])

× (𝑚 (𝑇
((𝑛+1)𝑝−1)−

𝑥, 𝑇
((𝑛+1)𝑝−2)−

𝑥) − 1))

+ 𝐾̂
(1)

(𝑥, 𝑇𝑥)

× (

(𝑛+1)𝑝−3

∑

𝑘=𝑛𝑝

(

(𝑛+1)𝑝−2

∏

ℓ=𝑘+𝑖−1

[𝐾
ℓ
(𝑇

(𝑘−1)
𝑥, 𝑇

𝑘
𝑥)])

× (𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥) − 1))
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+

𝑛−1

∑

𝑗=0

𝐾̂
(𝑛−𝑗)

(𝑥, 𝑇𝑥)

× (

(𝑗+1)𝑝−2

∑

𝑘=𝑗𝑝

(

(𝑗+1)𝑝−2

∏

ℓ=𝑘+𝑖−1

[𝐾
ℓ
(𝑇

(𝑘−1)
𝑥, 𝑇

𝑘
𝑥)])

× (𝑚 (𝑇
(𝑘+1)−

𝑥, 𝑇
𝑘−
𝑥) − 1))

(38)

converges to zero as 𝑛 → ∞ if for some real sequence
{𝜀
𝑛
}
𝑛∈Z0+ which converges to zero, the function 𝑚 : (⋃

𝑖∈𝑝

𝐴
𝑖
) × (⋃

𝑖∈𝑝
𝐴
𝑖
) → R

0+
satisfies (35). This proves Property

(iii).

Theorem 9 has a counterpart in terms of asymptotically
strict 𝑝-semicyclic and cyclic versions established as follows.

Corollary 10. Assume that the following strict-type contrac-
tive condition holds:

𝑑 (𝑇
2
𝑥, 𝑇𝑥) ≤ 𝐾

𝑖 (𝑥, 𝑇𝑥)𝑚 (𝑇
2−
𝑥, 𝑇

−
𝑥) 𝑑 (𝑥, 𝑇𝑥)

+ (1 − 𝑚 (𝑇
2−
𝑥, 𝑇

−
𝑥)𝐾

𝑖 (𝑥, 𝑇𝑥))𝐷,

∀𝑥 ∈ ⋃

𝑖∈𝑝

𝐴
𝑖
,

(39)

subject to the constraints (30) and (31). If lim
𝑛→∞

𝐾̂
(𝑛)

(𝑥, 𝑇𝑥) = 0, ∀𝑥 ∈ ⋃
𝑖∈𝑝

𝐴
𝑖
, then (34) holds, and 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is a strictly asymptotically contractive 𝑝-

cyclic impulsive self-mapping in the sense that, given any 𝑥 ∈

𝐴
𝑖
, there is a sufficiently large 𝑛

0
= 𝑛

0
(𝑥) ∈ Z

0+
such that,

together with (34), 𝑇𝑛𝑝𝑥 ∈ 𝐴
𝑖
, 𝑇(𝑛+1)𝑝𝑥 ∈ 𝐴

𝑖+1
for all 𝑛 ≥ 𝑛

0

if⋂
𝑖∈𝑝

𝐴
𝑖
= 0.

If ⋂
𝑖∈𝑝

𝐴
𝑖
̸= 0, then 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is (at least)

strictly asymptotically contractive𝑝-semicyclic in the sense that
there is a sufficiently large 𝑛

0
= 𝑛

0
(𝑥) ∈ Z

0+
such that, together

with (32), 𝑇𝑛𝑝𝑥 ∈ 𝐴
𝑖
, 𝑇(𝑛+1)𝑝𝑥 ∈ 𝐴

𝑖
∪ 𝐴

𝑖+1
for 𝑛 ≥ 𝑛

0
for any

given 𝑥 ∈ 𝐴
𝑖
.

Proof (outline of proof). It follows directly by replacing (37)
with

𝑑 (𝑇
(𝑛+1)𝑝

𝑥, 𝑇
(𝑛+1)𝑝−1

𝑥)

≤ 𝐾̂
(𝑛)

(𝑥, 𝑇𝑥) 𝑑 (𝑇𝑥, 𝑥) + (1 − 𝐾̂
(𝑛)

(𝑥, 𝑇𝑥))𝐷,

∀𝑥 ∈ 𝐴
𝑖
, ∀𝑖 ∈ 𝑝, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

(40)

so that there is the limit lim
𝑛→∞

𝑑(𝑇
(𝑛+1)𝑝

𝑥, 𝑇
(𝑛+1)𝑝−1

𝑥) =

0; ∀𝑥 ∈ 𝐴
𝑖
, ∀𝑖 ∈ 𝑝, and ∀𝑗 ∈ 𝑝 − 1 ∪ {0}.

3. Convergence of the Iterations to Best
Proximity Points and Fixed Points

Important results about convergence of iterated sequences of
2-cyclic self-mappings to unique best proximity points were

firstly stated and proven in [11] and then widely used in the
literature. Some of them are quoted here to be then used in
the context of this paper. Consider a metric space (𝑋, 𝑑) with
nonempty subsets 𝐴, 𝐵 ⊂ 𝑋 such that 𝐷 = 𝑑(𝐴, 𝐵) ≥ 0.
The following basic results have been proven in the existing
background literature.

Result 1 (see [11]). Let (𝑋, 𝑑) be a metric space, and let 𝐴 and
𝐵 be subsets of 𝑋. Then, if 𝐴 is compact and 𝐵 is approxi-
matively compact with respect to 𝐴 (i.e., 𝑑(𝑦, 𝑥

𝑛
) → 𝑑(𝑦, 𝐵)

as 𝑛 → ∞ for each sequence {𝑥
𝑛
}
𝑛∈Z0+ ⊂ B for some 𝑦 ∈

𝐴), then 𝐴
𝑜
= {𝑥 ∈ 𝐴 : 𝑑(𝑥, 𝑦

󸀠
) = 𝐷 for some 𝑦󸀠 ∈ 𝐵} and

𝐵
𝑜
= {𝑦 ∈ 𝐵 : 𝑑(𝑥

󸀠
, 𝑦) = 𝐷 for some 𝑥󸀠 ∈ 𝐴} are nonempty.

It is known that if 𝐴 and 𝐵 are both compact, then
𝐴 (resp., 𝐵) is approximatively compact which respect to
𝐵 (resp., 𝐴).

Result 2 (see [11]). Let (X, ‖‖) be a reflexive Banach space, let
𝐴 be a nonempty, closed, bounded, and convex subset of 𝑋
and let𝐵 be a nonempty, closed and convex subset of𝑋.Then,
the sets of best proximity points 𝐴𝑜 and 𝐵𝑜 are nonempty.

Result 3 (see [11]). Let (𝑋, 𝑑) be a metric space, let𝐴 and 𝐵 be
nonempty closed subsets of𝑋, and let 𝑇 : 𝐴 ∪ 𝐵 → 𝐴∪𝐵 be
a 2-cyclic contraction. If either 𝐴 is boundedly compact (i.e.,
if any bounded sequence {𝑥

𝑛
}
𝑛∈Z0+ ⊂ 𝐴 has a subsequence

converging to a point of 𝐴) or 𝐵 is boundedly compact, then
there is 𝑥 ∈ 𝐴 ∪ 𝐵 such that 𝑑(𝑥, 𝑇𝑥) = 𝐷.

