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Abstract
This paper explores the benefits of including age-structure in the control rule (HCR)
when decision makers regard their (age-structured) models as approximations. We
find that introducing age structure into the HCR reduces both the volatility of the
spawning biomass and the yield. Although at a fairly imprecise level the benefits
are lower, there are still major advantages for actual assessment precision of the case
study. Moreover, we find that when age-structure is included in the HCR the relative
ranking of different policies in terms of variance in biomass and yield does not differ.
These results are shown both theoretically and numerically by applying the model to
the Southern Hake fishery.
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1 Introduction

Fishery biologists have long called for economic models based on more complex, more
accurate biological models. A crucial extension of biological complexity is the in-
clusion of age-structure. Biomass based models have been criticized often for their
poor performance. For example Hilborn and Walters [23] claim that age structure
models should be used, and biomass based models should be considered only if data
are not available. Wilen [37] also notes that the biomass approach is too simplistic
for empirical applications and policy making. Similar remarks are found in dynamic
optimization studies, such as Tahvonen [33], [32].

Yet, there has been an upsurge of bioeconomic models that incorporate age into
the biological dimension1. However Harvesting Control Rules biomass based continue
to be widely used (Daroba [16]). Most of the criticism comes from the additional
data and knowledge required to correctly estimate age structure. Moreover, it is
commonly assumed that when it is not possible to estimate age-structure with near-
perfect accuracy a robust approach implies the use of simple rules.

The contribution of this paper is to show the benefits of introducing age structure
into harvest control rules even when it is not possible to estimate that structure with
near-perfect accuracy. The gains from adding age structure depend on the accuracy of
the estimates. As the imprecision increases, the benefits of introducing age structure
relative to using a simple biomass based rule decrease. Moreover, we show that, unlike
simpler rules, including age-structure in the control rule reduces stock volatility and
generates a positive correlation between variances in biomass and yield.

We develop a theoretical model where the goal of the manager is to stabilize the
resource close to a target point. Fishery managers usually use harvest control rules
based on the use of target reference points which are indicators of a stock status
which is a desirable target for management 2. In our case, this reference point is
exogenously given, and the manager must avoid the risk of the stock dropping below
a limit point.

We assume that decision makers estimate age-structure with non-perfect accuracy
(see Cope and Punt,[9]). Thus, at each point in time and for all age levels, the man-
ager makes an estimation error when applying the optimal harvest control. Moreover,
we are implicitly assuming that there exists model uncertainty on the Stock Recruit-
ment relationship that can be backed by having uncertainty in the stock recruitment
process.

1See Da Rocha [15], [11],[12], [13], [14], Dichmont [18], Diekert[19], Grafton [20], Kompas [28],
Skonhoft [31], Tahvonen [35] and Voss [34].

2These are usually related to the size of the stock biomass and the fishing mortality associated
with this stock size, see [7])
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We show the results in two steps. Firstly, we show that the benefits of including
age-structure in the control rule clearly hold for the case of stochastic recruitment.
We find that in HCRs that account for the age structure of the biomass the volatility
of the stock decreases. We also find that the optimal fishing mortality decreases
as the correlation of the stochastic recruitment process increases. The intuition of
this result is that a higher correlation implies higher persistence and smoother future
recruitment levels. Thus, if the target level is far from being met now it is very likely
to remain that way in the following periods. To avoid increasing the gap still further
it is optimal to lower F . The opposite case is when recruitments are independent over
time, i.e. correlation is zero, which means that coming close to the reference point
in the future is independent of the recruitments made in the current period. Thus,
there are incentives to exploit the stock further for the same recruitment level.

The HCR also depends on the relative age composition of spawners. This result as-
serts that biomass models that ignore age-structure underestimate the optimal fishing
mortality and increase the risk of the stock dropping below a threshold point. We find
that the higher the relative contribution of juveniles to the total spawner biomass is,
the lower the fishing mortality associated with optimal control is. Therefore biomass-
based HCR which do not account for age structure result in an underestimation of
the optimal fishing mortality.

Secondly we show the benefits of including age-structure when it is estimated with
some degree of imprecision by using numerical simulations. Even under incomplete
knowledge of the dynamics, we find that if the goal is to stabilize the resource so that
it does not drop below a limit point, it is advantageous to include age-structure.

These results have direct implications for policy making. First, we show that
using biomass-based HCRs that ignore age-structure increases the gap between the
biomass and the target level. Second, constant-effort harvesting control rules increase
stock volatility and overestimate the risk status of stocks.

Our results contribute to two areas. First, we extend previous findings of the
benefits of introducing age-structure in fisheries management to a stochastic environ-
ment. Second, fishery researchers and international agencies have developed different
methods to take into account the risk carried by different HCRs. In recent years,
management strategy evaluation (MSE) has attempted to deal with this issue (Dich-
mont [17], Francis and Mace [29], Parma [30]). The goal is to understand the trade
offs and limitations of a set of feasible management options, rather than obtaining
the best or optimal solution. Such evaluations are commonly conducted using Monte
Carlo simulation methods to assess the different strategies. While there is literature
on the technical aspects and the practical experience of this method (Kell [26], [27]),
to the best of our knowledge there is no theoretical framework that evaluates the im-
plications of different strategies for the management of an age-structured population
model and derives theoretical conditions from among the managerial tools.
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The rest of the paper is organized as follows. Section 2 draws up a simplified
model with two age classes. From this simplified model it is possible to characterize
the relationship between harvesting control rules (HCR), reference points and the
risk of the stock dropping below a limit point. Section 3 evaluates the impact of
using biomass-based models in inherently age-structured models. Finally, Section
4 generalizes the model to any number of age classes and applies the model the
Southern Hake Fishery to conduct numerical experiments that exemplify the benefits
of introducing age structure into harvest control rules even when it is not possible to
estimate that structure with near-perfect accuracy.

2 The Case of Stochastic Recruitment

A useful simplification of the biological structure of a fishery is to consider a model
with only two age classes: juveniles and adults. This simplification enables analytic
conclusions to be drawn about the relationship between the risk of the stock dropping
below the limit reference point and the target reference point.

