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Abstract. In this paper we introduce a new axiom, denoted claims sepa-

rability, that is satis�ed by several classical division rules de�ned for claims

problems. We characterize axiomatically the entire family of division rules

that satisfy this new axiom. In addition, employing claims separability, we

characterize the minimal overlap rule, given by O�Neill (1982), Piniles� rule

and the rules in the TAL-family, introduced by Moreno-Ternero and Villar

(2006), which includes the uniform gains rule, the uniform losses rule and the

Talmud rule.

JEL Classi�cation: C71.
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1. Introduction

Consider the problem in which there is a resource to be divided among several

agents who have claims on it and cannot be all ful�lled. This is an issue studied

not only in the economic literature or the game theory literature but also in the

2000 year old document Talmud or in the twelfth century by Maimonides, Rabad

and Ibn Ezra. It is formally denoted as claims problem or bankrutcy problem.

O�Neill (1982) originated the application of cooperative game theory in solving

claims problem. That is, in �nding division rules, which specify allocations of

the resource among the agents. Good surveys of the related literature are due

to Thomson (2003, 2013a, 2013b) and Moulin (2002). Concepts, as the Lorenz

ranking (Thomson, 2012) have also been studied for that problem. When studying

claims problems there is an axiomatic approach: fair properties for division rules

are considered and division rules satisfying fair properties are seek or identi�ed.

This is the approach of this paper.
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The following classical division rules for claims problems can be mentioned. The

uniform gains rule and the uniform losses rule, both of them referred by Mai-

monides; the Talmud rule, present in the Talmud; the rule by Piniles from the

nineteenth century; the minimal overlap rule, which is the generalization by O�Neill

(1982) of a rule by Rabad and Ibn Ezra (de�ned only when the endowment is not

greater than the smallest claim); and the well known proportional rule. It can

mentioned the axiomatic characterizations of the uniform gains rule and uniform

losses rule by Herrero and Villar (2001), that of the Talmud rule by Aumann and

Mashler (1985), and that of the minimal overlap rule by Alcalde et al. (2008) .

In this paper we propose a new axiom for claims problems, named claims separa-

bility. It is satis�ed by the uniform gains rule, the uniform losses rule, the Talmud

rule, Piniles�rule , the minimal overlap rule and the proportional rule. We would

like to point out that so far there is only one axiom in the literature ful�lled by all

of them: order preserving, introduced by Auman and Maschler (1985). This new

axiom is also satis�ed by the rules in the TAL-family de�ned by Moreno-Ternero

and Villar (2006), and the alternative extension of the Ibn Ezra rule introduced by

Bergantiños and Mendez-Naya (2001) and characterized by Alcalde et al. (2005).

Claims separability follows from the fact that if agent j claims more than agent i,

then the claim of agent j is formed by the claim of agent i plus the remaining claim

of agent j. Claims separability requires the allocation of agent j to be equal to the

allocation of agent i plus the allocation of agent j in a remaining claims problem.

This remaining problem will be explained in detail in Section 3. Roughly writing,

it has as claims the remaining claims and as endowment the remaining one.

We determine all the rules that satisfy claims separability, which turns to form

a family of serial like rules. We also give characterizations for the uniform gains

rule and the uniform losses rule related to the characterizations given by Herrero

and Villar (2001), in which the consistency axiom employed by these authors is

substituted by claims separability and independence of null demands. We give an

axiomatic characterization for the Talmud rule, related to a characterization given

by Aumann and Mashler (1985), employing our axiom and self-duality. Moreover,

if instead of self-duality, we consider a weaker axiom than the composition axiom

introduced by Young (1988), Piniles�rule is characterized. Finally, we provide a

characterization for the minimal overlap rule by means of three axioms: claims sep-

arability, invariance of claims truncation, and a new one related to the composition

axiom introduced by Young (1988).

There are well known rules which do not satisfy claims separability. For example,

the random arrival rule given by O�Neill (1982).

The rest of the paper is organized as follows: preliminaries are presented in

Section 2. Claims separability and the family characterized by that axiom are in
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Section 3. In Section 4 are provided axiomatic characterizations of the uniform

gains rule, the uniform losses rule, the Talmud rule and the minimal overlap rule.

2. Preliminaries

Let N be a �nite set of nonnegative integers. For q 2 RN and S � N we denote

q (S) =
P
j2S

qj and s = jSj : The zero vector is denoted by 0 = (0; : : : ; 0). Given

two vectors x, y 2 RN , x � y means that xj � yj , for all j 2 N: The set of all
nonnegative N -dimensional real vectors is denoted by RN+ =

�
x 2 RN : x > 0

	
and

XN =
�
x 2 RN+ : xj > xi if j > i

	
. If jN j = 1, it is written R+ = fx 2 R : x > 0g.

The set of natural numbers is denoted by N = f1; 2; :::g. For notational convenience
and without loss of generality, it can be assumed that N = f1; :::; ng :
A claims problem (or bankruptcy problem) with set of claimants N is an ordered

pair (c; E) where c = (c1; : : : ; cn); 0 � c1 � � � � � cn; speci�es for each agent i a

claim ci; and 0 � E � c1 + � � �+ cn represents the amount to be divided.
The space of all claims problems is denoted by C, and by CN the set of all claims

problems with set of claimants N .

A division rule (or bankruptcy rule) is a function that associates with each claims

problem (c; E) 2 CN a vector '(c; E) 2 Rn+ specifying an award for each agent i
such that 0 6 '(c; E) 6 c and '1(c; E) + � � �+ 'n(c; E) = E:
N can be �xed or not. Throughout the paper if it is noted in which case we are.

Now we present some classical bankruptcy rules. First, the following three. The

uniform gains rule, which shares the endowment equally without giving anyone

more than his/her claim; the uniform losses rule, which allocates losses equally

without giving anyone a negative amount; and the Talmud rule, which allocates

the endowment equally to agents, so that no-one receives more than half of his/her

claim, and, if the endowment is greater than the sum of half of the claims, allocates

losses equally. Those three rules can be formalized as follows.

The uniform gains rule, UG, shares the following amount for each (c; E) 2 CN

and each i 2 N :
min fci; �g ;

where � � 0 satis�es
P

i2N min fci; �g = E.

The uniform losses rule, UL, allocates the following amount for each (c; E) 2 CN

and each i 2 N :
max f0; ci � �g ;

where � � 0 satis�es
P

i2N max f0; ci � �g = E.



4 M. J. ALBIZURI*, J. C. SANTOS

The Talmud rule, TAL, provides each (c; E) 2 CN and each i 2 N with the

following quantity:

min
nci
2
; �
o
;

if E � c(N)
2 ; and

max
nci
2
; ci � �

o
;

if E � c(N)
2 , where � and � are such that

P
i2NTALi(c; E) = E.

