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Abstract

The purpose of this paper is twofold. First, the incomplete results relative to
e¢ ciency in a transitional model introduced in a previous paper, distinguishing
two types of links, strong or doubly-supported and weak or singly-supported,
are completed with a full-characterization. Second, as it turns out, e¢ cient
structures are stable only for a small range of values of the parameters within
the much wider range where they are e¢ cient. This motivates the study of the
impact on stability of allowing players to negotiate bilaterally the shares of the
cost of doubly-supported links.
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1 Introduction

A previous paper, Olaizola and Valenciano (2015a), proposes a �transitional�or mixed
model between a no-decay version of Jackson and Wolinsky�s (1996) connections model
and Bala and Goyal�s (2000) two-way �ow model1. The transition is achieved by
distinguishing between �weak�links, supported by only one player, and �strong�links,
supported by both players. The �ow through strong links is assumed to be perfect,
while it su¤ers some decay through weak links. That paper studies stability, e¢ ciency
and dynamics in that model. However, the results regarding e¢ ciency are incomplete
as only one type of e¢ cient structures is identi�ed and its e¢ ciency is established
only within a small region of values of the parameters. In contrast with this, a full-
characterization of e¢ cient structures is achieved in a more complex setting studied
in Olaizola and Valenciano (2015b), where a model integrating Jackson and Wolinsky
(1996) and Bala and Goyal (2000) as extreme cases, both with decay, is introduced.
Using a similar strategy to the one used in the proofs in that paper, we here re�ne
the results relative to e¢ ciency in Olaizola and Valenciano (2015a) providing a full-
characterization of e¢ cient structures. It is proved that there are only two types of
non-empty e¢ cient structures -trees of strong links and stars of weak links- and the
region where each of them is e¢ cient is determined.
A second contribution of this paper is as follows. Olaizola and Valenciano (2015a)

establish the stability (in the sense of Nash equilibrium and in the sense of pairwise
stability) of some structures, including the only two proved here to be e¢ cient. As it
turns out, the trees of strong links are stable only within a small part of the region where
they are e¢ cient. This lack of stability of e¢ cient structures motivates the study of
the impact of �liberalizing�the cost-paying of strong links. In Olaizola and Valenciano
(2015a) it is assumed that the cost of a strong link must be equally shared by the two
players who form it, but in a context where any pair of players can coordinate to form
a link, it seems natural to assume that they can also negotiate the shares of its cost.
We study the impact of assuming that the players who form a strong link can bargain
how the cost is to be shared.
The rest of the paper is organized as follows. Section 2 brie�y reviews the model

introduced in Olaizola and Valenciano (2015a). Section 3 addresses the question of
e¢ ciency. Section 4 studies the impact of assuming pairwise negotiable costs and
establishes the conditions for the existence of cost share equilibrium allocations.

1These two seminal papers are the basic references of economic models of network formation. They
have been extended in di¤erent directions. See Goyal (2007), Jackson (2008) and Vega-Redondo (2007)
and references therein.
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2 The model

We consider the following situation. Players or nodes2 within a set N may form links
through which information runs. It is assumed that each node contains an information
of value 1 to whoever receives it intact. A link created unilaterally and supported by
only one player has a cost c > 03 and allows information to �ow in both directions.
When a link is singly-supported there is decay in the �ow of information, i.e. only
� 2 (0; 1) out of a unit of information at one node reaches the other. When a link
is supported by the two players it connects, with 2c being the total cost of it, the
link allows information to �ow in both directions without friction. We refer to links
supported by only one player as weak links and to those supported by both as strong
links. A strong link is not necessarily the result of coordination and agreement, though
the possibility of coordination obviously a¤ects stability.
Formally4, a map gi : Nnfig ! f0; 1g speci�es the links supported by player i. We

write gij := gi(j); and gij = 1 or ij 2 g (gij = 0 or ij =2 g) means that i supports (does
not support) a link with j. ij 2 g means that i and j are connected by a strong link,
i.e. ij; ji 2 g. If ij 2 g (ij 2 g) the resulting network by eliminating link ij (ij) in g is
denoted by g� ij (g� ij). Thus, vector gi = (gij)j2Nnfig 2 f0; 1gNnfig speci�es the links
supported by i and is referred to as a strategy of player i. Gi := f0; 1gNnfig denotes
the set of i�s strategies and GN = G1�G2� :::�Gn the set of strategy pro�les. Thus,
a strategy pro�le g 2 GN determines an N -network. It is assumed that the fraction of
a unit of information at node j that reaches node i through a link between them when
players�strategy pro�le is g, denoted by �gij, is given by

