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Abstract— A robust position control for induction motors using
field oriented control theory is presented. The proposed controller
is based on variable structure control and provides global asymp-
totic position tracking in the presence of unknown parameters
and load torque variations. The proposed design incorporates an
improved method of flux estimation that operates on the principle
of flux and current observer. The proposed observer is basically
an estimator that uses a plant model and a feedback loop with
measured stator voltages and currents. The stability analysis of
the proposed controller under parameter uncertainties and load
disturbances is provided using the Lyapunov stability theory.
Finally simulated results show that the proposed controller
with the proposed observer provides high-performance dynamic
characteristics and that this scheme is robust with respect to
plant parameter variations and external load disturbances

I. INTRODUCTION

Induction motor position control is often used in some
applications of electrical drives like robotic systems, conveyor
belts, etc. In these applications uncertainty and external distur-
bances are present and therefore a robust control system that
maintain the desired control performance under this situations
are frequently required. Some control techniques have been
developed to regulate these induction motors servo drives
in high-performance applications. One of the most popular
technique is the field oriented control method (Vas 1994,
Leonhard 1996, Bose 2001).

The field-oriented technique guarantees the decoupling of
torque and flux control commands of the induction motor,
so that the induction motor can be controlled linearly as a
separated excited D.C. motor. However, the control perfor-
mance of the resulting linear system is still influenced by
uncertainties, which usually are composed of unpredictable
parameter variations, external load disturbances, and unmod-
elled and nonlinear dynamics.

In order to preserve the performance under these uncertain-
ties, the variable structure control strategy using the sliding-
mode has been focussed on many studies and research for
the the induction motor control (Cecati 2000, Benchaib 2000,
Wang 2001, Barambones 2004, Wang 2005). The sliding-
mode control can offer many good properties, such as good
performance against unmodelled dynamics, insensitivity to
parameter variations, external disturbance rejection and fast
dynamic response (Utkin 1993). These advantages of the
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sliding-mode control may be employed in the position and
speed control of an AC servo system.

This paper presents a variable estructure vector control
scheme consisting, on the one hand of a flux estimation
algorithm in order to avoid the flux sensors, and on the other
hand, of a variable structure control algorithm that overcome
the system uncertainties and load disturbances.

The flux estimation algorithm is based on a Luenberger
observer and utilizes the measured stator voltages and currents
values. The observer uses a plant model and incorporates a
feedback loop with the estimation current error in order to
overcome the system model uncertainties.

This manuscript is organized as follows. The flux observer is
introduced in Section 2. Then, the proposed variable structure
robust position control is presented in Section 3. In the Section
4, some simulation results are presented. Finally, concluding
remarks are stated in Section 5.

II. ROTOR FLUX ESTIMATOR

Many schemes (Lehonhard 1996, Bose 2001) based on
simplified motor models have been devised to estimate some
internal variables of the induction motor from measured ter-
minal quantities. This procedure is frequently used in order
to avoid the presence of some sensors in the control scheme.
In order to obtain an accurate dynamic representation of the
motor, it is necessary to base the calculation on the coupled
circuit equations of the motor.

Since the motor voltages and currents are measured in a
stationary frame of reference, it is also convenient to express
the induction motor dynamical equations in this stationary
frame.

The rotor voltage equations in the stationary frame may be
written as (Bose 2001):

Vir = 0= Ryigr + Yar +wy qu ()
Vgr = 0= R, Z.qr + 7/}qr — Wy Vg )
where ® is the flux linkage; v is the voltage; R is the
resistance, ¢ is the current and w,- is the rotor electrical speed.
The subscript 7 denotes the rotor values refereed to the stator,

and the subscripts d and ¢ denote the dg-axis components in
the stationary reference frame.

The stator voltage equations in the stationary frame may be
written as:

Ryigs + tas A3)
= Rsigs + Vgs “)

where the subscript s denotes the stator values.
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On the other hand, the flux linkage expressions can be
written in terms of currents and inductances:

Yar = Lmigs + Lyigr &)
Ygr = Lmigs + Lyrigr (6)
Yis = Lmiar + Lsigs (7N
Ygs = Lmigr + Lsigs (®)

where L,, is the magnetizing inductance, L, is the rotor in-
ductance refereed to the stator and L, is the stator inductance.

Eliminating ¢4, and ¢4, from equations (1) and (2) respec-
tively with the help of equations (5) and (6) yields:

M R L/'Y R/" .