2.1 Stock Dynamics

Consider a stochastic version of Hannesson’s [21] fishery based in the Beverton-Holt
model with two age classes, juveniles and adults. Let N1

t , and N2
t be the population

of juveniles and adults in period t, respectively. Each year, t, a stochastic exogenous
number of juvenile fish are born

Nt,1 = exp(zt)

where zt follows an AR(1) process

zt+1 = ρzt + εt+1,

with zero mean, Eεt+1 = 0, and variance σz.

The parameter ρ, the correlation coefficient, defines the relationship between the
number of recruitments today and tomorrow. Note that we are assuming that the
number of juveniles is independent of the spawning biomass of the system. Although
we are assuming stochastic recruitment, we care about spawners in order to stabi-
lize the entire population around the reference point. We are implicitly assuming
that there exists uncertainty on the Stock Recruitment relationship. Therefore, an
stochastic recruitment is considered a better model choice if spawner’s biomass levels
are not far from the target point 3.

Additionally, it is assumed that only a part of the juveniles survive to become
adults next period. The dynamics of the second age group are then:

Nt+1,2 = Nt,1e
−pFt−m,

3In order for the dynamics not to explode, we assume that ρ < 1
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where m is the natural mortality rate and p is the selectivity parameter that indicates
how the fishing effort affects the fishing mortality of juveniles. Thus, the first term in
the exponential represents fishing impacts, while the second refers to mortality due
to natural causes.4

For simplicity, we can do a change of variables, and define the dynamics in loga-
rithm terms. Thus, the stock dynamics become:

logN1 = z

and

logN2 = x

So that the population can be represented as follows:

Time (t)
age classes t t+ 1 t+ 2 t+ 3

log Juveniles z zt
log Adults x zt − pFt −m

Finally, the total biomass of the fishery can be defined as:

Bt = logNt,2,

This equation implies that the spawning stock biomass is an increasing function of
the number of adults in the population and that only a non constant fraction of adults
are spawners.5

2.2 Management of the Fishery

Assume that the fishery is managed to reach an exogenous target reference point.
This target point may be, for example, the Bmsy and the corresponding Fmsy, or any
other target that represents the objectives of the manager 6.

Formally, the manager’s objective is to minimize the distance between the fishing
mortality, Ft, and the biomass, Bt to the target reference point, (Btar, Ftar) subject
to the stock dynamics, where the expectation term is associated with the recruitment
stochastic process, and λ > 0 weights the importance of biomass versus effort-oriented

4One problem of this type of stock dynamics is how to deal with the last age group. For the
purposes of this exercise, we can assume that all adults who are not caught, they die, simulating a
maximum surviving age.

5Note that only a fraction of adults are spawners given that logNt,2 < Nt,2 and that this fraction
logNt,2

Nt,2
is decreasing.

6In this paper we use the Maximum Sustainable Yield, but any other reference point can be
applied [17]
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objectives; in other words, it characterizes the trade offs between the two target
objectives.

We can plot the target in a 2D graph:

∆Ftarget = 0

∆Btarget = 0
Ftarget

Btarget

Figure 1: Biomass and Fishing mortality target point and its isolines

Then choose the desired gap between the state of the stock and the target. This
gap is given by the weight that the manager has on reaching the effort reference point
relative to the biomass target, thus determining whether the fishery is to be managed
by effort-focused control rules or biomass control rules.

∆Ftarget = 0

∆Btarget = 0

λ < 1

λ > 1

Figure 2: Defining the HCR: relating the value of λ and distances to the target point

In other words, the HCR for stochastic age structured models can be defined as
the optimal feedback policy” that minimizes the weighted sum of squares between
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the stock assessment outputs and a given ”biological reference point”. Then, given
this HCR, it is possible to explore the ”dynamics” of the fishery and the implications
of the three managerial tools on reaching the target.

The problem can be stated as follows:

max
Ft,Bt+1

E0

∞∑
t=0

−βt
{

(Ft − Ftar)2 + λ(Bt −Btar)
2
}

s.t.


Bt+1 = zt − pFt −m

zt+1 = ρzt + εt+1.

Note that the state variables of this problem are zt = log(N1,t) and Bt = log(N2,t),
and Ft is the control variable.

One novelty of this approach is that the harvest control rules are characterized in
terms of distances to a target point. The objective is to stabilize the resource around
a desired point. Moreover, the different HCR are given in terms of the value of a
single parameter, λ. Later, it is shown how we can relate different commonly used
HCR to the rules obtained adjusting λ.

The problem can be simplified with the following change of variables: ∆F =
Ft − Ftar, ∆zt = zt − ztar and ∆Bt = Bt − Btar. Now the minimization problem can
be rewritten as:

max
∆Ft,∆Bt+1

E0

∞∑
t=0

−βt
{

∆F 2
t + λ∆B2

t

}

s.t.


∆Bt+1 = ∆zt − p∆Ft

∆zt+1 = ρ∆zt + εt+1.

Note, that the dynamics of the stock are independent of the natural mortality
parameter m.7 The natural mortality of a population, m, is rarely known; it is one of
the largest sources of uncertainty in the biological dynamics of the stock. Thus, one
advantage of using an HCR that minimizes the distance to a given target reference
point is that the HCR is robust with respect to this uncertainty.

The problem can easily be converted into an unconstrained deterministic opti-
mization problem. The solution of the unconstrained problem must verify:

max
∆Ft
−
{

∆F 2
t + λ∆B2

t

}
− β

{
∆F 2

t+1 + λ(∆zt − p∆Ft)2
}
.

7This occurs because when taking differences, Bt+1−Btar = (zt− pFt−m)− (ztar− pFtar−m).
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The first order conditions is

∆Ft − pβλ(∆zt − p∆Ft) = 0.

Solving for the HCR, ∆Ft, we have

∆Ft =
pβλ

1 + p2βλ
∆zt,

which is linear in the state variable ∆zt.
8 Combining the HCR with the dynamics of

the stock, ∆Bt+1 = ∆zt − p∆Ft, we have

∆Bt+1 =
1

1 + p2βλ
∆zt.

Already from this simple model it is possible to start drawing conclusions on the
impact of recruitments and possible implications of the model parameters for the
design of HCR. The first thing to note is that good recruitments imply higher fishing
mortality. While this relation makes intuitive sense, it is important to note that it
will hold independently of any starting point. That is, whatever the spawner biomass
level is, good recruitment in the last year implies higher fishing mortality, even if the
biomass level is lower than Btar. This result is related to Tahvonen [32], [33].

