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1 Introduction

Risk is a central dimension of the decision-making environment and
many important economic decisions involve risk. In this work I analyze the
economic theory of the characterization of risk and the modeling of economic
agents’ responses to it. The work is completed with several applications of
decision making under risk to different economic problems. An analytically
convenient unified framework to incorporate risk in economic modeling is
used in this document: Expected Utility Theory.

The presentation is organized as follows: Section 2 is devoted to the
Expected Utility Theory. The properties of the preference relation defined
on the set of risky alternatives that are required for the Expected Utility
Theorem are analyzed in that section. Section 3 centers on risk aversion
and its measurement. The concepts of certainty equivalent, risk premium,
probability premium, absolute risk aversion and relative risk aversion, and
the “more risk averse than” relation are discussed in that section. Section 3
concludes with the analysis of wealth effects in some utility functions that are
often used in economic analysis. Section 4 studies the comparisons of risky
alternatives in terms of return and risk. First and second-order stochastic
dominance and the index of riskiness of Aumann and Serrano are explained
in that section.

The last section includes thirteen Exercises that apply the analyses
developed in previous sections to a great variety of situations: insurance,
investment in risky assets and portfolio selection, risk sharing, taxes and
income underreporting, deposit insurance and bank loans. Full solutions of
the exercises are provided.
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2 Expected utility theory

Consider that a decision maker faces a choice among a number of risky
alternatives (or lotteries). The possible outcomes of these alternatives are
monetary payoffs. There are N possible outcomes. The outcome that will
occur with each alternative is uncertain. A risky alternative is characterized
by the vector of probabilities of the outcomes in that alternative. The
decision maker knows the probability of each outcome in each alternative.1

A lottery L is simple if it is given by L =(p1, p2, ..., pN) with pn ≥ 0 for
all n and

P
n pn = 1, where pn is interpreted as the probability of outcome n

occurring. A lottery is compound if some (or all) outcomes of that lottery are
themselves lotteries. The lottery (L1, L2,..., Lh; q1, q2, ..., qh) is a compound
lottery that yields the lottery Li =(pi1, p

i
2, ..., p

i
N) with probability qi. The

reduced lottery of a compound lottery (L1, L2,..., Lh; q1, q2, ..., qh) is a simple
lottery L0 =(p01, p

0
2, ..., p

0
N) where

p0n = q1p
1
n + q2p

2
n + ...+ qhp

h
n

for n = 1, ..., N .2 Let us assume that for any lottery or risky alternative,
only the reduced lottery over final outcomes is of relevance to the decision
maker (note that simple lotteries are already defined in reduced form).

The decision maker has a preference relation defined on the set $ of
simple lotteries (or lotteries in reduced form). When lottery L =(p1, p2, ...,
pN) is at least as good as lottery L0 =(p01, p

0
2, ..., p

0
N) we write L º L0. When

lottery L =(p1, p2, ..., pN) is preferred (indifferent) to lottery L0 =(p01, p
0
2, ...,

p0N) we write L Â L0 (L ∼ L0).

Let us assume that the preference relation º possesses the following
properties:

1For the moment, let us include in the set of risky alternatives those (risk-free)
alternatives where the probability of one of the outcomes is equal to 1.

2This reduction of a compound lottery to a reduced lottery requires that all the lotteries
in the compound lottery be independent of each other.
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i) Completeness: For any L, L0 ∈ $, we have that L º L0 or L0 º L (or
both),
ii) Transitivity: For any L, L0, L00 ∈ $, if L º L0 and L0 º L00, then

L º L00,
iii) Continuity: For any L, L0, L00 ∈ $ such that L º L0 º L00, there

exists α ∈ [0, 1] such that L0 ∼ αL+ (1− α)L00, and
iv) Independence axiom: For any L, L0, L00 ∈ $ and α ∈ (0, 1) we have

L º L0 if and only if αL+ (1− α)L00 º αL+ (1− α)L00.

When the preference relation º is complete and transitive we say that
it is a rational preference relation. Continuity means that small changes in
probabilities do not change the nature of the ordering between two risky
alternatives. When the preference relation º is complete, transitive and
continuous there exists a utility function representing º (a function U such
that L º L0 if and only if U(L) ≥ U(L0)). The independence axiom states
that if we mix in the same way each of two risky alternatives with a third one,
then the preference ordering of the two resulting mixtures will be independent
of the particular third risky alternative used.

A utility function over risky alternatives has an expected utility form
when there is an assignment of numbers (u1, u2, ..., uN) to the outcomes
such that for any risky alternative L :(p1, p2, ..., pN) we have:

U(L) = u1p1 + u2p2 + ...+ uNpN

Hence, the utility of a risky alternative is the expected value of the utilities
of the outcomes under that alternative. Note that while the outcomes
themselves are objective, their utility is subjective and may differ among
decision makers.

In this work a utility function over risky alternatives with the expected
utility form is going to be called an expected utility function.3 If U is an

3The first analysis of the expected utility theory is developed in von-Neumann-
Morgenstern (1944). However, Bernoulli (1954, translation from 1738) was the first to
suggest that a risky alternative should be valued according to the expected utility that it
provides.
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expected utility function that represents the preference relation º on the set
of risky alternatives, then V is another expected utility function representing
º if and only if V = α+ βU , with β > 0.

A preference relation complete, transitive and continuous, that satisfies
the independence axiom is representable by a utility function with the
expected utility form (this is the Expected Utility Theorem).4 For a utility
function U with the expected utility form that represents those preferences
it is

L º L0 ⇔ U(L) = u1p1+u2p2+...+uNpN ≥ u1p
0
1+u2p

0
2+...+uNp

0
N = U(L0).

Sometimes the utility function of the decision maker can be transformed
to obtain another utility function that represents the same preferences and
has the expected utility form. Consider, for instance, that the utility of
lottery L :(p1, p2, ..., pN) is

U(L) = ΠN
i=1(1 + xi)

pi .

Then we may define the utility function

V (L) = lnU(L) =
NX
i=1

pi ln(1 + xi)

that represents the same preferences and has the expected utility form. The
utility of outcome xi is ln(1 + xi) in utility function V .

The Theory of Expected Utility is very convenient analytically and
provides useful information as to how decision makers choose under risk.
However, its plausibility has been challenged in some situations. Among the
criticisms of the expected utility theory we can include the Allais Paradox,
the frame dependence, the Ellsberg Paradox and ambiguity aversion, the
Prospect Theory and loss aversion. These topics are not analyzed in this
work.5

4See A. Mas-Colell et al. (1995, section 6.B) for a proof of the Expected Utility
Theorem.

5Some references for these topics are Allais (1953), Ellsberg (1961), Kahneman and
Tversky (1979) and Machina (1987).
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3 Risk aversion and its measurement

Consider in sections 3 and 4 that the monetary outcomes may be
represented by a continuous variable x̃. A risky alternative will be
characterized by a density function f(.), or by the corresponding distribution
function F (.), defined on x̃ (F (x) = Pr(x̃ ≤ x). The utility of a
risky alternative L, or the utility of the distribution function FL(.) that
characterizes that alternative, is

U(L) = U(FL) =

Z
u(x)dFL(x) =

Z
u(x)fL(x)dx,

where u(x) is the utility of outcome x. Let us call the function u the von-
Neumann-Morgenstern (v.N-M) utility function. The power of the expected
utility approach rests on the ability to use that theory with many functional
forms for u. Let us consider that u is increasing and continuous.

3.1 Risk aversion

A decision maker is risk averse if and only if, for every distribution
function F (.), Z

u(x)dF (x) ≤ u(

Z
xdF (x)) (1)

The decision maker is strictly risk averse if this inequality is strict. It is risk
neutral if

R
u(x)dF (x) = u(

R
xdF (x)) for every F (.) and it is (strictly) risk

lover if
R
u(x)dF (x) > u(

R
xdF (x)) for every F (.).

Inequality (1) is equivalent to the concavity of u (u00(x) ≤ 0 for every x,
with u00(x) < 0 for some x). For a risk neutral (strictly risk lover) decision
maker, u is linear (convex) and

R
u(x)dF (x) = u(

R
xdF (x)) (>).

A decision maker may be neither risk averse nor strictly risk averse nor
risk neutral nor risk lover, as the corresponding conditions in the previous
paragraphs have to be satisfied for every distribution function F (.).
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Consider the v.N-M utility functions u1(x) = lnx, u2(x) = x2, u3(x) =
20 + 7x and u4(x) = 2 − e−x. All these functions are increasing functions
as their first derivatives are positive for every x. The signs of the second
derivatives are, for every x, u001(x) = − 1

x2
< 0, u002(x) = 2 > 0, u003(x) = 0

and u004(x) = −e−x < 0. Therefore, a decision maker with v.N-M utility
function u1(x) or u4(x) is strictly risk averse, a decision maker with v.N-M
utility function u2(x) is (strictly) risk lover, and a decision maker with v.N-M
utility function u3(x) is risk neutral.

As
R
xdF (x) (=

R
xf(x)dx) is the mean (or expected payoff) of a risky

alternative with distribution function F (.), a risk averse agent always prefers
receiving the expected payoff of a lottery with certainty (and obtaining utility
u(E(x̃)) = u(

R
xdF (x))), rather than bearing the risk x̃ (and obtaining

expected utilityE(u(x̃)) =
R
u(x)dF (x)). Hence, a risk averse decision maker

dislikes every risky alternative with a expected payoff of zero.

In the rest of this work it is going to be considered that the decision maker
is risk averse.

