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Abstract. We study theoretically the effects of disorder on Bose–Einstein
condensates (BEC) of bosonic triplon quasiparticles in doped dimerized quantum
magnets. The condensation occurs in a magnetic field, where the concentration
of bosons in the random potential is sufficient to form the condensate. The effect
of doping is partly modeled by a δ-correlated distribution of impurities, which
(i) leads to a uniform renormalization of the system parameters and (ii) produces
disorder in the system with renormalized parameters. This approach can explain
qualitatively the available magnetization data on the Tl1−xKxCuCl3 compound
taken as an example. In addition to the magnetization, we found that the speed
of the Bogoliubov mode has a maximum as a function of x . No evidence of the
pure Bose glass phase has been found in the BEC regime.
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1. Introduction

The effects of disorder on the properties of Bose–Einstein condensates (BEC) present interesting
problems, both for theoretical and experimental physics [1–6]. Disorder is important in various
systems of real particles such as superfluid 4He, cold atoms in optical lattices and quasiparticles
such as polaritons ([7] and references therein) and excitons [8]. These systems are well-suited
for experimental studies, however the theory of disordered ensembles of interacting bosons is
complex and there are essentially no exact solutions even in one dimension [9]. To approach
this problem, Yukalov and Graham (YG) developed a self-consistent stochastic mean field
approximation (MFA) [10] for Bose systems with arbitrarily strong interparticle repulsion and
arbitrary strength of disorder potential. It was shown that, in general, the Bose system consists
of the following coexisting components: the condensate fraction ρ0, the normal fraction ρN,
the glassy fraction ρG, and, in addition, can be characterized by the superfluid density ρs. In the
limit of asymptotically weak interactions and disorder the known results, obtained in pioneering
work by Huang and Meng [11] (HM), are reproduced by the YG theory. An interesting question
here concerns the problem about the existence of a pure Bose glass (BG) phase, i.e. the phase
where the condensate fraction is nonzero, while the superfluid fraction is not yet present. Note
that Graham and Pelster [6] introduced an alternative definition of the gapless BG phase, having
localized short-lived excitations and vanishing superfluid density with a continuous transition
to the normal phase at finite temperature. Even without disorder, the condensate is depleted
by particle–particle interactions and temperature. The inclusion of random fields depletes the
condensate further and, possibly, creates the glassy fraction.

As it was understood recently, a new class of BEC can be provided by spin-related
quasiparticles in magnetic solids such as intensively pumped magnons [12] or triplons in the
dimerized quantum magnets in the equilibrium [13]. In the magnets, the effect of disorder,
which can be produced by admixing other chemical elements, can be too strong to be seen
in the physical properties such as the temperature-dependent magnetization. The so far most
investigated compound showing BEC of triplons is TlCuCl3. To study the effect of disorder,
solid solutions of quantum antiferromagnets TlCuCl3 and KCuCl3, i.e. Tl1−xKxCuCl3 have
been experimentally investigated recently [14–16] at low temperatures T . The zero-field ground
states of TlCuCl3 and KCuCl3 are spin singlets with excitation gaps 1st = 7.1 K and 1st =

31.2 K, respectively and the magnetic excitations are spin triplets. Triplons arise in magnetic
fields H > Hc, where Hc is defined by the condition of closing the gap by the Zeeman splitting,
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that is 1st = gµB Hc, where g is the electron Landé factor and µB is the Bohr magneton. In the
mixture Tl1−xKxCuCl3 the induced magnetization M exhibits a cusplike minimum at a critical
temperature Tc(H) for a fixed magnetic field H > Hc similarly to the parent compound, which
can be successfully explained in terms of triplon BEC [17–19].

