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Abstract

In everyday economic interactions, it is not clear whether sequential choices are visible

or not to other participants: agents might be deluded about opponents’ capacity to acquire,

interpret or keep track of data, or might simply unexpectedly forget what they previously

observed (but not chose). Following this idea, this paper drops the assumption that the

information structure of extensive-form games is commonly known; that is, it introduces

uncertainty into players’ capacity to observe each others’ past choices. Using this approach,

our main result provides the following epistemic characterisation: if players (i) are rational,

(ii) have strong belief in both opponents’ rationality and opponents’ capacity to observe

others’ choices, and (iii) have common belief in both opponents’ future rationality and op-

ponents’ future capacity to observe others’ choices, then the backward induction outcome

obtains. Consequently, we do not require perfect information, and players observing each

others’ choices is often irrelevant from a strategic point of view. The analysis extends –from

generic games with perfect information to games with not necessarily perfect information–

the work by Battigalli and Siniscalchi (2002) and Perea (2014), who provide different suffi-

cient epistemic conditions for the backward induction outcome.

Keywords: Perfect Information, Incomplete Information, Backward Induction, Ratio-

nality, Strong Belief, Common Belief. JEL Classification: C72, D82, D83.

1 Introduction

1.1 Uncertainty on the information structure: an example

Assumptions regarding common knowledge of the information structure of an economic model

can significantly impact predictions. Take for instance the sequential Battle of Sexes with perfect
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information represented in Figure 1. Two players, Alexei Ivanovich (A) and Polina Alexandrovna

(P ) choose first and second respectively between actions left and right, and obtain utility de-

pending on each history of actions according to the numbers depicted at the bottom of the tree

in the picture. By information structure we refer to whether Polina chooses having observed

Alexei’s previous choice or not, which she does in this case of perfect information. The game

is played just once, so punishment and reinforcement issues are assumed to be negligible. This

description is common knowledge among the players, and we additionally assume that both of

them are rational, and that Alexei believes Polina to be rational. It then seems reasonable to

predict that the players’ choices will lead to the unique backward induction outcome: (2, 1); since

Polina is rational and observes Alexei’s choice, she will mimic it regardless of whether it is left

or right. Alexei believes all the above, so since he himself is rational too, he will move left.

2,1 0,0 0,0 1,2

P

l r

P

l r

A
l r

Figure 1: A game with perfect information.

Turn now to a commonly known imperfect in-

formation situation (Figure 2): consider the alter-

native information structure according to which,

when her turn arrives, Polina will not have ob-

served Alexei’s previous move. Thus, Polina is un-

certain of the outcome her choice will induce. Even

if we additionally assume that Polina believes both

that Alexei is rational and that Alexei believes she

is rational, it is easy to see that the previous argu-

ment justifying outcome (2, 1) finds no defence this

time; and that indeed, depending on reciprocal be-

liefs concerning opponents’ choices, every outcome

is consistent with rationality and with any assumption about iterated mutual beliefs in rational-

ity.

2,1 0,0 0,0 1,2

P

l r

P

l r

A
l r

Figure 2: A game w/o perfect information.

Consider finally an imperfect information case

such as the one represented in Figure 2, with the

following variation: Alexei believes himself to be

in a situation like the one in Figure 1; and Polina

believes that Alexei believes himself to be in that

situation of perfect information. That is, the in-

formation structure of the game is not commonly

known this time and, actually, Alexei happens to be

deluded about it. When it is her turn to choose, de-

spite Polina not observing Alexei’s previous move,

she can infer that since Alexei believes himself to

be in a situation with perfect information, he also

believes left to be followed by left and right by right, and will therefore choose left. Hence,

despite not observing Alexei’s previous move, Polina believes that Alexei has chosen left and

consequently she chooses left.
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As the example above illustrates, assumptions regarding common knowledge of the informa-

tion structure of an economic model can significantly impact predictions. The beliefs players hold

about the information structure prove to be more relevant in terms of strategic behaviour than

players’ capacity to observe each others’ past choices: that is, more relevant than the factual

information structure itself. Consequently, establishing the distinction and exploring the differ-

ences concerning strategic implications between notions such as perfect information, incomplete

imperfect information or common knowledge of perfect information, which not only refer to the

way information ows but also to players’ epistemic state concerning this ow, becomes interesting

from a game theoretical perspective. In particular, as the comparison between the first and the

last situations in the example above suggests, this language allows for extending the class of

games for which the backward induction outcome can be considered as a reasonable prediction

to the more general setting of contexts with not necessarily perfect information.

1.2 Epistemic sufficiency for backward induction: abandoning perfect

information

The literature related to the study of the epistemic assumptions leading to backward induction in

extensive-form games with perfect information is prolific and has been abundant in recent years.

Despite the apparent simplicity and intuitive appeal of backward induction, and similarly as

happens with strategic-form games and Nash equilibria, some discomfort concerning the not-so-

explicit epistemic aspects of the solution concept leads to an attempt to deepen our understanding

of backward induction. The source of such discomfort lies in this case in the fact that backward

induction reasoning seems unable to capture a crucial aspect of sequential playing: the capacity

to update beliefs, and in particular, to question the plausibility of a player who showed erratic

behaviour in the past actually behaving rationally in the future. Focusing on this apparent

weakness of backward induction reasoning, Reny (1992) presents an example of a finite extensive-

form game whose unique extensive-form rationalisable (EFR, Pearce, 1984) profile does not

coincide with its backward induction profile, and Ben Porath (1997) shows that in Rosenthal’s

centipede the backward induction outcome is not the only one consistent with initial belief in

rationality. Still, in Reny’s example, the outcome induced by both the EFR profile and the

backward induction profile is the same, and Battigalli (1997) generalises this coincidence to the

point of proving that for generic finite extensive-form games EFR profiles always lead to the

unique backward induction outcome.1

A series of results follow the identity above: Battigalli and Siniscalchi (2002) introduce the

notion of strong belief to represent the idea of forward induction reasoning, and prove that

rationality and common strong belief in rationality induce EFR profiles when the type structure

is complete (i.e., when it is able to represent any possible belief a player might hold), and

hence, lead to the backward induction outcome. Battigalli and Friedenberg (2012) define a

new solution concept, extensive-form best reply sets (EFBRSs), and prove that rationality and

common strong belief in rationality induce profiles included in these sets regardless of whether

1While Battigalli’s original proof relies on rather intricate mathematics, Heifetz and Perea (2013) present a
more intuitive proof that clarifies the logic relating to both outcomes.
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the type structure is complete or not. However, they present examples where the outcomes

induced by profiles in EFBRSs are not the backward induction outcome, so sufficient epistemic

conditions for the backward induction outcome for arbitrary (not necessarily complete) type

structures remain unclear. Penta (2011) and Perea (2014), exploit the notion of future belief

in opponents’ rationality and present such sufficient conditions for extensive-form games with

perfect information and arbitrary type structures by proving that rationality and common belief

in opponents’ future rationality induces the backward induction outcome.2

A different approach for epistemic analysis in games with perfect information is adopted

by Aumann (1995, 1998), who makes use of static partition models that, unlike the models

explained above, do not include explicit belief revision. Aumann (1995) proves that ex ante

common knowledge of rationality induces the backward induction profile. Samet (2013) modifies

this result substituting common knowledge by common belief, and defining rationality in terms of

beliefs rather than in terms of knowledge, as done by Aumann, in terms of knowledge.3 Bonanno

