
Copyright Notice

c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other users, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any
copyrighted components of this work in other works.

The following manuscript

Adaptive Scalable SVD Unit for Fast Processing of Large LSE Problems

was published as a regular paper in

ASAP 2014
25th International Conference on Application-specific Systems, Architectures and Processors

Date of Conference: 18-20 June 2014
Page(s): 17 - 24
INSPEC Accession Number: 14486961
Conference Location: Zurich
DOI: 10.1109/ASAP.2014.6868625
Publisher: IEEE

Abstract in IEEE Xplore

BibTeX citation:

@inproceedings {6868625 ,

author ={Bildosola , Inaki and Martinez -Corral , Unai and Basterretxea , Koldo},

booktitle ={ Application -specific Systems , Architectures and Processors (ASAP), 2014 IEEE

25th International Conference on},

title={ Adaptive scalable SVD unit for fast processing of large LSE problems},

year ={2014} ,

month={June},

pages ={17-24} ,

keywords ={ Singular Value Decomposition (SVD); adaptive threshold; selectable accuracy;

scalable architecture; Field Programmable Gate Array (FPGA); error regularization;

high dimensionality datasets; linear algebraic operation},

doi ={10.1109/ ASAP .2014.6868625} ,}

http://dx.doi.org/10.1109/ASAP.2014.6868625
http://www.ieee.org
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6868625


Adaptive Scalable SVD Unit for Fast Processing of
Large LSE Problems

Iñaki Bildosola and Unai Martinez-Corral
Grupo de Diseño en Electrónica Digital (GDED)
University of the Basque Country (UPV/EHU)

Bilbao, Basque Country, Spain
inaki.bildosola@ehu.es and umartinez012@ikasle.ehu.es

Koldo Basterretxea
Dept. Electronics Technology

University of the Basque Country (UPV/EHU)
Bilbao, Basque Country, Spain

koldo.basterretxea@ehu.es

Abstract—Singular Value Decomposition (SVD) is a key linear
algebraic operation in many scientific and engineering appli-
cations. In particular, many computational intelligence systems
rely on machine learning methods involving high dimensionality
datasets that have to be fast processed for real-time adaptability.
In this paper we describe a practical FPGA (Field Programmable
Gate Array) implementation of a SVD processor for accelerating
the solution of large LSE problems. The design approach has
been comprehensive, from the algorithmic refinement to the
numerical analysis to the customization for an efficient hard-
ware realization. The processing scheme rests on an adaptive
vector rotation evaluator for error regularization that enhances
convergence speed with no penalty on the solution accuracy. The
proposed architecture, which follows a data transfer scheme, is
scalable and based on the interconnection of simple rotations
units, which allows for a trade-off between occupied area and
processing acceleration in the final implementation. This permits
the SVD processor to be implemented both on low-cost and high-
end FPGAs, according to the final application requirements.

Index Terms—Singular Value Decomposition, adaptive thresh-
old, selectable accuracy, scalable architecture, FPGA

I. INTRODUCTION

This work was originally motivated by the need for ac-
celeration of large least square estimation (LSE) problem
solving in embedded processors for computational intelligence
applications. The learning or adaptation algorithms involved
in such information processing-schemes generally give rise
to linear systems defined by large-scale, rank-deficient, and
ill-conditioned matrices. To numerically solve the LSE prob-
lems associated with such matrices various factorization al-
gorithms can be applied, but the SVD is the most accurate
and numerically robust, on balance. This is especially so in
situations when the matrix may be rank-deficient or close
to being rank-deficient as it allows us to determine the so-
called pseudoinverse matrix, which generalizes for arbitrary
matrices the notion of the inverse of a square, invertible
matrix [1]. Due to these properties, the SVD is commonly
used in the solution of unconstrained linear least square
problems, matrix rank estimation, and canonical correlation
analysis. In computational science, it is commonly applied
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in domains such as information retrieval, seismic reflection
tomography, and real-time signal processing. As mentioned,
it is also a key linear algebraic operation at the heart of
many machine learning methods, which often involve on-line
learning and/or massive dataset dimensionality and size [2].
However, when it comes to fast or real-time operation and
when available computational resources are limited (embedded
systems), the required processing time of SVD algorithms on
regular computing architectures may be unacceptably long for
many applications.