For a theoretical description it is natural to assume that for weak doping x � 1 in the mixed
system Tl1−xKxCuCl3 a small admixture of potassium forms a disorder potential. Consequently,
the recently developed theories of ‘dirty bosons’ [1, 2, 10, 11] can be applied to study the BEC
of triplons in Tl1−xKxCuCl3. Here the following questions naturally arise. For example, what
is the correspondence between the admixing parameter x and the properties of the disorder
potential? What are the experimental consequences of the disorder? Yamada et al [15] analyzed
the electron spin resonance spectrum in Tl1−xKxCuCl3 and concluded that there is a BG–BEC
transition near a critical magnetic field. Although this interpretation might need a further
analysis (see discussion in [20]) it would be interesting to study the influence of the glassy
phase, or more exactly, of the glassy fraction ρG on the magnetization. Note that even the
existence of a pure BG phase is still a matter of debate even in theoretical approaches. For
example, it may be predicted by the approach used by Huang and Meng [11] if one extends their
formulae from weak to strong disorder. On the other hand, no pure BG was found in Monte Carlo
simulations [21] for atomic gases, but was predicted for triplons at T = 0 by Nohadani et al [22].

Here we develop a theory of the disorder effects on the BEC of triplons taking
Tl1−xKxCuCl3 as a prototype to study specific properties. For example, in atomic gases
considered in [10, 11], the chemical potential µ is determined self-consistently with a fixed
number of atoms, while in the triplon gas the chemical potential is a given external parameter
controlled by the applied magnetic field and the number of triplons is conserved in the
thermodynamic limit. To clarify the terms, we underline that the number of magnons may vary
but that of triplons may be tuned and kept fixed, which makes possible the BEC of the latter.

The paper is organized as follows. In sections 2 and 3, we outline the YG and HM
approaches valid only for T 6 Tc and extend it for the triplon system. The shift of Tc due to
disorder and the normal phase properties will be discussed in section 4. Our numerical results
will be presented in section 5. Conclusions will summarize the results of this work.

2. The Yukalov–Graham approximation for disordered triplons

In the following we reformulate the Yukalov–Graham approximation to the triplon system
with arbitrary disorder. The Hamiltonian operator of triplons with contact interaction and
implemented disorder potential V (r) is given by

H =

∫
d3r

[
ψ†(r)

(
K̂ −µ+ V (r)

)
ψ(r)+

U

2

(
ψ†(r)ψ(r)

)2
]
, (1)

where ψ(r) is the bosonic field operator, U is the interparticle interaction strength and K̂ is
the kinetic energy operator which defines the bare triplon dispersion εk. Since the triplon BEC
occurs in solids, we perform integration over the unit cell of the crystal with the corresponding
momenta defined in the first Brillouin zone. Below we assume that the bare spectrum remains
coherent in the presence of disorder and consider it as a simple isotropic one: εk = k2/2m, where
m is the triplon effective mass. The distribution of random fields is assumed to be zero-centered,
〈V (r)〉 = 0, and the correlation function R(r − r′)= 〈V (r)V (r′)〉. Here and below we adopt the
units kB ≡ 1, h̄ ≡ 1 and V ≡ 1 if not stated otherwise for the unit cell volume.
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To describe a Bose condensed system where the global gauge symmetry is broken, one
employs the Bogoliubov shift:

ψ(r)=

√
ρ0(r)+ψ1(r), (2)

where the condensate density ρ0(r) is constant for the homogeneous system, ρ0(r)≡ ρ0. Since
by the definition the average of ψ†(r)ψ(r) is the total number of particles:

N =

∫
V

d3r〈ψ†(r)ψ(r)〉 (3)

with the density of triplons per unit cell ρ = N/V , from the normalization condition

ρ = ρ0 + ρ1 (4)

one immediately obtains

ρ1 =
1

V

∫
V

d3r〈ψ
†
1 (r)ψ1(r)〉. (5)

Therefore the field operator ψ1(r) determines the density of uncondensed particles.
The YG approximation is formulated in representative ensemble formalism, which

includes two Lagrange multipliers, µ0 and µ1, defined as

N0 = −
∂�

∂µ0
, N1 = −

∂�

∂µ1
, (6)

where � is the grand thermodynamic potential. It was shown that disorder would not
change the explicit expressions for chemical potentials, obtained earlier [23] in the
Hartree–Fock–Bogoliubov (HFB) approximation without disorder,