(2013) also proves that common belief in rationality induces the backward inductive outcome

using belief frames that allow for belief revision and by assuming something analogous to belief

in opponents’ future rationality. Previously, Samet (1996) approached the problem with very

rich models that deal with knowledge rather than beliefs, but allow the modelling of hypothetical

counterfactual information updates. Arieli and Aumann (2013) provide a novel and interesting

an epistemic characterisation of backward induction for games of perfect information similar to

that by Battigalli and Siniscalchi (2002), that, unlike the latter work and all the literature in

epistemic game theory referenced so far, is performed via a syntatic approach rather than the

standard semantic one.4

The present paper drops the assumptions that the game has perfect information and that this

feature is commonly known, and extends the analysis regarding sufficient epistemic assumptions

for the backward induction outcome to a broader class of extensive-form games. In order to

do so, we introduce uncertainty in what we call the information structure of the extensive-form

game. By information structure we refer to how each player’s set of histories (i.e. the histories

in which it is the player’s turn to make a choice) is partitioned into information sets. The

information structure can be regarded as the players’ capacity to observe others’ past choices, so

the uncertainty we introduce can be read as a lack of certainty about whether each player is able

to observe or remember her opponents’ past choices prior to her turn at making one. Following

this approach we prove in Theorem 1 that for arbitrary type structures, under the assumptions

2Both Penta and Perea’s work is actually more general: Perea (resp. Penta) proves that in generic extensive-
form games with not necessarily perfect information, rationality and common belief in opponents’ future rationality
(resp. and common belief in opponents’ future rationality and in Bayesian updating) induce what he defines as
strategy profiles surviving the backward dominance procedure (resp. the backwards rationalisability procedure),
which in games with perfect information coincide exactly with the backward induction profile. In addition, Penta
proves that in his characterisation result, the assumptions above can be substituted by common certainty of full
rationality and belief persistence. A non probabilistic version of future belief in opponents’ rationality can be
found in Baltag et al. (2009).

3The present paper is a variation of the original one by Zuazo-Garin (2013) that applies the idea of uncertainty
on information structures and how it epistemically relates to backward induction by adopting the framework
introduced by Samet (2013).

4For further references on epistemic game theory focused on extensive-form games, see Perea (2007) or Section
7 in Dekel and Siniscalchi (2013).
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that: (i) players are rational, (ii) players strongly believe that opponents were rational and

had perfect information, and (iii) there is common belief in opponents’ future rationality and

opponents’ future perfect information, the backward induction outcome obtains. Note that we

do not assume perfect information but, rather, that even when it is the case that a player has

not observed any of her opponents’ past choices, she believes that others have, and will do so in

the future. Together with assumptions about rationality, these beliefs help the player infer what

happened in the past, establish beliefs about future behaviour and, consequently, also choose the

action that happens to be strictly the best for her. In Theorem 2 we prove that for any extensive-

form game and any given information structure, it is possible to construct a type structure such

that there is some state at which our assumptions are satisfied and are indeed compatible with

the given information structure.

Previous literature on implications of incomplete information in extensive-form games include

Battigalli and Siniscalchi (2007) and Penta (2011, 2012) among others. However, these works

focus on payoff uncertainty, meaning that a history of actions itself does not determine payoffs

unless some other certain payoff-relevant parameter is also considered so that issues regarding

beliefs on the information structure of the game are not covered.

The rest of the paper is structured as follows: Section 2 describes economic scenarios in which

uncertainty about the information structure might be present and heavily influence expected

behaviour. Section 3 and 4 detail our formalisations of extensive-form games and information

structures, and the epistemic framework and notions needed to perform the analysis, respectively.

Section 5 presents our main results in Theorem 1 and Theorem 2 and their respective proofs,

and we finish with some remarks and discussion in Section 6.

2 Brief discussion on the economic relevance of uncertainty on

the information structure

The capacity of reciprocal pre-choice observation by agents involved in some interaction context

is often obvious. It might be obvious that there is perfect information, as in the case of a

potential robber at a clothing store who knows that the anti-theft device reveals to the store

owner whether he decided to steal or not. But it might alternatively be obvious that there is no

perfect information: this is the case in a used car emporium where the seller offers the buyer a

car whose quality the latter cannot observe. This distinction leads to the canonical classification

of extensive-form games in those with perfect information and those with imperfect information,

in which it is common knowledge that there is perfect information and that there is not perfect

information, respectively.

Now, it turns out that this apparent dichotomy between games with perfect information and

games with imperfect information is a non-exhaustive classification, and we can think of many

situations in which it is not obvious that there is perfect information, or it is not obvious that

there is no perfect information: in the above example of a game with perfect information, the

anti-theft device could just be a cheap fake put there by the owner to fool potential robbers,
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while in the example of a game with imperfect information, it might be the case that the buyer

is an expert whose just needs a brief inspection of the car offered to determine whether it is a

good car or not.

We see then that the expected flow of information is sensitive to many aspects surrounding

the context of interaction, and it is not clear why agents should not just agree, but commonly

agree in their appreciation of these aspects and their influence. It is not the aim of this paper

to propose some heuristic mechanism that endogenises the rising of different beliefs about the

information structure but rather to point out the possibility of the latter being uncertain, to

highlight the relevance of such uncertainty, and to provide conditions in which the assumption

of perfect information being commonly known can be dropped with no significant strategic

consequences. The present section deals with the first two objectives by illustrating the situation

in Example 1. Section 3 formalises what exactly we mean by a player’s capacity to observe

past actions, Section 4 considers beliefs of players in an uncertain information structure such as

exogenous parameters, and Section 5 deals with the final objective by establishing under which

kind of beliefs about the information structure a player chooses in a case analogous to that of

perfect information.

Example 1 (Deluded reputation and private information disclosure). A classic approach to the

impact of reputation in agents’ behaviour by Milgom and Roberts (1982) and Kreps and Wilson

(1982) and recently revisited by Ely and Valimaki (2003) and Ely et al. (2008) considers the

establishment of reputation as a strategic device an agent might rationally decide to commit

to in order to condition potential opponents’ beliefs regarding her actions, in case she expects

to obtain profit this way in the long run. This is not the only way reputation, which can be

interpreted in a broad sense, can be crucial in determining agents’ behaviour though.

2,2 1,1 3,0 0,1

B

a r

B

a r

S
l g

Figure 3: A situation with private informa-

tion.

Consider again a used car emporium where the

seller (S) offers the buyer (B) a car, the quality of

which is private information of her own, for some

fixed price.5 More precisely, we assume a context

as the one depicted in Figure 3: the seller can offer

a good car or a lemon (g and l, respectively), and

after a brief inspection, the buyer can accept the

offer (a), pay the fixed price and get the car offered,

or reject it (r). The true information structure, ob-

viously known to the buyer, corresponds to that of

imperfect information: she is unable to determine

whether the car the is examining is a good one or

a lemon. The preference structure of the game is

represented by the numbers at the bottom of the figure: the seller’s preferred option is having

the lemon accepted, and she prefers selling something than seeing the buyer leave empty-hand,

while the buyer’s preferred option is getting the good car and the worst preferred one is getting

5Which might just be the expected price in a “Lemon Market” (Akerlof, 1970).
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the lemon.