In order to fast process the SVD algorithm, the design of
specifically tailored processing architectures implemented on
FPGAs is an increasingly common approach in contemporary
literature. FPGA-based processor implementation allows for
the use of advanced design methods such as pipelining, paral-
lelization, and HW/SW codesign to achieve higher processing
performance for unit area and power consumption [3]. Several
papers have been published where the SVD is implemented
on an FPGA for the factorization of small-scale matrices. In
this sense, most of them are focused on Brent, Luk and Van
Loan’s idea of an expandable square systolic array of simple
2 × 2 processors, based on the two-sided Jacobi algorithm
[4]. An interesting approach described in [5] is based on the
implementation of a customized architecture, not based on
a systolic array, which is validated for medium-scale square
matrix sizes up to 150× 150.

Different methods have been proposed to improve paral-
lelization in order to process larger matrices or achieve higher
processing speed. In [5] the theoretical development of a
stream algorithm for the SVD of non-square m× n matrices,
based on a square array of processors, is described. Making
use of the former theoretical approach, in [6] the one-sided
Jacobi algorithm is implemented in a slightly modified form
(named JRS) and tested with large n×n square matrices up to
1000×1000. However the convergence and the architecture are
not explained thoroughly. An FPGA-based SVD unit prototype
implementation for large, non-square m×n matrix decomposi-
tion is presented in [3], although tests on matrices of up to only
32×127 are performed. In this work, the convergence accuracy
criterion and the solution error linked to it is firstly considered
and set as an important user-defined parameter. Lately, high-
level synthesis flows have been proposed for the automatic



implementation of ‘cone-based propagation’ architectures to
process iterative stencil loop algorithms [7]. In brief, since
many published architectures attempt to theoretically reach
full-parallelization they are based on regular fixed schemes,
usually only small-scale implementation examples are de-
scribed, and no practical optimized performance designs have
been published considering large matrices.

In this work, we present a scalable SVD processing unit
architecture specifically tailored to the factorization of large
matrices, but which can be adapted to process square and non-
square matrices of any size. It can be implemented on both
small and large FPGAs for the best cost/speed trade-off in each
target application. The selected method to perform the SVD
has been firstly optimized by introducing some modifications
to the well-known one-sided Jacobi algorithm with the aim
of speeding up the factorization process by reducing the total
amount of required rotations for a given desired accuracy. In
particular, an adaptive threshold-based decision unit is pro-
posed, which individually optimizes the convergence threshold
(also named rotation threshold) of performed rotations. More-
over, some internal arithmetic operations have been carefully
designed to achieve a computing scheme that makes the most
of available HW resources in FPGAs. Finally, a scalable
parallel processing architecture has been developed based on
a linear array of processing-units (PUs) and a double data-
flow paradigm (FIFO memories and a shared bus) for efficient
data transfer. The performance of the system has been verified
through several study cases and matrix decompositions.

The paper is organized as follows: in Section II a brief
description of different alternatives and parallelization degrees
in the SVD algorithm is given. In Section III, the influence
of matrix conditioning, together with the available computing
precision and obtainable accuracy in the solution are discussed.
Here the concept of convergence threshold is presented as a
user defined parameter, which allows us to obtain a trade-off
between desired accuracy and computing effort. In Section
IV, the concept of Adaptive-Threshold is introduced and its
application to the enhancement of the SVD computation is
exposed. Several results are presented supporting the achieved
improvements in the algorithm’s behaviour. In Section V, the
proposed architecture and the nuclear PU design are described,
along with both theoretical performance and practical imple-
mentation results.

II. SVD ALGORITHM AND PARALLELIZATION

The Singular Value Decomposition (SVD) of an m × n
matrix A is defined by

A = UΣV T (1)

where Σ is a diagonal matrix such that Σ =
diag(σ1, σ2, . . . , σn) where (σ1, σ2, . . . , σn) are the singular
values of A. The U and V matrices are orthogonal matrices
of size m×m and n×n respectively. When the matrix is not
invertible, a pseudo-inverse matrix A+ such that (A+A)T =
A+A (also known as the Moore-Penrose matrix) may be
determined by

A+ = V Σ+UT (2)

where Σ+ is the inverse of Σ, i.e. it is a diagonal matrix
formed by inverted (when non-zero) values of σ1, σ2, . . . , σn.
Thus, when it comes to solving the LSE problem Ax = b, the
solution will be obtained by

x′ = A+b (3)

Among existing SVD algorithms, the Jacobi algorithm in
its two main variants, two-sided and one sided, provides the
best opportunities for parallelization. The original two-sided
algorithm exploits (2) to generate the matrices U and V by
performing a sequence of orthogonal two-sided plane rotations
to the input matrix J l

iAiJ
r
i = Ai+1. Jacobi rotations affect

only two columns/rows i and j of the matrix A, thus allowing
a parallel computation scheme. However, this parallelization,
considering data dependence, is not purely non-conflicting.
Briefly stated, a parallel processing attempt would suppose
that at least two processors would be tackling a different
pair of columns/rows, which means both trying to update
some common elements at the same time. Even though the
convergence of the algorithm can be proved [5], it is not the
best option from a hardware implementation point of view,
since each processor would have to manage two rows and two
columns; this is a complex issue when it comes to processing
large matrices.

