eman ta zabal zazu

>

Universidad Euskal Herriko
del Pais Vasco Unibertsitatea

Informatics Engineering Degree

Computation

Bachelor Thesis

About Tree-Depth

Author
Asier Mujika

Supervisor

Dr. Hubert Chen

informatika a facultad de
fakultatea informatica

2015

Acknowledgements

I would like to express my gratitude to my supervisor Hubie Chen for the useful com-
ments, engagement through the learning process and teaching me the rigor that goes into
doing good theoretical work. I would also like to thank Montserrat Hermo for introduc-
ing me to Hubie and this project and always being willing to offer her support. I would
also like to take this chance to thank all the professors that got out of their way to help
and motivate me in the last four years. Specially thanks to everyone that made attending
the SWERC possible the last three years, it has been an awesome experience. I am also
thankful for all the amazing classmates I have had the chance to meet. Finally, I would
like to mention Ivdn Matellanes from whom I have learnt the most in this years and has

always been willing to give me advice.

Abstract

In this work I present recent scientific papers related to the concept of tree-depth: different
characterizations, a game theoretic approach to it and recently discovered applications.
The focus in this work is presenting all the ideas in a self-contained way, such that they
can be easily understood with little previous knowledge. Apart from that all the ideas are
presented in a homogeneous way with clear examples and all the lemmas, some of which

didn’t have proofs in the papers, are presented with rigorous proofs.

11

Contents

Acknowledgement

Abstract

Contents

1 Introduction to Graph Theory
1.1 Undirected graphs L
1.2 Definitions for undirected graphs
1.3 Directedgraphs

1.4 Definitions for directed graphs oL

2 Introduction to Tree-Depth
2.1 Tree-Depth e

2.2 Elimination Forest

3 Game Theoretic approach to Tree-Depth
3.1 Definingthegame o
3.2 Bob’swinning strategy i e e
3.3 Alice’s winning strate€gy o .o e et e

34 RelationtoTree-Depth

iii

CONTENTS

4 Cycle rank
4.1 Defining cycle rank

4.2 Directed elimination forest

5 Game Theoretic approach to Cycle Rank
5.1 Definitions

5.2 Game description

6 Isomorphism

6.1 Problem definition
6.2 Parameterized complexity
6.3 Bounded roots
6.4 Bounded roots in minimal graphs
6.5 An ordering on elimination trees

6.6 Algorithm
6.7 Complexity analysis

6.8 Extending the algorithm to general graphs

Appendices

Bibliography

Vi

37

1. CHAPTER

Introduction to Graph Theory

1.1 Undirected graphs

An undirected graph is defined as a pair of sets G = (V, E), such that E C {{a,b} |a #bAa,b € V}.
The members of V are called vertices or nodes and the ones of E edges. Take into account,
that the vertices can be anything, they can even be sets themselves. The usual way to draw
a graph is by representing the vertices as individual points and for each edge, draw a link
between both elements of that edge. The shape in which a graph is drawn is irrelevant, it

will contain the same information.

a

O~
O

c f
@,

Figure 1.1: An undirected graph with V = {a,b,c,d,e,f} and E =
{{a,b}.{a,d},{b,d},{b,c},{d,e}}

2 Introduction to Graph Theory

1.2 Definitions for undirected graphs

For a graph G, V(G) is its vertex set and E (G) its edge set. Here are some basic concepts

in undirected graphs that we will later on need to present more complex ideas.

Adjacency
a,b € V(G) are said to be adjacent in G if {a,b} € E(G).

Path
A path aj,ay,...,a, is a series of pairwise distinct vertices in V(G) such that if

2 <i< n,then g;_ is adjacent to g; in G. n is the length of such a path.

Cycle
A cycle is a path of the form a,...,a of length greater than 1.

Subgraph
G’ is a subgraph of G, expressed as G’ C G, if V(G') C V(G) and E(G') C E(G).
G’ C G means that G’ C Gbut V(G') #V(G) or E(G') # E(G).

Connected component
A connected component G’ of G is a subgraph of G such that a path exists between
any two vertices of G’ and no H exists such that G’ C H and H is a connected

component.

Tree

A tree is a graph with a single connected component that contains no cycle.

Forest

A forest is a graph such that every connected component is a tree.

Rooted Tree

A rooted tree is a tree with a special node that is called the root.

Rooted Forest

A rooted forest is a graph such that every connected component is a rooted tree.

Ancestor
Node x is said to be the ancestor of y in a rooted forest F, if x belongs to the only

path between y and the root of the component to which y belongs.

1.3 Directed graphs 3

Height of a node
The height of a node in a rooted tree is the length of the path from that node to the
root. The height of the root itself is 1. In a rooted forest, the height of a node is its
height in the rooted tree it belongs to.

Height of a rooted forest
The height of a rooted forest is the maximum height of any of its nodes.

1.3 Directed graphs

Similar to the notion of undirected graphs, we have directed ones too. In these, the
edges are ordered pairs instead of sets and the edges are drawn with arrows from the first

element to the second one. Here is an example of one.

a

Figure 1.2: A directed graph with V ={a,b,c,d,e} and E = {(a,b), (b,c),(c,b),(b,d),(e,d)}

1.4 Definitions for directed graphs

Just like in the undirected case, we will also need some basic definitions.

Subgraph
The subgraph relation is defined in the same way that in the undirected case.

Path
A path aj,ay,...,a, is a series of pairwise distinct vertices in V(G) such that if
2 <i<mn,then (a;_1,a;) € E(G). n is the length of such a path.

Strongly connected component
A strongly connected component G’ of G is a subgraph of G such that a path exists

4 Introduction to Graph Theory

between any two vertices of G’ and no H exists such that G’ C H and H is a strongly

connected component.