2.3 HCRs and the Role of λ

A second implication of the results above concerns the role of the parameter λ. Note
that the higher λ is, the more weight is given by managers to achieving the target
biomass in the future. Thus, a high λ reduces the possible deviations from the target
biomass. The optimal rule sets that the higher λ is, the higher the variations in fishing
mortality are and the smaller the gap is between Bt+1 and the target. Therefore, by
adjusting the parameter λ, it is possible to parameterize a continuum of HCRs.

Formally, the value of λ determines the slope of the HCR

∆Ft
∆Bt+1

= pβλ

One of the advantages of the model is that the distance control rules can be related
to the common rules used in the relevant literature. By changing the value of λ we can
replicate some of the most widely used rules in real world fisheries (Deroba and Bence
[16]). If λ < 0, the HCR generates a negative relationship between fishing mortality
and biomass, similar to that of a constant catch rule. If λ = 0, the HCR reproduces
a constant fishing mortality rule. If λ > 0 the HCR reproduces a biomass-based rule.
Finally, if λ→∞, the HCR reproduces a constant or fixed escapement rule.

8In this simplified case, the optimal harvest rule is independent of the age-structure of the bio-
logical population. This is due to the simple dynamics imposed on the problem, that only adults
are spawners.
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2.4 HCR and Risk

Many fisheries worldwide use threshold reference points as limit points beyond which
harvesting is decreased or ceased in order to allow for stock rebuilding [16]. Thus
an important question when choosing the optimal HCR and target reference point
is to identify the likelihood of the managed population falling below a given limit
(see Francis and Mace, 2005). As Beddington Agnew and Clark [3] point out it is
important to avoid situations where the stock is at or below this level. Accordingly,
management should aim to target a level of stock size that carries a low risk (allowing
for scientific uncertainty) of the stock dropping below the limit reference point.

Therefore, in this section we develop the theoretical conditions for designing har-
vest control rules for stochastic age-structured models when management wants to
avoid the risk of the stock dropping below a limit point.

By iterating the stochastic process in the stock dynamics

∆Bt+1 =
1

1 + p2βλ
∆zt =

1

1 + p2βλ
(ρ∆zt−1 + εt)

Solving for the total biomass next period we have:

Bt+1 = Btar +

(
ρ

1 + p2βλ

)N
∆zt−k−1 +

N∑
k=1

(
ρ

1 + p2βλ

)k
εt−k

Taking limits, as T goes to infinity

lim
T→∞

Bt+1 = Btar +
∞∑
k=1

(
ρ

1 + p2βλ

)k
εt−k

Assuming that εt is a Gaussian process, then Bt+1 also follows a Gaussian distribution.
Thus, we can easily obtain the biomass moments: the expected value, µB, and its
variance, σB, the mean and variance are given by

µB = Btar

and

σB = σz

∞∑
k=0

(
ρ

1 + p2βλ

)k
=

(1 + p2βλ)2

(1 + p2βλ)2 − ρ2
σz

It is now possible to relate the design of target reference points, in a stochastic
environment, given a predetermined risk level that is to be avoided. Thus, to calculate
the value of λ for which Pr(B ≤ Blim) = v, the cumulative distribution can be used:

Pr(B ≤ Blim) =
1

2

[
1 + erf

(
Blim − µB
σB
√

2

)]
= v

8



where erf is the Gaussian error function. Rearranging terms, we have

λv =

√
ρ2(Blim −Btar)

(Blim −Btar)− σzerf−1(2v − 1)
√

2
− 1

p2β

λv is the HCR for which v is the probability that the stock is below a given threshold
Blim.

The feasible set of HCR compatible with an uncertainty σ can now be character-
ized. Formally we have9

λv


≤ 0 if σz ≤

(1− ρ2)(Btar −Blim)

−erf−1(2v − 1)
√

2

→∞ if σz →
||Btar −Blim||

||erf−1(2v − 1)
√

2||

Figure 4 shows the link between biomass, risk as measured by variance and HCR.
We show how the three elements are related to one another. Thus, not all combi-
nations of reference points and HCR carry an acceptable risk level. For example, if
it is wished to decrease risk while still maintaining a target point of MSY, the HCR
must be changed to a more biomass-based catch or even constant escapement. Sim-
ilarly, if the target reference point is Bmsy and the manager switches from constant
escapement to constant effort controls, the risk of overfishing increases automatically.

Thus,the feasible set in the state space of uncertainty and target reference points
can be characterized by computing the following iso-HCR lines:

dBtar

dσz

∣∣∣∣
λv=0

=
−erf−1(2v − 1))

√
2

(1− ρ2)
> 0

and
dBtar

dσz

∣∣∣∣
λv→∞

= −erf−1(2v − 1))
√

2 > 0

In Figure 4 we can see that for a given a target risk level, Pr(B ≤ Blim) = v,
σz(λv = 0, Bmsy) is the maximum uncertainty compatible with sustaining MSY as the
target reference point. If the uncertainty is between σz(λv = 0, Bmsy) and σz(λv →
∞, Bmsy), MSY is feasible only if we use a biomass based control rule, that is λ > 0.
Therefore, if uncertainty is higher than σz(λv = 0, Bmsy), the target level of fishing
mortality must provide stock sizes above Bmsy.

9Remember that erf−1(2v − 1) < 0 if v < 50%.

9



-

6
Btar

σz�
�
�
�
�
�
�
�
�
�
�
�
�
� λv = 0

�
��
�
��
�
��
�
��
�
��
�
��

λv →∞
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σz(λv →∞, Bmsy)σz(λv = 0, Bmsy)

Figure 3: Feasible HCR set in the uncertainty and target reference points space for a
given risk v.

Let v be the probability that the stock is below a given threshold Blim. Then, if
the uncertainty is such that

σz >
||Bmsy −Blim||
||erf−1(2v − 1)

√
2||

the optimal reference biomass level, Btar, must be higher than Bmsy. This result that
Bmsy should be more of a limit point, rather than the target has become appealing,
given that MSY does not account for stochastic processes. Thus, by moving the target
point above the MSY the risk of overfishing can be reduced.

