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Abstract DDS is a recent specification aimed at providing
high-performance  publisher/subscriber =~ middleware
solutions. Despite being a very powerful flexible
technology, it may prove complex to use, especially for
the inexperienced. This work provides some guidelines
for connecting software components that represent a new
generation of automation devices (such as PLCs, IPCs
and robots) using Data Distribution Service (DDS) as a
virtual software bus. More specifically, it presents the
design of a DDS-based component, the so-called
Automation Component, and discusses how to map
different traffic patterns using DDS entities exploiting the
wealth of QoS management mechanisms provided by the
DDS specification. A case study demonstrates the
creation of factory automation applications out of
software components that encapsulate independent
stations.

Keywords Factory Automation, Robot Programming,

Industrial Communications, Middleware, DDS

1. Introduction

Today’s factory automation applications are growing in
size and complexity. In modern factory automation
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applications, industrial devices such as robots,
Programmable Logic Controllers (PLCs) and Industrial
PCs (IPCs) are changing from preprogrammed, stationary
systems into machines capable of modifying their
behaviour, based on interactions with the environment
and other devices. Changes have also come about from
users demanding higher efficiency, functionality and
performance in the control of industrial plants [1].
Moreover, modern applications involve a large amount of
information and an increasing number of industrial
devices [2]. In this scenario, the integration of both
horizontal and vertical communication is becoming a
critical and complex issue [3]. Traditionally, factory
automation communications have been organized in
layers according to the so-called automation pyramid
(Figure 1). This approach allows different types of
technologies to be used in different layers of the
automation pyramid. Historically, fieldbuses like
Profibus or CAN were used at device and control levels,
whereas typical office networks like Ethernet or Wi-Fi
were preferred at plant level. Nowadays, these latter
technologies, namely Switched Ethernet or Ethernet-
modified architectures, are being increasingly used even
at the bottom layers of the automation pyramid. This is
due to several reasons [4]: (1) decentralization of
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applications is shifting intelligence to the distributed
components; (2) vertical integration is gaining importance
and (3) the adoption of IT standards is bringing about
important cost reductions. Another driving force in
factory automation results from the adoption of more
powerful computing platforms by most industrial device
vendors. These new platforms allow the introduction of
modern software engineering techniques that improve
performance and flexibility while, at the same time,
reduce costs and time-to-market. However, modern
factory automation applications require the integration of
heterogeneous devices that execute different hardware
platforms and Operating Systems (OS) [2].
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Figure 1. Automation pyramid

In this context, middleware technologies provide high-
level abstractions and interfaces to facilitate integration,
reuse and development [5]. Some middleware
specifications, such as CORBA [6, 7], ICE [8], OPC [9, 10],
Web Services [11, 12] and DDS [13, 14] simplify the
distributed  factory
applications. Even though middleware is typically
organized in a hierarchy of several layers [15], most of the
above cited specifications only address communication
defined higher-level
middleware architectures that provide new abstractions
and services [16, 17] addressed to specific domains and
applications.

development  of automation

issues. Some authors have

In particular, the OMG Data Distribution Service (DDS) is
an emerging middleware specification that follows the
publisher / subscriber paradigm and implements a broad
set of mechanisms to specify and manage Quality of
Service (QoS) requirements in real-time applications. It
has been used in several application domains such as
avionics or defence. Although a few
automation systems have also been implemented with
DDS, this standard has not yet gained much significance
in factory automation applications. There are two main
reasons for this fact: (1) It is a relatively new standard and
(2) there is still a lack of development of environment
support to facilitate enhancing de facto standard control

industrial
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systems like PLCs with DDS-based communication
without deep programming knowledge [14]. In addition,
although DDS is a very powerful technology it may prove
complex to use for non-experienced users.

This paper fills the gap by providing some guidelines and
abstractions to use DDS as a virtual software bus in the
control layer for a new generation of factory automation
devices (PLCs, IPCs and robots). More specifically, this
work presents the generic architecture of a DDS-based
component capable of providing QoS communication
requirements in factory automation applications. Also, it
identifies different types of traffic patterns among the
controllers and maps them over DDS entities exploiting
its wealth of mechanisms for QoS management.

