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Is General Relativity a simplified theory?

Mart́ın Rivas

Theoretical Physics Department, University of the Basque Country,
Apdo. 644, 48080 Bilbao, Spain

E-mail: martin.rivas@ehu.es

Abstract. Gravity is understood as a geometrization of spacetime. But spacetime is also
the manifold of the boundary values of the spinless point particle in a variational approach.
Since all known matter, baryons, leptons and gauge bosons are spinning objects, it means that
the manifold, which we call the kinematical space, where we play the game of the variational
formalism of an elementary particle is greater than spacetime. This manifold for any mechanical
system is a Finsler metric space such that the variational formalism can always be interpreted
as a geodesic problem on this space. This manifold is just the flat Minkowski space for the free
spinless particle. Any interaction modifies its flat Finsler metric as gravitation does. The same
thing happens for the spinning objects but now the Finsler metric space has more dimensions
and its metric is modified by any interaction, so that to reduce gravity to the modification only
of the spacetime metric is to make a simpler theory, the gravitational theory of spinless matter.
Even the usual assumption that the modification of the metric only involves dependence on
the metric coefficients of the spacetime variables is also a restriction because in general these
coefficients are dependent on the velocities. In the spirit of unification of all forces, gravity
cannot produce, in principle, a different and simpler geometrization than any other interaction.

1. Introduction
Things should be made simple, but not simpler. From this sentence attributed to Albert Einstein
is where we take the title of this work to show that if the spin concept of elementary particles had
been known to physics before General Relativity was born most probably the geometrization
of spacetime proposed by its creator should be changed by the geometrization of a different
manifold, larger than spacetime, so that today’s General Relativity would be considered as a
theory of gravitation of simpler and spinless matter.

The variational approach of classical mechanics can always be interpreted as a geodesic
statement on the space X of the boundary variables of the variational formalism [1]. But this
metric manifold X, is not a pseudo-Riemannian space but rather a Finsler space [2], [3], where
the symmetric metric gij(x, ẋ) is not only a function of the point x ∈ X, but also of its velocity
ẋ, where the overdot means derivative with respect to some arbitrary evolution parameter. For
the relativistic spinless or point particle this manifold X is just the spacetime R4 and in the
free case the metric is Minkowski’s metric ηµν . But if the particle has spin it would have more
degrees of freedom, so that the variational approach will be described as a geodesic problem in
a larger manifold than spacetime. Interactions and gravitation would modify the metric of this
larger manifold, so that to restrict ourselves to the geometrization of the spacetime submanifold
is to simplify the problem, or in physical terms, to reduce the gravitational behaviour of real
spinning matter to that of spinless and unexistent matter.
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In the next section 2, I will make a summary of the variational approach of classical mechanics,
which shows how it can be interpreted as a geodesic statement and the way to obtain the
metric from the Lagrangian. If the Lagrangian of a free elementary particle is modified by any
interaction, the metric of the boundary X manifold is modified. Any interaction modifies the
geometry of the X space.

In section 3 we analyze some examples to show the Finsler metric structure of the spacetime
of a charged point particle under some external interactions, which include a uniform magnetic
field and a constant gravitational field of a point mass M . In section 4 we also consider the
example of the point particle under a static Newtonian gravitational potential. In all cases the
modification of the metric coefficients involve dependence on the velocities of the point particle.
A Riemannian approximation to the metric can be obtained in the low velocity limit. All these
analysis are done in a special relativity framework.

In section 5 after a short introduction to the concept of classical elementary particle I will
describe the most general X manifold of a relativistic spinning particle which satisfies Dirac’s
equation when quantized. Since it seems that there are no spinless elementary particles in
nature, it is on this larger manifold that the plausible generalization of Einstein’s gravitational
formalism has to be worked out.

As a general conclusion, General Relativity is a restricted theory of gravitation and therefore
a simplified theory in two aspects. One, that the manifold whose geometry is changed by any
interaction is larger than spacetime because real elementary particles are spinning particles.
The second is that the modification of the metric coefficients should involve dependence on the
velocities, i.e., the metric should be a Finsler metric instead of a Riemannian metric.

