
Bachelor’s Degree in Computer Engineering
Computing

Final Year Project

Treewidth
Theory and applications to Computer Science

Author:
Iván Matellanes Pastoriza

2015

Preface

This bachelor’s thesis is the result of a study of the concept of treewidth.
I was delighted by the proposal of carrying out some research in theoretical
computer science. A few courses and extra activities had already given me the
opportunity to taste some of the topics in this field, but the thesis was the real
chance to get involved and immerse myself in it. Besides, I was willing to begin
in research and do a project out of the ordinary.

The study has been accomplished inside the LoRea group from the Faculty
of Computer Science at Donostia/San Sebastián, supervised by Prof Hubert
Chen and with the collaboration of Prof Montse Hermo. The main goal of
this project has been to produce a self-contained report about treewidth, with
a focus on its applications to computer science and on the current line of
research. It should be as clear and concise as possible for those that have never
studied this concept before, and it contains practically everything needed to
understand the definitions and theorems presented. The proofs in this report
are self-written with an emphasis in making them easy to understand, although
in some cases they are based in work by other authors.

The methodology consisted on reading articles from different publications,
books and technical reports and giving presentations every two weeks about
the studied topics. Feedback and comments were received in the talks and then
the subjects were incorporated to this report.

Abstract

This report is an introduction to the concept of treewidth, a property of graphs
that has important implications in algorithms. Some basic concepts of graph
theory are presented in the first chapter for those readers that are not familiar
with the notation. In Chapter 2, the definition of treewidth and some different
ways of characterizing it are explained. The last two chapters focus on the
algorithmic implications of treewidth, which are very relevant in Computer
Science. An algorithm to compute the treewidth of a graph is presented and
its result can be later applied to many other problems in graph theory, like
those introduced in the last chapter.

Acknowledgements

I would like to take this opportunity to thank my supervisor, Hubie, for en-
couraging me to carry out a project in theoretical computer science, and for
giving me advice and guidance throughout the year.

I want to thank Montse and Asier too for bearing with my presentations
and for their support and comments.

Finally, I cannot forget about Paqui and the rest of the members of the
LoRea group for giving me the opportunity to work in their team.

2

Contents

Introduction 5

1 Preliminaries 6
1.1 Graphs . 6
1.2 Paths and connectivity . 7
1.3 Trees . 9
1.4 Flow networks . 9

2 Characterizations 11
2.1 Tree Decompositions . 11

2.1.1 Connectivity and separation . 13
2.2 Elimination Orderings . 14
2.3 Brambles . 15
2.4 Pursuit-evasion games . 18

3 Constructing a tree decomposition 21
3.1 Strongly interlaced sets . 21
3.2 Description of the algorithm . 23

4 Algorithms for graphs of bounded treewidth 26
4.1 Path decompositions . 26

4.1.1 Nice path decompositions . 27
4.2 Maximum Cut . 28
4.3 Minimum Bisection . 30
4.4 Counting homomorphisms . 31
4.5 Maximum-Weight Independent Set . 34

A A note on computing the treewidth 38

Bibliography 39

3

List of Figures

1.1 Examples of undirected (top) and directed (bottom) graphs. 7
1.2 Contraction of the edge e. 7
1.3 Examples of undirected path (left) and cycle (right). 8
1.4 Components of a disconnected graph. 8
1.5 Complete graph of 8 vertices. 9
1.6 An example of tree. 9
1.7 Usual representation of a rooted tree. 10
1.8 Flow network showing capacities (black) and a maximum flow (red). 10

2.1 A graph and a possible tree decomposition of width 3. 12
2.2 Vx ∩ Vy separates U1 from U2 in G. 13
2.3 Example of a bramble on the 3x3 grid. 16
2.4 Joining Ti for every component Ci of G \W gives T 17
2.5 |W | vertex-disjoint paths P1, P2, ..., P|W | which connect W and Vx. 17

3.1 Combining subtrees until > w nodes of X are obtained. 22
3.2 New bag Vs when |X| < 3w. 24
3.3 S′ 6= ∅ as the path in green from Y to Z must traverse S. 25

4.1 A path decomposition and its nice counterpart. 27
4.2 A maximum cut (size 6) represented in two colours. 28
4.3 The size of the cut depends on the colour of v, which is given by (A,B). 29
4.4 A minimum bisection (size 3) represented in two colours. 30
4.5 A tree decomposition and its nice counterpart. 32
4.6 An homomorphism between two graphs, nodes of the same colour are mapped. . 33
4.7 The mapping of v is given by Φ, but adjacency preservation has to be checked. . 34
4.8 A maximum weight (20) independent set, in red. 35
4.9 The green dashes delimit S, and the areas in waves are Si ∩ Vt = Vti ∩ U 36

4

Introduction

The treewidth is a numeric property of a graph that measures how close is the graph from being
a tree. It was introduced for the first time in 1972 by Umberto Bertelé and Francesco Brioschi
[3], and later rediscovered by Neil Robertson and Paul Seymour in 1984 [24]. Its important
algorithmic implications have led to many authors developing a strong interest in the topic.

Treewidth can be defined in many different ways, as we shall see in Chapter 2, but the canon-
ical characterization comes from the structure of tree decomposition. A tree decomposition is a
representation of a graph in a tree-like structure, which gives rise to possibly the most important
application of treewidth to computer science. Graphs that allow relatively small tree decom-
positions are said to have bounded treewidth, which effectively means that tree decompositions
allow polynomial time algorithms for problems that are usually NP-hard, and therefore, difficult
to compute for large inputs (unless P = NP).

Determining the treewidth of an arbitrary graph is an NP-hard problem itself [2]. However, if
the treewidth of the graph is bounded by a small constant, we can find a small tree decomposition
for that graph in linear time using the algorithm in Chapter 3. Furthermore, we know that for
some particular families of graphs the treewidth can be computed in constant or polynomial time
[4]. As an example, trees always have treewidth 1 and complete graphs on n vertices, treewidth
n− 1.

The applications of treewidth and tree decompositions to algorithms belong to a recent branch
in computational complexity theory known as parameterized complexity. This field introduces a
refined analysis of hard computational problems, classifying them with respect to some parame-
ters of the input, not just the usual size of the input. In the case concerning us, the complexity of
a problem is measured in terms of the size and the treewidth of the input graph. More precisely,
when the complexity of an algorithm is exponential in the parameter but polynomial in the size
of the input, the algorithm is called fixed-parameter tractable, as it allows efficient solutions for
small values of the parameter even if the size of the input is big. Such problems belong to the
class FPT. We present some examples of these algorithms in Chapter 4, but there is an endless
number of applications of FPT problems out of the scope of this project, including parameters
other than treewidth.

5

Chapter 1

Preliminaries

Graphs have been widely studied in the past decades for their ability to model many types of
processes and relations in diverse fields. This chapter presents some basic concepts in graph
theory.

As the report aims to be self-contained, we explain all terms and notation that are used later
in this paper. Although not strictly necessary, some elementary knowledge in graph theory is
advised. A couple of recommended readings to introduce in these topics are [13] and [28]. Those
that are already familiar with the terminology can choose to skip some sections or even the whole
chapter.