As we saw in paragraph 1.1, assumptions on beliefs about the information structure, and

not just the specification of a belief structure is required in order to make common belief in

rationality concluding. In this situation this is achieved via a reputation of expertise, where

reputation serves as an exogenous mechanism that induces certain beliefs about the information

structure, and by expertise we refer to the ability to discern the quality of a car with a brief

examination. That is, in this context, reputation of expertise is actually referring to which the

information structure of the game is:6

Assumption 1. There is commonly (and delusively) believed reputation of expertise in auto

mechanics.

Note the implications: the seller believes the buyer to be an expert, i.e., to be able to

distinguish a good car from a lemon; since she additionally believes her customer to be rational,

the conjectures that a good car will be accepted while a lemon will be rejected, and being herself

rational too, concludes that offering a good car is the best option for her. Since both the expertise

reputation and the seller’s rationality are commonly believed, the buyer is able to induce her

opponent’s reasoning, and infer that it is the good car the one she is being offered. Thus, since

she is rational too, she decides to accept the offer. This way, reputation leads to some kind

of private information disclosure that moreover, yields the backward induction outcome of the

game. Note also the sharp contrast with situations corresponding to (i) the absence of any

reputation regarding expertise: if the seller does not take the buyer for an expert, she might try

to take advance of her private information and sell a lemon, or (ii) the reputation of expertise

not being believed by the buyer: despite being offered a good car, the buyer is unable to infer

the quality of the car.

The example above illustrates how reputation can induce uncertainty on the information

structure. But this uncertainty can be a consequence of a variety of factors: an agent might not

be certain of how a deliberate action chosen in order to serve as a signal will be interpreted by

subsequent agents (think of education in Spence (1973), for instance), the presence of different

element such as a camera or a (possibly one-way) mirror might induce a feeling of surveillance

(i.e., of perfect information), etc.. . . And indeed, as both the example above and the situations

described in paragraph 1.1 suggest, this uncertainty can significantly impact expected rational

behaviour.

3 Games with uncertain information structure

We consider extensive-form games with incomplete information regarding the information struc-

ture of the game. In order to do so we formalise two objects: (i) a game tree similar to the

extensive-form games with perfect information in Osborne and Rubinstein (1994, Sect. 6.1),

which is assumed to be common knowledge, and (ii) the set of possible information structures

on the given game tree, which is the part of the description of the game that is uncertain. In the

6And hence, iterated beliefs about the reputation refer to iterated beliefs about the information structure.
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last paragraph we detail the role of strategies in this context, and how they relate to uncertainty

about the information structure and outcomes. So, we have:

3.1 Game trees

A (finite) game tree is a tuple Γ =
〈
I, (Ai)i∈I ,H,Z, (ui)i∈I

〉
where:

• I is a finite set of players.

• For each player i, Ai is a finite set of actions. The set of possible actions7 is denoted

A =
⋃
i∈I Ai, and we refer to a finite concatenation of elements in {∅} ∪A, as a history.

• H and Z are finite and disjoint sets of histories. We assume that the union H ∪ Z is

a rooted and oriented tree with terminal nodes Z. Histories in H and Z are called

partial and terminal respectively. For any player i and partial history h, let Ai (h) =

{ai ∈ Ai |(h, ai) ∈ H ∪ Z } the set of actions available to i at h. We say that player i

is active at h if Ai (h) 6= ∅. We also assume that exactly one player is active at each

history, that a player is never active twice in a row, and that whenever a player is ac-

tive, at least two actions are available to her.8 Additionally, for each player i we define

Hi = {h ∈ H |Ai (h) 6= ∅}, the set of partial stories in which player i is active, and de-

note H−i =
⋃
j 6=iHj . For any pair of histories h and h′, we write h < h′ when h′ fol-

lows h; that is, when there exists some finite concatenation of actions (an)n≤N such that

h′ =
(
h, (an)n≤N

)
.

• For each player i, ui : Z → R is player i’s payoff function. Following Battigalli (1997), we

assume that the game has no relevant ties, that is, that for any player i and any h ∈ Hi,
function ui is injective when restricted to the set of terminal histories that follow h.

3.2 Information sequences

For each player i and subset of her histories vi ⊆ Hi, we say that vi is an information set if

none of its elements follow each other, and exactly the same actions are available at all of them.9

Let Vi be a partition of Hi; we say that Vi is an information partition for player i if its cells

are information sets and it satisfies perfect-recall.10 Note that we can then denote Ai (vi) as the

actions available at information set vi with no ambiguity. An information structure is then a

profile V = (Vi)i∈I of information partitions. For each player i, we denote by Vi the set of player

i’s information partitions. V denotes the set of information structures.

7Not to be confused with the set of action profiles.
8Formally, the requirements are: (i) ∅ ∈ H, (ii) for any (h, a) ∈ H ∪ Z, h ∈ H, (iii) for any h ∈ Z, (h, a) /∈ Z

for any a ∈ A, (iv) for any h ∈ H, i ∈ I and ai ∈ Ai such that (h, ai) ∈ H ∪ Z, it holds that if (h, a) ∈ H ∪ Z
for some a ∈ A, then a ∈ Ai, (v) for any h ∈ H, any i ∈ I, any ai ∈ Ai and a ∈ A such that (h, ai, a) ∈ H,
a /∈ Ai,and (vi) for any h ∈ H, if Ai (h) 6= ∅, then |Ai (h)| ≥ 2.

9That is, for any h, h′ ∈ vi, h ≮ h, and Ai (h) = Ai (h′).
10Perfect recall is satisfied if: (i) for any h, h′ ∈ Hi such that h′ /∈ Vi (h) and (h, ai) < h′ for some ai ∈ Ai, for

any h′′′ ∈ Vi (h′) there is some h′′ ∈ Vi (h) such that (h′′, ai) < h′′′, and (ii) for any h, h′, h′′, h′′′ ∈ Hi such that
h < h′′, h′ < h′′′ and Vi (h) 6= Vi (h′), Vi (h′′) 6= Vi (h′′′).
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We allow for uncertainty about the information structure of the game. Consequently, a

player’s information set does not tell just by itself what information sets the player previously

went through during the game. Therefore, at a certain information set, the information available

to the player is not only the information set itself, but also the previous information sets, if

any, in which she previously made some choice. The concept of information set needs then to

be somehow broadened in order to incorporate not only possible indistinguishability between

histories, but also histories of information sets.

For player i, information partition of hers Vi ∈ Vi and information sets vi, v
′
i ∈ Vi, we write

vi < v′i if there is some action ai ∈ Ai (vi) such that for any h′ ∈ v′i there is some h ∈ vi such

that (h, ai) < h′. We say that information set vi is minimal, if vi ≮ v′i for any v′i ∈ Vi and any

Vi ∈ Vi. Then, we expand the notion of information set the following way:

Definition 1 (Information sequence). Let game tree Γ. An information sequence for player i

is a concatenation of consecutive information sets of some information partition, with a minimal

element; i.e., a sequence (vni )n≤N ⊆ Vi, where Vi ∈ Vi, v1
i is minimal, and vni < vmi for any

n,m ≤ N,n < m. We denote the set of information sequences for player i by Σi, and for

information sequence σi = (vni )n≤N , we denote by vi (σi) = vNi .

