El entrenamiento interválico de alta intensidad para el rendimiento deportivo

AUTOR: Álvarez Fernández, Iker
DIRECTOR: Orbañanos Palacios, Javier
CURSO ACADÉMICO: 2013/2014
CONVOCATORIA: 2ª
ÍNDICE

1. Resumen .. 7
2. Introducción .. 8
3. Marco teórico .. 12
 3.1. Definición y clasificación del HIIT ... 13
 3.2. Componentes ... 15
 3.2.1. Intensidad .. 16
 3.2.2. Duración/Distancia .. 19
 3.2.3. Intensidad y duración de la fase de recuperación .. 19
 3.3. HIIT con orientación a las mejoras aeróbicas/anaeróbicas 20
 3.3.1. Aeróbicas ... 20
 3.3.2. Anaeróbicas ... 23
 3.4. Adaptaciones fisiológicas ... 26
 3.4.1. Centrales .. 29
 Consumo máximo de oxígeno (VO$_2$max) .. 30
 Gasto cardiaco .. 31
 Tolerancia al calor ... 32
 3.4.2. Periféricas ... 32
 Fosfocreatina y oximioglobina ... 32
 Lactato ... 33
4. Conclusiones ... 38
5. Bibliografía .. 39
6. Anexo 1 ... 42
LISTA DE TABLAS

Tabla 1. Desarrollo de la búsqueda ... 10
Tabla 2. Principales características de los artículos seleccionados. 11
Tabla 3. Protocolos utilizados y resultados obtenidos. 36
LISTA DE FIGURAS

Figura 1. Clasificación del HIIT ... 15
Figura 2. Modelo trifásico del metabolismo del lactato 18
Figura 3. Rangos de intensidades para HIIT. .. 18
Figura 4. Mecanismo de señalización intracelular inducida por HIIT 28
Figura 5. Mecanismos para la estimulación de adaptaciones aeróbicas 28
1. Resumen

El entrenamiento interválico de alta intensidad (HIIT) ha sido una parte más de los programas de entrenamiento para mejorar el rendimiento deportivo, pero su efecto puntual en los entrenamientos de deportistas altamente entrenados no se conoce en su totalidad, a pesar de ser un elemento importante de la preparación deportiva. En esta revisión veremos cómo diversas investigaciones demuestran los diferentes efectos y adaptaciones que provoca el HIIT en estos deportistas con el fin de la mejora del rendimiento. En ellas, los autores destacan las mejoras que se producen en cuanto a las variables consumo máximo de oxígeno (VO$_2$max), potencia aeróbica máxima (PAM) y niveles de concentración de lactato en sangre, principalmente en deportes de resistencia. Parece ser que esta mejora del rendimiento es más eficaz lográndose a través de HIIT. El objetivo de este estudio es conocer los efectos que produce el entrenamiento de intervalos de alta intensidad (HIIT) respecto al entrenamiento tradicional de resistencia (ET) aplicado a la mejora del rendimiento.

Palabras clave: interval training, high intensity interval training, HIT, polarized training, endurance training.
2. Introducción

El entrenamiento deportivo ha sido constantemente un aspecto complejo para los entrenadores cuyo objetivo es conseguir alcanzar el mejor rendimiento para su atleta. A lo largo de la historia se ha discutido sobre qué tipo de entrenamiento es el más adecuado para conseguir un mayor progreso del deportista. En muchas ocasiones se tiende a realizar lo que ya se venía haciendo anteriormente. Lo cierto es que no hay recetas y cada entrenador debe escoger lo que debe hacer conociendo las potencialidades de sus deportistas. Por ello el entrenamiento debe basarse en hechos probados científicamente y no meramente en situaciones de ensayo-error.

Los estudios muestran que la realización continua de un mismo tipo de entrenamiento acaba por no producir mejoras en el organismo, y con ello la no mejora del rendimiento, especialmente en deportistas altamente entrenados. Teniendo en cuenta esto, se puede resaltar que en función de la cantidad y variedad de estímulos que proporcionemos al organismo se producirán en éste una serie de adaptaciones fisiológicas u otras, que en definitiva servirán para mejorar o empeorar el rendimiento. Estos estímulos están influenciados por la intensidad y duración del ejercicio, así como por el tiempo de descanso (Gibala, Little, MacDonald & Hawley, 2012).

El entrenamiento interválico de alta intensidad fue descrito por primera vez por Reindell y Roskamm, y fue popularizado en la década de los 50 a través de las gestas de Emil Zatopek, atleta Olímpico. A partir de este hecho, diversos autores realizan en décadas posteriores estudios sobre las diferentes respuestas fisiológicas que produce el HIIT en el organismo, como son los niveles de concentración de lactato en sangre, consumo máximo de oxígeno, frecuencia cardiaca, etc. (Fader, 2013).

El HIIT ha sido una parte más de los programas de entrenamiento para mejorar el rendimiento deportivo, pero su efecto puntual en los entrenamientos de deportistas altamente entrenados no se conoce en su totalidad, a pesar de ser un
elemento importante de la preparación deportiva. Ello puede deberse, por una parte, a la complejidad que los fisiólogos del ejercicio han tenido a lo largo de su carrera para experimentar con los programas de entrenamiento de un atleta de élite, por la dificultad que desempeña convencerles de la modificación de sus entrenamientos; y por otra, aun cuando los deportistas y entrenadores deseen modificar sus entrenamientos, las adaptaciones que produce un cambio de entrenamiento repentino no son de corta duración, sino que hay que dejar un tiempo para que tengan su efecto en el organismo (Gibala et al., 2012).

Teniendo en cuenta lo anteriormente mencionado, según Fader (2013) nos topamos con que existe una menor cantidad de información científica sobre investigaciones de adaptaciones fisiológicas al entrenamiento de resistencia en atletas entrenados, en comparación con el volumen de investigación respecto a las adaptaciones que produce este tipo de entrenamiento en individuos sedentarios. Además, al hecho de que exista este menor número de estudios hay que añadir la falta de resultados en ellos, es decir, en algunos de ellos no se recogen o se desconocen las respuestas fisiológicas agudas que se originan con el HIIT, aun manifestándose la existencia de beneficiosas adaptaciones gracias a este tipo de entrenamiento (Tschakert & Hofmann, 2013).

Una de las razones por las que se ha investigado este tema, es conocer cómo afecta un tipo concreto de entrenamiento, en este caso el entrenamiento interválico de alta intensidad (HIIT), en deportistas altamente entrenados que realicen modalidades deportivas variadas como pueden ser atletas, ciclistas, remeros e incluso en deportes de equipo; y observar en qué tipo de situaciones son eficaces para conseguir una mejora del rendimiento.

Parece ser que una vez que un deportista altamente entrenado ha alcanzado un VO$_2$max $>$60 ml/kg/min, el rendimiento de resistencia no es mejorado por un mayor aumento en el volumen de entrenamiento submaximal. Por ello, para los deportistas altamente entrenados las mejoras en el rendimiento de resistencia parece ser que se pueden lograr a través de entrenamiento de intervalos de alta intensidad (HIIT) (Fader, 2013).
Por tanto, el fin de esta revisión es conocer los efectos del entrenamiento de intervalos de alta intensidad (HIIT) respecto al entrenamiento tradicional de resistencia (ET) aplicado a la mejora del rendimiento en deportistas altamente entrenados.

La metodología empleada para la realización de esta revisión se ha llevado a cabo mediante un análisis de la literatura científica acerca de los efectos del entrenamiento de intervalos de alta intensidad en el rendimiento deportivo a través de una búsqueda de la bibliografía existente sobre el tema en la base de datos PUBMED. Dicha búsqueda bibliográfica se ha efectuado entre los meses de Marzo, Abril y Mayo de 2014.

En esta base de datos se aplicaron los siguientes criterios de inclusión y exclusión:

- **Criterios de inclusión**: Estudios experimentales que tuviesen relación con el tema del estudio; realizados en humanos y enfocados al rendimiento deportivo.

- **Criterios de exclusión**: Artículos que no se ajustan al tema del estudio; no realizados en humanos; artículos repetidos y aquellos en los que no había acceso a texto completo.