1.1 Graphs

An undirected graph is an ordered pair G = (V,E) formed by a non-empty set of vertices or
nodes V and a set of edges E, where an edge is a 2-element subset of V denoted by {a, b} or
simply ab. In a directed graph, edges are ordered pairs of elements of V , written as (a, b) 6= (b, a).
In both cases we will require the graphs to be loopless, this is, for every edge ab ∈ E, a 6= b.

The two vertices that form an edge are its ends or endpoints. An edge e = uv is incident to
u and v. Two vertices u, v are adjacent or neighbours if uv is an edge in G. The neighbourhood
of a vertex v, N(v), is the set of all vertices u ∈ V such that uv ∈ E. It is common to use V (G)
and E(G) to refer to the vertex and edge sets of a graph G, respectively.

We usually represent a graph by drawing a dot or a circle for each vertex and a line joining
two vertices if they form an edge.

The order of a graph G = (V,E) is its number of vertices, |V | or |G|, and the size corresponds
to its number of edges, |E|. Depending on its order, a graph can be finite or infinite. Unless
stated otherwise, we can safely assume that the graphs in this report are finite and undirected.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. We define the following operations:

• Union: G ∪G′ = (V ∪ V ′, E ∪ E′)

• Intersection: G ∩G′ = (V ∩ V ′, E ∩ E′)

• Vertex deletion: If U is a set of vertices of G, G\U (or alternatively G−U) is the graph that
results after deleting from G all the vertices in U and their incident edges. If U contains a
single vertex u, we write G− u instead.

• Edge addition or deletion: For a set of edges F on V , we write G + F = (V,E ∪ F) and
G− F = (V,E \ F). The notation G+ e and G− e is also used as before for single edges.

6

1

2

3

4

5

6 V = {1, 2, 3, 4, 5, 6}
E = {{1, 2}, {1, 4},

{1, 6}, {2, 3}, {2, 4}, {3, 4},
{3, 6}, {4, 5}, {5, 6}}

1

2

3

4

5 V = {1, 2, 3, 4, 5}
E = {(1, 2), (1, 3), (2, 3),
(2, 4), (3, 5), (4, 5), (5, 1)}

Figure 1.1: Examples of undirected (top) and directed (bottom) graphs.

• Edge contraction: Given an edge e = uv ∈ E, the contraction of e produces the graph
G • e = (Ve, Ee) where Ve = (V \ {u, v}) ∪ {w} (with w /∈ V) and Ee = {xy ∈ E :
{x, y} ∩ {u, v} = ∅} ∪ {xw : xu ∈ E \ {e} or xv ∈ E \ {e}}. In other words, u and v are
replaced with a new vertex w and edges incident to w are the edges other than e that were
incident to u or v.

1 2

3 4

5 6

e

1 2

5 6

7

Figure 1.2: Contraction of the edge e.

If V ′ ⊆ V and E′ ⊆ E, we say that G′ is a subgraph of G and write G′ ⊆ G. In particular,
when G′ ⊆ G and E′ consists of all edges in E that are subsets of V ′, G′ is the induced subgraph
of G on V ′, and V ′ induces G′ in G. This induced subgraph is denoted by G′ = G[V ′].

1.2 Paths and connectivity

A path is a special graph P = (V,E) where V = {v0, v1, ..., vn} and E = {v0v1, v1v2, ..., vn−1vn},
with n ≥ 0 and all vi distinct. The vertices v0 and vn are its ends. The length of the path is its
number of edges.

A path is often represented as the sequence of its vertices, P = v0v1...vn. We equally say:

• P is a path between v0 and vn.

• P is a path from v0 to vn.

7

• P is a v0 − vn path.

• v0 and vn are connected by the path P .

Let A,B be sets of vertices. P is an A−B path if v0 ∈ A, vn ∈ B and v1, ..., vn−1 /∈ A ∪B.
Given a path P = v0v1...vn such that n ≥ 2, the graph P + vnv0 is called a cycle. The length

of a cycle is also its number of edges. As with the paths, cycles can be written as C = v0v1...vnv0.

1 2 3 4

1’ 2’

3’4’

Figure 1.3: Examples of undirected path (left) and cycle (right).

A non-empty graph G is connected if there exists a path between any two vertices in the
graph. Otherwise, the graph is disconnected. A connected component, or just component, of
G is a connected subgraph whose vertices are not connected to any other vertex outside the
component.

1 2 3 4

5 6 7 8

9 10 11 12

Figure 1.4: Components of a disconnected graph.

When every pair of distinct vertices in a graph G are connected by a single edge, we say
that G is complete, and denote by Kn a complete graph of n vertices. A clique C is a subset of
V (G) such that for all pairs u, v ∈ C, u 6= v, then uv ∈ E(G). In other words, G[C] is complete.
Sometimes we also call this induced subgraph a clique.

Given sets of vertices A,B ⊆ V (G), a set X ⊆ V (G) separates A and B in G if every A−B
path contains some vertex from X. Observe that A ∩ B ⊆ X, and also that the deletion of X
leaves what remains of A and B in distinct connected components.

The following theorem is one of the most important ones in graph theory, and it is widely
known as Menger’s theorem. See [26] for a proof.

Theorem 1.1 (Menger 1927). Let G = (V,E) be a graph. The minimum number of vertices
needed to separate A ⊆ V and B ⊆ V is equal to the maximum number of vertex-disjoint A−B
paths in G.

8

1
2

3

4
5

6

7

8

Figure 1.5: Complete graph of 8 vertices.

1.3 Trees

A tree is a connected graph that contains no cycles. A leaf is a single-neighbour node in a tree.
Nodes that are not leaves are internal nodes. With a slight abuse of notation, we shall use t ∈ T
to refer to the nodes in a tree T in the same sense we would use t ∈ V (T). The same applies for
edges, writing e ∈ T instead of e ∈ E(T).

Theorem 1.2. The following are equivalent definitions of a tree T :

• T is connected and acyclic.

• Each pair of nodes of T is connected by a unique path in T .

• T is minimally connected: for any edge e ∈ T , T − e is disconnected.

• T is maximally acyclic: for any pair of non-adjacent nodes u, v ∈ T , T + uv has a cycle.

The proof of theorem 1.2 is simple, refer to [28] for further information.

1 2

3

4

5
6

7

Figure 1.6: An example of tree.

One of the nodes in a tree T can be fixed and considered special for convenience. This node
is the root of the tree, making T a rooted tree. Then we define the height of a node t ∈ T as the
length of the unique path that goes from the root to t.

Similar to the concept of subgraph, T ′ is a subtree of a tree T if T ′ ⊆ T and T ′ is also a tree.

1.4 Flow networks

A flow network or simply network is a directed graph G = (V,E) where each edge e ∈ E has an
associated non-negative real value c(e) called its capacity. Two of the vertices are distinguished
from the rest: the source and the sink, denoted by s and t respectively.

9

R

1

2 3

4

5

6

Height 0

Height 1

Height 2

Height 3

Figure 1.7: Usual representation of a rooted tree.

The flow in a network is a function f : E → R subject to these constraints:

• The flow along an edge cannot exceed its capacity:

For each e ∈ E, f(e) ≤ c(e).