3 Stochastic Properties of Heuristic HCR

As mentioned in the introduction, while there have been some advances in the intro-
duction of biological structure in bioeconomic models ([33], [15]), there is still much
need for further understanding about the implications of using biomass-based models
in age structured populations. The aim of this section is to evaluate the impact of
applying a heuristic harvesting control rule to a structured population.

3.1 Optimal HCR

Consider the Hannesson fishery [21] with three age-classes, juveniles, pre-adults, and
adults. Let Nt,1 be the population of juveniles, and Nt,2 and Nt,3 be the population
of pre-adults and adults in period t, respectively. Assume also that there is perfect
selectivity on juveniles and the first adult group, i.e. pz = 0 = px1 = 0 and denote
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the second adult selectivity px2 as p, also known as knife-edge selectivity. Thus, the
dynamics of the two adult groups are given by:

Nt+1,2 = Nt,2e
−m

Nt+1,3 = Nt,3e
−pFt−m

where m is the natural mortality rate and p is the selectivity parameter.

Finally, the total biomass of the fishery can be defined as:

Bt =
2∑

a=0

µaNa,t = µze
zt + µx1e

x1,t + µx2e
x2,t

Let us assume that the fishery is managed to reach an exogenously given target
reference point.

max
Ft,xt+1

E0

∞∑
t=0

−βt
{

(Ft − Ftar)2 + λ(Bt −Btar)
2
}

s.t.


1
zt+1

x1,t+1

x2,t+1

 =


1 0 0 0
0 ρ 0 0
0 1 0 0
0 0 1 0




1
zt
x1,t

x2,t

+


0
0
0
−p

Ft +


0
εt+1

0
0


The problem can be simplified with the following change of variables: ∆F =

Ft−Ftar, ∆zt = zt− ztar and ∆Bt = Bt−Btar. Now we can rewrite the minimization
problem as:

max
∆Ft,∆Bt+1

E0

∞∑
t=0

−βt
{

∆F 2
t + λ∆B2

t

}

s.t.


∆zt+1 = ρ∆zt + εt+1

∆xt+1,1 = ∆xt,1
∆xt+1,2 = ∆xt,2 − p∆Ft

Note that the objective function is not a quadratic function of the state, given
that

Bt −Btar = µze
zt + µx1e

x1,t + µx2e
x2,t − µzeztar − µx1ex1,tar − µx2ex2,tar .

It is possible to approximate the objective function using a Taylor expansion of order
two around the target (Btar, Ftar). After the approximation, a standard LQ problem
results.

11



max
yt

E0

∞∑
t=0

βt
{
xTt Rxt + 2yTt Wxt + yTt Qyt

}
s.t. xt+1 = Axt + Byt + εt+1 εt+1 ∼ (0,Σ)

where y = Ft − Ftar, is the control and xT = [1 zt x1,t − x1,tar x2,t − x2,tar] are the
state variables. In this notation, T is used to denote the transpose of a matrix. The
following matrices describe the stock dynamic parameters. R is a matrix of relative
effects; A is a transitional matrix of each age group; B is a vector of the proportions
of stock removed from each age group at each time period, and Σ is the variance-
covariance matrix. In our model W and Q are defined as W1×4 =

[
0 0 0 0

]
and Q1×1 = [−1], and R, A and B are defined as

R4×4 = λ


0 0 0 0
0 −µ2

ze
2ztar −µzµx1eztarex1,tar −µzµx2eztarex2,tar

0 −µx1µzeztarex1,tar −µ2
x1e

2x1,tar −µx1µx2ex1,tarex2,tar
0 −µx2µzeztarex2,tar −µx1µx2ex1,tarex2,tar −µ2

x2
e2x2,tar



A4×4 =


1 0 0 0
0 ρ 0 0
0 1 0 0
0 0 1 0

 B4×1 =


0
0
0
−p


Problems of this type have a special structure which can be exploited to derive

the optimal solution using the Ricatti equation. The optimality condition in LQ is
given by

G = −
(
Q + BTPB

)−1
BTPA

where P verifies the Riccati equation

P = R + ATPA−ATPB
(
Q + BTPB

)−1
BTPA

After substituting for the corresponding matrices, the solution of the maximization
problem for the three age class model is given by the following HCR:

∆F = F − Ftar =
Θ

pΘ + 1

[(
µx1e

x1,tar

µx2e
x2,tar

+ ρ
µze

ztar

µx2e
x2,tar

)
z + ∆x1

]
where Θ = βλpµ2

x2
e2x2,tar . Given the optimal HCR, we introduce the stochastic shocks

to generate the optimal trajectories. Thus, the dynamics of each age class are given
by:

∆zt+1 = ρ∆zt + εt+1

∆x1
t+1 = ∆zt

∆x2
t+1 =

1

pΘ + 1

[
−
(
µx1e

x1,tar

µx2e
x2,tar

+ ρ
µze

ztar

µx2e
x2,tar

)
Θ∆zt + ∆zt−1

]
12
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z

x1

x

x
Biomass frontier B(z, x1) = Btar

x1

x1

z z

B(z, x1) < Btar

B(z, x1) > Btar

A

B

Figure 4: Two populations, A and B, with the same total biomass B(z, x1) = Btar,
but with different age class compositions

It can be seen right away that the optimal HCR and the corresponding stock dy-
namics are different than the optimal solutions obtained under biomass-based models.
Moreover, the solutions depend on the age structure of the model. In the following
section we explore the policy implications of these results, and evaluate the effects of
using biomass based rules in age structured stocks.

3.2 Biomass-Based Catch: Does it Work?

We now evaluate the impact of applying a biomass harvest control rule to a struc-
tured population. This section looks at the effects of using a biomass-based approach
to an age structured model.

As shown above, optimal solutions obtained using LQ methods on the age model
are different from the optimal HCR of biomass models. With a three age class struc-
tured model, the composition plays an important role when determining the HRC.
Note that the policy function accounts for the relative contribution of recruitments

over the total spawning biomass, given by

(
µx1e

x1,tar

µx2e
x2,tar

+ ρ
µze

ztar

µx2e
x2,tar

)
. The higher the

contribution of z and x1 to the total biomass level is, the lower the optimal fishing
mortality. Thus the optimal HCR takes into account the importance of future age
specific contributions to the stock level.