Se detallan a continuación (tabla 1) los resultados obtenidos y el proceso de búsqueda de esta revisión bibliográfica:

<table>
<thead>
<tr>
<th>Bases de datos</th>
<th>Búsqueda</th>
<th>Resultados obtenidos</th>
<th>Resultados válidos</th>
<th>Resultados Rechazados</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBMED</td>
<td>"High interval intensity training" and "Performance"</td>
<td>242</td>
<td>7</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>No texto completo: 180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No tema estudio: 52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No humanos: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Hit" and "Endurance"</td>
<td>88</td>
<td>1</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>No texto completo: 73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No tema estudio: 14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Entrenamiento interválico de alta intensidad para el rendimiento deportivo

Los autores de los artículos analizados junto al año y lugar de publicación, así como el tipo de estudio se detallan a continuación (tabla 2), ordenados por el año de publicación del estudio.

Tabla 2. Principales características de los artículos seleccionados.

<table>
<thead>
<tr>
<th>AUTORES</th>
<th>AÑO</th>
<th>LUGAR</th>
<th>TIPO DE ESTUDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoggl et al.</td>
<td>2014</td>
<td>Copenhague, Dinamarca</td>
<td>Experimental (ciclistas, triatletas y esquiadores de fondo)</td>
</tr>
<tr>
<td>Kilen et al.</td>
<td>2014</td>
<td>Copenhague, Dinamarca</td>
<td>Experimental (nadadores)</td>
</tr>
<tr>
<td>Wallner et al.</td>
<td>2013</td>
<td>Graz, Austria</td>
<td>Experimental (atletas)</td>
</tr>
<tr>
<td>Ronnestad et al.</td>
<td>2013</td>
<td>Oslo, Noruega</td>
<td>Experimental (ciclistas)</td>
</tr>
<tr>
<td>Mazoochi et al.</td>
<td>2013</td>
<td>Kashan, Iran</td>
<td>Experimental (atletas)</td>
</tr>
<tr>
<td>Ronnestad et al.</td>
<td>2012</td>
<td>Lillehammer, Noruega</td>
<td>Experimental (ciclistas)</td>
</tr>
<tr>
<td>Bayati et al.</td>
<td>2011</td>
<td>Tehran, Iran</td>
<td>Experimental (jóvenes activos)</td>
</tr>
<tr>
<td>Sperlich et al.</td>
<td>2010</td>
<td>Cologne, Alemania</td>
<td>Experimental (nadadores)</td>
</tr>
<tr>
<td>Driller et al.</td>
<td>2009</td>
<td>Launceston, Australia</td>
<td>Experimental (remeros)</td>
</tr>
<tr>
<td>Laursen et al.</td>
<td>2002</td>
<td>Brisbane, Australia</td>
<td>Experimental (ciclistas)</td>
</tr>
<tr>
<td>Billat et al.</td>
<td>2001</td>
<td>Paris, Francia</td>
<td>Experimental (atletas)</td>
</tr>
</tbody>
</table>
3. Marco teórico

En la actualidad existen diferentes protocolos y definiciones sobre el HIIT. Así pues, según Añón (2013), se pueden encontrar denominaciones tales como HIIT (high intensity interval training), HIT (high intensity training), HIIT (high intensity intermittent training), HIE (high intensity exercise), SIT (sprint interval training), HIT de intervalos cortos, HIT de intervalos largos, etc., refiriéndose a protocolos con diferentes variables que intervienen para la confección de los mismos, entre las cuales destacan:

- Duración del programa.

- Respecto al estímulo:
 - Modalidad.
 - Duración.
 - Intensidad.

- Respecto a las series:
 - Número.
 - Duración.
 - Pausa entre series.

- Respecto a las repeticiones:
 - Número.
 - Duración.
 - Pausa entre repeticiones.

- Respecto a la pausa:
 - Duración.
 - Tipo.
 - Actividad en la pausa.
3.1. Definición y clasificación del HIIT

El entrenamiento interválico de alta intensidad (HIIT) se caracteriza por ser un tipo de entrenamiento en el que se realizan repeticiones a alta intensidad seguidas de pausas completas o recuperaciones activas, con la intención de realizar una nueva repetición a la intensidad programada. Suelen ser series breves de actividad vigorosa, intercaladas con períodos de descanso o ejercicios de baja intensidad. Ello hace que se estimule el organismo y se produzca un reordenamiento fisiológico comparable con el del entrenamiento continuo de intensidad moderada, a pesar de que requiere una cantidad de tiempo sustancialmente menor y de un menor volumen de ejercicio total. Por otra parte, este tipo de entrenamiento suele ser más agradable para aquel que lo practica en comparación con un entrenamiento de resistencia tradicional (Gibala et al., 2012).

También en el estudio de Hawley, Myburgh, Noakes & Dennis (1997), citado por Laursen (2010), se define el HIIT como unidades repetidas de ejercicio a alta intensidad, que van del umbral ventilatorio 2 (VT2) a intensidades supramáximas, intercaladas con periodos de recuperación de baja intensidad o descanso completo.

De la misma forma, según Peña, Heredia, Segarra, Mata, Isidro, Martín & Da Silva (2013), la característica común que define los distintos formatos de sesiones HIIT es la realización de repetidas series de esfuerzos de corta o larga duración, realizados a alta intensidad e intercalados por períodos de recuperación. Esto implica programar tanto la duración de los intervalos de trabajo (con duraciones muy variables según sean formatos cortos: <30 s, medios: 30 a 60 s, o largos/extensivos 2 a 5 min, aproximadamente) como la intensidad de los mismos (>90% VO2max; >90-95% FCmax; >15 RPE Borg), así como la duración e intensidad de los intervalos de recuperación (aproximadamente 60-80% VO2max; 70-85% FCmax; >6 RPE Borg, habitualmente en un ratio trabajo-recuperación de 1:1 a 1:4). Todo esto constituirá sesiones de trabajo con duraciones totales aproximadas de 15 a 20 min, resultando un volumen total de trabajo relativamente bajo en comparación con lo habitualmente realizado mediante otros métodos de entrenamiento más tradicionales.
A nivel general, el HIIT, durante un periodo de 2 a 4 semanas, puede provocar mejores rápidas en el rendimiento de resistencia. Algunas de estas se pueden dar en aspectos tales como el umbral ventilatorio, la potencia pico, el consumo máximo de oxígeno (VO₂max) y la economía de movimiento. Sin embargo, estas adaptaciones se producen siempre y cuando los periodos de recuperación también sean adecuados al esfuerzo realizado y a las capacidades del deportista. Además, ese esfuerzo físico en los periodos intensos debe ser alto e incluso está asociado con un elevado grado de fatiga y malestar agudo (Fader, 2013).

Una vez conocidas las diferentes adaptaciones metabólicas que se dan en el organismo con este tipo de entrenamiento, se puede señalar que el HIIT es quizá una táctica eficiente de entrenamiento puesto que en menor tiempo puede producir mejores adaptaciones respecto a un entrenamiento continuo de resistencia (Gibala et al., 2012).

Teniendo en cuenta que un atleta altamente entrenado parte con una elevada capacidad aeróbica y un elevado grado de adaptación a numerosas variables fisiológicas asociadas con el suministro y utilización de oxígeno, es muy difícil optimizar estos aspectos, puesto que el grado de mejora del rendimiento cada vez es menor. Como veremos más adelante, mediante el HIIT se suelen dar mejoras de rendimiento de un 2 a un 4% en estos deportistas. Aunque pequeñas y difíciles de detectar y explicar estadísticamente, estas mejoras son extremadamente importantes para el atleta de élite (Fader, 2013).