The design of applications that use automation
components allows concepts such as maintainability,
reusability, flexibility and reconfigurability to be
consolidated. For some time attempts have been made to
integrate  component
automation systems. One alternative is to use the
IEC61499 standard [18] with component-oriented
technologies. This standard proposes an open
architecture for designing distributed
applications capable of introducing modularity,
reconfigurability and flexibility into distributed control
systems. Vyatkin [19] defines the term IMC (Intelligent
Mechatronic Component) for
design. This concept is close to the “Technological
Module” introduced by Profinet-CBA [20]. Cengic et al.
[21] introduce the term “automation component” over
IEC61499, inspired by VHDL components. Black et al.
[22] implemented IMCs as IEC61499 FBs (Function
Blocks) within an approach to create multiagent systems

architectures in  industrial

automation

automation software

that introduce autonomous and collaborative behaviour
according to holonic principles.

The layout of the paper is as follows. Section 2 discusses
several related works in the field. In particular, it analyses
different middleware architectures used in robotics, as
well as the most relevant kinds of traffic found in factory
automation applications. Section 3 is the heart of the
paper. It presents the design of a generic DDS-based
component, the so called Automation Component and
provides certain guidelines to map the different traffic
patterns found in factory automation into DDS entities
exploiting the richness of QoS management mechanisms
provided by the DDS specification. Section 4 illustrates
the use of this generic component in factory automation
applications by means of a simple case study. Finally,
Section 5 draws some conclusions.

2. Related work

This section describes some middleware architectures
used in automation and robotic domains and discusses
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the major communication needs of factory automation
applications.

2.1 Middleware for robotics and factory
automation applications

Different architectural paradigms have been proposed to
support the development of distributed and concurrent
systems. In particular, object-oriented, component-based
and service-oriented approaches are among the most
relevant paradigms for the integration of software
artefacts that require interprocess communication and
event synchronization. Ref. [23] discusses its application
to robotics. There have been several initiatives based on
these paradigms to create frameworks and libraries for
industrial robotic applications. Most of them are aimed at
solving the following challenges [24]:

e  Simplify the development process

e Ease integration

e  Support communications and interoperativity

e Provide abstractions that hide heterogeneity and use
the available resources efficiently

o  Offer frequently needed services

These frameworks have been analysed in [24, 25] and
Orocos [26], Miro [27], Orca [28], Player/Stage [29], Aseba
[30] and Robot Operating System (ROS) [31] are the most
representative ones. Some of them are restricted to
specific types of robotic applications such as mobile
robots (e.g., Miro). One interesting initiative, Nerve [32],
has developed a lightweight middleware aimed at
networked social robotic applications. However, the
robotics community still lacks well-accepted common
software architectures, middleware and shared low-level
functionality. In addition, since most of the previous
have been developed within academic
environments, the authors write software solutions that
tend to be firmly based on their own architecture,
middleware and robots [33]. Finally, these frameworks
typically focus on solving the requirements of robotic
applications only, without considering the integration of
other industrial devices like PLCs or IPCs.

initiatives

Previous initiatives have been built on top of different
distribution middleware technologies. In particular,
CORBA is used by Orocos and Miro, Oreca is built on top
of ICE, Nerve uses DDS, whereas the rest follow
proprietary client/server communication approaches.
Most of the previous frameworks barely implement the
client/server paradigm. Only Orca, ROS and Nerve
supply publish/subscribe one-to-many communications,
which improve the overall performance of data
exchanges and decouple discovery and communication
tasks [34].
applications both client/server and publisher/subscriber
paradigms should be combined.

However, in most factory automation
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Other authors propose alternative approaches for factory
automation applications, such as using Service Oriented
Architectures and Web Services [12, 35], but as shown in
[36] these technologies may not provide an adequate
performance in real-time applications like those usually
found in factory automation.

It may be concluded from the previous discussion that
simple approaches on top of more efficient technologies
could be helpful in building factory automation
applications with open When
compared with previous approaches, the use of DDS as
distribution middleware in the control layer of the
automation pyramid provides several advantages. On the
one hand it is a high performance middleware with low
overhead, which is capable of supporting real-time
communication on top of the TCP/IP stack. In addition,
DDS is an open standard promoted by the OMG [13] that
has been designed to work in different programming
languages, on top of different computing platforms and
operating systems providing a certain degree of
independence. However, abstractions on top of DDS are
needed in order to ease the creation of factory automation
applications. This work, as well as [37], goes in this
direction. More specifically, DDS is used directly as a
communication
components based on concepts adopted from the
IEC61499 standard [18].

industrial devices.

backbone to connect software

2.2 Traffic types in factory automation applications

This subsection discusses the main communication needs
in the control layer of the automation pyramid. This layer
connects different types of process controllers (mainly
IPCs, robots and PLCs). In factory automation
applications, it is necessary to provide at least three
different communication types, associated with different
operations [4].