�gij := �g
max
ij + (1� �)gminij ; (1)

where gmaxij = maxfgij; gjig, and gminij = minfgij; gjig. Thus, �gij = �
g
ji = 1 if gij = gji =

1, and �gij = �
g
ji = � if gij = 1 and gji = 0. Note that when � = 0 (1) yields a no-decay

version of Jackson and Wolinsky�s (1996) bilateral link-formation model, and for � = 1
it yields Bala and Goyal�s (2000) unilateral two-way �ow model without decay.
In terms of �gij, the payo¤of player i in a network resulting from g is the information

he/she receives minus the cost of the links he/she pays for. Let the discounting length
of a path from j to i in g be the number of weak links in it. And let the discounting
distance between j and i (i 6= j) in g, denoted by �(i; j; g), be the discounting length
of the path from j to i with the shortest discounting length. The information received

2To avoid a biased language we often prefer the term �node�.
3In Olaizola and Valenciano (2015a) it is assumed that c < 1 in order to simplify the presentation,

but this assumption is withdrawn here.
4To avoid a repetition of preliminaries entirely similar to those in Section 2 in Olaizola and Va-

lenciano (2015a), we assume the reader to be familiar with the notation and terminology relative to
networks, and we restrict our attention to the basic notation and a few peculiarities of the model to
make the paper basically self-contained.
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by player i is given by
Ii(g) =

X
j2N(i;g)

��(i;j;g);

where N(i; g) denotes the set of nodes connected with i by a path in g. Thus the payo¤
function becomes

�i(g) =
X

j2N(i;g)

��(i;j;g) � c�di (g); (2)

where �di (g) denotes the number of links in g supported by i.

3 E¢ ciency

The aggregate payo¤ of a network g is referred to as the value of the network and
denoted by v(g). A network g is said to dominate another g0 if v(g) � v(g0). A
network is e¢ cient if it dominates any other for a particular con�guration of values of
the parameters. We make use of the following notions.

De�nition 1 Given network g, and K � N , K is said to be5 :
(i) A weak component of g if for any two nodes i; j 2 K (i 6= j) there is a path from j
to i in g, and no subset of N strictly containing K meets this condition.
(ii) A strong component of g if for any two nodes i; j 2 K (i 6= j) there is a path
of strong links from j to i in g, and no subset of N strictly containing K meets this
condition.

A trivial component is a component in either sense that consists of a single node.
We say that g is weakly (strongly) connected if g is the unique weak (strong) component
of g. A weak (strong) component K of a network g is minimal if for all i; j 2 K s.t.
gij = 1, the number of weak (strong) components of g is smaller than the number of
weak (strong) components in g � ij.
A graph is minimally weakly (strongly) connected if it is weakly (strongly) con-

nected and minimal. In both cases, a minimally connected graph is a tree (of weak
links in one case, of strong links in the other).
The following structures are going to play a role in what follows. A strong-core

network is a weakly connected network g with a core consisting of a strong component,
which is the only one and minimal if it is non-trivial, and each of the remaining nodes
(if any) are peripheral6 and are connected with the core by a weak link. In other
words, a strong-core network consists of a tree of strong links with which some nodes
are connected by weak links7. A strong-core network with ks strong links and kw weak

5If g jK denotes the restriction of g to K, it is clear that g jK speci�es a K-network.
6Peripheral players are those involved in only one link (weak or strong).
7Tree-core-periphery structures, introduced in Olaizola and Valenciano (2015a), are strong-core

networks whose core contains no peripheral nodes.
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links (consequently with ks + kw + 1 nodes and a core with ks + 1 nodes) is denoted
by Sks;kw . Observe that minimally strongly connected networks (kw = 0) and stars of
weak links (ks = 0) are extreme cases of strong-core networks.

Lemma 1 If the payo¤ function is given by (2) with 0 � � < 1, then the maximal
value of a weak component containing m nodes and m� 1 or more strong links is only
reached by a minimally strongly connected component with m� 1 strong links.