2. The geodesic interpretation of the variational formalism
Let us consider any mechanical system of n degrees of freedom qi, i = 1, . . . , n, described by a
Lagrangian, L(t, qi, dqi/dt), where t is the time. The variational approach is stated in such a
way that the path followed by the system makes stationary the action functional

A[q(t)] =

∫ t2

t1

L(t, qi, dqi/dt)dt,

between the initial state x1 ≡ (t1, qi(t1)) and final state x2 ≡ (t2, qi(t2)) on the X manifold,
which is the (n+1)-th dimensional manifold spanned by the time t and the n degrees of freedom
qi. If instead of describing the evolution in terms of time we express the evolution in parametric
form {t(τ), qi(τ)} in terms of some arbitrary evolution parameter τ , then dqi/dt = q̇i/ṫ, where
now the overdot means τ -derivative. The variational approach will be written as∫ τ2

τ1

L(t, qi, q̇i/ṫ) ṫdτ =

∫ τ2

τ1

L̃(x, ẋ)dτ, L̃ = Lṫ,

with the same boundary values on the X manifold as before x1 and x2. But now the Lagrangian
L̃ is independent on the evolution parameter τ and it is a homogeneous function of first degree
of the derivatives ẋ [3]. In fact in L each time derivative dqi/dt has been replaced by a quotient
q̇i/ṫ and therefore it is a homogeneous function of zero-th degree of ṫ, q̇i. But it is the last term

dt = ṫdτ , which makes L̃ = Lṫ, homogeneous of first degree of ẋ ≡ {ṫ, q̇i}.
This means that L̃2 is a positive definite homogeneous function of second degree of the

derivatives ẋ, so that Euler’s theorem on homogeneous functions allows us to write

L̃2 = gij(x, ẋ)ẋ
iẋj , i, j = 0, 1, . . . n
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where index 0 corresponds to the time variable and the gij are computed from L̃2 by

gij(x, ẋ) =
1

2

∂2L̃2

∂ẋi∂ẋj
= gji, i, j = 0, . . . , n. (1)

Between the allowed boundary states x1 and x2, since L̃2 > 0, the metric gij(x, ẋ) represents a
definite positive metric which transforms as a second rank covariant tensor under transformations
which leave L̃ invariant [2, 3]. The variational problem can be stated as∫ τ2

τ1

L̃(x, ẋ)dτ =

∫ τ2

τ1

√
L̃2(x, ẋ)dτ =

∫ τ2

τ1

√
gij(x, ẋ)ẋiẋjdτ =

=

∫ x2

x1

√
gij(x, ẋ)dxidxj =

∫ x2

x1

ds,

where ds is the arc length on the X manifold with respect to the metric gij . The variational
statement has been transformed into a geodesic problem with a Finsler metric. As shown
in [1] this is valid even for Lagrangian systems depending on higher order derivatives

L(t, qi, q
(1)
i , . . . , q

(k)
i ), q

(k)
i = dkqi/dt

k. In this case the manifold of the boundary variables X,
which will be called the kinematical space from now on, is spanned by the time t, the n degrees
of freedom qi and their corresponding time derivatives up to order k − 1.

Since L̃ is homogeneous of first degree in terms of the derivatives ẋ can also be decomposed
as a sum of terms with dimensions of action if the arbitrary evolution parameter is taken
dimensionless,

L̃ =
∂L̃

∂ẋi
ẋi = Fi(x, ẋ)ẋ

i,

where the Fi(x, ẋ) are homogeneous functions of zero-th degree of the ẋi, so that they involve
time derivatives of the different degrees of freedom. The metric coefficients can be expressed as

gij = FiFj + L̃
∂2L̃

∂ẋi∂ẋj
= FiFj + L̃

∂Fi

∂ẋj
= gji (2)

and are also homogeneous functions of zero-th degree of the ẋi.
As an example, the relativistic point particle of mass m and spin 0 has a kinematical

space spanned by time t and the position of the point r, so that the free Lagrangian

L̃0 = −mc
√

c2ṫ2 − ṙ2, is clearly a homogeneous function of first degree of the derivatives ṫ
and ṙ. With x0 ≡ ct, the Finsler metric becomes

L̃2
0 = m2c2(ẋ20 − ṙ2), gµν =

1

2

∂2L̃2
0

∂ẋµ∂ẋν
= m2c2ηµν ,

where ηµν is diag(1,−1,−1,−1). The interaction with some external electromagnetic field is

described by the new Lagrangian L̃ = L̃0 + L̃I , with L̃I = −eAµ(x)ẋ
µ, so that the variational

problem is transformed into a geodesic problem with a new metric on X space, given by