Remark 11. It is known that if 𝐴 ⊂ 𝑋 is boundedly compact,
then it is approximatively compact. Also, a closed set 𝐴 of a
normed space is boundedly compact if it is locally compact
(the inverse is not true in separable Hilbert spaces [34]);
equivalently, if and only if the closure of each bounded
subset 𝐶 ⊂ 𝐴 is compact and contained in 𝐴. If (𝑋, 𝑑) is
a linear metric space, a closed subset 𝐴 ⊂ 𝑋 is boundedly
compact if each bounded 𝐶 ⊂ 𝐴 is relatively compact. It
turns out that if 𝐴 ⊂ 𝑋 is closed and bounded then it
is relatively compact [35]. It also turns out that if (𝑋, 𝑑)
is a complete metric space and the metric is homogeneous
and translation-invariant, then (𝑋, 𝑑) is a linear metric space
and (X, ‖‖) is also a Banach space with ‖‖ being the norm
induced by the metric 𝑑. Note that, since the metric is
homogeneous and translation-invariant and since (𝑋, 𝑑) is
a linear metric space, such a metric induces a norm. In
such a Banach space, if 𝐴 ⊂ 𝑋 is bounded and closed,
then 𝐴 is boundedly compact and thus approximatively
compact.

Result 4 (see [11]). Let (𝑋, ‖‖) be a uniformly convex Banach
space, let 𝐴 be a nonempty closed and convex subset of 𝑋,
and let 𝐵 be a nonempty closed subset of 𝑋. Let sequences
{𝑥

𝑛
}
𝑛∈Z0+ ⊂ 𝐴, {𝑧

𝑛
}
𝑛∈Z0+ ⊂ 𝐴 and {𝑦

𝑛
}
𝑛∈Z0+ ⊂ 𝐵 satisfy ‖𝑥

𝑛
−

𝑦
𝑛
‖ → 𝐷 and ‖𝑧

𝑛
−𝑦

𝑛
‖ → 𝐷 as 𝑛 → ∞. Then ‖𝑧

𝑛
−𝑥

𝑛
‖ →

0 as 𝑛 → ∞.
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It is known that a uniformly convex Banach space (𝑋, ‖‖)
is reflexive and that a Banach space is a completemetric space
(𝑋, 𝑑) with respect to the norm-induced distance.

Result 5 (see [11]). If (𝑋, 𝑑) is a complete metric space, 𝑇 :

𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is a 2-cyclic contraction, where 𝐴 and 𝐵

are nonempty closed subsets of𝑋, and the sequence {𝑥
𝑛
}
𝑛∈Z0+

generated as 𝑥
𝑛+1

= 𝑇𝑥
𝑛
, ∀𝑛 ∈ Z

+
for a given 𝑥

0
∈ 𝐴 has a

convergent subsequence {𝑥
2𝑛𝑘

}
𝑛𝑘∈Z0+

⊂ {𝑥
2𝑛
}
𝑛∈Z0+ ⊂ {𝑥

𝑛
}
𝑛∈Z0+

in 𝐴, then there is 𝑥 ∈ 𝐴 ∪ 𝐵 such that 𝑑(𝑥, 𝑇𝑥) = 𝐷.

Sufficiency-type results follow below concerning the con-
vergence of iterated sequences being generated by contractive
and strictly contractive 𝑝-semicyclic self-mappings, which
are asymptotically 𝑝-cyclic, to best proximity or fixed points.

Theorem 12. Assume that (𝑋, ‖‖) is a uniformly convex
Banach space so that (𝑋, 𝑑) is a complete metric space if 𝑑 : 𝑋×

𝑋 → R
0+

is the norm-induced metric. Assume, in addition,
that 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is a 𝑝-semicyclic impulsive self-

mapping, where 𝐴
𝑖
⊂ 𝑋, ∀𝑖 ∈ 𝑝 are nonempty, closed, and

convex subsets of𝑋, and assume also that

(1) either the constraint (29), or the constraint (39)
holds subject to (30) and (31) provided that the limit
lim

𝑛→∞
𝐾̂
(𝑛)
(𝑥, 𝑇𝑥) = 0, ∀𝑥 ∈ ⋃

𝑖∈𝑝
𝐴
𝑖
exists and

𝑚 : (⋃
𝑖∈𝑝

𝐴
𝑖
) × (⋃

𝑖∈𝑝
𝐴
𝑖
) → R

0+
satisfies (35);

(2) for each given 𝑥 ∈ 𝐴
𝑖
for any 𝑖 ∈ 𝑝, there is a finite 𝑘

𝑖
=

𝑘
𝑖
(𝑥) ∈ Z

0+
such that lim inf

𝑛→∞
𝑇
𝑛𝑝+𝑘𝑖(𝑥) ∈ 𝐴

𝑖+1

(i.e., the 𝑝-semicyclic impulsive self-mapping 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is also an asymptotically 𝑝-cyclic

one).

Then, 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is either an asymptotically

contractive or a strictly contractive 𝑝-semicyclic impulsive self-
mapping, and, furthermore, the following properties hold.

(i)The limits below exist:

lim
𝑛→∞

𝑑 (𝑇
(𝑛+1)𝑝

𝑥, 𝑇
(𝑛+𝑗)𝑝+𝑗

𝑥) = 𝐷,

∀𝑥 ∈ 𝐴
𝑖
, ∀𝑗 ∈ 𝑘

𝑖
, ∀𝑖 ∈ 𝑝,

(41)

lim
𝑛→∞

𝑑 (𝑇
(𝑛+1)𝑝+𝑘𝑖+1𝑥, 𝑇

(𝑛+𝑗)𝑝+𝑘𝑖𝑥) = 0,

∀𝑥 ∈ 𝐴
𝑖
, ∀𝑖 ∈ 𝑝,

(42)

where 𝑘
𝑖
= sup

𝑥∈𝐴𝑖
𝑘
𝑖
(𝑥), ∀𝑖 ∈ 𝑝. Furthermore, {𝑇𝑛𝑝𝑥}

𝑛∈Z+ →

𝑧
𝑖
, {𝑇𝑛𝑝+𝑗𝑥}

𝑛∈Z+ → 𝑇𝑧
(𝑗)

𝑖
for any given 𝑥 ∈ 𝐴

𝑖
with

{𝑇
𝑛𝑝+𝑗

𝑥}
𝑛∈Z+ ⊂ 𝐴

𝑖
∪ 𝐴

𝑖+1
, ∀𝑗 ∈ 𝑘

𝑖
, lim

𝑛→∞
𝑇
𝑛𝑝+𝑘𝑖𝑥 ⊂ 𝐴

𝑖+1
,

𝑧
𝑖
∈ 𝐴

𝑖
, 𝑧(𝑗)