• Incoming flow is equal to outgoing flow, except in s and t:

For each v ∈ V \ {s, t},
∑

(u,v)∈E
f((u, v)) =

∑
(v,x)∈E

f((v, x)).

The source only produces flow and the sink only consumes flow. The value of the flow is given
by

∑
(s,v)∈E f((s, v)), and it represents the amount of flow from s to t.

The problem that is usually presented on a flow network involves finding a flow from s to t
of maximum value, this is, routing as much flow as possible. We refer to this problem as the
maximum flow problem.

s

1

2

3

4

5

t

3/3

1/2

2/10

1/1

0/5

1/1

2/2

1/8

1/6

Figure 1.8: Flow network showing capacities (black) and a maximum flow (red).

Networks arise in many contexts and can be used to model countless scenarios: pipes, road
systems, computer networks, electrical current distribution... Well known problems such as
bipartite matching and the assignment problem can be solved using flow networks. These and
other applications, along with efficient algorithms, are discussed in [1].

10

Chapter 2

Characterizations

The concept of treewidth can be defined using different approaches. The traditional definition
comes from the structure of tree decomposition, but many other have been proposed. Elimination
orderings, brambles and game theoretical models are the ones presented here along with tree
decompositions. As the main goal of this document is not to study the concept itself but its
applications to computer science, we do not put the focus on equivalent definitions. Other ways
to characterize the treewidth of a graph can be found in the literature and are equally valid (cf.
[6]).

2.1 Tree Decompositions

Definition 2.1. A tree decomposition of a graph G = (V,E) consists of a tree T and, for each
node t ∈ T , an associated bag Vt ⊆ V such that:

(i) V =
⋃
t∈T

Vt

(ii) For each edge uv ∈ E, there exists t ∈ T such that u, v ∈ Vt

(iii) For each v ∈ V , the set Sv = {t ∈ T | v ∈ Vt} induces a non-empty subtree of T .

The width of a tree decomposition is the size of its largest bag minus one:

max{|Vt| − 1 : t ∈ T}

The treewidth of G, tw(G), is defined as the minimum width among all possible tree decom-
positions of G.

Definition 2.2. A tree decomposition (T, (Vt)t∈T) is nonredundant if there is no edge xy ∈ T
such that Vx ⊆ Vy.

Any redundant tree decomposition can be transformed into a nonredundant one by simply
contracting every edge xy ∈ T such that Vx ⊆ Vy and joining the two bags together. Moreover,
we can notice that the number of bags in a nonredundant tree decomposition is bounded by the
order of the graph.

Lemma 2.3. Let G be a graph of n vertices. Any nonredundant tree decomposition of G has at
most n bags.

11

a

b c

d e f

g h i

j

a

b c

d e f

g h i

j

abc

bcde cef

eh

gh hij

Figure 2.1: A graph and a possible tree decomposition of width 3.

Proof. This can be proved by induction on n. The case n = 1 is clear.
If n > 1, let (T, (Vt)t∈T) be a nonredundant tree decomposition of G and let t be a leaf in T .

Since it is nonredundant, one or more vertices in Vt are not in its neighbouring bag, and hence
by (iii) in definition 2.1 they are not in any other bag. Let U be those vertices. By deleting t
and Vt we obtain a nonredundant tree decomposition of G\U . By the induction hypothesis, this
tree decomposition has at most n− |U | ≤ n− 1 bags, so (T, (Vt)t∈T) has at most n bags, which
completes the proof.

Notice that tree decompositions are passed on to subgraphs, as follows from this lemma:

Lemma 2.4. For every H ⊆ G, the pair (T, (Wt)t∈T) where Wt = Vt ∩ V (H) is a tree decom-
position of H.

Proof. We can easily see that the three points in definition 2.1 still hold for (T, (Wt)t∈T) and H,
as T has not been modified and possibly having some empty bags is not a problem.

Corollary 2.5. For every H ⊆ G, tw(H) ≤ tw(G) as a consequence of lemma 2.4.

Conversely, a subtree of a tree decomposition is a valid tree decomposition of the graph
induced by the vertices contained in its bags, as follows from applying the next lemma recursively.

Lemma 2.6. Let (T, (Vt)t∈T) be a tree decomposition of width k of a graph G = (V,E), and let
l be a leaf in T . Let l′ be the unique neighbour of l and set U = Vl \Vl′ . Then (T − l, (Vt)t∈(T−l))
is a tree decomposition of width ≤ k of G \ U .

Proof. First of all, for each edge uv ∈ E(G \ U), there must be some x ∈ T such that u, v ∈ Vx.
Notice that u, v /∈ U or otherwise the edge would not be part of G \ U . If x 6= l then x ∈ T ′;
if x = l, then u, v ∈ Vl′ as well since we know u, v /∈ U , so l′ ∈ T ′ and (ii) in definition 2.1 is
satisfied.

Secondly, for each vertex v ∈ V (G \ U) the set Sv in T − l induces a non-empty subtree of
T − l because v /∈ U and the deleted node was a leaf (observe that deleting a leaf from a tree
gives a connected subtree), so (iii) in definition 2.1 is also satisfied.

Finally, the width of a tree decomposition clearly cannot increase when deleting a node.

12

2.1.1 Connectivity and separation

Some interesting properties of the tree decomposition deal with its connectivity and separation
attributes. For the following lemmas, let (T, (Vt)t∈T) be a given tree decomposition of a graph
G = (V,E). We will see that the separation of the nodes in T is somehow related to the separation
of the vertices in G.

Lemma 2.7. Let t ∈ T and v ∈ V such that v /∈ Vt. Then v is contained in bags from only one
of the components of T − t.

Proof. Denote by T1, T2 any two components of T − t. Suppose there are t1 ∈ T1 and t2 ∈ T2
such that v ∈ Vt1 and v ∈ Vt2 . Observe that t is in the path from t1 to t2. By (iii) in definition 2.1
v ∈ Vt, a contradiction.

Lemma 2.8. Let t ∈ T and let T1, T2, ...Tr be the components of T − t. Set Ui =
⋃
s∈Ti

Vs for
each Ti, 1 ≤ i ≤ r. Then the subgraphs G[U1 \ Vt], G[U2 \ Vt], ..., G[Ur \ Vt] have neither vertices
in common nor edges between them.

Proof. It is clear from lemma 2.7 that a vertex not belonging to Vt cannot be in bags from two
different components of T − t.

Similarly, if an edge uv ∈ E has u ∈ Ui \ Vt and v ∈ Uj \ Vt for some i 6= j, then u ∈ Vx and
v ∈ Vy for some x ∈ Ti and y ∈ Tj . Additionally, some bag Vz must contain both u and v by (ii)
in definition 2.1, and z 6= t by the choice of u and v. Supposing without loss of generality that
z ∈ Tk for some k 6= i, Vx and Vz contain u and lie in different components of T − t, contradicting
lemma 2.7.

Lemma 2.9. Let t1, t2, t3 be nodes of T such that t2 is in the path from t1 to t3. Then Vt2
separates Vt1 \ Vt2 and Vt3 \ Vt2 in G.

Proof. Observe that t1 and t3 lie in different components of T − t2. By lemma 2.8, there is no
path between Vt1 \ Vt2 and Vt3 \ Vt2 in G \ Vt2 , which proves the lemma.