Para la clasificación de este tipo de entrenamiento nos guiamos por el ideal que utilizan Tschakert & Hofmann (2013) en su revisión, en el que clasifican el ejercicio interválico en dos modelos. Uno de ellos se caracteriza por períodos de descanso incompletos y el otro por recuperaciones completas. Ambos métodos se dividen según la intensidad (máxima o submáxima) indicando a su vez los picos de trabajo. En esta clasificación (figura 1), se puede apreciar también como dentro del ejercicio intermitente existen entrenamientos continuos como son el Fartlek y los cambios de ritmo previstos.
3.2. Componentes

En comparación con el entrenamiento continuo, que tiene dos componentes a controlar: intensidad y duración, el entrenamiento interválico se caracteriza por poseer cuatro componentes principales en cada uno de sus intervalos o repeticiones: intensidad y duración del intervalo, e intensidad y duración de la recuperación. Al mismo tiempo, el número de intervalos en una sesión (serie) es lo que determina la duración total del entrenamiento, constituyendo una variable más. Por ello también hemos de considerar otros cuatro componentes: número de series, duración e intensidad del periodo entre series, y la modalidad de recuperación entre series (activa o pasiva). Por lo que en el diseño de una sesión de entrenamiento interválico, tendremos ocho decisiones que tomar, algo que por sí mismo complica
Entrenamiento interválico de alta intensidad para el rendimiento deportivo

bastante la estructura del programa de entrenamiento (Tschakert & Hofmann, 2013).

En base a esto, son varias las variables o componentes que pueden ser manipuladas para la prescripción de diferentes sesiones de HIIT. La manipulación individual de cada componente tiene un impacto directo sobre la respuesta metabólica, cardiopulmonar y/o neuromuscular, pero el hecho de añadir más variables hace que los resultados sean más complejos de analizar. Por ello, no está claro aún qué combinación de estas variables es más efectiva para cada objetivo (Tschakert & Hofmann, 2013).

A continuación se detalla cada uno de los cuatro componentes principales del entrenamiento interválico:

3.2.1. Intensidad

En la mayoría de las investigaciones acerca del HIIT, este componente es descrito como el más importante para la mejora de las variables fisiológicas en el organismo.

En algunos estudios, se establece la intensidad del ejercicio en términos del porcentaje de la velocidad de carrera, principalmente adecuado para atletas de resistencia. Sin embargo en otros se prescribe en términos de porcentajes de consumo máximo de oxígeno (VO₂max), frecuencia cardíaca máxima (FCmax) y FC de reserva (FCR). En función de la variable que se tome de referencia para determinar la intensidad del ejercicio (FC, VO₂max, Pmax, etc.) las respuestas fisiológicas variarán (Tschakert & Hofmann, 2013).

Según un estudio de Laursen & Jenkins (2002), en atletas de élite de larga duración hubo una mejora del rendimiento utilizando como intensidad de intervalo la intensidad de ejercicio correspondiente a la velocidad a la cual es alcanzado el consumo máximo de oxígeno (vVO₂max). En la misma línea, Billat (2001a) defiende que, atletas de media y larga distancia que comiencen a entrenar con HIIT, deben utilizar como referencia para los periodos intensos velocidades cercanas a la velocidad específica de su disciplina, pero teniendo en cuenta que debe ser a la
velocidad que provoca mayores adaptaciones fisiológicas, es decir, en este caso la velocidad en el rango de máximo estado estable de lactato (MLSS), y no a la velocidad máxima absoluta.

Seiler & Hetlelid (2005), citados por Fader (2013), indican que periodos repetidos de alta intensidad en un rango de 3 a 6 min parecen ser realizados entre el 90-100% del VO2max por atletas bien entrenados, y se ha convertido en una prescripción común en su entrenamiento.

Hay que tener en cuenta además que el HIIT ejecutado a una intensidad entre el umbral de lactato y la velocidad máxima (Vmax) tiene la capacidad de incrementar el consumo de oxígeno (VO2) al nivel del consumo máximo de oxígeno (VO2max) (Laursen & Jenkins, 2002).

Por su parte Laursen (2012), citado por Fader (2013), sostiene que si el objetivo es mejorar el rendimiento en resistencia, parece ser eficaz realizar entrenamiento de intervalos a intensidades de ejercicio que solicitan el VO2max, y parece ser ventajoso aumentar el tiempo en el cual se puede mantener esa intensidad de ejercicio. Pero también hay que tener en cuenta que en otros deportes la intensidad de trabajo no es una función estable de velocidad debido al terreno variable, viento, condiciones del agua, condiciones de la nieve, etc.

Como sugerencia, Tschakert & Hofmann (2013) en su estudio señalan que el ejercicio debe ser descrito por las respuestas metabólicas que provoca, y no tanto por las reacciones fisiológicas que conlleva. Esas respuestas suelen darse a intensidades que se corresponden con la zona entre umbrales (LTP1-LTP2) e incluso por encima del segundo umbral hasta la potencia máxima (LTP2-Pmax) (figura 2).
Entrenamiento interválico de alta intensidad para el rendimiento deportivo

Teniendo en cuenta esto, Tschakert & Hofmann (2013) indican que se puede utilizar el %PLTP2 como intensidad media, %Pmax como intensidad pico y %PLTP1 como intensidad en la fase de recuperación. Este enfoque metodológico permite la correlación de ejercicios interválicos a intensidades relacionados con las tres fases de suministro de energía, con las adaptaciones y respuestas fisiológicas inducidas.

En la siguiente figura (figura 3) se detallan, según Buchheit & Laursen (2013), los diferentes rangos de intensidades a las cuales se pueden realizar los distintos tipos de HIIT.

3.2.2. Duración/Distancia

Otro factor que ha sido sugerido por investigadores como un componente importante para la mejora del rendimiento en resistencia en una sesión de HIIT es la duración o distancia del intervalo de trabajo recorrido a la velocidad máxima (Vmax).

Según Laursen & Jenkins (2002), en términos de optimización de HIIT, sugieren que el HIIT desarrollado en algún punto entre el 50 al 60% del tiempo máximo (Tmax) puede ser óptimo para la mejora del rendimiento de resistencia. Así mismo Fader (2013) indica que la prescripción de HIIT en corredores altamente entrenados ha sido exitosa cuando la Vmax es utilizada para establecer la intensidad, y el 50 al 60% del Tmax es utilizado para la duración del ejercicio.

En relación a esto, un estudio de Billat et. al. (2000), citado por Fader (2013), demostró que 16 corredores varones altamente entrenados fueron capaces de correr 2,5 veces su distancia en el Tmax durante una tarea de HIIT, utilizando una relación 1:1 de trabajo-descanso al 50% del Tmax, con recuperación entre intervalos aproximada al 60% de la Vmax (Fader, 2013).

Por otra parte, Laursen & Jenkins (2002) establecen que en atletas de élite de larga duración hubo una mejora del rendimiento utilizando duraciones correspondientes a fracciones entre 50 a 75% del tiempo hasta la extenuación en la vVO2max (Tmax).

3.2.3. Intensidad y duración de la fase de recuperación

Aunque la intensidad y la duración del intervalo de trabajo sean los principales responsables de provocar las diferentes adaptaciones en el organismo, no hay que dejar de lado la importancia tanto de la intensidad como el tiempo en la fase de recuperación. Por tanto estas dos variables afectan directamente a la recuperación del metabolismo muscular, que es determinante para poder realizar de la manera más eficaz posible los siguientes intervalos a la intensidad programada (Tschakert & Hofmann, 2013).
Según estos mismos autores esta recuperación depende de variables como la concentración de lactato en sangre. Parece ser que para disminuir estos valores de lactato basta con realizar los periodos de recuperación a intensidades entre la recuperación pasiva y el umbral ventilatorio 1 (VT1). Sin embargo, Hermansen & Stensvold (1972), citado por Tschakert & Hofmann (2013), mostraron que la eliminación de lactato en sangre fue más rápida cuando la intensidad de recuperación fue mayor (hasta un 65% del VO₂max), concluyendo que una recuperación activa facilita la oxidación de lactato en los músculos. Pero por otro lado, si el tiempo de recuperación (Trec) es demasiado corto, tanto la resíntesis de fosfocreatina (PC) como la restauración de oximioglobina son menores.

Del mismo modo, en el estudio de Laursen (2012), citado por Fader (2013), se recoge que períodos de recuperación de mayor intensidad o duraciones de recuperación más cortas (que no son lo suficientemente extensas para lograr la recuperación total) pueden conducir a una fatiga prematura y/o a una reducción de la intensidad de trabajo.