The one-sided Jacobi or Hestenes-Jacobi algorithm, pro-
vides a satisfying solution to the above-mentioned problems.
Since it is based on the orthogonalization of pairs of columns,
data sharing is purely non-conflicting [8]. Given an m×n non-
symmetric matrix, the Hestenes-Jacobi method generates an
orthogonal matrix W as a product of plane rotations AV = W .
Thus, the Euclidean norms of the columns of W are the
singular values of A:

σi = ||W(:,i)|| (4)

By normalizing W by its Euclidean length ||W(:,i)|| the U
matrix is obtained:

U(:,i) =
W(:,i)

σi
(5)

The SVD of the matrix is then obtained by AV = W →
AV = UΣ→ A = UΣV T , as defined in (1). Plane rotations
represented by Ak+1 = QkAk, affect only the column-pairs
(Ak

(:,i), A
k
(:,j)). In each rotation the angle θkij is chosen in

such a way that the new column-pairs are orthogonal. This
is done by applying (6) (the formula of Rutishauser [9]), and
performing Givens’ rotations as defined in (7).

tan(2θkij) =
2 · (Ak

(:,i) ∗Ak
(:,j))

||Ak
(:,j)||2 − ||Ak

(:,i)||2
(6)

Ak+1
(:,i) = Ak

(:,i) · cos(θkij)−Ak
(:,j) · sin(θkij)

Ak+1
(:,j) = Ak

(:,i) · sin(θkij)−Ak
(:,j) · cos(θkij)

(7)



Note that exactly the same rotation is performed with the
V matrix.

Based on the Hestenes-Jacobi method, we have imple-
mented a parallelizable algorithm that receives as input argu-
ments the matrix A and a threshold value, which defines when
two columns are to be considered as orthogonalized. This is
an essential parameter for evaluating the convergence of the
algorithm that is of particular relevance when computing with
finite precision processors, as we will see in the next section.
When convergence is verified, the algorithm returns the three
matrices as the result of the factorization.

III. MATRIX CONDITIONING, COMPUTING PRECISION, AND
OBTAINABLE ACCURACY: THE THRESHOLD VALUE

The parameterization of the modified Hestenes-Jacobi al-
gorithm presented here by setting the value of the rotation
threshold will provide the SVD unit with a certain measure
of control over the computing effort to reach a desired level
of accuracy in the solution. However, when dealing with
numerical linear algebraic problems, the condition number of
the matrix, κ(A), plays a central role in the analysis of the
obtainable solution accuracy. At the same time, since finite-
precision processors are used to process the SVD, the effects
of round-off and its derived computing errors will intimately
interact with the aforementioned convergence parameters and
κ(A). For instance, there is no point in setting a very de-
manding rotation threshold value when computing with very
low precision. In the same manner, we cannot expect a very
accurate solution for an ill-conditioned matrix, even if the
algorithm is computed with high precision. In consequence,
it is worth analyzing these numerical issues to have a picture
of what can be expected in terms of solution accuracy before
designing a SVD processing unit.

A. Matrix Conditioning and Computing Precision

The solution accuracy of an overdetermined system Ax = b
is given by the residual vector r = ||Ax′ − b||, with x′

being the least linear square method solution which minimizes
this vector. Thus, as it is well known, κ(A), which defines
how sensitive the problem is to perturbations in the data (A
and b), will directly influence the achievable final solution
accuracy. As a rule of thumb, with κ(A) ≈ 10k, the computed
solution of Ax = b should usually be at least as accurate
as q − k significant digits, where A and b are accurate to
q significant digits. Apart from general theoretical studies,
some papers have analyzed its impact when solving least linear
square problems by iterative methods [10]. In addition, there
is also a limit imposed by the available computing precision
due to the truncation caused by the limited word length
or round-off error. Finally, linked with both the κ(A) and
computing precision, the matrix size (ultimately the number of
unknowns), is also a limiting factor of the achievable solution
accuracy [11] since computing inaccuracies may aggravate as
a consequence of the cumulative propagated error on iterative
algorithms.