Lemma 2.10. Let e = xy be an edge in T , and let T1, T2 be the two components of T − e. Set
U1 and U2 as in lemma 2.8. Then the set Vx ∩ Vy separates U1 from U2 in G.

U1 U2

Vx Vy

v1 v2

?

Figure 2.2: Vx ∩ Vy separates U1 from U2 in G.

Proof. In the first place, for any u ∈ U1 ∩ U2, it follows from (iii) in definition 2.1 that u is also
in Vx and in Vy, so u ∈ Vx ∩ Vy.

Secondly, in the case where u1 ∈ U1 \ U2 and u2 ∈ U2 \ U1, we have to show that all u1 − u2
paths in G have some vertex in Vx ∩ Vy. For this purpose, it is enough to see that there is no

13

edge v1v2 ∈ E with v1 ∈ U1 \ (Vx ∩ Vy) and v2 ∈ U2 \ (Vx ∩ Vy). If there was, some Vz would
contain v1 and v2 by (ii) in definition 2.1. Assume w.l.o.g. that z ∈ T1, and by the choice of v2
we know that it belongs to some bag Vw where w ∈ T2. Then z and w are linked by e, and by
(iii) in definition 2.1 v2 ∈ Vx ∩ Vy, a contradiction.

Another useful property of tree decompositions deals with complete subgraphs:

Lemma 2.11. For any clique W ⊆ V , there is a node t ∈ T such that W ⊆ Vt.

Proof. Let t be any node in T . If W ⊆ Vt we are done, otherwise there is some w ∈ W such
that w /∈ Vt. This w is in only one of the components of T − t, say T1, by lemma 2.7. Since
w has an edge with every other vertex in W , the whole W has to be in bags from T1 by (ii) in
definition 2.1.

Now consider only the nodes and bags from T1 and repeat the process. At some point we
will get to a node t ∈ T such that W ⊆ Vt as the number of nodes we are considering decreases
at each step.

This implies the following fact of complete graphs, since any tree decomposition has a bag
with all the vertices:

Corollary 2.12. The treewidth of a complete graph of n vertices is n− 1.

2.2 Elimination Orderings

Definition 2.13. Let G = (V,E) be a graph. An elimination ordering is a pair (V, E′) such
that:

• V = (v1, v2, ..., vn) is an ordering of the vertices in V .

• E ⊆ E′.

• For i < j < k, if vivk ∈ E′ and vjvk ∈ E′, then vivj ∈ E′.

The lower neighbours of a vertex vj in the elimination ordering are the vertices vi such that
i < j and vivj ∈ E′. The width of an elimination ordering is the maximum number of lower
neighbours among all vertices in the graph.

Elimination orderings are just another way of defining treewidth, as the following theorem
proves.

Theorem 2.14. Let G be a graph and let k > 1 be an integer. There exists a tree decomposition
of G of width < k if and only if there exists an elimination ordering of G with width < k.

Proof. Given a subset X ⊆ V , K(X) refers to the set of all possible edges between the vertices
in X.

We start proving a stronger statement for the forward implication: if there exists a tree
decomposition of G of width < k then there exists an elimination ordering (V, E′) of G of width
< k where E′ contains K(Vt) for every bag Vt of the tree decomposition. For this purpose,
assume that we have a tree decomposition (T, (Vt)t∈T) of G where each bag has size ≤ k and
|T | = n. We apply induction on n.

For the base case, n = 1, let t be the single node in T . We can construct an elimination
ordering of G formed by any ordering of the ≤ k vertices and the set of all possible edges in
Vt, K(Vt). The width of this elimination ordering is clearly < k since no vertex can have ≥ k
neighbours.

14

Now suppose that our tree decomposition of G has two or more bags. Let t be a leaf of T ,
and t′ its unique neighbour. Set U = Vt \ V ′t . Then the deletion of t and its bag Vt yields a tree
decomposition of G \U by lemma 2.6. By induction we have an elimination ordering of G \U of
width < k, say (W, F), such that K(Vs) ⊆ F for all s 6= t.

Denote by u1, ..., um the elements in U . The pair (V, F ∪K(Vt)), where V = (W, u1, ..., um),
is an elimination ordering of G: for any uv ∈ E(G), if uv ∈ E(G \ U) then uv ∈ F , otherwise
u ∈ U or v ∈ U and by (ii) in definition 2.1 u, v ∈ Vt, hence uv ∈ K(Vt).

The width of this new ordering is still < k because any new ui has < k lower neighbours: at
most the k − 1 other vertices in Vt (recall that |Vt| ≤ k). In addition, the lower neighbours of
the remaining vertices have not changed: for any two v1, v2 ∈ Vt \ U , observe that v1, v2 ∈ Vt′
and hence v1v2 ∈ K(Vt′) ⊆ F by the induction hypothesis.

For the backward implication, given an elimination ordering (V, E′) of G of width < k, we
can construct a tree decomposition of the graph (V (G), E′) where each bag has size ≤ k. This
tree decomposition will be valid also for the graph G as E(G) ⊆ E′. This time we use induction
on the order of G, |V (G)| = n. The base case, n = 1, is trivial.

Now let V = (v1, v2, ..., vn). Consider (W = (v1, v2, ..., vn−1), F) where F = E′ \ {vivn | 1 ≤
i < n}. We claim that (W, F) is an elimination ordering of G′ = G − vn of width < k. By
induction, there exists a tree decomposition (T ′, (Wt)t∈T ′) of (V (G′), F) where each bag has size
≤ k.

Define (T, (Vt)t∈T) to be a tree decomposition of (V (G), E′) in the following way:

• V (T) = V (T ′) ∪ {u} where u /∈ T ′.

• Vu = N(vn) ∪ {vn}, so the size of Vu is ≤ k since vn has < k neighbours.

• For the rest t ∈ T ′, t 6= u, Vt = Wt.

• By lemma 2.11, there is some t ∈ T ′ such that N(vn) ⊆ Vt because N(vn) is a clique in
(V (G), E′). Set E(T) = E(T ′) + tu.

2.3 Brambles

Definition 2.15. Two subsets X,Y ⊆ V touch if either X ∩ Y 6= ∅ or some vertex in X has a
neighbour in Y .

Definition 2.16. A bramble B for a graph G is a set of connected subsets of V (G) that touch
each other.

The order of a bramble is the size of the smallest X ⊆ V (G) that covers all the subsets in
the bramble, i.e., for all B ∈ B, X ∩B 6= ∅.

In [25] brambles are called screens and their order, thickness.
We shall see that treewidth is closely related to brambles and the games presented in the

next section. In this section in particular, we want to prove that if a graph has treewidth ≥ k,
then it has a bramble of order > k. The following lemmas will help us in this task.

Lemma 2.17. Any set of vertices separating two covers of a bramble also covers that bramble.

15

a b c

d e f

g h i

Figure 2.3: Example of a bramble on the 3x3 grid.

Proof. Let B be a bramble and C1, C2 two covers of B separated by the set S.
For every B ∈ B, there are some u ∈ C1 and v ∈ C2 such that u and v meet B, this is, u ∈ B

and v ∈ B. Since B is connected, there exists some u− v path that is inside B. This path must
contain some vertex w ∈ S because S separates the covers, so w ∈ B as well and S covers the
bramble.