The TAL-family, which comprises the above three rules, was introduced by

Moreno-Ternero and Villar (2006). Each rule in the TAL-family is associated with

a parameter � 2 [0; 1] and is denoted by R�. It allocates the endowment equally
until each of the agents receives no more than the fraction � of his/her claim, and

if the endowment is greater than the fraction � of the total claim then losses are

shared equally. Therefore, if � = 0 the uniform losses rule results, if � = 1=2 the

Talmud rule and if � = 1 the uniform gains rule.

That is, R� provides each (c; E) 2 CN and each i 2 N with the following

quantity:

min f�ci; �g ;

if E � �c(N); and
max f�ci; ci � �g ;

if E � �c(N), where � and � are such that
P

i2N R
�
i (c; E) = E.

The minimal overlap rule allocates each agent the sum of the partial awards from

the various units on which he/she lays claims, where for each unit equal division

prevails among all the agents claiming it and claims are arranged on speci�c parts

of the amount available, called units, so that the number of units claimed by exactly

one claimant is maximized, and for each k = 2; :::; n� 1 successively, the number of
units claimed by exactly k claimants is maximized subject to the k�1maximization
exercises being solved. Alcalde et al. (2008) formalize the minimal overlap rule,

denoted by 'mo, as follows.

For each (c; E) and each i 2 N;
(a) if E � cn,

'moi (c; E) =
iX

j=1

min fcj ; tg �min fcj�1; tg
n� j + 1 +max fci � t; 0g ;

where c0 = 0, and t is the unique solution for the equation
nX
k=1

max fck � t; 0g = E � t;
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or

(b) if E < cn,

'moi (c; E) =
iX

j=1

min fcj ; Eg �min fcj�1; Eg
n� j + 1 :

Albizuri and Santos (2014) associates with each (c; E) 2 CN and i 2 N a

subproblem (c�i; E�i) 2 CN . They write that a division rule satis�es balanced
contributions associated with (c�i; E�i) 2 CN if

'j(c; E)� 'i(c; E) = 'j(c�i; E�i)� 'i(c�j ; E�j)

for all (c; E) 2 CN ; and i; j 2 N: Albizuri and Santos (2014) take di¤erent possi-
bilities for c�i and E�i. Among them, those presented in this paper:

c�i = (max fck � ci; 0g)k2N

and the following two expressions for E�i.

a) E�i = min
�Pn

k=i+1 c
�i
k ;max fE � � (c1 + � � �+ ci + (n� i) ci) ; 0g

	
, where

� 2 [0; 1] : The resulting (c�i; E�i) is referred as the �-TAL-subproblem.

b) E�i = min
�Pn

k=i+1 c
�i
k ;max fE � ci; 0g

	
: The resulting (c�i; E�i) is re-

ferred as the MO-subproblem.

Albizuri and Santos (2014) prove the following theorem.

Theorem 1. A division rule ' satis�es the balanced contributions property associ-
ated with the �-TAL-subproblem (MO-subproblem) if and only if ' coincides with

R� (the minimal overlap rule).

3. Claims separability and the associated family

Before writing the main axiom let us consider the following, which is introduced

by Aumann and Maschler (1985). We denote by ' a division rule with domain CN .

Order preserving. For all claims problem (c; E) 2 CN ,

0 � '1(c; E) � : : : � 'n(c; E) and 0 � c1 � '1(c; E) � : : : � cn � 'n(c; E):

It requires gains and losses not to be smaller for anyone who claims more. As

pointed by Aumann and Maschler (1985), the uniform gains rule, the uniform losses

rule, the Talmud rule, the minimal overlap rule1 and the proportional rule satisfy

order preserving. It is clear also that all the rules in the TAL-family satisfy order

preserving.

1In fact, they referred to Ibn Ezra or Rabad�s rule, that is, to the specif case in which E � cn:
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Claims separability. If (c; E) 2 CN and i 2 f1; : : : ; n� 1g ; then (c�i; Ei) 2 CN

and

'j(c; E) = 'i(c; E) + 'j(c
�i; Ei) (1)

for all j > i; where

Ei = E �
iX

h=1

'h(c; E)� (n� i)'i(c; E): (2)

The axiom we propose relates the allocations of two claims problems. Given a

claimant j and any claimant i who asks no more than him/her, the claim of agent

j is formed by two quantities: the claim of agent i and the rest. Suppose that all

the agents who claim no less than i are given for the former quantity of their claims

the allocation corresponding to agent i. Those who claim less or equal than i are

given simply their allocations. As a result of that, the endowment reduces by those

allocations, that is, it becomes Ei. And agents still have the rest of their claims to

be asked for, that is, c�ih . Claims separability requires those remaining claims and

the reduced endowment to form a claims problem, and the allocation of claimant j

who asks no less than i to be the allocation of agent i plus the allocation of agent

j in the remaining claims problem, that is, in (c�i; Ei).

In the consistency axiom for claims problems, the claims of the agents are not

divided into two pieces. Instead, a group of agents leave the scene with their

allocations, and those who continue remain with their entire claims. Therefore, the

endowment is reduced only by the allocations of the agents who leave. Consistency

requires the allocation of the agents who remain to coincide with their allocations in

the remaining problem. If we compare our axiom and consistency, we can say that

our axiom can be seen as an additive consistency axiom. It requires the division

rule to be consistent when claims are divided according to lower claims.

With respect to the notation, we employ Ei to denote the remaining endowment

to make easier the writing of the paper, although this endowment depends on the

division rule, the agent and the claims.

The requirement (c�i; Ei) 2 CN in claims separability is not so strange or de-

manding. We show that if a division rule satis�es order preserving, then (c�i; Ei)

is a claims problem.

Lemma 1. For each claims problem (c; E) 2 CN and each i = 1; : : : ; n � 1; if a
division rule satis�es order preserving then (c�i; Ei) 2 CN .

Proof. It is su¢ cient to prove that
nP

j=i+1

(cj � ci) � Ei.
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It holds

Ei = E �
iX

h=1

'h(c; E)� (n� i)'i(c; E) =
nX

j=i+1

�
'j(c; E)� 'i(c; E)

�
;

and order preserving implies that for each j > i

'j(c; E)� 'i(c; E) � cj � ci:

Therefore,
nX

j=i+1

(cj � ci) �
nX

j=i+1

�
'j(c; E)� 'i(c; E)

�
= Ei;

and the proof is complete. �

Remark 1. We would like to note the following. Let ' be a division rule. If

(c�i; Ei) is a claims problem for each (c; E) 2 CN and i = 1; :::; n�1; and ' satis�es
equality (1), then ' satis�es order preserving. Indeed, if j > i; then 'j(c; E) =

'i(c; E) + 'j(c
�i; Ei) � 'i(c; E) and 'j(c; E) � 'i(c; E) = 'j(c�i; Ei) � cj � ci,

where the two inequalities hold since ' is a division rule. Therefore, ' satis�es

order preserving. As a result of that, claims separability is equivalent to requiring

order preserving and equality (1).