Yar = — frwdr‘ — Wy ¢q7‘ i lds )
. R, Ly R,

"/}qr = qur + wy Yar + I 'qu (10)

Eliminating %4, and i, from equations (7) and (8) with the
help of equations (5) and (6) respectively, we can find:

L, .

wds = andr + Lsoigs (11
Ly, ‘

qu = qur +L3 O—'qu (12)

were 0 = 1 — L2, /(L, L) is the motor leakage coefficient.

now, substituting equations (11) and (12) in equations (3)
and (4) and finding 14, and 1), it is obtained:

. Lr Lr . Lr *
wdr = Tvds - rRs lds — TJLS tds (13)
. L, L, ) L, :
Ygr = 7 Vas — TRS tgs — TULSZQS (14)

Substituting equations (9) apd (10) _in equations (13) and
(14), respectively, and finding i4s and i4,, We get:
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ds — O'L L2 ds oL L% dr
Ly wy 1
O'L L 1/qu —7 Vds (15)
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Equations (15), (16), (9) and (10) constitute the desired state
equations, which can be written in the form:

T =Azxz+ B,

a7
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Considering the stator currents as the system output, the
output equation for this system is:

y=Cux (18)

1 0 0 0
C= { 01 00 }
The states observer, which estimates the system states (stator

current and rotor flux), is defined by means of the following
equation (Luenberger observer):

& = Ai+Bu,+G(y—Ci) (19)
= A+ Buvs+GC(x— %) (20)

where

where the symbol (A) represents the estimated values and G
is the observer gain matrix.

The estimation error of the system states (stator currents
and rotor fluxes) may be obtained subtracting equations (17)
and (20) as:

i—32=Ax—Ai—GC(x— 1) (21)

Then, the following estimation error dynamic is obtained:
i=(A-GO)i (22)
where & = x — 2 is the state estimation error.

Therefore, if the observer gain GG is chosen such that the
characteristic equation of the matrix A — GC has all its roots
with a negative real part, then the estimation error converges
to zero. Consequently the estimated states %ds, iqs, @ds, ﬁqs
converges to the real states i4s, tqs, Yds, Pqs as t tends to
infinity. Hence, the rotor flux may be obtained from the state
observer given by equation (19).



III. VARIABLE STRUCTURE ROBUST POSITION CONTROL

The mechanical equation of an induction motor can be
written as:

Jb,, + Bb,, + Ty, =T. (23)

where J and B are the inertia constant and the viscous friction
coefficient of the induction motor respectively; 77 is the
external load; 6, is the rotor mechanical position, which is
related to the rotor electrical position, 6,., by 6,, = 26, /p
where p is the pole numbers and 7, denotes the generated
torque of an induction motor, defined as (Bose 2001):

3p Lim
4 L,
where 95 and ¢y, are the rotor-flux linkages, with the
subscript ‘e’ denoting that the quantity is refereed to the
synchronously rotating reference frame; ig, and g, are the
stator currents, and p is the pole numbers.

T, = (wgrigs - w;ri(eis) (24)

The relation between the synchronously rotating reference
frame and the stationary reference frame is performed by the
so-called reverse Park’s transformation:

Zq cos(6,) —sin(6,)
a | = | cos(6. —2r/3) —sin(f. — 27/3) [ rd }
Te cos(f +27/3) —sin(f. + 27/3) Ta

(25)
where 6. is the angle position between the d-axis of the
synchronously rotating reference frame and the a-axis of the
stationary reference frame, and it is assumed that the quantities
are balanced.

The estimated angular position of the rotor flux vector (3),)
related to the d-axis of the stationary reference frame may
be calculated by means of the rotor flux components in this
reference frame (1/3dT, ﬁqT) as follows:

ée = arctan djqr
’l/)dr

where 6, is the estimated angular position of the rotor flux
vector.

(26)

Using the field-orientation control principle (Bose 2001),
the current component g, is aligned in the direction of the
rotor flux vector 1., and the current component ig is aligned
in the perpendicular direction to it. At this condition, it is
satisfied that:

Yor =0, g = ¢ 27

Taking into account the results presented in equation (27),
the equation of induction motor torque (24) is simplified to:

3p Lm e e -e
T. = 7L, Yarigs = Krig, (28)
where K is the torque constant, defined as follows:
3p Ly -
Kr= 22"y (29)

4L,

where 15, denotes the command rotor flux.

