
Sensors 2013, 13, 6730-6745; doi:10.3390/s130506730 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

On the Selection of Non-Invasive Methods Based on Speech 
Analysis Oriented to Automatic Alzheimer Disease Diagnosis  

Karmele López-de-Ipiña 1,*, Jesus-Bernardino Alonso 2, Carlos Manuel Travieso 2,  

Jordi Solé-Casals 3, Harkaitz Egiraun 1,4, Marcos Faundez-Zanuy 5, Aitzol Ezeiza 1,  

Nora Barroso 1, Miriam Ecay-Torres 6, Pablo Martinez-Lage 6 and Unai Martinez de Lizardui 1  

1 Systems Engineering and Automation Department, University of the Basque Country UPV/EHU, 

Donostia 20018, Spain; E-Mails: harkaitz.egiraun@ehu.es (H.E.); aitzol.ezeiza@ehu.es (A.E.); 

nora.barroso@ehu.es (N.B.); unai.martinezdelizarduy@ehu.es (U.M.L.) 
2 Signal and Communication Departament (DSC), Institute for Technological Development and 

Innovation in Communications (IDeTIC), University of Las Palmas de Gran Canaria (ULPGC), 

Campus of Tafira, Las Palmas de Gran Canaria 35017, Spain;  

E-Mails: jalonso@dsc.ulpgc.es (J.-B.A.); ctravieso@dsc.ulpgc.es (C.M.T.) 
3 Digital Technologies Group, University of Vic, Sagrada família 7, Vic 08500, Spain;  

E-Mail: jordi.sole@uvic.cat 
4 Research Center for Experimental Marine Biology and Biotechnology, Plentzia Marine Station, 

University of the Basque Country, Plentzia 48620, Spain 
5 Escola Universitaria Politècnica de Mataró (UPC), Tecnocampus, Mataró, Barcelona 08302, Spain; 

E-Mail: faundez@tecnocampus.cat 
6 CITA-Alzheimer Foundation, San Sebastian 20009, Spain;  

E-Mails: mecay@cita-alzheimer.org (M.E.-T.); pmlage@cita-alzheimer.org (P.M.-L.) 

* Author to whom correspondence should be addressed; E-Mail: karmele.ipina@ehu.es;  

Tel.: +34-943-018-667; Fax: +34-943-017-230. 

Received: 15 April 2013; in revised form: 8 May 2013 / Accepted: 13 May 2013 /  

Published: 21 May 2013 

 

Abstract: The work presented here is part of a larger study to identify novel technologies 

and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the 

suitability of a new approach for early AD diagnosis by non-invasive methods. The 

purpose is to examine in a pilot study the potential of applying intelligent algorithms to 

speech features obtained from suspected patients in order to contribute to the improvement 

of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks 

(ANN) have been used for the automatic classification of the two classes (AD and control 
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subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech 

and Emotional Response. Not only linear features but also non-linear ones, such as Fractal 

Dimension, have been explored. The approach is non invasive, low cost and without any 

side effects. Obtained experimental results were very satisfactory and promising for early 

diagnosis and classification of AD patients. 

Keywords: Alzheimer’s disease diagnosis; spontaneous speech; emotion recognition; 

machine learning; non-invasive diagnostic techniques; dementia 

 

1. Introduction 

Alzheimer’s disease (AD) is the most common type of dementia among elderly people in Western 

countries and it has a large socioeconomic cost to society which is expected to increase in the near 

future. It is characterized by progressive and irreversible cognitive deterioration with memory loss, 

impaired judgment and language and other cognitive deficits and behavioural symptoms that end up 

becoming severe enough to limit the ability of an individual to perform professional, social or family 

activities of daily life. As the disease progresses patients develop increasingly severe disabilities to 

finally become completely dependent. An early and accurate diagnosis of AD would be of much help 

for patients and their families, both to plan for the future and to start an early treatment of the 

symptoms of the disease.  