Proposition 1. The rules in the TAL-family, the minimal overlap rule and the
proportional rule satisfy claims separability.

Proof. Let us prove that R� satis�es claims separability. Let j > i. Since R� satis-

�es the balanced contributions property associated with the �-TAL-subproblem, it

holds

R�j (c; E)�R�i (c; E) = R�j (c�i; E�i)�R�i (c�j ; E�j);

where

E�h = min
nXn

k=h+1
c�hk ;max fE � � (c1 + � � �+ ch + (n� h) ch) ; 0g

o
;

if h = i; j: Since j > i, then the above equality turns into

R�j (c; E)�R�i (c; E) = R�j (c�i; E�i):

Taking into account this equality, thatR� is a division rule and equalityR�j (c
�i; E�i) =

0 if j � i, the following holds:

E�i =
nX
j=1

R�j (c
�i; E�i) =

nX
j=i+1

�
R�j (c; E)�R�i (c; E)

�
= Ei:

Thus, (c�i; Ei) 2 CN and

R�j (c; E)�R�i (c; E) = R�j (c�i; Ei);

that is, R� satis�es claims separability.
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The proof for the minimal overlap rule can be done in the same way, taking the

corresponding E�h, if h = i; j:

As for the proportional rule, it can be easily proved that it satis�es the balanced

contributions property with c�i and E�i =
Pn

k=i+1
ck�ci
c(N) E. Therefore, the proof

for the proportional rule is as above considering that E�i. �

Observe that a division rule satis�es claims separability if and only if it satis�es

the balanced contributions property associated with a claims problem (c�i; E�i),

where E�i is any non-negative number not depending on j (smaller or equal than

c�i (N)).

Notice that claims separability does not imply consistency. The minimal overlap

rule is claims separable but it is not consistent. And the other way round, consis-

tency does not imply claims separability. Cassel�s parametric rule (see Thomson,

2003) is a consistent rule, which is not claims separable.

On the other hand, the random arrival rule (O�Neill, 1982) is not either consistent

or claims separable. If 'ra denotes the random arrival rule, for each (c; E) and each

i 2 N;

'rai (c; E) =
1

n!

X
�2�N

min

8<:ci;max
8<:E � X

j2N;�(j)<�(i)

cj ; 0

9=;
9=; ;

where�N denotes the class of bijections fromN into itself. Take (c; E) = ((2; 3; 5; 6) ; 6)

and i = 2. Then, 'ra(c; E) = (9=12; 13=12; 23=12; 27=12) ; (c�i; Ei) = ((0; 0; 2; 3) ; 2)

and 'ra ((0; 0; 2; 3) ; 2) = (0; 0; 1; 1) : Observe that

'ra3 (c; E) =
23

12
6= 13

12
+ 1 = 'ra2 (c; E) + '

ra
3 (c

�2; E2):

We have seen that several classical division rules satisfy claims separability. Now,

the question is: what are the rules satisfying this axiom like? We show that they

form a family determined by several functions satisfying some properties.

Let a list of functions F =
�
F k
	n�1
k=1

; F k : Xn�k+1 � R+ ! R+ be such that:

(C1) F k(x; y) � max
(
0; y �

n�k+1P
j=2

(xj � x1)
)
if y � x1 + � � �xn�k+1:

(C2) F k(x; y) � min f(n� k + 1)x1; yg if y � x1 + � � �xn�k+1:
(C3) F k(x; y) = 0 if y > x1 + � � �+ xn�k+1:

Conditions C1 and C2 �xe an upper bound and a lower bound for the values of

the functions F k when y � x1+� � �xn�k+1: Condition C3 is a thecnical requirement
in order to F k be a function. In fact, the values of F k when y > x1+ � � �xn�k+1 are
not needed to de�ne the division rules in our family, and therefore we can choose

any number to be the value.
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De�nition 1. The division rule associated with a list of functions F =
�
F k
	n�1
k=1

which satisfy C1, C2 and C3 is de�ned for each claims problem (c; E) 2 CN as

follows:

If i < n;

'Fi (c; E) =
iX

j=1

F j(cj�1;Ej�1)

n� j + 1 ;

and if i = n;

'Fn (c; E) = E �
n�1X
j=1

'Fj (c; E);

where c0 = c and E0 = E; and for each j = 1; : : : ; n � 2, the vector cj 2 Rn�j

satis�es cjh = c�jj+h for each h = 1; : : : ; n � j, and the real number Ej satis�es

expression (2), that is, Ej = E �
jP

h=1

'Fh (c; E)� (n� j)'Fj (c; E):

The division rule 'F in the above de�nition can be seen as a serial like rule.

Notice that cj is composed by the last n � j terms of c�j . The endowment E is

given in n steps. In the �rst step the same quantity is allocated to all the agents.

This quantity can be seen as the total allocation corresponding to the amount c1
claimed by all the agents. The number F 1(c0;E0) tells us the total amount given

to the agents at this step. The amount F 1(c0;E0) is not bigger than n times the

claim of agent 1, that is, the total claim corresponding to this step, and it is not

bigger than the endowment. That is precisely the requirement C2. Also, since in

the following steps the claims are reduced by c1, the total amount F 1(c0;E0) has

to be big enough to allocate the endowment E in all the steps. And that is the

requirement C1. After sharing F 1(c0;E0) agent 1 leaves the scene, and we proceed

in the second step in the same way with the new endowment E1 and the claims

reduced by c1. The same quantity is allocated to agents 2; :::; n, the corresponding

to the amount c11 = c2 � c1 claimed by those agents. The number F 2(c1;E1) is the
total amount given in that step and it has as before a lower bound and an upper

bound determined by the amount c11. The process continues until the end. At the

�nal step, the rest is given to agent n.

In the proofs below we take into account the following equalities clearly implied

by the previous de�nition2.

'Fi (c; E) = '
F
i�1(c; E) +

F i(ci�1;Ei�1)

n� i+ 1 , if i 6= n; (3)

and

'Fn (c; E) = '
F
n�1(c; E) + E

n�2 � Fn�1(cn�2;En�2). (4)

2We assume 'F0 (c; E) = 0:
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It is necessary that the division rule 'F is well de�ned.

Lemma 2. The mapping 'F is a division rule.

Proof. We show that 'F1 (c; E) + � � � + 'Fn (c; E) = E and � 6 'F (c; E) 6 c. The

former equality is true by construction of 'F .

By de�nition, 'Fi (c; E) � 0 if i < n; and taking into account (4) it holds

'Fn (c; E) = '
F
n�1(c; E) + E

n�2 � Fn�1(cn�2;En�2) � 'Fn�1(c; E) � 0;

where in the before last inequality C2 is applied.