Successor-closed

A subgraph, H, of G is successor-closed in G if there are no edges from H to G\ H.

N’

o« _ @

Figure 1.3: The red nodes are both a strongly connected component and a successor-closed sub-
graph.

2. CHAPTER

Introduction to Tree-Depth

2.1 Tree-Depth

In the following two chapters we will present the ideas from Sparsity, Algorithms and

Combinatorics [1].

Definition 2.1.1. The closure of a rooted forest F, expressed as C = clos(F), is defined as

follows:

« V(C) = V(F)

* E(C)={{x,y}:x#yandxisan ancestor of yin F}

6 Introduction to Tree-Depth

Root Root

@) @)

Figure 2.1: The blue graph at the left is a rooted forest F, the red graph at the right represents
clos(F).

Definition 2.1.2. The tree-depth of a graph G, expressed as td(G), is the minimum height
of a rooted forest F such that G C clos(F).

Figure 2.2: The graph G and tree T are in the left and right respectively. The dotted edges in T,
represent the clos(T). Because G C clos(T), height(T) = 5 and the definition of tree-depth we
just gave, we know that td(G) is at most 5.

The tree-depth of a graph G is a numerical invariant of a graph. In other words, the
tree-depth is a property that depends only on the abstract structure of a graph, not on its

representation.

2.2 Elimination Forest 7

2.2 Elimination Forest

Apart from the previous definition we can also characterize tree-depth in a different way

by using elimination forests.

Definition 2.2.1. An elimination forest F of a graph G is defined recursively as follows:

o If V(G)={v} then F is just {v}.

* If G is not connected, then F is the union of the elimination forests of each compo-
nent of G.

* Otherwise, r € V(G) is chosen as the root of F and an elimination forest is created

for G —r. The roots of this elimination forest will be the children of r in F.

The tree T in Figure 2.2 is an elimination forest for the graph G.

Lemma 2.2.2. Let G be a graph and F a rooted forest such that G C clos(F). Then, there
exists an elimination forest Y such that height(Y) < height(F).

Proof.

Base case: If V(G) = {v}, then V(Y) = {v} and height(Y) = 1. Beware that F' can have
nodes that are not in G but it must contain v, so height(Y) < height(F).

Induction: If G is connected, set the root of F, v, as the root of Y. Clearly, G —v C
clos(F —v), so by induction an elimination forest Y’ exists such that G —v C clos(Y’)
and height(Y') < height(F —v). The roots of Y’ will be the children of v in Y and as
G —v C clos(Y'), then G C clos(Y) and Y is an elimination forest. With that we can
prove the lemma like this: height(Y) = 1+ height(Y') < 1+ height(F-v) = height(F), so
height(Y) < height(F).

If G is not connected, then every component G; in G is contained in the closure of a
component F; in F. Otherwise, the edge between two adjacent nodes in G that are both in
G; but in two different components of F wouldn’t be in clos(F) and that can’t happen. By
induction we can assume that for every component G;, there exists an elimination forest
Y; such that G; C clos(Y;) and height (Y;) < height(F;). Y will be the union of all these Y;
which is clearly an elimination forest and because for every component of Y there exists

a component in F with higher or equal height, then height(Y) < height(F). O

8 Introduction to Tree-Depth

From this lemma it is easy to see that the tree-depth of a graph will be the minimal
height of an elimination forest for that graph. Taking that into account, we can use the

definition of elimination forest to get this recursive formula.

Lemma 2.2.3. The tree-depth of a graph G with Gy,...,G, components is the following:

1 if|Gl =1
td(G) = max’_1td(G;) if G is not connected
L +min,cytd(G—v) otherwise

3. CHAPTER

Game Theoretic approach to Tree-Depth

3.1 Defining the game

We will now define a pebble game on a graph G and prove that it is closely related
to the concept of tree-depth[1]. Using this different approach we will be able to prove
lower bounds for the tree-depth of G and it will also be useful to prove lemmas in the last

chapter of this work.

For k > 0, the k-step selection-deletion game is played by Alice and Bob on a graph.
The game is played by turns as follows:

* First, Alice selects a connected component of the graph, and the rest of the compo-

nents are deleted.
* Then, Bob deletes a node from the remaining graph and the next round is played
with this graph.
If Bob deletes the last node at the k-th round or earlier, he is said to win. Otherwise, Alice

wins. Obviously, Alice always wins the O-step selection-deletion game.

Definition 3.1.1. A strategy for the game played on graph G is a function from P(V(G))
to P(V(G)). In Alice’s case, given the current subgraph the game is being played on the

strategy outputs the component Alice will select. In Bob’s case, it returns which vertex to

9

10 Game Theoretic approach to Tree-Depth

remove. A strategy is said to be winning in the k-step selection-deletion game if no matter

which moves the other player makes you are guaranteed to win in k rounds.

From this definition we can observe that if Bob has a strategy to win in k rounds that
strategy will also guaranty a win in any game that lasts more than k rounds. Conversely, if
Alice has a winning strategy in k-rounds, that same strategy will also win any game with

less than k£ rounds.

3.2 Bob’s winning strategy

Lemma 3.2.1. Let G be a graph and let F be a rooted forest of height t such that G C

clos(F). Then, Bob has a winning strategy for the t-step selection-deletion game.

Proof. Because of lemma 2.2.2 we know an elimination forest Y exists such that height(Y) <
height (F). Consider h = height(Y), we will prove that a winning strategy exists in A
rounds which is also a winning strategy in the z-step selection-deletion game because

h<t.

* Base case: If 7 = 1, then every component of G will have a single vertex, so it’s

clear that Bob will win the 1-step selection-deletion game.