With the above mentioned proper field orientation, the
dynamics of the rotor flux is given by (Bose 2001):

dwcelr ¢§T _ Lm .e
dt + T T, gy (30)

Then, the mechanical equation (23) becomes:

Om + by + f =bil, (31)
where the parameter are defined as:
B Kr Ty,
=—, b=— == 32
a J ) J ) f J ) ( )

Now, we are going to consider the previous mechanical
equation (31) with uncertainties as follows:

O = —(a+ Da)bm — (f + OF) + (b+ Ab)i,

where the terms Aa, Ab and A f represents the uncertainties
of the terms a, b and f respectively.

(33)

Let us define the position tracking error as follows:
e(t) = Om(t) — 07, ()

where 67, is the rotor position command.

(34)

Taking the second derivative of the previous equation with
respect to time yields:
€(t) = e’m -

0y, = —ae(t) +u(t) +d(t) (33)

where the following terms have been collected in the signal

u(t),

u(t) = big(t) — aby, (1) — f(t) = 6,(2)

and the uncertainty terms have been collected in the signal
d(t),

(36)

d(t) = =Aawy(t) = Af(t) + Abig(t) (37)

Now, we are going to define the sliding variable S(¢) as:

S(t) =é(t)+ ke(t) (38)
where k is a positive constant gain.
Then, the sliding surface is defined as:
S(t)=¢é(t)+ke(t)=0 (39)
The variable structure speed controller is designed as:
u(t) = —(k — a) é(t) — B sgn(S) (40)

where the k is the previously defined gain, (3 is the switching
gain, S is the sliding variable defined in eqn. (38) and sgn(-)
is the sign function.

In order to obtain the speed trajectory tracking, the follow-
ing assumption should be formulated:

(A1) The gain 8 must be chosen so that 3 > d
where d > sup,¢ o+ |d(2)].



Note that this condition only implies that the system uncer-
tainties are bounded magnitudes.

Theorem 1: Consider the induction motor given by equa-
tion (33). Then, if the assumption (A1) are verified, the
control law (40) leads the rotor mechanical position 6,,(t)
so that the position tracking error e(t) = 6,,(t) — 07, (t) tends
to zero as the time tends to infinity.

The proof of this theorem will be carried out using the
Lyapunov stability theory.

Proof : Define the Lyapunov function candidate:

(41)
Its time derivative is calculated as:

S(t)S(t)
é+ké
(—aé+u+d)+ké

(k—a)é+u+d

(k—a)é—(k—a)é— Bsgn(S) + d]

d— Bsgn(S)]

—(B—1d])|S|

0 (42)

V(t) =

S-1
S-1
S-1
S-1
S-1

IAIA

It should be noted that the eqns. (38), (35) and (40), and
the assumption (A1) have been used in the proof.

Using the Lyapunov’s direct method, since V (¢) is clearly
positive-definite, V' (t) is negative definite and V' (t) tends to
infinity as S(t) tends to infinity, then the equilibrium at the
origin S(t) = 0 is globally asymptotically stable. Therefore
S(t) tends to zero as the time ¢ tends to infinity. Moreover, all
trajectories starting off the sliding surface S' = 0 must reach it
in finite time and then they will remain on this surface. This
system’s behavior, once on the sliding surface is usually called
sliding mode (Utkin 1993).

When the sliding mode occurs on the sliding surface (39),
then S(t) = 0, and therefore the dynamic behavior of the
tracking problem (35) is equivalently governed by the follow-
ing equation:

S(t)=0 = é(t)=—ke(t) (43)
Then, like k is a positive constant, the tracking error e(t)

and its derivative é(t) converges to zero exponentially.

It should be noted that, a typical motion under sliding mode
control consists of a reaching phase during which trajectories
starting off the sliding surface S = 0 move toward it and
reach it in finite time, followed by sliding phase during which
the motion will be confined to this surface and the system
tracking error will be represented by the reduced-order model
(43), where the tracking error tends to zero.

Finally, the torque current command, i;,(t), can be obtained
directly substituting eqn. (40) in eqn. (36):

iga(t) = 7 [~(k —a) e — Bsen(S) + by, + 05, + £(1)
(44)
It should be noted that the current command is a bounded
signal because all its components are bounded.

Therefore, the proposed variable structure position control
resolves the speed tracking problem for the induction motor in
presence of some uncertainties in mechanical parameters and
load torque.

IV. SIMULATION RESULTS

In this section we will study the position regulation per-
formance of the proposed sliding-mode field oriented control
versus reference and load torque variations by means of
simulation examples.