3.2 Certainty equivalent, risk premium and probabil-
ity premium

The certainty equivalent of a risky alternative Lwith distribution function
FL(.) is c(FL, u) such that

u(c(FL, u)) =

Z
u(x)dFL(x)

The certainty equivalent of L is the amount of money that leaves the decision
maker indifferent between receiving for sure that amount of money and
playing the risky alternative L.

The risk premium of a risky alternative L with distribution function FL(.)

is m(FL, u) such that

m(FL, u) =

Z
xdF (x)− c(FL, u)

8
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The risk premium of L is the maximum amount of money that the decision
maker is willing to pay to avoid the risky alternative L.

The previous definitions of certainty equivalent and risk premium are
adequate when the initial wealth of the individual is 0. If the decision maker
has initial wealth w, the certainty equivalent of a risky alternative L will be
c(FL, u, w) such that

u(w + c(FL, u, w)) =

Z
u(w + x)dFL(x)

and the risk premium of a risky alternative L will be m(FL, u, w) such that

m(FL, u, w) =

Z
xdFL(x)− c(FL, u, w).

The probability premium π(x, ε, u) for any amount of money x and
positive number ε is

u(x) = (
1

2
+ π(x, ε, u))u(x+ ε) + (

1

2
− π(x, ε, u))u(x− ε)

The probability premium is the excess of winning probability over fair odds
that makes the individual indifferent between a certain outcome and a gamble
where he may win or lose some amount of money (ε) with respect to that
outcome.

When the decision maker is risk averse it is, for any w, c(F, u,w) ≤R
xdF (x) for every F (.) (⇒ m(F, u, w) ≥ 0) and π(x, ε, u) ≥ 0 for all x and

ε.

If the risk of a lottery (or risky asset) increases while its mean remains
unchanged the certainty equivalent decreases and the risk premium and
the probability premium increase. Consider a consumer with initial wealth
equal to 0 and v.N-M utility function u(x) =

√
x (note that it is risk

averse). The lottery (36,16;1
2
, 1
2
) has mean=26, certainty equivalent (C)=25

(
√
C = 1

2

√
36+ 1

2

√
16 = 5), risk premium=26-25=1 and probability premium:√

26 = (1
2
+π)
√
36+(1

2
−π)
√
16 = (1

2
+π)
√
26 + 10+(1

2
−π)
√
26− 10⇒ π =

0.0495. However, the lottery (48,4;1
2
, 1
2
), with the same mean but a higher

risk, has certainty equivalent=19.928, risk premium=26-19.928=6.072 and

9
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probability premium:
√
26 = (1

2
+ π)
√
48 + (1

2
− π)
√
4 = (1

2
+ π)
√
26 + 22 +

(1
2
− π)
√
26− 22⇒ π = 0.12883.

3.3 Measurement of risk aversion

3.3.1 Absolute risk aversion

Given a (twice-differentiable) v.N-M utility function, the Arrow-Pratt
coefficient of absolute risk aversion at x is defined as rA(x, u) = −u00(x)

u0(x) .
6

The Arrow-Pratt coefficient of absolute risk aversion tries to capture the
idea that the faster the marginal utility of wealth declines, the more risk
averse the individual is. Hence, the degree of risk aversion of the decision
maker is related to the curvature of u(x). One possible measure of the
curvature of the v.N-M utility function is u00(x). But this is not an adequate
measure because it is not invariant to positive linear transformations of the
utility function. To obtain an invariant measure, it is used −u00(x)

u0(x) (with a −
sign to have a positive number).

The v.N-M utility function exhibits decreasing (constant; increasing)
absolute risk aversion if rA(x, u) is a decreasing (constant; increasing)
function of x. We say that a decision maker with a v.N-M utility function
that exhibits decreasing (constant) absolute risk aversion is a DARA (CARA)
decision maker.

A decision maker with a v.N-M utility function that exhibits decreasing
absolute risk aversion is willing to accept more risky alternatives as her wealth
increases. This decision maker is also willing to invest a greater amount
in a risky asset when her wealth increases. The following conditions are
equivalent:
i) The v.N-M utility function exhibits decreasing absolute risk aversion

6The measures of risk aversion studied in this section were proposed in Arrow (1963)
and Pratt (1964).
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ii) m(F, u, w) is decreasing in w

iii) π(x, ε, u) is decreasing in x

iv) If w1 > w2 then
R
u(w2 + x)dF (x) ≥ u(w2) ⇒

R
u(w1 + x)dF (x) ≥

u(w1).

If the decision maker had a v.N-M utility function that exhibits constant
absolute risk aversion she would be willing to accept the same set of risky
alternatives and to invest the same amount in a risky asset independently of
her level of wealth. For a decision maker with a v.N-M utility function that
exhibits constant absolute risk aversion, m(F, u,w) does not depend on w

and π(x, ε, u) does not depend on x.

3.3.2 Comparisons across decision makers

Consider two decision makers 1 and 2 with, respective, v.N-M utility
functions u1(x) and u2(x). The following conditions are equivalent:
i) Decision maker 2 is more risk averse than decision maker 1
ii) rA(x, u2) ≥ rA(x, u1) for every x
iii) u2(.) is a concave transformation of u1(.)
iv) c(F, u2) ≤ c(F, u1) for any F (.)
v) m(F, u2) ≥ m(F, u1) for any F (.)
vi) π(x, ε, u2) ≥ π(x, ε, u1) for any x and ε

vii)
R
u2(x)dF (x) ≥ u2(x̄)⇒

R
u1(x)dF (x) ≥ u1(x̄) for any F (.) and x̄.

There is also a strict version of this equivalence of conditions. The
equivalence of conditions remains valid when the inequalities in ii), iv), v)
vi) and vii) are strict, the decision maker 2 is strictly more risk averse than
the decision maker 1, and u2(.) is a strictly concave transformation of u2(.).

The more risk aversion than relation is a partial ordering of v.N-M utility
functions as it is not complete.

11

SARRIKO-ON 1/09



3.3.3 Relative risk aversion

Given a (twice-differentiable) v.N-M utility function, the coefficient of
relative risk aversion at x is defined as rR(x, u) = −xu00(x)

u0(x) . The v.N-M utility
function exhibits decreasing (constant; increasing; non-increasing) relative
risk aversion if rR(x, u) is a decreasing (constant; increasing; non-increasing)
function of x.

The property of non-increasing relative risk aversion is stronger than the
property of decreasing absolute risk aversion. A risk-averse decision maker
with non-increasing relative risk aversion will exhibit decreasing absolute risk
aversion, but the converse might not be true: rR = xrA ⇒ r0R = rA + xr0A;
then r0R ≤ 0⇒ r0A < 0 but r0A < 0; r0R ≤ 0.

A decision maker with a v.N-M utility function that exhibits decreasing
relative risk aversion is willing to accept more risky alternatives as her wealth
increases. This decision maker is also willing to invest a greater proportion of
her wealth in a risky asset when her wealth increases. If the decision maker
had a v.N-M utility function that exhibits constant relative risk aversion she
would be willing to invest the same proportion of her wealth in a risky asset
independently of her level of wealth (hence, she would be willing to invest
a greater amount of her wealth in a risky asset as her wealth increases). If
we consider risky projects whose outcomes are percentage gains or losses of
current wealth, a decision maker with a v.N-M utility function that exhibits
constant relative risk aversion will be willing to accept the same set of risky
projects as her wealth changes.

3.4 Types of von-Neumann-Morgenstern utility func-
tions and wealth effects

The general form of a v.N-M utility function with a coefficient of absolute
risk aversion equal to the constant a > 0, for every x, is u(x) = α − βe−ax,
where β > 0. For this utility function it is: u0(x) = aβe−ax > 0, u00(x) = −a2

12
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βe−ax < 0 and rA(x, u) = −−a
2βe−ax

aβe−ax = a. Note also that

rA(x, u) = −
u00(x)

u0(x)
= a⇒ −u00(x) = au0(x)⇒ −u0(x) = au(x)

⇒ u0(x)

u(x)
= −a⇒ lnu(x) = −ax+ k ⇒ u(x) = −βe−ax,

and a linear transformation of this function is u(x) = α − βe−ax, a v.N-M
utility function increasing and concave. A decision maker with this utility
function will invest the same amount in a risky asset, independently of her
level of wealth.

The general form of a v.N-M utility function with a coefficient of relative
risk aversion for every x equal to the constant ρ, where 0 < ρ 6= 1, is
u(x) = α + βx1−ρ. For this utility function it is: u0(x) = (1 − ρ)βx−ρ,
u00(x) = −ρ(1−ρ) βx−ρ−1 and rR(x, u) = −x−ρ(1−ρ)βx

−ρ−1

(1−ρ)βx−ρ = ρ; for a concave
function we require β(1 − ρ) > 0 ⇒ either β > 0 and 0 < ρ < 1, or β < 0

and ρ > 1. Moreover

rR(x, u) = ρ⇒−xu
00(x)

u0(x)
= ρ⇒ u00(x)

u0(x)
= −ρ

x

⇒ lnu0(x) = −ρ lnx+ ln k = lnκx−ρ

⇒ u0(x) = κx−ρ ⇒ u(x) = α+ (1− ρ)κx1−ρ;

in general, u(x) = α+βx1−ρ. A decision maker with this utility function will
invest the same proportion of her wealth in a risky asset, independently of
her level of wealth.

The general form of a v.N-M utility function with a coefficient of relative
risk aversion equal to 1 for every x is u(x) = α + β lnx, where β > 0.
For this utility function it is: u0(x) = β

x
> 0, u00(x) = − β

x2
< 0 and

rR(x, u) = −x
− β

x2
β
x

= 1. Note also that

rR(x, u) = −x
u00(x)

u0(x)
= 1⇒−xu00(x) = u0(x)⇒ xu00(x) + u0(x) = 0

⇒ xu0(x) = β ⇒ u0(x) =
β

x
⇒ u(x) = α+ β lnx.