µ0 = U (ρ + ρ1 + σ), µ1 = U (ρ + ρ1 − σ), (7)

where σ =
1
V

∫
V d3r〈ψ1(r)ψ1(r)〉 is the anomalous density. The total system chemical potential

µ, related to the total number of particles as N = −∂�/∂µ, is determined by

µρ = µ1ρ1 +µ0ρ0. (8)

Clearly, when the gauge symmetry is not broken, i.e. ρ0 = 0, σ = 0, ρ1 = ρ, both µ0 and µ1

coincide giving µ= µ1 = 2Uρ.
In contrast to the homogeneous atomic gases considered in [10, 11], where ρ is fixed and

µ(ρ) should be calculated as an output parameter, in the triplon gas the chemical potential
is fixed by the external magnetic field, while the density ρ = ρ(µ) should be calculated self-
consistently. In fact, in a system of triplons µ characterizes an additional direct contribution to
the triplon energy due to the external field H and can be written as

µ= gµB H −1st, (9)

which can be interpreted as a chemical potential of the Sz = −1 triplons.
The magnetization is proportional to the triplon density

M = gµBρ (10)

with ρ defined by (8) as

ρ =
1

µ
(µ1ρ1 +µ0ρ0) , (11)

where µ0 and µ1 are given in (7) and the densities ρ0, ρ1 must be calculated self-consistently.
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It is well known [24] that the disorder field leads to the formation of a glassy fraction with
the density ρG. In this approximation each of ρ1 and σ are presented as

ρ1 = ρN + ρG; σ = σN + ρG, (12)

where ρN and σN are the normal and anomalous densities without disorder. In the YG method,
based on HFB approximation, the following explicit relations can be obtained [18]:

ρN =
(1m)3/2

3π2
+
∫

d3k

(2π)3
fB(Ek)

εk +1

Ek
, (13)

σN =
(1m)3/2

π2
−1

∫
d3k

(2π)3
fB(Ek)

1

Ek
, (14)

with the Bose distribution of Bogoliubov excitations fB(Ek)= 1/(eEk/T
− 1) having the

dispersion Ek

Ek =
√
εk

√
εk + 21. (15)

For small momentum k the dispersion is linear, Ek = ck, and the speed of the Bogoliubov mode

c =

√
1

√
m
. (16)

The self-energy 1 is determined formally by the same equation as in the case when the
disorder is neglected,

1= U (ρ0 + σ)= U (ρ− ρN + σN). (17)

The contribution from the disorder potential is hidden in the density of the glassy fraction

ρG =
1

V

∫
V

d3r〈〈ψ1(r)ψ1(r)〉〉, (18)

where the double angle brackets mean stochastic average. In general, the calculation of ρG is
rather complicated, however, for the δ-correlated disorder, i.e. for the white noise,

〈〈V (r)V (r′)〉〉 = Rδ(r − r′), (19)

and equation (18) is simplified as [10]

ρG =
R0(ρ− ρN)

R0 + 7(1 − R0)3/7
. (20)

The density of the condensed fraction can be found by inserting (12) and (20) into the
normalization condition (4). The result is

ρ0 =
7(1 − R0)

3/7(ρ− ρN)

R0 + 7(1 − R0)3/7
. (21)

In equations (20) and (21), we introduced the dimensionless parameter R0 as

R0 ≡
7Rm2

4π
√

m1
. (22)
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One can see from equations (20) and (21) that the glassy fraction is proportional to the
condensed one,

ρG =
ρ0 R0

7(1 − R0)3/7
. (23)

The system of equations (7), (8), (13)–(19) is the basis of the YG approximation.
An interesting quantity, crucial for determining the BG phase, is the superfluid density, ρs.

In general, it is defined as a partial density appearing as a response to a velocity boost

ρs =
1

3mV
lim
v→0

∂

∂v
〈P̂v〉, (24)

where P̂v is the total momentum of the system, dependent on the macroscopic velocity v.
Referring the reader to original papers [10, 11] we state below an analytical expression obtained
for ρs in the case of the white noise potential (19)

ρs = ρ−
4ρG

3
−

2QN

3T
, (25)

QN =
1

8m

∫
k2d3k

(2π)3 sinh2(Ek/2T )
. (26)

Note that the YG approach is valid for arbitrary strength of the interaction potential U , and
for arbitrary strong disorder. For weak interactions it leads to the pioneering HM approach [11],
which will be extended to ‘dirty triplons’ in the next section.