* Induction: Let G; C G be the component Alice chooses, then ¥; exists such that Y;
is an elimination forest belonging to Y, G; C clos(Y;) and obviously height(Y;) < h.
Bob will delete v, the root of ¥;. This will leave us with G’ = G; — v as the new graph.
If we consider the children of v the new roots in Y’ =Y; — v, then G’ C clos(Y')
because of how the elimination forests are built. As height(Y') < h— 1, we can
assume by induction that Bob has a winning strategy in 4 — 1 rounds for G’, which
together with the strategy for the first round we have just defined makes a winning

strategy for Bob in the A-step selection-deletion game on the graph G.

3.3 Alice’s winning strategy

Definition 3.3.1. A shelter S in a graph G is a set of graphs with the next properties:

3.3 Alice’s winning strategy 11

e VH € S, H C G and H is connected.
* H is said to be minimal if no H' exists in S such that H' C H.

* H is said to be maximal if no H' exists in S such that H C H'.

If H € S and H is not minimal, then ¥'v € V(H), there exists H C H — v such that
H covers H'. We will say that a € S covers b € S if and only if b C a, and no c € S
exists such that b C ¢ C a.

Figure 3.1: An example of a shelter. The arrows represent the covering relation.

The thickness of a shelter S is the shortest sequence of elements in S of the form ay,...,a,
such that a; is maximal and a,, is minimal and if 2 <i < n, then a;_ covers a;. The length
of a chain is defined as the number of elements in it. The thickness of the shelter in

figure 3.1 is 2, because of the sequence Y7, Y.

Lemma 3.3.2. Let G be a graph, S a shelter in G, and t the thickness of S. Then, there

exists a winning strategy for Alice in the (t — 1)-step selection-deletion game.

12 Game Theoretic approach to Tree-Depth

Proof. We will proof this by induction over ¢.

* Base case: If r = 1, then clearly Alice wins the O-step selection-deletion game.

* Induction: Let H be a maximal element in S. Then, Alice picks the connected
component G; of G, such that H C G;. Because ¢t > 0, H is not minimal, so for any
vertex v that Bob removes, if v € H there exists H' € S that is covered by H and v ¢
H'. Otherwise, H is still a subgraph of G; —v. Let ' = {X | X e SA X C G;—v}.
It is clear that S’ is a shelter for G; — v and that the thickness of S’ is greater than
or equal to r — 1. By induction we can assume Alice has a winning strategy in — 2
steps in G; — v, which together with the strategy for the first round we have just

defined is a winning strategy for the (r — 1)-step selection-deletion game.

3.4 Relation to Tree-Depth

It is clear that if Alice has a winning strategy in the z-step selection deletion game, Bob
can’t have a winning strategy in that same game. Because of this and lemmas 3.2.1 and

3.3.2 we can state the following:

Theorem 3.4.1. Let G be a graph, S a shelter in G of thickness x and F a rooted forest of
height y such that G C clos(F). Then the following is true.

1. Alice has a winning strategy in the (t — 1)-step selection-deletion game, for any t

smaller than or equal to x.

2. Bob has a winning strategy in the t-step selection-deletion game, for any t greater

than or equal to y.

3. Every rooted forest who'’s closure contains G has an height higher than or equal
to x. Otherwise, Bob would have a winning strategy in the (x — 1)-step selection-

deletion game, which contradicts statement 1.

4. Every shelter in G has a thickness smaller than or equal to y. Otherwise, Alice
would have a winning strategy in the y-step selection-deletion game, which contra-

dicts statement 2.

3.4 Relation to Tree-Depth 13

5. Because we have F, td(G) < y. Also, from statement 3 it is clear that x < td(G). So
we can say that x <td(G) < y.

With this theorem we can now prove upper-bounds and lower-bounds to a graphs tree

) e
e

®)

Figure 3.2: This is a shelter of thickness 5 for the graph in Figure 2.2. Beware that not all graphs
in the shelter are drawn, but every graph in the shelter is isomorphic to these. With this and the
rooted forest from Figure 2.2 we can say that td(G) = 5.

14 Game Theoretic approach to Tree-Depth

%n

S

ot =

Figure 3.3: Here we see a more complex shelter that proofs that the tree-depth of the graph is at
least 5.

4. CHAPTER

Cycle rank

4.1 Defining cycle rank

Cycle rank is a numerical invariant in a directed graph which is closely related to the
tree-depth of an undirected graph. In this chapter and the next one we will present the

main ideas of the paper LIFO-search [2].

Definition 4.1.1. The cycle rank of a digraph G = (V, E), denoted by r(G) is defined as
Jfollows:

« If|V| =1, then r(G) = 0.
* If G is strongly connected and |V| > 1, then r(G) = 1 + min,cy {r(G—v)}.

* If G is not strongly connected, then r(G) is the maximum cycle rank among all
strongly connected components of G.

4.2 Directed elimination forest

Similar to the notion of elimination forests in undirected graphs, we have directed elim-

ination forests on digraphs.

Definition 4.2.1. A directed elimination forest for a digraph G is a rooted forest F. F can

be defined recursively as follows:

15

16 Cycle rank

e For the k > 0 strongly connected components of G with size strictly greater than 1,
Yi,....Y%, (vi, Y;) are the roots in F, where vi € Yiand 1 < i < k.

» For each (v;, Y;), a directed elimination forest is created for G[Y;] - vi and the roots

of that forest are the children of (v;, Y;) in F.

G

(c. G)

(a, YD) (e, Y2)

(f, Y3)

Figure 4.1: This is an elimination forest for the graph G. The circles represent the subgraphs that
are used for the nodes of the elimination forest.

Lemma 4.2.2. Let F be directed elimination forest of minimum height for a digraph G =
(V, E). Then, r(G) = height(F).