13
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The v.N-M utility function u(x) = α + β
√
x, with β > 0, is used

to illustrate several results and applications in this work. For this utility

function it is u0(x) = β
2
√
x

> 0, u00(x) = −βx−
3
2

4
< 0, rA(x, u) =

1
2x

and rR(x, u) =
1
2
. Hence, a decision maker with v.N-M utility function

u(x) = α+ β
√
x has decreasing absolute risk aversion and constant relative

risk aversion. She will be willing to accept more risky alternatives and to
invest a greater amount of her wealth in a risky asset as her level of wealth
increases. However, she would invest the same proportion of her wealth in a
risky asset, independently of her level of wealth.

The v.N-M utility function u(x) = α + β lnx, with β > 0, is also
used below to illustrate several results and applications. For that utility
function it is rA(x, u) =

1
x
and rR(x, u) = 1. Hence, a decision maker

with v.N-M utility function u(x) = α + β lnx has decreasing absolute risk
aversion and constant relative risk aversion. She will be willing to accept
more risky alternatives and to invest the same proportion of her wealth
in a risky asset as her level of wealth increases. Moreover, note that a
decision maker with v.N-M utility function u(x) = α + β lnx is more risk
averse than a decision maker with v.N-M utility function u(x) = α+β

√
x as

rA(x, α+ β lnx) = 1
x
> rA(x, α+ β

√
x) = 1

2x
for every x.

Some of those wealth effects are discussed in the following two exercises:

Exercise A: Wealth, certainty equivalent, risk premium and
probability premium

Consider a consumer with initial wealth equal to w and v.N-M utility
function u(x) =

√
x. For the lottery (36,16;1

2
, 1
2
) how do the certainty

equivalent, the risk premium and the probability premium depend on w?

Solution

The lottery (36,16;1
2
, 1
2
) has mean=26 and certainty equivalent (C) that

increases with w (u(x) =
√
x implies decreasing absolute risk aversion):

√
w + C =

1

2

√
w + 36 +

1

2

√
w + 16
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⇒ C = (
1

2

√
w + 36 +

1

2

√
w + 16)2 − w

and dC
dw

> 0.7 Hence, the risk premium is
√
w + 26−(1

2

√
w + 36+ 1

2

√
w + 16)2

and it decreases with w. Finally the probability premium solves

√
w + 26 = (

1

2
+ π)
√
w + 26 + 10 + (

1

2
− π)
√
w + 26− 10

⇒ π =
√
w+26−0.5(

√
w+26+10+

√
w+26−10)√

w+26+10−
√
w+26−10 , and it may be shown that dπ

dw
< 0.

Exercise B: Wealth, participation in a lottery, certainty
equivalent and risk premium

A decision maker with wealth w and v.N-M utility function u(x) =

k − e−ax may participate in a lottery where he may win z1 (final wealth
w + z1) with probability p or lose z2 (final wealth w − z2) with probability
1 − p. Discuss the effect of w on his decision to participate in that lottery,
considering that z1 > z2.

Do the certainty equivalent and the risk premium depend on the wealth of
the decision maker? Calculate the certainty equivalent and the risk premium
when a = 2, p = 0.4, z1 = 5 and z2 = 3 and when a = 0.5, p = 0.9, z1 = 5
and z2 = 3.

Solution

The decision maker would participate in the lottery if

p(k−e−a(w+z1))+(1−p)(k−e−a(w−z2)) > k−e−aw ⇔−pe−az1−(1−p)eaz2 > −1,

which is independent of w (note that the v.N-M utility function implies
constant absolute risk aversion and then any risk is either accepted at all
levels of wealth or rejected at all levels of wealth).

7Note that d(( 12
√
w+36+ 1

2

√
w+16)2−w)

dw = 1
2

−
√
(w+36)

√
(w+16)+w+26√

(w+36)
√
(w+16)

> 0

⇔ w + 26 >
p
(w + 36)

p
(w + 16)⇔ w2 + 52w + 676 > w2 + 52w + 576.
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The certainty equivalent C of that lottery is

k − e−a(w+C) = p(k − e−a(w+z1)) + (1− p)(k − e−a(w−z2))

⇔ −e−a(w+C) = −e−aw(pe−az1 + (1− p)eaz2)

⇔ −e−aC = −(pe−az1 + (1− p)eaz2)⇔ aC ln e = ln(pe−az1 + (1− p)eaz2)−1

⇒ C =
1

a
ln

1

pe−az1 + (1− p) eaz2

Hence, the risk premium is pz1 + (1 − p)(−z2) − 1
a
ln 1

pe−az1+(1−p)eaz2 . The
certainty equivalent and the risk premium do not depend on w (the v.N-M
utility function implies constant absolute risk aversion).

If a = 2, p = 0.4, z1 = 5 and z2 = 3, we have C = −2. 744 6. As C < 0

the decision maker does not want to participate in that lottery. In this case
the risk premium is 0.4(5) + 0.6(−3)− (−2. 744 6) = 2. 944 6.

If a = 0.5, p = 0.9, z1 = 5 and z2 = 3, it is C = 1. 3 and the risk premium
is 0.9(5) + 0.1(−3)− 1.3 = 2. 9.

4 Comparison of risky alternatives in terms
of return and risk

Any decision maker may compare any pair of risky assets using her v.N-
M utility function and the expected utility theory. However, in practice it
is often difficult to find an agent’s utility function. In this section I focus
on comparisons among monetary payoff distributions, without considering
particular utility functions.

4.1 First-order stochastic dominance

Let us assume in this section and in section 4.2 that all payoff distributions
F (.) are such that F (0) = 0 and F (x̂) = 1 for some x̂.
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First-order stochastic dominance captures the idea of dominance through
higher returns. We say that the distribution F (.) first-order stochastically
dominates the distribution G(.) (F (.) FSD G(.)) if every expected utility
maximizer who values more over less prefers the distribution F (.) to the
distribution G(.). Hence, F (.) FSD G(.) if, for every nondecreasing v.N-M
utility function u(x), we haveZ

u(x)dF (x) ≥
Z

u(x)dG(x). (2)

If F (.) FSD G(.) it is not true that every possible outcome under F (.) is
greater than every possible outcome under G(.). However, F (.) FSD G(.) if
and only if F (x) ≤ G(x) for every x.

If F (.) FSDG(.) then the mean of x under G(.) (
R
xdG(x)) cannot exceed

that under F (.) (
R
xdF (x)). This can be proved taking u(x) = x in (2). The

contrary, however, is not true: we may have
R
xdF (x) >

R
xdG(x) but F (.)

does not first-order stochastically dominate G(.). To prove this latter result
consider the following distributions

F (x) =

⎧⎨⎩ 0 x < 1
1
4

1 ≤ x < 3
1 3 ≤ x ≤ x̂

and

G(x) =

½
0 x < 2
1 2 ≤ x ≤ x̂

We have
R
xdF (x) = 1

4
1 + 3

4
3 = 2.5 >

R
xdG(x) = 2, but F (.) does not

stochastically dominate G(.).

If some probability mass is transferred from a low monetary outcome to
higher monetary outcomes, the initial distribution is first-order stochastically
dominated by the latter one. Such a shift of probability mass is known as a
first-order stochastically dominating shift.

First-order stochastic dominance is a partial ordering: there are pairs of
payoff distributions such that no one first-order stochastically dominates the
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other. If distributions F (.) and G(.) cannot be ordered according to the first-
order stochastic dominance ordering, there exist monotone increasing v.N-M
utility functions such that, under those utility functions, the expected utility
of F (.) is greater than the expected utility of G(.), and there also exist other
monotone increasing v.N-M utility functions such that, under these other
utility functions, the expected utility of G(.) is greater than the expected
utility of F (.).8

4.2 Second-order stochastic dominance

Second-order stochastic dominance captures the idea of dominance
through lower risk. If every risk averter prefers the distribution F (.) to
the distribution G(.) we say that F (.) second-order stochastically dominates
G(.) (F (.) SSD G(.)). Hence, for any two distributions F (.) and G(.) with
the same mean, F (.) SSD G(.) if, for every nondecreasing concave utility
function, we have Z

u(x)dF (x) ≥
Z

u(x)dG(x).

It may be proved that F (.) SSD G(.) if and only if9Z x

0

G(t)dt ≥
Z x

0

F (t)dt (3)

for every x ≤ x̃. Moreover, if F (.) SSD G(.) then it is
R
xdF (x) ≥

R
xdG(x).

If F (.) FSD G(.) then F (.) SSD G(.). However, the contrary is not true.
First-order stochastic dominance is a stronger requirement than second-order
stochastic dominance.

8Other stochastic orderings, as the likelihood ratio and hazard-rate orderings, are
stronger requirements than first-order stochastic dominance. It may be proved that if
F (.) is larger than G(.) in the sense of the monotone hazard-rate condition, then F (.) is
larger than G(.) in the sense of the monotone likelihood ratio condition. Moreover, if F (.)
is larger than G(.) in the sense of the monotone likelihood ratio condition, then F (.) FSD
G(.). See Wolfstetter (1999), section 4.3.3.

9See Hadar and Rusell (1969) and Rothschild and Stiglitz (1970).
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Second-order stochastic dominance is a partial ordering: there are pairs of
payoff distributions such that no one second-order stochastically dominates
the other.10

If H(.) is a distribution independent of distributions F (.) and G(.) then
for any a > 0 and b ≥ 0 we have:11
i) F (.) FSD G(.)⇒ aF (.) + bH(.) FSD aG(.) + bH(.)

ii) F (.) SSD G(.)⇒ aF (.) + bH(.) SSD aG(.) + bH(.).