Seiler & Hetlelid (2005), citados por Fader (2013), indican que, dentro del rango típico utilizado para el entrenamiento aeróbico en intervalos de alta intensidad, un incremento en el tiempo de recuperación tiene un menor impacto en las respuestas fisiológicas. Es decir, una recuperación de 1 a 2 min resultó en un incremento de un 2% en el promedio de la velocidad de carrera de la sesión. Sin embargo, incrementar el tiempo de recuperación a 4 min no indujo un incremento adicional en la intensidad de trabajo alcanzada. Además, en el estudio cuando los atletas seleccionaron sus propios tiempos de descanso (sin feedback del tiempo transcurrido) escogieron aproximadamente 120 s como tiempo de recuperación.

3.3. HIIT con orientación a las mejoras aeróbicas/anaeróbicas

3.3.1. Aeróbicas

Durante mucho tiempo se ha pensado que sólo se podría mejorar el metabolismo energético aeróbico realizando entrenamientos de larga duración,
mediante entrenamientos continuos. Sin embargo las diferentes investigaciones realizadas a lo largo de los años sobre el entrenamiento interválico han demostrado que se pueden dar adaptaciones similares con un volumen mucho menor de entrenamiento. Curiosamente, esas adaptaciones pueden ocurrir más rápido con los intervalos. Esto supone considerar al HIIT como una alternativa efectiva al ejercicio continuo de intensidad baja y moderada con efectos similares o superiores sobre la mejora del rendimiento cardiovascular, lo cual puede tener importantes aplicaciones tanto para la mejora del rendimiento específico en deportes de equipo, caracterizados por realizar esfuerzos acíclicos, como para deportes de resistencia de corta y media duración, caracterizados por realizar esfuerzos de carácter predominantemente cíclicos.

A continuación se explican los dos tipos de entrenamientos interválicos aeróbicos según Billat (2001a):

Entrenamiento aeróbico de intervalo corto

El entrenamiento de intervalos aeróbico corto ha demostrado que previene la depleción de glucógeno mediante el uso de lípidos en comparación con un ejercicio continuo realizado a la misma velocidad. Este tipo de entrenamiento interválico implica un aumento de las enzimas que intervienen en la oxidación de ácidos grasos, en mayor medida que el entrenamiento continuo. Como consecuencia de esto, un ejercicio a alta intensidad (100 a 102% de pVO₂ max) realizado de forma continua o de manera intermitente (15 s de trabajo y 15 s de descanso al 112% de pVO₂ max) durante 60 minutos no agota las fibras musculares de la misma manera. Además, el nivel de lactato en sangre es de 2 mmol/L en el ejercicio interválico frente a 10 mmol/L en el continuo. De acuerdo con esto, Christensen et al. (1960), citado por Billat (2001a), explica que los períodos de descanso en el entrenamiento interválico corto provocan un aumento de mioglobina en el músculo, lo que conlleva a que se reduzcan los niveles de concentración de lactato y por tanto una mayor producción de energía (ATP).

Otro estudio de Olbrecht et al. (1985), citado por Billat (2001a), demostró en nadadores de 50, 100, 200 y 400 m que mediante el HIIT se consiguen mayores
Entrenamiento interválico de alta intensidad para el rendimiento deportivo

velocidades (una mejora de un 2%) respecto al entrenamiento continuo al mismo nivel de concentración de lactato en sangre (4 mmol/L). Además, añaden que cuanto menor es la distancia de nado, mayor es la velocidad; y en cuanto al tiempo de descanso, cuanto mayor es el periodo de descanso mayores velocidades se podrán alcanzar, es decir, con un descanso de 30 s el incremento en la velocidad comparada con un ejercicio continuo es 1,5 veces mejor que aquella obtenida con un descanso de 10 s. En la misma línea, Astrand et al. (1960) dicen que intervalos de 2 min - 2 min a la vVO2max provocan un VO2 = 95% VO2max, acompañados con bajos niveles de lactato (2,2 mmol/L). Sin embargo, intervalos de 15 s - 15 s a la vVO2max no llevan al VO2 a niveles máximos.

A lo anterior hay que añadir las conclusiones de Billat et al. (2000), citado por él mismo (2001a), quien sugiere que mediante intervalos de 30 s - 30 s con descansos activos al 50% vVO2max los corredores van al VO2max, incluso en los intervalos de recuperación de la quinta a la decimocuarta repetición. Por ello, los entrenamientos interválicos cortos con pausas activas permiten al individuo mantener el VO2max alrededor de 10 min. Esto explica que en protocolos de 30 s-30 s con descansos pasivos no sea lo normal llegar al VO2max.

En resumen, todos estos estudios demuestran que el HIIT de intervalos aeróbicos cortos hace que aumenten los niveles de lactato en sangre, pero también hace que se estimule la eliminación de ese lactato. Por otro lado, parece ser que la velocidad del intervalo realizada a vVO2max, provoca mejoras en el VO2max, densidad mitocondrial, mejoras cardiovasculares y mejoras en la velocidad (~1,6 km/h). También estos autores destacan la importancia de realizar descansos activos (~ al 50% vVO2max), ya que parece ser que provocan mejoras en el VO2max y niveles de concentración de lactato en sangre, donde protocolos de 30 s - 30 s mejoran la eliminación de ese lactato (~6,7 mmol/L) a diferencia de protocolos de 1min - 2 min, donde la acumulación de lactato en sangre se triplicaba.

Entrenamiento aeróbico de intervalo largo

Para establecer la intensidad del HIIT en corredores de media y larga distancia, los entrenadores utilizan velocidades de carrera asociadas con el logro de
Entrenamiento interválico de alta intensidad para el rendimiento deportivo

VO₂max (vVO₂max) y velocidades de carrera al comienzo de la acumulación de lactato (vOBLA), ya que parece ser que entrenando a velocidades al 90-100% VO₂max se producen mejoras en la aptitud cardiorrespiratoria. Así, el entrenamiento con intervalos al 60 y 100% de vVO₂max, con una duración igual a la mitad del tiempo hasta el agotamiento en la vVO₂max, permitió a corredores de larga distancia duplicar la distancia recorrida en la vVO₂max, en comparación con entrenamientos continuos en la vVO₂max. Del mismo modo, en los estudios de Billat et al. (1999) y Smith et al. (1999), citados por Billat (2001a), informaron que mediante la realización de una sola sesión por semana (durante 4 semanas) de este tipo de entrenamiento interválico (50 a 75% del tiempo hasta el agotamiento vVO₂max) aumentó significativamente la vVO₂max en un grupo de corredores de media y larga distancia.

Por tanto, dado que el tiempo hasta el agotamiento a la vVO₂max es muy diferente entre los corredores con la misma vVO₂max, puede tomarse este parámetro como factor determinante en la largura de los intervalos de trabajo (Billat, 2001a). Con ello, la individualización de la duración de la repetición evita la acumulación de lactato en sangre temprana.

En los estudios se observó que la duración media fue de 5 min al 92% vVO₂max con una recuperación de 2 min - 3 min al 50% vVO₂max. Sin embargo, esto probablemente no es suficiente para provocar mejoras en el VO₂max en corredores de alto nivel en los que puede ser preferible intervalos de velocidad más cortos.

3.3.2. Anaeróbicas

Entrenar con intensidades por encima del umbral anaeróbico tiene como consecuencia un retardo de la aparición de la fatiga muscular en sesiones posteriores, que habitualmente es la culpable del descenso del ritmo. Pero para conseguir una mayor mejora en atletas altamente entrenados no basta sólo con eso. En ellos se deben utilizar cargas supramáximas (>100% VO₂max), para la mejora del rendimiento. Además, es muy importante la duración de la pausa. Para
Margaria et al. (1969), citada por Billat (2001b), la duración de la pausa a estas intensidades determina el tiempo total de trabajo (tiempo hasta el agotamiento), ya que en su estudio demostró que cuando no hay pausa, el tiempo total a velocidad supramaximal es de 32 s; cuando la pausa es de 10 y 20 s, es de 100 y 200 s respectivamente; sin embargo, cuando es de 30 s, el tiempo total a velocidad supramaximal es "indefinido". Esta autora concluye que el tiempo de pausa determina la vía energética y que el tiempo de descanso mínimo al cual no se produce una acumulación de ácido láctico es de 25 s. Por ello que 30 s de pausa sea un tiempo suficiente para que se produzca una regeneración de fosfágeno, además de poder correr durante mayor tiempo con niveles de lactato en sangre por debajo de 2,5 mmol/L y por lo tanto poder continuar generando el mismo pico de potencia. Con ello, la relación de trabajo-descanso debe ser de 1:3, para evitar una mayor acumulación de lactato y dar tiempo a que haya una regeneración de fosfocreatina (PC). Por lo que aumentos en el tiempo de recuperación permite a los corredores mantener su rendimiento durante más repeticiones.