Now we show that 'Fi (c; E) 6 ci for all i 2 N .
If i 6= n, by de�nition and C2,

'Fi (c; E) =
F 1(c0;E0)

n
+ � � �+ F

i(ci�1;Ei�1)

n� i+ 1

� nc01
n
+ � � �+ (n� i+ 1)c

i�1
1

n� i+ 1 = c1 + � � �+ (ci � ci�1) = ci:

And if i = n; taking into account (4) ;

'Fn (c; E) = '
F
n�1(c; E) + (E

n�2 � Fn�1(cn�2;En�2))

� cn�1 +
�
En�2 � Fn�1(cn�2;En�2)

�
� cn�1 + En�2 �

�
En�2 � ((cn�1 � cn�2)� (cn � cn�2))

�
= cn;

where in the �rst inequality we have considered the case i = n�1 and in the second
one C1. �

Lemma 3. The mapping 'F satis�es claims separability.

Proof. To prove that (c�i; Ei) 2 CN , by Lemma 1 it is su¢ cient to prove that 'F

satis�es order preserving. Let (c; E) 2 CN . Taking into account that C2 implies
that En�2 � Fn�1(cn�2;En�2) � 0; by (3) and (4) it is clear that 0 � 'F1 (c; E) �
� � � � 'Fn (c; E):
To show that 0 � c1 � 'F1 (c; E) � � � � � cn � 'Fn (c; E) it is su¢ cient to prove

that 'Fi+1(c; E)� 'Fi (c; E) � ci+1 � ci when i = 1; :::; n� 1:
If i 6= n� 1, it holds

'Fi+1(c; E)� 'Fi (c; E) =
F i+1(ci;Ei)

n� i

�
min

�
(ci+1 � ci) (n� i); Ei

	
n� i � ci+1 � ci;

where the �rst equality is implied by (3) and the �rst inequality by C2.

If i = n� 1, we get

'Fn (c; E)� 'Fn�1(c; E) = En�2 � Fn�1(cn�2;En�2)

� En�2 �
�
En�2 � ((cn�1 � cn�2)� (cn � cn�2))

�
= cn � cn�1;
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applying (4) in the �rst equality and C1 in the inequality.

Now we prove equality (1). Let (c; E) 2 CN and i 2 f1; :::; n� 1g :We make the
proof by induction on j > i.

Observe that if h � i then

'Fh (c
�i; Ei) = 0; (5)

since 0 � 'Fh (c�i; Ei) � c
�i
h = 0.

The �rst step of the induction: if j = i+ 1; by de�nition,

'Fj (c
�i; Ei) =

F 1(
�
c�i
�0
;
�
Ei
�0
)

n
+ � � �+

F i+1(
�
c�i
�i
;
�
Ei
�i
)

n� i

= 'Fi (c
�i; Ei) +

F i+1(
�
c�i
�i
;
�
Ei
�i
)

n� i

=
F i+1(

�
c�i
�i
;
�
Ei
�i
)

n� i ;

where in the third equality we take into account expression (5).

Moreover, if h = 1; : : : n� i, then�
c�i
�i
h
= c�ih+i � c

�i
i = (ch+i � ci)� (ci � ci) = ch+i � ci = cih;

and �
Ei
�i
=

 
E �

iX
h=1

'Fh (c; E)� (n� i)'Fi (c; E)
!i

= E �
iX

h=1

'Fh (c; E)� (n� i)'Fi (c; E)

�
 

iX
h=1

'Fh (c
�i; Ei)� (n� i)'Fi (c�i; Ei)

!
= Ei;

where expression (5) has been applied in the last equality.

Hence,

'Fi+1(c
�i; Ei) =

F i+1(ci;Ei)

n� i ;

and since by (3) we have that

'Fi+1(c; E)� 'Fi (c; E) =
F i+1(ci;Ei)

n� i ;

then it holds

'Fi+1(c; E) = '
F
i (c; E) + '

F
i+1(c

�i; Ei);

as was to be shown.

Assume that 'Fk (c; E) = '
F
i (c; E) + '

F
k (c

�i; Ei) if k < j, and let us prove the

equality for j: Distinguish two cases.



12 M. J. ALBIZURI*, J. C. SANTOS

(a) If i+ 2 � j < n; by de�nition and expression (5),

'Fj (c
�i; Ei) =

F 1(
�
c�i
�0
;
�
Ei
�0
)

n
+ � � �+

F j(
�
c�i
�j�1

;
�
Ei
�j�1

)

n� j + 1

=
F i+1(

�
c�i
�i
;
�
Ei
�i
)

n� i + � � �+
F j(

�
c�i
�j�1

;
�
Ei
�j�1

)

n� j + 1 :

For k = i; : : : ; j � 1; and h = 1; : : : n� k,�
c�i
�k
h
= c�ih+k � c

�i
k = (ch+k � ci)� (ck � ci) = ch+k � ck = ckh;

and

�
Ei
�k
=

 
E �

iX
h=1

'Fh (c; E)� (n� i)'Fi (c; E)
!k

= E �
iX

h=1

'Fh (c; E)� (n� i)'Fi (c; E)

�
 

kX
h=1

'Fh (c
�i; Ei) + (n� k)'Fk (c�i; Ei)

!

= E �
iX

h=1

'Fh (c; E)� (n� i)'Fi (c; E)

�
 

kX
h=i+1

'Fh (c
�i; Ei) + (n� k)'Fk (c�i; Ei)

!

= E �
iX

h=1

'Fh (c; E)�
 
(k � i)'Fi (c; E) +

kX
h=i+1

'Fh (c
�i; Ei)

!
�
�
(n� k)'Fi (c; E) + (n� k)'Fk (c�i; Ei)

�
By induction, this expression turns into

E �
kX
h=1

'Fh (c; E)� (n� k)'Fk (c; E) = Ek:

And hence the initial expression can be rewritten as follows:

'Fj (c
�i; Ei) =

F i+1(ci;Ei)

n� i + � � �+ F
j(cj�1;Ej�1)

n� j + 1 :

Since by de�nition,

'Fj (c; E)� 'Fi (c; E) =
F i+1(ci;Ei)

n� i + � � �+ F
j(cj�1;Ej�1)

n� j + 1 ;

it holds

'Fj (c; E) = '
F
i (c; E) + '

F
j (c

�i; Ei):
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(b) If j = n; we have

'Fi (c; E) + '
F
n (c

�i; Ei) = 'Fi (c; E) + E
i �

n�1X
j=1

'Fj (c
�i; Ei)

= 'Fi (c; E) + E �
iX

h=1

'Fh (c; E)� (n� i)'Fi (c; E)�
n�1X
j=i+1

'Fj (c
�i; Ei);

where the �rst equality holds because 'F is a division rule and the second by

de�nition of Ei. By induction and case (a), the last expression becomes

E �
iX

h=1

'Fh (c; E)� (n� i� 1)'Fi (c; E)�
n�1X
j=i+1

�
'Fj (c; E)� 'Fi (c; E)

�
= E �

n�1X
j=1

'Fj (c; E)

= 'Fn (c; E);

where in the last equality it is taken into account the de�nition of '. �

Theorem 2. A division rule satis�es claims separability if and only if there exists
a list of functions F =

�
F k
	n�1
k=1

which satisfy C1, C2 and C3 such that the division

rule is the one associated with F =
�
F k
	n�1
k=1

.