L̃2 =
(
L̃0 + L̃I

)2
, Fµ =

∂L̃

∂ẋµ
= −pµ − eAµ, pµ =

mcẋµ√
ẋν ẋν

gµν(x, ẋ) = m2c2ηµν + e2AµAν + e(pµAν + pνAµ) + eAσẋ
σ ∂pµ
∂ẋν

. (3)

The modification of the metric vanishes when e → 0. Because pµ is not explicitely dependent
on the variables x, the dependence of the metric on the spacetime coordinates is coming only
from the external fields Aµ(x). But it depends on the ẋ variables through its dependence on the
pµ and its derivatives.
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3. Examples of Finsler spaces
In figure 1 we show three possible motions of a charged point particle in its kinematical space,
which reduces in this case to the spacetime. The three trajectories are geodesics of spacetime
but with respect to three different metrics. In part (a) the motion is free, the trajectory is a
straight line. In (b) the particle is under the action of an external uniform magnetic field, and
the trajectory has curvature and torsion. In this case the Finsler metric of spacetime is different
than the metric in the free case. The external magnetic field modifies the metric. Finally in (c) it
is the same free trajectory but as seen by an accelerated observer. According to the equivalence
principle this is equivalent to the analysis under a global and constant gravitational field. Also
in this case the metric has been modified.

Figure 1. Three motions of a point particle in its kinematical space between the boundary points x1

and x2. (a) in the free case, (b) under a uniform magnetic field B, and (c) under a uniform gravitational
field g. In the three cases the kinematical space is the same, the spacetime, the trajectories are geodesics
but with respect to three different Finslerian metrics. The spatial part of the trajectories is in the case
(a) a straight line with no curvature and no torsion, in (b) with curvature and torsion and in (c) a flat
trajectory with curvature.

In case (a) the metric is gµν = m2c2ηµν , where ηµν is diag(1,−1,−1,−1). It is the constant
Minkowski metric.

In the case (b), let us assume a uniform magnetic field along OZ axis of intensity B. We can
take as the potential vector A = (0, Bx, 0) and scalar potential A0 = 0. The Lagrangian of the
point particle under this field is

L̃B = −mc
√

ẋ20 − ṙ2 + eBxẏ. (4)

This Lagrangian leads to the Lorentz force dynamical equation

dp

dt
= eu×B, u =

dr

dt
. (5)

According to (1) and (3) and calling K = eBmc, the Finsler metric coefficients of spacetime are,

g00 = m2c2 +
Kxu2uy

(c2 − u2)3/2
, g11 = −m2c2 +

Kxuy

(c2 − u2)3/2
(
c2 − u2y − u2z

)
,

g22 = −m2c2 + e2B2x2 +
Kxuy

(c2 − u2)3/2
(
3c2 − 3u2x − 2u2y − 3u2z

)
,
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g33 = −m2c2 +
Kxuy

(c2 − u2)3/2
(
c2 − u2x − u2y

)
,

g01 = − Kxcuxuy

(c2 − u2)3/2
, g02 = − Kxc

(c2 − u2)3/2
(c2 − u2x − u2z),

g03 = − Kxcuyuz

(c2 − u2)3/2
, g12 =

Kxux

(c2 − u2)3/2
(
c2 − u2x − u2z

)
,

g13 =
Kx

(c2 − u2)3/2
uxuyuz, g23 =

Kxuz

(c2 − u2)3/2
(
c2 − u2x − u2z

)
,

As we see, the metric coefficients are functions of the point, i.e., of the variable x, but they are
functions of the three components of the velocity of the particle ux, uy, uz, and therefore the
metric depends on both x and ẋ. The dependence on ẋ of the gµν is a homogeneous function
of zero-th degree, and thus it depends on the time derivatives dri/dt = ui. If the velocity is
negligible with respect to c, the metric coefficients become

g00 = m2c2, g02 = −eBmcx, g11 = −m2c2, g22 = −m2c2 + e2B2x2, g33 = −m2c2,

vanishing the remaining ones, and since the dependence on the velocity has disappeared the
metric has been transformed into a Riemannian metric. Spacetime metric is Riemannian in the
low velocity limit.

These metric coefficients give rise to a restricted Lagrangian L̃R,

L̃2
R = m2c2(c2ṫ2 − ṙ2) + e2B2x2ẏ2 − 2eBmc2xṫẏ, (6)

such that when compared with (4) we have an additional term

L̃2
B = L̃2

R − 2emcBxẏ
(√

c2ṫ2 − ṙ2 − cṫ
)
.