Pero también hay que tener en cuenta que para mejorar el rendimiento en competiciones que duran 1 min (1 km de ciclismo en pista, 100 m en natación, 400 m marcha, etc.), realizadas generalmente al 150% VO$_2$max, es importante ejecutar entrenamientos de intervalos aeróbicos, ya que la contribución del metabolismo aeróbico a la energía total es de aproximadamente un 30%.

Efectos fisiológicos a largo plazo

Algunos autores no encontraron mejoras en las enzimas metabólicas de carácter anaeróbico con ejercicios de 10-15 x 15"-30" al 110%-120% pVO$_2$max, ni tampoco con ejercicios de mayores duraciones como 4-5 x 60"-90" al 90-95% vVO$_2$max. Parece ser por tanto, que estas intensidades son bajas para una mejora del sistema anaeróbico o para modificar el porcentaje de fibras tipo II. Sin embargo, otros estudios de similares características demuestran que se produce la glucólisis anaeróbica a esas intensidades y por tanto la utilización de las enzimas metabólicas de carácter anaeróbico.
Dado que los ejercicios son intermitentes y debido a su mejor capacidad oxidativa, las fibras tipo I pueden estar más relacionadas, que las fibras rápidas, con la regeneración de la depleción de PC durante los periodos de descanso. Además parece ser que las fibras tipo I también están más ligadas con la eliminación de la acumulación de lactato durante periodos de ejercicio.

En relación con la depleción de PC y la acumulación de lactato, Hargreaves et al. (1998), citado por Billat (2001b), realizan un estudio con un protocolo de intervalos de 4×30″/4′ siendo los descansos pasivos, realizando entre la 3ª y 4ª repetición 30 min al 30-35% VO₂pico y un descanso de 60 min para realizar posteriormente la 4ª repetición. En ella, se mantuvo el rendimiento por la regeneración de PC y la potencia pico no disminuyó significativamente con respecto a la 1ª, siendo superior que la 2ª y 3ª. Además, antes de la 4ª repetición, la concentración de PC muscular estaba por encima del nivel de reposo y el lactato se situaba en valores similares a los de la 1ª repetición. Por tanto, en este caso, el mantenimiento del rendimiento no está relacionado con una reducción del glucógeno muscular, sino con la regeneración de PC. Siguiendo esta idea Heugas et al. (1997) realizaron un estudio con corredores de 400 m en la etapa precompetitiva mediante este tipo de entrenamiento, con repeticiones de 30 s a sprint con descansos de 4 min, seguido de un descanso mayor de 10 min antes de la última repetición. Los resultados mostraron que se mejora la capacidad para mantener el ejercicio con alta acidosis a intensidades del 150% vVO₂max y también la capacidad de poder ejecutar dos horas más tarde una carrera de relevos.

El HIIT parece ser, por lo tanto, una forma efectiva de aumentar el consumo máximo de oxígeno. Según Tabata et al. (1996), citado por Billat (2001b), demostraron que un protocolo de 6×20″ al 170% del VO₂max durante 6 semanas conseguía aumentar el VO₂max en un 13% y la capacidad anaeróbica en un 28%. Pero para ello, la duración de la recuperación tiene que ser corta, como en el entrenamiento de intervalo de Tabata (10 s). Sin embargo, en todos estos estudios las conclusiones se basan en resultados obtenidos con atletas de bajo nivel.

En estudios realizados con atletas altamente entrenados, como es el caso del estudio de Acevedo & Goldfarb (1989), citado por Billat (2001b), demostraron
que el aumento de la intensidad del entrenamiento mejora el rendimiento en corredores previamente entrenados (VO\textsubscript{2max} 65 ml/min/kg). Esas mejoras se produjeron gracias a la disminución de los niveles de lactato en sangre para la misma distancia (10 km) sin la necesidad de aumentar el VO\textsubscript{2max}.

En otro estudio, para determinar si un corto y rápido, o un largo y lento, programa de entrenamiento de intervalos produce mayores mejoras en el rendimiento en ciclistas de contrarreloj, Septo et al. (1999), citado por Billat (2001b), compararon 5 tipos de sesiones de entrenamiento de intervalo durante 6 sesiones en 3 semanas:

(i) 12 × 30''/4,5' a 175% de PPO.
(ii) 12 × 60''/4' al 100% PPO.
(iii) 12 × 2'/3' al 90% de PPO.
(iv) 8 × 4'/1,5' al 85% de PPO.
(v) 4 × 8'/1' al 80% de PPO.

Los autores llegaron a la conclusión que con protocolos de 3 a 6 min a una intensidad del 85% de PPO se dio el mejor resultado de rendimiento para este tipo de prueba, con una duración de aproximadamente 1 hora a esta potencia. Sin embargo, también demostraron que con el protocolo de 12×30'' al 175% de PPO también hubo implicación del metabolismo aeróbico. Por tanto aunque la modalidad deportiva sea en su mayoría de carácter aeróbico, la capacidad anaeróbica juega un papel muy decisivo en los últimos instantes de las pruebas (ejemplo: atletismo 1.500 m ó 3.000 m). Por ello la importancia de la mejora de esta capacidad para los deportistas altamente entrenados.

3.4. Adaptaciones fisiológicas

Actualmente existen diversas investigaciones llevadas a cabo por diferentes autores sobre los efectos y posibles adaptaciones del HIIT en deportistas altamente entrenados. Son diferentes factores, relacionados entre sí, los que provocan que se den este tipo de adaptaciones fisiológicas. Estos son la intensidad, duración y
número de intervalos realizados, así como los patrones de duración y actividad durante la recuperación (Gibala et al., 2012).

Según Gibala et al. (2012), diversos estudios han investigado los mecanismos moleculares que rigen las adaptaciones metabólicas del músculo esquelético tras HIIT. En relación a esto, existe la necesidad de conocer la influencia de HIIT de bajo volumen sobre la activación del co-activador 1α (PGC-1α), que es considerado el regulador principal de la biogénesis de las mitocondrias en el músculo. La intensidad del ejercicio es el factor fundamental que influye en la activación de PGC-1α en el músculo esquelético humano (Egan et al. 2010). Un ejemplo de HIIT de bajo volumen es el test de Wingate, en el cual el deportista debe realizar durante 30 s un esfuerzo máximo, normalmente en cicloergómetro. Dicho test aumenta la expresión del ácido ribonucleico mensajero (RNAm) de PGC-1α varias veces cuando se mide tras 3 horas post ejercicio (Gibala et al., 2009; Little et al., 2011b). Así, el aumento en el PGC-1 tras un entrenamiento de HIIT de bajo volumen coincide con una mayor expresión del RNAm de varios genes mitocondriales (Little et al. 2011b), lo que sugiere que un programa de adaptación mitocondrial estaría asociado con estas series cortas de ejercicios de alta intensidad. Aunque también hay que señalar que según Norrbom et al. (2004) & Egan et al. (2010), citados por Gibala et al. (2012), se produce un incremento agudo de la expresión del RNAm de PGC-1α después de una serie de ejercicio de resistencia continuo.