Proof. We will proof this by induction on the number of vertices of G.

* Base case: If [V| = 1, then 1(G) = 0. height(F) is 0 because we assume that the
height of the empty tree is 0.

4.2 Directed elimination forest 17

* Induction: If G is strongly connected and |V| > 1, then v € V exists, such that
1(G) = 1 + (G —v). Let (v, V) be the root of F, then height(F) = 1 + height(F’)
where F' is any directed elimination forest of G — v because of definition 4.2.1. If
we consider F’ to be the directed elimination forest of G — v of minimum height, by
induction we can assume that r(G —v) = 1 + height(F’). So,r(G) =1 +r(G—v) =1
+ height(F’) = height(F).

If G is not strongly connected but it has at least a cycle, then, for every X that is
a strongly connected component of G by induction we can assume that r(G[X]) =
height(Fy) where Fy is the directed elimination tree of minimum height for G[X].
Because r(G) is the maximum among all r(G[X]) and the height(F’) is the maximum
among all height(Fx), r(G) = height(F).

5. CHAPTER

Game Theoretic approach to Cycle Rank

5.1 Definitions

For this section, we will assume all our graphs are directed and contain no self loops.
We will also need some basic definitions about strings before we can start talking about

the games we will use to define cycle rank.

String
A string is a sequencce of elements ay,...,a, such that all a; belong to the same
set. That set is called the alphabet.

Length
The lenght of a string A = ay,...,a,, denoted by |A| is n. The length of the empty

string is 0.

Concatenation
The concatenation of two string A = ay,...,a, and B = by,...,b;, denoted by A-B

is al,...,an,bl,...,bk

V*
V* is the set of all possible finite words over the set V, including the empty word.

Prefix
X € V¥isaprefix of Y € V*, denoted by X=XY if Z € V* exists such that Y = X-Z.

19

20 Game Theoretic approach to Cycle Rank

String to set

For a string S = ay,...,a,, {|S|} denotes the set {ay,...,a,}.

5.2 Game description

As the game is quite complicated and has a few variations we will first present it in an
informal way so that the reader can get an intuitive idea of what is going on. Later on we

will make a formal definition of the game.

We will use a cops and robbers game played on a graph G, where the cops will try
to catch a robber. In each step of the game the cops can either place a cop on a node or
remove only the most recently placed one. This is why it’s called a LIFO search. The cops

win if the manage to place a cop in the same node where the robber is.

There are four variants of the game depending on how the robber moves and which infor-

mation do the cops have.

Invisible - i
The cops don’t know the position where the robber is located and he can move

along directed paths in G that contain no cops.

Visible - v
The cops know the position where the robber is located and he can move along

directed paths in G that contain no cops.

Invisible strongly connected - isc
The cops don’t know the position where the robber is located and he can only move

inside the same strongly connected component of G that contain no cops.

Visible strongly connected - isc
The cops know the position where the robber is located and he can only move inside

the same strongly connected component of G that contain no cops.

We will now proceed to formalize the game we have presented.

5.2 Game description 21

For a digraph G, the state of the game is described by a pair (X,R). X € Vx is the
position of the cops and the order in which they were added. R is an induced subgraph
of G\{|X|}. In the invisible variants, R represents where the robber may be, while in the
visible variants its means which nodes can the robber reach. We will define the valid states

for each game variant.

i-state
R is successor closed in G\{|X|}. If R wouldn’t be successor closed the robber
would have an edge without cops which he could use to scape R and R wouldn’t

represent all possible positions of the robber.

v-state
R is successor closed in G\ {|X|} and v € V(R) exists such that a directed path exist

from v to any other node in V(R).

isc-state

R is a union of strongly connected components of G \ {|X|}.

vsc-state
R is a single strongly connected component of G\ {|X|}.

Let (X, R) be the current state of the game and (X’,R’) a valid successor (a possible next
state). Then, |{|X|} N{|X'|}| = 1 and |X| < |X'| or |X'| < |X]|. R is defined differently for

different game variants.

* In the i and v variants, for every v/ € V(R') there exists a v € V(R) such that a path
exists from v to v/ in G \({|X|} N {|X"|}).

* In the isc and vsc variants, for every v/ € V(R') there exists a v € V(R) such that

v and V' are contained in the same strongly connected component of G\ ({|X|} N

{IX"30)-

The initial state of a game in the invisible variants is clearly (&, G). In the visible variants
this is not necessarily a valid state, so the initial state will be any valid position of the
form (g, R). A strategy for the cops is a function that given a game state (X, R) returns X',
the position the cops will take in the next state. A strategy is said to be a winning strategy
if no matter which moves the robber makes the strategy reaches a state of the form (X, 0)

from any possible initial state.

22 Game Theoretic approach to Cycle Rank

For every previously mentioned game variants we can create a new monotone variant
(mi, mv, misc, mvsc). The monotone variant of each game is equal to the non monotone
one, except that for every position (X;, R;) and its successor (X; 11, Rj+1), the cops strategy

must ensure that R; | is a subgraph of R; no matter what the robber does.

We are interested in the minimum number of cops necessary to capture the robber. For
any game variant, gv € {i, v, isc, vsc, mi, mv, misc, mvsc}, we will call LIFO8V(G) the
minimum number of cops needed to capture a robber in G in that game variant. We will
also define one more game called searcher stationary vsc, which is equal to the LIFO vsc
but for every X;,X; < Xj+1, i.e, cops can only be added, not removed. SS"*¢ will be the

minimum number of cops needed in this strategy.