According to current criteria, the diagnosis is expressed with different degrees of certainty as 

possible or probable AD when dementia is present and other possible causes have been ruled out, but 

an unambiguous diagnosis of AD requires the demonstration of the typical AD pathological changes in 

brain tissue by autopsy (post-mortem analysis) [1–3]. The clinical hallmark and earliest manifestation 

of AD is episodic memory impairment. At the time of clinical presentation other cognitive deficits are 

usually already present in their language, executive functions, orientation, perceptual abilities and 

constructional skills. Associated behavioural and psychological symptoms include apathy, irritability, 

depression, anxiety, delusions, hallucinations, disinhibition, aggression, aberrant motor behaviour, as 

well as eating or sleep behaviour changes [1–5]. All these symptoms lead to impaired performance in 

family, social or professional activities of daily life as the disease progresses from mild to moderate 

and to severe.  

As already mentioned above, the diagnosis of AD is made on clinical grounds and requires, on one 

hand, the confirmation of a progressive dementia syndrome and, on the other, the exclusion of other 

potential causes of dementia by clinical history and examination, complete blood workup tests and 

brain-imaging analysis test, such as computer tomography (CT) or magnetic resonance imaging (MRI). 

The criteria to exclude other potential causes have changed in the last years as the interpretation of 

neuroimaging tests, including functional imaging with Single-Photon Emission Computed 

Tomography (SPECT) and Positron Emission Tomography (PET), has focused on the positive findings 

of typical AD changes, such as medial temporal atrophy detected by CT or MRI and temporoparietal 

hypometabolism by PET [6–9].  
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Nonetheless, the diagnosis of the early stages of not only mild cognitive impairment but also mild 

dementia remains problematic, since patients and relatives tend to either ignore the first clinical 

manifestations or ascribe them to the expected cognitive changes related to age. It usually takes  

2 to 3 years to seek medical advice after the onset of the symptoms [1–3]. In addition, physicians may 

feel uncertain or uncomfortable to establish a diagnosis when the whole picture of dementia is not yet 

fully present; therefore, they usually feel the need to apply long neuropsychological tests, expensive 

neuroimaging techniques or invasive tests such as a lumbar puncture to reach a diagnosis [10].  

It is consequently not surprising that most of the patients are diagnosed when they have already 

reached the moderate stage of the disease and have become substantially dependent. At this stage, it is 

very difficult for any treatment strategy to show significant efficacy to stop or even delay the  

disease process [2–5].  

Significant advances have taken place during the last years in the early diagnosis of AD using 

clinical biomarkers [10], but the currently high cost and technology requirements make it unfeasible to 

use these diagnostic procedures on any patient displaying only memory complaints. As a result, they 

are usually applied to pre-selected patients based on their being highly suspect of suffering an 

underlying AD pathology; who are then apt to have an invasive lumbar puncture or a very expensive 

PET performed [10–13].  

In this setting, the development of non-invasive intelligent diagnosis techniques would be very 

valuable for the early detection and classification of different types of dementia. Particularly, because 

they do not require specialized personnel or laboratory equipment, so that anyone in the habitual 

environment of the patient could perform (after proper training) without altering or blocking the 

patient’s abilities [14–19]. Automatic Spontaneous Speech Analysis (ASSA) and Emotional Response 

Analysis (ERA) on speech are two of them [15].  

Spoken language is one of the most important elements defining an individual’s intellect, his/her 

social life and personality; it allows us to communicate with each other, share knowledge, and express 

our cultural and personal identity. Spoken language is the most spontaneous, natural, intuitive and 

efficient method of communication among people. Therefore, the analysis by automated methods of 

Spontaneous Speech (SS) or Automatic Speech Analysis (ASSA) which is the freer and more natural 

expression of communication, possibly combined with other methodologies, has the potential to 

become a useful non-invasive method for early AD diagnosis [15,20–24]. 

Emotional Response Analysis (ERA) on speech also has that potential: emotions are cognitive 

processes related to the architecture of the human mind, such as decision making, memory or attention, 

closely linked to learning and understanding that arise in intelligent systems when they become 

necessary to survive in a changing and partially unpredictable world [25–27]. The nonverbal 

information, which often includes body-language, attitudes, modulations of voice, facial expressions, 

etc., is essential in human communication as it has a large effect on the communication provision of 

the partners and on the intelligibility of speech [25]. Human emotions are affected by the environment, 

the direct interaction with the outside world but also by the emotional memory emerging from the 

experience of individual and cultural environment, the so called socialized emotion. Emotions use the 

same components subjective, cultural, physiological and behavioural that the individual’s perception 

expresses with regard to the mental state, the body and how it interacts with the environment [26,27]. 