1. Periodic data communication. This covers the needs
of the distribution of process data, typically with soft
real-time
communication type used to execute distributed
control algorithms among several devices within a
system. Periodic data are used to deliver the transfer
relationship of the automation signals. Process
variable update times may reach up to several tens of
milliseconds (10, 50, 100ms). Usually, a certain jitter
in the update times of this type of data may be
acceptable if kept below a certain threshold (typical
admissible values are around ten percent of the
period). The maximum accepted latency depends on
the kind of application and is typically linked to the
value of the distributed task periods.

2. Aperiodic data communication. Typically used to
distribute sporadic data, alarms and events. This
information must be delivered in a way that satisfies

constrains. It is the most relevant

Isidro Calvo, Federico Pérez, Ismael Etxeberria-Agiriano and Oier Garcia de Albéniz:

Designing High Performance Factory Automation Applications on Top of DDS



certain real-time constraints such as a maximum
latency, which varies quite a lot since it is closely
related to the nature of the applications. The
maximum acceptable jitter for transmissions of this
kind of data must also be below a specific threshold.
3. Non-time-critical communication. This is required
by operations
parameterization and diagnostics of distributed
devices; sending reference signals for process control
and providing eventual access to process data. These
operations support configuration and monitoring
aspects of industrial control applications. Even

involving configuration,

though this kind of communication is not time-
critical, it may require sending large amounts of data
such as configuration, report or log files.

Each of the previous traffic types adapts best to a
particular communication paradigm. Periodic and
aperiodic data communications may be distributed more
efficiently by using the Publisher/Subscriber paradigm,
ensuring that certain QoS constraints are met. In such
cases the same information is frequently sent to a set of
recipients. However, the Client/Server paradigm is better
suited for most non-time-critical operations, which may
be synchronous (a Client makes a request to a Server,
which provides a response) or asynchronous (a Client
makes a request to a Server, which is processed without
response).

In this paper DDS has been chosen as the communication
backbone since it is a high-level, high-performance
standardized middleware that
Publisher/Subscriber paradigm. In addition, it provides
platform/programming language independence. As
shown in [34, 38] the use of the Publisher/Subscriber
paradigm is well suited for distributed real-time systems

follows the

like those found in factory automation applications.
Moreover, DDS is a unique middleware that provides a
rich set of parameters to control QoS constraints, such as
transport priorities, deadlines, reliability or liveliness, as
described in next section. However, since some typical
(both
request/response and request/non-response) adapt best to
the Client/Server paradigm they should be adequately

operations found in factory automation

mapped in terms of DDS with no interference from other
more stringent operations.

3. Building factory automation applications with DDS

This section presents the main contribution of the paper,
consisting of the internal design of a DDS-based
Automation Component for building factory automation
applications. It also describes the mapping of the different
types of communication needs in this domain in terms of
DDS entities and QoS parameters. The section starts with
a short overview of the DDS fundamentals.
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3.1 DDS Fundamentals

The Data Distribution Service for real-time Systems
(DDS) [13] is an emerging specification released by the
Object Management Group (OMG). It provides a high
performance platform-independent middleware for Data
Publish/Subscribe
communications. There exist several implementations of
DDS that allow different programming languages
(mainly C, C++ and Java) and general purpose OSs, like
Windows, Linux and some RTOS to be combined. Open
source and community distributions of DDS products,
such as OpenDDS [39] or OpenSplice [40] are available.