For each player i, each h ∈ H−i and each σi ∈ Σi we write h < σi (resp. σi < h) if there

is some h′ ∈ vi (σi) such that h < h′ (resp. h′ < h), and for each j 6= i and each σi ∈ Σi and

σj ∈ Σj , we write σi < σj if there is some h ∈ vi (σi) such that h < σj .

3.3 Strategies and terminal histories

In this context, a strategy is not a description of what action to choose at each history or

information set, as in the standard cases of commonly known perfect or imperfect information

respectively, but rather, of what action to choose after any possible information sequence. That

is, for each player i, a strategy is a list si ∈ Si =
∏
σi∈Σi

Ai (σi), where Ai (σi) = Ai (vi (σi)) for

any σi ∈ Σi. We write S−i =
∏
j 6=i Sj to represent the set of player i’s opponents’ strategies.

Note that a strategy profile itself does not induce any terminal history, but a pair (si, Vi), induces

a strategy in terms of histories sVi given by h 7→ svi(σi), where σi is indeed the unique information

sequence such that σi ⊆ Vi and vi (σi) = Vi (h).11 For profiles s and V we denote sV = (sVi)i∈I .

Then, since strategies in terms of histories do induce conditional terminal histories at each partial

history h ∈ H, so does a pair (s, V ). This is formally described as,

z (sV |h ) =

{
z ∈ Z

∣∣∣∣∣ for any i ∈ I and any h′ ∈ Hi such that

h ≤ h′ and h′ < z,
(
h′, sVi(h′)

)
≤ z

}
,

so that each player’s conditional payoffs are naturally determined by conditional terminal histo-

ries as follows: ui (s, V |h ) = ui (z (sV |h )).

11It is not accurate to speak of strategy in these terms, since a player cannot make her choice contingent on a
history if it is the case that she cannot distinguish this history from a different one. It still serves as a description
of actions chosen at different histories.
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Note that any combination of a strategy profile and an information structure precludes certain

information sets being reached, so it is useful to write the following: let player i and σi ∈ Σi;

then, (i) by (S−i × V) (σi) we denote the set of opponents’ strategies and information structures

such that σi might be reached, and (ii) by Si (σi), the set of player i’s strategies such that σi

may be reached.12 Finally, for any si ∈ Si, we define Σi (si) = {σi ∈ σi |si ∈ S (σi)}, the set

of player i’s information sequences whose terminal information set might be reached when she

plays strategy si.

4 Epistemic framework

The epistemic analysis is carried out in a construction following the work by Ben Porath (1997)

and Battigalli and Siniscalchi (1999, 2002), among others. First we define the general environ-

ment whose central elements are type structures, and then, we formalise the main notions that

complete the epistemic language. So first, players’ beliefs are modelled with type structures. For

the sake of brevity and comprehension, we restrict our attention to these structures and do not

detail their relation with belief hierarchies; still, this issue if briefly addressed in paragraph G of

Section 6. A type structure is defined as follows:

Definition 2 (Type structure). Let game tree Γ. A type structure for Γ is a list T = 〈Ei, bi〉i∈I
where for each player i,

(i) Ei is a metric and compact epistemic type space.

(ii) bi : Ei →
∏
σi∈Σi

∆ (E−i × (S−i × V) (σi)), where E−i =
∏
j 6=iEj, is a continuous condi-

tional belief map.13

We say that T is complete if every bi is surjective. Type structure T induces set of states of

the world Ω = E × S × V, where E =
∏
i∈I Ei. Each element ω ∈ Ω is a description of: (i) the

information structure of the game, (ii) each player’s strategy and (iii) each player’s beliefs about

all possible uncertainties.14 For any state ω we denote v (ω) = ProjVω, and for each player i,

ei (ω) = ProjEiω and si (ω) = ProjSiω.

An event is a set of states W ⊆ Ω. Note that some events and information sequences

are mutually belief-inconsistent : for each player i and information sequence σi, let Wσi =(
ProjE−i×S−i×VW

)
∩ (E−i × (S−i × V) (σi)); then, if Wσi = ∅, player i will always15 assign

12These are respectively described by
{

(s−i, V ) ∈ S−i × V
∣∣σi ⊆ Vi and z

(
(s−i; si)V

)
> σi for some si ∈ Si

}
and

{
si ∈ Si

∣∣σi < z
(
(s−i; si)V

)
for some (s−i, V ) ∈ (S−i × V) (σi)

}
. When necessary, for each vi ∈ Vi ⊆ Vi,

we denote with no ambiguity (S−i × V) (vi) = (S−i × V) (σi) where σi is such that vi (σi) = vi.
13Assuming that each ∆ (E−i × (S−i × V) (σi)) is endowed with the weak∗ topology, and their product, with

the Tychonoff topology.
14Following Perea (2014), we opted for a notationally simpler definition of type structure than usual; to fully

adhere to standard notation, we should have defined T =
〈
I, (C−i, Ei, bi)i∈I

〉
, where for any i ∈ I, C−i =

{E−i × (S−i × V) (σi ) |σi ∈ Σi} and bi : Ei → ∆C−i (E−i × S−i × V), being ∆C−i (E−i × S−i × V) the set
of conditional probability systems (CPS, see Renyi, 1955) definable over the measurable space composed by
E−i × S−i × V and its corresponding Borel σ-algebra, together with set of conditioning events C−i. However,
note that our definition does not impose Bayesian updating, so the concept of CPS turns out to be too restrictive
for our purposes. This last aspect is discussed in paragraph C of Section 6.

15That is, no matter what her beliefs are.
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null probability to event W at σi. This way, for player i and event W , we define player i’s set of

information sequences consistent with W as Σi (W ) = {σi ∈ Σi |Wσi 6= ∅}. This set represents

i’s information sequences in which it might be the case that i assigns positive probability to W .

We can now proceed to introduce the main epistemic notions needed for analysis.

4.1 Rationality

Player i’s conditional expected payoff when she plays si and her epistemic type is ei after infor-

mation sequence σi ∈ Σi (si) is given by,

ui (ei, si |σi ) =
∑

h∈vi(σi)

∑
(s−i,V )∈(S−i×V)({h})

bi (ei, σi) [E−i × {(s−i, V )}]ui ((s−i; si) , V |h ) .

A player is conditionally rational after an information sequence whenever her strategy is not

strictly dominated by another in terms of her conditional expected payoff after the information

sequence. Thus, the event that player i is conditionally rational at information sequence σi is

defined as,

Rσi =
{
ω ∈ Ω

∣∣∣si (ω) ∈ argmax si∈Si(σi)ui (ei (ω) , si |σi )
}
.

We say that player i is rational if she is conditionally rational after any of her information se-

quences, so the event that player i is rational is defined as Ri =
{
ω ∈ Ω

∣∣∣ω ∈ ⋂σi∈Σi(si(ω))Rσi

}
,

16 and the event that players are rational, as R =
⋂
i∈I Ri. Following standards, for player i, we

denote R−i =
⋂
j 6=iRj .

Following Baltag et al. (2009) and Perea (2014), the hypothesis regarding opponents being

rational in the future regardless of their past behaviour is an essential aspect of the present work.