The Lorentz force dynamical equations (5) are

dux
dt

=
eB

mγ(u)
uy =

1

γ(u)
kcuy,

duy
dt

= − eB

mγ(u)
ux = − 1

γ(u)
kcux,

duz
dt

= 0,

with k = eB/mc, which gives rise to uxdux/dt+ uyduy/dt+ uzduz/dt = u · du/dt = 0, so that
the motion is at a velocity of constant modulus u, the factor γ(u) is constant and the point
particle moves at a constant velocity along OZ axis and rotates on the plane XOY with angular
velocity ω = eB/γ(u)m = k

√
c2 − u2. However, the geodesic dynamical equations obtained

from the restricted metric (6) are

dux
dt

= kcuy(1− kxuy/c),
duy
dt

= −kcux(1− kxuy/c),
duz
dt

= 0,

which reduce to the above equations when u/c → 0. From the restricted Lagrangian (6) the
force acting on the point particle is not longer the Lorentz force.

In the case (c) in a uniform gravitational field g, the dynamical equations

dp/dt = mg, (7)

independent of the mass of the particle, come from the Lagrangian

L̃g = L̃0 +mg · rṫ. (8)
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From the geodesic point of view it corresponds to an evolution in a spacetime with the Finslerian
metric given by:

g00 = m2c2 +m2(g · r)2/c2 − m2c(g · r)
(c2 − u2)3/2

(2c2 − 3u2),

g11 = −m2c2 +
m2c(g · r)
(c2 − u2)3/2

(c2 − u2y − u2z),

g22 = −m2c2 +
m2c(g · r)
(c2 − u2)3/2

(c2 − u2x − u2z),

g33 = −m2c2 +
m2c(g · r)
(c2 − u2)3/2

(c2 − u2x − u2y),

g01 = −m2u2(g · r)
(c2 − u2)3/2

ux, g02 = −m2u2(g · r)
(c2 − u2)3/2

uy, g03 = −m2u2(g · r)
(c2 − u2)3/2

uz,

g12 =
m2c(g · r)
(c2 − u2)3/2

uxuy, g23 =
m2c(g · r)
(c2 − u2)3/2

uyuz, g13 =
m2c(g · r)
(c2 − u2)3/2

uxuz.

If again, the velocity is negligible with respect to c, the nonvanishing coefficients are

g00 = m2c2 +m2(g · r)2/c2 − 2m2(g · r), g11 = −m2c2 +m2(g · r),

g22 = −m2c2 +m2(g · r), g33 = −m2c2 +m2(g · r).

i.e.,

g00 = m2c2
(
1− g · r

c2

)2
, gii = −m2c2

(
1− g · r

c2

)
, i = 1, 2, 3,

where the g00 component is the same as the corresponding component of the Rindler metric
corresponding to a noninertial accelerated observer or to the presence of a global uniform
gravitational field, in General Relativity.

4. Example: Point particle in a Newtonian potential
A final example is the relativistic point particle in the Newtonian potential of a point mass M .
The dynamical equations

dp

dt
= −GmM

r3
r, (9)

are independent of the mass of the particle and come from the Lagrangian

L̃N = L̃0 +
GmM

cr
cṫ. (10)

If we take into account (1) the metric coefficients are

g00 = m2c2 +
G2m2M2

c2r2
− Gm2Mc

r(c2 − u2)3/2
(2c2 − 3u2),

g11 = −m2c2 +
Gm2Mc3

r(c2 − u2)3/2
−

Gm2Mc(u2y + u2z)

r(c2 − u2)3/2
,

g22 = −m2c2 +
Gm2Mc3

r(c2 − u2)3/2
− Gm2Mc(u2x + u2z)

r(c2 − u2)3/2
,
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g33 = −m2c2 +
Gm2Mc3

r(c2 − u2)3/2
−

Gm2Mc(u2x + u2y)

r(c2 − u2)3/2
,

g01 = − Gm2Mu2ux

r(c2 − u2)3/2
, g02 = − Gm2Mu2uy

r(c2 − u2)3/2
, g03 = − Gm2Mu2uz

r(c2 − u2)3/2
,

g12 =
Gm2Mcuxuy

r(c2 − u2)3/2
, g23 =

Gm2Mcuyuz

r(c2 − u2)3/2
, g31 =

Gm2Mcuzux

r(c2 − u2)3/2
,

It is a Finsler metric, which in the case of low velocity only the diagonal components survive

g00 = m2c2
(
1− 2GM

c2r
+

G2M2

c4r2

)
= m2c2

(
1− GM

c2r

)2

.

and the

gii = −m2c2
(
1− GM

c2r

)
, i = 1, 2, 3.