Consider now payoff distributions with the same mean. If F (.) and
G(.) have the same mean (i.e., if

R
xdF (x) =

R
xdG(x)) it is

R x̂
0
F (x)dx =R x̂

0
G(x)dx as, integrating by parts, we haveZ x̂

0

(F (x)−G(x))dx = −
Z x̂

0

xd(F (x)−G(x)) + (F (x̂)−G(x̂))x̂ = 0.

The distribution G(.) is a mean-preserving spread of the distribution F (.)
if the only difference between the two distributions is that the distribution
G(.) has been obtained from the distribution F (.) randomizing each outcome
x in F (.) (or randomizing some outcomes in F (.)), so that instead of that
outcome in G(.) we have the final payoff x + z, where z has a distribution
function Hx(z) with a mean of zero. If the distribution G(.) is a mean-
preserving spread of the distribution F (.), then F (.) SSD G(.).

The distribution G(.) is an elementary increase in risk from the
distribution F (.) if G(.) is generated from F (.) by taking all the probability
assigned in F (.) to an interval [xi,xj] and transferring it to the endpoints xi
and xj in a way that the mean is preserved (hence, an elementary increase in
risk is mean preserving). If G(.) is an elementary increase in risk from F (.),
then F (.) SSD G(.).

Stochastic dominance theory allows us to compare some risky alternatives
regardless of whose utility function we consider. This may be relevant for
10There are other dominance criteria weaker than SSD that allow to order more pairs of

payoffs distributions. For instance, Caballé and Pomansky (1996) define a partial ordering
that uses the mixed utility functions, an important subset of the nondecreasing concave
utility functions.
11See Hadar and Rusell (1971).

19

SARRIKO-ON 1/09



decision making designed to benefit a group, such as a corporate manager
making decisions on behalf of the company’s shareholders.

4.3 The index of riskiness of Aumann and Serrano

Aumann and Serrano (2008) define an index of riskiness (RAS) on risky
alternatives that completes the partial orderings on risky alternatives given
by FSD and by SSD. For any risky alternative L such that

R
xdFL(x) > 0

and PrL(x < 0) > 0, RAS(L) is the solution toZ
e
− x
RAS(L)dFL(x) = 1.

Hence, RAS(L) =
1

a(L)
, where a(L) is the coefficient of absolute risk aversion

of the individual of the CARA decision maker which is indifferent between
accepting and rejecting the risky alternative:

R
e−a(L)(w+x)dFL(x) = e−a(L)w

(
R
e−a(L)xdFL(x) is the expected utility of that decision maker when he

accepts the risky alternative L and e−a(L)w is his utility when he does not
accept the risky alternative L: see section 3.4).

Note that this index of riskiness depends only on the distribution of the
risky alternative and not on the utility of the decision maker or his wealth.
Some properties of RAS are the following:
i) RAS is continuous (when two risky alternatives are likely to be close,

their riskiness levels are close).
ii) If the distribution of L first-order stochastically dominates the

distribution of L0, it will be RAS(L) < RAS(L
0).

iii) If the distribution of L second-order stochastically dominates the
distribution of L0, it will be RAS(L) < RAS(L

0).
iv) If L and L0 are (statistically) independent andRAS(L) < RAS(L

0) then
RAS(L) ≤ RAS(L+L0) ≤ RAS(L

0), with equalities when RAS(L) = RAS(L
0).

If L and L0 are not (statistically) independent then RAS(L+L0) < RAS(L)+

RAS(L
0), with equality only when L0 is a positive multiple of L.

v) RAS is more sensitive to the loss side of a risky alternative than to its
gain side.
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If we measure riskiness using the A&S index we also have that:12

i) given two risky alternatives L and L0 such that RAS(L) < RAS(L
0), a

risk averse decision maker may prefer L0 to L,
ii) given two risky alternatives L and L0 such that RAS(L) < RAS(L

0), a
non-CARA risk averse decision maker may accept L0 and reject L,
iii) a risk averse decision maker may not be indifferent between two risky

alternatives with the same level of riskiness, and
iv) given two risky alternatives with the same level of riskiness, a risk

averse decision maker may accept one of those risky alternatives and reject
the other.
As a consequence of i) to iv), RAS is a quantification of riskiness that, for

the moment, does not help most investors and other decision makers make
their decisions. Further research on this index is required.

5 Applications

This section analyzes some applications of the previous definitions and
results. The applications considered are insurance, investment in risky
assets and portfolio selection, risk sharing, taxes and income underreporting,
deposit insurance, and bank loans. The applications are presented by means
of Exercises and their solutions. In all situations considered it is assumed
that the decision maker’s preferences satisfy the axioms of expected utility.

To shorten the presentation I do not include in the solutions of the
Exercises the second order conditions for the interior solutions obtained.
However, it is easy to check that those second order conditions are satisfied
in every interior solution. Often, the problem to solve is a maximization
problem with only one decision variable. In that case the second order
condition for the interior solution is satisfied when the second derivative
of the objective function with respect to the decision variable is negative for
every value of that decision variable.

12See Usategui (2008).
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5.1 Two types of decision problems under risk

Most applications presented in this work may be included within two
general problems of decision making under risk: the problem where the
decision maker invests in a risky alternative and the problem where the
decision maker buys insurance to reduce his exposure to risk.

5.1.1 Investment in a risky alternative

A risk averse decision maker with v.N-M utility function u(x) wants to
invest an amount of wealth equal to w at time 0. She must decide the
amount s to invest in a risky alternative that pays 1 + z1 at time 1 with
probability p per unit invested and 1 + z2 at time 1 with probability 1 − p

per unit invested, where z1 > z2. The wealth w− s not invested in the risky
alternative is invested in a riskless alternative that at time 1 pays always
1 + r per unit invested. Consider that there is no discounting of the future.

As the decision maker is risk averse, a necessary condition for an strictly
positive investment in the risky alternative is pz1+ (1− p)z2 > r. Moreover,
a necessary condition for an strictly positive demand of the safe, or riskless,
alternative is min {z1, z2} < r. Hence, z1 > r > z2 is required.

To obtain s the decision maker solves

max
s

p.u(w + sz1 + r(w − s)) + (1− p).u(w + sz2 + r(w − s))

subject to s ≤ w. The first order condition for an interior solution is

p(z1− r).u0(w+ sz1+ r(w− s)) + (1− p)(z2− r).u0(w+ sz2+ r(w− s)) = 0.
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5.1.2 Investment to reduce risk

A risk averse decision maker with v.N-M utility function u(x) and wealth
w faces a risky situation where he may lose L with probability p. The decision
maker may buy insurance or invest in a risk shifting contract. He has to
choose the level α of partial coverage to buy, with 0 ≤ α ≤ 1. When α = 1

there will be full coverage of the possible loss and when 0 < α < 1 there will
be partial coverage of that loss. The price of a level α of partial coverage is
αm.

The expected wealth of the decision maker without loss coverage is w−pL.
To decide on the amount of coverage to buy, the decision maker will solve

max
α
(1− p)u(w − αm) + pu(w − αm− L+ αL)

The first order condition is

−m(1− p)u0(w − αm) + p(L−m)u0(w − L+ α(L−m)) ≤ 0

with equality if α > 0.13

5.2 Insurance

Exercise C: Full and partial insurance

An individual owns a house with value equal to 300000. There is a
probability equal to 0.05 that the house will burn down completely in a
fire. The individual can insure his house against a loss from this fire. The
premium for full insurance is 17000. The individual has other wealth equal
to 100000 in non-risky assets.

13Note that the second order condition is satisfied as u00(x) < 0.
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i) What is the expected profit to the insurance company from this full
insurance policy? Is this insurance policy actuarially fair?

ii) If the individual were risk neutral, would he buy this full insurance
policy?

iii) If the individual had v.N-M utility function u(x) =
√
x, would he

buy this full insurance policy? Which is the maximum premium that he is
willing to pay for full insurance? If, instead, the individual had v.N-M utility
function u(x) = lnx, which would be the maximum premium that he would
be willing to pay for full insurance?

iv) Consider that the individual could buy partial insurance β, with
0 ≤ β ≤ 1, such that if he paid a premium equal to 17000β he would receive
a compensation from the insurance company, in the event of fire, equal to
300000β. What level of partial insurance would select an individual with v.N-
M utility function u(x) =

√
x? If, instead, the individual had v.N-M utility

function u(x) = lnx, would he select a greater level of partial insurance?

v) If the individual had other wealth equal to 140000 in non-risky assets
and his v.N-M utility function were u(x) =

√
x, what level of partial

insurance would he select? How does α depend on the total wealth of the
individual?

vi) If the individual had reduced the risk of loss to (1 − γ)300000, with
0 ≤ γ ≤ 1, by investing in fire protection, what level of partial insurance
would he select when his v.N-M utility function is u(x) =

√
x and the

insurance premium is (1− γ)17000? (Consider that the individual has other
wealth equal to 100000 in non-risky assets).

vii) If the insurance policy included a deductible equal to D and the
individual had v.N-M utility function u(x) =

√
x, which would be the

maximum premium that he would be willing to pay for full insurance?
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Solution

i) Insurance is actuarially fair when the insurance premium is equal
to the expected compensation from the insurance company. As 17000 >

0.05(300000) = 15000, this insurance policy is not actuarially fair. The
expected profit of the insurance company is 17000− 0.05(300000) = 2000.14

ii) As 0.95(400000)+0.05(100000) = 385000 > 400000−17000 = 383000,
the individual would not buy that insurance policy. The expected monetary
value is smaller under the insurance policy.

iii) As 0.95
√
400000+0.05

√
100000 = 616. 64 and

√
383000 = 618. 87, the

individual would buy that insurance policy. For this risk averse individual
the reduction in exposure to risk makes up for the loss in expected monetary
value under the insurance policy. The maximum premium m he is willing to
pay for full insurance is

√
400000−m = 0.95

√
400000 + 0.05

√
100000⇔ m = 19750.