Theorem 5.2.1. For any digraph G the same number of cops are needed to capture a

robber in every game variant and that number is equal to the cycle rank of G plus 1:

1+1r(G)= LIFOmi(G) = LIFOi(G) = L[FOmiSC(G) — LIFOiSC(G) = LIFO™(G) = LIFO"(G)
= L[Fomvsc(G) = LIFOVSC(G) — SSVSC(G).

Observation 5.2.2. There are some trivial relations between these games

» Every monotone winning strategy is also a winning strategy in the non monote

variant of that same game.

» Every winning strategy for an invisible game variant is also a winning strategy for

the visible variant of that same game.

» Every winning strategy for when the robber is not restricted to only move in strongly
connected components is also winning when the robber is restricted to only move

in strongly connected components.

With this observation we can build the following figure.

5.2 Game description 23

1+1(G) ~
LIFOV’”’”'(G)
l
LIFO/(G ‘/LIFO’"V \I:IFOW“ (G)
o< <
LIFO"(G LIFO™(G LIFO™(G) - ’
\ /
LIFOL’(G)
SS”Z’(G))

Figure 5.1: The arrows go from the bigger values to the smaller ones. We have the normal arrows
from the previous observation. We will prove the doted arrows and that will prove that the lemma
holds.

Lemma 5.2.3. For any digraph G, LIFO"*“(G) > S§"°¢(G).

Proof. We will proof this by contradiction. We will assume a LIFO strategy exists for the
vsc game that is not searcher stationary. Let (X, R;) be the first state where a cop will be
removed and (X1,R;) and (X3,R3) the previous and next state respectively. Based on this

we can conclude the following:

* Because it is a LIFO game, we will remove the most recently added cop, so it’s easy
to see that X; = X3.

* Using the fact that (X»,R;) is a valid successor of (X1,R|) every node in R; is in

the same strongly connected component of a node in R;.

Taking advantage of this the robber can move back to R; in the last state, so the robber
can force a situation where (X1, R;) = (X3,R3). In this way the cops strategy will loop and

it will never catch the robber, a contradiction to the initial assumption. O]

24

Game Theoretic approach to Cycle Rank

The proof for the other two lemmas were specially hard to follow so we present them

using the method for structured proofs presented by Leslie Lamport [3]. This made them

much easier to understand and check for correctness.

Lemma 5.2.4. For any digraph G, S5"°°(G) > 1 + r(G).

Proof. We will prove this by induction over the number of vertices of G.

1. If [V(G)| =1,SS™(G) =1 +1(G) = 1.
PROOF: A cop in the single node of G will always capture the robber and |[V(G)| =
1, so r(G) = 0 by definition.

2. Assume that for every G’ such that |V(G’)| < |V(G)|, SS**(G") > 1 + 1(G).

PROOF: Induction hypothesis, we can assume it because 1.

3. If G is not strongly connected, then SS**(G) > 1 + 1r(G)

3.1.

3.2.

3.3.

3.4.

G has k > 1 strongly connected components Hy,...,H; and for every H;,
IVHD| < [V(G)].

PROOF: In 3 we assume G is not strongly connected.

SS¥¢(G) > SSY*“(H;) such that H; is a strongly connected component of G.
PROOF: SS™¢(G) must have a winning strategy for any strongly connected

component the robber may start in.

maxg, SSY°(H;) > maxy, (1 + r(H;)).

PROOF: By 2 and 3.1.

SS¥¢(G) > maxy, SSY°(H;) > maxy, (1 +r(H;)) =1 +1(G).

PROOF: The first equality by 3.2. The second inequality by 3.3. The last one
by definition of cycle rank.

4. If G is strongly connected, then SS¥“(G) > 1 + r(G)

4.1.

4.2.

Let ¢ be a minimal strategy, that uses SS"*“(G) cops and v = {|¢ (g, G)|}.
PROOF: By 4, (€, G) is the initial state, so v exists.

SS”¢(G) =1 + SSY(G - v).
PROOF: By 4.1 ¢ induces a winning strategy for SS*“(G - v) using SS"*“(G)-

1 cops.

5.2 Game description 25

4.3. SS¥(G) =1+ SS”(G-v) >2+1(G-v) > 1 +1(G).
PROOF: The first inequality by 4.2. The second inequality by 2. The last one
is by the definition of cycle rank, as r(G) is the smallest r(G-u) + 1, then 1+
1(G-u) > r(G) for any u € V(G).

5. QED.
PROOF: By 3 and 4.

Lemma 5.2.5. 1 + r(G) > LIFO™(G)

Proof. We will prove this by induction over the number of vertices of G.

1. If [V(G)| = 1, LIFO™(G) = 1 +1(G) = 1.
PROOF: A cop in the single node of G will always capture the robber and |V(G)| =
1, so r(G) = 0 by definition.

2. Assume that for every G’ such that |[V(G’)| < |[V(G)|, 1 + r(G’) > LIFO™(G’).
PROOF: Induction hypothesis.

3. If G is strongly connected, 1 + r(G) > LIFO™(G).
3.1. v € V(G) exists, such that r(G) = 1+ r(G-v).

PROOF: By definition of cycle rank.

3.2. 1+ LIFO™(G-v) > LIFO™(G).
PROOF: We can place a cop in v in the first step of the game, never remove it

and win the game in G using 1 + LIFO™(G-v) cops.

3.3. 1 +1(G)=2+1r(G-v) > 1 + LIFO™(G-v) > LIFO™(G).
PROOF: By 3.1, 2 and 3.2

4. If G is not strongly connected, 1 + r(G) > LIFO™(G).

4.1. G has k > 1 strongly connected components Hy,...,H; and for every H;,
[VH)| < [V(G)|.

PROOF: In 4 we assume G is not strongly connected.