Por otra parte, se ha demostrado que el HIIT de bajo volumen activa las proteínas AMPK y la MAPK (figuras 4 y 5). Ambas proteínas, sensibles al ejercicio, participan en la fosforilación directa y activación de PGC-1α. Se planteó la hipótesis que el aumento en la cantidad de PGC-1α tras el HIIT coactiva los factores de transcripción (TF) para aumentar la transcripción de genes mitocondriales, lo que finalmente produce la acumulación de más proteínas mitocondriales (Laursen, 2010; Gibala et al., 2012).
Entrenamiento interválico de alta intensidad para el rendimiento deportivo

Figura 4. Mecanismo de señalización intracelular inducida por HIIT (Gibala et al., 2012)

Figura 5. Mecanismos para la estimulación de adaptaciones aeróbicas (Laursen, 2010).

Coinciendo con esto, Burgomaster et al. (2008), citado por Gibala et al. (2012), realizó un estudio de 6 semanas de HIIT basado en el test de Wingate y se
observó como aumentaba el contenido de proteína PGC-1 en casi un 100% en individuos jóvenes saludables. Así mismo, en otro estudio realizado por Little et al. (2010), citado por el mismo autor, se realizaron dos semanas de HIIT con protocolo de de 10×1', produciéndose un aumento de casi un 25% en la proteína PGC-1. Este aumento del contenido de esta proteína tiene una implicación directa en la mejora del VO₂max, determinado en un nuevo estudio de Burgomaster et al. (2008), que demostraron que 6 semanas de HIIT con Wingate aumentó el VO₂max en la misma magnitud que el entrenamiento de resistencia tradicional, a pesar de un menor volumen y tiempo total de entrenamiento. Hay que tener en cuenta que estos estudios se realizaron con jóvenes saludables, pero no con deportistas altamente entrenados.

Esta mejora en el VO₂max hace presagiar la existencia de una serie de adaptaciones a nivel central, relacionadas con la capacidad cardiopulmonar y aprovechamiento del oxígeno. Además, autores como Gibala et al. (2012) también defienden la presencia de otras adaptaciones a nivel periférico, relacionadas con la cantidad y calidad de enzimas musculares y otros aspectos como la acumulación de lactato.

3.4.1. CENTRALES

Según Gibala et al. (2012) podría ser que series cortas de alta intensidad con HIIT de bajo volumen indujeran a aumentos en el estrés celular y en los vasos periféricos, aislando eficazmente al corazón de ese estrés debido a la breve duración de las series de ejercicio. Este aislamiento central relativo, por una parte, permite a los individuos entrenar a intensidades mucho más altas de las que utilizarían de otro modo, aunque puede producir diferentes respuestas en el tiempo y cargas de estímulo efectivas entre los componentes centrales y periféricos del sistema cardiovascular; y, por otra parte, facilita una distribución mejorada del oxígeno a los músculos. Relacionado con esto último, Fader (2013), señala que dado que la frecuencia cardíaca máxima (FCmax) se mantiene sin variaciones, las mejoras en la distribución de oxígeno a los músculos pueden ser atribuidas a un aumento en el volumen sistólico. Este puede incrementarse a través de una mayor
fuerza contráctil del ventrículo izquierdo y/o a través de un aumento de la presión de llenado cardíaco.

Según Tschakert & Hofmann (2013) el HIIT provoca adaptaciones centrales positivas en el organismo como son:

Consumo máximo de oxígeno (VO₂max)

Tschakert & Hofmann (2013) señalan en su estudio que las mejoras en el VO₂max se deben principalmente tanto a las adaptaciones del potencial oxidativo muscular, como al aumento de mitocondrias y actividad enzimática mitocondrial. Estos mismos autores hacen hincapié en que un estímulo óptimo de HIIT es aquel que mantiene largos períodos de tiempo por encima de 90% VO₂max y que las largas duraciones de carga máxima, de 2 a 3 min, permiten acumular más tiempo en el VO₂max que el HIIT de intervalos cortos. Por contra, Burgomaster et al. (2005 & 2008), Trapp et al. (2008), Midgley et al. (2006) & Gibala et al. (2006), citados por Tschakert & Hofmann (2013), han revelado que incluso entrenamientos de intervalos a sprint (30 s, o incluso menos de 10 s) provocan mejoras significativas en el rendimiento de resistencia y VO₂max.

En cuanto a los porcentajes de mejora recogidos de los artículos analizados, éstos van desde el 2,6% en el estudio de Ronnestad, Hansen, Vegge, Tonnessen & Slettalokken (2013), donde se realiza un entrenamiento interválico de larga duración (LIT) en ciclistas con protocolo de 4x5’, hasta el 11,7% en los análisis de Stoggl & Sperlich (2014), en el que la mejora se produce a través de HIIT acompañado de un entrenamiento de alto volumen (entrenamiento polarizado) en atletas de fondo. Aunque hay que tener en cuenta algún sesgo, por ejemplo Sperlich, Zinner, Heilemann, Kjendlie, Holmberg & Mester (2010) toman como muestra niños menores de 11 años.

Además, estos estudios que mejoran el VO₂max, a excepción del de Wallner, Simi, Tschakert & Hofmann (2013), recogen una mejora del rendimiento. Puede intuirse que gracias a las adaptaciones positivas en la variable analizada se consigue un incremento en el rendimiento. Estas mejoras del VO₂ se muestran
gracias al aumento de mitocondrias y actividad enzimática mitocondrial, así como a las adaptaciones del potencial oxidativo muscular, para un mayor aprovechamiento posterior de la energía, y por tanto, lograr así una mejora en el rendimiento del deportista.

Rønnestad, Hansen & Ellefsen (2012) destacan en su estudio con ciclistas que mantener largos períodos de tiempo por encima de 88% FCmax y largas duraciones de carga de 5' a 6' permiten acumular más tiempo en el VO2max y así posteriormente mejorar sus niveles (4,6%). Por contra, Laursen, Shing, Peake, Coombes & Jenkins (2002), revelaron que incluso intervalos al 60% del tiempo máximo (Tmax) en potencia máxima (Pmax) con recuperaciones al 65% FCmax, provocan en ciclistas mejoras significativas en el rendimiento de resistencia y VO2max. Por tanto, no se pueden extraer conclusiones determinantes acerca de cuál es el protocolo ideal de entrenamiento para aumentar el VO2max y por ello mejorar el rendimiento con respecto a esta variable, pero parece ser que las adaptaciones centrales, relacionadas con el VO2max, están ligadas a la intensidad del ejercicio.

Gasto cardiaco

Astrand et al. (1960), citado por Tschakert & Hofmann (2013), demostraron que con intervalos largos con duraciones de trabajo de al menos 3 min, las oscilaciones de frecuencia cardiaca (FC) eran mayores entre las fases de trabajo y recuperación (188-118 ppm) frente a intervalos cortos de 30 s de trabajo (150-137 ppm). También demuestran que el HIIT provoca mejoras en la función cardiaca a través de un aumento del volumen en el ventrículo izquierdo, produciendo una disminución de la resistencia periférica, que a su vez conlleva un mayor volumen diastólico final (VDF) y un mayor volumen sistólico (VS).

Sin embargo, en otro estudio Pokan et al. (1997), citado por los mismos autores, revelaron que se produjo una disminución del volumen diastólico final en la fase de recuperación al incrementar el ejercicio. Además, al no haber cambios en el
volumen sistólico, se da un aumento en la fracción de eyección por parte del ventrículo izquierdo inmediatamente posterior al ejercicio.

Tolerancia al calor

La mejora en la tolerancia al calor del deportista de élite es otro mecanismo responsable, en parte, de la progresión positiva del rendimiento de resistencia realizando HIIT. El ejercicio de alta intensidad produce elevadas temperaturas centrales (~ 40°C) incrementando el volumen plasmático, aclimatándose así el deportista al calor. De hecho, el HIIT puede provocar una mayor tolerancia al calor en individuos físicamente activos. Esta adaptación se da a través de un aumento de la tasa de sudoración. El hecho de que los atletas entrenados posean una capacidad mejorada para sudar, así como una mejor irrigación sanguínea, apoya a la tolerancia al calor como una posible adaptación en respuesta al HIIT (Fader, 2013).