Proof. Existence is proved in the previous Lemma, so now we prove unicity. Let

' be a division rule satisfying claims separability. De�ne the list of functions

F =
�
F k
	n�1
k=1

; F k from Xn�k+1 � R+ to R+ as follows:

F k(x; y) =

8><>: (n� k + 1)'k((
k�1z }| {

0; : : : ; 0;x); y) if y � x1 + � � �+ xn�k+1;
0 if y > x1 + � � �+ xn�k+1:

We prove that these functions satisfy C1 and C2. First we show condition C1,

that is, F k(x; y) � max
(
0; y �

n�k+1P
j=2

(xj � x1)
)
when y � x1 + � � �xn�k+1:

As ' is a division rule, then 'k(c; E) � 0 for all (c; E) 2 CN ; and therefore,
F k(x; y) � 0 for all (x; y) 2 Xn�k+1 � R+.
On the other hand, since ' satis�es order preserving (Remark 1), then

nX
j=k

('j((

k�1z }| {
0; : : : ; 0;x); y)� 'k((

k�1z }| {
0; : : : ; 0;x); y))

�
nX
j=k

(xj�k+1 � x1) =
n�k+1X
j=2

(xj � x1):

And then

F k(x; y) = (n� k + 1)'k((
k�1z }| {

0; : : : ; 0;x); y)
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�
nX
j=k

'j((

k�1z }| {
0; : : : ; 0;x); y)�

n�k+1X
j=2

(xj � x1) = y �
n�k+1X
j=2

(xj � x1) ;

where in the last equality it is taken into account that ' is a division rule.

Now we prove condition C2, that is, F k(x; y) � min f(n� k + 1)x1; yg when
y � x1 + � � �xn�k+1:
Again by order preserving,

F k(x; y) = (n� k + 1)'k((
k�1z }| {

0; : : : ; 0;x); y) � y:

And �nally, as ' is a division rule,

F k(x; y) = (n� k + 1)'k((
k�1z }| {

0; : : : ; 0;x); y) � (n� k + 1)x1;

and the proof is complete. �

Remark 2. Notice that if in Theorem 2 the domain of division rules is C instead

of CN , then for each n 2 N there exists a list of functions F =
�
F k
	n�1
k=1

, and all

of them determine the division rule.

Theorem 2 allows to show that Piniles� rule and the alternative extension of

the Ibn Ezra solution introduced by Bergantiños and Mendez-Naya (2001) and

characterized by Alcalde et al. (2005), satisfy claims separability.

Piniles� rule, denoted by 'Pi, provides each (c; E) 2 CN with the following

quantities:

UG(
c

2
; E);

if E � c(N)
2 ; and

c

2
+ UG(

c

2
; E � c(N)

2
);

if E � c(N)
2 .

The alternative extension of the Ibn Ezra solution, denoted by 'GIE , is de�ned

as follows. Let (c; E) 2 CN . If cn � E, then 'GIE (c; E) = 'IE (c; E), where 'IE

denotes the Ibn Ezra solution. If cn < E, a new problem (c0; E0) 2 CN is considered,
where E0 = E � cn and c0 = c� 'IE (c; cn). If c0n � E0 the process ends and each
agent i is given 'IEi (c; cn)+'

IE
i (c0; E0). If c0n < E

0, a new problem (c00; E00) 2 CN is
de�ned in the same way as (c0; E0) 2 CN is de�ned with respect to (c; E). If c00n � E00

the process ends and each agent i is given 'IEi (c; cn) + '
IE
i (c0; c0n) + '

IE
i (c00; E00),

and if c00n < E
00 a new problem (c000; E000) 2 CN is calculated and so on. It has been

proved that in a �nite number of steps the process ends, and therefore, each agent

is given the corresponding sum of allocations.

Proposition 2. 'Pi and 'GIE satisfy claims separability.
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Proof. To prove that 'Pi satis�es claims separability, let F =
�
F k
	n�1
k=1

; F k from

Xn�k+1 � R+ to R+ de�ned as follows:

F k(x; y) =

8><>: (n� k + 1)'Pik ((
k�1z }| {

0; : : : ; 0;x); y) if y � x1 + � � �+ xn�k+1;
0 if y > x1 + � � �+ xn�k+1:

By de�nition of 'Pi, this division rule satis�es the equalities in De�nition 1 with

those F k. Moreover, it can be easily proved that conditions C1 and C2 are satis�ed.

Therefore, by Theorem 2, 'Pi satis�es claims separability. Similarly, if we take

'GIE instead of 'Pi and consider the corresponding F k, by de�nition of 'GIE the

equalities in De�nition 1 are also satis�ed, as well as conditions C1 and C2. �

Remark 3. As written before, the random arrival rule does not satisfy claims

separability. However, it satis�es a variation of that axiom. Let j 2 N . Consider
the following de�nition for the subproblem (c�i; Ei) 2 CN : c�ij = cj � ci and
c�ik = ck if k 6= j; and Ei = E � 'i(c; E). That is, only the claim of agent j

is reduced by ci and the other claims are not a¤ected. Therefore, the endowment

changes only by the allocation given to j by his/her portion ci. The random arrival

rule satis�es this variation and the proof is as in Proposition 1, taking into account

that it satis�es the balanced contribution property associated with the subproblem

determined by that c�i and endowment E � 'i(c; E) (Albizuri and Santos, 2014):

4. Some characterizations

Now we characterize the uniform gains rule, the uniform losses rule, the Talmud

rule, Piniles�rule and the minimal overlap rule employing claims separability. In the

�rst, claims separability and independence of null demands substitutes consistency

in a characterization provided by Herrero and Villar (2001). The other two axioms

employed by these authors are the following ones. It is denoted by ' a division rule

with domain C.3

Path independence (Moulin, 1987). For all claims problems (c; E) 2 CN and all

E0 > E we have

'(c; E) = '('(c; E0); E):

According to it, if a problem is resolved with an endowment E0, and after that

the actual endowment, denoted by E; is even lower than the expected one, if the

interin allocations are considered as claims, the corresponding allocations with E

coincide with the allocations with E and the original claims.

3In the proofs of this section the set of agents varies, so we ask for the entire domain of claims

problems.
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Exemption. For all claims problems (c; E) 2 CN , if ci � E
n then 'i(c; E) = ci:

This axiom requires the small claimants not to be held responsible for the short-

age. Observe that if the claims of all agents are lower than E=n there would be no

bankruptcy.