26

Game Theoretic approach to Cycle Rank

4.2. A strongly connected component H; exists such that there is no edge from
G\H ; to H.
PROOF: By 4.1 G is not strongly connected, so H; must exist.

4.3. LIFO™(G) > max(LIFO™(G \ H;), LIFO™(H;)).
PROOQOF: The cops can search the robber only in H;. Then, they can remove
every cop in H; and search only in G\ H;. The robber will never be able to go
back to H; because of 4.2

4.4. LIFO™(G) > max(LIFO™ (G \ H;), LIFO™(H;)) > max(1+r(G \ H;), 1 + 1(H,))
=1+ r(G).
PROOQOF: The first inequality by 4.3. The second one by 2. The last equality
by the definition of cycle rank and the assumption that G is not strongly con-

nected.

5. QED.
PROOF: By 3 and 4.

6. CHAPTER

Isomorphism

6.1 Problem definition

In the isomorphism problem we have to determine for two given graphs G and H if
there exists a bijection ¢ from V(G) to V(H) such that Vu,v € V(G), {u,v} € E(G) <

{9(u),0(v)} € E(H).

Unless stated otherwise, in this chapter we will deal only with connected graphs. At the
end we will show how to extend such an algorithm to arbitrary graphs. The lemmas and
algorithms presented in this chapter are an adaptation of the ones presented in the paper

On tractable Parameterizations of Graph Isomorphism [4].

6.2 Parameterized complexity

In classical complexity we only take into account the length of the input to study the
complexity of a problem. Unfortunately, many problems become intractable under this
measure with the best algorithms we know. This is the case of both the famous NP-
complete problems and the graph isomorphism problem. The fastest know exact algo-

rithms for these run in exponential and sub-exponential time respectively.

27

28 Isomorphism

In parameterized complexity on the other hand, we don’t only take into account the
size of the input, but also a parameter about the input, e.g the tree-depth of the input
graph in the isomorphism problem. An interesting complexity class is the Fixed Parameter
Tractable. We consider a problem to be in this class, if we can find a solution in time
O(f(d) xn), where n is the size of the input, d is the parameter and f a computable

function. Beware, that such a function can be exponential or even worse.

In this chapter we will show that such an algorithm exists for the isomorphism problem
parameterized by the tree-depth of the graphs. This means that for any class of graphs
with a bounded tree-depth, we can consider f(d) to be a constant and consequently, solve

the problem in polynomial time with respect to their size.

6.3 Bounded roots

Definition 6.3.1. Let G be a connected graph with tree-depth d. Then, root(G) = {v € G
:td(G —v) =d — 1} is the set of roots of G.

For the algorithm we will need to proof that |root(G)| is bounded by a function of
the tree-depth of G. Still, this is not a simple proof and we will need to introduce new

concepts and lemmas.

Definition 6.3.2. Let G be a connected graph and B a subset of the nodes of G. For two
connected components of G\ B, C| and Cy, we will say C| and Cy are equivalent in G with
respect to B if and only if the following holds:

There exists a bijection ® : C; UB — C, UB such that Vb € B, ®(b) = b and Yu,v €
V(C1)UV(B), {u,v} € E(G) <= {®(u),P(v)} € E(G).

We can visualize this equivalence relation as two components being isomorphic and

connected in the same way to the set B.

6.3 Bounded roots 29

Y fo) £

Figure 6.1: Let the graph in the image be G and B = {a,B}. The component of the node § in
G\ B and the one of node € are equivalent with respect to B, but they are not equivalent to the one
consisting of 7.

Lemma 6.3.3. Let G be a connected graph with td(G) = d and B a subset of the nodes

of G. Let Cy, Cs, ..., Cy be equivalent components in G with respect to B. Let G' be the
graph left after we remove all the C; with i > d. Then, td(G) = td(G') and root(G) C G'.

Proof. To prove this we will use the game characterization we defined for tree-depth.
Using definition 6.3.2 we can see that, if a node in B is connected to a node in a C;, then
that node should be connected to a node in every C;. Without lose of generality, we will
assume that every node in B is connected to a node in a C;. We can assume this because if
we remove nodes from B that are not adjacent to any C;, the C; will still be equivalent in

G with respect to the new B.

From theorem 3.4.1 we know that Alice will have a winning strategy in d — 1 rounds
in G. We will show that Alice can mimic this strategy in G’. It is clear that B together
with all the C; will be a connected component until every node from B is removed. Thus,
Alice can always select the same component she would in G until Bob has removed every
node in B. If Bob has removed every node in B, the remaining C;’s become disconnected.
Because Bob will have removed d — 1 nodes at most, if we have left d C;’s Alice will
always be able to select a C; with all the nodes. Thus, being able to mimic the strategy for
G in G’ and proving that td(G') > td(G). Proving td(G') < td(G) is trivial because G’ is

a subgraph of G and clearly, removing nodes won’t increase the tree-depth.

Proving that root(G) C G’ becomes easy once we have proved the first part of the
lemma. If any root of G was in a removed equivalent component, then we can create
a graph, H, without that component such that td(H) = td(G). This is a contradiction

because if a root of G is in the removed component then td(G) will be at least 1 + H. [

30 Isomorphism

6.4 Bounded roots in minimal graphs

Definition 6.4.1. We will say a graph G with td(G) = d is a minimal graph if for any

subset of its nodes B, it has at most d + 1 equivalent components in G with respect to B.

We are interested in minimal trees because of the following lemma.

Lemma 6.4.2. For any graph G, there exists a graph G’ such that root(G) C G, td(G) =
td(G') and G’ is minimal.

