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Abstract. Hart and Mas Colell (1989) introduce the potential function for

cooperative TU games. In this paper, we extend this approach to claims

problems, also known as bankruptcy or rationing problems. We show that for

appropriate subproblems, the random arrival rule, the rules in the TAL-family

(which include the uniform gains rule, the uniform losses rule and the Talmud

rule), the minimal overlap rule, and the proportional rule admit a potential.

We also study the balanced contributions property for these rules. By means

of a potential, we introduce approach a generalization of the random arrival

rule and mixtures of the minimal overlap rule and the uniform losses rule.

JEL Classi�cation: C71.
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1. Introduction

A seminal paper by O�Neill (1982) was the origin of one of the most interesting

applications of cooperative game theory: solving claims problems. A given amount

of �money�must be divided among bene�ciaries with unequal claims to it. For

claims problems, also known as bankruptcy or rationing problems, division proce-

dures or rules which satisfy desirable properties are studied. Good surveys of the

relevant literature can be found in papers by Thomson (2003, 2013a, 1013b), who

presents rules that are commonly used and explains their links to solution concepts

of cooperative game theory, in particular to bargaining games. Another interesting

survey is that of Moulin (2002), who presents division rules for claims problems and

their links to other solutions in cooperative game theory, in particular to solutions

applied to discrete and continuous cost allocation problems. Koster (2009) and

Hougaard (2009) have also published interesting papers on this topic.

Hart and Mas-Colell (1989) were the �rst to introduce the potential approach for

cooperative transferable utility games. In a very remarkable result, they prove that
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the Shapley value (Shapley, 1953) of a player can result as the marginal contribution

of that player according to a particular potential function. Such a potential function

assigns a unique number to each transferable utility game. Thus, the marginal

contribution of a player according to the potential involves the subgame determined

by that player. The uniqueness of the potential is implied by the e¢ ciency condition

for the marginal contributions.

The aim of this paper is to apply the potential approach to claims problems.

We also seek solutions for claims problems by means of a potential function. The

allocation of the total amount corresponding to an agent will also be the marginal

contribution of that agent according to the potential function. Note that there is

also a subproblem associated with agents in such marginal contributions. However,

for claims problems, there is not a unique likely subproblem. In the case of transfer-

able utility games, in the subgame corresponding to a player, the player disappears

and the worth of the coalitions not containing him/her is the original worth. But

for claims problems, not only is the claim of the agent a¤ected in the subproblem,

but so, possibly, the amount to be divided. In this paper we consider all such possi-

bilities. We consider that the claimant does not disappear in the subproblem, and

also explore the situation in which the other claims are also reduced by the same

amount as that claimant�s.

Depending on the subproblem at hand, we obtain di¤erent division rules by

means of the corresponding potential function. For claims problems too, we have

an e¢ ciency condition since the endowment has to be divided among the agents.

This potential approach enables us to obtain the following rules: the random arrival

rule introduced by O�Neill (1982), the TAL-family de�ned by Moreno-Ternero and

Villar (2006) (which contains the uniform losses rule, the uniform gains rule and

the Talmud rule), the minimal overlap rule and the proportional rule. Obviously,

each of these rules is associated with a di¤erent potential.

On the other hand, we prove that by means of a potential approach we can obtain

one family of rules that generalize the random arrival rule, and another which mixes

the minimal overlap rule and the uniform losses rule.

As in the case of transferable utility games, we also introduce the balanced

contributions property for claims problems, which is closely related to the existence

of the potential. As in the previous case, the existence of the potential for a division

rule is equivalent to the ful�llment of the balanced contributions property.

The rest of the paper is structured as follows. Section 2 presents some pre-

liminaries, Section 3 gives several de�nitions of subproblems of a claims problem,

de�nes the potential associated with a subproblem and characterizes the random

arrival rule, the rules in the TAL-family and the minimal overlap rule, by means of

the corresponding potential and by means of the balanced contributions property.
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Section 4 introduces generalizations of the random arrival rule, and mixtures of the

minimal overlap rule and the uniform losses rule. We characterize them by means

of the corresponding potentials. The proportional rule arises in the former family.

The paper ends with references.

2. Preliminaries

Let N be a �nite set of nonnegative integers. For q 2 RN and S � N we denote

q (S) =
P
j2S

qj and s = jSj : The zero vector is denoted by 0 = (0; : : : ; 0) and by

ei the vector such that eij = 0 if j 6= i and eii = 1. The set of all nonnegative

N -dimensional real vectors is denoted by RN+ =
�
x 2 RN : x > 0

	
: For notational

convenience and without loss of generality, it can be assumed that N = f1; :::; ng :
A claims problem (or bankruptcy problem) with set of claimants N is an ordered

pair (c; E) where c = (c1; : : : ; cn); 0 � c1 � � � � � cn; speci�es for each agent i a

claim ci; and E � 0 represents the amount to be divided.
The space of all claims problems is denoted by C, and by CN the set of all

claims problems with set of claimants N . Given (c; E) 2 CN we denote ci =

c1 + � � �+ ci + (n� i) ci. Notice that cn = c(N):

A division rule (or bankruptcy rule) is a function that associates with each claims

problem (c; E) 2 CN a vector '(c; E) 2 Rn+ specifying an award for each agent i
such that 0 6 '(c; E) 6 c and '1(c; E) + � � �+ 'n(c; E) = min fE; c(N)g :
We do not require the classical condition

X
i2N

ci � E in order to make the

paper easier to write. All the results are valid when written in an appropriate way.