3. The Huang–Meng approximation

For completeness, we present here the results for the HM approach, based on the so called
Hartree–Fock–Popov (HFP) approximation which has been widely applied in the literature to
describe the BEC of triplons [17, 19]. The basic equations of this approach can be obtained
by neglecting the anomalous density σ , which leads naturally to the single chemical potential
µ= µ0 = µ1. Namely, one finds from (7), (8) and (17)

1= Uρ0, µ= U (ρ + ρ1). (27)

From these equations and (12) one obtains the following main equations for the self-energy 1:

1= µ− 2U (ρN + ρG), (28)

where ρN is formally given in (13) and ρ0 is determined by the first equation in (27). The glassy
fraction can be obtained from (20) in the linear approximation by R assuming the weakness of
interparticle interaction [10, 11]

ρG =
m2 R

8π 3/2

(
ρ0

as

)1/2

, (29)

where as = Um/4π is the s-wave scattering length. Inserting (29) into (28) we can rewrite the
former as

1= µ− 2UρN −
m2 R

√
1

2π
√

m
. (30)
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To evaluate the densities one has to solve the nonlinear algebraic equation (30), where ρN is
given formally by (13), with respect to 1. Next, by inserting the result into (27) and (29) one
obtains the density of condensed triplons ρ0 and the glassy fraction ρG, respectively. The total
density can be evaluated then by the normalization condition ρ = ρ0 + ρN + ρG. Equations (25)
and (26) for the superfluid density are formally the same in both approximations.

4. The shift of the critical temperature due to disorder and the T > Tc regime

It is well known that the critical temperature of BEC for an ideal gas is given by:

T 0
c =

2π

m

(
ρc

ζ(3/2)

)2/3

, (31)

where ρc is the total density of triplons near the critical temperature of BEC for a clean system,

ρc = µ/2U, (32)

with ζ(x) being the Riemann function. Equation (32) directly follows, from equations (7), (8)
or (28) by setting ρN = ρ and ρ0 = ρG = 0.

Clearly, any type of interaction is expected to modify Tc. In general, these modifications
are related to the interparticle interactions as well as to the disorder potential. Both approaches
considered here give a zero shift due to the boson–boson repulsion. However the shift due to the
δ-correlated disorder (19), 1Tc = Tc − T 0

c , is given as [10, 25]

1Tc

T 0
c

= −
2ν

9π
, (33)

where the dimensionless disorder parameter ν

ν ≡
1

ρ
1/3
c L loc

, (34)

is introduced with the localization length

L loc =
4π

7m2 R
. (35)

For practical calculations we rewrite Tc in equation (33), which is in good agreement with
perturbative estimates [2] as well as with Monte Carlo simulations [26], as an explicit function
of effective mass m, the interaction strength U , critical magnetic field Hc, disorder parameter ν
and external field H as follows:

Tc =
9π − 2ν

9m

(√
2gµB(H − Hc)

Uζ(3/2)

)2/3

. (36)

Now we proceed to consider the triplon density in the normal state in the T − Tc �1Tc

temperature range. The dirty bosons in the normal phase where the gauge symmetry is not
broken are as yet poorly studied. For R = 0 with ρ0 = ρG = σ = 0 the triplon gas behaves like
an ‘ideal gas’ with an effective chemical potential, µeff, and the density [27]

ρ(T > Tc)=

∫
d3k

(2π)3
1

exp ((εk −µeff)/T )− 1
. (37)
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Figure 1. The total triplon density as a function of temperature in the YG
approximation for two values of ν. Here the following set of parameters m =

0.0204 K−1, 1st = 7.3 K, U = 313 K and g = 2.06 [17] valid for TlCuCl3 is
used.

Although, µeff is not accurately known it depends in general on ρ, as well as on R. For the pure
case MFA [27] gives µeff(R = 0)= µ− 2Uρ. The contribution from the disorder potential has
neither been studied in the YM nor in the HM approach. Therefore, to make the calculations
self-consistent, we have to use

ρ(T > Tc)=

∫
d3k

(2π)3
1

exp ((εk −µ− 2Uρ)/T )− 1
, (38)

which yields the density ρ as a solution of the nonlinear equation (38).