Some experimental numerical results are graphically given
below in Figs. 1 and 2, in order to expose how the Hestenes-
Jacobi algorithm in particular is affected by the combination
of the κ(A), the computing precision, and the matrix size. The
matrices were randomly generated in Matlab with a fixed value
of the κ(A) (sprand function) and with elements normalized
in the range [−1, 1]. The results obtained with the Matlab svd
function computed with double-precision floating point accu-
racy were taken as ’true’ or ’exact’ solutions. For comparison
purposes, a single-precision version of the Hestenes-Jacobi
algorithm was programmed and applied to the same example
matrices. This testing is particularly meaningful to us since
we have been implementing the SVD algorithm by software
in several previous SoC designs using embedded single-
precision soft-processors in FPGAs (Xilinx Microblaze32-bit
RISC Harvard). Three meaningful errors are specified: the
Singular Error (SE), as the maximum normalized error in
the computed non-null singular values; the Inverse Error (IE),
measured as the normalized l-2 norm of the error in the
elements of the pseudoinverse matrix relative to the double
precision solution; and the Remainder (RE), as the l-2 norm
of the difference between A and USV T . The reflected values
were obtained as the normalized mean errors for 20 randomly
generated matrices.

From Fig. 1, it can be appreciated that the SE will be close

Fig. 1. Singular Error, Inverse Error and Remainder Error for increasing
condition number in 500× 100 matrices.

Fig. 2. Singular Error, Inverse Error and Remainder Error for increasing
matrix sizes and κ(A) = (1E3, 1E5)



to the computing precision (10−7) for small values of κ(A),
while it increases one order of magnitude when the κ(A)
increases as well. A similar behavior is inferred for the IE,
but always 102 worse, as it is a more sensitive error. As said
before, if A and b are accurate to q significant bits, assuming
this accuracy is better than the IE and taking into account
expression (3), the error in x′ should not differ too much from
those error magnitudes. Fig. 2 shows the matrix size impact
on the computed errors for two different values of κ(A). As it
can be seen, the larger the κ(A) the more noticeable the error
degradation.

B. The rotation threshold

Once the potential accuracy of the solution has been esti-
mated for a given problem and a given computation precision,
there is a key parameter in the SVD algorithm which will
determine how accurate the solution is actually going to be
and, at the same time, what the required total computing effort
(processing time) will be in order to obtain that accuracy: this
is the (rotation) threshold value. As an iterative algorithm, the
one-sided Jacobi needs a threshold value to decide when the
orthogonalization process is finished, and this value must be
set to find a compromise between the desired accuracy and the
processing time. In this sense, Fig. 3 shows the impact of the
threshold value on the factorization error and on the computing
effort for the programmed algorithm (single-precision).

As expected, a more demanding threshold value produces
a higher level of accuracy (a lower error) and calls for
more rotations (more processing time). Notwithstanding, an
error saturation phenomenon can be observed since no ap-
preciable improvement in the accuracy is obtained beyond a
threshold value determined by the already analyzed factors,
even when the number of rotations continues increasing. This
phenomenon can be described as an ’error saturation limit’
and it depends on the factors analyzed in Section III-A. Based
on these results, and before setting the threshold value of the
SVD algorithm for a target application, it would be sensible
to estimate this saturation limit based on the available infor-
mation on the expected values of κ(A), the matrix sizes, and
the available computing precision. Once that limit is known,
more relaxed threshold values could be used to achieve shorter
processing times for those target applications that require fast
computation, should a lower accuracy be acceptable.

IV. ENHANCED SVD ALGORITHM FOR OPTIMIZED
CONVERGENCE AND HARDWARE IMPLEMENTATION

A. The adaptive threshold

The rotation threshold in the Hestenes-Jacobi algorithm is
not an absolute value. In fact, it is related to the Euclidean
norm values of the processed columns. As the algorithm is
based on the orthogonalization of pairs of columns, i.e. rotat-
ing them until their scalar product falls below a predetermined
limit value (rotation threshold), our proposal is to adapt this
value to the norm of the columns to be processed at each
time. That is to say, use more demanding (smaller) values with
columns of smaller norms, and use looser values with large

Fig. 3. Number of total rotations until convergence (dots) and obtained IE and
SE for decreasing values of the rotation threshold. Two examples: 500×100
matrix (κ(A) = 1E2) and 600× 150 matrix (κ(A) = 1E3).

norm columns. In this way all the columns will be uniformly
orthogonalized and no rotations will be performed in vain to
achieve a desired accuracy. In fact, since the norms of the
columns of the W matrix are the singular values themselves
(4), to be fussier with them means to be fussier with smaller
singular values. Ultimately, the scalar product to be used has
to be normalized. This approach was already used by Brent
and Luk (B&L) in [4], where the threshold value is compared
with the normalized scalar product:

Ai ×AT
j

||Ai|| · ||Aj ||
< Threshold (8)

The result of performing this evaluation before each rotation
is that similar relative error values for all eigenvalues, large and
small, are obtained. In addition to that, focusing on achieving
a similar error range, fewer rotations are performed as larger
columns are not rotated in vain, so the total number of rotations
is reduced with no increase in the error magnitude. We propose
going a little further than B&L in giving more relevance to
small norm columns from earlier in the algorithm execution by
remultiplying the threshold value again by the smallest norm
of the columns. So this new evaluation method, which we
named Adaptive Minimum Norm (AMN), is:

Ai ×AT
j

||Ai|| · ||Aj ||
< Threshold ·min(||Ai||, ||Aj ||) (9)

The left side in (9) can be generalized as cos(αij) =
f(Ai ∗ AT

j , ||Ai||, ||Aj ||), since Ai ∗ AT
j = ||Ai|| · ||Aj || ·

cos(αij). The Rutishauser angle, which has to be com-
puted if a rotation is required, may also be expressed as
θij = g(Ai ∗ AT

j , ||Ai||, ||Aj ||), according to (6). With the
aim of optimizing the algorithm execution by avoiding the
computation of two different angles which basically contain
the same implicit information, one step more is given in our
approach. The rotation decision (9) is readapted, bypassing the
computation of the scalar product and directly comparing the
adaptive threshold value with the Rutishauser angle to make
the rotation decision. The new evaluation expression (Adaptive
Rutishauser or ARH) is now:



θij < Threshold ·min(||Ai||2, ||Aj ||2) (10)

In this case, since the Rutishauser angle is more sensitive
to the norm’s change, instead of remultiplying the threshold
by the smallest norm of both columns, the square of this
value is used in order to maintain the level of regularization.
Moreover, the calculation of the square roots is avoided, since
||Ak||2 =

∑m
1 (Ak ∗ Ak) can be computed in a multiply-

accumulate (MACC) unit. Focusing on hardware realization,
from (9) to (10) two multiplications and two square roots are
saved. Therefore, if powers of two are used in the selected
threshold value, evaluating (10) is reduced to a shift operation
(apart from the two comparators and a multiplexor, which are
needed in any case).

B. The sequence and sorting

The minimum-length ’sweep’, denoting any sequence to go
through all matrix column-pairs at least once, seems to be a
fairly simple combinatorial problem that produces n·(n−1)/2
combinations. However, when parallel-computing the SVD,
going through all column-pairs is not enough to ensure conver-
gence, and sorting, due to implicit information transference,
has to be considered. Minimum convergence time is achieved
when (i, j) pairs are computed before any (i + ki, j + kj),
where ki, kj ∈ N, as in serial cyclic sequences. Column-
pair sequence generation and its effects on the algorithm
convergence have been discussed in depth in several papers
[5], [12], but generally neither the computation of matrix V nor
conditional data transfer issues are considered when analysing
computation time and resource requirements. Since in our
approach the effective computation-time is reduced through
fast hardware processing, the relative impact of data transfer
times becomes critical.

As described in [12], index ordering is not sufficient to
guarantee minimum convergence time, and sorting has to be
considered for efficient implementation. When using cyclic
sequences (i < j ∀ i, j) we can imagine convergence as the
information structure contained in data virtually redistributing,
placing the most of it in the first columns and less as we
approach the last ones. Since ||Ai|| is incremented and ||Aj || is
reduced in each rotation, convergence can be accelerated if we
swap columns before orthogonalization when ||Ai|| < ||Aj ||
[12]. Then, if we include this ’Active Sorting’ concept, ex-
pressions (9) and (10) are simplified to:

Ai ×AT
j

||Ai|| · ||Aj ||
< Threshold · ||Aj || (11)

and

θij < Threshold · ||Aj ||2 (12)

In reality, computing (12) requires the same hardware
resources as evaluating (10), since the minimum square norm
has to be checked in any case. However, sorting as soon as
data is available allows us to compute an angle θij which will
always reduce the norm of smaller columns, thus allowing

Fig. 4. SVD Active Adaptive Threshold algorithm for m× n matrices.

for less aggressive threshold values. As a result of the larger
norm always being ||Ai||, and since i < j, besides accelerating
convergence, the computed singular values will be sorted
in a mainly decreasing order as soon as the first sweep is
completed. The columns with a null norm will always be last
and, since these do not contribute to enhancing the accuracy
of the final solution, we can take advantage of the sorting to
ignore them in the following sweeps (see dotted boxes in Fig.
4).