𝑖
∈ 𝐴

𝑖
; ∀𝑗 ∈ 𝑘

𝑖
− 1, and 𝑧

𝑖+1
= 𝑇𝑧

(𝑘𝑖)

𝑖
∈ 𝐴

𝑖+1
,

∀𝑖 ∈ 𝑝. The points 𝑧
𝑖
and 𝑧

𝑖+1
are unique best proximity points

in 𝐴
𝑖
and 𝐴

𝑖+1
, ∀𝑖 ∈ 𝑝 of 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
, and there

is a unique limiting set

(𝑧
1
, 𝑧

(1)

1
= 𝑇𝑧

1
, . . . , 𝑧

2
= 𝑧

(𝑘1)

1
= 𝑇

𝑘1𝑧
1
, . . . , 𝑧

𝑝
, 𝑧

(1)

𝑝

= 𝑇𝑧
𝑝
, . . . , 𝑧

(𝑘𝑝−1)

𝑝 = 𝑇
𝑘𝑝−1𝑧

𝑝
) ⊂ 𝐴

𝑘1

1
× ⋅ ⋅ ⋅ × 𝐴

𝑘𝑝

1
.

(43)

If ⋂
𝑖∈𝑝

𝐴
𝑖
̸= 0, then the 𝑝 best proximity points 𝑧

𝑖
= 𝑧 ∈

⋂
𝑗∈𝑝

𝐴
𝑗
, ∀𝑖 ∈ 𝑝 become a unique fixed point 𝑧 of 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
.

(ii) Assume that the constraint (15) holds, subject to either
(25), or (29), with 𝐾 = ∏

𝑝−1

𝑖=1
[𝐾

𝑖
] and 𝐾̂ ∈ [0, 1) defined

in (16). Assume, in addition, that for each 𝑥 ∈ 𝐴
𝑖
for any

𝑖 ∈ 𝑝, it exists a finite 𝑘
𝑖

= 𝑘
𝑖
(𝑥) ∈ Z

0+
such that

lim inf
𝑛→∞

𝑇
𝑛𝑝+𝑘𝑖(𝑥) ∈ 𝐴

𝑖+1
with 𝑘

𝑖
= sup

𝑥∈𝐴𝑖
𝑘
𝑖
(𝑥), ∀𝑖 ∈ 𝑝.

Then, Property (i) still holds.

Proof. The existence of the limits (41) and (42) follows from
(34) in Theorem 9 and the above background Result 4 [11]
since, for each 𝑥 ∈ 𝐴

𝑖
for any 𝑖 ∈ 𝑝, there is a finite

𝑘
𝑖
= 𝑘

𝑖
(𝑥) ∈ Z

0+
such that lim inf

𝑛→∞
𝑇
𝑛𝑝+𝑘𝑖(𝑥) ∈ 𝐴

𝑖+1
with

𝑘
𝑖
= sup

𝑥∈𝐴𝑖
𝑘
𝑖
(𝑥), ∀𝑖 ∈ 𝑝 so that the limits (41) exist (note

that 𝑘
𝑖
= 1, ∀𝑖 ∈ 𝑝 if 𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is a 𝑝-

cyclic impulsive self-mapping). The limit (42) exists from
the background Results 1 and 5 of [11] with 𝑧

𝑖
∈ 𝐴

𝑖
and

𝑧
𝑖+1

= 𝑇𝑧
(𝑘𝑖)

𝑖
∈ 𝐴

𝑖+1
, ∀𝑖 ∈ 𝑝 being unique best proximity

points of 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
in 𝐴

𝑖
and 𝐴

𝑖+1
; ∀𝑖 ∈ 𝑝

since (𝑋, 𝑑) is also a (𝑋, ‖‖) uniformly convex Banach space
for the norm-induced metric and the subsets 𝐴

𝑖
of𝑋, ∀𝑖 ∈ 𝑝

are nonempty, closed and convex. The limiting set (𝑧
𝑖
, 𝑧

(1)

𝑖
=

𝑇𝑧
𝑖
, . . . , 𝑧

𝑖+1
= 𝑇

𝑘𝑖𝑧
𝑖
) is uniquewith 𝑧(𝑗)

𝑖
∈ 𝐴

𝑖
;∀𝑗 ∈ 𝑘

𝑖
−1 since

𝑧
𝑖
and 𝑧

𝑖+1
; ∀𝑖 ∈ 𝑝 are unique best proximity points and 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is single-valued. Property (i) has been

proved. The same conclusions arise from (25) in Corollary 6
and from (39) in Corollary 10 leading to Property (ii).

Remarks 13. (1) Note that if the self-mapping 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖
→

⋃
𝑖∈𝑝

𝐴
𝑖
is an asymptotic 𝑝-cyclic impulsive one, then the

limiting set (43) ofTheorem 12 can only contain points which
are not best proximity points in bounded subsets 𝐴

𝑖
of 𝑋

whose diameter is not smaller than𝐷.
(2) Under the conditions ofTheorem 12, if𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→

⋃
𝑖∈𝑝

𝐴
𝑖
is, in particular, a contractive or strictly contractive

𝑝-cyclic impulsive self-mapping, then the limiting set (43)
only contains best proximity points; that is, it is of the form
(𝑧
1
, 𝑧

2
, . . . , 𝑧

𝑝
). If ⋂

𝑖∈𝑝
𝐴
𝑖
̸= 0, then such a set reduces to a

unique best proximity point 𝑧 ∈ ⋂
𝑖∈𝑝

𝐴
𝑖
.

(3) Note that Theorem 12 can be formulated also
for a complete metric space (𝑋, 𝑑) with a homogeneous
translation-invariant metric 𝑑 : 𝑋 × 𝑋 → R

0+
being

equivalent to a Banach space (𝑋, ‖‖), where ‖‖ is the metric-
induced norm, which is uniformly convex so that it is also
a complete. Note that such a statement is well-posed since a
norm-induced metric exists if such a metric is homogeneous
and translation invariant.
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It turns out that Theorem 12 and Remarks 13 also hold if
𝑇 : ⋃

𝑖∈𝑝
𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is either a contractive or a strictly

contractive 𝑝-semicyclic impulsive self-mapping as stated in
the subsequent result.

Corollary 14. Theorem 12 holds, in particular, if 𝑇 :

⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖
is a contractive or strictly contractive

𝑝-semicyclic impulsive self-mapping with 𝐾
𝑖
= 𝐾 ∈ [0, 1),

∀𝑖 ∈ 𝑝 being a constant in (29) or (39) subject to (35) and
𝑚 : (⋃

𝑖∈𝑝
𝐴
𝑖
) × (⋃

𝑖∈𝑝
𝐴
𝑖
) → R

0+
being not larger than unity.

Theorem 12 also holds if 𝑇 : ⋃
𝑖∈𝑝

𝐴
𝑖

→ ⋃
𝑖∈𝑝

𝐴
𝑖

is, in particular, a contractive or strictly contractive 𝑝-cyclic
impulsive self-mapping with 𝐾

𝑖
= 𝐾 ∈ [0, 1); ∀𝑖 ∈ 𝑝 being

constant in (29) or (39) subject to (35) and 𝑚 : (⋃
𝑖∈𝑝

𝐴
𝑖
) ×

(⋃
𝑖∈𝑝

𝐴
𝑖
) → R

0+
being not larger than unity. In this case, the

limiting set (43) only contains best proximity points; that is, it
is of the form (𝑧

1
, 𝑧

2
, . . . , 𝑧

𝑝
).