In this work ERA has been analyzed by classical features and by Emotional Temperature, described in 
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Section 3. This feature is based on the analysis of several prosodic and paralinguistic features sets 

obtained from a temporal segmentation of the speech signal. 

Finally, we wished to apply non-invasive methods to estimate the severity of Alzheimer in the 

patient. In this sense, analysis of spontaneous speech is not perceived as a stressful test and moreover 

its cost is lower than for other methods. None of these speech analysis based techniques require 

extensive infrastructure or the availability of medical equipment, and suggest obtaining by these means 

is easy, quick and inexpensive [14,15]. 

Figure 1. Signal and spectrogram of a control subject (Top) and an AD subject (Bottom) 

during spontaneous speech (pitch in blue, intensity in yellow). 

 

We have focused our work on non-invasive diagnostic techniques based on the analysis of speech 

and emotions because after the loss of memory, one of the major problems of AD is the loss of 

language skills, illustrated by the poorer signal and spectrogram during spontaneous speech of the AD 

patient shown in Figure 1. This loss is reflected in difficulties both to speak and to understand others, 
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which makes more difficult the natural communication process with the environment. The inability to 

communicate appears already in the early phases of the diseases. It is possible to find different 

communication deficits in the area of language, including [28,29] aphasia (difficulty in speaking and 

understanding) and anomic aphasia (difficulty for recognizing and naming things). The specific 

communication problems the patient encounters depend on the stage of the disease [2–5,28,29]:  

1. First Stage or early stage (ES): difficulty in finding the right word in spontaneous speech. Often 

remains undetected.  

2. Second Stage or intermediate stage (IS): impoverishment of language and vocabulary in 

everyday use.  

3. Third Stage or advanced stage (AS): answers sometimes very limited and restricted to very  

few words. 

Not only the language but also the emotional responses in Alzheimer’s patients become impaired 

and seem to go through different stages. In the early stages, social and even sexual disinhibition 

appears and behavioural changes are also observed (for example, being angry and not being able to 

perform common tasks, express themselves or remember) [30–33]. However, the emotional memory 

remains, and they cry more easily and gratefully acknowledge caresses, smiles and hugs. The 

Alzheimer’s patient reacts aggressively to things that for healthy people are harmless, and perceives a 

threat or danger where none exists. In more advanced stages they may often seem shy and apathetic, 

symptoms often attributed to memory loss and/or difficulty in finding the right words and some 

responses are likely to be magnified due to an alteration in perception. 

Alternatively, it has been suggested that the reduced ability to feel emotions is due to memory loss, 

which may in turn induce the appearance of apathy and depression [31,33]. The work presented here is 

part of a larger study to identify novel technologies and biomarkers for early AD detection, and it 

focuses on evaluating the suitability of a new approach for early AD diagnosis based on non-invasive 

and low cost methods, namely Automatic Spontaneous Speech Analysis and the Emotional Response 

Analysis, whose results are susceptible to be used for the automatic classification of tested individuals.  

2. Materials  

2.1. Main Database of Individuals 

Trying to develop a new methodology applicable to a wide range of individuals of different sex, 

age, language and cultural and social background, we have built up a multicultural and multilingual 

(English, French, Spanish, Catalan, Basque, Chinese, Arabian and Portuguese) database with the video 

recordings of 50 healthy and 20 AD patients (with a previous diagnosis) recorded for 12 hours and  

8 hours respectively. The age span of the individuals in the database was 20–98 years and there were 

20 males and 20 females. This database is called AZTIAHO. 

All the work was performed strictly following the ethical consideration of the organizations 

involved in the project. The recordings consisted of videos of Spontaneous Speech where people tell 

pleasant stories or feelings and interact with each other in a friendly conversation. The recording 

atmosphere is relaxed and non-invasive. The shorter recording times for the AD group are due to the 

fact that AD patients find speech more of an effort than healthy individuals: they speak more slowly, 
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with longer pauses, and with more time spent on efforts to find the correct word and uttering speech 

disfluencies or break messages. In the advanced stage of the disease, they find this effort tiring and 

often want to stop the recording. We complied with their requests. 