The proposed enhanced SVD algorithm including the Ac-
tive Adaptive Rutishauser (AARH) threshold concept (12) is
shown in Fig. 4. When a sweep is completed and the conver-
gence flag is true, the rotation phase is finished. Regarding
the factorization, matrix V is directly obtained and matrices
U and Σ will be obtained by (5) and (4).

C. Comparative tests

Several tests have been made to compare the performance
of the above-described rotation evaluation strategies and verify
whether AARH is able to actually produce a smaller number
of rotations without loss of accuracy. Illustrative results are
summed up in Table I where the AARH strategy (12) is
compared to other alternatives: the fixed threshold [3], the
B&L evaluation (8) [4], the Active Sorting approach applied
to B&L (ABL), and the Active Adaptive Minimum Norm
(AAMN) (11). It has to be taken into account that reaching the
saturation error through each approach requires establishing
different threshold values. However this is the fairest way
to make a comparison since the processing effort to obtain
a given solution accuracy is measured. The matrix size is



TABLE I
COMPARATIVE OF ALGORITHM PERFORMANCE

Inverse Error | 2−Threshold

Fixed 4.19E-6 | 24 2.11E-5 | 24 2.54E-4 | 24 1.89E-3 | 12
B&L 3.98E-6 | 22 1.93E-5 | 18 1.62E-4 | 16 1.87E-5 | 16
ABL 3.68E-6 | 22 1.83E-5 | 18 1.63E-4 | 16 1.78E-3 | 12

AAMN 5.60E-6 | 20 1.76E-5 | 16 1.68E-4 | 10 1.34E-3 | 8
AARH 6.77E-6 | 20 1.87E-5 | 16 1.76E-4 | 10 1.41E-3 | 8

κ(A) 1E1 1E2 1E3 1E4

Fixed 33,696 | 11.3 33,530 | 10.50 33,905 | 10.50 34,004 | 10.75
B&L 32,303 | 9.70 30,911 | 10.20 29,858 | 10.15 26,482 | 10.13
ABL 26,096 | 8.20 24,356 | 8.00 23,121 | 8.05 19,927 | 7.73

AAMN 25,275 | 8.13 23,209 | 8.05 18,353 | 8.05 15,327 | 8.30
AARH 25,512 | 8.40 23,345 | 8.50 18,960 | 8.53 16,078 | 8.35

Rotations | Sweeps

TABLE II
TEST MATRICES RESULTS

Inverse Error | 2−Threshold ; Rotations | Sweeps
Size | κ 201× 47 | 7.5E1 235× 216 | 1.7E3 200× 200 | 2.4E3
Name JGD Kocay/Trec9 JGD Forest/TF11 Bai/bwm200

ABL
1.99E-6 | 22 1.4E-3 | 12 2.96E-4 | 14

5,004 | 7 97,281 | 9 95,902 | 9

AAMN
1.96E-6 | 18 5.3E-4 | 6 1.43E-4 | 8

4,903 | 8 75,433 | 9 61,981 | 9

AARH
2.21E-6 | 16 8.03E-4 | 4 5.64E-4 | 6

4,908 | 9 76,854 | 9 57,675 | 10

500 × 100 and the range of κ(A) is that for which the error
level is acceptable (IE ≤ 1%) for single precision computing.

These results show how the error saturation is reached quite
evenly with all approaches, but the required sweeps and the
total number of rotations are significantly fewer for the adap-
tive strategies, as less restrictive threshold values are required.
Indeed, the proposed new approaches incorporating optimized
evaluation expressions demand generally fewer rotations and
evenly fewer sweeps than the ABL, particularly for large
condition numbers. Some additional tests have been performed
with matrices that arise in real applications [13]. Accuracy
figures and rotations savings (see some examples in Table II)
are in accordance with the experimentation performed with
randomly generated matrices.

As explained above, AARH has been finally selected as the
best implementation option since multiplications and square
roots are avoided and silicon area and computation time will
be saved with no loss of accuracy.

V. SYSTEM ARCHITECTURE

The proposed architecture for the parallelization of the
enhanced Hestenes-Jacobi algorithm is based on the intercon-
nection of various basic processing units or PUs. Each PU
performs column-pair evaluations according to (6) and (12),
and rotates A and V column-pairs as in (7) when orthogo-
nalization is required. Regularity and size of the architecture,
which are critical due to memory and routing requirements,
rely on the nuclear PU design, since performance is directly
related to the number of implemented PUs (#PU ). Scalability

of the architecture is aimed both at being able to fit minimum
size SVD units in low-cost FPGA devices and at pushing per-
formance to the limits in high-end chips with many available
resources.