4. Application Examples to Impulsive
Differential and Difference Equations

Recent results about best proximity points concerning psi-
Geraghty contractions and on cyclic orbital contractions are
obtained in [36, 37], respectively. On the other hand, it turns
out that fixed point theory is a useful tool to study the
stability of differential and difference equations and dynamic
systems [38–42]. Some worked examples are given in the
sequel concerning the global feedback stabilization and the
stability of the equilibrium points [43–46], linked with fixed
points and best proximity points of impulsive and time-
delayed differential equations. The subsequent examples rely
on the properties of iterated sequences 𝑥

𝑛+1
= 𝑇𝑥

𝑛
, ∀𝑛 ∈ Z

0+

for any 𝑥
0
∈ ⋃

𝑖∈𝑝
𝐴
𝑖
being generated from nonexpansive

or contractive 𝑝-semicyclic, impulsive self-mappings 𝑇𝐴
𝑖
→

𝐴
𝑖
∪ 𝐴

𝑖+1
, where 𝐴

𝑖
⊂ 𝑋, ∀𝑖 ∈ 𝑝 and (𝑋, 𝑑) is a metric space,

subject to theb following:

(1) 𝑇− : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
is a nonexpansive, or a

contractive, 𝑝-semicyclic self-mapping so that
𝑇
−
𝐴
𝑖
⊆ 𝐴

𝑖
∪ 𝐴

𝑖+1
, ∀𝑖 ∈ 𝑝 subject to the cyclic

nonexpansive/contractive constraint 𝑑(𝑇−𝑥, 𝑇−𝑦) ≤

𝐾𝑑(𝑥, 𝑦) + (1 − 𝐾)𝐷, ∀𝑖 ∈ 𝑝 for 𝐾 ∈ [0, 1], where
𝐷 is the distance between any two adjacent subsets.
This self-mapping describes in the given examples
the discretized impulsive-free solution of an ordinary
differential equation;

(2) 𝑇+ : ⋃
𝑖∈𝑝

𝐴
𝑖
→ ⋃

𝑖∈𝑝
𝐴
𝑖
satisfies a distance disconti-

nuity condition of the type 𝑑(𝑇+(𝑇−𝑥), 𝑇+(𝑇−𝑦)) ≤

𝑚(𝑇
−
𝑥, 𝑇

−
𝑦)𝑑(𝑇

−
𝑥, 𝑇

−
𝑦) for some given bounded

function𝑚 : (⋃
𝑖∈𝑝

𝐴
𝑖
) × (⋃

𝑖∈𝑝
𝐴
𝑖
) → R

0+
. This self-

mapping describes the bounded steps in the solution
due to eventual forcing impulses at certain impulsive
time instants.

Example 15. Consider the real impulsive differential equation

𝑥̇ (𝑡) = 𝛼 (𝑡) 𝑥 (𝑡) + 𝛽 (𝑡) 𝑢 (𝑡) + ∑

𝑡𝑘∈SI
𝛾 (𝑡

𝑘
) 𝛿 (𝑡 − 𝑡

𝑘
) ,

𝑥 (0
−
) = 𝑥

0
, 𝑥 (0) = 𝑥 (0

+
) = 𝑥

0
+ 𝛾 (0) ,

(44)

where 𝛼, 𝛽 ∈ 𝐵(R
0+
,R) ∪ PC(R

0+
,R) (i.e., bounded and

piece-wise continuous real functions on R
0+
), {𝛾(𝑡

𝑘
)}
𝑡𝑘∈SI is

a bounded sequence, 𝛿(𝑡) is the Dirac distribution, 𝑢 ∈

PC(R
0+
,R) is the nonimpulsive control, 𝑥 : R

0+
→ R is

the unique solution of (44) which is continuous and time-
differentiable on [0, 𝑡

1
)⋃(⋃

𝑘∈I[𝑡𝑘, 𝑡𝑘+1)), 𝑡𝑘 ∈ SI ⊂ R
0+

is a
set of impulsive sampling instants with 𝑘 ∈ I ⊆ Z

+
, and the

indicator set I of SI has a finite or an infinite cardinal. Note
that 𝑢imp(𝑡) = ∑

𝑡𝑘∈SI 𝛾(𝑡𝑘)𝛿(𝑡 − 𝑡
𝑘
) is an impulsive control.

Assume a linear-feedback control of the form 𝑢(𝑡) = 𝑔(𝑡)𝑥(𝑡)

with 𝑔 ∈ PC(R
0+
,R). The solution of (44) is

𝑥 (𝑡) = 𝑒
∫
𝑡

𝑡
𝑘

𝛼(𝜏)𝑑𝜏
𝑥 (𝑡

𝑘
) + ∫

𝑡

𝑡𝑘

𝑒
∫
𝑡

𝜏
𝛼(𝜎)𝑑𝜎

𝛽 (𝜏) 𝑢 (𝜏) 𝑑𝜏

= 𝑒
∫
𝑡

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
𝑥 (𝑡

𝑘
) ,

∀𝑡 ∈ ([0, 𝑡
1
)⋃( ⋃

𝑡𝑘∈SI
[𝑡
𝑘
, 𝑡
𝑘+1

))) ,

(45)

𝑥 (𝑡
𝑘+1

) := 𝑥 (𝑡
+

𝑘+1
) = 𝑥 (𝑡

−

𝑘+1
) + 𝛾 (𝑡

𝑘
)

= 𝑒
∫
𝑡

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
𝑥 (𝑡

𝑘
) + 𝛾 (𝑡

𝑘+1
)

= 𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

𝛼(𝜏)𝑑𝜏
𝑥 (𝑡

𝑘
) + ∫

𝑡𝑘+1

𝑡𝑘

𝑒
∫
𝑡
𝑘+1

𝜏
𝛼(𝜎)𝑑𝜎

𝛽 (𝜏) 𝑢 (𝜏) 𝑑𝜏

= 𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
𝑥 (𝑡

𝑘
) + 𝛾 (𝑡

𝑘+1
) ; ∀𝑡

𝑘
∈ SI.
(46)

Then, the following results hold.

Proposition 16. Assume that 𝛾(0) = M(0), 𝛾(𝑡
𝑘+1

) = 𝑀(𝑡
𝑘+1

)

−𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
𝑥(𝑡

𝑘
) for 𝑡

𝑘
∈ SI and {𝑀(𝑡

𝑘
)}
𝑡𝑘∈SI is some

bounded real sequence, then

(i) {𝑥(𝑡
𝑘
)}
𝑡𝑘∈SI is bounded so that (44) is globally stable.