5. Results and discussions

In the calculations below, the energies are measured in Kelvin, the mass in K−1, the densities are
dimensionless and the Bohr magneton is µB = 0.671 668 K T−1. As to the strength of disorder
potential R, it has units K−2 while the disorder parameter ν, defined in equation (34), is a number
supposed to be less than one, ν < 1. As a material parameter, we use the mean lattice constant
in TlCuCl3 rdd = 0.79 nm [19].

To perform numerical calculations in the YG approximation, assuming that µ, U , m and
R are given parameters, we use the following strategy. (i) By inserting (7), (12), (20) and (21)
into (11) we obtain a quadratic algebraic equation with respect to ρ and solve it analytically.
(ii) By using this ρ(µ, R,1) and (13), (14) in (17) we solve the latter numerically with respect
to1, and (iii) by inserting this1 back into ρ(µ, R,1) we find the magnetization from (10) and
evaluate other densities like ρ0 and ρG from (20) and (21).

In figure 1, we present as an example the total triplon density ρ(T ) for a clean and strongly
disordered (ν = 0.45, see equation (34)) TlCuCl3, obtained in the YG approximation assuming
that the total effect of the doping leads only to the randomness in the triplon subsystem.

The calculation of other quantities using the same assumption shows that the disorder leads
to a decrease in the condensed and superfluid fractions, thereby increasing the glassy one. This
tendency is quite natural, since the localization effects prevent particles from going into BEC.
However, the increase in ρG is so weak that along with ρ0 the total number of triplons ρ is
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Figure 2. The experimental low temperature magnetization in units of Bohr
magneton per Cu ion of Tl1−xKxCuCl3 for various x in H = 7 T magnetic field
obtained in [14].

also decreased with increasing strength of disorder potential R. Bearing in mind that ρ is
proportional to the magnetization M assuming ν to be approximately proportional to x and
comparing figure 1 with the experimental data illustrated in figure 2, one may conclude that the
agreement between the theory and the experiment is unsatisfactory since the main features of
the experimental results are not reproduced there. As seen in figure 2 the disorder leads to an
increase in the magnetization and, hence, in the total triplon density. This is accompanied by
the decrease in the transition temperature. We therefore conclude that while the triplon gas can
be considered similarly to atomic gases for which the considered MFAs were developed, some
additional specific material-related properties of the dirty boson problem in quantum magnets
must be taken into account.

First, we note that the singlet–triplet excitation gap 1st, proportional to the critical field,
Hc, decreases under high pressure. This was experimentally observed in [28] for the pure spin
system TlCuCl3. On the other hand it can be argued that the doping acts as a chemical pressure,
which decreases Hc. In fact, since the ionic radius of K+ is smaller than that of Tl+, a partial
substitution of Tl+ ions with K+ ions produces not only the exchange randomness, but also
a compression of the crystal lattice. Thus the increase of the doping parameter, x , leads to a
decrease in Hc, which has indeed been observed experimentally [14, 29, 30]. Secondly, the
disorder may increase the triplon effective mass thereby decreasing the critical temperature
Tc even when the gap decreases (similar effects were observed for helium in porous media
[31, 32]). Note that this effect manifests itself in different ways. For example, for the mixed
compound IPACu(ClxBr1−x )3 the critical field, Hc remains almost unchanged with varying x
and then, abruptly becomes zero near the Cl-rich phase [33]. In another triplon–BEC compound,
Ni(Cl1−xBrx )2-4SC(NH2)2, it decreases by a factor of two when x changes from 0 to 0.08 [30]
although the physics of this decrease can be different from that in Tl1−xKxCuCl3 due to the fact
that Br atomic radius is larger than the atomic radius of Cl. These effects of renormalization of
the triplon spectrum by disorder can be considered similarly to the virtual crystal approximation
in the simulations of disorder in solids, where the disorder is assumed to lead to a uniform
change in the system parameters. The effects of disorder such as the appearance of the glassy
phase with the density ρG and related phenomena manifest themselves in addition to these
uniform changes.
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Table 1. Optimized values of the input parameters of the model: the critical field,
Hc (taken from [14]), the disorder parameter, ν and the effective mass m for
various dopings, x . The critical density, ρc, the healing length, λ= 1/