The block diagram of the proposed robust position control
scheme is presented in Figure 1. The function of the blocks
that appear in this figure are:

The block ‘VSC Controller’ represents the proposed sliding-
mode controller, and it is implemented by equations (38) and
(44). The block ‘limiter’ limits the current applied to the
motor windings so that it remains within the limit value, being
implemented by a saturation function. The block ‘dg® — abc’
makes the conversion between the synchronously rotating
and stationary reference frames, and it is implemented by
equation (25). The block ‘Current Controller’ consists of a
three hysteresis-band current PWM control, which is basically
an instantaneous feedback current control method of PWM
where the actual current (z4p.) continually tracks the command
current (¢, ) within a hysteresis band. The block ‘PWM
Inverter’ is a six IGBT-diode bridge inverter with 780 V DC
voltage source. The block ‘Field Weakening’ gives the flux
command based on rotor speed, so that the PWM controller
does not saturate. The block ‘5% Calculation’ provides the
current reference 7, from the rotor flux reference through
the equation (30). The block ’Flux Estimator’ represents the
proposed Fux estimator, and it is implemented by the equation
(19). The block ‘. Calculation’ provides the angular position
of the rotor flux vector. Finally, the block ‘IM’ represents the
induction motor.

The induction motor used in this case study is a 50 HP, 460
V, four pole, 60 Hz motor having the following parameters:
R, = 0.087Q, R, = 0.228Q, L, = 35.5mH, L, =
35.5mH, and L,, = 34.7mH.

The system has the following mechanical parameters: J =
1.662 kg.m? and B = 0.1 N.m.s. It is assumed that there is
an uncertainty around 20 % in the system parameters, that will
be overcome by the proposed sliding control.

The following values have been chosen for the state ob-
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Fig. 1. Block diagram of the proposed sliding-mode field oriented control
server: time ¢ = 0.8s when the speed reach the zero value. Then, the
1000 speed is maintained at zero value in spite of the load torque
G = 0 100 change at time ¢ = 1.5.
0 -1 . o
1 0 Figure 4 shows the current of one stator winding. It may be

Finally, the following values have been chosen for the
controller parameters, k£ = 100, 5 = 35.

In this example the motor starts from a standstill state and
we want the rotor position to follow a position command that
starts from zero and finish at 8, = 2.5rad following a soft
reference. The system starts with an initial load torque 717, =
100 N.m, and at time ¢ = 1.5 s, the load torque steps from
T7, =100 N.m to Ty, = 250 N.m.

Figure 2 shows the desired rotor position (dashed line) and
the real rotor position (solid line). As it may be observed,
the rotor position track the desired position in spite of system
uncertainties. Moreover, the position tracking is not affected
by the load torque change at time ¢ = 1.5 s, because when the
sliding surface is reached (sliding mode) the system becomes
insensitive to the boundary external disturbances.

Figure 3 shows rotor speed. As it may be observed, the rotor
speed increases until time ¢ = 0.17s and then decreases until

observed that in the initial state, the current signal presents a
high value because it is necessary a high torque to increment
the rotor speed. In the constant speed region, the motor torque
only has to compensate the friction and the load torque and so,
the current amplitude is smaller. Finally, at time ¢ = 1.5 s the
current increases because the load torque has been increased.

Figure 5 shows the motor torque. As in the case of the
current (fig. 4), the motor torque has a high initial value in
the speed acceleration zone, then the value decreases in the
deceleration zone, and finally increases due to the load torque
increment. In this figure it may be seen that in the motor
torque appears the so-called chattering phenomenon, however
this high frequency changes in the torque will be filtered by
the mechanical system inertia. Nevertheless, the chattering can
be reduced changing the sign function present in the control
law (44) by a saturation function (Barambones 2002).

V. CONCLUSION

In this paper a induction motor position regulation ussing
a sliding mode vector control has been presented. It is also
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proposed a flux estimator that overcomes the flux sensors. The
flux estimation algorithm is based on a Luenberger observer
and employs the measured stator voltages and currents in the
stationary reference frame.

Due to the nature of the sliding mode control this control
scheme is robust under uncertainties caused by parameter error
or by changes in the load torque. The closed loop stability
of the presented design has been proved through Lyapunov
stability theory.

Finally, by means of simulation examples, it has been shown
that the proposed position control scheme performs reasonably
well in practice, and that the speed tracking objective is
achieved under uncertainties in the parameters and under load
torque variations.
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