Centric many-to-many

DDS defines a virtual Global Data Space (see Figure 2),
which is accessible to all applications: Publishers
produce/write data, consumed/read by
subscribers. Publishers and subscribers are decoupled in
time, space and synchronization. For example, late joiners

which are

may obtain data issued before their activation even if the
application that produced it has already finished or
crashed. This behaviour must be properly configured by
tuning the QoS properties. Data are described in a
platform independent way, inherited from the CORBA
specification, the so-called IDL (Interface Definition
Language).
Publisher

Publisher Publisher

Global Data Space

Figure 2. DDS Global Data Space

DDS also defines the Data-Centric Publish-Subscribe
(DCPS) model, a topic-based API involving several
entities [13] as represented in Figure 3. These entities are
described below.

e Topic — An information unit that can be produced or

identified by a mname. It allows
anonymous and transparent communications. Topic
instances are associated with a key, defined by IDL
and a set of QoS parameters.

¢ Domain - A communication context, which provides

encapsulating  different

concerns and thereby optimizing communications.

consumed,

a virtual environment,

¢ Domain Participant — An entity taking part in an
application within a domain.

e Data Writer — An entity intending to publish a Topic,
providing type-safe operations to write/send data.

e Data Reader — An entity used to subscribe to a Topic,
providing type-safe operations to read/receive data.
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e DPublisher — An entity created by a Domain
Participant to manage a group of Data Writers.

¢ Subscriber — An entity created by a Domain
Participant to manage a group of Data Readers.

Domain

Publisher Subscriber

Da_ta Data Data
Writer Reader | Reader

Data Data Data
Reader Writer Writer

Subscriber Publisher

Figure 3. Major DDS entities and their interactions

One of the key features of DDS is the availability of a
broad number of mechanisms that allow the management
of QoS policies. These policies are configured at the
different DDS entity levels (topics, data writers, data
readers, publishers and subscribers). Table 1 shows the
available parameters for specifying and managing the
QoS policies in the current DDS specification. These
parameters must be publisher/subscriber compatible
under an RxO (Request vs. Offered) contract.

DDS has been adopted in many application domains. In
particular, a few works deal with the use of DDS in
factory automation applications. For example, in [14] a
modular active fixturing system built with DDS has been
presented. Also, DDS 1is analysed in [37] as a
communication backbone for ITEC61499 communication
SIFBs [18]. Other works analyse the use of DDS in
Electrical Substation Automation Systems [38].

DDS QoS policies
Deadline Ownership Strength
Destination Order Partition
Durability Presentation
Durability Service Reader Data Lifecycle
Entity Factory Reliability
Group Data Resource Limits
History Time-Based Filter
Latency Budget Topic Data
Lifespan Transport Priority
Liveliness User Data
Ownership Writer Data Lifecycle

Table 1. List of most relevant DDS QoS parameters
3.2 Internal design of the DDS-based Automation Component

One of the major benefits of using DDS as a
communication backbone is that it provides a hierarchical
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set of entities with a rich set of QoS parameters, which,
when configured appropriately, may be used for fine
tuning the communication needs of the applications. Even
though this characteristic makes DDS a very powerful and
high performance technology, it may prove complex to use
by non-experienced users, especially due to the variety of
combinations of QoS parameters. This subsection presents
the internal design of a DDS-based Automation Component
architecture that includes all the functional operations
provided by every component, as well as the necessary
entities to use DDS as a communication backbone for
factory automation applications. Thus, programmers will
be able to create factory applications by connecting
Automation components that encapsulate the functionality of
factory automation controllers, such as PLCs, robots or
IPCs, to the DDS software bus, as shown in Figure 4.

Automation Companent 1 Automation Component 2

D05 Backbone

Automation Component 3 Automation Compaonant 4

Figure 4. Building factory applications with DDS-based
Automation Components

The DDS-based Automation Component is based on a
hierarchical skeleton that could be semi-automatically
generated with model
techniques. Figure 5 presents the UML class diagram for
this component. Application programmers must insert
the functionality of the component by instantiating
several objects of the FunctionalWrapper class. These
objects implement the services that require access to the
DDS backbone as described above through objects of the
DDS:Topic class. The Figure also shows the hierarchy of
DDS classes needed to access the DDS:Topic objects in
every component. Finally, according to the type of
service, each DDS entity is configured with different DDS
QoS policies, as discussed in the following subsection.

driven engineering (MDE)