Regarding memory requirements when managing large ma-
trices, in the case that the distributed resources (LUTs) in
the target FPGA are not enough to hold the complete set
of data during matrix processing, embedded memory blocks
or external memory banks are necessary, and data must be
transferred sequentially. The main system memory, which
holds matrices A and V during computation, is a notorious
bottleneck, especially when off-chip modules are used [14].
Since one-sided Jacobi matches up better with systems with
small random access memories [5], in order to reduce the
impact of low main memory bandwidth and/or high access-
time, fine-grained linear array implementations show the best
trade-off between scalability and computing-time [15], [16].
Moreover, due to the adaptability of the AARH algorithm, our
design has been conceived with the aim of moving data only
when required. In other words, columns of V are transferred
to/from each PU only when a rotation is to be performed and
columns of A are saved back only if rotated and/or swapped.

A. Work scheduling

As mentioned above, cyclic sequences guarantee minimum
convergence times of the Hestenes-Jacobi algorithm [5], [12].
Beyond that, it is the most suitable ordering strategy when
seeking minimum data transfers: considering the time needed
to process a column-pair (i, j) as a unitary step (Tstep), a
column i may be kept in a PU while computing n − i steps,
that is from j = i + 1 to j = n − 1 (see Fig. 5, left). At
the same time, cyclic scheduling is well suited to variable PU
implementations (scalability) because each PU can handle a

Fig. 5. Proposed processing architecture for #PU = 3 (right) and column-
pair schedule for n = 8 (left).



Fig. 6. Obtained speedup-factors in a sweep with fixed (F) and adaptive (A)
step-times, compared to an ideal scheduling for n = 50, 100, 250.

whole column-block in a pass [i+1, n−1], by itself, regardless
of the available number of PUs [12].

In a minimal scheme with a unique dual-port main memory
bank (see Fig. 5, right) the main data-flow goes from the
reading port (WQ), through the PU-FIFO array and back to the
writing port (WD). In order to move data only when necessary,
without crossing the whole array of PUs, a secondary data-
flow is adopted: a crossbar-switch that connects all the PUs to
the main memory, providing asynchronous full-duplex com-
munication (not explicitly shown, for the sake of simplicity).
Columns i of the V matrix are transferred to each PU just
once, if needed, for each pass (see Fig. 5, left) while columns
Vj are pulled and pushed every time it is necessary, which
is less and less frequent as sweeps go on. To further reduce
access conflicts to the main memory, Ai columns are only sent
back if rotated and/or swapped.

In a single PU architecture, the minimum computation time
to complete a sweep can be defined as T1 = Tstep·n·(n−1)/2.
The ideal full-parallel computation time would be TPU =
T1/#PU , assuming a fixed Tstep, full-bandwidth (no memory
conflicts), full-parallelization (2×#PU columns are computed
in Tstep) and that the same number of total steps is needed for
convergence. In our design, however, the last PUs in the array
have to wait for a certain delay time or offset until the previous
ones have processed their respective columns (see arrows in
Fig. 5, left). Hence, assuming a fixed Tstep and full-bandwidth,
at the beginning of every pass, an offset, whose value depends
on its position in the array of processors, is introduced in each
PU. Although full parallelization is achieved just 2 ·#PU −1
steps after loading the first column in a pass, when reaching
i = n−(#PU−1) the parallelization level begins to fall as the
remaining possible column-pair combinations get drastically
reduced.

Nevertheless this lag in completing the sweeps becomes
negligible as the matrix size increases, since increasing the val-
ues m or n improves the speedup-factor T (#PU, n)/T (1, n),
asymptotically reaching 1/#PU (see F-datasets in Fig.
6). Moreover, when threshold adaptability is implemented
(AARH), the achieved speedup-factor outperforms the ideal
full-parallel scheme reference (see A- datasets). Indeed, less
data transfer requirements reduce true final computing time
and relax routing requirements. Of course, speedup gets satu-

Fig. 7. Average workload of the PUs for a fixed step-time according to the
implemented number of PUs (#PU ) for different matrix sizes.

rated at #PU = n/2 since there are only n columns available.
However, as a result of the offsets introduced, performance
and the average workload of all of the PUs decrease as
#PU increases (see Figs. 6 and 7). As a rule of thumb,
the adaptive threshold approach equals the ideal performance
when #PU = n/4 with at least a 50% average workload.