This corresponds to a static and spherically symmetric Riemannian metric which in spherical
coordinates and supressing the constant factor m2c2, becomes(

1− GM

c2r

)2

c2dt2 −
(
1− GM

c2r

)
(dr2 + r2dΩ2),

where dΩ2 = dθ2 + sin2 θdϕ2.
This metric is not a vacuum solution of Einstein’s equations, so that it cannot be transformed

into the Schwarzschild metric in isotropic coordinates.
In all the examples, the free Lagrangian L̃0 of the spinless particle, has been transformed by

the interactions in the way

L̃2
0 = m2c2ηµν ẋ

µẋν ⇒ L̃2 = gµν(x, ẋ)ẋ
µẋν , (11)

where the new metric gµν(x, ẋ) is a Finslerian metric. The low velocity limit of the above
metrics produce a Riemannian spacetime approximation which does not give rise to the usual
(and expected) dynamical equations. All these examples have been worked out in a special
relativity context.

However, General Relativity states that gravity modifies the metric of spacetime producing
a new (pseudo-)Riemannian metric gµν(x), which is related through Einstein’s equations to the
energy momentum distribution Tµν of all forms of matter and energy. The motion of a test
point particle in this gravitational background is a geodesic on spacetime, and therefore can be
treated as a Lagrangian dynamical problem with a Lagrangian

L̃2
g = gµν(x)ẋ

µẋν . (12)

Because electromagnetism produces a Finsler metric of spacetime, and in the spirit of unification
of all interactions, one is tempted to extend the formulation of gravity (12) to the more general
ansatz (11) by allowing to the metric coefficients produced by gravity to be also a function of
the derivatives ẋ. Otherwise, to assume only a Riemannian metric is to consider that gravity,
as far as dynamical equations are concerned, produces a different geometrization than any other
interaction. In a region where the gravitational field can be considered uniform, or is given
by the Newtonian potential the Lagrangian dynamics of the point particle is equivalent to a
geodesic problem in that region where the metric is necessarily a Finsler metric, as seen in the
above examples. Any theory of gravitation when restricted to a region of uniform gravitational
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field or to the sourroundings of a point mass M should reproduce the above dynamical equations
(7) and (9), respectively. We expect that, when restricted to inertial observers, general relativity
should reproduce the analysis under a special relativity context. But these dynamical equations
are derived from Finsler metrics, so that a Riemannian metric gµν(x) cannot reproduce them.
The elimination of the presence of the velocities in the metric coefficients could be interpreted
as a low velocity limit of a more general gravitational theory.

5. The spin structure of elementary particles
In the mentioned reference [1] and previous works cited in, an elementary particle is defined
as a mechanical system whose kinematical space X (the boundary space of its Lagrangian
description) is necessarily a homogeneous space of the Poincaré group P. The idea is that an
elementary particle cannot be divided and, if not annihilated with its antiparticle, cannot be
deformed so that any state is just a kinematical modification of any one of them [4]. When the
initial state x1 is modified by the dynamics, the subsequent states x(τ) can always be obtained
from it by some change g ∈ P of inertial observer x = gx1 and also x2 = gx1, so that given
any two points x1, x2 ∈ X we can always find some g ∈ P which links them. It is clear that
the point particle manifold, the spacetime, is a homogeneous space of P and thus fulfills this
requirement. Nevertheless, it describes a spinless object and there are no spinless elementary
particles in nature. To describe spin we have to enlarge this kinematical space with the above
constraint to obtain the largest homogeneous space of P to describe the elementary particle with
the more complex structure. The classical system that when quantized satisfies Dirac’s equation
corresponds to a kinematical space spanned by the following variables x ≡ (t, r,u,α), which
are interpreted as the time t, position of the center of charge r, velocity of the center of charge
u = dr/dt at the speed of light u = c, and the orientation α of a cartesian system located at
point r [5]. It is a nine-dimensional kinematical space described by four noncompact variables
(t, r) and five compact ones (θ, ϕ,α), being θ, ϕ the orientation of the velocity vector u and the
orientation of the particle local frame α. The particle has a center of mass q which is expressed
in terms of r and its time derivatives. Elementary spinning particles have two distinguished
points the center of mass and the center of charge which are different points. The cartesian
frame can be taken as the Frenet-Serret triad, so that the angular velocity of the particle can
also be expressed in terms of the derivatives of the position of the point r.