3.4.2. PERIFÉRICAS

Como se ha comentado anteriormente, hay también otro tipo de adaptaciones con la realización del HIIT, las periféricas. Dentro de este tipo de adaptaciones cabe destacar la habilidad del músculo para producir y utilizar ATP. Mediante el HIIT se han demostrado incrementos en la actividad enzimática oxidativa y glucolítica, acompañados de una capacidad mejorada de ejercicio tanto en poblaciones saludables como en atletas altamente entrenados (Fader, 2013).

Las principales adaptaciones periféricas que se dan en el organismo, según Tschakert & Hofmann (2013), son:

Fosfocreatina y oximioglobina

La producción de energía a través de la resíntesis de ATP obtenido por el metabolismo aeróbico y/o anaeróbico es una de las cuestiones de mayor estudio dentro del HIIT. En la fase inicial, el oxígeno no llega a los valores de la demanda real del mismo debido al retraso de la cinética del VO₂. Por lo tanto, la energía para
la resíntesis de ATP debe ser obtenida por medio de oxígeno intracelular almacenado y/o a través de la vía anaeróbica. En este sentido, estos autores destacaron la importancia de la oximioglobina como almacén de oxígeno intracelular y de fosfocreatina (PC), un fosfágeno rico en energía. Estos depósitos se pueden llenar rápidamente y por completo durante los periodos de recuperación, a no ser que la potencia pico sea demasiado elevada o la fase de recuperación muy corta o intensa (Buchheit & Laursen, 2013).

Lactato

Se debe tener en cuenta que la concentración de lactato en el músculo y en la sangre refleja la concentración de hidrogeniones (H⁺). Esta concentración de H⁺ se expresa por medio del valor de pH e influye fuertemente en el estado ácido-base. Lactato y H⁺ son el resultado de la disociación del ácido láctico, que se produce a través de la glucolisis anaeróbica.

Los estudios de Astrand et al. (1960), citado por Tschakert & Hofmann (2013), revelaron que largos intervalos de 2 ó 3 min a intensidades cercanas a la potencia en el VO₂max, provocaron altas concentraciones de lactato en sangre (niveles de 16,6 mmol/L). Por contra, intervalos cortos de 30 s ó 1 min a potencia pico, provocaron una menor concentración de lactato (2 mmol/L) y fueron bien tolerados durante 1 hora. Estos datos fueron sorprendentes dado el alto volumen de trabajo a potencia pico. Por tanto, cuanto mayor sea la potencia pico a desarrollar en los intervalos, menor a de ser el tiempo a ejecutar, lo que llevará a desempeñar un trabajo en estado estable de lactato (LASS). Además, la ventaja de realizar un ejercicio en LASS es que puede ser realizado durante más tiempo, es decir, mayor volumen de entrenamiento.

Sin embargo, el HIIT que evoca niveles altos de producción de ácido láctico en el músculo durante el ejercicio desencadena respuestas hormonales específicas y puede provocar ciertos beneficios, especialmente para los atletas, como la mejora de la tolerancia al lactato. Con ello, altos niveles de ácido láctico intracelular y en sangre pueden conducir a una restricción de la glucólisis durante el trabajo de...
sesiones posteriores, obligando al organismo a una mayor contribución del metabolismo aeróbico para la resíntesis de ATP, a pesar de las cargas de trabajo por encima del máximo estado estable de lactato. Este mecanismo puede ser una razón de las mejoras en el VO2max después del entrenamiento de HIIT de largas duraciones y de carga máxima, como protocolos de 4x4'.

Otro dato que se observa en los artículos analizados es que se producen mayores incrementos en los niveles de lactato al aumentar la intensidad y/o disminuir el tiempo de recuperación. Así pues, en protocolos SIT como en los estudios de Ronnestad et al. (2013) y Wallner et al. (2013), se produce un mayor aumento de esta variable (12%) que en HIIT de intervalos largos o menores intensidades como en los estudios de Ronnestad et al. (2012) y Ronnestad et al. (2013) (5%). Por ello, cuanto mayor sea la potencia pico a desarrollar en los intervalos, menor a de ser el tiempo a ejecutar, lo que llevará a desempeñar un trabajo en estado estable de lactato (LASS).

Pero de nuevo hay que tener en cuenta que niveles altos de acumulación de lactato pueden ayudar a la eliminación del mismo en futuras sesiones. En este caso se puede destacar como ejemplo el artículo de Billat et al. (2001). En este se demuestra que mediante un protocolo de 15 s - 15 s con rangos de intensidades de recuperación mayores se mejoran los niveles de concentración de lactato en sesiones posteriores a la misma intensidad, respecto a intensidades de recuperación menores (9 vs 11 mmol/L).

Potencia aeróbica máxima (PAM)

Con respecto a la variable potencia aeróbica máxima (PAM) nos encontramos 4 estudios en los que un aumento de la misma se traduce en una mejora del rendimiento. Es el caso de los trabajos de Ronnestad et al. (2012), Ronnestad et al. (2013), Laursen et al. (2002) y Bayati, Farzad, Gharkhanlou & Agha-Alinejad (2011), siendo la mejora en estos dos últimos artículos estadísticamente significativa.

La variable PAM es la que menor grado de mejora obtiene en la mayoría de los estudios. Esto puede ser debido al alto nivel de entrenamiento de los sujetos al
inicio de los mismos. De hecho, las mejoras más destacadas se observan en el trabajo de Bayati et al. (2011) en el que los sujetos no eran deportistas entrenados sino jóvenes activos y por tanto contaban con más margen de mejora en esta variable. Además, dada la relación directa que existe entre la mejora del VO$_2$max y la PAM, los autores no destacan esta última debido a que ya establecen resultados respecto a la primera.

Para finalizar con el análisis de los estudios empleados para la revisión, destacamos el estudio de Kilen et al. (2014), donde no aparece mejora en la capacidad fisiológica de los sujetos y, por tanto, no existen variaciones en el rendimiento. Creemos que puede ser debido a que los sujetos del estudio eran nadadores de élite, con un alto nivel de entrenamiento previo al estudio, y por tanto con menores márgenes de mejora.

En el lado opuesto hay que nombrar el estudio de Bayati et al. (2011), donde sí que se registran mejoras en el rendimiento, aunque la muestra se refiere a jóvenes activos que realizan deporte de manera regular. En este caso parece claro, en un principio, descartar este artículo como parte del análisis general, por no analizarse en deportistas altamente entrenados, pero el hecho de que se demuestren buenos resultados en la mejora de las variables VO$_2$max, PAM y niveles de lactato, empleando un tamaño de la muestra y una duración del estudio similares a la mayoría de los artículos incluidos en esta revisión, hace justificable su inclusión en el análisis.

A continuación se recogen los protocolos de entrenamiento utilizados en cada uno de los estudios (tabla 3), junto con las mejoras obtenidas de las variables analizadas:
Tabla 3. Protocolos utilizados y resultados obtenidos.