Definition 2.18. Fix k ≥ 1. Given a bramble B for a graph G, a tree decomposition of G is
B-admissible if every bag of size > k is a leaf and fails to cover B .

Lemma 2.19. Let G be a graph with no bramble of order > k. For every bramble B there exists
a B-admissible tree decomposition T .

Proof. We may assume that |V (G)| > k, otherwise the tree decomposition with a single bag X =
V (G) satisfies the lemma. Assume this induction hypothesis: for every bramble B′ containing
more sets than B, there is a B′-admissible tree decomposition of G. This holds for the base case
where B has the maximum possible amount of sets, no greater than 2|V (G)|.

Let B be a bramble of order ≤ k for G, and let W ⊆ V (G) be a cover of B of minimum size
|W | ≤ k. Denote the components of G \W by C1, C2, ..., Cr. Since |V (G)| > k, there exists
at least one of these components. We shall prove this statement: for every component Ci there
exists a B-admissible tree decomposition of G[W ∪ Ci], Ti, where W is one of its bags. Joining
the tree decompositions T1, T2, ..., Tr from the bag W gives the B-admissible tree decomposition
we want (see fig. 2.4).

To prove the previous statement, let H = G[W ∪ Ci] and B′ = B ∪ {Ci}. If Ci does not
touch some element in B, then neither Ci nor its neighbours intersect that element, and hence
Ci ∪N(Ci) fails to cover B. Thus, Ti is the tree decomposition consisting of two bags: W and
Ci ∪N(Ci).

Otherwise, B′ is a bramble. In fact, Ci /∈ B since W covers B and W ∩Ci = ∅. Therefore, we
have that |B′| > |B| and by induction there is a B′-admissible tree decomposition of G, say T ′.

If T ′ is also B-admissible this is the tree decomposition that satisfies the lemma. If not, T ′

contains a leaf node x whose bag Vx has size > k and covers B but not B′, so Vx is disjoint with
Ci and therefore it lies on G \ Ci. By lemma 2.17 any set separating W and Vx (both cover
B) also covers B, so no such set can be of size < |W | because we selected W to be a cover of
minimum size for B. By theorem 1.1 there exist |W | vertex-disjoint paths P1, P2, ..., P|W | which
connect W and Vx (fig. 2.5). Observe that the paths Pi meet W , and hence H, only in their
ends.

We transform T ′ into Ti appropriately:

16

W

C1

C2

Cr

. . .

Figure 2.4: Joining Ti for every component Ci of G \W gives T .

Vx

w1

w2

w3
w4

Figure 2.5: |W | vertex-disjoint paths P1, P2, ..., P|W | which connect W and Vx.

1. All nodes that are not in H are deleted from all bags.

2. For every w ∈W , pick a node y ∈ T ′ whose bag contains w. Insert w in every bag Vt such
that t is on the path from x to y.

Note that the size of any bag does not increase. At least a node from a path Pi is deleted for
every w ∈ W that gets inserted in a bag Vt. The reason is that Vt separates Vy \ Vt and Vx \ Vt
in G by lemma 2.9, thus every path in G from w to a vertex in Vx contains some vertex in Vt.
Such a path is Pi, and we know that all its vertices except w are not in H, so the one in Vt gets
deleted.

Moreover, Ti is still a tree decomposition after 1 by lemma 2.4, and since each w is inserted
in every bag along some path leading to a bag with w, it satisfies (iii) from definition 2.1 and is
a tree decomposition after 2. Observe that insertions only happen in internal nodes of T ′ and in
Vx. The new content of the bag Vx is exactly W , so we only have to show that Ti is B-admissible.

Any bag Vz from Ti of size > k is a leaf and contains at least one vertex from Ci because
Vz ⊆ (W ∪ Ci) and |W | ≤ k. That vertex was already there before the transformation because
no such vertex has been inserted, and Vz failed covering B′, so it had to fail covering some B ∈ B.
Thus, it still does not cover B since no vertex has been inserted into the leaves (other than Vx).
This shows that Ti is the tree decomposition we were looking for and completes the proof.

Now we are ready to provide a proof for the theorem we were interested in.

17

Theorem 2.20 (Seymour and Thomas [25]). Let k ≥ 1 be an integer. If a graph G has treewidth
≥ k then G has a bramble of order > k.

Proof. Assume that G contains no bramble of order > k. By lemma 2.19, we can find a B-
admissible tree decomposition of G for every B. For B = {V (G)} this implies that the tree
decomposition has no bag of size > k since any bag would cover that B. Hence, tw(G) < k.

2.4 Pursuit-evasion games

We present a cops-and-robber game, played on a finite and undirected graph G = (V,E) by
k ≥ 1 cops and a robber that must elude them.

Cops can move anywhere in the graph by helicopter, but they require two turns to perform
the movement (a turn to get in the helicopter and take off, and a second turn to land). Therefore,
at any time, a cop either stands on a vertex of the graph or is moving on a helicopter. The robber
can move arbitrarily fast from the vertex he is to any other reachable vertex, i.e., any vertex
along a path of the graph that is not blocked by a cop. Assuming that the cops always know
where the robber is, the objective of the game is to corner him somewhere and land a helicopter
in the vertex he is. The robber wins if he can find a strategy to avoid the cops ad infinitum.

Definition 2.21. We call an X-flap of G the vertex set of a component of G \X.

Let us denote by [V]≤k the set of all subsets of V of cardinality ≤ k. Then the game can be
formally defined as follows.

Definition 2.22. A state of the game is a pair (X,R) where X ∈ [V]≤k and R is an X-flap. X
is the set of vertices occupied by cops, and R represents the position of the robber.

The initial state is (X0, R0) with X0 = ∅ and R0 being any component of G. At any step
of the game, the current state is (Xi−1, Ri−1). The cop player chooses Xi ∈ [V]≤k such that
Xi−1 ⊆ Xi or Xi ⊆ Xi−1. Then, the robber chooses an Xi-flap Ri such that Ri ⊆ Ri−1 or
Ri−1 ⊆ Ri, respectively. If no such choice is available for the robber, then cops have won,
otherwise the game continues with another step.

Furthermore, if the sequence X0, X1, ... satisfies Xi ∩ Xk ⊆ Xj for i ≤ j ≤ k, then “≤ k
cops can monotonically search G”. Intuitively, this means that once cops leave a vertex it is not
visited again during the game.

A similar game is called jump-searching, where the state is represented as in the search game
but follows a slightly different rule. Set (X0, R0) as before. From the state (Xi−1, Ri−1), the cop
player chooses a new Xi but this time with no restriction. Then the robber chooses an Xi-flap
Ri that touches Ri−1.

Lemma 2.23. If ≤ k cops cannot jump-search G, then ≤ k cops cannot search G.

Proof. Let (Xi−1, Ri−1) be the current state of the search game. The cops move to position Xi

following the rules of the search game. If Xi ⊆ Xi−1 there are fewer cops in the graph after
the movement, so the Xi−1-flaps either remain the same or get bigger, Ri−1 ⊆ Ri. Otherwise
Xi−1 ⊆ Xi, there are more cops in the graph now so the Xi−1-flaps are unchanged or become
smaller, Ri ⊆ Ri−1.