In our case, we have to consider the well known axiom independence of null

demands. Given a claims vector c 2 Rn and j 2 N, we denote as before by
cj 2 Rn�j , the vector which satis�es cjh = c

�j
j+h for each h = 1; : : : ; n� j.

Independence of null demands. Let (c; E) 2 CN be such that ck = 0 if k � i.

Then

'j(c; E) = 'j(c
i; E)

for all j > i.

This axiom states that the allocations are the same when null demands are not

taken into account.

Theorem 3. The uniform gains rule is the only rule that satis�es independence of

null demands, claims separability, path independence and exemption.

Proof. It is clear that the uniform gains rules satis�es independence of null demands.

By Proposition 1 it satis�es claims separability, and by Herrero and Villar (2001)

the other two axioms.

Now let us prove unicity. Let ' be a division rule which satis�es the four axioms.

By independence of null demands we can assume that the claims are not null.

We proceed by induction on n. If n = 1, since ' is a division rule, it holds

'(c; E) = UG(c; E) for all (c; E) 2 CN . Assume that the equality is true when
the number of agents is smaller than n; and we prove it for n. Let (c; E) 2 CN .
Distinguish two cases.

(a) If E=n � c1; exemption implies

'1(c; E) = c1: (6)

If j > 1, by claims separability,

'j(c; E) = '1(c; E) + 'j(c
�1; E � n'1(c; E)):

Applying equality (6) ; we get

'j(c; E) = c1 + 'j(c
�1; E � nc1):

By independence of null demands and induction 'j(c
�1; E � nc1) is uniquely de-

termined.
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(b) If E=n � c1, consider E0 = nc1 � E. Taking into account claims separability,

'j(c; E
0) = '1(c; E

0) + 'j(c
�1; E0 � n'1(c; E0))

for all j > 1. Exemption implies '1(c; E
0) = c1, and substituting in the above

equality,

'j(c; E
0) = c1 + 'j(c

�1; E0 � nc1) = c1 + 'j(c�1; 0) = c1;

where in the last equality we take into account that ' is a division rule. By

path independence, we have 'j(c; E) = 'j('(c; E
0); E) for all j 2 N . Since we

have proved that 'i(c; E
0) = 'j(c; E

0) for all i; j 2 N , claims separability implies
'i('(c; E

0); E) = 'j('(c; E
0); E) for all i; j 2 N , and hence 'j('(c; E0); E) = E=n

for all j 2 N . Therefore, 'j(c; E) = E=n and the proof is complete. �

We cannot drop out independence of null demands from the above characteriza-

tion. The following rule di¤ers from the uniform gains rule and it satis�es all the

axioms except that axiom (it is straightforward but cumbersome to prove it, so we

omit it). We write

(c0; E0) = ((c1; c1 + a; c1 + a+ b) ; 3c1 + d) ;

where a; b � 0 and 0 � d � 2a+ b.

'(c; E) =

8>>>>>>>>>>><>>>>>>>>>>>:

UG(c; E); if n 6= 3;

UG(c; E);
if n = 3 and 3c1 � E;

or (c; E) = (c0; E0) and d � 3a;�
c1; c1 +

d
3 ; c1 +

2d
3

�
;

if (c; E) = (c0; E0);

d � 3a and d � 3b;�
c1; c1 +

d�b
2 ; c1 + b+

d�b
2

�
;

if (c; E) = (c0; E0);

d � 3a and d � 3b:

We can give an alternative characterization for the uniform gains rule, consider-

ing the following axiom instead of path independence.

Equal allocations. Let (c; E) 2 CN . If for all i 2 N it holds ci � E
n ; then

'i(c; E) =
E
n for all i 2 N .

According to this axiom, if everybody claims at least the egalitarian allocation

of the endowment, then this allocation has to be satis�ed. Observe that instead of

'i(c; E) = E=n for all i 2 N , we can write alternatively, 'i(c; E) = 'j(c; E) for all
i; j 2 N .

Theorem 4. The uniform gains rule is the only rule that satis�es independence of

null demands, claims separability, equal allocations and exemption.
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Proof. It is is immediate that the uniform gains rules satis�es equal allocations.

Unicity is proved with the �rst step of the above proof while in the second step

equal allocations is applied. Indeed, if E=n � c1 then E=n � ci for all i 2 N .
Hence, equal allocations implies 'i(c; E) = E=n and the proof is complete. �

Now we characterize the uniform losses rule. For that, as Herrero and Villar

(2001), we take into account that the uniform losses rule is the dual rule of the

uniform gains rule. Given a division rule ', the dual rule of ', denoted by '�, is

de�ned by Aumann and Maschler (1985) as follows:

'� (c; E) = c� ' (c; L) ;

where L =
�P

i2N ci
�
� E. We simply have to consider the dual properties of the

above theorems. It is said that P� is the dual property of P if for each division rule
';

' satis�es P if and only if '� satis�es P�.

It can be easily proved that the dual properties of claims separability and indepen-

dence of null demands are themselves. The dual properties of path independence

and exemption are, respectively, composition and exclusion, which have also been

employed by Herrero and Villar (2001) to characterize the uniform losses rule.

Composition. For all claims problems (c; E) 2 CN and all E1; E2 2 R+n f0g
such that E1 + E2 = E,

'(c; E) = '(c; E1) + '(c� '(c; E1); E2):

Exclusion. For all claims problems (c; E) 2 CN , if ci � L
n then 'i(c; E) = 0:

Theorem 5. The uniform losses rule is the only rule that satis�es independence

of null demands, claims separability, composition and exclusion.

On the other hand, the dual property of equal allocations is this axiom.

Equal losses. Let (c; E) 2 CN . If for all i 2 N it holds ci � L
n ; then ci�'i(c; E) =

cj � 'j(c; E) for all i; j 2 N .

That is, if everybody claims more than an egalitarian share of losses, then losses

are equal. In this case, we can also write alternatively 'i(c; E) = ci � L
n for all

i 2 N .

Therefore, we have the following:
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Theorem 6. The uniform losses rule is the only rule that satis�es independence

of null demands, claims separability, equal losses and exclusion.

Moulin (2000) proves that the uniform gains rule, the uniform losses rule and the

proportional rule are the only rules that satisfy composition, path independence,

equal treatment of equals, scale invariance and consistency when the set of agents

is smaller than a �xed set of agents with cardinality at least three. We notice

that in this result consistency cannot be either substituted by claims separability

and independence of null demands. Assume that the cardinality of the �xed set of

agents is three. Consider the division rule ' which satis�es independence of null

demands and

'j((c1; c2; c3) ; E) = UG1 ((c1; c2; c3) ; E)

+Pj ((0; c2 � c1; c3 � c1) ; E � 3UG1 ((c1; c2; c3) ; E)) ;

where j = 1; 2; 3; and P denotes the proportional rule. This division rule di¤erent

from the uniform gains rule, uniform losses rule and the proportional rule satis�es

all the axioms except consistency and satis�es claims separability.