Thus, to make this feature explicit, for player i and information sequence σ ∈
⋃
j 6=i Σj , we define

the event that player i is future rational from σ, as,

FRi (σ) = {ω ∈ Ω |ω ∈ Rσi for any σi ∈ Σi (si (ω)) such that σ < σi } .

For each player i and information sequence σi we denote FR−i (σi) =
⋂
j 6=i FRj (σi).

4.2 Perfect information

We say that a player has perfect information at some stage of the game, when it is her turn

to make a choice and she knows what her opponents previously chose. Obviously, this can

only be so when the information set she finds herself at is a singleton. Thus, for player i

16A remark regarding the one-shot deviation principle (OSDP) and dynamic inconsistency issues is necessary
at this point. Note the following two facts: (i) since the type structure is, in a meta-sense, commonly known, each
player knows after any information sequence which her beliefs will be at any future information sequence she finds
herself at as the plays goes on, and (ii) despite our definition of rationality being provided in terms of ex ante
strategies, we impose optimality for any information sequence that is not precluded by the strategy itself. Then,
from (i) and (ii), we can conclude that despite rationality being defined in terms of ex ante strategies, since the
beliefs with respect to any choice after any information sequence is evaluated in terms of the beliefs corresponding
to that information sequence, the OSDP is not violated and dynamic inconsistency is avoided. Recent work by
Battigalli et al. (2013) studies these issues in detail.
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and her history h ∈ Hi, the event that player i has perfect information at h is defined as

PIh = {ω ∈ Ω |vi (ω) (h) = {h}} and the event that player i has perfect information, as PIi =⋂
h∈Hi PIh. The event that there is perfect information is then PI =

⋂
i∈I PIi. For each player

i, we denote PI−i =
⋂
j 6=i PIj , and by V PIi , the information partition corresponding to the case

in which i has perfect information, that is, {{h} |h ∈ Hi }.
As in the previous paragraph, we are interested in making the presence of perfect information

following any given information sequence explicit. This way, for player i and information sequence

σ ∈
⋃
j 6=i Σj , the event that player i has future perfect information from σ is defined as,

FPIi (σ) = {ω ∈ Ω |ω ∈ PIh for any h ∈ Hi such that σ < h} ,

and for each player i and information sequence σi, we denote FPI−i (σi) =
⋂
j 6=i FPIj (σi).

4.3 Beliefs about opponents

Beliefs about opponents’ behaviour and opponents’ belief hierarchies is a central element of

strategic planning. In order to formalise this idea, for player i we define player i’s conditional

belief operator as the association of each event W with the event that player i conditionally

believes W after a given information sequence with probability 1. Formally, for information

sequence σi, player i’s conditional belief operator at σi is given by,

W 7→ Bi (W |σi ) = {ω ∈ Ω |bi (ei (ω) , σi) [Wσi ] = 1} , for any W ⊆ Ω.

4.3.1 A strong belief about opponents

Battigalli and Siniscalchi (2002) introduce the concept of strong belief that formalises the notion

of forward induction. That is, the ability of players to rationalise, as long as possible, opponents’

past behaviour, and conjecture about their beliefs and future behaviour in a way consistent

with the rationalisation. They define the strong belief operator, which in our context associates

each event W with the event that player i conditionally believes W with probability 1 after any

information sequence not belief-inconsistent with W . That is, formally, player i’s strong belief

operator is given by,

W 7→ SBi (W ) =
⋂

σi∈Σi(W )

Bi (W |σi ) , for any W ⊆ Ω.

So SBi (W ) should be read as the event that player i maintains the hypothesis that W is true

as long as it is not contradicted by evidence. In this paper we are interested in the working

hypothesis that players believe that their opponents are rational, have perfect information, and

commonly believe in their opponents’ future rationality and perfect information. Formally, this

is represented by the following: let player i; we define the event that player i strongly believes in
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both opponents’ rationality and opponents’ perfect information, as,

SBORPIi = SBi (R−i ∩ PI−i) ,

and we define the event that there is strong belief in both opponents’ rationality and opponents’

perfect information, as SBORPI =
⋂
i∈I SBORPIi.

4.3.2 A common belief about opponents

In the spirit of Baltag et al. (2009) and Perea (2014), for any player i we define the event that

player i believes in both opponents’ future rationality and opponents’ future perfect information

as,

BOFRPIi =
⋂

σi∈Σi

Bi (FR−i (σi) ∩ FPI−i (σi) |σi ) .

That is, this event somehow represents the fact that player i believes that any evidence con-

tradicting opponents’ past rationality and perfect information is due to a mistake and should

therefore be disregarded. Now, for each player i, let:

CBOFRPI0
i = BOFRPIi,

CBOFRPIni =
⋂

σi∈Σi

Bi
(
CBOFRPIn−1

−i
∣∣σi) ,

where CBOFRPIn−1
−i =

⋂
j 6=i CBOFRPI

n−1
j for any n ∈ N. Then, the event that there is

common belief in both opponents’ future rationality and opponents’ future perfect information

for player i is defined as CBOFRPIi =
⋂
n≥0 CBOFRPI

n
i , and the event that there is com-

mon belief in both opponents’ future rationality and opponents’ future perfect information, as

CBOFRPI =
⋂
i∈I CBOFRPIi. As it will eventually be useful in the proof of Theorem

1, it is easy to check that for any player i and her information sequence σi, CBOFRPRi ⊆
Bi (CBOFRPI−i |σi ), where CBOFRPI−i =

⋂
j 6=i CBOFRPIj .

4.3.3 A remark on perfect information

Note that the event that there is perfect information as defined above, does not imply any belief

assumption about other players having perfect information at any history, so this terminology

does not exactly coincide with the standard notion of perfect information in games with com-

monly known information structures. In such games, the statement the game has perfect infor-

mation should be read as the event that there is perfect information and common belief of perfect

information, which should not be confused with the event that there is perfect information, PI,

defined above.

Formally, for each player i we define PICBPI0
i = PIi and for any n ∈ N, PICBPIni =

PICBPIn−1
i ∩

⋂
σi∈Σi

Bi
(
PICBPIn−1

−i |σi
)
, where PICBPIn−1

−i =
⋂
j 6=i PICBPI

n−1
j . Un-

der this notation, the usual notion of the game having perfect information is formalised by

PICBPI =
⋂
i∈I PICBPIi, where PICBPIi =

⋂
n≥0, which is precisely the event that there
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is perfect information and common belief in perfect information.

5 Uncertain information structure and backward induction

Perea (2014) proves that for extensive-form games without uncertainty in the information struc-

ture, rationality and common belief in opponents’ future rationality17 induce strategy profiles

that survive what he defines as the backward dominance procedure, which in the case of games

with perfect information and no relevant ties, are outcome equivalent with the unique backward

induction profile. Since we deal with uncertainty in the information structure, and thus require

a richer description of the definition of strategies, we cannot generalise Perea’s result to our

set-up in a very straightforward way, without any kind of assumption regarding the information

structure.