Proof. Let K be a weak component containing m nodes and ks � m � 1 strong
links. The maximal amount of aggregate information of a component with m nodes
is m(m � 1), and K�s total cost is at least that of m � 1 strong links, i.e. 2c(m � 1).
Therefore the aggregate payo¤ of K is not greater than m(m � 1) � 2c(m � 1) =
(m � 1)(m � 2c), which is the aggregate payo¤ for any minimally strongly connected
component with m nodes. Moreover, it can be immediate seen that only a component
with such a structure yields that aggregate payo¤.

Lemma 2 If the payo¤ function is given by (2) with 0 � � < 1 and c > 2 (�� �2),
then a weak component containing m nodes and fewer than m� 1 strong links is dom-
inated by a strong-core component with the same number of strong links.

Proof. Let K be a weak component containing m nodes and ks < m� 1 strong links
and kw � m � 1 � ks > 0 weak links. Without loss of generality, it can be assumed
that no link is super�uous. We discuss separately two cases.
Case 1: c � 2�.

Then,
v(K) = ks (2� 2c) + kw (2�� c) + p(�);

where p(�) is a polynomial on � with integer positive coe¢ cients (summing up to
maxfm (m� 1) � 2 (ks + kw) ; 0g) multiplying monomials of the form �q with q � 0.
As � < 1, we have:

v(K) � ks (2� 2c) + kw (2�� c) + ks (ks � 1)
+ks (m� 1� ks) 2�+ (m� 1� ks) (m� 2� ks)�2;

while the value of a strong-core component with ks strong links and m� 1� ks nodes
connected with it by weak links is

v (Sks;m�1�ks) = ks (2� 2c) + (m� 1� ks) (2�� c)
+ks (ks � 1) + ks (m� 1� ks) 2�+ (m� 1� ks) (m� 2� ks)�2:

Thus, the di¤erence is

v (Sks;m�1�ks)� v(K) = (c� 2�) (ks + kw � (m� 1)) � 0;
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given that ks + kw � m� 1 and c � 2�.
Case 2: 2 (�� �2) < c < 2�.

Thus we have

v(K) � ks (2� 2c) + kw (2�� c) + A+B� + C�2;

where
A = minfks(ks � 1);m(m� 1)� 2ks � 2kwg:

There are two cases depending on which of these numbers is smaller:

Case 2.1: A = m(m� 1)� 2ks � 2kw: In this case B = C = 0, and we have

v(K) � ks (2� 2c) + kw (2�� c) + (m(m� 1)� 2ks � 2kw);

while the value of a strong-core component with ks strong links and m� 1� ks weak
links is

v (Sks;m�1�ks) = ks (2� 2c) + (m� 1� ks) (2�� c)
+ks (ks � 1) + ks (m� 1� ks) 2�+ (m� 1� ks) (m� 2� ks)�2:

Thus, the di¤erence is

v (Sks;m�1�ks)� v(K)
� (m� 1� ks � kw) (2�� c) + (ks(ks � 1)�m(m� 1) + 2ks + 2kw)

+ks (m� 1� ks) 2�+ (m� 1� ks) (m� 2� ks)�2

= a (2�� c) + b+ d�+ e�2;

where a; b; d and e denote the coe¢ cients in the last expression. Note that a � 0, while
b; d and e are � 0 (d and e obviously, and b because we are assuming ks(ks � 1) �
A = m(m� 1)� 2ks � 2kw). As 2� � c < 2�2; by replacing 2� � c by 2�2 in the last
expression and taking into account that � < 1 we have

v (Sks;m�1�ks)� v(K) � a2�2 + b+ d�+ e�2

� a2�2 + b�2 + d�2 + e�2 = (2a+ b+ d+ e)�2:

Therefore, if 2a + b + d + e � 0 the proof is concluded in case 2.1, and summing up
these coe¢ cients we have 2a+ b+ d+ e = 0:

Case 2.2: A = ks(ks � 1): In this case ks(ks � 1)=2 is the maximal number of
non-directly linked pairs that can receive 1 from each other. Now

B = minf2ks(m� 1� ks);m(m� 1)� 2ks � 2kw � ks(ks � 1)g:

Thus, we again have two cases:

5



Case 2.2.1: B = m(m� 1)� 2ks � 2kw � ks(ks � 1): In this case C = 0, and

v(K) � ks (2� 2c) + kw (2�� c) + ks(ks � 1)
+(m(m� 1)� 2ks � 2kw � ks(ks � 1))�:

Thus, subtracting this value from that of a strong-core component with ks strong links
and m� 1� ks weak links, the di¤erence is

v (Sks;m�1�ks)� v(K) � (m� 1� ks � kw) (2�� c)
+(2ks(m� 1� ks)� (m(m� 1)� 2ks � 2kw � ks(ks � 1))�
+(m� 1� ks) (m� 2� ks)�2 = a (2�� c) + b� + d�2;

and proceeding just as in the �rst case we similarly conclude that v (Sks;m�1�ks) �
v(K) � 0:
Case 2.2.2: B = 2ks(m� 1� ks): In this case

C = m(m� 1)� 2ks � 2kw � ks(ks � 1)� 2ks(m� 1� ks); and

v (Sks;m�1�ks)� v(K) � (m� 1� ks � kw) (2�� c)
+(ks + kw � (m� 1))2�2 = a (2�� c) + b�2;

and proceeding again as before we conclude that v (Sks;m�1�ks)� v(K) � 0:

Lemma 3 (Proposition 11, Olaizola and Valenciano, 2015a)8 If the payo¤ function
is given by (2) with 0 � � < 1 and c < 2 (1� �), then the only non-empty e¢ cient
networks are those minimally strongly connected.

Lemmas 1, 2 and 3 establish that, for di¤erent con�gurations of values of the para-
meters (see Figures 1 and 2), any component is dominated by a strong-core component.
The following lemma shows that strong-core component are always dominated by one
of the two extreme types of strong-core component, either by minimally strongly con-
nected networks (all-encompassing core) or by stars of weak links (trivial core).

Lemma 4 If the payo¤ function is given by (2) with 0 � � < 1, a strong-core compo-
nent containing both strong and weak links is strictly dominated either by a minimally
strongly connected one with the same number of links or by a star with the same number
of links all of which are weak.

Proof. The value of a strong-core component Sks;kw connecting m nodes is given by

v (Sks;kw) = ks (2� 2c) + kw (2�� c) + ks (ks � 1) + 2kskw�+ kw (kw � 1)�2:
8This is the only result relative to e¢ ciency established in Olaizola and Valenciano (2015a).
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By making double a weak link, Sks+1;kw�1 results, and

v (Sks+1;kw�1) = (ks + 1) (2� 2c) + (kw � 1) (2�� c)
+ (ks + 1) ks + 2 (ks + 1) (kw � 1)�+ (kw � 1) (kw � 2)�2:

Thus, as kw = m� 1� ks, v (Sks+1;kw�1)� v (Sks;kw) =

(2� 2c)� (2�� c) + 2 (m� 2)� (1� �) + 2ks (1� �)2 : (3)

Note that if this number is > 0, the greater ks is the greater this number will be,
and consequently the value of a minimally strongly connected component of m nodes
is greater than that of Sks;kw .
Consider now a strong-core component with one strong link less and one weak link

more, i.e. Sks�1;kw+1, whose value is

v (Sks�1;kw+1) = (ks � 1) (2� 2c) + (kw + 1) (2�� c)
+ (ks � 1) (ks � 2) + 2 (ks � 1) (kw + 1)�+ (kw + 1) kw�2:

Thus, as kw = m� 1� ks, v (Sks�1;kw+1)� v (Sks;kw) =

� (2� 2c) + (2�� c) + 2
�
1�m�+ (m� 1)�2

�
� 2ks (1� �)2 : (4)

If this number is positive, the smaller ks is the greater this number will be and conse-
quently the value of a star of ks + kw weak links is greater than that of Sks;kw .
It only remains to show that Sks;kw is strictly dominated either by Sks+1;kw�1 or by

Sks�1;kw+1; that is, either (3) or (4) is greater than 0. Write X = (2� 2c)� (2�� c),
Y = 2 (m� 2)� (1� �)+2ks (1� �)2 and Y 0 = 2 (1�m� + (m� 1)�2)�2ks (1� �)2.
Thus we prove that necessarily either

v (Sks+1;kw�1)�v (Sks;kw) = X+Y > 0 or v (Sks�1;kw+1)�v (Sks;kw) = �X+Y 0 > 0:

Assume X + Y � 0, i.e. X � �Y , then we prove that �X + Y 0 > 0, i.e. X < Y 0.
For this it su¢ ces to show that �Y < Y 0, i.e. Y + Y 0 > 0: In fact we have Y + Y 0 =
2 (1� �)2 > 0.
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The preceding lemmas nearly show the domination of the extreme types of strong-
core networks. The next proposition completes the proof and the characterization by
establishing the precise con�gurations of values of the parameters where such structures
are e¢ cient.