B. The Processing Unit

Some arithmetic operations have been carefully chosen to
achieve a hardware-friendly scheme in the design of the PUs.
Fixed-point arithmetic has been used and all the fixed shifts
have been hardwired to avoid barrel-shifters. Embedded DSP
blocks are directly used in MACC mode to compute the square
Euclidean norms and vector product (||Ai||2, ||Aj ||2, Ai ∗AT

j )
(see Fig. 8, top). As in [17] CORDIC is used in vectoring
mode to compute the angle of Rutishauser (6) and then it
is directly compared to the threshold value (12) (see Fig.
8, left). Threshold values meet 2−tk, thus multiplications
feeding the decision comparator are also hardwired shifts with
no hardware cost. If orthogonalization is required, the same
CORDIC core is used in rotating mode to perform Givens’
rotations. Thus all the computations are reduced to add/subs or
fixed shifts, except for the computation of the square Euclidean
norms and vector products.

Fig. 8. Processing Unit (PU) core design.



Regarding latency, after loading Ai in m clock cycles, a
column-pair is evaluated every m+kMACC+kCORDIC cycles
until j = n − 1, where kMACC is the latency of the DSP
modules and kCORDIC depends on the desired precision in
(12). Then Ai is sent to the main memory through the bus
and the following pair is loaded from the previous FIFO. If
orthogonalization is required, high throughput is achieved with
an ad-hoc optimized unrolled-pipelined realization. Since the
logic blocks available in most FPGAs have registered outputs,
pipelining has nearly no hardware cost. This allows rotating
Ai,Aj , updating ||Ai||2, and sending Ajr to the following
FIFO in m + kCORDIC + km + kMACC cycles, where km
is the latency for module compensation. Only kCORDIC +km
additional cycles are required to rotate Vi, Vj , since loading
and sending are completed while computing A.

C. Implementation and Tests

The proposed architecture has been implemented in both
Spartan-6 and Kintex-7 devices by Xilinx. Resource utilization
and system specifications for the orthogonalization, i.e. to
obtain W and V , are exposed in Table III. Processing times
have been measured considering Am×n and In×n are already
loaded into the main memory.

VI. CONCLUSION AND FUTURE WORK

Two new adaptive rotation threshold approaches to the
one-sided Jacobi algorithm have been proposed, AAMN and
AARH, which outperform previous proposals in terms of
required sweeps/rotations to achieve a desired solution accu-
racy. A parallel processing scheme based on a linear array
of processing units and a double data-flow paradigm has been
developed. The designed architecture is fully scalable between
2 PUs, for minimum hardware requirements, and m/2 PUs,
for maximum performance. The adaptive data-flow optimizes
data transfers by avoiding unnecesary transmisions and com-
putations. Moreover, some internal arithmetic operations have
been carefully chosen to better map into commonly available
resources in FPGAs, i.e. DSPs cores and BRAMs, and to
save computing time by eliminating square root and succes-
sive multiplication operations, as a consequence of using the
Rutishauser angle directly in both, evaluation (6) and rotation
(7) expressions.

Regarding future work, we are considering to take advantage
of the implicit sorting in the AARH algorithm to perform the
processing of bigger κ(A) matrices with no need of higher
computing precision. This could be achieved by discarding the
columns below a previously set minimum norm value so the

TABLE III
SPARTAN-6 AND VIRTEX-7 RESOURCE UTILIZATION AND ELAPSED TIME

Model xc6slx45-3fgg484 xc7k160t-3fbg484

DSPs | RAMs | Area (%) 96 | 86 | 30 33 | 80 | 38

Max. Freq. 53.232MHz 151.236MHz

Matrix Size | #PU 200× 80 | 4 800× 200 | 25

Processing time 74.1ms 77.18ms

resulting adaptive threshold value would change in a smoother
way.

Although both, the latency of evaluations/rotations in each
PU and the offsets introduced at the beginning of each pass,
get negligible as the matrix size is increased, there is room for
improvement. We are studying optimal sequences and sorting
alternatives to achieve smaller computation latencies with a
minor impact on occupied area and algorithm convergence
rate. Redundant arithmetic-based CORDIC designs, the use of
square root and division free Givens’ rotations, and designing
ad-hoc estimators to compute Euclidean norms and the atan
function are some of the means for upgrading we would like
to explore. Performance of the double data-flow scheme may
also be improved by implementing a multichannel shared bus
along with a main memory divided into several modules.
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