If, in addition, {𝑀(𝑡
𝑘
)}
𝑡𝑘∈SI converges to zero as 𝑡

𝑘
(∈

SI) → ∞ (if 𝑐 = card I is finite then𝑀(𝑡
𝑐
) = 0), then

{𝑥(𝑡
𝑘
)}
𝑡𝑘∈SI converges to zero as 𝑘 → ∞.

(ii) if I has an infinite cardinal, so that I = Z
+
, and |𝑡

𝑘+1
−

𝑡
𝑘
| ≤ 𝑇 < ∞,∀𝑡

𝑘
∈ SI, then |𝑥(𝑡)| is bounded for all 𝑡 ∈

R
0+
. If, in addition, {𝑀(𝑡

𝑘
)}
𝑡𝑘∈SI converges to the stable

zero equilibrium point as 𝑘 → ∞ then 𝑥(𝑡) → 0 as
𝑡 → ∞ so that (44) is globally asymptotically stable.

Proof. Property (i) follows from its statement and (46). Since
{𝑥(𝑡

𝑘
)}
𝑡𝑘∈SI is bounded, the continuous function 𝑥(𝑡) on

(𝑡
𝑘
, 𝑡
𝑘+1

) cannot be unbounded on the finite interval [𝑡
𝑘
, 𝑡
𝑘+1

)

if 0 ≤ 𝑇
0

≤ |𝑡
𝑘+1

− 𝑡
𝑘
| ≤ 𝑇 < ∞, ∀𝑡

𝑘
∈ SI.
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Since 𝑐𝑙 R
0+

= 𝑐𝑙([0, 𝑡
1
)⋃(⋃

𝑘∈I[𝑡𝑘, 𝑡𝑘+1))) if the indicator set
I of impulses is of infinite cardinal, it becomes obvious that
𝑥(𝑡) is bounded on its definition domain R

0+
. If, in addition,

{𝑀(𝑡
𝑘
)}
𝑡𝑘∈SI converges to zero as 𝑘 → ∞ then {𝑥(𝑡

𝑘
)}
𝑡𝑘∈SI

converges to zero as 𝑘 → ∞ from Property (i) so that
{𝛾(𝑡

𝑘
)}
𝑡𝑘∈SI converges to zero as 𝑘 → ∞. Then, 𝑥(𝑡) → 0

on 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) as 𝑡
𝑘
(∈ SI) → ∞ from (45). Hence, Property

(ii) is proven.

Proposition 17. Assume that 𝛾(𝑡
𝑘
) = 𝜆(𝑡

𝑘
)𝑥(𝑡

−

𝑘
). Then, the

following properties hold.
(i) Assume that card SI = 𝜒

0
(i.e., the infinity cardinal of

a numerable set) fulfilling |𝑡
𝑘+1

− 𝑡
𝑘
| ≤ 𝑇 < ∞, ∀𝑡

𝑘
∈ SI,

and define the self-mapping 𝑇 : R → R generating the
solution sequence {𝑥(𝑡

𝑘
)}
𝑡𝑘∈SI of (44) at the set of impulsive

time instants SI = {𝑡
𝑘
}
𝑘∈I. Assume that such a set has infinite

cardinal. Then, 𝑇 : R → R is asymptotically contractive and
has a unique fixed point 𝑥 = 0 if

0 ≤ lim sup
SI∋𝑡𝑘→∞

󵄨󵄨󵄨󵄨1 + 𝜆 (𝑡
𝑘+1

)
󵄨󵄨󵄨󵄨 𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
< 1. (47a)

If card I = 𝑐 < 𝜒
0
then (47a) is replaced with

0 ≤ lim sup
𝑡→∞

𝑒
∫
𝑡

𝑡𝑐
(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏

< 1 ⇐⇒ lim sup
𝑡→∞

∫

𝑡

𝑡𝑐

(𝛼 (𝜏) + 𝛽 (𝜏) 𝑔 (𝜏)) 𝑑𝜏 < 0.

(47b)

Furthermore, {𝑥(𝑡
𝑘
)}
𝑡𝑘∈SI is bounded, 𝑥 : R

0+
→ R

is bounded and lim
𝑡→∞

𝑥(𝑡) = 0 so that (44) is globally
asymptotically stable.

(ii) Property (i) still holds if card SI = 𝜒
0
, and there is a

nondecreasing sequence {𝑁
𝑘
}
𝑘∈Z0+ ⊆ Iwith |𝑁

𝑘+1
−𝑁

𝑘
| ≤ 𝑁 <

∞ such that

lim sup
I∋𝑁𝑘→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁𝑘+1

∏

𝑖=𝑁𝑘

[(1 + 𝜆 (𝑡
𝑖
)) 𝑒

∫
𝑡𝑖+1

𝑡𝑖

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1. (48)

(iii) Property (i) also holds with 𝑇 : R → R being con-
tractive if card SI = 𝜒

0
and for some positive real sequence

{𝜀
𝑘
}
𝑘∈Z0+

𝜆 (𝑡
𝑘+1

) = 𝑒
−∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
− 1 − 𝜀

𝑘
,

∀𝑘 ∈ Z
0+
.

(49)

Proof. Assume that card SI = 𝜒
0
. It follows that

𝑥 (𝑡
𝑘+1

) = (1 + 𝜆 (𝑡
𝑘+1

)) 𝑥 (𝑡
−

𝑘+1
)

= (1 + 𝜆 (𝑡
𝑘+1

)) 𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
𝑥 (𝑡

𝑘
) ,

∀𝑡
𝑘
∈ SI,

(50)

so that
󵄨󵄨󵄨󵄨𝑥 (𝑡𝑘+1) − 𝑥 (𝑡

𝑘
)
󵄨󵄨󵄨󵄨

≤ sup
𝑡𝑘∈SI

(
󵄨󵄨󵄨󵄨1 + 𝜆 (𝑡

𝑘+1
)
󵄨󵄨󵄨󵄨 𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
)

×
󵄨󵄨󵄨󵄨𝑥 (𝑡𝑘) − 𝑥 (𝑡

𝑘−1
)
󵄨󵄨󵄨󵄨 , ∀𝑡

𝑘
∈ SI

(51)

and one gets that {|𝑥(𝑡
𝑘+1

) − 𝑥(𝑡
𝑘
)|}

𝑡𝑘∈SI converges to zero
and {𝑥(𝑡

𝑘
)}
𝑡𝑘∈SI converges to a unique fixed point 𝑥 ∈

R as SI ∋ 𝑡
𝑘

→ ∞ from Theorem 12, support-
ed byTheorem 9, with the complete metric space and Banach
space (R

0+
, 𝑑) ≡ (R

0+
, ‖‖) the metric being the Euclidean

distance. Also, since the sequence {|𝑥(𝑡
𝑘+1

) − 𝑥(𝑡
𝑘
)|}

𝑡𝑘∈SI con-
verges to zero as SI ∋ 𝑡

𝑘
→ ∞ yields that 𝑥 = 0 is the

unique fixed point of 𝑇 : R → R since, otherwise, (50)
would contradict (47a) for 𝑥 = 𝑥(𝑡

𝑘
) = 𝑥(𝑡

𝑘+1
) ̸= 0. The

facts that {𝑥(𝑡
𝑘
)}
𝑡𝑘∈SI is bounded, 𝑥 : R

0+
→ R is bounded,

and lim
𝑡→∞

𝑥(𝑡) = 0 follow under the same reasoning as in
Proposition 16. Hence, Property (i) follows for the case that
card SI = 𝜒

0
. If such a cardinal is finite, we can remove a finite

number of impulsive time instants from the discussion, and
the property also holds under (47b).Theproof of Property (ii)
is similar leading to the convergence to zero of the sequence
{𝛿𝑥(𝑡

𝑁𝑘
)}
𝑡𝑁
𝑘
∈SI⊆SI as 𝑡𝑁𝑘 → ∞ where 𝛿𝑥(𝑡

𝑁𝑘
) = 𝑥(𝑡

𝑁𝑘+1
) −

𝑥(𝑡
𝑁𝑘
). Thus, 𝑥(𝑡

𝑁𝑘
) → 𝑥 as I ∋ 𝑁

𝑘
→ ∞ where I ⊆ I.