Moreover, by allowing there to be a spawning population in both age classes it is
possible to infer the importance of the correlation coefficient of the stock recuitment
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process. The correlation parameter, ρ, is the persistence of the system, and it is
related to having smooth recruitments over time. A higher ρ implies that fishing
mortality should be decreased and stock level x increased. Therefore, if the system is
far off target today, it will probably continue to be off target in future periods. Thus,
to decrease the distance to the reference point, F is decreased. The other extreme
case is if there is no correlation between spawners. In this case, getting closer to
the target point is independent of recruitments today. Thus, since the system only
behaves randomly, high recruitment implies higher fishing mortality in the HCR.

Even though there has been an upsurge of fishery models that incorporate the
age structure of the biological system, in many cases biomass-based models are till
used in management [16]. What are the implications of the omission of the biological
structure? Consider that we have two populations with a different age composition
but both with the same biomass level, (points A and B in Figure 4). Moreover,
assume that in both populations, the second adult group is at the target point, that
is ∆x2 = 0. A biomass-based HCR determines the optimal control rule as F = Ftar,
for both populations. On the contrary, the optimal age LQ HCR sets:

∆F = F − Ftar =
Θ

pΘ + 1

[(
µx1e

x1,tar

µx2e
x2,tar

+ ρ
µze

ztar

µx2e
x2,tar

)
∆z + log

(
Btar − µ̂zez

µ̂1
x

)]
=

Θ

pΘ + 1

[(
µ̂1
x

µ̂2
x

+ ρ
µ̂z
µ̂2
x

)
∆z + log

(
1 +

µ̂z
µ̂1
x

(1− ez)
)]

where we use the fact that we can write the target Biomass as:

Btar = µ̂z + µ̂1
x + µ̂2

x = µ̂ze
z + µ̂1

xe
x + µ̂2

x = µ̂ze
z + µ̂1

xe
Blim + µ̂2

x

where µ̂j = µje
jtar j = z, x1, x2.

Proposition 1. Let µ̂z → 0. Then heuristic HCR based on biomass underestimates
fishing mortality under high recruitments.

Proof See Appendix.

Therefore, neglecting the biological structure of the resource results in an under-
estimation of the optimal fishing mortality. This result is in line with that obtained
by Tahvonen [33], about the importance of taking age structure into account when
designing and implementing optimal control rules.

3.3 Constant Effort HCR Amplify Risk

As mentioned in the introduction, historically, one the most common target points
is Bmsy and its associated fishing mortality Fmsy. International fisheries agencies
have been using heuristic harvesting control rules to attain this target point. Thus,
constant effort policies are quite common. For example, ICES commonly uses HCR
as follows: F should be Fmsy when the stock is greater than Bmsy and F should be
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reduced when the stock is lower than some trigger biomass lower than Bmsy, to allow
the stock to rebuild [3]. In this section we evaluate the implications of constant effort
rules, λ = 0, and risk.

In order to obtain analytical results, now assume that ρ = 0 and z are uniformly
distributed in the interval [−σ, σ]. Then, we can calculate the variance of the Biomass
of the population as:

V ar(B) = E
[(
µ̂ze

εt+1 + µ̂1
xe
εt + µ̂2

xe
θ1εt+θ2εt−1 − E(B)

)2
]

=
1

8σ3

∫ +σ

−σ

∫ +σ

−σ

∫ +σ

−σ

(
µ̂ze

εt+1 + µ̂1
xe
εt + µ̂2

xe
θ1εt+θ2εt−1

)2
dεt+1dεtdεt−1 − E(B)

where we use the fact that B = µ̂ze
∆z + µ̂1

xe
∆x1 + µ̂2

xe
∆x2 and

∆x2
t+1 = θ1∆zt + θ2∆zt−1

with

θ1 =
−Θ

pΘ + 1

(
µx1e

x1,tar

µx2e
x2,tar

+ ρ
µze

ztar

µx2e
x2,tar

)
< 0

θ2 =
1

pΘ + 1
∈ (0, 1).

Now consider a constant effort HCR which implements Ftar for all possible states,
such as F = Fmsy. The following proposition shows that for plausible values of
recruitment volatility, an optimal HCR with positive biomass weight, λ > 0, always
reduces the biomass volatility.

Proposition 2. Let F = Ftar for all possible states, i.e. λ = 0. If σ < sinh−1(1)/2,
Biomass volatility can be reduced by applying a HCR with a positive λ.

Proof See Appendix.

This proposition has direct implications in policy design. If fisheries need to be
managed to diminish the risk of the stock collapsing, the aim should be to design
policies that assign more weight to biomass goals, λ > 0, such as biomass based catch
control rules or constant escapement rules. Thus, implementing constant effort rules
amplifies future risk by increasing the biomass volatility of the stock. Since the risk
is higher, other control policies, such as total allowable catches and quotas are lower
than optimal.

4 HCR Evaluation under Non-perfect Accuracy

Estimation

The objective of this section is to illustrate with a simple numerical example of a
hake fishery the propositions and implications of the results described throughout
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Table 1: Biological Data from the Southern Hake Recovery Plan
Age N weight maturity ma pa
0 78856.7 0.00 0.0181 0.4 0.076
1 49006.5 0.05 0.1194 0.4 0.317
2 23915.4 0.33 0.5000 0.4 0.559
3 9164.5 0.90 0.8806 0.4 0.623
4 3293.3 1.71 0.9819 0.4 0.633
5 1171.9 2.70 0.9975 0.4 0.635
6 416.4 3.79 0.9997 0.4 0.635
7 148.0 4.93 1.0000 0.4 0.635
8 52.6 6.06 1.0000 0.4 0.635
9 18.7 7.14 1.0000 0.4 0.635
10 6.6 8.16 1.0000 0.4 0.635
11 2.4 9.09 1.0000 0.4 0.635
12 0.8 9.94 1.0000 0.4 0.635
13 0.3 10.70 1.0000 0.4 0.635

the paper. To that end, we extend the model to a general case. With any number of
age classes the population dynamics is a simple extension of the previous three age
classes model. Thus, the models is analogous to the one in Section 3. Each year t,
an exogenous number of juvenile fishes are born.

Nt,1 = exp(zt)

where zt follows an AR(1) process

zt+1 = ρzt + σzεt+1

with zero mean and variance σz. Moreover, population dynamics are given by:

Nt+1,a+1 = Nt,ae
−paFt−m,

Also, we consider that only a fraction µa of each age class a are spawners. That is

Bt =
A∑
a=1

µaNt,a.