Assuming that ≤ k cops cannot jump-search G, the robber has an Xi-flap Ri available that
touches Ri−1. In fact, this Ri must follow one of the two cases presented above, giving a valid
movement for the robber.

18

The strategy for the robber in the jump-search game is given by a type of function called
haven.

Definition 2.24. A haven in G of order k is a function β that assigns an X-flap β(X) to each
X ∈ [V]<k such that β(X) touches β(Y) for all X,Y ∈ [V]<k.

Lemma 2.25. G cannot be jump-searched by ≤ k cops if and only if there exists a haven in G
of order > k.

Proof. Suppose that ≤ k cops cannot jump-search G. Then for each X ∈ [V]<k, let σ(X) be an
X-flap R such that from the state (X,R) the cop cannot guarantee to win. Then σ is a haven
in G of order > k.

On the other hand, let β be a haven in G of order > k. At any step i the cops make their
move to the position Xi, then the robber can choose Ri ∈ β(Xi) to avoid them.

Now we are ready to see the relationship between these games, the brambles and the concept
of treewidth.

Theorem 2.26 (Seymour and Thomas [25]). The next are equivalent:

(1) G has a bramble of order > k.

(2) G has a haven of order > k.

(3) ≤ k cops cannot jump-search G.

(4) ≤ k cops cannot search G.

(5) ≤ k cops cannot monotonically search G.

(6) G has treewidth ≥ k.

Proof. (1)→ (2) is proven in the next lemma.
(2)→ (3) follows from lemma 2.25.
(3)→ (4) is proved by lemma 2.23.
(4)→ (5) is an immediate consequence of the definition of monotonic search. If the graph cannot
be searched at all, a more restricted search is also impossible.
(5)→ (6) will come from lemma 2.28.
Finally, (6)→ (1) was shown in theorem 2.20.

Lemma 2.27. If G has a bramble of order > k then G has a haven of order > k.

Proof. Let B be a bramble for G of order > k. For each X ∈ [V]≤k there exists some connected
B ∈ B with X ∩ B = ∅, so let β(X) be the X-flap containing B. Since B touches every other
subset in B, so does β(X). Therefore, all β(X) where X ∈ [V]≤k touch each other and β is a
haven in G of order > k.

Lemma 2.28. If ≤ k cops cannot monotonically search G, then G has treewidth ≥ k.

Proof. Assume for contrapositive that tw(G) < k, and let (T, (Vt)t∈T) be a tree decomposition
of G where all bags have size ≤ k. Place the cops in the vertices from any bag X = Vt; that will
require at most k cops. As follows from lemma 2.8, the robber stands on an X-flap in one of
the components of T − t. Let t′ be the neighbour of t in that component. Then the set Vt ∩ Vt′
separates U1 and U2 by lemma 2.10, so we can safely move the cops in two turns to the vertices

19

in Vt′ without the robber being able to escape, because the cops in Vt ∩ Vt′ block his way out of
the component. Repeat these steps until the robber is cornered.

Since at any step the vertices occupied by cops correspond to a bag from the tree decomposi-
tion, ≤ k cops will suffice. Moreover, by (iii) in definition 2.1 the search is monotonic: once the
cops leave a vertex v it is not visited again because the bags that contain v induce a connected
subgraph of T .

20

Chapter 3

Constructing a tree
decomposition

Now that we know what treewidth is, it is reasonable to ask how could we actually get a low-
width tree decomposition of a given graph. Having in mind that determining the treewidth of
a graph is NP-hard, this task does not seem easy. However, the problem becomes tractable for
graphs of small treewidth where we fix an upper bound.

For this reason, we will see an algorithm presented in [21] that given a graph and a fixed
parameter, constructs a tree decomposition in reasonable time provided that the treewidth of
the graph is smaller than the parameter. Otherwise, the parameter would turn out to be a lower
bound for the treewidth.

Before presenting the actual algorithm, we need to find a way to detect if the treewidth of a
graph is possibly large. The w-linked sets introduced in the first section will serve the purpose.

3.1 Strongly interlaced sets

The following structure can be used to identify whether the treewidth of a graph G is large.

Definition 3.1. Two sets X,Y ⊆ V (G), |X| = |Y |, are separable if some strictly smaller set S
separates them, this is, X and Y are disconnected in G \ S.

Definition 3.2. A set X ⊆ V (G) is w-linked if |X| ≥ w and X does not contain separable
subsets Y and Z such that |Y | = |Z| ≤ w.

For the reason that a tree decomposition splits the graph in parts of possibly small size that
separate it (as we have seen in the previous chapter), we can think of a w-linked set as an obstacle
to construct a low-width tree decomposition, since such a set is hard to separate. Our intuition
is confirmed by this theorem, based on the work by Kleinberg and Tardos [21]:

Theorem 3.3. If a graph G contains a (w + 1)-linked set of size ≥ 3w, then tw(G) ≥ w.

Proof. Suppose for a contradiction that G has a (w + 1)-linked set X of size ≥ 3w, and that
(T, (Vt)t∈T) is a tree decomposition of G of width < w. The size of each bag Vt is ≤ w. Assume
also that this tree decomposition is nonredundant.

Our goal is to find a bag Vt such that when some S ⊆ Vt is deleted from G, two small subsets
of X are separated from each other. Since |Vt| ≤ w, this will contradict the assumption that X
is (w + 1)-linked.

21

To begin with, root the tree T at a node r. Let Tt denote the subtree rooted at a node t,
and Gt the graph induced by the union of bags from Tt. Now set t to be a node as far from the
root as possible such that Gt contains > 2w nodes of X. Such a node exists because Gr itself
contains all nodes of X. Observe that t cannot be a leaf, because |Gt| ≤ w in that case, so let
t1, t2, ..., td be its children. Each Gti contains at most 2w nodes of X, by our choice of t being
as far from the root as possible. We now consider two possible scenarios.

If there is a child ti such that Gti contains at least w nodes of X, then we define Y to be
w nodes of X from Gti , and Z to be w nodes of X from G \Gti . Since the tree decomposition
is nonredundant, Vt 6= Vti and hence S = Vt ∩ Vti has at most w − 1 nodes. By lemma 2.10 S
separates Y and Z, contradicting our assumption.

In the case where there is no child ti so that Gti contains at least w nodes of X, we will
combine several Gti to get to a similar situation. Beginning with Gt1 , combine it with Gt2 , then
Gt3 and so on, until we first get a subgraph containing > w nodes of X. This will happen after
adding some Gti because Gt contains > 2w nodes of X and at most w of them can be in Vt. Let
W be the set of nodes in the subgraphs Gt1 , Gt2 , ..., Gti . We have that w < |W ∩X| < 2w by
the choice of W : more than w or we would have continued combining Gti+1

, and fewer than 2w
because combining Gt1 , Gt2 , ..., Gti−1 we had ≤ w nodes of X and Gti contains < w in this case
we are studying (fig. 3.1). This time we define Y to be w + 1 nodes of X from W , and Z to be
w + 1 nodes of X not in W . By lemma 2.8, Vt is a set of size ≤ w that separates Y from Z,
contradicting again that X is (w + 1)-linked.

t

ti−1 ti

> 2w nodes
of X

≤ w nodes of X < w nodes of X

Figure 3.1: Combining subtrees until > w nodes of X are obtained.