Recall that a strategy profile in terms of histories
(
(sh)h∈Hi

)
i∈I is called inductive if it satisfies

that

sh ∈ argmax
ah∈Ai(h)

ui (z (s−i; (si, ah) |h) )

for any h ∈ Hi and any player i. For a tree with no relevant ties this profile is unique, and we

denote it by β. We define the inductive outcome of Γ as zI = z (β |∅ ) and the event that the

inductive outcome obtains, as BIO =
⋂
h<zI

[sh = βh]. For each h ∈ H we refer to βh as the

inductive choice at history h. As said above, it is known that for games with perfect information

rationality and common belief in opponents’ future rationality induce the backward induction

outcome. As seen informally in paragraph 1.1, this result seems to break down when we drop

the assumption that the game has perfect information. Theorem 1 shows that under some

assumptions, when there is uncertainty about the information structure, perfect information is

not necessary:

Theorem 1 (Sufficiency for arbitrary type structures). Let game tree with no relevant ties Γ and

arbitrary type structure T. Then, if players are rational, there is strong belief in both opponents’

rationality and opponents’ perfect information, and there is common belief in both opponents’

future rationality and opponents’ future perfect information, the backward induction outcome

obtains; i.e.,

R ∩ SBORPI ∩ CBOFRPI ⊆ BIO.

Proof. In the following proof, we denote: (i) for any h ∈ H, the event that history h is reached :

[h] =
{
ω ∈ Ω

∣∣h < z
(
sv(ω) (ω)

)}
, and (ii) for any i ∈ I, player i’s set of pre-terminal histories,

Zi = {h ∈ Hi |(h, ai) ∈ Z for any ai ∈ Ai (h)}, and Z−i =
⋃
j 6=iZj . Now we proceed in three

steps:

A small lemma. Let i ∈ I, σi ∈ Σi and h ∈ vi (σ). Consider now a state ω ∈ Rσi ∩
Bi

(
[h] ∩

⋂
h′>h,h′∈H−i [sh′ = βh′ ]

∣∣∣σi). Note that for any strategy si ∈ Si (σi), it holds that

ui (ei (ω) , si |σi ) = ui
(
z
(
β−i, svi(ω) |h

))
, and thus, since ω ∈ Rσi , sσi (ω) = βh. This way, we

17Common belief in opponents’ future rationality, CBOFR, is defined in a way analogous to CBOFRPI, by
just replacing each FR−i (σ) ∩ FPI−i (σi) by the corresponding FR−i (σi).
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conclude that for any i ∈ I, any σi ∈ Σi and any h ∈ vi (σi),

Rσi ∩Bi

 [h] ∩
⋂

h′>h,h′∈H−i

[sh′ = βh′ ]

∣∣∣∣∣∣σi
 ⊆ [sσi = βh] .

A backward flow. Let’s proceed by induction: let i ∈ I, h ∈ Zi and σi ∈ Σi such that

vi (σi) = {h}. Then, we have that ui (ei, si |σ ) = ui ((h, sσi)) for any ei ∈ Ei and si ∈ Si, and

therefore, that Rh ⊆ [sσi = βh]. Thus, BOFRPIi ⊆
⋂
σi∈Σi

Bi

(⋂
h>σi,h∈Z−i [sh = βh] |σi

)
for

any i ∈ I and σi ∈ Σi, and consequently, CBOFRPIi ⊆
⋂
σi∈Σi

Bi

(⋂
h>σi,h∈Z−i [sh = βh] |σi

)
.

Now, let i ∈ I and σi ∈ Σi such that for any j ∈ I and any σj ∈ Σj such that σj >

σi it holds that CBOFRPIj ⊆
⋂
h>σj ,h∈H−j Bj (sh = βh |σj ).18 Then, since CBOFRPIi ⊆

Bi (CBOFRPI−i |σi ), from the induction hypothesis we get that

CBOFRPIi ⊆ Bi

⋂
j 6=i

⋂
σj∈Σj

Rσj ∩ PIj ∩Bj

 ⋂
h>σj ,h∈H−j

[sh = βh]

∣∣∣∣∣∣σj
∣∣∣∣∣∣σi

 ,

and therefore, because of the small lemma,19 CBOFRPIi ⊆ Bi

(⋂
h>σi,h∈H−i [sh = βh]

∣∣∣σi).

This way, we conclude that CBOFRPIi ⊆
⋂
σi∈Σi

Bi

(⋂
h>σi,h∈H−i [sh = βh]

∣∣∣σi) for any i ∈ I.

A forward flow. Note first that from all the above, for any i ∈ I and σi ∈ Σi such that

vi (σi) = {h} for some h ∈ Hi,

Rσi ∩ PIh ∩ CBOFRPIi ⊆ Rσi ∩Bi

 [h] ∩
⋂

h′>σi,h′∈H−i

[sh′ = βh′ ]

∣∣∣∣∣∣σi
 ⊆ [sh = βh] .

Let zI =
(
∅,
(
βk
)n
k=0

)
, h0 = ∅ ∈ Hi0 , and for any k = 1 . . . n, hk =

(
hk−1, βk−1

)
∈ Hik . Since

PI∅ = Ω, it is immediate that Ri0 ∩ CBOFRPIi0 ⊆
[
sh0 = β0

]
.

Now, let k ≥ n such that for any l < k, Ril ∩ SBORPIil ∩ CBOFRPIil ⊆
[
shl = βl

]
.

Let σik ∈ Σik such that hk ∈ vik (σik). Since by definition we have that SBORPIik ⊆
Bi

(⋂
l=0,...,k,il 6=ik

⋂
σil∈Σil ,hl∈vil(σil)

Rσil ∩ PIhl
∣∣∣σik), and it is known that CBOFRPIik ⊆

Bi

(⋂
l=0,...,k,il 6=ik CBOFRPIl

∣∣∣σik), it is easy to see that Rik ∩ SBORPIik ∩ CBOFRPIik ⊆

Bik
([
hk
]
|σik

)
. In addition, since CBOFRPIik ⊆ Bi

(⋂
h>hk,h∈H−ik

[sh = βh]
∣∣∣σik), we obtain

that Rik ∩ SBORPIik ∩ CBOFRPIik ⊆
[
shk = βk

]
.

Thus, we conclude that R ∩ SBORPI ∩ CBOFRPI ⊆
⋂
h<zI

[sh = βh] = BIO.

18The case above ensures the existence of such.
19Just note that for any i ∈ I, σi ∈ Σi and h ∈ Hi such that vi (σi) = {h}, we have both that (i)

Bi ([h] ∩W |σi ) = Bi (W |σi ) for any W ⊆ Ω, and (ii) PIh ∩ [sσi = βh] ⊆ [sh = βh].
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The intuition behind the assumptions in Theorem 1 and its proof can be briefly explained as

follows:

(i) For each player i, CBOFRPIi serves as a mechanism to conjecture opponents’ behaviour.

The fact that she believes that after her choice the game will take the shape of one with

perfect information and common belief in rationality leads i to the hypothesis that after

her choice everybody will choose inductively. Note though, that if the information set she

finds herself at is not a singleton, her own rationality and having a deterministic conjecture

about her opponents’ future behaviour is still not enough for her to make a choice: since

she does not know which history she finds herself at, she does not know where each of her

actions will lead. But. . .

(ii) . . . note the following: since CBOFPRi implies that she believes in CBOFRPIj for any

j choosing previous to her, she has beliefs on what j expects to happen in the future,

because of SBORPIi, she believes that j’s information set is just a singleton, so that j is

able to evaluate where each of her actions lead, and because of SBORPIi again, i is able

to conjecture what j actually chose previous to her. This kind of reasoning, as long as

evidence against R−i ∩PI−i is not found, enables i to infer what everyone previous to her

chose, and thus, conjecture what unique history she finds herself at inside her information

set. Thus, she can. . .