2.2. Pre-Processing 

Video has been processing and audio extracted in wav format (16 bits and 16 kHz). Firstly  

non-analyzable events have been removed: laughter, cough, short hard noises and speaker mixes.  

Then background noise has been removed by a denoiser adaptive filtering. After the pre-processing, 

about 80% and 50% of the material from the control and AD groups respectively, is suitable for  

further analysis. The full database consisted of about 60 minutes for the AD group and of about  

9 hours for the control. The speech is divided into consecutive segments of 60 seconds in order to 

obtain appropriate segments for all speakers. Finally, a database of about 600 segments of spontaneous 

speech is obtained. 

2.3. Individuals Selected for the Study 

From the original database, a subset of 20 AD patients (68–96 years of age, 12 women, 8 men, 

within the three stages of AD: First Stage (ES = 4), Secondary Stage (IS = 10) and Tertiary stage  

(AS = 6) was chosen. The control group (CR) was made up of 20 individuals (10 male and 10 female, 

aged 20–98 years) representing a wide range of speech responses. This subset of the database is  

called AZTIAHORE. 

3. Methods 

3.1. Feature Extraction  

3.1.1. Automatic Spontaneous Speech Analysis (ASSA) 

The analysis of spontaneous speech fluency is based on three families of features (SSF set), 

obtained using Praat software [34]. For that purpose, an automatic Voice Activity Detector (VAD) [35,36] 

has extracted voiced/unvoiced segments, as parts of an acoustic signal. These three families of  

features include:  

1. Duration: this includes the histogram calculated over the most relevant voiced and unvoiced 

segments, the average of the most relevant voiced/unvoiced, voiced/unvoiced percentage and 

spontaneous speech evolution along the time, and the voiced and unvoiced segments’ mean, 

max and min. 

2. Time domain: short time energy.  

3. Frequency domain, quality: spectral centroid.  

The energy of a signal is typically calculated on a short-time basis, by windowing the signal at a 

particular time, squaring the samples and taking the average. The spectral centroid is commonly 

associated with the measure of the brightness of a sound. This measure is obtained by evaluating the 

“centre of gravity” using the Fourier transform’s frequency and magnitude information (Figure 2). 
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Figure 2. Plots of speech signal, Short Time Energy and Spectral Centroid, all measures 

filtered by a median filter, for a control subject (Left) and an AD subject (Right). 

3.1.2. Higuchi Fractal Dimension  

When appropriate corpora are available, linear systems can be implemented fairly rapidly, as they 

rely on well-known machine learning techniques to achieve their goals, avoiding complex adjustments 

to the system. These latter types of tasks often require experimentation with alternative techniques, 

which can lead to improved systems. One such alternative technique of particular interest is nonlinear 

analysis, and some works show that combining nonlinear features with linear ones can produce higher 

recognition accuracies without substituting the whole linear system with novel nonlinear approaches 

(see [37,38] for examples on nonlinear speech processing). This is especially promising for solving 

non-typical tasks, since it would be very demanding to design a complete nonlinear system from 

scratch for solving a task already made difficult by the scarcity of resources.  

The fractal dimension is one of the most popular features, which describe the complexity of a 

system. Most if not all of the fractal systems have a characteristic called self-similarity. An object is 

self-similar if a close-up examination of the object reveals that it is composed of smaller versions of 

itself. Self-similarity can be quantified as a relative measure of the number of basic building blocks 

that form a pattern, and this measure is defined as the fractal dimension. This current work focus on 

the alternatives, which do not need previous modelling of the system. Higuchi proposed an algorithm 

for measuring the fractal dimension of discrete time sequences directly from time series, so in our 

experiments we use the method described in [39] (see Figure 3). 

3.1.3. Emotional Speech Analysis (ESA) 

In this study we aim to accomplish the automatic selection of emotional speech by analyzing three 

families of features in speech:  

1. Acoustic features: pitch, standard deviation of pitch, max and min pitch, intensity, standard 

deviation of intensity, max and min intensity, period mean, period standard deviation, and Root 

Mean Square amplitude (RMS);  
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2. Voice quality features: shimmer, local jitter, Noise-to-Harmonics Ratio (NHR),  

Harmonics-to-Noise Ratio (HNR) and autocorrelation;  

3. Duration features: fraction of locally unvoiced frames, degree of voice breaks.  

Short-term energy is the principal and most natural feature that has been used. Physically, energy is 

a measure of how much signal exists at any one time. Energy is used in a continuous speech to 

discover voiced sounds, which have higher energy than silence/un-voiced, as shown in Figure 2. 