Proposition 1 If the payo¤ function is given by (2) with 0 � � < 1, then the unique
e¢ cient networks are:

8



(i) The minimally strongly connected ones if

c < minfn=2; n� 2�� (n� 2)�2g: (Region I in Figure 3)

(ii) The all-encompassing stars of weak links if

n� 2�� (n� 2)�2 < c < 2�+ (n� 2)�2: (Region II in Figure 3)

(iii) The empty network if

c > maxfn=2; 2�+ (n� 2)�2g: (Region III in Figure 3)

Proof. In view of the preceding lemmas any non-empty component of an e¢ cient
network must be either minimally strongly connected or a star of weak links. As
the value of a component of an e¢ cient network must be non-negative, it can be
immediately seen that the value of a minimally strongly connected component (a star
of weak links) withm1+m2 nodes is greater than the sum of the values of two minimally
strongly connected components (two stars of weak links) with m1 and m2 nodes each.
Thus, a non-empty e¢ cient network must be weakly connected.
(i) First note that a minimally strongly connected network yields a positive aggre-

gate payo¤ only if (n� 1)(n� 2c) > 0, i.e. only if c < n=2, and that payo¤ is greater
than that of an all-encompassing star of weak links if and only if

(n� 1)(n� 2c) > (n� 1)�+ (n� 1)(�+ (n� 2)�2)� (n� 1)c)

i.e. if c < n� 2�� (n� 2)�2:
(ii) When c > n � 2� � (n � 2)�2, an all-encompassing star of weak links beats a

minimally strongly connected network, but it yields a positive payo¤ only if

(n� 1)(2�+ (n� 2)�2)� c) > 0;

i.e. if c < 2�+ (n� 2)�2:
(iii) When c is above n=2 and above 2� + (n � 2)�2 neither of the two dominant

structures yields a positive payo¤ and consequently the only e¢ cient network is the
empty one.

4 Cost share equilibrium allocations

Thus there are only two types of non-empty e¢ cient networks, those minimally strongly
connected and all-encompassing stars of weak links. In Olaizola and Valenciano (2015a)
the stability of both structures is established assuming c < 1. Minimally strongly con-
nected networks are Nash, strict Nash and pairwise stable only if c < 1�� (Proposition
3, 2015a), which is a small subset of the set of values of the parameters where these
structures are e¢ cient, as is established in Proposition 1-(i). The reason why this is so
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is very simple: it is assumed in that model that the cost of a strong link, 2c, is equally
shared by the two players who form it. Thus, in a minimally strongly connected net-
work, as soon as c > 1 � � players supporting a strong link with a peripheral node
cease to have incentives to pay c for it. Nevertheless, even for c close to n=2 the value
of the network is positive if � is not too close to 1. In fact, this assumption is made in
the original connections model of Jackson and Wolinsky (1996), where the only feasible
links are doubly supported. But in a context in which players can pairwise coordinate
to form links, it seems only natural to assume that they can also pairwise coordinate,
i.e. negotiate and agree upon the way of sharing the cost of strong links9. This modi-
�cation of the setting and its impact on the stability of minimally connected networks
is the second goal of this paper.
Let g be a minimally strongly connected pro�le and assume that players can nego-

tiate bilaterally the share of the cost of each strong link. A �rst necessary condition
for network g to be worth forming is that it yields a positive aggregate payo¤. This is
so if and only if n(n� 1)� (n� 1)2c > 0, i.e. if

2c < n: (5)

Denote by cji i�s share of the cost of a strong link ij 2 g. For an allocation of costs
(cij)ij2g to be feasible it must be

cji + c
i
j = 2c (for all i; j 2 N , s.t. ij 2 g): (6)

For each ij 2 g, let Kj
i be the set of nodes in the component of g � ij containing i,

and kji its number. As an obvious condition of individual rationality, player i will not
pay for link ij 2 g more than what he/she receives through it; that is, it must be

cji � kij (for all i; j 2 N , s.t. ij 2 g): (7)

On the other hand, in case of disagreement, player i has the option of paying c for a
weak link with j and receive �kij if the players in K

i
j remain in a strong component

and player j refuses to support link ji. Therefore, it must be kij � c
j
i � �kij � c. Thus,

the following condition of outside-option-proof must hold:

cji � c+ (1� �)kij (for all i; j 2 N , s.t. ij 2 g): (8)

De�nition 2 We say that (cij)ij2g is a cost share equilibrium allocation for g if it
satis�es conditions (6), (7) and (8).