As above, it turns out that 𝑥 = 𝑥 = 0 under a similar
contradiction argument to the above one. Hence, Property
(ii) follows. Property (iii) follows directly since (49) leads to
(47a).

Note that Proposition 17 states global properties for the
solution so that the contractive condition is achievable with
mixed conditions on the nonimpulsive and impulsive parts
of the differential equation. For instance, it is clear from (49)
that a certain condition on the impulsive controls can stabilize
the system even if the nonimpulsive part is unstable; that is,
if lim infSI∋𝑡𝑘→∞

∫
𝑡𝑘+1

𝑡𝑘

(𝛼(𝜏) + 𝛽(𝜏)𝑔(𝜏))𝑑𝜏 > 0. It is easy to
deduce from a slightly extended Proposition 17 that 𝑇 : R →

R is asymptotically nonexpansive if the inequalities in (47a)–
(48) are not strict. Note also that (49) can be checked in terms
of the values of intervals in-between consecutive impulsive
time instants and impulsive control gains with the following
test if SI has infinite cardinal:

ln 󵄨󵄨󵄨󵄨1 + 𝜆 (𝑡
𝑘+1

)
󵄨󵄨󵄨󵄨

+ ∫

𝑡𝑘+1−𝑡𝑘

0

(𝛼 (𝑡
𝑘
+ 𝜏) + 𝛽 (𝑡

𝑘
+ 𝜏) 𝑔 (𝑡

𝑘
+ 𝜏)) 𝑑𝜏 < 0,

∀𝑡
𝑘
∈ SI.

(52)

Then, the mapping constructing the solution which iter-
ates at the impulsive time instants is contractive. The above
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closed-loop stability condition (52) is guaranteed if |𝑡
𝑘+1

−

𝑡
𝑘
| ≤ 𝑇 < ∞, ∀𝑡

𝑘
∈ SI and

sup
𝑡𝑘∈SI

[

[

ln 󵄨󵄨󵄨󵄨1 + 𝜆 (𝑡
𝑘+1

)
󵄨󵄨󵄨󵄨

+ sup
𝜏∈[0,𝑇]

(𝛼 (𝑡
𝑘
+ 𝜏) + 𝛽 (𝑡

𝑘
+ 𝜏) 𝑔 (𝑡

𝑘
+ 𝜏)) 𝑇]

]

< 0.

(53)

Related close conditions to (52) and (53) would follow
being equivalent to (47a) and (48) to guarantee that the map-
ping building the solution sequence at impulsive time instants
from any initial condition is asymptotically contractive. In
particular, a close test can be jointly performed for finite
sets of consecutive impulsive time instants defined bounded
time intervals. Closed-loop global asymptotic stability of
the feedback equation and the convergence to the unique
equilibrium point 𝑥 = 0 is also guaranteed by the subsequent
result.

Proposition 18. Assume that card SI = 𝜒
0
and that there is

a real sequence {𝑞(𝑡
𝑘
)}
𝑘∈Z0+ fulfilling 0 ≤ 𝑞(𝑡

𝑘
) < 1; ∀𝑡

𝑘
∈ SI

such that {𝛾(𝑡
𝑘
)}
𝑘∈Z0+ in (44) is defined by:

𝛾 (𝑡
𝑘+1

) = − (𝑞 (𝑡
𝑘
) + 𝑒

∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
)𝑥 (𝑡

𝑘
) ,

∀𝑘 ∈ SI.
(54)

Then, 𝑥(𝑡
𝑘
) → 0 as t

𝑘
→ ∞ and 𝑥(𝑡) → 𝑥 = 0 (the

unique fixed point of 𝑇 : R → R) as 𝑡 → ∞.

Proof. It follows from (45) by noting that (54) is equivalent to

𝑥 (𝑡
𝑘+1

) = 𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
𝑥 (𝑡

𝑘
) + 𝛾 (𝑡

𝑘+1
)

= −𝑞 (𝑡
𝑘
) 𝑥 (𝑡

𝑘
) .

(55)

Example 19. Consider the differential equation (44) and the
sets 𝐴 = {𝑧 ∈ R : 𝑧 ≤ −𝐷/2} and 𝐵 = {𝑧 ∈ R : 𝑧 ≥ 𝐷/2}

for some real 𝐷 ∈ R
0+
. Define the self-mapping 𝑇 : R → R

for the solution sequence at impulsive time instants as follows
for each 𝑡

𝑘
∈ SI assuming that card SI = 𝜒

0
and that there are

prefixed finite 𝑇 > 0 and 𝑇
0
> 0with 0 < 𝑇

0
≤ |𝑡

𝑘+1
−𝑡

𝑘
| ≤ 𝑇.

(a) 𝜆(𝑡
𝑘+1

) and 𝑡
𝑘+1

≤ 𝑡
𝑘
+ 𝑇 are chosen so that

𝜆 (𝑡
𝑘+1

) = − (1 + 𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
) (56a)

if 𝑥(𝑡
𝑘
) ≤ −𝐷/2 (i.e., if 𝑥(𝑡

𝑘
) ∈ 𝐴) leading to 𝑥(𝑡

𝑘+1
) ≥ 𝐷/2

(i.e., 𝑥(𝑡
𝑘+1

) ∈ 𝐵) or if min(𝑥(𝑡
𝑘−1

), 𝑥(𝑡
𝑘
)) ≥ 𝐷/2 (i.e., if

𝑥(𝑡
𝑘−1

), 𝑥(𝑡
𝑘
) ∈ 𝐵) leading to 𝑥(𝑡

𝑘+1
) ≤ −𝐷/2 (i.e., 𝑥(𝑡

𝑘+1
) ∈

𝐴); and

(b) 𝜆(𝑡
𝑘+2

) and 𝑡
𝑘+2

≤ 𝑡
𝑘+1

+𝑇 are chosen so that for some
given positive real constant 𝜇:

ln 󵄨󵄨󵄨󵄨1 + 𝜆 (𝑡
𝑘+2

)
󵄨󵄨󵄨󵄨

+ sup
𝜏∈[0,𝑡𝑘+2−𝑡𝑘+1]