The energy of a signal is typically calculated on a short-time basis, by windowing the signal at a 

particular time, squaring the samples and taking the average [36]. The square root of this result is the 

engineering quantity, known as the root-mean square (RMS) value. 

Figure 3. Higuchi Fractal Dimension c of speech signal for an AD subject and different 

window length. 

 

3.1.4. Emotional Temperature 

The Emotional Temperature (ET) is based on the analysis of a few prosodic and paralinguistic 

features sets obtained from a temporal segmentation of the speech signal [40–42].  

Two prosodic and four paralinguistic features related to the pitch and energy, respectively, were 

estimated from each frame. These features were chosen because their robustness in emotion 

recognition has been proven [43–47], they are quickly and easily calculated, and they are independent 

of linguistic segmentation, which helps us to avoid problems in real time applications on real 

environments. For prosodic features, a voiced/unvoiced decision is made to each frame and two linear 

regression coefficients of the pitch contour [43–46] are obtained. For paralinguistic features, voice 

spectral energy balances [43,47] are calculated from each frame, and quantified using 4 percentages of 

energy concentration in 4 frequency bands. Then Emotional Temperature is calculated as follows:  

1. A Support Vector Machine (SVM) is trained with a balanced segment set extracted from  

the database (SVMs have been used to quantify the discriminative ability of the proposed 

measures [45]. We have used a freely available implementation called LIBSVM [48] with a 

radial basis kernel function). 
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2. For each speech segment, each temporal frame is classified by the SVM as “pathological or 

“non-pathological”. 

3. The percentage of temporal frames classified as “non-pathological” is calculated. This value, i.e., 

the number of non-pathological frames is the “emotional temperature”.  

4. The “Emotional Temperature” is finally normalized in order to have ET = 50 as threshold 

obtained from the training database, which indicates the limit between pathological and  

non-pathological frames. This normalization will help medical specialists to easily interpret the data. 

Figure 4 shows an example of ET values for a healthy subject (ET = 94.93) and for an AD subject 

(ET = 44.62). 

Figure 4. Emotional Temperature for a healthy subject (Left) and an AD subject (Right). 

 

3.1.5. Feature Sets 

Based in these presented characteristics, four feature sets have been created for experimentation:  

1. SSF. 

2. EF, set described in Section 3.1.3.  

3. FD1: Higuchi Fractal Dimension (HFD).  

4. FD2: HFD, maximum HFD, minimum HFD, variance HFD and standard deviation HFD.  

3.2. Automatic Classification  

The automatic classification of emotional speech is based on the Multi Layer Perceptron (MLP) 

neural network with one hidden layer of 100 neurons and 1,000 training steps. WEKA [49] software 

has been used in carrying out the experiments. The results are evaluated using Accuracy (Acc) and 

Classification Error Rate (CER) measurements. For the training and validation steps, we used k-fold 

cross-validation in order to ensure solid results. Cross validation is a robust validation for variable 

selection [50]. These features will define CR group and the three AD levels. The original sample set 

was randomly divided into k subsets. Then, a single subset was retained as the validation data set for 

testing the model, and the remaining k-1 subsets were used as training data. The cross-validation 
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process was repeated k times, with each of the k subsets used exactly once as the validation data set. 

The k obtained values from the folds, were then averaged to obtain the final result. The advantage of 

this method is that all observations are used for both training and validation, and each observation is 

used for validation exactly once. In our experiments we use k = 10. These features will discriminate 

among control group (CR) and the three AD levels. 

4. Results and Discussion 

The experimentation has been carried out with the balanced subset AZTIAHORE. The goal of these 

experiments was to examine the potential of selected features for automatic measurement of the 

degradation of Spontaneous Speech, Emotional Response and their integration in people with AD. 

Thus, previously defined feature sets have been evaluated in order to properly define control and AD 

level groups.  