The objective is to minimize the following loose function

∞∑
t=0

−βt
(Ft − Ftar)2 + λ

(
A∑
a=1

µae
xt,a −

A∑
a=1

exmsy,a

)2


In order to solve the minimization problem we use the same tools used in Section
2, first we perform a second order Taylor approximation, and re-write the problem in
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standard LQ matrix form. The LQ problem can be written as:

max
yt

E0

∞∑
t=0

βt
{
xTt Rxt + 2yTt Wxt + yTt Qyt

}

s.t.


1
zt+1

xt+1,2

...
xt+1,A

 =


1 0 0 ... 0 0
ρ 0 0 ... 0 0
−0 1 0 ... 0 0
... ... ... ... ... ...
−0 0 0 ... 0 1




1
zt
xt,2
...
xt,A

+


0
0
−p1

...
−pA−1

Ft +


0
εt+1

εt+1

...
εt+1


where y = Ft−Ftar, xT = [1 zt xt,2−xmsy,2 ... xt,A−xmsy,A] with W1×A+1 = 01×A+1,
Q1×1 = 1 and

RA+1×A+1 = −λ


0 0 0 ... 0
0 (µ1e

ztar)2 µ1µ2e
ztarex2,tar ... µ1µAe

ztarexA,tar

0 µ2µ1e
ztarex2,tar (µ2e

x2,tar)2 ... µ2µAe
x2,tarexA,tar

.... ... ... ... ...
0 µAµ1e

ztarexA,tar µAµ2e
x2,tarexA,tar ... (µAe

xA,tar)2


The model is applied to the Southern Hake Fishery [10]. Data from Table 1 consist

of the main biological parameters of the population used for projections in the Report
of the Southern Hake Recovery Plan. The final data used in the calculations were
obtained by averaging out the data for the last 3 years.

4.1 HCR, reference points, and risk

In order to exemplify the behavior of the LQ HCR, we designed a number of
experiments to assess the quantitative role of the reference point and the weighting
parameter λ in the stock volatility, and apply them to a hake fishery. In particular,
in this first experiment we are concerned with evaluating how much does a reference
point lower than Fmax decreases the volatility. Our results suggest that the answer
depends on the type of HCR used.

We chose two target reference points, Fmax and 2/3Fmax. In a sense, this exper-
iment compares the implications of setting the target point against using a lower,
more preventive point. For these two target points, we then implement four different
HCR, thus characterizing the continuum of feasible HCR. For the experiments, we
consider λ = [−1, 0, 0.2, 1]. These values were chosen to mimic each of the standard
HCRs [16]. Thus, λ = −1 replicates a constant catch rule. A λ = 0 is equivalent to
a constant effort. λ = 0.2 simulates a biomass-based catch. And finally, a constant
escapement rule is design by setting λ = 1. The effect of each HCR is simulated
10000 times for each experiment and each simulation is run over 100 seasons.
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Table 2: Numerical Experiment to evaluate the implications between HCR,
reference points, and risk.

Ftarget = Fmax Ftarget = (2/3)Fmax
λ −0.1000 0.0000 0.2000 1.0000 −0.1000 0.0000 0.2000 1.0000
F 0.9959 1.0000 1.0072 1.0265 0.6598 0.6667 0.6773 0.7011
std (F ) 0.0284 0.0000 0.0496 0.1853 0.0468 0.0000 0.0733 0.2306
SSB 1.1166 1.1001 1.0759 1.0355 1.5851 1.5401 1.4877 1.4390
std (SSB) 0.3094 0.2769 0.2241 0.0972 0.4683 0.3823 0.2629 0.0670
Y ield 2.2638 2.2548 2.2362 2.1700 2.3655 2.3733 2.3573 2.2271
std (Y ield) 0.5854 0.5641 0.5262 0.4349 0.5882 0.5853 0.5720 0.5968
corr(SSB, F ) −0.8734 0.0000 0.8719 0.7756 −0.8652 0.0000 0.8571 0.0717
corr(Y ield, SSB) 0.9996 0.9991 0.9950 0.9205 0.9958 0.9994 0.9839 0.1517

Table 2 summarizes the results of the experiments. The table reports the first
and second moments of the fishing mortality, biomass and yield for different HCR
analyzed under each reference point. The yield for year t, was computed by using
Baranov’s equation [2]

Yt =
A∑
a=0

praωa
paFt

m+ paFt

[
1− e−(paFt+m)

]
ext,a

where ωa is the weight of the a-age class. The table also displays the correlations.
The main results of the simulations can be summarized as:

1. Stock Volatility and Target Points: Comparing the results obtained for the
SSB volatility for both target points, we can see that for HCR that carry a high
weigth on biomass, such as constant escapement rules, stock volatility is reduced
when setting 2/3Fmax (0.067) instead of Fmax (0.097). Thus, reducing the target
point from Fmax to 2/3Fmax reduces the volatility of the stock spawning biomass.

2. Stock Volatility and HCR: Moreover, for both reference points, a higher biomass
weight decreases the volatility. That is, the higher the λ, the lower the volatility.
The values of the variations in SSB go from 0.468 for a constant catch rule, to
0.067 for a constant escapement rule, for the 2/3Fmax reference point. Similar
results are obtained for the Fmax target: the volatility decreases from 0.309 to
0.097. These results exemplify the theoretical results obtained in Proposition
2.

3. Target Points and Yield: Setting all periods F = Fmax it can be the case that
we are not maximizing the yield ([15]). In particular, Da Rocha et al. [15] show
that Fmax is not the optimal solution to maximization problem whenever the
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following inequality holds

H =
n∑
a=1

[
∂2yass
∂F 2

ss

+ yass

(
a−1∑
j=1

βa−j
(
−pj

)2

)]
φass ≥ 0. (1)

with φass =
∏a−1

i=1 e
−(piFss−mi) For our case study, H = 0.0616 > 0. In the nu-

merical simulations we find precisely these results. For target point Fmax, yield
ranges from 2.264 from constant catch rule to 2.170 of the constant escape-
ment. However, when the target point is lowered, 2/3Fmax, the yield obtained
is higher, it ranges from 2.365 to 2.227.