As 0.95 ln(400000) + 0.05 ln(100000) = 12. 83 and ln(383000) = 12. 856,
the individual would also buy that insurance policy when u(x) = lnx. The
maximum premiumm that the individual would pay for full insurance in this
case would solve

ln(400000−m) = 0.95 ln(400000) + 0.05 ln(100000)⇔ m = 26787.

The individual is willing to pay more for full insurance when u(x) = lnx.
An individual with u(x) = lnx is more risk averse than an individual with
u(x) =

√
x, as rA(x, lnx) = 1

x
> 1

2x
= rA(x,

√
x), and, therefore, is willing

to pay more for full insurance (the risk premium of the risky alternative
is greater for an individual with u(x) = lnx than for an individual with
u(x) =

√
x).

14We can consider that insurance companies are risk neutral as they insure many
different and independent risks, and there is a very high probability that the profits they
obtain are very close to the expected profits from insuring all those risks.
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iv) This is a particular case of section 5.1.2 where w = 400000, L =

300000, p = 0.05 and m = 17000. Hence, when u(x) =
√
x the individual

will solve

max
α
(0.95

√
400000− 17000α+ 0.05

√
100000 + 283000α)

The first order condition for an interior solution (first derivative of the
objective function with respect to α equal to 0) is in this case

−2. 5323
p
(1000 + 2830α)− 283

p
(4000− 170α)p

(4000− 170α)
p
(1000 + 2830α)

= 0.

Therefore, the individual will decide α∗ = 0.699.

When u(x) = lnx the individual will solve

max
α
(0.95 ln(400000− 17000α) + 0.05 ln(100000 + 283000α))

The first order condition for an interior solution is

−4045 + 4811α
(−400 + 17α) (100 + 283α) = 0⇒ α∗ = 0.841.

The individual buys a greater level of insurance when u(x) = lnx. An
individual with u(x) = lnx is more risk averse than an individual with
u(x) =

√
x, and, therefore, buys a greater amount of insurance (prefers

to buy a less risky asset).

v) With other wealth equal to 140000 in non-risky assets the individual
will solve

max
α
(0.95

√
440000− 17000α+ 0.05

√
140000 + 283000α)

From the first order condition for an interior solution it is α∗ = 0, 668.

As there is decreasing absolute risk aversion when u(x) =
√
x, the

individual buys a lower level of partial insurance when his wealth increases.
This analysis of the effect of the change in wealth on the level of insurance
bought considers that the size of the risk is fixed as wealth changes (the
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individual does not move to a more expensive house as his wealth increases).
However, we know that a DARA decision maker invests more in risky assets
when he becomes wealthier and, as he assumes more risk, he may decide to
buy more insurance (in total, even though he buys less insurance for each risk
he faces). As the v.N-M utility functions considered imply constant relative
risk aversion, the individual would select the same value of α if the value
of the house, the amount of other wealth held by the individual and the
insurance premium changed in the same proportion.

vi) The individual will solve

max
α
(0.95

p
400000− γ17000α+ 0.05

p
100000 + 300000(1− γ) + γ283000α)

From the first order condition for an interior solution it is α∗ = 9.

713−0.323+1. 043(1− γ)
10(1−γ) .

As α∗ decreases with γ and 9. 713−0.323+1. 043(1− γ)
10(1−γ) = 0 ⇒ γ = . 690, the

decision maker will not buy insurance when γ ≥ 0.690 and he will buy partial
insurance α = 9. 713−0.323+1. 043(1− γ)

10(1−γ) when γ < 0.690.

vii) The maximum premium m that the individual would pay for full
insurance would solve

0.95
√
400000−m+ 0.05

√
400000−m−D = 0.95

√
400000 + 0.05

√
100000

⇔ m = −24832 + 2. 777 8× 10−3D + 21. 697
p
(4225 000− 10D)

As m decreases with D, the maximum premium that the individual is willing
to pay for full insurance diminishes with the level of the deductible.

Exercise D: Insurance actuarially fair and insurance coverage

A risk averse decision maker with v.N-M utility function u(x) and wealth
w runs a risk of a loss equal to L. The probability of the loss is p. The
decision maker may buy insurance and the insurance premium is e per unit
of loss covered. The decision maker has to decide the number β of units of
loss to insure. If β = L there will be full insurance and if β < L there will

27

SARRIKO-ON 1/09



be partial insurance. Solve the maximization problem of the decision maker
in the following contexts:

i) Insurance is actuarially fair

ii) Insurance is not actuarially fair

Solution

This situation is analogous to the one considered in section 5.1.2, with
α = β

L
and m = eL.

i) When insurance is actuarially fair it is e = p. Then from the first order
condition in section 5.1.2 we have

−u0(w − βp) + u0(w − L+ β(1− p)) ≤ 0

with equality if β > 0.

The solution cannot be β = 0 as u0(w−L) > u0(w). Then in the solution
it is β > 0 and

−u0(w − βp) + u0(w − L+ β(1− p)) = 0

As u0(.) is strictly decreasing this implies w−βp = w−L+β(1−p)⇒ β = L.

When insurance is actuarially fair, the decision maker buys full insurance.
The final wealth of the decision maker is w−pL, regardless of the occurrence
of the loss.

Note that when e = p the expected wealth of the decision maker is

(1− p)(w − βp) + p(w − βp− L+ β) = w − βp− pL+ βp = w − pL

As this expected wealth is independent of β and it is reached with certainty
when β = L, full insurance is selected by the risk averse decision maker.

28

SARRIKO-ON 1/09



ii) When insurance is not actuarially fair it is e > p. Note that
e > p ⇒ e − pe > p − ep ⇒ e(1 − p) > p(1 − e). In this case a possible
solution is β = 0. However, if β > 0 it is

−e(1− p)u0(w − αe) + p(1− e)u0(w − L+ β(1− e)) = 0

⇒ u0(w − L+ β(1− e)) =
e(1− p)

p(1− e)
u0(w − βe) > u0(w − βe)

⇒ w − L+ β(1− e) < w − βe⇒ β < L.

When insurance is not actuarially fair, the decision maker does not buy
full insurance. The final wealth of the decision maker would be w − βe if
there were no loss and w − βe − L + β if the loss occurred. His expected
wealth is

(1− p)(w − βe) + p(w − βe− L+ β) = w − pL− β(e− p)

This expected wealth is smaller than the expected wealth without insurance.
However, the decision maker reduces the dispersion of his final wealth when
he buys partial insurance.

When insurance is not actuarially fair, the decision maker will not buy
full insurance even if his degree of risk aversion were very high. The reason is
that for a very small level of risk, individual behavior towards risk approaches
risk neutrality. Any risk averse decision maker prefers to retain some risk,
buying partial insurance, and increase his wealth by saving in policy premium
payment.

Exercise E: Insurance policies and second order stochastic
dominance

The wealth of a decision maker is invested in an asset with actual value
equal to 90000. This asset is subject to a random loss that has a uniform
density in [0, 90000]. When the insurance policies are actuarially fair:

i) Which is the premium corresponding to a deductible of D = 30000?
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ii) Which is the level of partial insurance that would induce the same
premium?

iii) If there were a maximum indemnity I that the insurance company
would pay, which value of I would yield the same premium as in i)?

iv) Which of the three policies will be preferred by a risk averter?

Solution

i) The maximum that the insurance company will pay in this case is
60000. Hence, the actuarially fair premium (the premium that is equal
to the expected indemnity to be paid by the insurance company) will beR 90000
30000

x−30000
90000

dx = 20000.

ii) Let α be the level of partial insurance, with 0 ≤ α ≤ 1, that the
decision maker buys. It isZ 90000

0

αx

90000
dx =

α(90000)2

2(90000)
= 20000⇒ α∗ =

4

9
.

iii) It isZ I

0

x

90000
dx+

Z 90000

I

I

90000
dx = − 1

180 000
I2 + I = 20000⇒ I∗ = 22918.

iv) A risk averter prefers the deductible to partial insurance and he also
prefers partial insurance to the policy with a maximum indemnity. To prove
this let us compare the wealth distributions of the decision maker in each
case. It occurs that the wealth distribution in the case of deductible second
order stochastically dominates the wealth distribution with partial insurance,
and the wealth distribution with partial insurance second order stochastically
dominates the wealth distribution with the indemnity.
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The distribution function of wealth of the decision maker with the
deductible is

FD =

⎧⎨⎩ 0 x < 60000

x
90000

60000 ≤ x ≤ 90000

The distribution function of wealth of the decision maker with partial
insurance is

Fα =

⎧⎨⎩
0 x < 90000(4

9
) = 40000

x−40000
90000−40000 40000 ≤ x ≤ 90000

The distribution function of wealth of the decision maker with the
indemnity is

FI =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x < 22918

x−22918
90000

22918 ≤ x < 90000

1 x = 90000

From these distribution functions we have:Z x

0

Fα(t)dt−
Z x

0

FD(t)dt

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x < 40000R x

40000
t−40000

90000−40000dt 40000 ≤ x < 60000R x
40000

t−40000
90000−40000dt−

R x
60000

t
90000

dt 60000 ≤ x ≤ 90000
and Z x

0

FI(t)dt−
Z x

0

Fα(t)dt =
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 22918R x
22918

t−22918
90000

dt 22918 ≤ x < 40000R x
22918

t−22918
90000

dt−
R x
40000

t−40000
90000−40000dt 40000 ≤ x < 90000R 90000

22918
t−22918
90000

dt−
R 90000
40000

t−40000
90000−40000dt = 0 x = 90000

Note that, for 60000 ≤ x ≤ 90000, it is

Z x

0

Fα(t)dt−
Z x

0

FD(t)dt =

Z x

40000

t− 40000
90000− 40000dt−

Z x

60000

t

90000
dt

=
1

225 000
x2 − 4

5
x+ 36 000

and it is not difficult to prove that this expression is positive for 60000 ≤
x < 90000. Hence, from (3) in section 4.2, the deductible second order
stochastically dominates partial insurance and a risk averter prefers the
deductible to partial insurance.