In a first stage Emotional Temperature is calculated for each segment by the method described in 

Section 3.1.4. Automatic classification by MLP was performed over the speech features sets described 

in Section 3.1.5 in order to analyze for the pilot study the tests: Automatic Spontaneous Speech 

fluency, Emotional Response in speech and both in Integral Speech. Table 1 summarized Accuracy (%) 

global results with regard to pre-clinical test and feature sets.  

Table 1. Accuracy (%), global results with regard to test and feature sets. 

Test Feature Set %Acc 

Spontaneous Speech Fluency SSF 75.2 
 SSF + FD1 76.7 
 SSF + FD2 86.1 

Emotional Response EF 90.7 
 EF + TE 97.7 

INTEGRAL SSF + EF 92.2 
 SSF + FD2 + EF 94.6 

 SSF + FD2 + EF + TE 94.6 

 In the first test, Spontaneous Speech Fluency test, SSF set alone has been used and also 

integrated with two different Fractal Dimension (FD) sets. The use of FD features outperforms 

the results, and the system obtains an improvement of %10 with FD2 set, which includes several 

FD features. 

 In the second test, Emotional Response test, the best result is obtained when ET feature is 

included being Acc near to the optimum value. 

 With regard to the INTEGRAL test, (which includes information relative to both Spontaneous 

Speech and Emotional Response) results show also an improvement of non-linear features and 

better results when ET is included. 

Figure 5 shows the obtained results for control group (CR) and the three levels of AD (ES,  

IS and AS) for classes. In these classes’ results the inclusion of non-linear features FD2 set obtains the 

best results for all classes (Figure 5). This set improves also the classification with regard to early 

detection (ES class). IS has also better rate to discriminate middle AD level. The model is able also to 
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discriminate pathological and non-pathological segments in each patient for the three tests of the  

pilot study. 

Figure 5. Accuracy in % for the three defined tests in the pilot study and each 

corresponding feature sets. 

 

Accumulative Classification Error Rate (%CER) is detailed in Figure 6. Less accumulative error 

rate is obtained for experiments which include FD2 non-linear feature set and ET. This is relevant for 

early diagnosis because in these cases better results are obtained with smaller classification error for 

ED class. 

Figure 6. Accumulative Classification Error Rate (%) for the three defined tests and each 

corresponding feature sets. 

 

A detailed analysis of INTEGRAL test, with regard to Acc (%) for all classes is showed in Figure 7.  

 When the results with simple speech features are analyzed, it is observed optimum performance 

for control group but very mixed classification in AD levels mainly for IS and ES. 
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 The global system obtains very good results when FD2 set is added because not only 

outperforms Acc in middle stage IS, but also there is a great improvement in Acc for ES. 

 In the third experiment, ET is includes and Acc obtains very good results for all  

classes, and ES outperforms because confusion disappears with regard to the segments of  

control subjects. 

Figure 7. Accuracy (%) of classes for INTEGRAL test and each corresponding feature sets.  

 

Finally, the health specialists notice the relevance of the system’s ability to carry out both the 

analysis of independent biomarkers as Spontaneous Speech and Emotional Response features, and/or 

the integral analysis of several biomarkers. The final confusion among segments could be due, in some 

cases, to the possible occurrence of segments with different pathological levels in the same individual. 

This possibility will be explored with new tests in future works. Therefore these non-invasive tests 

could be a very useful tool for medical specialists’ in future clinical AD early diagnosis grounds. 

5. Conclusions 

The main goal of the present work is the analysis of features in Spontaneous Speech and Emotional 

Response oriented to pre-clinical evaluation for the definition of appropriate tests for early AD 

diagnosis. These features are of great relevance for health specialists to define health people and the 

three AD levels. Features relative to speech duration, time domain, spectral domain and fractal 

dimension have been analyzed. In this work a first approach including nonlinear features is described. 

More precisely, an implementation of Higuchi’s algorithm in order to add this new feature to the set 

that feeds the training process of the model. The approach’s performance is very satisfactory and 

promising results for early diagnosis and classification of AD patient groups. Moreover, new features 

(Higuchi Fractal Dimension and Emotional Temperature) significantly outperform previous results. In 
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future work we will evaluate this approach with an early diagnosis database and new tests oriented to 

semantic and memory tasks, and we will also introduce new features relatives to non-linear dynamic. 
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