(𝛼 (𝑡
𝑘+1

+ 𝜏) + 𝛽 (𝑡
𝑘+1

+ 𝜏) 𝑔 (𝑡
𝑘+1

+ 𝜏))

× (𝑡
𝑘+2

− 𝑡
𝑘+1

) = −𝜇
𝑘+1

≤ −𝜇 < 0

(56b)

leading to 𝑥(𝑡
𝑘+2

) ≥ 𝐷/2 if 𝑥(𝑡
𝑘
) ≤ −𝐷/2 and 𝑥(𝑡

𝑘+1
) ≥ 𝐷/2

(i.e., if 𝑥(𝑡
𝑘
) ∈ 𝐴 and 𝑥(𝑡

𝑘+1
) ∈ 𝐵) and leading to 𝑥(𝑡

𝑘+2
) ≤

−𝐷/2 if 𝑥(𝑡
𝑘
) ≥ 𝐷/2 and 𝑥(𝑡

𝑘+1
) ≤ −𝐷/2 (i.e., if 𝑥(𝑡

𝑘
) ∈ 𝐵

and 𝑥(𝑡
𝑘+1

) ∈ 𝐴).
Note that (56a) implies that 𝛾(𝑡

𝑘+1
) = (1 +

𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
)|𝑥(𝑡

𝑘
)| and 𝑥(𝑡

𝑘+1
) = −𝑥(𝑡

𝑘
). Note

that (56b) leads to the strict contraction (39) of Corollary 10
in the particular form

𝑥 (𝑡
𝑘+2

) − 𝐷

= (1 + 𝜆 (𝑡
𝑘+2

)) 𝑒
∫
𝑡
𝑘+2

𝑡
𝑘+1

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏

(𝑥 (𝑡
𝑘+1

) − 𝐷) .

(57)

Note that (56a) and (56b) imply that the sequence of
iterates is formed with consecutive sets of two consecutive
points in 𝐵 and one in 𝐴. Thus, the sequence of impul-
sive gains (56a) and (56b) implies that the self-mapping
𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵, which generates the sequence
{𝑥

𝑡𝑘
}
𝑡𝑘∈SI

, which is bounded, is 𝑝-semicyclic nonexpansive,
while the composite self-mapping 𝑇

2
: 𝐴 ∪ 𝐵 → 𝐴 ∪

𝐵, which generates the bounded subsequences {𝑥
𝑡2𝑘
}
𝑡2𝑘∈SI

and {𝑥
𝑡2𝑘+1

}
𝑡2𝑘+1∈SI

, is 2-semicyclic contractive. As a result,
{𝑥

𝑡2𝑘+1
}
𝑡2𝑘∈SI

and {𝑥
𝑡2𝑘+1

}
𝑡2𝑘+1∈SI

converge each to one of the
unique best proximity points ±𝐷/2, in particular, to the
unique fixed point 𝑥 = 0 if𝐷 = 0.

Example 20. The differential equation (44) is now replaced
by the functional impulsive differential equation with delay
ℎ > 0 as follows:

𝑥̇ (𝑡) = 𝛼 (𝑡) 𝑥 (𝑡) + 𝛼
0 (𝑡) 𝑥 (𝑡 − ℎ) + 𝛽 (𝑡) 𝑢 (𝑡)

+ ∑

𝑡𝑘∈𝑆𝐼

𝛾 (𝑡
𝑘
) 𝛿 (𝑡 − 𝑡

𝑘
)

(58)

with 𝛼
0

∈ 𝐵(R
0+
,R) ∪ PC(R

0+
,R) and 𝜑 : [− ℎ, 0] →

R being any absolutely continuous of initial conditions of
(58) with eventual bounded discontinuities on a subset of
[−ℎ, 0] of zero measure with 𝜑(0

−
) = 𝑥(0

−
) = 𝑥

0
and

𝜑(0
+
) = 𝑥(0

+
) = 𝜑(0) = 𝑥

0
+ 𝛾(0) so that 𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈

[−ℎ, 0]. Thus, the solution of (58) is unique and continuous
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and differentiable in [0, 𝑡
1
) ⋃( ⋃

𝑘∈I[𝑡𝑘, 𝑡𝑘+1)). The unique
solution of (58) is

𝑥 (𝑡) = Ψ (𝑡, 0) 𝑥 (0) + ∫

ℎ

0

Ψ (𝑡, 𝜏) 𝜑 (𝜏 − ℎ) 𝑑𝜏

+ ∫

𝑡

0

Ψ (𝑡, 𝜏) 𝑢 (𝜏) 𝑑𝜏 + ∑

𝑡𝑘∈SI
Ψ (𝑡, 𝑡

𝑘
) 𝛾 (𝑡

𝑘
) 1 (𝑡 − 𝑡

𝑘
) ,

∀𝑡 ∈ R
0+
,

(59)

where 1(𝑡) is the unit step (Heaviside) function, where the
evolution operator satisfies

Ψ̇ (𝑡, 𝜏) = 𝛼 (𝑡) Ψ (𝑡, 𝜏) + 𝛼
0 (𝑡) Ψ (𝑡 − ℎ, 𝜏) , (60)

for 𝑡 ≥ 𝜏 with initial conditions Ψ(0) = 1, Ψ(𝑡) = 0 for 𝑡 < 0.
Thus, (60) has the unique continuously differentiable solution

Ψ (𝑡, 0)

= 𝑒
∫
𝑡

0
𝛼(𝜏)𝑑𝜏

+ ∫

𝑡

ℎ

𝑒
∫
𝑡

𝜏
𝛼(𝜎)𝑑𝜎

𝛼
0 (𝜏) Ψ (𝜏 − ℎ, 0) 𝑑𝜏,

∀𝑡 ∈ R
0+
.

(61)

If 𝑡
𝑖
∈ SI then (60) has the unique solution at 𝑡 = 𝑡

𝑖
as

follows:

𝑥 (𝑡
−

𝑖
) = Ψ (𝑡

𝑖
, 0) 𝑥 (0) + ∫

ℎ

0

Ψ (𝑡
𝑖
, 𝜏) 𝜑 (𝜏 − ℎ) 𝑑𝜏

+ ∫

𝑡𝑖

0

Ψ (𝑡
𝑖
, 𝜏) 𝑢 (𝜏) 𝑑𝜏

+ ∑

𝑡𝑘(<𝑡𝑖)∈SI
Ψ (𝑡

𝑖
, 𝑡
𝑘
) 𝛾 (𝑡

𝑘
) 1 (𝑡

𝑖
− 𝑡

𝑘
) ,

𝑥 (𝑡
𝑖
) = Ψ (𝑡

𝑖
, 0) 𝑥 (0) + ∫

ℎ

0

Ψ (𝑡
𝑖
, 𝜏) 𝜑 (𝜏 − ℎ) 𝑑𝜏

+ ∫

𝑡𝑖

0

Ψ (𝑡
𝑖
, 𝜏) 𝑢 (𝜏) 𝑑𝜏

+ ∑

𝑡𝑘(≤𝑡𝑖)∈SI
Ψ (𝑡

𝑖
, 𝑡
𝑘
) 𝛾 (𝑡

𝑘
) 1 (𝑡

𝑖
− 𝑡

𝑘
)

= 𝑥 (𝑡
−

𝑖
) + 𝛾 (𝑡

𝑖
) .