(iii) . . . predict, because she has beliefs in her opponents’ future behaviour at each of their

histories, what outcome each of her available actions leads to. Thus, since the fact game

has no relevant ties determines a unique optimal choice, rationality implies only one choice

for her.

(iv) Furthermore, note that the assumptions in Theorem 1 do not imply perfect information at

all; in principle, it might be the case that each player is trapped in a black box so that she

does not observe any other players’ choices. Still, her beliefs about opponents’ rationality

and perfect information together with her own rationality induce inductive behaviour upon

her.

In particular, if we assume that the information structure is not uncertain and it corresponds to

the case of perfect information, Theorem 1 yields the following corollary:

Corollary 1 (cf. Theorem 5.4 in Perea (2014)). Let game tree with no relevant ties Γ and

type structure T such that the game has perfect information at every state, that is, such that

PICBPI = Ω. Then, if players are rational and there is common belief in opponents’ future

rationality, the backward induction outcome obtains; i.e.,

R ∩ CBOFR ⊆ BIO.

We omit the proof of the corollary, which is immediate given Theorem 1. Just note that

whenever uncertainty about the information structure of the game is removed and players observe

16



each others’ choices, we get exactly the assumption and result attained by Perea (2014) for games

with perfect information. Now, it is pertinent to wonder whether the assumptions in Theorem

1 are non trivial; that is, if it might be the case that there is some game tree Γ in which BIO

fails to obtain under our assumptions due to the fact that R∩SBORPI ∩CBOFRPI is indeed

empty for any type structure T. The following theorem shows that we can always construct a

type structure such that this is not the case:

Theorem 2 (Non vacuity). For any game tree with no relevant ties Γ and any information

structure V , there exists some type structure T such that the event that players are rational,

there is strong belief in both opponents’ rationality and opponents’ perfect information, there is

common belief in both opponents’ future rationality and opponents’ future perfect information,

and V obtains is not empty; i.e., such that,

R ∩ SBORPI ∩ CBOFRPI ∩ [v = V ] 6= ∅.

Proof. We proceed by construction. First, for each i ∈ I and σi ∈ Σi, let hσi ∈ vi (σi) such

that if σi < zI , then hσi < zI , and set ασi = βhσi for any σi ∈ Σi. Now, for each i ∈ I take

(bi (σi))σi∈Σi
∈
∏
σi∈Σi

∆ ((S−i × V) (σi)) such that:

(i) bi (σi)
[(
S−i ×

{
V PI−i

}
× Vi

)
(σi)

]
= 1 for any σi ∈ Σi.

(ii) bi (σi)
[({

s−i ∈ S−i
∣∣sσj = ασj for any j 6= i, σj > σi

}
× V

)
(σi)

]
= 1, for any σi ∈ Σi.

(iii) bi (σi)
[({

s−i ∈ S−i
∣∣∣hσi < z

(
sV PI−i , sVi

)
for some si ∈ Si, Vi ∈ Vi

}
× V

)
(σi)

]
= 1, for any

σi ∈ Σi.

(iv) bi (σi) [({α−i} × V) (σi)] = 1 for any σi ∈ Σi such that ({α−i} × V) (σi) 6= ∅.

Now, for any i ∈ I, let epistemic type space Ei = {ei}, and conditional belief system map bi where

bi (ei, σi) [(e−i, s−i, V )] = bi (σi) [(s−i, V )] for any σi ∈ Σi and any (s−i, V ) ∈ (S−i × V) (σi). Let

type structure T = 〈Ei, bi〉i∈I .20 Note that for any i ∈ I,

(i) Bi (PI−i |σi ) = Ω for any σi ∈ Σi.

(ii) Bi

(⋂
j 6=i
⋂
σj∈Σj ,σj>σi

[
sσj = ασj

]∣∣∣σi) = Ω for any σi ∈ Σi.

(iii) Bi ([hσi ] |σi ) = Ω for any σi ∈ Σi.

(iv) Bi (s−i = α−i|σi) = Ω for any σi ∈ Σi such that ({α−i} × V) (σi) 6= ∅.

Note in addition that since for any i ∈ I, ω ∈ Ω and σi ∈ Σi (si (ω)), ui (ei (ω) , si (ω) |σi ) =

ui

(
z
(
αV PI−i , sVi(ω) (ω) |hσi

))
, then ω ∈ Ri if and only if ω ∈ [si = αi]. That is, Ri = [si = αi].

Now, we want to prove that {(e, α)}×V ⊆ R∩SBORPI ∩CBOFRPI∩. Let ω ∈ {(e, α)}×V.

Then:

• We already checked that ω ∈ R.

20Required topological assumptions are trivially satisfied due to Ei being finite.
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• Since
⋂
σi∈Σi

(
Bi (PI−i |σi ) ∩Bi

(⋂
j 6=i
⋂
σj∈Σj ,σj>σi

[
sσj = ασj

]∣∣∣σi)) = Ω, then we have

that BOFRPIi = Ω, and in consequence, CBOFRPI = Ω. Thus, ω ∈ CBOFRPI.

• Let σi ∈ Σi (R−i ∩ PI−i ∩ CBOFRPI−i) = Σi (R−i ∩ PI−i). This is so, if and only if

σi ∈ Σi
([
s−i = α−i,V−i = V PI−i

])
. Then, ({α−i} × V) (σi) 6= ∅, and therefore, it holds

that Bi (s−i = α−i |σi ) = Ω. Since Bi (PI−i |σi ) = Ω, we conclude that ω ∈ SBORPI,

because indeed, SBORPI = Ω.

Thus, T is a type structure for Γ such that R ∩ SBORPI ∩ CBOFRPI ∩ [v = V ] 6= ∅ for any

V ∈ V.

6 Final Remarks

A. Summary. The present work tries to extend the analysis of sufficient epistemic conditions for

the backward induction outcome of generic extensive-form games, from the perfect information

case to that with not necessarily perfect information. The main features and conclusions are:

(i) We introduce uncertainty about the information structure of the game. Issues concern-

ing players’ ability to observe each others’ choices in general, and perfect information in

particular, are approached via an epistemic framework based on type spaces that relies

on standard tools in the fields of both in epistemic game theory and analysis of Bayesian

games.

(ii) Theorem 1 shows that, if players are rational (R), they strongly believe in both opponents’

rationality and opponents’ perfect information (SBORPI), and they commonly believe in

both opponents’ future rationality and opponents’ future perfect information (CBOFRPI),

then neither common knowledge of perfect information, nor even perfect information is

required to obtain the backward induction outcome. In particular, the backward inductive

outcome is obtained under these assumptions, even if it is the case that every player is

trapped in a black box and does not observe any of their opponents’ choices.

(iii) Theorem 2 shows that the epistemic requirements for the backward inductive outcome

to obtain are not trivial: it is always possible to construct a type structure such that

R∩SBORPI ∩CBOFRPI is non empty, or, in words, such that the three conditions are

simultaneously satisfied at some state. Moreover, the assumptions are consistent with any

information structure the game might happen to have, not just perfect information.