For notational convenience, we denote min fE; c(N)g by E�: Note that E� =
c(N) implies that, for all division rules, '(c; E) = c.

There are many bankruptcy rules in the literature. A suitable bankruptcy rule

is chosen depending on the context of the problem.

Concede-and-divide (Aumann and Maschler, 1985) is the division rule de�ned

only for the two-claimant case as follows. Assume that the endowment, E, is

allocated in two stages. In the �rst stage, each creditor i gets whatever the other

concedes, that is, he/she gets max fE� � cj ; 0g, where fjg = Nn fig, leaving the
rest, E� �

X
k2N

max fE� � ck; 0g ; for the second stage: In this last stage, the
remainder, the part that is truly contested, is divided equally between the claimants.

Equal division in this stage makes sense since both claims becomes equal after

being revised down by the amounts received in the �rst stage, and truncated by

the amount that remains available.

Formally, concede-and-divide is the function 'cd which associates, to each two-

claimant problem (c; E) and i 2 N; jN j = 2, the share of the endowment
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'cdi = max fE� � cj ; 0g+
E� �

X
k2N

max fE� � ck; 0g
2

There are several bankruptcy rules that coincide with concede-and-divide when

there are two agents. One of them is the following.

The random arrival rule (O�Neill, 1982) selects the average of the awards vectors

obtained by specifying an order on the claimant set and fully reimbursing each

claimant, in that order, until the endowment runs out, with all orders being given

equal probabilities. Some authors refer to it as the run-to-the-bank rule.

If 'ra denotes the random arrival rule, for each (c; E) and each i 2 N;

'rai (c; E) =
1

n!

X
�2�N

min

8<:ci;max
8<:E � X

j2N;�(j)<�(i)

cj ; 0

9=;
9=; ;

where �N denotes the class of bijections from N into itself.

Now we present three more classical bankruptcy rules. The uniform gains rule,

which shares the endowment equally without giving anyone more than his/her

claim; the uniform losses rule, which allocates losses equally without giving anyone

a negative amount; and the Talmud rule, which allocates the endowment equally

to agents, so that no-one receives more than half of his/her claim, and, if the

endowment is greater than the sum of half of the claims, allocates losses equally.

Those three rules are given formally as follows.

The uniform gains rule, UG, allocates the following amount for each (c; E) 2 CN

and each i 2 N :
min fci; �g ;

where � � 0 satis�es
P
i2N min fci; �g = E�.

The uniform losses rule, UL, provides each (c; E) 2 CN and each i 2 N with the

following quantity:

max f0; ci � �g ;

where � � 0 satis�es
P
i2N max f0; ci � �g = E�.

The Talmud rule, TAL, shares the following amount for each (c; E) 2 CN and

each i 2 N :
min

nci
2
; �
o
;

if E � c(N)
2 ; and

max
nci
2
; ci � �

o
;
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if E � c(N)
2 , where � and � are such that

P
i2NTALi(c; E) = E�.

Moreno-Ternero and Villar (2006) de�ne the TAL-family, which comprises the

above three rules among others. Each rule in that family is associated with a

parameter � 2 [0; 1] and is denoted by R�. It shares the endowment equally until
each of the agents receives no more than the fraction � of his/her claim, and if the

endowment is greater than the fraction � of the total claim then losses are shared

equally.

Thus, if � = 0 the uniform losses rule is obtained, if � = 1 the uniform gains rule

and if � = 1=2 the Talmud rule.

Formally, R� shares the following quantity for each (c; E) 2 CN and each i 2 N :

min f�ci; �g ;

if E � �c(N); and

max f�ci; ci � �g ;

if E � �c(N), where � and � are such that
P
i2N R

�
i (c; E) = E�.

Finally, the minimal overlap rule provides each agent with the sum of the partial

awards from the various units on which he/she lays claims, where for each unit equal

division prevails among all the agents claiming it and claims are arranged on speci�c

parts of the amount available, called units, so that the number of units claimed by

exactly one claimant is maximized, and for each k = 2; :::; n � 1 successively, the
number of units claimed by exactly k claimants is maximized subject to the k � 1
maximization exercises being solved.