For example, since DDS is capable of managing the
distribution priorities of the data inside the Topics: (1)
aperiodic communications for delivering sporadic data,
alarms and events may be assigned the highest priority
levels; (2) periodic data will be distributed by using
medium to high priority values, thereby guaranteeing
update times and (3)
communications can be mapped into topics with lower
priority values, improving the traditional best-effort
paradigm. However, due to the nature of TCP/IP
protocols, some QoS aspects will not be enforced but just
a hint given to the underlying infrastructure.

basic non-time-critical
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Automation Component

1_0 . 0—1|

DDS::DomainParticipant

0.1 1 1 na

DDS::Publisher DDS::Subscriber

T

DD5::DataReader

FunctionalWrapper

T
|
|

s e e fetid At a
| i : i L
| ousese |
: DD5:Topic : DDS:Topic
______ AT _>

. ’_1 |_| -
1
DDS5::QosPolicy DD5:0o5Policy

Figure 5. UML class diagram for the DDS-based Automation
Component

3.3 Mapping factory automation communications over DDS

Even though DDS allows a large number of QoS policies
to be configured, the authors have tried to simplify the
configuration of the middleware by focusing only on
those considered most relevant in factory automation
applications. A short description of these parameters
follows:

¢ Deadline: significant for periodic and aperiodic real-

time critical communications. This parameter
represents the maximum separation between two
topic updates.

e Latency Dbudget:

communications. It

significant for real-time

specifies the maximum
acceptable delivery delay from the Data Writer to the
Data Reader.

e  Reliability: specifies whether to attempt to deliver
all samples or if it is acceptable not to retry any failed
data propagation.

e  History: specifies the number of samples kept by the
middleware engine.

e Transport priority: integer value used to specify the
priority of the underlying transport.

e Durability: specifies if data should outlive their
writing for late joiners. Provided variants include
volatile, transient and persistent.

This subsection also presents guidelines for specifying the
DDS QoS policies in order to map the different types of

Int J Adv Robotic Sy, 2013, Vol. 10, 205:2013

traffic found in factory automation applications, as
identified in Section 2. This kind of application involves
different operations, each of them requiring particular
traffic flows. Thus, since DDS is a Publisher/Subscriber
based technology, all Client/Server operations require
mapping into the Publisher/Subscriber paradigm.
Efficiency will be lost, but only on the request/response
operations, which frequently require lower priorities.
This approach allows middleware to be left to deal with
the communication requirements. A discussion about
how to map factory automation traffic in terms of DDS
follows. Table 2 summarizes this mapping.

e Distribution of Aperiodic Station Events: these
adapt best to the Publisher/Subscriber many-to-many
paradigm, ie. there may be several Automation
components that produce/receive data. Each alarm or
event (or a group of them, depending on the desired
granularity of the system) should be mapped into a
DDS Topic. This kind of traffic must be delivered at
the highest transport priority (DDS:QoSPriority) and
in a reliable manner (DDS:QoSReliability).

e Distribution of Periodic Variables: these also adapt
best to the Publisher/Subscriber many-to-many
paradigm. Each periodic variable (or a group of
them) is mapped into a DDS topic. Typically, in most
automation systems only the last sample is relevant.
Thus, the history window (DDS:QoSHistory) should
be assigned the keep last value and the reliability
parameter (DDS:QoSReliability) should be set to best
effort. Priorities for every topic (DDS:QoSPriority)
should be set in the range of medium to high
according to the wurgency in the distributed
application. Due to the cyclic nature of this kind of
traffic, the Deadline (DDS:QoSDeadline) should be
enforced with a value marginally higher than the
sampling period or maximum process time.

e Invocation of Request/No response Services: this
kind of traffic adapts best to the Client/Server
paradigm, since there is only one producer and one
receiver of information. A DDS topic is used per
service and the destination Device Component must
be identified in the body of the Topic. Since no
response is required, reliability (DDS:QoSReliability)
must be enforced. In this case, the priority
(DDS:QoSPriority) is set to low, since in most cases
they are non-time-critical operations.

e Invocation of Request/Response Services: unlike
the previous communication type, this is a
synchronous Client/Server case, where the client
remains blocked until a response from the server is
received. This behaviour can be achieved over a
Publisher/Subscriber framework by using a pair of
topics: one for the request and another one for the
response. The client writes the request into the
request-topic and performs a blocking read upon the
response-topic. The priority of this traffic
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(DDS:QoSPriority) is set to the lowest, since these
services are typically used for non-time-critical

operations.
Services
Aperiodic Periodic Request/ |Request/
Station Event| Variable No Resp. Resp.
Deadline - Max1mu'm - -
process time