<table>
<thead>
<tr>
<th>Estudio</th>
<th>Protocolo</th>
<th>Rendimiento</th>
<th>VO2max</th>
<th>PAM</th>
<th>Lactato en VO2max/OBLA/LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billat et al. (2001)</td>
<td>Atletas (larga distancia) n=7; sesiones=1; 1 día</td>
<td>HIIT (15''-15'') A) 90-80% vVO2max. B) 100-70% vVO2max C) 110-60% vVO2max</td>
<td>↑ A y B según VO2max</td>
<td>↑A y B permitieron estar el doble de tiempo en el VO2max en comparación con C (14' Vs 7')</td>
<td>↓A y B (9 vs 11 mmol/L)</td>
</tr>
<tr>
<td>Laursen et al. (2002)</td>
<td>Ciclistas y triatletas n=38; sesiones=8; 4 semanas</td>
<td>G1: 8x60% Tmax en Pmax, ratio 1:2 de trabajo-descanso G2: 8x60% Tmax en Pmax, recuperación en 65% Fcmax G3: 12x30'' en 175% PPO, recuperación de 4-5'</td>
<td>↑G1 , G2 y G3 (4,4-5,8% en 40km contrarreloj)</td>
<td>↑ G1 (5,4%) y G2 (8,1%)</td>
<td>↑G1 , G2 y G3 (3-6,2%)</td>
</tr>
<tr>
<td>Driller et al. (2009)</td>
<td>Remeros n=10; sesiones=8; 4 semanas; HIIT vs CT</td>
<td>8x2,5'/70%FCmax al 90% vVO2pico</td>
<td>↑ (1,9% en 2000m)</td>
<td>↑ (7%)</td>
<td>no mejora la potencia a 4mmol/L respecto al CT (-2%)</td>
</tr>
<tr>
<td>Sperlich et al. (2010)</td>
<td>Nadadores (9-11 años) n=26; sesiones=25; 5 semanas; HIIT vs CT en 100m y 2000m</td>
<td>intensidad de cada intervalo (92% del mejor tiempo personal)</td>
<td>↑ (2,8% en 2000m)</td>
<td>↑ (10,2%)</td>
<td>↑ (20,1 %)</td>
</tr>
<tr>
<td>Bayati et al. (2011)</td>
<td>Jóvenes activos n=24; sesiones=12; 4 semanas; SIT vs HIIT modificado</td>
<td>G1: 3-5x30''/4' (SIT) G2: 6-10x30''/2 al 125% Pmax</td>
<td>↑ (G1: 48% y G2: 54%)</td>
<td>↑ G1 (9,6%) y G2 (9,7%)</td>
<td>↑ (G1: 10,3% y G2: 7,3%)</td>
</tr>
<tr>
<td>Ronnestad et al. (2012)</td>
<td>Ciclistas n=21; 8 sesiones; 4 semanas; BP vs CT</td>
<td>BP y CT 6x5'/2,5' al 88-100% FCmax 5x6''/3' al 88-100% FCmax</td>
<td>↑ (BP)</td>
<td>↑ (BP: 4,6%)</td>
<td>↑ (BP: ~5,2%)</td>
</tr>
<tr>
<td>Mazooci et al. (2013)</td>
<td>Karate, balonmano y voley n=24; sesiones=24; 8 semanas; HIIT vs CT</td>
<td>(no consta)</td>
<td>↑(no significativo)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Entrenamiento interválico de alta intensidad para el rendimiento deportivo

<table>
<thead>
<tr>
<th>Estudio</th>
<th>Grupo</th>
<th>Protocolo</th>
<th>Modo</th>
<th>Comparación</th>
<th>RESULTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ronnestad et al. (2013)</td>
<td>Ciclistas n=20; sesiones=20; 10 semanas; SIT vs LIT</td>
<td>SIT 3x(13x30’’/15’’)/3’ LIT 4x5’</td>
<td>↑ SIT</td>
<td>↑ SIT (8,7%) y LIT (2,6%)</td>
<td>(los ciclistas mejoraron la potencia a 4mmol/L) (SIT: 12% y LIT: 5%)</td>
</tr>
<tr>
<td>Wallner et al. (2013)</td>
<td>Atletas n=8; 3 sesiones consecutivas;</td>
<td>AESIT 60x10’’/20’’ 1ª sesión al 50% vLTP1 2ª sesión al 55% vLTP1 3ª sesión al 60% vLTP1</td>
<td>↑ (principalmente a intensidades del 50% y 55%)</td>
<td>↑ (a intensidades del 55% vLTP1 y 60%)</td>
<td></td>
</tr>
<tr>
<td>Kilen et al. (2014)</td>
<td>Nadadores n=41; 12 semanas; HIIT vs CT en 100m y 200m</td>
<td>6-10x10’’-30’’/2’-4’ a sprint</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Stoggl et al. (2014)</td>
<td>corredores, ciclistas, triatletas, y esquiadores fondo n=48; 16 días HIIT; HVT-HIIT-THR-POL</td>
<td>4x4’/3’ 90-95% Fcpico</td>
<td>↑ POL</td>
<td>↑ POL (11,7%) y HIIT (4,8%)</td>
<td>→</td>
</tr>
</tbody>
</table>
4. Conclusiones

Gran parte de los estudios analizados obtienen mejoras a pesar de la diversidad en cuanto al tiempo del intervalo de trabajo y descanso, y número de repeticiones. Esto unido a la heterogeneidad de los estudios y variedad de deportes no permite asegurar cuál es el mejor protocolo de aplicación de HIIT para la mejora del rendimiento.

Teniendo en cuenta que los atletas entrenados cuentan con una elevada capacidad aeróbica, umbral de lactato, y economía de movimiento, en estos sujetos, un incremento adicional en entrenamiento de resistencia submaximal (volumen) no parece mejorar aún más el rendimiento en resistencia o las variables fisiológicas asociadas. Por ello que las mejoras en el rendimiento de resistencia pueden ser alcanzadas a través del entrenamiento de intervalos de alta intensidad.

En este sentido, parece eficaz realizar entrenamiento de intervalos a intensidades de ejercicio que solicitan el VO$_2$max, y puede ser valioso trabajar el tiempo en el cual se pueda mantener esa intensidad de ejercicio durante la sesión de entrenamiento de intervalos.

Consideramos que los resultados obtenidos avalan el uso del entrenamiento interválico de alta intensidad como técnica para la mejora del rendimiento, principalmente en cuanto a la mejora del VO$_2$max y disminución de los niveles de concentración de lactato en sangre en deportistas entrenados. Por tanto, existe una clara evidencia que manifiesta el beneficio de los diferentes modelos de HIIT sobre el metabolismo, adaptaciones musculares periféricas que aumentan el potencial oxidativo del músculo, cambios en la oxidación de sustratos en reposo y durante el ejercicio. No obstante creemos conveniente continuar investigando en este tema para su mejor aplicación en futuros programas de entrenamiento.

Sería recomendable el seguimiento posterior de estudios sobre HIIT para valorar la efectividad de los resultados de cada investigación. Sería interesante una continuidad del entrenamiento en estos trabajos, pudiendo ser inicialmente a medio plazo, para conocer si los efectos se mantienen en el tiempo.
5. Bibliografía

Entrenamiento interválico de alta intensidad para el rendimiento deportivo

• Stöggl, T., Sperlich, B. (2014). Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in physiology, 5.

6. Anexo 1

Listado de abreviaturas.

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIIT</td>
<td>Entrenamiento interválico de alta intensidad</td>
</tr>
<tr>
<td>VO2max</td>
<td>Consumo máximo de oxígeno</td>
</tr>
<tr>
<td>PAM</td>
<td>Potencia aeróbica máxima</td>
</tr>
<tr>
<td>ET</td>
<td>Entrenamiento tradicional</td>
</tr>
<tr>
<td>SIT</td>
<td>Entrenamiento interválico de corta duración</td>
</tr>
<tr>
<td>LIT</td>
<td>Entrenamiento interválico de larga duración</td>
</tr>
<tr>
<td>VT1</td>
<td>Umbral ventilatorio 1</td>
</tr>
<tr>
<td>FCmax</td>
<td>Frecuencia cardiaca máxima</td>
</tr>
<tr>
<td>RPE</td>
<td>Escala subjetiva de percepción de fatiga</td>
</tr>
<tr>
<td>LTP1</td>
<td>Punto de lactato 1</td>
</tr>
<tr>
<td>vLTP1</td>
<td>Velocidad al punto de lactato 1</td>
</tr>
<tr>
<td>Ppico</td>
<td>Potencia pico</td>
</tr>
<tr>
<td>LASS</td>
<td>Estado estable de lactato</td>
</tr>
<tr>
<td>FCR</td>
<td>Frecuencia cardiaca de reserva</td>
</tr>
<tr>
<td>Pmax</td>
<td>Potencia máxima</td>
</tr>
<tr>
<td>vVO2max</td>
<td>Velocidad al consumo máximo de oxígeno</td>
</tr>
<tr>
<td>Vmax</td>
<td>Velocidad máxima</td>
</tr>
<tr>
<td>Tmax</td>
<td>Tiempo máximo</td>
</tr>
<tr>
<td>Trec</td>
<td>Tiempo de recuperación</td>
</tr>
<tr>
<td>PC</td>
<td>Fosfocreatina</td>
</tr>
<tr>
<td>vOBLA</td>
<td>Velocidad en el OBLA</td>
</tr>
</tbody>
</table>
Entrenamiento interválico de alta intensidad para el rendimiento deportivo