Following Chun and Thomson (2005), Alcalde et al. (2008) formalize the minimal

overlap rule, denoted by 'mo, as follows.

For each (c; E) and each i 2 N;
(a) if E � cn,

'moi (c; E) =
iX

j=1

min fcj ; tg �min fcj�1; tg
n� j + 1 +max fci � t; 0g

where c0 = 0, and t is the unique solution for the equation
nX
k=1

max fck � t; 0g = E� � t

or

(b) if E < cn,

'moi (c; E) =
iX

j=1

min fcj ; Eg �min fcj�1; Eg
n� j + 1
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For the two-claimant case, it is well known that the Talmud rule, the minimal

overlap rule and the random arrival rule coincide with concede-and-divide.

3. Potential and balanced contributions

Before the de�nition of the potential and the balanced contributions property is

given, we now recap the case for transferable utility games (Hart and Mas-Colell,

1989).

A transferable utility game is a pair (N; v), where N is the �nite set of players

and v : 2N ! R is the characteristic function, satisfying v(?) = 0. A subset S � N

is called a coalition, and v(S) is the worth of the coalition S. Given a game (N; v)

and a coalition S � N , write (S; v) for the subgame obtained by restricting v to the

subsets of S; that is, the domain of the function v is restricted to 2S . The space of

all the games is denoted by G, and the set of all the games with �nite player set N

by GN .

A solution  on G is a function that associates with each game (N; v) a vector

 (N; v) 2 RN :
A solution  on G is said to be e¢ cient if

X
i2N

 i(N; v) = v(N), for all

(N; v) 2 G.
A solution  on G admits a potential if there is a function P : G ! R that

satis�es

P (N; v)� P (N j i; v) =  i(N; v);

for all (N; v) 2 G, and all i 2 N , and P (?; v) = 0; for (?; v) 2 G:
Therefore, solutions that admit a potential assign a scalar evaluation to each

game in such a way that the payo¤ of a player is his/her marginal contribution to

this evaluation. The ground-breaking result of Hart and Mas-Colell (1989) can be

stated as follows: a solution  on G is e¢ cient and admits a potential if and only

if  is the Shapley value on G.

The main idea of this paper is to extend this approach to claims problems. Given

a claims problem (c; E) 2 CN and i 2 N , the subproblem associated with (c; E)

and i is denoted by (c�i; E�i). First, we introduce the following adaptation of the

potential function.

De�nition 1. A division rule ' on C admits a potential associated with the sub-

problem (c�i; E�i) if there is a function P : C ! R that satis�es P (c; E) �
P (c�i; E�i) = 'i(c; E), for all (c; E) 2 CN , and all i 2 N , and P (0; E) = 0;

for (0; E) 2 C:
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Now the question is how to de�ne (c�i; E�i): Some subproblems are presented

below which can be viewed as natural. Given (c; E) 2 CN and i 2 N; the claims

problem (c�i; E�i) is:

a) (c�i; E�i) = (c� ciei; E): This is referred as the RA0-subproblem:
b) (c�i; E�i) = (c�ciei;max fE � ci; 0g): This is referred as theRA1-subproblem:
c) (c�i; E�i) = ((max fck � ci; 0g)k2N ;max

�
E � �ci; 0

	
), where � 2 [0; 1] : This

is referred as the �-TAL-subproblem.

d) (c�i; E�i) = ((max fck � ci; 0g)k2N ;max fE � ci; 0g): This is referred as the
MO-subproblem.

In the case of transferable utility games, in the subgame (N j i; v), player i is not
present and the worth of a coalition not containing i is simply the original worth

of such a coalition. For claims problems, when agent i claims nothing (we consider

that the set of agents does not change), it can be assumed that the claims of the

other agents do not change (cases a) and b)), but what happens to the endowment?

We assume that the endowment decreases in the claim of the agent (case b)), that

is, agent i might be given his/her claim, or we assume that the endowment does

not change (case a)), that is, the endowment is shared between the agents that

continue with their original claims. We show in this paper that both approaches

lead to the random arrival rule.

There is also an alternative way of reducing claims. It can be assumed that not

only the claim of one agent drops to zero but all claimants reduce their claims by

the same amount. If someone demands less than that amount, his/her claim drops

to zero. In that case, as before, the endowment can also be reduced by the total

claim reduction (case c) with � = 1) or it can be maintained (case c) with � = 0).

We prove in this paper that in the �rst case the uniform gains rule is obtained and in

the second the uniform losses rule. We also prove that if the endowment is reduced

by a fraction of the claim reduction the TAL-family is obtained. In particular, if

� = 1=2 the Talmud rule results.

It can also be seen that if all claims are reduced by the claim of one agent but

the endowment only by that claim (case d)), the minimal overlap rule results.

These results are formalized in this theorem.