√
2mµ,

the interparticle distance, d = 1/ρ1/3
c , and the localization length, L loc = d/ν,

are estimated at H = 7 T. It is assumed that the doping effect does not modify
the Landé factor g and U .

x ν Hc (T) m (K−1) 1st (K) ρc λ (nm) d (nm) L loc (nm)

0 0 5.3 0.020 7.3 0.0038 2.55 5.08 ∞

0.05 0.16 4.8 0.024 6.6 0.0049 2.04 4.64 28.4
0.08 0.25 4.4 0.029 6.1 0.0059 1.71 4.38 17.7
0.16 0.48 4.1 0.039 5.6 0.0065 1.40 4.23 8.86
0.20 0.59 3.9 0.044 5.4 0.0068 1.28 4.16 7.09

The phase diagram of Tl1−xKxCuCl3 in the (H, T )-plane was experimentally determined
in [14, 29] for various dopings x and the critical field Hc was also estimated by extrapolation
to zero temperature. In the present work the Tc(H) dependence is given by equation (36).
We made an attempt to least-square fit our parameters m and ν by using equation (36) to
describe the experimental phase diagram. For simplicity we assume that interparticle interaction
is not changed by doping, i.e. U = U (R = 0)= 313 K [17]. The parameters obtained by this
optimization are presented in table 1.

Having fixed the input parameters for certain values of x , we are now in the position of
recalculating the densities as well as the magnetization to compare them with the experiment.
Figure 3 shows that the doping decreases ρ0 and ρs, and increases ρG as expected due to the
introduced disorder. Due to change of Hc with x , the total density of triplons and hence, the
magnetization, now increases with increasing x in accordance with the experiment. One may
conclude that the YG approach may well describe the effect of disorder on the magnetization,
with the additional assumption of an x dependence of the effective mass and the critical field.

One of the main characteristics of Bose-condensed systems is the speed of the Bogoliubov
mode c, defined here by equation (16), which characterizes the propagation of collective
excitations in the condensate. It is interesting to mention that the magnitude of c is large, being
only an order of magnitude less than the speed of sound in the crystal. This is due to very small
triplon mass in TlCuCl3. Clearly, disorder modifies the small-momentum excitation spectrum of
the BEC. Estimates of such modification, 1c = c − c0, where c0 is the speed of the Bogoliubov
mode for the pure system, that exist in the literature are controversial. For example, perturbative
[1] and hydrodynamic [3] approaches give 1c > 0, while 1c < 0 was predicted in [4, 5]. In
figure 4, we present the corresponding speed for various doping parameters. It can be seen from
comparison of figures 4(a) and (b) that both MFA approximations considered here show the
decrease in c with increasing disorder strength due to the localization effects. However, the
effect of disorder is small leading to a less than 10% decrease in the speed of the Bogoliubov
mode.

However, when the spectrum modification by disorder is also taken into account by a
renormalization of the triplon mass and the gap, as close to the real situation, the dispersion
of the sound-like mode in fixed magnetic field slightly increases with increasing disorder,
reaches a maximum and then starts to decrease (see figure 4(b)). This behavior is caused by
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Figure 3. The condensed (a), glassy (b) and superfluid fractions (c) as functions
of temperature in the YG approximation for various x marked near the plots
with the input parameters from table 1. The total density of triplons is shown in
figure 3(d).

the interplay between renormalization of the system parameters and localization effects. The
former tends to increase c, e.g. by increasing µ, and therefore increasing the density, while
the latter tends to decrease c, e.g. by decreasing the condensed fraction. Note that an increase
in c with increasing density was experimentally observed by Andrews et al [34] for the BEC of
sodium atoms. This interplay is illustrated in figure 4(c) for ρ0 and ρs. It can be seen that uniform
spectrum renormalization first leads to an antidepletion effect, increasing these quantities, while
the localization effects impair the condensation and superfluidity.