4.2 HCR under misestimation

The next experiment consists on a series of simulations intended to provide an un-
derstanding of the implications of omitting age structure, even if the stock cannot be
estimated with perfect accuracy. The results obtained with the HCR obtained using
LQ are compared to those from a simple biomass-based rule. To simulate inaccu-
rate estimates of the population, in each point in time and for all age structures, the
population is hit with a shock when calculating the optimal stock dynamics.

For the case of the LQ age structured methods, it is assumed that first an estimate
of the population ( x) is drawn up, then the corresponding optimal HCR is obtained
using F = Gx and the control rule is applied, the state of the stock is updated with
the rule and a measurement error.

x(t+ 1) = (A+BG)x+ error

For the biomass-based rule, the SSB is obtained by adding up the optimal age
states (x). Then, a rule based on biomass is applied. For this exercise, the following
is used: if the SSB is above a limit point K ∗ SSB, then F = Fmax is used. If the
SSB for that period is below the limit point, then there is a proportional harvest.

F =


Fmax if SSB > KSSBmax

Fmax × SSB(t)
KSSBmax

if SSB < KSSBmax

The corresponding F is thus obtained, the corresponding dynamics are again
calculated and the measurement errors are added.

xt(:, it+ 1) = A ∗ xt(:, it) +B. ∗ (Ft(it)− Fss) + error

In order to be able to compare the results effectively, the errors used in both
simulations are the same. We chose ρ = 0.95 and an error of mean zero and standard
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deviation ε = [0.2]. For these two precision levels, we then implement four different
HCR (λ = [0, 0.5, .75, 1]). Table 3 and 4 summarizes the results of the experiments.

Table 3: Comparison of results under age-structured HCR and biomass
based rule under perfect accuracy (ρ = 0.95 ε = 0)

LQ SSB
λ 0.0000 0.5000 0.7500 1.0000 0.0000 0.5000 0.7500 1.0000
F 1.0000 1.0018 1.0024 1.0030 1.0000 0.9970 0.9673 0.8913
std (F ) 0.0000 0.1065 0.1473 0.1822 0.0000 0.0130 0.0833 0.1620
SSB 1.0652 1.0344 1.0318 1.0338 1.0652 1.0668 1.0903 1.1737
std (SSB) 0.2724 0.1532 0.1116 0.0799 0.2724 0.2705 0.2490 0.2086
Y ield 2.1821 2.1482 2.1359 2.1251 2.1821 2.1829 2.1949 2.2358
std (Y ield) 0.5546 0.4553 0.4221 0.3973 0.5546 0.5543 0.5575 0.5878
corr(SSB, F ) NaN 0.8502 0.7927 0.6501 NaN 0.1436 0.3356 0.4884
corr(Y ield, SSB) 0.9991 0.9801 0.9469 0.8429 0.9991 0.9986 0.9871 0.9519

Table 4: Comparison of results under age-structured HCR and biomass
based rule under non-perfect accuracy (ρ = 0.95, ε = 0.2)

LQ SSB
λ 0.0000 0.5000 0.7500 1.0000 0.0000 0.5000 0.7500 1.0000
F 1.0000 1.0009 1.0013 1.0016 1.0000 0.9959 0.9640 0.8880
std (F ) 0.0000 0.1083 0.1498 0.1853 0.0000 0.0197 0.0966 0.1724
SSB 1.1038 1.0704 1.0679 1.0705 1.1038 1.1059 1.1315 1.2158
std (SSB) 0.3437 0.2267 0.1909 0.1670 0.3437 0.3417 0.3262 0.3010
Y ield 2.2671 2.2289 2.2157 2.2043 2.2671 2.2680 2.2802 2.3228
std (Y ield) 0.6887 0.5833 0.5481 0.5218 0.6887 0.6896 0.7033 0.7507
corr(SSB, F ) NaN 0.7076 0.5950 0.4172 NaN 0.1526 0.3309 0.4904
corr(Y ield, SSB) 0.9977 0.9677 0.9192 0.8152 0.9977 0.9972 0.9885 0.9658

A comparison of the volatility of both yield and SSB for the age structure rule
relative to the biomass rule under measurement error shows that including age struc-
ture decreases the deviations of the measurements. Morevoer, this result holds for
different values of λ and K.

We now look at the benefits of including age structure but for a range of values
of measurement errors (ε = [0, 0.1, 0.2, 0.3]) and for different values of the correlation
parameter ρ. We repeat the exercise for Yield and SSB. The results are displayed in
the tables below.
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We find that under perfect precision (ε = 0), the advantage of introducing age
structure in the HCR clearly holds. As the imprecission level increases, the model
has larger difficulties to efficiently incorporate that information. However, it is still
beneficial to account for age structure. A second finding deals with the robustness of
the value of the persistence parameter. For both SSB and Yield, as the persistence
parameter increases, the relative volatility tends to decrease, for all error levels. Thus,
highly persistent biological cases tend to carry lower risk.

Lastly, an interesting result is that, counter to what is assumed as common knowl-
edge, the HCR using age structure prescribes the same policy rankings using yield
volatility and SSB volatility. As can be seen, there is a positive correlation between
the two measures, for different levels of the persistence parameter, and also for dif-
ferent levels of imprecision levels.

Table 5: Biomass benefits of including age structure for different correlation
and misestimation errors (relative std (SSB))

λ = 0.5
ρ

ε 0 0.2 0.5 .95
0 0.6952 0.6800 0.6570 0.5663
0.1 0.8487 0.8254 0.7829 0.5957
0.2 0.8739 0.8660 0.8478 0.6636
0.3 0.8757 0.8729 0.8658 0.7420

λ = 0.75
ρ

ε 0 0.2 0.5 .95
0 0.5832 0.5634 0.5331 0.4483
0.1 0.7952 0.7654 0.7115 0.4934
0.2 0.8261 0.8155 0.7923 0.5853
0.3 0.8359 0.8332 0.8262 0.6890

5 Conclusions

In this paper we show that, in contrast to pessimistic views regarding the knowledge of
stock dynamics to implement more complex management rules, age-structured fishery
models can be analytically tractable and can reduce the volatility of biomass and
yield. From a management perspective, empirical estimates of the gains from optimal
harvesting compared to currently applied biomass based rules can be obtained.
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Table 6: Yield benefits of including age structure for different correlation
and misestimation errors (relative std (Y ield))