Theorem 1. A division rule ' admits a potential associated with the RA0-subpro-
blem or RA1-subproblem (�-TAL-subproblem, MO-subproblem) if and only if ' is

the random arrival rule (R� rule, minimal overlap rule).

Hart and Mas-Colell (1989) mention that the existence of a potential (in TU

games) implies that the corresponding solution satis�es the balanced contributions

axiom (Myerson, 1980). For claims problems, Lorenzo-Freire et al. (2007) show

that the random arrival rule is the only rule that satis�es a property of balanced



8 M. J. ALBIZURI*, J. C. SANTOS

contributions. They propose

'j(c; E)� 'i(c; E)

= 'j(c� ciei;max fE � ci; 0g)� 'i(c� cjej ;max fE � cj ; 0g):

That is, they consider the RA1-subproblem. They work with the variable-

population case while our approach is also applicable to the case of a �xed-population.

A general de�nition of the above axiom is:

Property : A division rule satis�es balanced contributions associated with (c�i; E�i)

if

'j(c; E)� 'i(c; E) = 'j(c
�i; E�i)� 'i(c�j ; E�j)

for all (c; E) 2 CN ; and i; j 2 N:

Theorem 1 follows immediately from the proposition below dealing with the

balanced contribution property (as in the case of transferable utility games and the

Shapley value). Thus, we only give the proof of the latter.

Proposition 1. A division rule ' satis�es balanced contributions associated with

the RA0-subproblem or RA1-subproblem (�-TAL-subproblem, MO-subproblem) if

and only if ' is the random arrival rule (R� rule, minimal overlap rule).

Proof. Proof for the RA0-subproblem.
Unicity is immediate since if there is only one claim ci that is not zero, then agent

i is given the minimum of ci and E, and the others receive 0. And when there is

more than one agent with claims other than 0 the rule is determined uniquely by the

balanced contributions property and taking into account that the total assignment

is the minimum of E and c(N).

To prove existence let fi; jg � N; j > i. The following holds:

'raj (c; E) =
1

n!

X
�2�N

min

8<:cj ;max
8<:E � X

k2N;�(k)<�(j)

ck; 0

9=;
9=;

=
X

S�N jfjg

s!(n� s� 1)!
n!

(min fc (S [ fjg) ; Eg �min fc (S) ; Eg)

=
X

S�N jfjg
i2S

s!(n� s� 1)!
n!

[(min fc (S [ fjg) ; Eg �min fc (S [ fjg j fig) ; Eg)

+ (min fc (S [ fjg j i) ; Eg �min fc (S) ; Eg)]

+
X

S�N jfjg
i=2S

s!(n� s� 1)!
n!

[(min fc (S [ fjg) ; Eg �min fc (S [ fig) ; Eg)

+ (min fc (S [ fig) ; Eg �min fc (S) ; Eg)]
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=
X

S�N jfjg
i2S

s!(n� s� 1)!
n!

(min fc (S [ fjg j fig) ; Eg �min fc (S) ; Eg)

+
X

S�N jfjg
i=2S

s!(n� s� 1)!
n!

(min fc (S [ fjg) ; Eg �min fc (S [ fig) ; Eg)

+
X

S�N jfjg
i2S

s!(n� s� 1)!
n!

(min fc (S [ fjg) ; Eg �min fc (S [ fjg j fig) ; Eg)

=
X

S�N jfjg
i=2S

s!(n� s� 1)!
n!

(min fc (S [ fig) ; Eg �min fc (S) ; Eg)

=
X

S�N jfjg
i2S

s!(n� s� 1)!
n!

(min fc (S [ fjg j fig) ; Eg �min fc (S) ; Eg)

+
X

S�N jfjg
i=2S

s!(n� s� 1)!
n!

(min fc (S [ fjg) ; Eg �min fc (S [ fig) ; Eg)

+'rai (c; E):

Now, if i 2 S;
min fc (S [ fjg j fig) ; Eg �min fc (S) ; Eg

= (min fc (S [ fjg j fig) ; Eg �min fc (S j fig) ; Eg)

� (min fc (S) ; Eg �min fc (S j fig) ; Eg) :

And if i =2 S;
min fc (S [ fjg) ; Eg �min fc (S [ fig) ; Eg

= (min fc (S [ fjg) ; Eg �min fc (S) ; Eg)

� (min fc (S [ fig) ; Eg �min fc (S) ; Eg) :

Then

'raj (c; E) = 'rai (c; E)

+
X

S�N jfjg

s!(n� s� 1)!
n!

min
��
c� eici

�
(S [ fjg) ; E

	
�min

��
c� eici

�
(S) ; E

	
�

X
S�N jfig

s!(n� s� 1)!
n!

min
��
c� ejcj

�
(S [ fig) ; E

	
�min

��
c� ejcj

�
(S) ; E

	
= 'rai (c; E) + '

ra
j (
�
c� eici

�
; E)� 'rai (

�
c� ejcj

�
; E);

and the required equality is obtained.