(iv) The type structure that defines the epistemic model is not assumed to be complete, so any

implicit assumption about players’ beliefs about other players’ beliefs is consistent with the

results.

B. (Non-)Robustness of backward induction. Theorem 1 introduces sufficient epistemic

conditions for the backward induction outcome for any game tree, regardless of the factual
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information structure the game happens to have as it is played. These epistemic assumptions

are not very far from those assumed for the case of perfect information and common belief in

opponents’ perfect information (PICBPI), which is what we call perfect information in standard

contexts of lack of uncertainty about the information structure. Thus, Theorem 1 addresses

robustness properties of the backward induction outcome in two somewhat opposite ways: (i) it

proves that the backward induction outcome is robust to shocks in the information structure of

the game, as long as these shocks do not affect players’ beliefs on their opponents’ information

structures, and, (ii) it suggests that players believing in opponents’ perfect information plays a

crucial role in the backward induction outcome being obtained, so that the latter is found very

sensitive, i.e., non-robust, to changes in beliefs.

C. Bayesian updating. It is not assumed that as the game progresses, players update their

beliefs by Bayesian conditioning, that is, by conditioning previous beliefs to newly unveiled

information. This is an assumption we drop from the standard definition of conditional belief

systems that can be found on Renyi (1955) or Ben Porath (1997), for instance. Belief revision

procedure is free of constraints in the present set-up. Still, were we to impose the condition that

beliefs are revised following a Bayesian updating procedure, this would be done by assuming that

type structure T is such that the following is satisfies for any player i, any epistemic type ei and

any information sequence σi,

bi (ei, σ
′
i) [(e−i, s−i, V )] =

bi (ei, σi) [(e−i, s−i, V )]

bi (ei, σi) [E−i × (S−i × V) (σ′i)]
,

for any (e−i, s−i, V ) ∈ E−i × (S−i × V) (σ′i) and any information sequence σ′i that follows σi,
21

and such that bi (ei, σi) [E−i × (S−i × V) (σ′i)] > 0. In any case, results of Theorem 1 and 2

would remain unaffected.

D. Priors, delusion and belief-consistency. Since it is assumed that R holds, there are

no delusion issues involved when we assume that there is strong belief in opponents’ rationality

and there is common belief in opponents’ future rationality. But since we do not assume PI to

be satisfied, when we ask for strong belief in opponents’ perfect information and common belief

in opponents’ future perfect information, it might be the case that players hold wrong beliefs;

that is, when PI is not satisfied, our epistemic assumptions are not consistent with the Truth

Axiom, which in the current framework is equivalent to players assigning non null probability to

the true state of the world.

All the analysis is carried out at interim level and each player’s beliefs are specified only at

information sets of her own. Since Bayesian updating is not assumed, it could be the case that a

player holds mutually inconsistent beliefs at two of her information sets, one following the other;

and it might also be the case that if we allow for comparing different players’ beliefs at each of

their own different information sets, these beliefs are inconsistent. This inconsistency is not fully

structural, though: it is possible to construct type structures where R∩SBORPI∩CBOFRPI 6=
21Formally this is means that (i) vi

(
σ′i

)
> vi (σi), and (ii) for any Vi ∈ Vi, σ′i ⊆ Vi implies σi ⊆ Vi.
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∅ and players’ beliefs are derived from common lexicographic priors.

E. Minimal epistemic condition. It is not clear to us whether some other condition, less

restrictive than each player i holding beliefs related to all the rest of players having perfect

information, could be enough to generally imply, together with the rest of assumptions about

rationality, the backward induction outcome. It is easy to check that if so, this less restrictive

condition must of course, be more restrictive than just perfect information (read as perfect

information but NOT common belief in opponents’ perfect information).

F. Absence of relevant ties. The fact that the game trees under consideration have no

relevant ties is crucial for Theorem 1. Indeed, if the game tree had more than just one backward

induction outcome, it would be impossible to infer opponents’ past choices at some non-singleton

information sets and consequently, induce which choice is actually the inductive one. Consider

an uncertain imperfect information game such as in Figure 2 and modify the payoffs so that every

non-null payoff is exactly 1. Assume in addition that the conditions in Theorem 1 are satisfied; in

this case these reduce to: rationality (R), Alexei’s belief in Polina’s future rationality and perfect

information (implicit in CBOFRPIA) and both Polina’s strong belief in Alexei’s rationality

(implicit in SBORPIP ) and her belief in BOFRPIA (implicit in CBOFRPIP ). Since Alexei

believes both that Polina is rational and has perfect information, he believes that any choice of

his yields him 1. He is therefore indifferent and may choose either left or right. Thus, if it is

the case that Alexei is deluded and Polina has no perfect information, there is nothing she can

infer from SBORPIP ∩ CBOFRPIP , and despite being rational, finds no reason to expect left

or right yielding her a higher payoff than the alternative.

G. Epistemic types and belief hierarchies. The relation between the two fundamental

ways of encoding interactive beliefs, namely type spaces and belief hierarchies, has stood as

one of the foundational concerns of epistemic game theory since the pioneering work by Harsanyi

(1967–1968), and posterior development by Armbruster and Böge (1979), Böge and Eisele (1979),

Mertens and Zamir (1985) or Brandenburger and Dekel (1993) among others. Covering such

fundamental issues is out of the scope of the present paper; however, we present a brief sketch

in what follows for the purposes of completion and self-containment.

First, for any player i and any information sequence σi, we set basic conditional uncertainty

space Xi(σ
0
i ) = (S−i × V) (σi); higher order uncertainty spaces are recursively obtained as fol-

lows: Xn
i (σi) = Xn−1

i (σi)×
∏
j 6=i
∏
σj>σi

∆
(
Xn−1
j (σj)

)
for any n ∈ N. Then, given type struc-

ture T = 〈Ei, bi〉i∈I , type ei’s conditional belief hierarchy after information sequence σi can be

recursively defined the following way: let first order belief εi,0 (ei |σi ) = marg(S−i×V)(σi)bi (ei, σi),

and for each n ∈ N, let higher uncertainty spaces and higher order beliefs:

εi,n (ei |σi )
[(

(µ−i,k)
n−1
k=0 , (s−i, V )

)]
= bi (ei, σi)

{(s−i, V )} ×
∏
j 6=i

⋂
σj>σi

n−1⋂
k=0

ε−1
j,k

(
µσj ,k |σj

) ,
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for any and

(((
µσj ,k

)n−1

k=0

)
σj>σi

, (s−i, V )

)
∈ ∆ (Xn

i ). This way, we obtain conditional belief

hierarchy εi(ei |σi ) = (εi,n(ei |σi ))n≥0. Furthermore, we conjecture that following this procedure

and employing techniques similar to those by Brandenburger and Dekel (1993) and Battigalli

and Siniscalchi (1999), it is possible to give a proper definition of a universal (S−i × V)i∈I -

based type space (Ei, ϕi)i∈I ,22 where for any player i and any information sequence σi, E0
i (σi) =∏

n≥0 ∆ (Xn
i ) is homeomorphic to ∆

(∏
j 6=i
∏
σj>σi

E0
j (σj)× (S−i × V) (σi)

)
, and where stan-

dard assumptions such as common belief in coherency or Bayesian updating can be imposed.
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