We also have, for 40000 ≤ x < 90000:

Z x

0

FI(t)dt−
Z x

0

Fα(t)dt =

Z x

22918

t− 22918
90000

dt−
Z x

40000

t− 40000
90000− 40000dt

= − 1

225 000
x2 +

24 541

45 000
x− 588 691 319

45 000

and it is not difficult to prove that this expression is positive for 40000 ≤
x < 90000. Hence, from (3) in section 4.2, partial insurance second order
stochastically dominates a policy with a maximum indemnity and a risk
averter prefers partial insurance to that fixed maximum indemnity.
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Exercise F: Insurance and investment to reduce the probability
of loss

A decision maker with v.N-M utility function u(x) =
√
x has wealth equal

to 10000 and runs a risk of a loss of 3600. The probability of this loss is 0.2.

i) The decision maker may buy insurance to cover totally this loss at a
price m. Which is the maximum amount that she is willing to pay for that
insurance?

ii) Consider now that the decision maker cannot buy insurance but she
has the possibility of reducing the probability of loss to 0.1 by investing H in
internal security against that risk. When H = 600 will the decision maker be
willing to make that investment? If the probability of loss were π(H), with
π0(H) < 0, state the problem that the decision maker would solve to decide
on the amount to invest in internal security.

Solution

i) She will buy the insurance if

0.8
√
10000−m+ 0.2

√
10000−m > 0.8

√
10000 + 0.2

√
10000− 3600

i.e., if
√
10000−m > 96⇔ 10000−m > 9216⇔ m < 10000− 9216 = 784.

The expected indemnity of the insurer is 0.2(3600) = 720. If m > 720 the
insurer would obtain positive profits. The decision maker is willing to pay
for the insurance more than the expected loss (720) because he is risk averse
(he is willing to pay a positive risk premium to insure against the loss he
faces).

ii) The investment H will be made when

0.9
√
10000−H + 0.1

√
10000−H − 3600

> 0.8
√
10000 + 0.2

√
10000− 3600 = 96

When the required H were 600, the investment would not be made as
0.9
√
10000− 600 + 0.1

√
10000− 600− 3600 = 94.874 < 96. The maximum
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investment that the decision maker would be willing to make to reduce the
probability of loss to 0.1 would be

0.9
√
10000−H + 0.1

√
10000−H − 3600 = 96⇒ H∗ = 386. 17.

In general, we can consider that the probability of the loss depends on the
amount invested (amount of costly effort incurred to reduce that probability):
p(H), with p0(H) < 0 and p00(H) > 0. With a probability of loss given by
the function p(H) the decision maker would solve

max
H
(1− p(H))

√
10000−H + p(H)

√
10000−H − 3600.

Exercise G: Insurance policies with several independent risks

A decision maker owns two assets. Each asset has a value of 100 and is
subject to risk of full loss with probability 0.2. However, the two risks are
independent. The decision maker may buy actuarially fair insurance premia
to cover the risks.

i) If the decision maker had a budget of 18 to spend on insurance premia
in order to cover (partially) the risks, analyze how the insurance budget
would be distributed between the two risks.

ii) Consider that the decision maker is offered full insurance with a
deductible of 55 for each risky asset. Calculate the premium and the final
wealth with these deductibles.

iii) Consider that the decision maker is offered full insurance with a joint
deductible on the aggregate loss for the same premium as in ii). Which will be
the amount of this joint deductible on the aggregate loss? Will the decision
maker prefer this joint deductible to the two independent deductibles of ii)?
Why?
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Solution

i) Let us denote by αi the proportion of the loss in asset i that is insured by
the decision maker, with i = 1, 2. The insurance premium that the decision
maker will have to pay to insure asset i is 0.2αi(100) = 20αi, with i = 1, 2.
As insurance is actuarially fair the decision maker will spend all his insurance
budget (insurance reduces dispersion without changing the expected wealth
of the decision maker): 20α1 + 20α2 = 18⇒ α2 = 0.9− α1. Let us consider
without loss of generality that α1 ≥ α2. The expected wealth of the decision
maker is

0.04(100α1+100α2)+0.16(100+100α2)+0.16(100α1+100)+0.64(200)−18

= 0.04(90) + 0.32(145) + 0.64(200)− 18 = 160

and it is independent of α1 and α2. However, the dispersion of the wealth of
the consumer depends on α1 and α2.

The distribution function of the wealth of the decision maker is

F (x, α1, α2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x < 100α1 + 100α2 − 18 = 72
0.04 72 ≤ x < 82 + 100α2
0.20 82 + 100α2 ≤ x < 82 + 100α1
0.36 82 + 100α1 ≤ x < 200− 18 = 182
1 x ≤ 182

and depends on the pair (α1, α2). A set of distributions is obtained from all
pairs (α1, α2) such that α1 + α2 = 0.9. Among these distributions, we have
from (3) in section 4.2 that partial insurance with proportions α1 = α2 =

0.9
2

second order stochastically dominates all other partial insurance policies with
pairs (α1,α2) such that α1 + α2 = 0.9 and α1 > α2. The distribution
corresponding to any situation where α1 > α2 is second order stochastically
dominated by the distribution corresponding to a situation with α̂1 and α̂2

such that α̂1 = α1 − ε, α̂2 = α2 + ε and ε ≤ α1−α2
2
.

Hence, a risk averse decision maker will select α1 = α2 =
0.9
2
= 0.45.

ii) The total premium for full insurance with those deductibles is
2(0.2(100− 55)) = 18. The distribution of final wealth of the decision maker
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is

F (x, 55, 55) =

⎧⎪⎪⎨⎪⎪⎩
0 x < 2(45)− 18 = 72
0.04 72 ≤ x < 100 + 45− 18 = 127
0.36 127 ≤ x < 200− 18 = 182
1 x ≤ 182

iii) The joint deductible D will satisfy 0.04(200−D) + 0.32(100−D) =

18⇒ D = 61. 111.

With this joint deductible the expected wealth of the decision maker is

0.36(200− 61.111) + 0.64(200)− 18 = 160

The distribution of final wealth of the decision maker is

F (x, 61.111) =

⎧⎨⎩ 0 x < 200− 61.111− 18 = 120. 89
0.36 120. 89 ≤ x < 200− 18 = 182
1 x ≤ 182

Hence, from (3) in section 4.2 we have that this joint deductible second order
stochastically dominates the independent deduction for each risky asset of
ii). Hence, a risk averse decision maker will prefer this joint deductible to
the independent deduction for each risky asset of ii).

5.3 Investment in risky assets and portfolio selection

Exercise H: Value of risky assets. Investment in risky assets.

A decision maker has v.N-M utility function u(x) =
√
x and wealth

w = 500.

i) If the decision maker accepts the lottery (100,-100; p, 1 − p), which is
the minimum value of p?

ii) If p = 2
3
and the decision maker owns the lottery (100,-100; p, 1− p),

what is the minimum price he will sell it for?
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iii) If p = 2
3
and the decision maker does not own the lottery (100,-100;

p, 1− p), what is the maximum price he will be willing to pay for it?

iv) Which is the minimum value of H required to make the lottery
(H,−100; p, 1− p) acceptable?

v) What is the minimum amount M that has to be paid to the decision
maker to induce him to accept the lottery (100,-100;1

2
, 1− 1

2
)?

vi) Determine the amount s that this decision maker would invest in a
risky asset that pays 2s with probability 1

2
+ γ and 0 with probability 1

2
− γ,

where 0 < γ < 1
2
. Explain the variation of s with γ.

vii) How would a change in the level of wealth of the decision maker affect
the values obtained in your answers to questions i) to vi)?

Solution

i) It must be p
√
600 + (1− p)

√
400 >

√
500⇒ p >

√
500−

√
400√

600−
√
400
= 0.525.

ii) The decision maker will be willing to sell the lottery at any price S such
that

√
500 + S ≥ 2

3

√
600 + 1

3

√
400. The minimum selling price will be such

that
√
500 + S = 2

3

√
600 + 1

3

√
400 ⇒ S = 28.84 (at this price the decision

maker is indifferent between selling and not selling the lottery).

iii) The decision maker will be willing to buy the lottery at any price B
such that

√
500 ≤ 2

3

√
600−B + 1

3

√
400−B. The maximum price he would

be willing to pay for the lottery will be such that
√
500 = 2

3

√
600−B +

1
3

√
400−B ⇒ B = 28. 565.