Proof for the RA1-subproblem. See the result in Lorenzo-Freire et al. (2007).
Proof for the �-TAL-subproblem.
Unicity is immediate, so we prove existence. Assume fi; jg � N; j > i. First no-

tice that R�i ((max fck � cj ; 0g)k2N ;max
�
E � �cj ; 0

	
) = 0: Distinguish two cases.
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(a) E � �c(N): Three subcases can be distinguished.

(i) If E � �ci, then R�j (c; E) = � and R�i (c; E) = �, where � satis�esX
k2N

R�k(c; E) = E;

and therefore,

R�j (c; E)�R�i (c; E) = 0 = R�j ((max fck � ci; 0g)k2N ; 0))

= R�j ((max fck � ci; 0g)k2N ;max
�
E � �ci; 0

	
:

(ii) If E � �ci and E � �cj , we have

R�j (c; E)�R�i (c; E) = �� �ci;

where � satis�es
P
k2N R

�
k(c; E) = E, that is, �

�P
k2N
k�i

ck

�
+ (n� i) (�) = E; or

equivalently (n� i) (�� �ci) = E � �ci:
Moreover, E � �ci � �

�P
k2N max fck � ci; 0g

�
; since E � �cj � �c(N). Thus

nX
k=1

R�k((max fck � ci; 0g)k2N ; E � �c
i) = E � �ci;

and hence, the non negative number � satis�es

R�j ((max fck � ci; 0g)k2N ;max
�
E � �ci; 0

	
) = �� �ci;

and the required equality is obtained.

(iii) If E � �ci, E � �cj and E � �c(N); we get

R�j (c; E)�R�i (c; E) = �cj � �ci:

Moreover E � �c(N) implies that E � �ci � �
�P

k2N max fck � ci; 0g
�
. And

E � �cj implies that E � �ci � �cj � �ci: Therefore,

R�j ((max fck � ci; 0g)k2N ;max
�
E � �ci; 0

	
)

= R�j ((max fck � ci; 0g)k2N ; E � �c
i) = �cj � �ci:

(b) If E � �c(N): Notice that now E � �ci � �
�P

k2N max fck � ci; 0g
�
: Let �

such that
P
i2N R

�
i (c; E) = E from the de�nition of R�. Distinguish two subcases.

(i) If (1� �) ci � �, then

R�j (c; E)�R�i (c; E) = cj � �� (ci � �) = cj � ci:

We now seek to prove that E � �ci �
P
k2N (max fck � ci; 0g) : From E � �c(N),

the following is obtained:

E �
nX
k=1

ck �
nX
k=1

min f�; (1� �) ckg :
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Then it is su¢ cient to prove

��ci �
nX
k=1

min f�; (1� �) ckg � �
nX
k=1

min fck; cig ;

that is,
nX
k=1

((1� �)min fck; cig �min f�; (1� �) ckg) � 0: (1)

If k � i and min f�; (1� �) ckg = (1� �) ck, then the corresponding term in the

sum is

(1� �) ck � (1� �) ck = 0:

If k � i and min f�; (1� �) ckg = �, then the term coincides with

(1� �) ck � � � 0:

If k � i the term reduces to

(1� �) ci � � � 0;

and hence the inequality (1) is proved. Therefore,

R�j ((max fck � ci; 0g)k2N ; E � �c
i) = cj � ci;

as was to be shown.

(ii) If (1� �) ci � � we prove that taking R�k((max fck � ci; 0g)k2N ; E � �ci) =

max f� (ck � ci) ; ck � ci � (�� (1� �) ci)g, for k � i, it holds thatX
k2N

R�k((max fck � ci; 0g)k2N ; E � �c
i) = E � �ci:

The following is obtained:

E = �c(N) +

nX
k=1

((1� �) ck �min f�; (1� �) ckg) ;

that is,

E � �ci = �
nX
k=1

(max fck � ci; 0g)k +
nX
k=1

((1� �) ck �min f�; (1� �) ckg) :

Since (1� �) ci � �, the equality can be rewritten as follows

E � �ci = �
nX
k=1

(max fck � ci; 0g)k

+
nX

k=i+1

((1� �) (ck � ci)�min f�� (1� �) ci; (1� �) (ck � ci)g) ;

that is, �� (1� �) ci satis�es the required equality.
There are two cases.
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(ii1) (1� �) cj � �. In that case R�i (c; E) = �ci and R�j (c; E) = cj � �. And

taking into account that (1� �) (cj � ci) � �� (1� �) ci, then

R�j ((max fck � ci; 0g)k2N ; E � �c
i) = (cj � ci)� (�� (1� �) ci) ;

and hence R�j ((max fck � ci; 0g)k2N ; E � �ci) = R�j (c; E)�R�i (c; E):
(ii2) (1� �) cj � �. Now, R�i (c; E) = �ci and R�j (c; E) = �cj . Moreover, since

(1� �) (cj � ci) � �� (1� �) ci,

R�j ((max fck � ci; 0g)k2N ; E � �c
i) = � (cj � ci) = R�j (c; E)�R�i (c; E);

and the proof is complete.