The free motion of the center of charge r corresponds to a helix of constant curvature and
torsion when expressed in terms of the Frenet-Serret triad, and at a velocity of constant absolute
value c.

This classical model of elementary particle can be applied for leptons and quarks if, as
assumed, they satisfy in the quantum formalism Dirac’s equation.

If we want to include gravitation we have to admit arbitrary changes of spacetime coordinates,
not only those given by the Poincaré group. This will produce a modification of the metric of the
spacetime submanifold, but also the modification of the remaining components of the metric on
the whole kinematical X-space. Because all known baryonic and leptonic matter and the gauge
bosons are spinning objects we cannot start the geometrization of matter by assuming that it is
only the metric of the kinematical space of the point particle which is modified, because there
are no spinless objects in nature. We have to geometrize the complete kinematical space of the
spinning particle accordingly. We cannot make things simpler.

6. Conclusions
We consider that General Relativity is a constrained, and therefore a simpler formalism for
describing gravity for two reasons: One is that the geometrization of spacetime has to be enlarged
to consider Finsler metrics instead of pseudo-Riemannian metrics, and another that the manifold
which describes the boundary states of spinning matter is larger than spacetime.
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The manifold X of the boundary variables of any Lagrangian dynamical system is always a
Finsler metric space, so that any variational approach is equivalent to a geodesic statement on
this metric manifold. This metric, which is in general a function of the variables x ∈ X and
their derivatives ẋ, depends on the interactions, and to assume that gravitation only produces a
modification of the metric which is only a function of the point x, is a restriction of a more general
formalism which allows for this modification, in the spirit of unification of all interactions.

The second constraint of a gravitational theory is that it has to be applied to a manifold
larger than spacetime, because spacetime is the boundary manifold of the spinless point particle
and spinless elementary particles seem not to exist in nature.

Without any assumption about general covariance, or any assumption about the dynamical
behaviour of spacetime, but in a Lagrangian framework, we have analysed several examples of
the Finsler space structure of spacetime under different interactions. In all of them the new
metrics are true Finsler metrics which in the case of low velocity limit, and therefore a metric
independent on the velocities, resemble the metrics obtained in a general relativity formalism
but they are not vacuum solutions of Einstein’s equations.

It is possible that the spin structure of matter plays no role in the gravitational analysis of
the solar system and in a cosmological background, so that the usual treatment in terms of
only spacetime variables is sufficient to describe planetary motions. But in cosmological models,
when the velocity of particles is not negligible, redshifts of order 6 and higher have been quoted
for several galaxies which correspond to velocities of 0.9c, a metric dependent on the velocities
would produce a different analysis than a Riemannian one.

If we need to take into account the spin content of matter, may be in a neutron star where
the magnetic moments of the particles are aligned, or in a gravitational colapse with a huge
density of matter where gravitational effects associated to the spin structure are expected, it
is unavoidable to enlarge the dynamical formalism to include the spin description of matter, in
which the space X is larger than spacetime and the metric should depend also on the velocities.
It is on this larger manifold that gravity has to be worked out. The physical restrictions have
to applied in the analysis of the particular cases, not at the very begining of the formalism.

Acknowledgments
This work has been partially supported by Universidad del Páıs Vasco/Euskal Herriko
Unibertsitatea grant 9/UPV00172.310-14456/2002.

References
[1] Rivas M 2001 Kinematical theory of spinning particles, (Dordrecht: Kluwer), Chapter 6.
[2] Asanov GS 1985 Finsler geometry, Relativity and Gauge theories, (Dordrecht: Reidel Pub. Co)
[3] Rund H 1973 The Hamilton-Jacobi theory in the calculus of variations, (N.Y: Krieger Pub. Co.)
[4] Rivas M 2008 The atomic hypothesis: Physical consequences, J. Phys. A 41 304022
[5] Rivas M 1994 Quantization of generalized spinning particles: New derivation of Dirac’s equation, J. Math.

Phys. 35 3380
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<http://tp.lc.ehu.es/martin.htm>
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