Moreover, the following theorem guarantees that a set can be tested for w-linkedness in
reasonable time.

22

Theorem 3.4 (based on Kleinberg and Tardos [21]). Let G = (V,E) be a graph, let X ⊆ V be a
set of k vertices, and let w ≤ k be a given parameter. We can determine whether X is w-linked
in time O(f(k) · |E|). If it is not, we can give sets Y,Z ⊆ X and S ⊆ V that confirm it.

Proof. Enumerate all pairs of subsets Y,Z ⊆ X satisfying |Y | = |Z| ≤ w. X has 2k subsets, so
there are ≤ 4k such pairs.

For each pair of subsets, let ` = |Y | = |Z| ≤ w. We need to check if some set S of size < `
separates Y and Z. By theorem 1.1, the size of the smallest S that separates them is exactly the
maximum number of vertex-disjoint paths from Y to Z, therefore if this number of paths is < `
then Y and Z are separable.

To compute these paths, we construct a flow network from the graph with unit capacity edges
as follows:

1. Each node v ∈ V is replaced with two nodes vin and vout.

2. An edge (vin, vout) is added for each pair of new nodes. This effectively restricts each node
in the original graph to be used just once, as only one unit of flow can go through the edge.

3. For each undirected edge uv ∈ E, we add edges (uout, vin) and (vout, uin) to the network.

4. A source s is introduced and an edge (s, vin) inserted for each v ∈ Y .

5. Similarly, a new node t is created and edges (vout, t) inserted for nodes v ∈ Z.

We can check that the maximum flow from s to t gives us the number of vertex-disjoint paths
from Y to Z. An algorithm like Ford-Fulkerson’s computes this max-flow in time O(` · |E|).

After checking all pairs, the total running time is O(f(k) · |E|) where f is a function that
only depends on k.

3.2 Description of the algorithm

Given a graph G = (V,E) and some fixed parameter w, following these steps will lead us to
either a tree decomposition of G of width < 4w or a (w+ 1)-linked set of size ≥ 3w, which would
mean that the treewidth of G is ≥ w by theorem 3.3. The running time for the algorithm will
be O(f(w) · |E| · |V |), where f is an exponential function that depends only on the parameter w.

The algorithm works iteratively in a greedy fashion. We start choosing any subset Vt ⊆ V
such that |Vt| ≤ 3w as the first bag of the tree decomposition (T, (Vt)t∈T). Then we proceed to
expand the tree decomposition step by step (if possible) until it covers the whole graph.

At any iteration of the algorithm two invariants must hold. Let U =
⋃
t∈T Vt:

I1 We have a partial tree decomposition:
(T, (Vt)t∈T) is a tree decomposition of G[U] of width < 4w.

I2 Each component C of G \ U has ≤ 3w neighbours in U and some bag Vt contains all of
them:
This invariant ensures that we can grow the tree decomposition adding a new bag from C.

We now describe the iterative step, and we will see that it maintains both invariants and U
grows strictly larger.

Let C be a component of G \U , let X ⊆ U be the set of neighbours of C in U and let Vt be a

bag that contains X as guaranteed by I2 . If |X| < 3w, then pick any v ∈ C, set Vs = X ∪ {v}
and make s a leaf of t (fig. 3.2). Since |X ∪ {v}| ≤ 3w and for all edges (v, u) where u ∈ U we

23

v

Vt

Vs

X

Figure 3.2: New bag Vs when |X| < 3w.

have that u ∈ X, both I1 and I2 are maintained. Furthermore, U has grown in one vertex so
the step is valid.

In case |X| = 3w, it might be the case that G has no low-width tree decomposition, so first of
all we will check if X is (w+ 1)-linked. By theorem 3.4 this can be done in time O(f(w) · |E|). If
the outcome is positive, then we can stop the algorithm and output that tw(G) ≥ w. Otherwise,
we now have sets Y,Z ⊆ X and S ⊆ V such that |S| < |Y | = |Z| ≤ w + 1 and S separates Y
and Z in G, which we will use to extend the tree decomposition.

Set S′ = S ∩C. Observe that |S′| ≤ |S| ≤ w, and also note that S′ 6= ∅ because in that case,
as Y and Z have edges into C, there would exist some path starting in Y that jumps to C, travels
though C, and jumps back to Z contradicting the fact that S separates Y and Z (fig. 3.3). Our

new bag will be Vs = X ∪ S′, being s a leaf of t. I1 holds since all edges from S′ into U have
their ends in X and |X ∪ S′| ≤ 3w + w = 4w.

To see that I2 still holds, let C ′ ⊂ C be any component of G \ (U ∪S′). C ′ clearly has all of
its neighbours in X ∪ S′, but we have to make sure that there are ≤ 3w of them. We claim that
all of them belong to one of the two subsets (X \Z)∪S′ or (X \Y)∪S′, both of them having size
< 3w as |X| = 3w and |S′| < |Y | = |Z|. If this was not true, there would be two neighbours of
C ′ one in Y and the other in Z, making a path through C ′ from Y to Z which has already been
proved impossible. Therefore, the invariant holds, and to complete the argument we must see
that the new U is strictly larger than the previous, because it now covers U ∪ S′ where S′ 6= ∅.

Finally, the most time-expensive operation for adding a new bag to the partial tree decompo-
sition is to check whether the set X is (w+1)-linked, with a running time of O(f(w) · |E|). In the
worst case scenario, this operation is repeated |V | times, as the number of vertices covered by the
tree decomposition increases in each iteration. Hence the total running time is O(f(w)·|E|·|V |).

24

X Y Z

C

S

S′

Figure 3.3: S′ 6= ∅ as the path in green from Y to Z must traverse S.

25

Chapter 4

Algorithms for graphs of bounded
treewidth

One of the most well-known applications of the treewidth is, as suggested in the abstract, to effi-
ciently solve problems on graphs where the treewidth is low, problems that would be intractable
for arbitrary graphs.

In this chapter we will study some dynamic programming algorithms that find optimal so-
lutions in time O(f(w) · p(n)), where f is a function only depending on the treewidth w of the
input graph and p is a polynomial on the size n of the graph. These distinctive running times
make all these problems fixed-parameter tractable: if the treewidth can be fixed to a relatively
small value, then the problem can be solved in reasonable time.

Although the structure of tree decomposition is the classical characterization of the treewidth
of a graph, many problems are easier to describe and solve using dynamic programming if we
work with similar but more restricted forms of tree decompositions. For convenience, nice path
decompositions and nice tree decompositions are presented and used in this chapter, even though
regular tree decompositions could be used as well.

4.1 Path decompositions

The structure of path decomposition is a more restricted version of the tree decomposition that
simplifies the definition of some dynamic programming algorithms. We will use it in the following
sections.

Definition 4.1. A path decomposition of a graph G is a tree decomposition of G with the
underlying tree T being a path. It is usually denoted as the list of the bags that conform it,
(V1, V2, ..., Vr).