Proof for the MO-subproblem.
Unicity is immediate. Existence is proved for the following three cases. Let

fi; jg � N; j > i.

(a) If E � cn, E � c(N); from de�nition, we have

'moj (c; E)� 'moi (c; E)

=

jX
k=i+1

min fck; tg �min fck�1; tg
n� k + 1 +max fcj � t; 0g �max fci � t; 0g ;

where t is the unique solution for the equation
nX
k=1

max fck � t; 0g = E � t:

We consider two subcases:

(i) max fci � t; 0g = 0: Then

'moj (c; E)� 'moi (c; E) =

jX
k=i+1

min fck; tg �min fck�1; tg
n� k + 1 +max fcj � t; 0g :

Note that E � cn implies that E� ci � cn� ci: Let t0 be the unique solution for

the equation
nX
k=1

max fck � ci � t0; 0g = E� ci� t0: It is immediate that t0 = t� ci:

Hence,

'moj ((max fck � ci; 0g)k2N ;max fE � ci; 0g)

=

jX
k=1

min fmax fck � ci; 0g ; t0g �min fmax fck�1 � ci; 0g ; t0g
n� k + 1

+max fcj � ci � t0; 0g

=

jX
k=i+1

min fck � ci; t0g �min fck�1 � ci; t0g
n� k + 1 +max fcj � ci � t0; 0g

=

jX
k=i+1

min fck � ci; t� cig �min fck�1 � ci; t� cig
n� k + 1 +max fcj � t; 0g

= 'moj (c; E)� 'moi (c; E):
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(ii) max fci � t; 0g = ci � t: Then

'moj (c; E)� 'moi (c; E) = max fcj � t; 0g �max fci � t; 0g = cj � ci:

Taking into account that
nX
k=1

max fck � t; 0g = E � t; it is obtained that

E �
nX
k=i

ck � (n� i) t;

which implies

E � ci �
nX

k=i+1

ck � (n� i) t �
nX

k=i+1

ck � (n� i) ci:

Then

'moj ((max fck � ci; 0g)k2N ;max fE � ci; 0g) = cj � ci = 'moj (c; E)� 'moi (c; E):

(b) If E < cn, by de�nition it holds

'moj (c; E)� 'moi (c; E) =

jX
k=i+1

min fck; Eg �min fck�1; Eg
n� k + 1

=

jX
k=i+1

min fck � ci; E � cig �min fck�1 � ci; E � cig
n� k + 1 :

Now, E < cn implies that E � ci < cn � ci, and thus

'moj (c; E)� 'moi (c; E) = 'moj ((max fck � ci; 0g)k2N ;max fE � ci; 0g);

and the result is obtained.

(c) If c(N) � E, then
P
k2N max fck � ci; 0g � E � ci: Then, by de�nition,

'moj (c; E)� 'moi (c; E) = cj � ci = 'moj ((max fck � ci; 0g)k2N ;max fE � ci; 0g);

as was to be shown. �

The corresponding potentials are given now. For the �-TAL-subproblem orMO-

subproblem notice that the property of balanced contributions applied to i; n 2 N
implies that

'n(c; E)� 'n(c�i; E�i) = 'i(c; E)� 'i(c�n; E�n) = 'i(c; E);

and, therefore, due to the unicity of the potential, in the case of the TAL-family,

P (c; E) = R�n(c; E); for all (c; E) 2 CN , and for the minimal overlapping rule

P (c; E) = 'mon (c; E); for all (c; E) 2 CN .
The other potentials are as follows.
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Proposition 2. The potential associated with the RA0-subproblem is given by

P (c; E) =
X
S�N

(s� 1)!(n� s)!
n!

min fc (S) ; Eg :

Proof.

P (c; E)� P (c� ciei; E)

=
X
S�N

(s� 1)!(n� s)!
n!

min fc (S) ; Eg

�
X
S�N

(s� 1)!(n� s)!
n!

min
��
c� ciei

�
(S) ; E

	
=
X
S�N
i2S

(s� 1)!(n� s)!
n!

�
min fc (S) ; Eg �min

��
c� ciei

�
(S) ; E

	�

=
X
S�N
i=2S

s!(n� s� 1)!
n!

(min fc (S) + ci; Eg �min fc (S) ; Eg) = 'rai (c; E):

�

Proposition 3. The potential associated with the RA1-subproblem is given by

P (c; E) =
X
S�N

s!(n� s� 1)!
n!

max fE � c (S) ; 0g :

Proof.