Latency Budget Low Medium - -
Reliability Reliable Best effort Reliable | Reliable
History Infinite Keep last | Keep last | Keep last
Transport Priority| Highest High Low Lowest
Durability Persistent Volatile Volatile | Volatile

Table 2. Recommended QoS parameter values for every kind of
factory automation traffic

4. Case study

This section presents a case study that illustrates the
application of the above-proposed DDS mapping. It is
based on a factory automation cell (see Figure 6) in which
four stations assemble different parts over a pallet. More
specifically, the assembled final piece is composed of a
base, a bearing, a shaft and a lid.

4.1 Description of the case study application

The cell is capable of assembling different types of pieces.
Individual stations are capable of distinguishing the type
of piece by means of a piece code located at the bottom of
the pallet and execute different operations accordingly.
Each station has a conveyor belt to move the pallet across
the station. After correctly processing one piece, the
conveyor moves the pallet with the piece to the next
station, in order to continue with the assembly process.
The four stations involved in the case study are the
following:

1. Loader. This station is responsible for correctly
locating the base over the pallet placed on the
conveyor belt.

2. Robot. This station obtains the bearing and the shaft
from the feeding points of the station and fits them to
the base placed on the pallet.

3. Sealer. This station puts the lid over the assembled
part, which was previously located by the robot on
the pallet.

4. Storage Cell. This station picks up the assembled
piece from the pallet and places it in the storage area.

There is also a supervisory control application that
initializes the controllers of the stations at the start-time
and monitors the process status at the run-time.

The control application for the factory automation cell has
been created with five automation components that
encapsulate the functionality of each of the four stations
described above, as well as the supervisor.

www.intechopen.com

Figure 6. Factory automation cell

These automation components have been distributed
over three physical devices connected by an Industrial
Ethernet, as shown in Figure 7. One device holds the
supervisory automation component whereas the other
two devices are IPCs that play the role of station
controllers. Each IPC contains the software of two
automation components that encapsulate one physical
station. In the proposed case study Controller 1 holds the
Loader and Robot automation components whereas
Controller 2 holds the Sealer and Storage automation
components.

Supervisor

DDS Industrial Ethernet.

Controllerl Controller2

10 Network PROFIBUS DP

Bl | L ED

Loader Robot Sealer Storage cell

Figure 7. Topology of the case study application

As shown in Figure 7, there are two industrial
communication networks involved in the system: (1)
Profibus-DP fieldbus, which is used by the controllers to
access the I/O signals in each station in a multimaster
configuration and (2) Industrial Ethernet network, which
implements the control communication network and
links the controllers and the supervisory computer. This
is the network in which the DDS virtual bus is
implemented.

4.2 Information exchange and mapping into DDS topics

The case study presented above requires both
synchronization of the stations in order to follow the

processing sequence and delivery of the messages
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simultaneously to several devices (e.g., the following
station and the supervisor). Consequently, an efficient
publisher/subscriber technology like DDS seems an
adequate choice.

Figure 8 represents the messages exchanged among the
automation components that encapsulate the station
functionalities of the factory automation cell. These
messages are described below. Different colours have
been used to represent each type of service.

Once the piece identification code is read from the pallet
at each station, its code and error/status information are
published in DDS as one topic (Set) that is used by the
next station (Ready) for two purposes: (1) to anticipate the
parts required for a specific type of piece and (2)
validation. This information is also delivered to be used
by the supervisor.

When any station finishes processing a piece, it publishes
its code and error/status information by means of a DDS
topic (End). This topic informs the next station (Begin) to
start its procedure and it also contains information used
by the supervisor.

Supervisor

Loader Robot Sealer Storage

tart Msg tart Msg. tart Msg Start Msg.
top Set top Set top Set Stop Set
End JReady End i [JReady End Ready End
GSE Begin GSE i [JBegin GSE Begin GSE

Figure 8. Information exchanged among the Automation
Components via the DDS backbone

The supervisor may start and stop the stations using two
DDS topics with configuration data (Start/Stop). Both of
them allow configuration data in the message body to be
sent. Internal faults at the stations are communicated
immediately to the Supervisor by means of another DDS
topic, the so-called General Station Event (GSE), which
includes error and status information of the fault.