Proof. With lemma 6.3.3 it is easy to see that if G is not minimal then, we can convert it

to a minimal graph without changing it’s tree-depth and root set. [

By using this lemma, we only have to proof that the number of nodes is bounded by
the tree-depth in minimal graphs. This is easy to see, because for any graph, there exists a
minimal graph with the same roots and tree-depth. As the roots are a subset of the nodes,

proving that the set of nodes is bounded is sufficient.

Lemma 6.4.3. Let G be a minimal graph with td(G) = d. Then, there exists f(d,i) such
that it returns the maximum possible size of the graph left after i rounds of the d-selection-

deletion game.

Proof. We will proof this by reverse induction on i.

* Base case: If i = d, then clearly f exists. f(d,i) = 0, because otherwise Alice would
have winning strategy in the d + 1-selection-deletion game and td(G) would be

higher than d, a contradiction.

* Induction: If i < d, we can assume f(d, k) exists for all k > i. Let B be the set of
nodes that Bob has removed in the first i rounds of the game. We know that the size
of each component of G\ B is at most s = f(d,i+ 1), because Alice will pick a
component of G\ B for the round i + 1 and Bob can only remove a node. There are
less than 2*° isomorphic graphs of size s. Each of this graphs can be connected to B
in 2% different ways, because each node in the component can have an edge to each
node in B. With all this we can calculate the total number of equivalent components
with respect to B, s’ = 2s2 Qi — 2S2+i's . Because G is minimal, we know that each

equivalent component will appear at most d times. Thus, f(d,i) =1+d-s'.

6.5 An ordering on elimination trees 31

With this last lemma, we know that any minimal graph G with td(G) = d will have at
most f(d,0) nodes. With lemma 6.4.2 it is easy to see that this the set of roots is bounded
by the tree-depth on non minimal graphs.

Theorem 6.4.4. Let G be a graph with td(G) = d. Then, a function f of d exists such that
|root(G)| = f(d).

6.5 An ordering on elimination trees

Definition 6.5.1. Let G be a connected graph, P = p, ..., p, a sequence of vertices of G
and T an elimination tree of a single component of G — P. For a triple of the form (G, T,

P):

e rr is the root of T

T'={T,..., T} is the set of trees in T — rr.

o P is P with the root of T appended.

Gt will be the graph induced by the nodes of T.

» Foru,v € V(G),Eg(u,v) returns 1 if {u,v} € E(G) and 0 otherwise.

We will now proceed to define an ordering on such triples.

Definition 6.5.2. Let (G,T,P), (H,Y,S) be two triples of the form we have just defined
such that |V(G)| = |V(H)| and |P| = |S|. We will say (G,T,P) < (H,Y,S) if any of the
following holds:

* [V(Gr)| <|V(Hy)l.

* [V(Gr)|=|V(Hy)| and |T'| < [Y'].

* |V(Gr)| = |V(Hy)|, IT'| = [Y'| and (EG(p1,77);- - -, EG(Pns 1))
< (Eg(s1,ry),---,Eg(sy,ry)) lexicographically.

>

32 Isomorphism

® |V(GT)‘ = |V(Hy) ’ T” = |Y/| =k, Vi= 1, coe ,I’lEg(pi,I’T) :EH(S,',Fy) and ((G, Tl,Pl),
., (G, T, PY) < (H,11,S"),...,(H,Y,S")) lexicographically, where each list is

ordered by this relation.

Lemma 6.5.3. For two triples (G,T,P), (H,Y,S), if neither (G,T,P) < (H,Y,S) nor
(H,Y,S) < (G,T,P), then a bijection ¢ exists such that Vv € PUV (Gp) and Yu € V(Gp),
{u v} € E(G) <= {¢(u), 9(v)} € E(H) and §(p;) = si.

Proof. We will proof this by induction on the height of T'.

* Base case: If height(T) = height(Y) = 1, then there is only one possible ¢. This
¢ obviously preserves the conditions mentioned in the lemma because of the third

condition of the < operator.

¢ Induction: By induction a ¢; exists from each (G, T;, P') to each (H,Y;,S’). We can
build a ¢ from (G,T,P) to (H,Y,S) that preserves the conditions mentioned in the
Lemma simply by joining the different ¢;.

]

Definition 6.5.4. For a connected graph G and P = py, ..., p, a sequence of vertices of G,
we will say an elimination tree T is minimal iff no Y exists such that (G,Y,P) < (G,T,P).

6.6 Algorithm

Lemma 6.6.1. For two minimal (G,T,€) and (H,Y,€), G= H <= neither (G,T,€) <
(H,Y,e)nor (H,Y,e) < (G,T,€).

Proof. =—: If G and H are isomorphic, then the second condition holds because other-
wise T or Y wouldn’t be minimal.

<=: This is proven in lemma 6.5.3. [

6.6 Algorithm 33

Algorithm 1: Recursively generate a minimal elimination tree
1 function MinET (G, P,G');
Input : G is a connected graph, P = (p1,..., py) is a sequence of nodes in V (G)
and G’ is a connected component of G\ P.
Output: A minimal elimination tree of G’ for G and P

2 if 1d(G') == 1 then

3 | Output the single node of G';

4 else

5 | R—{reV(G):td({G'—r)+1=1td(G"};

6 Remove from R every r € R that doesn’t have a minimal number of components
inG —r;

7 Remove from R every r € R that doesn’t have minimal values of
(EG(p1,7)s-- - EG(pn,7));

8 T < 0;

9 foreach r € R do

10 P <« (p1y---ypns7);

11 ET < tree formed by the single node r;

12 foreach connected component H; € G' —r do

13 ET; <+ MinET(G, P, H;);

14 ET < ET; connected to the root of ET;

15 end

16 T+ TU{ET}

17 end

18 Output the minimal elimination tree in 7" for graph G and sequence P;

19 end

With this lemma we can now build an algorithm to check whether or not two graphs
are isomorphic. We find a minimal elimination tree for each graph and then we just have

to compare them.