P (c; E)� P (c� ciei;max fE � ci; 0g)

=
X
S�N

s!(n� s� 1)!
n!

max fE � c (S) ; 0g

�
X
S�N

s!(n� s� 1)!
n!

max
�
E � ci �

�
c� ciei

�
(S) ; 0

	
=
X
S�N
i2S

s!(n� s� 1)!
n!

0

+
X
S�N
i=2S

s!(n� s� 1)!
n!

(max fE � c (S) ; 0g �max fE � ci � c (S) ; 0g)

=
X
S�N
i=2S

s!(n� s� 1)!
n!

(min fc (S) + ci; Eg �min fc (S) ; Eg)

= 'rai (c; E):

�
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4. Some variations

A natural question arises from the subproblems considered so far. In the �-TAL-

subproblems, since � 2 [0; 1], we remove from the endowment all possible parts of

the total amount reduced by the claims. However, for the RA0-subproblem and

the RA1-subproblem, either the total amount reduced by the claims is removed or

nothing is. That is, only the extreme positions are considered. What happens if the

endowment is reduced by part of the claim reduction? This can also be represented

by a parameter � 2 [0; 1], which leads to the following subproblem, referred as the
RA�-subproblem.

(c�i; E�i) = (c� ciei;max fE � �ci; 0g):

We show that there is a unique rule that admits a potential associated with the

RA�-subproblem. It can be de�ned by means of orders, like the random arrival

rule. But now, instead of giving each agent his/her entire claim at once, in the �rst

stage, each agent is given a fraction � of his/her claim, and in a second stage, the

rest of the claim, until the endowment runs out. That is, in each order N is ordered

twice. We also assume that all orders have equal probabilities. We refer to this as

the �-random arrival rule, and write '�ra, for each (c; E) and each i 2 N;

'�rai (c; E)

=
1

(n!)
2

X
(�;�0)2�N��N

8<:min
8<:�ci;max

8<:E � X
j2N;�(j)<�(i)

�cj ; 0

9=;
9=;

+min

8<:(1� �) ci;max
8<:E � �c(N)� X

j2N;�0(j)<�0(i)

(1� �) cj ; 0

9=;
9=;
9=; ;

where �N denotes the set of bijections from N into itself. This gives the following

explicit formula.

'�ra(c; E) = 'ra(�c;min fE; �c (N)g) + 'ra((1� �) c;max fE � �c (N) ; 0g):

Notice that with these rules, as in the TAL-family, nobody is given more than a

fraction � of his/her claim if there is anybody who has not yet been given his/her

fraction � of his/her claim. In this case, until �c (N) is given the random arrival

rule is applied with claims �c, and if the endowment is greater than �c (N), the rest

is also divided by applying the random arrival rule, taking into account the rest of

the claims. As for the TAL-family, the uniform gains rule is applied until �c (N),

and then the uniform losses rule. So, in the new family the random arrival rule is
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considered as a fair rule to be applied before fraction � of the claims is given and

also after that. In the TAL-family, �rst the uniform gains rule and then the uniform

losses rule are applied. The uniform losses rule is the dual rule of the uniform gains

rule, while the random arrival rule is a self-dual rule, that is, its dual rule is itself.

So, the random rule can be said to play in this new family the role that the uniform

gains rule plays in the TAL-family.

In particular, if we look at � = 1=2; the Talmud rule is obtained in the TAL-

family. Aumann and Maschler (1985) state that the Talmud rule is the only self-

dual rule that, when E < c (N) =2; assigns to (c; E) the uniform gains of (c=2; E).

Similarly, the 1=2-random arrival rule is the only self-dual rule that, when E <

c (N) =2; assigns to (c; E) the random arrival rule of (c=2; E). So, the 1=2-random

arrival rule can be seen as a counterpart of the Talmud rule when the random

arrival rule is considered as a fair rule instead of the uniform gains rule.

Observe also that if � is made to depend on the claims problem by means of the

equality � = E=c(N); then the �-random arrival rule coincides with the proportional

rule.

For the proportional rule there is also a multiplicative potential. This concept

was introduced for transferable utility games by Ortmann (2000), and it can be

de�ned for claims problems as follows (C+ denotes the set formed by the claims

problems (c; E) such that c = 0 or ci > 0 for all i 2 N):

De�nition 2. A division rule ' on C admits a multiplicative potential associated

with (c�i; E�i) if there exists a function P : C+ ! < that satis�es

P (c; E)=P (c�i; E�i) = 'i(c; E);

for all (c; E) 2 C+ \ CN , and all i 2 N , and P (0; E) = 1; for (0; E) 2 C+:

If (c�i; E�i) = (c�ciei;
X
k 6=i

ck) is considered, the state coincides with the sum of

the claims. It is straightforward to show that the proportional rule is the only rule

that admits a multiplicative potential associated with that subproblem (P (c; E) =�
E
Q
j2N cj

�
=
P
j2N cj).