Table 3 provides a map of the identified services in the
described industrial automation environment into DDS.
Since GSE represent alarms and events, they are mapped
into Aperiodic Station Event (ASE) services whereas Set
and End are mapped into Periodic Variables (PV). Both
types of services adapt best to the Publisher/Subscriber
paradigm as described above. As a consequence, they
require a single DDS topic for each variable with the same
names (GSE, Set and End). In the case of GSE the
supervisor subscribes to a topic shared by several station
components (Loader, Robot, Sealer or Storage), which
may publish the events. In the case of the Set and End
topics, any station component may act as a Publisher,

Int J Adv Robotic Sy, 2013, Vol. 10, 205:2013

whereas the next physical station as well as the
Supervisor may act as Subscribers.

Services
Aperiodic Periodic |Request/No| Request/
Station Event| Variable | Response | Response
Paradigm Publish / Subscribe Client / Server
Topics ) 1 1 1 2
(per variable)
M
Distribution Many to one any to One to one | One to one
many
Content Filtered No Yes Yes Yes
. Msg_Req,
Topic names GSE Set, End Start, Stop Msg_Res
. Set, Ready,
Variables GSE End, Begin Start, Stop Msg

Table 3. Summary of the mapping into DDS topics and services

Start and Stop operations involve sending configuration
information from the Supervisor to the stations in the
body of the message. Since these operations do not need a
response from the station component to the supervisor,
they should be mapped as Request/Non Response (RNR)
services. The supervisor component publishes these
topics and station components (i.e., Loader, Robot, Sealer
and Storage) subscribe to them.

The stations may also require additional information
from the Supervisor, such as a code description or the
status of any station. These operations are achieved by
using Request/Response (RR) services. In this case, two
topics are needed: Msg_Req and Msg_Res.

[ Supervisor v]

Publishes i
hes - Subscribes
D R
N e,
\
“Start” “GSE” “Set”
(Request) (ASE) R (PV_Set)
“MsgRes” o
(Response 7 ‘." H
Msg) V4 o
. / 4
“Topic name” \ VAR h 4
(Topic type) 4
Robot Sealer

Figure 9. Topics exchanged among the Supervisor, Robot and
Sealer automation components

Figure 9 shows some of the topics exchanged among the
Supervisor, Robot and Sealer components. This figure is
focused on the Robot component and, for the sake of
clarity, the figure is not exhaustive: neither are all the
topics and nodes depicted nor all connections of the
Storage represent the
automation components that wrap the stations. The
whether the
application publishes one topic (one outgoing arrow) or is

station shown. The boxes

direction of the arrows represents
subscribed to a topic (one incoming arrow). Arrows have
different colours and styles depending on the type of
communication: Red is for ASE, green is for PV, yellow
for RNR and blue is for RR. Finally, topics are located in

the middle of the figure and are managed by the DDS
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middleware according to the
described below.

QoS parameters as

DDS uses a subset of IDL to describe the topics of the
applications. Table 4 provides sample IDL interfaces that
illustrate how to define the data of the case study in order
to distribute them among the nodes of the distributed
application for the above-described services. It should be
noted that RR and RNR services share the same type for
their requests, namely Msg_Req.

4.3 Building the automation components

This section describes the construction of the automation
components according to the internal design proposed in
Section 3.2. Even though this section is focused on the
Robot automation component, it could be easily extended
for the other components. Two major points are discussed
hereafter: the object hierarchy of the robot component, as
well as the values for the most relevant QoS parameters
for the DDS entities.

Figure 10 represents an UML object diagram that
implements the UML class diagram proposed in Figure 5
for the robot component. The RobotComponent contains
two major objects, the RobotWrapper which holds the
robot functionality by wrapping its programs and the
CellParticipant, which implements
DDS:DomainParticipant  class  for  connecting the
RobotComponent to the DDS middleware. All DDS:Topics
described above (Set, End, GSE, Start, Stop, MsgReq and
MsgRes) are connected to the DDS middleware by means
of the RobotPublisher and RobotSubscriber. There are also
several implementations of the DDS:DataWriter and
DDS:DataReader classes, one for each kind of service

an object of a

RobotComponent

RobotWrapper

Robot  |[____|
Programs

defined above (i.e, Aperiodic Station Events - red,
Periodic Variables - green, Request Non Response
Services - yellow and Request/Response Services - blue).