(62)

Equation (59) can also describe the interimpulses evolu-
tion of the solution under the expressions

𝑥 (𝑡) = Ψ (𝑡, 𝑡
𝑘
) 𝑥 (𝑡

𝑘
)

+ ∫

ℎ

0

Ψ (𝑡, 𝑡
𝑘
+ 𝜏) 𝑥 (𝑡

𝑘
+ 𝜏 − ℎ) 𝑑𝜏

+ ∫

𝑡−𝑡𝑘

0

Ψ (𝑡, 𝑡
𝑘
+ 𝜏) 𝛽 (𝑡

𝑘
+ 𝜏) 𝑢 (𝑡

𝑘
+ 𝜏) 𝑑𝜏,

∀𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) ,

𝑥 (𝑡
𝑘+1

) = Ψ (𝑡
𝑘+1

, 𝑡
𝑘
) 𝑥 (𝑡

𝑘
)

+ ∫

ℎ

0

Ψ (𝑡
𝑘+1

, 𝑡
𝑘
+ 𝜏) 𝑥 (𝑡

𝑘
+ 𝜏 − ℎ) 𝑑𝜏

+ ∫

𝑡𝑘+1−𝑡𝑘

0

Ψ (𝑡
𝑘+1

, 𝑡
𝑘
+ 𝜏) 𝛽 (𝑡

𝑘
+ 𝜏) 𝑢 (𝑡

𝑘
+ 𝜏) 𝑑𝜏

+ 𝛾 (𝑡
𝑘+1

) .

(63)

Now, assume for the sake of simplicity that the set SI of
impulsive time instants is subject to the constraint ℎ ≤ |𝑡

𝑘+1
−

𝑡
𝑘
| ≤ 𝑇; ∀𝑡

𝑘
∈ SI and that the subsequent mixed piece-wise

continuous impulsive-free and impulsive control law is used
as follows:

𝑢 (𝑡) = 𝑔 (𝑡
𝑘
) 𝑔 (𝑡) 𝑥 (𝑡𝑘) + 𝑔

0
(𝑡
𝑘
) 𝑔

0
(𝑡 − ℎ) 𝑥 (𝑡 − ℎ) ,

∀𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘
+ ℎ) , ∀𝑡

𝑘
∈ SI,

𝑢 (𝑡) = 𝑔 (𝑡
𝑘
) 𝑔 (𝑡) 𝑥 (𝑡𝑘) , ∀𝑡 ∈ [𝑡

𝑘
+ ℎ, 𝑡

𝑘+1
) ,

∀𝑡
𝑘
∈ SI,

𝛾 (𝑡
𝑘+1

) = 𝜆 (𝑡
𝑘+1

) 𝑥 (𝑡
−

𝑘+1
) ,

∀𝑡
𝑘
∈ SI,

(64)

so that 𝑔(⋅) and 𝑔
0
are piecewise continuous on R

0+
and

R
0+
∪[−ℎ, 0], respectively.Then, the solution of the controlled

differential equation at the impulsive time instants is

𝑥 (𝑡
𝑘+1

)

= (1 + 𝜆 (𝑡
𝑘+1

))

× [(Ψ (𝑡
𝑘+1

, 𝑡
𝑘
) + 𝑔 (𝑡

𝑘
)

× ∫

𝑡𝑘+1−𝑡𝑘

0

Ψ (𝑡
𝑘+1

, 𝑡
𝑘
+ 𝜏)

× 𝛽 (𝑡
𝑘
+ 𝜏) 𝑔 (𝑡

𝑘
+ 𝜏) 𝑑𝜏)𝑥 (𝑡

𝑘
)

+ ∫

ℎ

0

Ψ (𝑡
𝑘+1

, 𝑡
𝑘
+ 𝜏)

× (1 + 𝑔
0
(𝑡
𝑘
) 𝑔

0
(𝑡
𝑘
+ 𝜏 − ℎ) 𝛽 (𝑡

𝑘
+ 𝜏 − ℎ))

× 𝑥 (𝑡
𝑘
+ 𝜏 − ℎ) 𝑑𝜏]

(65a)
= (1 + 𝜆 (𝑡

𝑘+1
)) ] (𝑡

𝑘
, 𝑡
𝑘+1

) 𝑥 (𝑡
𝑘
) ,

∀𝑡
𝑘
∈ SI,

(65b)
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provided that sequences {𝑔(𝑡
𝑘
)}
𝑡𝑘∈SI and {𝑔

0
(𝑡
𝑘
)}
𝑡𝑘∈SI of the

control law (64) are parameterized as follows:

𝑔 (𝑡
𝑘
) = (] (𝑡

𝑘
, 𝑡
𝑘+1

) − Ψ (𝑡
𝑘+1

, 𝑡
𝑘
))

×(∫

𝑡𝑘+1−𝑡𝑘

0

Ψ (𝑡
𝑘+1

, 𝑡
𝑘
+ 𝜏)

× 𝛽 (𝑡
𝑘
+ 𝜏) 𝑔 (𝑡

𝑘
+ 𝜏) 𝑑𝜏)

−1

,

𝑔
0
(𝑡
𝑘
) = − (∫

ℎ

0

Ψ (𝑡
𝑘+1

, 𝑡
𝑘
+ 𝜏) 𝑥 (𝑡

𝑘
+ 𝜏 − ℎ) 𝑑𝜏)

× (∫

ℎ

0

Ψ (𝑡
𝑘+1

, 𝑡
𝑘
+ 𝜏)

× (𝑔
0
(𝑡
𝑘
+ 𝜏 − ℎ) 𝛽 (𝑡

𝑘
+ 𝜏 − ℎ))

×𝑥 (𝑡
𝑘
+ 𝜏 − ℎ) 𝑑𝜏) .

−1

(66)

Thus, Propositions 17 and 18 related to Example 15 can be
applied to the sequence (65a) and (65b) and the self-mapping

which generates it by replacing 𝑒
∫
𝑡
𝑘+1

𝑡
𝑘

(𝛼(𝜏)+𝛽(𝜏)𝑔(𝜏))𝑑𝜏
→

](𝑡
𝑘
, 𝑡
𝑘+1

). For instance, self-mapping which generates the
solution sequence at impulsive time instants is asymptotically
contractive if lim sup

𝑡𝑘∈SI(1 + 𝜆(𝑡
𝑘+1

))](𝑡
𝑘
, 𝑡
𝑘+1

) < 1, asymp-
totically nonexpansive if lim sup

𝑡𝑘∈SI(1 + 𝜆(𝑡𝑘+1))](𝑡𝑘, 𝑡𝑘+1) ≤
1, and contractive and nonexpansive if the above conditions
are replaced with similar ones at each 𝑡

𝑘
∈ SI. Similar

extensions also apply to the extensions of Example 19 for a
2-semicyclic self-mapping of the delayed impulsive equation.
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