Note that as 28.565 < 28.84, an owner of the lottery with w = 500 would
not be able to sell the lottery to a buyer that also has w = 500.
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iv) The lottery is acceptable if p
√
w +H + (1 − p)

√
w − 100 >√

w. The minimum value of H that makes the lottery acceptable
is such that p

√
w +H + (1 − p)

√
w − 100 =

√
w ⇒ H = −w +

1
p2

¡√
w − (1− p)

√
w − 100

¢2
. If w = 500 it is H = 1

p2
(20p+ 2.361)2 − 500.

v) As w = 500 it is
1
2

√
500 + 100 +M + (1− 1

2
)
√
500− 100 +M =

√
500⇒M = 5.

vi) This is particular case of the problem discussed in section 5.1.1 where
z1 = 1, z2 = −1 and r = 0, and, hence, (1

2
+ γ)z1 + (

1
2
− γ)z2 > r and

z1 > r > z2, as required. From that section we know that the first order
condition for an interior solution is

1
2
+ γ

2
√
500 + s

−
1
2
− γ

2
√
500− s

= 0

and the interior solution is s∗ = 2000
1+4γ2

γ. Note that γ > 0⇒ s∗ > 0 (this is a
general result: if a risk is actuarially favorable and the decision maker may
decide the amount of the risky asset to buy, then a risk averter will always
accept at least a small amount of it)15 Moreover, ds∗

dγ
> 0.

vii) The v.N-M utility function u(x) =
√
x implies decreasing absolute

risk aversion (when w increases the decision maker is willing to accept more
risks).16

The minimum value of p in part i) decreases with wealth (when w

increases the decision maker is willing to accept more risks, i.e., to accept a
lottery with smaller winning probability in this case). To accept the lottery
it must be

p
√
w + 100 + (1− p)

√
w − 100 >

√
w⇒ p >

√
w −
√
w − 100√

w + 100−
√
w − 100

It is easy to check that dp
dw

< 0.

15See, for instance, Mas-Colell et al. (1995), Example 6.C.2.
16I refer to risks that imply absolute gains and losses from current wealth
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The minimum selling price in part ii) increases with wealth (when w

increases the decision maker is willing to accept more risks, i.e., in this case
his willingness to get rid of any risk is smaller and he only accepts to get rid
of the risk for a higher selling price). For instance, if w = 600 the minimum
selling price is such that

√
600 + S = 2

3

√
700 + 1

3

√
500⇒ S = 29. 604 and if

w = 800 it is
√
800 + S = 2

3

√
900 + 1

3

√
700⇒ S = 30. 545.

The maximum buying price of part iii) increases with wealth (when w

increases the decision maker is willing to accept more risks, i.e., in this
case he is willing to pay more to participate in the lottery proposed). For
instance, if w = 600 the maximum buying price is such that

√
600 =

2
3

√
700−B + 1

3

√
500−B ⇒ B = 29. 408 and if w = 800 it is

√
800 =

2
3

√
900−B + 1

3

√
700−B ⇒ B = 30. 433.

The value ofH in iv) decreases with wealth (whenw increases the decision
maker is willing to accept more risks, i.e., in this case he is willing to accept
a lottery that pays less in the case of good outcome). From iv) it may be
shown that dH

dw
< 0.

The value ofM in v) decreases with wealth (when w increases the decision
maker is willing to accept more risks, i.e., in this case he has to be paid less
to accept the lottery). From v) it is

1

2

√
w +M + 100 + (1− 1

2
)
√
w +M − 100 =

√
w

and it may be shown that dM
dw

< 0.

From vi) the first order condition for an interior solution is (see section
5.1.1)

1
2
+γ

2
√
w+s
−

1
2
−γ

2
√
w−s = 0 and the interior solution is s

∗ = 4w
1+4γ2

γ. We have
that s increases with wealth (when w increases the decision maker is willing
to accept more risks, i.e., in this case he is willing to invest more in the risky
asset).
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Exercise I: Degree of risk aversion and investment in a risky
asset

A decision maker with wealth w and v.N-M utility function u(x) = ln(x)

must decide the amount s she will invest in a lottery, or risky asset, with a
probability p of receiving y1 per unit invested (final wealth w+s(y1−1)) and
a probability 1−p of receiving y2 per unit invested (final wealth w+s(y2−1)),
with y1 > y2. The wealth not invested in the risky asset is invested in a safe
or riskless asset that pays always 1 per unit invested. Solve for z in the
general case and analyze how z changes with the parameters of the problem.
Obtain z when p = 0.5, z1 = 3 and z2 = 0. Analyze how z depends on w.

Solve again the exercise considering that the v.N-M utility function is,
instead, u(x) =

√
x. Use the coefficients of absolute risk aversion to explain

why the decision maker invests more in the risky asset with one utility
function than with the other.

Solution

This is a particular case of the problem discussed in section 5.1.1 where
z1 = y1 − 1, z2 = y2 − 1 and r = 0. From that section we have that
p(y1−1)+(1−p)(y2−1) > 0 is a necessary condition for an strictly positive
investment in the risky asset and y1−1 > 0 > y2−1 is a necessary condition
for an strictly positive demand of the safe, or riskless, asset.

From section 5.1.1 the first order condition for an interior solution is

p(y1 − 1)
w + s(y1 − 1)

+
(1− p)(y2 − 1)
w + s(y2 − 1)

= 0

and the interior solution is s∗ = w (py1+(1−p)y2)−1
(y1−1)(1−y2) > 0. The solution will be

s∗ = w (py1+(1−p)y2)−1
(y1−1)(1−y2) if (py1+(1−p)y2)−1

(y1−1)(1−y2) < 1 and s∗∗ = w (corner solution) if
(py1+(1−p)y2)−1
(y1−1)(1−y2) ≥ 1.

The interior solution s∗ increases with p and it also increases with w (the
v.N-M utility function implies decreasing absolute risk aversion; hence, when
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w increases the decision maker is willing to accept more risks, i.e., in this
case she is willing to invest more in the risky asset, or to keep less money
in the riskless asset). However, we know that this utility function implies
constant relative risk aversion (equal to 1). Therefore, the decision maker
invests the same proportion of her wealth in the risky asset, independently
of her level of wealth: that proportion is (py1+(1−p)y2)−1

(y1−1)(1−y2) of his wealth in this
case. Moreover, ds∗

dy1
> 0 and ds∗

dy2
> 0.

When p = 0.5, y1 = 3 and y2 = 0, it is s = w
4
. The decision maker invests

1
4
of her wealth in the risky asset and maintains 3

4
of her wealth in the safe,

or riskless, asset.

When u(x) =
√
x, from section 5.1.1 we know that the first order

condition for an interior solution is

p(y1 − 1)
2
p
w + s(y1 − 1)

+
(1− p)(y2 − 1)
2
p
w + s(y2 − 1)

= 0

and the interior solution is

s∗ =
w (py1 + 1− y2 − 2p+ py2) ((py1 + (1− p)y2)− 1)
(y1 − 1) (1− y2) (−y2 + 1 + 2py2 − 2p− p2y2 + p2y1)

.

In this case we may have a corner solution s = 0. When y1 = 3 and
y2 = 0 it is s = 1

2
w−1+2p+3p2

1−2p+3p2 . When p < 1
3
the solution will be s = 0, as

p < 1
3
⇔ −1+2p+3p2

1−2p+3p2 < 0.

If p = 0.5, y1 = 3 and y2 = 0, it is s = w
2
. We have that s increases

with w (the v.N-M utility function implies decreasing absolute risk aversion;
hence, when w increases the decision maker is willing to accept more risks,
i.e., in this case she is willing to invest more in the risky asset, or to keep
less money in the riskless asset). However, we know that this utility function
implies constant relative risk aversion (equal to 1

2
); hence, the decision maker

invests the same proportion of her wealth in the risky asset, independently
of her level of wealth: that proportion is 1

2
in this case).

The decision maker invests less in the risky asset when u(x) = lnx because
a decision maker with u(x) = lnx is more risk averse than a decision maker
with u(x) =

√
x, as rA(x, lnx) = 1

x
> 1

2x
= rA(x,

√
x).
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Exercise J: Portfolio selection (1)

A decision maker with v.N-M utility function u(x) = ln(x) wants to invest
an amount of wealth equal to w at time 0. She must decide the amount s to
invest in a risky asset that pays 1 + z1 at time 1 with probability p per unit
invested and 1+ z2 at time 1 with probability 1− p per unit invested, where
z1 > z2. The wealth w − s not invested in the risky asset is invested in a
government bond that at time 1 pays always 1+r per unit invested. Consider
that there is no discounting of the future. Solve for s in the general case and
analyze how s changes with p and with w. Obtain s when p = 0.5, r = 0.1,
z1 = 0.3 and z2 = −0.06. If the v.N-M utility function were u(x) =

√
x,

would s be greater than when the v.N-M utility function is u(x) = lnx?
Why?

Solution

From 5.1.1 the first order condition for an interior solution is

p(z1 − r)

w + sz1 + r(w − s)
+

(1− p)(z2 − r)

w + sz2 + r(w − s)
= 0

and the interior solution is s∗ = w (1+r)(pz1+(1−p)z2−r)
(z1−r)(r−z2) > 0. The solution will

be s∗ = w (1+r)(pz1+(1−p)z2−r)
(z1−r)(r−z2) if (1+r)(pz1+(1−p)z2−r)

(z1−r)(r−z2) < 1 and s∗∗ = w (corner

solution) if (1+r)(pz1+(1−p)z2−r)
(z1−r)(r−z2) ≥ 1.