IDL

struct ASE GSE {
boolean ERROR;
Aperiodic Station unsigned long STATUS;

Events }i
#pragma keylist ASE GSE // no key

struct PV_Set {

string STATION;

unsigned long CODE;

bi

#pragma keylist PV _Set STATION

Periodic
Variables

struct PV_End {

string STATION;

unsigned long CODE;

boolean ERROR;

unsigned long STATUS;

bi

#pragma keylist PV_End STATION

enum Order_ t {START, STOP, MSG};
struct Msg Req { // Request
string DEST_ STATION;

string BODY;

Order_t ORDER;

bi

#pragma keylist Request Msg
DEST_STATION ORDER // two keys

Request Services

struct Msg Res { // Response

string DEST STATION;

unsigned long CODE;

boolean ERROR;

unsigned long STATUS;

string BODY;

bi

#pragma keylist Response Msg // no key

Response Services

Table 4. DDS topic sample definitions grouped by type of service

CellParticipant

RobotPublisher RobotSubscriber
A ReqNoRespReader

www.intechopen.com
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Figure 10. UML object diagram for the Robot automation component
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With regard to the QoS parameter settings, Table 2
summarizes the values assigned to the different DDS QoS
parameters. Below is a brief justification of the chosen
values:

The Deadline parameter is only used for the Periodic
Variables (Set and End) with a value related to the
maximum process time for all individual stations since it
represents the maximum separation between two topic
updates.

Latency budget, which specifies the maximum acceptable
delivery delay in the distribution of a DDS topic, is set to
a relatively low value for the Aperiodic Station Events
(GSE), meaning that they should be delivered very
rapidly and at a relatively medium value for the Periodic
Variables (Set, End).

The Reliability parameter is set to best effort for the
Periodic Variables (Set, End), meaning that an efficient
delivery is more important than resending a particular
message. For this kind of data the current value has no
meaning after a specific interval of time has elapsed and
it is more important to distribute a newer value. For the
remaining variables (GSE, Start, Stop, MsgReq and
MsgResp) this parameter is set to reliable, meaning that the
message must be resent if necessary.

History is configured so that the middleware keeps all
samples of the Aperiodic Station Events (GSE) and only
one for the remaining types of topics (Set, End, Start, Stop,
MsgReq, MsgResp).

The Transport priority is set to the highest value for the
Aperiodic Station Events (GSE) since the distribution of
this information is considered the most relevant. Periodic
Values (Set, End) are assigned a medium-high level of
priority, whereas Request No Response messages (Start,
Stop) are given a medium-low level of priority. Finally,
Request Response messages (MsgReq, MsgRes) are given
the lowest priority.

Durability is set to Persistent for Aperiodic Station Events
(GSE) since it represents alarms. These alarms must be
distributed to the nodes (e.g., the supervisor) even if they
are disconnected from the application for a while. For the
remaining topics (Set, End, Start, Stop, MsgReq, MsgResp)
this parameter is not considered relevant and is set to
Volatile.

5. Conclusions and future work

This work illustrates how to use DDS as a middleware
virtual bus for connecting industrial controllers at the
control layer of the automation pyramid. Every physical
device is encapsulated by means of a generic software
component, the so-called Automation Component, capable

10 IntJ Adv Robotic Sy, 2013, Vol. 10, 205:2013

of accessing (reading and writing) information (Topics in
DDS terminology) from the virtual bus. Assuming that
the underlying network infrastructure is capable of
enforcing the selected QoS policies, the use of a unique
middleware specification if properly configured, may
solve all communication needs for factory automation
applications becoming a real communication backbone.

This paper also proposes an internal design for the
Automation Component as well as a mapping for the most
frequent operations in factory automation applications.
This mapping distinguishes among different types of
services and provides guidelines to configure the values
of the DDS QoS parameters. The use of the proposed
mapping is illustrated by means of a case study
consisting of a factory automation application.

The authors are currently working on the creation of a
basic IEC61499 function block set [37] so that they may
constitute structural components from which distributed
factory automation applications may be created on top of
DDS.
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