To prove the result for the potential associated with the RA�-subproblem, as in

the previous section, the following proposition is proved.

Proposition 4. A division rule ' satis�es balanced contributions associated with

the RA�-subproblem if and only if ' is the �-random arrival rule.

Proof. Unicity is immediate so we prove existence. Assume fi; jg � N; j > i. Two

cases can be distinguished.

(a) If �c (N) � E;

'�raj (c; E)� '�rai (c; E) = 'raj (�c; E)� 'rai (�c; E):
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Moreover, �c (N) � E implies that �c�i (N) � E � �ci and �c�j (N) � E � �cj :

Then, by de�nition,

'�raj (c�i; E�i)� '�rai (c�j ; E�j)

= 'raj (�c
�i;max fE � �ci; 0g)� 'rai (�c�j ;max fE � �cj ; 0g):

And hence, the required equality holds since 'ra satis�es balanced contributions

for RA1.

(b) If �c (N) � E;

'�raj (c; E)� '�rai (c; E)

= �cj + '
ra
j ((1� �) c; E � �c (N))� (�ci + 'rai ((1� �) c; E � �c (N))) :

Moreover, �c (N) � E implies that �c�i (N) � E � �ci and �c�j (N) � E � �cj :

Then, by de�nition,

'�raj (c�i; E�i)� '�rai (c�j ; E�j)

= �cj + '
ra
j ((1� �) c�i; E � �c (N))�

�
�ci + '

ra
i ((1� �) c�j ; E � �c (N))

�
:

Therefore, the required equality holds taking into account that 'ra satis�es bal-

anced contributions for RA0. �

And therefore the following theorem emerges.

Theorem 2. A division rule ' admits a potential associated with the RA�-subproblem
if and only if ' is the �-random arrival rule.

It can be proved that the potential associated with the RA�-subproblem is de-

�ned by

P (c; E) =
X
S�N

(s� 1)!(n� s)!
n!

min fc (S) ;max f0; E � �c (N=S)gg :

The same question asked at the beginning of this section can be posed in regard

to the subproblem associated with the minimal overlap rule. In this case, consider

the subproblem

(c�i; E�i) = ((max fck � ci; 0g)k2N ;max fE � �ci; 0g);

where 0 � � � 1:We refer to this asMO�-subproblem. We show that it determines

the following rule.

'�mo(c; E)

= 'mo(�c;min fE; �cng) + 'ul(c� 'mo(�c; �cn);max fE � �cn; 0g):

Observe that now the minimal overlap rule is applied until �cn is shared, and

the rest is given according to the uniform losses rule. When � = 0, '0mo(c; E)

coincides with the uniform losses rule and when � = 1; '1mo(c; E) coincides with

the minimal overlap rule. This link between '�mo and 'mo is similar to a link

between the minimal overlap rule and the Ibn Ezra�s rule (Alcalde et al., 2008).
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The result is obtained for both balanced contributions and potential.

Proposition 5. A division rule ' satis�es balanced contributions associated with

the MO�-subproblem if and only if ' = '�mo.

Proof. Unicity is immediate, so let us prove existence. Assume fi; jg � N; j > i.

Distinguish two cases.

(a) If �cn � E;

'�moj (c; E)� '�moi (c; E) = 'moj (�c; E)� 'moi (�c; E):

Moreover, since �cn � E then � (cn � ci) � E � �ci: Therefore, by de�nition,

'�moj (c�i; E�i)� '�moi (c�j ; E�j)

= 'moj (� (max fck � ci; 0g)k2N ;max fE � �ci; 0g):

Hence, the required equality is true since 'mo satis�es balanced contributions for

MO.

(b) If �cn � E;

'�moj (c; E)� '�moi (c; E)

= 'moj (�c; �cn) + '
ul
j (c� 'mo(�c; �cn); E � �cn)

�
�
'moi (�c; �cn) + '

ul
i (c� 'mo(�c; �cn); E � �cn)

�
:

Now, �cn � E implies that � (cn � ci) � E � �ci: Then, by de�nition,

'�moj (c�i; E�i)� '�moi (c�j ; E�j)

= 'moj (� (max fck � ci; 0g)k2N ; � (cn � ci))

+'ulj ((max fck � ci; 0g)k2N � '
mo(� (max fck � ci; 0g)k2N ; � (cn � ci))

; E � �cn):

Taking into account that for h > i

max fch � ci; 0g � 'moh (� (max fck � ci; 0g)k2N ; � (cn � ci))

= ch � 'moh (�c; �cn)� (ci � 'moi (�c; �cn)) ;

that 'mo satis�es balanced contributions for MO and 'ul satis�es balanced contri-

butions for UL, the proof is complete. �

Theorem 3. A division rule ' admits a potential associated with theMO�-subproblem

if and only if ' = '�mo.
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The potential is given by

P (c; E) = '�mon (c; E):
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