9This approach, consistent with a model where cooperation is restricted to pairs of players, is
di¤erent from the cooperative game-theoretic one considered in Jackson and Wolinsky (1996).
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The following proposition establishes necessary and su¢ cient conditions for the
existence of cost share equilibrium allocations for a minimally strongly connected net-
work.
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Figure 4: Cost share
(n = 20; 2c = 15)

Proposition 2 If the payo¤ function is given by (2) with 0 � � < 1, for any minimally
strongly connected network, a cost share equilibrium allocation exists if and only if
condition (5) and the following condition hold:

c � n� �(n� 1): (9)

Proof. Let g be a minimally strongly connected pro�le and assume (5), which is an
obvious necessary condition. We then prove that there exist (cji )ij2g, s.t. (6), (7) and
(8) hold if and only if (9) holds. Note �rst that, as kji + k

i
j = n, conditions (6) and (7)

are compatible if and only if (5) holds. Similarly, conditions (6) and (8) are compatible
too, because

2c+ (1� �)(kji + kij) = 2c+ (1� �)n > 2c:

Remains to be seen that all three conditions are compatible. For each ij 2 g, condition
(7) and condition (8) specify a segment within the straight line cji + c

i
j = 2c each (see

Figure 4). We show that the intersection of these two segments is not empty if and
only if (9) holds. Without loss of generality, assume kji � kij. Then the intersection is
not empty if and only if

2c� kij � c+ (1� �)k
j
i ;

or, equivalently, if c � kij + (1� �)k
j
i = n� �k

j
i : But this condition is most stringent

when kji = n � 1, which corresponds to the case when j is a peripheral node, that is,
c � n� �(n� 1).
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Remarks:
1. Thus condition (5) ensures a positive aggregate payo¤, which is an obvious

necessary condition and makes feasibility and individual rationality compatible. Con-
dition (9) guarantees that feasible agreements both individually rational and outside-
option-proof by ensuring that there is room for negotiating the payment of links with
peripheral nodes, those for which this condition is most demanding. Thus, when the
two conditions hold, cost share equilibrium allocations exist. Consistent with intuition,
the number of players plays in favor of stability, while the value of � goes against.
2. Thus, in contrast with the results in Olaizola and Valenciano (2015a), where

minimally strongly connected pro�les are unstable as soon as c > 1 � � due to the
assumption that the cost of strong links should be shared equally by the players in-
volved, when these shares can be negotiated such pro�les can be stabilized within a
much wider region by cost share equilibrium allocations. Figure 5 represents these re-
gions for n = 20. Under the assumption that costs must be shared equally, minimally
strongly connected networks are stable only within the triangle below c = 1� � (line
(1) in the �gure), while assuming cost negotiable equilibrium allocations exist below
lines c = n=2 and c = n��(n� 1) (line (2) in the �gure), a much wider area. Observe
that it covers a great part of the region where such structures are e¢ cient, even a
small part of where they are not, as they are dominated by stars of weak links above
c = n� 2�� (n� 2)�2 (line (3) in the �gure).

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10c

α

(1)

(2)

(3)

Figure 5: Stability vs.
e¢ ciency example

(n = 20)

3. Proposition 2 establishes necessary and su¢ cient conditions for cost share equi-
librium allocations to exist, but, in general, they are not unique. Assuming expected
utility preferences, any bargaining solution would yield a speci�c allocation of costs.

12



For instance, if utilities are linear in payo¤s the middle point of the segment whose
nonemptiness has been established in the proof corresponds to the Nash bargaining
solution. For example, assume n = 7, c = 3 and � = 7=12. Obviously conditions (5)
and (9) hold. If the seven nodes form a star of strong links each of the six peripheral
players would pay 5.25 and the center 0.75 for each of the six links. If they form a line,
i.e. six consecutive strong links, the two extreme links would be paid for 5.25 by the
peripheral and 0.75 by the other player; the shares for the two next links at each side
would be 1.5 and 4.5; and in the two central links the split would be 3.5 and 2.5. In
all cases the player occupying a more central position would pay less.
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