We now consider the question of the existence of a pure BG phase at T = 0, which, strictly
speaking, should fulfil the following criteria [10, 24, 35]: (i) gapless in the excitation spectrum,
(ii) insulating behavior, i.e. the superfluid fraction, ρs = 0, (iii) finite compressibility and
(iv) finite density of states.

In 1970, Tachiki and Yamada [36] showed that the Heisenberg-like Hamiltonian of
s = 1/2 dimers can be rewritten as an effective bosonic Hamiltonian. Recently, Roscilde and
Haas [37] generalized this bosonization procedure taking into account disorder and derived
a Bose–Hubbard-like Hamiltonian usually applied to the study of ‘dirty bosons’ in optical
lattices. Applying Fisher’s ideas [24] we may expect the formation of a pure BG phase for
doped magnets such as Tl1−xKxCuCl3. Although Monte Carlo calculations [22, 37] confirmed
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Figure 4. (a) The speed of the sound-like condensate mode at T = 2 K and
H = 6 T as a function of doping parameter x , taking into account solely
renormalization of the system parameters in table 1 in the YG (solid line) and
the HM (dashed line) approaches. (b) The same as in figure 4(a), now with
effects of disorder taken into account. (c) The superfluid and condensed fractions
(as marked near the plots) in the YG (solid lines) and the HM (dashed lines)
approximations with the renormalized bare spectrum parameters.

its existence the experimental confirmation is still a matter of debate [20, 38]. We underline
here that these BG phases are localized out of the BEC phase, i.e. for H < Hc. However, in the
present work we have been mainly concentrating on the region with H > Hc where the gapless
phase can be realized only within the BEC phase. For this case the definition of a BG phase
may be simplified as a phase with ρ0 6= 0 and ρs = 0 since the spectrum of the BEC is gapless
by itself. In searching for such a phase we studied ρs and ρ0 at T = 0 for various H > Hc and
x , and found no pure BG phase with ρs = 0 as illustrated in figure 5.

Note also that, as seen from table 1, for moderate values of x considered here, the
localization length, i.e the mean free path [39], is larger than the interparticle distance, L loc > d.
The physics of the possible BG phase for H < Hc fields will be the subject of a separate study.

6. Conclusions

We reformulated and applied two existing MFAs for the ‘dirty boson’ problem to study
the properties of Tl1−xKxCuCl3 quantum magnets. We showed that these approaches can
qualitatively explain the magnetization data if a certain modification of the model parameters
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the HM approximation presented here for comparison. Graphs in plots (a), (c)
were calculated without bare spectrum renormalization, while graphs in plots
(b), (d) take into account spectrum renormalization presented in table 1.

similar to the virtual crystal approximation usually applied to the electron spectrum of alloys is
taken into account.

In fact, random bond effects in mixed dimerized magnetic compounds manifest themselves
in a dual way: (i) by modification of internal parameters and (ii) by localization on random
scatterers. Each of these effects could be studied separately in an appropriate theory, but they
should be taken into account simultaneously for an adequate description of the measured
magnetization data. Although the system becomes considerably disordered, the Bose–Einstein
condensation does not support formation of the pure BG phase. The random bonds lead to
nontrivial behavior of the sound-like mode speed: when H is fixed and x is experimentally
varied, it increases for small x , reaches a maximum value and then decreases. While the
speed of this mode was measured in dilute BEC of sodium atoms a long time ago [34], it
has never been an intense focus of research in dimerized quantum magnets [40]. It could be
systematically studied, for example, by measuring the dispersion relation of the Bogoliubov
mode with inelastic neutron scattering techniques.
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