λ = 0.5
ρ

ε 0 0.2 0.5 .95
0 0.8164 0.8132 0.8127 0.8215
0.1 0.9137 0.8991 0.8774 0.8280
0.2 0.9324 0.9271 0.9164 0.8458
0.3 0.9165 0.9145 0.9100 0.8563

λ = 0.75
ρ

ε 0 0.2 0.5 .95
0 0.7556 0.7505 0.7489 0.7570
0.1 0.8828 0.8637 0.8338 0.7654
0.2 0.8964 0.8847 0.8632 0.7794
0.3 0.8802 0.8769 0.8701 0.8026

We find that with more than two age classes, the HCR depends on the age com-
position of the spawning stock biomass. Also, HCR based on biomass underestimates
fishing mortality under high recruitments. This result is in line with that obtained by
the literature on deterministic age structure dynamic optimization models concerning
the importance of taking age structure into account when designing and implementing
optimal control rules.

The benefits of including age structure are considerable, even if the state of the
stock cannot be estimated with perfect accuracy. For this particular case scenario we
find that data inaccuracy is not excuse for ignoring the biological complexity of the
resource. Moreover, when age structure is used the prescription of HCR in terms of
yield and SSB is the same.

Lastly, it is relevant to point that the use of Linear Quadratic in fishery manage-
ment has large potential benefits. This methodology is flexible while still allowing for
incorporating complex biological structure. Here we look at age structure, but the
model can be easily extended to capture relations in a mixed fishery. Moreover, it
would be of great policy interest to evaluate the economic implications of including
uncertainty in prices and the potential economic trade offs among different harvest
control rules.
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A.2 Proof of Proposition 1

From the expression for the optimal LQ HCR, if z = 0, then the optimal fishing mortality
and stock level is the same as in the heuristic case, with Btar = B and F = Ftar. However,
if we account for recruitment structure, z > 0, then ∆F = F − Ftar. Therefore, the two
optimal policies are no longer equivalent. Additionally assume that µ̂z is a low value, µ̂z → 0,
then the optimal LQ HCR sets a higher fishing mortality, meaning that heuristic HCR

underestimate fishing mortality. Then, If µ̂z → 0 then ∆F = F − Ftar =
Θ

pΘ + 1

(
µ̂1
x

µ̂2
x

)
z

�.

A.3 Proof of Proposition 2

Using the standard formula for calculating the variance of a random variable, the Biomass
volatility is given by:

V ar(B) =
1

8σ3

[
4σ2sinh(2σ)

[
µ̂2
x1 + µ̂2

z

]
+ 16µ̂x1 µ̂zσsinh(σ)2 +

2µ̂2
x2σsinh(2σθ1)sinh(2σθ2)

θ1θ2
+

16µ̂x2 µ̂zsinh(σθ1)sinh(σθ2)sinh(σ)

θ1θ2
+

8µ̂x1 µ̂x2σsinh(σθ2)(e2σ+2σθ1 − 1)

θ2(θ1 + 1)eσ+σθ1

]
− E(B)

where sinh(a) = ea−e−a
2 is the hyperbolic sine function. Now consider a HCR that imple-

ments Ftar for all possible states, such as a constant catch rule. In our model it is equivalent
to calculating the solution of the optimal HCR when λ = 0. In that case θ1 = 0 and θ2 = 1.
Then

V ar(B|λ = 0) =
1

8σ3

[
4σ2sinh(2σ)

[
µ̂2
x1 + µ̂2

z

]
+ 16µ̂x1 µ̂zσsinh(σ)2 +

8µ̂x1 µ̂x2σsinh(σ)(e2σ − 1)

eσ
+

lim
θ1→0

(
2µ̂2

x2σsinh(2σθ1)sinh(2σ)

θ1
+

16µ̂x2 µ̂zsinh(σθ1)sinh(σ)2

θ1

)]
− E(B)

Applying l’Hopital Rule, we have

V ar(B|λ = 0) =
1

8σ3

[
4σ2sinh(2σ)

[
µ̂2
x1 + µ̂2

z

]
+ 16µ̂x1 µ̂zσsinh(σ)2 +

8µ̂x1 µ̂x2σsinh(σ)(e2σ − 1)

eσ
+

2µ̂2
x2σcosh(0)sinh(2σ) + 16µ̂x2 µ̂zcosh(0)sinh(σ)2

]
− E(B)

Then

V ar(B|λ = 0)− V ar(B) =
1

8σ3

[
8µ̂x1 µ̂x2σ

(
sinh(σ)(e2σ − 1)

eσ
− sinh(σθ2)(e2σ+2σθ1 − 1)

θ2(θ1 + 1)eσ+σθ1

)
+

2µ̂2
x2σ

(
cosh(0)sinh(2σ)− sinh(2σθ1)sinh(2σθ2)

θ1θ2

)
+

16µ̂x2 µ̂z

(
cosh(0)sinh(σ)2 − sinh(σθ1)sinh(σθ2)sinh(σ)

θ1θ2

)]
Given that ∀x ∈ [−1, 1], sinh(σ)− sinh(σx)

x and (e2σ−1)
eσ > (e2σ+2σθ1−1)

(θ1+1)eσ+σθ1
(see Figure A.3)

V ar(B|λ = 0)− V ar(B) >
1

8σ3

{
2µ̂2

x2σsinh(2σ) [cosh(0)− sinh(2σ)] +

16µ̂x2 µ̂zsinh(σ)2 [cosh(0)− sinh(σ)]
}

28



0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

−1

−0.5

0

0.5

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

σ
x

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

−1

−0.8

−0.6

−0.4

−0.2

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

σ
θ

1

Figure 5: Hyperbolic sin function properties. Left hand side shows that ∀x ∈ [−1, 1],

sinh(σ)− sinh(σx)
x

> 0 . Right hand side shows that ∀θ1 ∈ [−1, 0], (e2σ−1)
eσ
− (e2σ+2σθ1−1)

(θ1+1)eσ+σθ1
>

0.

Note that the value of the limiting variance is positive if the hyperbolic cosine function in

zero is equal to 1. Then V ar(B|λ = 0)− V ar(B) > 0 if σ ≤ sinh−1(1)

2
= 0.4407 �
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