We can also give a characterization of the Talmud rule employing claims separa-

bility. For that, we recall the following concept, which is also employed by Aumann

and Maschler (1985) to characterize that rule.

A division rule ' is self-dual if '� = '.

That is, the division rule treats gains and losses in the same way. We also require

the following two properties, which are variations of the ones that characterize the

uniform gains rule.

Half claims exemption. Let (c; E) 2 CN be such that E � (
P

i2N ci)
2 . If ci2 �

E
n ,

then 'i(c; E) =
ci
2 :

Half claims equal allocations. Let (c; E) 2 CN be such that E � (
P

i2N ci)
2 . If

for all i 2 N it holds ci
2 �

E
n ; then 'i(c; E) =

E
n for all i 2 N .

In both axioms, the endowment does not reach half of the claims. If we assume

that, if it is possible, everybody has right to obtain half of his/her claim, in both

cases the allocations will be less or equal than half of the claims. In the �rst case,

any agent obtains half of his/her half claim, if, sharing the endowment equally,

he/she is able to obtain that half claim. In the second case, half claims of all

the agents are not smaller than the egalitarian division of the endowment. Hence,

everybody is given that egalitarian share.
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Theorem 7. The Talmud rule is the only rule that satis�es self-duality, claims
separability, half claims equal allocations and half claims exemption.

Proof. It is clear that the Talmud rule satis�es half claims equal allocations and

half claims exemption. We have proved that it satis�es claims separability and as

Aumann and Mashler (1985) point out it is a self-dual rule. To prove unicity, by

self-duality we only have to consider the case E �
�P

i2N ci
�
=2. If c1=2 � E=n

then we can reason as in (a) of Theorem 4 and if c1=2 � E=n as in (b). �

Notice that Piniles�rule satis�es the four axioms in Theorem 7 but self-duality.

It turns out that if we consider instead a weaker axiom than composition, it can be

characterized. Clearly, Piniles�rule does not satisfy composition, but the equality

in that axiom does hold in the particular case in which the endowment is divided

by half of the claims. So, if we write EHC = min fc (N) =2; Eg ; the following axiom
is satis�ed by that division rule.

Half claims composition. For all claims problems (c; E) 2 CN ,

'(c; E) = '(c; EHC) + '(c� '(c; EHC); E � EHC):

Theorem 8. Piniles� rule is the only rule that satis�es half claims composition,
claims separability, half claims equal allocations and half claims exemption.

Proof. It is clear that Piniles�rule satis�es the four axioms. For unicity, half claims

composition implies that we only have to consider the case E �
�P

i2N ci
�
=2. The

rest follows as in Theorem 7. �

We would like also to point out that consistency cannot be substituted by claims

separability (and independence of null demands if needed) in all the cases. For ex-

ample, Young (1988) proves that the proportional rule is the only rule that satis�es

equal treatment of equals, composition and self-duality. Not only the proportional

rule but also the Talmud rule satis�es equal treatment of equals, claims separability,

self-duality and independence of null demands.

For the characterization of the minimal overlap rule, we introduce a composition

axiom. If c 2 RN+ and x 2 R+ we denote by c�x the vector de�ned by

c�x = (max fcj � x; 0g)j2N :

Composition*. For all claims problems (c; E) 2 CN ; and all E1; E2 2 R+ such
that E1 + E2 = E and (c�E1 ; E2) 2 CN ,

'(c; E) = '(c; E1) + '(c
�E1 ; E2):
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As in composition, the state is provided in two steps. First, E1 is given with the

original claims. After sharing E1, each claim is reduced by the quantity already

given and then the rest of the state is allocated. The di¤erence between composition

and composition* is that in composition each claim is reduced by what the claimer

has received instead of the entire quantity already allocated.

Proposition 3. The minimal overlap rule satis�es composition*.

Proof. Let (c; E) 2 CN : Distinguish two cases.
(a) If E � cn, let E1; E2 2 R+ be such that E1 + E2 = E. Then E1 � cn and

E2 � cn � E1 =
�
c�E1

�
n
. The latter inequality implies (c�E1 ; E2) 2 CN . Let

i 2 N . Distinguish two subcases.
(i) If ci � E1; then

'moi (c; E) =
iX

j=1

min fcj ; Eg �min fcj�1; Eg
n� j + 1 =

iX
j=1

cj � cj�1
n� j + 1

= 'moi (c; E1) = '
mo
i (c; E1) + '

mo
i (c�E1 ; E2),

where the last equality is true because
�
c�E1

�
i
= 0:

(ii) If ci > E1; let k = min fj 2 N : cj � E1g : It holds

'moi (c; E) =
iX

j=1

min fcj ; Eg �min fcj�1; Eg
n� j + 1

=

kX
j=1

min fcj ; E1g �min fcj�1; E1g
n� j + 1 +

min fck � E1; E � E1g
n� k + 1

+

iX
j=k+1

min fcj � E1; E � E1g �min fcj�1 � E1; E � E1g
n� j + 1

= 'moi (c; E1) + '
mo
i (c�E1 ; E2);

where the last equality is true because the �rst term on the left coincides with

'moi (c; E1) and the the sum of the other two terms on the left coincides with

'moi (c�E1 ; E2):

(b) If E > cn, let E1; E2 2 R+ be such that E1 +E2 = E and (c�E1 ; E2) 2 CN .
Let t � cn be the unique solution for the equation

nX
j=1

max fcj � t; 0g = E � t:

Now let us prove that (c�E1 ; E2) 2 CN if and only if E1 � t. We have

(c�E1 ; E2) 2 CN if and only if
nX
j=1

�
c�E1

�
j
=

nX
j=1

max fcj � E1; 0g � E2:
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Consider the continuous function

f (x) =

0@ nX
j=1

max fcj � x; 0g

1A� (E � x) ;
which has the unique zero t. If x < t then f (x) > 0, and if x > t then f (x) < 0.

Therefore, if E1 � t, then
nX
j=1

max fcj � E1; 0g � E � E1 = E2:

And if E1 > t,

nX
j=1

max fcj � E1; 0g < E � E1 = E2:

Now distinguish two subcases.