The interior solution s∗ increases with p and it also increases with w (the
v.N-M utility function implies decreasing absolute risk aversion; hence, when
w increases the decision maker is willing to accept more risks, i.e., in this
case she is willing to invest more in the risky asset, or to keep less money
in the riskless asset). However, we know that this utility function implies
constant relative risk aversion (equal to 1). Therefore, the decision maker
invests the same proportion of her wealth in the risky asset, independently
of her level of wealth: that proportion is (1+r)(pz1+(1−p)z2−r)

(z2−r)(r−z1) of his wealth in
this case. Moreover,ds

∗

dz1
> 0 and ds∗

dz2
> 0.
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When p = 0.5, r = 0.1, z1 = 0.3 and z2 = −0.06 it is s∗ = . 687 5w

(note that it is pz1 + (1− p)z2 > r and z1 > r > z2 as required: see section
5.1.1) The decision maker invests 68.75% of her wealth in the risky asset and
31.25% of her wealth in bonds.

When the v.N-M utility function is u(x) =
√
x, the decision maker will

invest more in the risky asset because a decision maker with u(x) = lnx is
more risk averse than a decision maker with u(x) =

√
x, as rA(x, lnx) = 1

x
>

1
2x
= rA(x,

√
x).

Exercise K: Portfolio selection (2)

A decision maker with wealth w and v.N-M utility function u(x) = ln(x)

wants to invest an amount of wealth equal to w at time 0. She must decide
the amount z she will invest in a lottery, or risky asset, with a probability p
of winning t1% at time 1 and a probability 1 − p of winning t2% at time 1,
where t1 > t2. The wealth w− z not invested in the risky asset is invested in
a government bond that at time 1 pays always 1+ r per unit invested. Solve
for z in the general case and analyze how z changes with the parameters of
the problem. Obtain z when p = 0.6, t1 = 0.3 and t2 = −0.2. Analyze how
z depends on w.

Solve again the exercise considering that the v.N-M utility function is,
instead, u(x) =

√
x. Use the coefficients of absolute risk aversion to explain

why the decision maker invests more in the risky asset with one utility
function than with the other.

Solution

Proceed as in the previous exercise (it is the same situation).
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5.4 Other applications

5.4.1 Risk sharing

Exercise L: Risk sharing

Investor A has wealth equal to 30000 and v.N-M utility function u(x) =√
x. Will this investor invest all her wealth (30000) in a project that returns

0 with probability 1/2 (the initial outlay is lost) and returns 110000 with
probability 1/2? If there is another investor B with the same wealth and
v.N-M utility function as investor A, will investors A and B want to share
the project (sharing means that each investor puts up 15000 and they split
the proceeds of the investment)?

Solution

Investor A will not invest in the project as√
30000− (1

2

√
0 + 1

2

√
110000) = 7. 373 8 > 0.

Investors A and B will want to share the project as√
30000− (1

2

√
15000 + 1

2

√
15000 + 55000) = −20. 320 < 0.

Risk sharing makes the project feasible.

5.4.2 Taxes and income underreporting

Exercise M: Taxes and income underreporting

The income of a risk averse individual is taxed at a rate t. He has earned
some extra income in an amount equal to y and he is considering not to
report that extra income to avoid the corresponding tax payment. If he is
caught underreporting his income he will have to pay αt for every unit of
income he failed to report, with α > 1 (the taxes owed plus a fine). If he
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underreports his income, the probability of being caught is p. Answer the
following questions, in the context of the expected utility theory:

i) To avoid underreporting of earned income the government is considering
two policies: an increase of a 10% in p and an increase of 10% in α. Which
policy has more possibilities of reducing underreporting by the individual we
have considered?

ii) If the v.N-M utility function of the individual is u(x) = ln(x),
y = 10000, t = 0.40 and the initial wealth of the individual is 0, obtain the
amount of extra income that the individual will fail to report as a function
of α and p.

iii) Consider that the individual has initial wealth equal to w. Otherwise,
the situation is the same as in ii). How does the extra income that the
individual will fail to report depends on w? Obtain that extra income.

Solution

i) Consider that the individual, in case of income underreporting, does
not report his extra income at all. The cases where the individual may
underreport a fraction of his extra income will be considered in ii) and
iii) below. With the old levels of the policies the expected net extra
income of the individual, if he decided not to report his extra income,
was: (1 − p)y + p(y − αty) = y − pαty. With the two new levels of the
policies the expected net extra income of the individual, if he decided not to
report his extra income, would be: y − 1.1pαty (the same for the two new
levels of the policies). However, when there is a 10% increase in p the extra
income of the individual if he is caught underreporting will be y − αty, and
when there is a 10% increase in α the extra income of the individual if he
is caught underreporting will be y − 1.1αty. We know that a risk averse
individual who faces two alternatives with the same expected gains selects
the alternative with less dispersion of outcomes. Hence, the individual in
this case prefers a 10% increase in p. As a consequence, the government
must select a 10% increase in α as this policy will have more possibilities of
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reducing underreporting.17 If the individual were risk neutral, the effect on
income disclosure of the two policy changes would be the same.

ii) Let s be the amount of extra income that the individual will fail
to report. If he is not caught underreporting, his final wealth will be
(y − s)(1 − 0.4) + s = y(1 − 0.4) + 0.4s. If he is caught underreporting,
his final wealth will be (y− s)(1−0.4)+ s−0.4αs = y(1−0.4)+0.4(1−α)s.
Therefore, this situation is a particular case of the problem discussed in
section 5.1.1 where w = y(1 − 0.4), z1 = 0.4, z2 = 0.4(1 − α), r = 0,
and the risky alternative (underreporting the income y) pays 1 + z1 with
probability 1 − p per unit invested and 1 + z2 with probability p per unit
invested (the individual faces a risky gamble that provides a net gain of 0.4
per unit invested with probability 1− p and a net loss of 0.4(α− 1) per unit
invested with probability p). Note that z1 > r > z2, as required, and that
(1− p)z1 + (p)z2 > r⇔ αp < 1.

In this case the individual will solve

max
z
(1− p) ln(6000 + 0.4s) + p ln(6000 + 0.4(1− α)s)

subject to z ≤ y. From the first order condition the interior solution is
z∗ = 15000(1−αp)

α−1 . Note that z∗ > 0 ⇔ αp < 1. This interior solution
requires 0 < 15000(1−αp)

α−1 < y. If αp ≥ 1 the individual will report all his
income. If 15000(1−αp)

α−1 ≥ y, the individual will not report any income to
the tax administration. At the interior solution it is ∂z∗

∂p
< 0 and ∂z∗

∂α
=

15000 p−1
(−1+α)2 < 0.

Let us compare, as in i), the case where p is increased in 10% and the
case where α is increased in 10%. The interior solutions in those cases will
be z∗(1.1p, α) = 15000(1−1.1αp)

α−1 and z∗(p, 1.1α) = 15000(1−1.1αp)
1.1α−1 . As z∗(1.1p,

α) > z∗(p, 1.1α) the government prefers a 10% increase in α, as in i).

iii) When the individual has initial wealth equal to w, he will solve

max
z
(1− p) ln(w + 6000 + 0.4z) + p ln(w + 6000 + 0.4(1− α)z)

17If the costs of implementation of the two policies were different, the government might
take into account the difference in implementation costs in the selection of the policy to
reduce income underreporting.
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From the first order condition the solution is z∗ = (2.5w+15000)(1−αp)
α−1 . Note that

z∗ > 0 ⇔ αp < 1. Moreover, ∂z∗

∂p
< 0 and ∂z∗

∂α
= (2.5w + 15000) p−1

(−1+α)2 < 0.

Finally, ∂z∗

∂w
> 0 if αp < 1: the individual will fail to report more extra

income when his wealth increases. As this individual has a v.N-M utility
function with decreasing absolute risk aversion, he will invest more in the
risky gamble (he will underreport more income and take the risk to pay a
greater fine) as his wealth increases.

The result of the comparison of an increase of a 10% in p and an increase
of 10% in α is as in part ii).

5.4.3 Deposit insurance

Exercise N: Bank solvency and deposit insurance

A decision maker with v.N-M utility function u(x) =
√
x has a deposit of

20000 in a bank. The depositor thinks that a year from now the bank will be
solvent with a probability of 0.99. The deposit could be withdrawn from the
bank at a cost of 100 at any time. The depositor is insured for γ per cent of
the deposit. Study the decision to withdraw the deposit as a function of γ.

Solution

The decision maker will withdraw the deposit if

√
20000− 100 > 0, 99

√
20000 + 0.01

p
γ20000

⇔ 141, 07 > 140, 01 + 1, 414
√
γ ⇔ γ < 0.562,

and he will maintain the deposit if γ ≥ 0.562.
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5.4.4 Bank loan

Exercise O: Bank loan and collateral

An investor with v.N-M utility function u(x) =
√
x may undertake a

project that requires an initial investment of 80000, and that returns 0 with
probability 1/2 (the initial investment is lost) and 200000 with probability
1/2. The investor only owns A in assets, with A < 80000. She may borrow
80000 from a bank to finance the project. The bank requires the investor to
bring A as collateral (the situation would be the same if the investor borrows
80000−A from the bank and the bank does not recover the loan if the project
fails). Which is the maximum interest rate that this investor will be willing
to pay to the bank?

Solution

The maximum interest rate that the investor will be willing to pay to the
bank will solve

0.5
√
0 + 0.5

p
A+ 200000− 80000(1 + r) =

√
A⇔ r = 1.5− 3. 75× 10−5A

As r decreases with A, the maximum interest rate that the investor is willing
to pay to the bank diminishes with the level of the collateral. However, we
have

r = 1.5− 3. 75× 10−5A > 0⇔ A < 40000

Hence, the investor would not undertake the project (as she would not be
willing to pay a positive interest rate for a bank loan) when A > 40000. Risk
aversion and limited responsibility on the side of the investor explain that
she is willing to undertake the project only when A < 40000.
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