34 Isomorphism

Algorithm 2: Check isomorphism of two graphs

1 function Checklso (G,H);
Input : G and H are connected graphs

Output: True if and only if G is isomorphic to H
2> T+ MinET (G, ¢,G);
3 T'+ MinET (H,¢,H);
4 if (G,T,e) < (H,T',¢) or (H,T',€) < (G,T,€) then
5 ‘ Output False;
6 else
7 ‘ Output True;
8 end

6.7 Complexity analysis

To be able to make the analysis we will need the following lemma presented in Sparsity,

Algorithms and Combinatorics [1]. Unfortunately we don’t have a proof for it.

Lemma 6.7.1. Given a graph G with a td(G) = d, we can find the tree-depth of G in time
O(f(d)n?) for some computable function f.

We will first analyze the complexity of the algorithm MinET (G, P,G'). We will analyze

it’s complexity as a function T (n,d,N), where n = |V (G')|, d =td(G’) and N = |V (G)|.

We will calculate the time complexity step by step:

Compare two triples: This is not a decision problem, we just have to check the inequal-
ity conditions recursively, which takes time O(n® +N). A tighter bound exists but
it won’t change the order of the procedure and seeing that it won’t take more than

cubic time is trivial.

Find R (line 5): By lemma 6.7.1, we can check whether each node is in R in time O(f(d —
1)n?), for some function f. Thus, finding R takes time O(f(d — 1)n?).

Reduce R (lines 6-7): By theorem 6.4.4, we know |R| < g(d), for some function g. Check-
ing whether each element in R is minimal takes time O(n* +N?), so this steps take
at most time O(g(d)(n*> +N)).

6.7 Complexity analysis 35

Recursion (lines 9-17): For each r € R and each component Hy,...,H;, € G' —r, the
complexity is T (|H;|,d — 1,N) where, 1 <i <k < n. We repeat this for each element

k
in R, so the total running time is O(g(d) ¥, T(|H;|,d —1,N)).
i=1

Select a minimal tree (line 18): We only have to make a comparison for each element
in T. Considering that |T| = |R| < g(d) and the previously calculated complexity
for comparing two triples we get that the last step takes time O(g(d)(n® +N)).

Let T (n,d,N) be the upper bound of the run time of MinET (G, P,G’). From all the previ-

ous statements we get the following recursion:
k
T(n,d,N)=0O (n*+N+ f(d—1)n* +g(d)(n* + N) + g(d)(n* +N)) + O (g(d) Y T(|H;|,d— 1,N)>
i=1

If we define a function (d) = f(d — 1)g(d), then we get the following inequality if we
assume that f(d) and g(d) are always greater than 1:

O(n*+N+ f(d—1)n* +g(d)(n*+N)+g(d)(n* +N)) <O (h(d)(n® +N))

If we assume T is a convex and growing function with respect to n we know the following:
k

Z T(‘Hi‘ad_ 17N) < T(nvd_ 17N)

i=1

Finally, if we assume that the function is also growing with respect to d we get the fol-

lowing and that it will recurse d times at most we get:
T(n,d—1,N) <d-O (h(d)(n’ +N))

With all this, considering #'(d) = d - h(d) and summing both expressions we get that the
final complexity is:

T(n,d,N) <O (K (d)(n*+N))
Theorem 6.7.2. The graph isomorphism problem is Fixed Parameter Tracktable. For two

graphs with n nodes and a tree-depth of d it has a time complexity of O (fld)n3) for some

computable function f.

Proof. In the first call to the T'(n,d,N), n = N, so the complexity is O (K (d)(n* +n)).
U

36 Isomorphism

6.8 Extending the algorithm to general graphs

In this chapter we have been dealing with connected graphs. Still, extending the algo-
rithm to disconnected graphs takes only polynomial time. We take the first component of
the first graph and compare it with each component in the second one. If we are able to
find a match for each component, then we know that both graphs are isomorphic. It is easy
to see that this only adds a polynomial overhead and thus, graph isomorphism in general

graphs is Fixed Parameter Tractable parameterized by the tree-depth.

Bibliography

[1] J. Nesetril, P. Ossona de Mendez. Sparsity, Algorithms and Combinatorics, Volume
28, Springer, 2012.

[2] Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thilikos. LIFO-search:
A min-max theorem and a searching game for cycle-rank and tree-depth, Discrete
Applied Mathematics, 160(15):2089-2097, 2012.

[3] L. Lamport. How to write a 21st century proof, Journal of Fixed Point Theory and
Applications, Mar. 2012. DOI: 10.1007/s11784-012-0071-6

[4] A. Bouland, A. Dawar, and E. Kopczynski. On Tractable Parameterizations of
Graph Isomorphism, Parameterized and Exact Computation, Springer Berlin Hei-
delberg, 2012, pp. 218-230

37

	Acknowledgement
	Abstract
	Contents
	Introduction to Graph Theory
	Undirected graphs
	Definitions for undirected graphs
	Directed graphs
	Definitions for directed graphs

	Introduction to Tree-Depth
	Tree-Depth
	Elimination Forest

	Game Theoretic approach to Tree-Depth
	Defining the game
	Bob's winning strategy
	Alice's winning strategy
	Relation to Tree-Depth

	Cycle rank
	Defining cycle rank
	Directed elimination forest

	Game Theoretic approach to Cycle Rank
	Definitions
	Game description

	Isomorphism
	Problem definition
	Parameterized complexity
	Bounded roots
	Bounded roots in minimal graphs
	An ordering on elimination trees
	Algorithm
	Complexity analysis
	Extending the algorithm to general graphs

	Bibliography