(i) If ci � E1, then ci � t and

'moi (c; E) =
iX

j=1

min fcj ; tg �min fcj�1; tg
n� j + 1 =

iX
j=1

cj � cj�1
n� j + 1

= 'moi (c; E1) = '
mo
i (c; E1) + '

mo
i (c�E1 ; E2),

where as in case (a) the last equality is true because
�
c�E1

�
i
= 0:

(ii) If ci > E1, as in case (a), let k = min fj 2 N : cj � E1g : Then

'moi (c; E) =

iX
j=1

min fcj ; tg �min fcj�1; tg
n� j + 1 +max fci � t; 0g

=
kX
j=1

min fcj ; E1g �min fcj�1; E1g
n� j + 1 +

min fck � E1; t� E1g
n� k + 1

+
iX

j=k+1

min fcj � E1; t� E1g �min fcj�1 � E1; t� E1g
n� j + 1

+max f(ci � E1)� (t� E1) ; 0g :

= 'moi (c; E1) +
min fck � E1; t� E1g

n� k + 1

+
iX

j=k+1

min fcj � E1; t� E1g �min fcj�1 � E1; t� E1g
n� j + 1

+max f(ci � E1)� (t� E1) ; 0g :

Since the unique solution for the equation
nX
j=1

max f(cj � E1)� t0; 0g = E2 � t0
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is t0 = t�E1, the expression above turns into 'moi (c; E1) +'
mo
i (c�E1 ; E2) and the

proof is complete. �

We also require invariance under claims truncation, which already appears in

Curiel et al. (1987), and Dagan and Volij (1993), that states that what is claimed

over the state does not change the allocations.

Invariance under claims truncation. For all claims problems (c; E) 2 CN ;

'(c; E) = '((min fcj ; Eg)j2N ; E):

Theorem 9. The minimal overlap rule is the only rule that satis�es invariance
under claims truncation, claims separability and composition*.

Proof. We have proved in the above proposition that the minimal overlap rule satis-

�es composition* and we have already proved that it satis�es claims separability. It

is clear that it satis�es invariance under claims truncation. So let us prove unicity.

By claims separability, we only need to know the share for the �rst non null

claim, if it exists. If all the claims are null, then the division rule gives zero to all

the agents, as the minimal overlap rule does. So, let j be the �rst agent whose

claim cj 6= 0. Distinguish two cases.
(a) If E � cn, consider two subcases.
(i) If E � cj ; let c0 2 RN+ be such that c0k = 0 if k = 1; :::; j � 1; and c0k = E if

k = j; :::; n. By invariance under claims truncation,

'j(c; E) = 'j(c
0; E):

Claims separability implies 'j(c
0; E) = 'k(c

0; E) if k = j; :::; n. Thus, taking into

account that ' is a division rule,

'j(c
0; E) =

E

n� j + 1 ;

and hence,

'j(c; E) =
E

n� j + 1 :

(ii) If E > cj , consider composition* with E1 = cj . We have

'j(c; E) = 'j(c; cj) + 'j(c
�cj ; E2) = 'j(c; cj);

where the last equality is true because (c�cj )j = 0: Let c
� 2 RN+ be such that c�k = 0

if k = 1; :::; j � 1; and c�k = cj if k = j; :::; n. Invariance under claims truncation

implies

'j(c; cj) = 'j(c
�; cj) =

cj
n� j + 1 ;
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where, as above, the last equality follows since ' is a division rule and satis�es

claims separability. Hence,

'j(c; E) =
cj

n� j + 1 :

(b) If E > cn take in composition* E1 = t where t is the unique solution for the

equation
nX
k=1

max fck � t; 0g = E � t:

Then,

'j(c; E) = 'j(c; t) + 'j(c
�t; E � t):

Since ' is a division rule it holds 'j(c
�t; E� t) = max fcj � t; 0g ; and substituting

in the above equality,

'j(c; E) = 'j(c; t) + max fcj � t; 0g ;

and the expression on the right is determined because (c; t) belongs to case (a) since

cn � t by de�nition of t: �

If we compare the characterization of the minimal overlap provided in Theorem

8 and the charaterization due to Alcalde et al. (2005) for the alternative extension

of the Ibn Ezras�s rule, we see that they employ a form of composition axiom and

dummy axioms, joint with anonymity. Claims separability would be in that case a

stronger requirement than anonymity and independent of the other two axioms.

Acknowledgement
This research has been partially supported by the University of the Basque Coun-

try (GIU13/31) and the Spanish MCINN (project ECO2012-33618).

5. References

Albizuri, M.J., Santos, J.C. (2014) A potential approach to claims problems.

Working paper.

Alcalde, J., Marco, M., Silva, J. A. (2005) Bankruptcy problems and the Ibn

Ezra�s proposal, Econ. Theor. 26, 103-114.

Alcalde, J., Marco, M.C., Silva, J.A., (2008) The minimal overlap rule revisited.

Soc. Choice Welfare 31,109-128.

Aumann, R.J., Maschler, M. (1985) Game-theoretic analysis of a bankruptcy

problem from the Talmud. J Econ Theory 36, 195-213.

Bergantiños, G. and Méndez-Naya, L. (2001) Additivity in bankruptcy problems

and in allocation problems, Spanish Econ. Rev. 3, 223-229

Curiel, I., Maschler, M., Tijs, S.H., (1987) Bankruptcy games. Zeitschrift für

Operations Research 31, A143-A159.



A COMMON AXIOM FOR CLAIMS PROBLEMS 25

Dagan, N., Volij, O. (1993) The bankruptcy problem: a cooperative bargaining

approach, Math. Soc. Sci, 26, 287-297.

Herrero, C. and Villar, A. (2001) The three musketeers: Four classical solutions

to bankruptcy problems, Math. Soc. Sci. 39, 307-328.

Moreno-Ternero, J.D., Villar, A., (2006) The TAL-family of rules for bankruptcy

problems. Soc. Choice Welfare 27, 231-249.

Moulin, H., (1987). Equal or proportional division of a surplus, and other meth-

ods. Int. Jour. of Game Theory 16, 161-186.

Moulin, H., (2000) Priority rules and other asymmetric rationing methods. Econo-

metrica 68, 643-684.

Moulin, H., (2002) Axiomatic cost and surplus-sharing. In: Arrow, K.J., Sen,

A.K., Suzumura, K.(Eds.), Handbook of Social Choice and Welfare, vol. 1, North

Holland, Elsevier, Amsterdam, pp. 289-357.

O�Neill, B., (1982) A problem of rights arbitration from the Talmud. Math. Soc.

Sci. 2, 345-371.

Thomson, W., (2003) Axiomatic and game-theoretic analysis of bankruptcy and

taxation problems: a survey. Math. Soc. Sci. 45, 249-297.

Thomson, W., (2012) Lorenz rankings of rules for the adjudication of con�icting

claims. Econ. Theory 50, 547-569.

Thomson, W., (2013a) Game-theoretic analysis of bankruptcy and taxation prob-

lems: recent advances. Int. Game Theory Rev., 1-14.

Thomson, W., (2013b) Axiomatic and game-theoretic analysis of bankruptcy

and taxation problems: an update. Working Paper 578, University of Rochester.

Young, P., (1988) Distributive justice in taxation. Jour. of Econ. Theory 43,

321-335.