The width of a path decomposition is defined in the same way that the width of a tree
decomposition:

max{|Vt| − 1 : t ∈ T}

Analogous to the treewidth, the pathwidth of G, pw(G), corresponds to the minimum width
among all possible path decompositions of G. For any graph G, clearly tw(G) ≤ pw(G) since any
path decomposition can be viewed as a tree decomposition. The properties of tree decompositions
seen in section 2.1 also apply to path decompositions.

26

As seen in [22] and [5], the pathwidth of a graph is directly related to its treewidth and its
number of vertices. Refer to the former for the proof of the next lemma.

Lemma 4.2. For every forest F on n vertices, pw(F) = O(log n).

Consequently:

Theorem 4.3. For every graph G on n vertices, pw(G) ≤ c · tw(G) · log n for some constant c.

Proof. Let (T, (Vt)t∈T) be a nonredundant tree decomposition of G of width tw(G), having ≤ n
bags by lemma 2.3. Find a path decomposition of T of width c · log n for some constant c,
(W1,W2, ...,Wk), whose existence is proved in lemma 4.2. Then define a path decomposition of
G, (X1, X2, ..., Xk), where Xi =

⋃
j∈Wi

Vj .
This is a valid path decomposition since each edge is present in some Vi, hence in some Xi;

and for any v ∈ V (G) the bags in (T, Vt) containing them form a connected subtree, then the
nodes of those bags also form a connected subpath in the path decomposition of T , leading to a
legal path decomposition of G. The size of each Xi is at most c · tw(G) · log n thus the theorem
holds.

4.1.1 Nice path decompositions

Furthermore, we say that a path decomposition (V1, V2, ..., Vr) is nice if it satisfies these proper-
ties:

1. |V1| = |Vr| = 1.

2. For every 1 ≤ i < r, there is a vertex v ∈ V (G) such that Vi+1 = Vi ∪ {v}, v /∈ Vi, or
Vi+1 = Vi \ {v}, v ∈ Vi.

ab bcd cde ef

a ab b bc bcd

cd

cdedeeeff

Figure 4.1: A path decomposition and its nice counterpart.

Nice path decompositions can be obtained from regular path decompositions as the following
lemma shows.

Lemma 4.4. Let P = (V1, V2, ..., Vr) be a path decomposition of a graph G of width w. Then
G has a nice path decomposition of width w and it can be constructed from P in linear time on
|V (G)|.

Proof. The procedure to transform the path decomposition works by adding new bags between
every two Vi and Vi+1. Bags are inserted to the right of Vi following the recurrence Vj+1 = Vj\{v}
where v ∈ Vj \ Vi+1, until a bag containing exactly Vi ∩ Vi+1 is achieved. From that point on,

27

the new bags added will follow the recurrence Vj+1 = Vj ∪{v} where v ∈ Vi+1 \Vj one at a time,
until Vi+1 is reached.

For the bags on the ends, V1 and Vr, it is enough to keep adding bags to the left and to the
right, respectively, removing one vertex at a time until single-vertex bags are achieved.

These steps lead us to a nice path decomposition of width w as one can easily check. The
running time is linear in |V (G)| since the number of new bags is at most twice the number of
vertices in G, because each vertex is introduced and removed by the recurrences not more than
once.

4.2 Maximum Cut

Definition 4.5. Let G = (V,E) be a graph and let A,B ⊆ V be sets of vertices. We define
CUT(A,B) to be the number of edges from E that have one end in A and the other in B.

The problem of finding the maximum cut on a graph G = (V,E) consists in finding a subset
X ⊆ V such that the value of CUT(X,V \X) is maximum. We refer to this value as the size of
the cut.

a

b c d

e

Figure 4.2: A maximum cut (size 6) represented in two colours.

The associated decision problem, i.e., given G and k determine if there is a cut of size ≥ k
in G, is known to be NP-complete [17]. However, a nice path decomposition makes it relatively
easy to compute for graphs of low pathwidth as seen in [16].

Theorem 4.6. Let G = (V,E) be a graph on n vertices. With a given path decomposition of
width ≤ w, the maximum cut problem on G can be solved in time O(2w · w · n).

Proof. Using lemma 4.4 we transform the path decomposition into a nice path decomposition
(V1, V2, ..., Vr) in linear time. Then set

Wi =

i⋃
j=1

Vj

for every 1 ≤ i ≤ r.
For a given i, let (A,B) be a partition of Vi. We define ci(A,B) to be the maximum size of a

cut on the graph G[Wi], taken over all partitions (X,Y) of Wi that preserve the partition (A,B),
i.e., A ⊆ X and B ⊆ Y . The values of ci(A,B) can be computed using dynamic programming.

Computing the values of c1 is trivial. Let V1 = {v}, there are only two possible partitions,
({v}, ∅) and (∅, {v}). In any case, c1({v}, ∅) = c1(∅, {v}) = 0 because G[W1] has a single vertex
and no edge.

For i > 1, we will consider two scenarios:

• Vi = Vi−1 ∪ {v} for some v /∈ Vi−1. Observe that v /∈ Wi−1 by (iii) in definition 2.1,
therefore Wi = Wi−1 ∪ {v}. Also notice that all neighbours of v in G[Wi] must be in Vi to

28

satisfy (ii) in definition 2.1. Then for every partition (A,B) of Vi:

ci(A,B) =

{
ci−1(A \ {v}, B) + CUT({v}, B) if v ∈ A
ci−1(A,B \ {v}) + CUT({v}, A) if v /∈ A

The recurrence above works because the new v has neighbours only in Vi so introducing
v does not affect Wi \ Vi, whose maximum cut is already computed. Furthermore, given
a partition (A,B) of Vi (recall that we compute each possible partition), either v ∈ A or
v ∈ B, so the size of the cut increases by the number of edges between v and the vertices
in the opposite set of the partition (fig. 4.3).

Wi−1 Viv

Figure 4.3: The size of the cut depends on the colour of v, which is given by (A,B).

• Vi = Vi−1 \ {v} for some v ∈ Vi−1. Considering that Wi = Wi−1, for every partition (A,B)
of Vi:

ci(A,B) = max{ci−1(A ∪ {v}, B), ci−1(A,B ∪ {v})}

With this definition, the maximum size of a cut on G is:

max{cr(A,B) : (A,B) is a partition of Vr}

Since |Vr| = 1 there are just two possible partitions, so this is equivalent to:

max{cr(Vr, ∅), cr(∅, Vr)}

The actual vertices of the maximum cut can be obtained by tracking back the choices made.
Computing the value of ci(A,B) for each of the 2|Vi| partitions requires at most |Vi| operations:

CUT({v}, A) or CUT({v}, B) takes linear time. Recall that |Vi| ≤ w + 1. The nice path
decomposition has a number of bags linear in n, thus the total running time is

O(

r∑
i=1

2|Vi| · |Vi|) = O(2w · w · n)

29

4.3 Minimum Bisection

Definition 4.7. Let G = (V,E) be a graph on n vertices. The minimum bisection problem
consists in finding a partition of V into two sets (A,B) of size dn/2e and bn/2c, such that
CUT(A,B) is minimized.

a

b

c

d

e

f

g

Figure 4.4: A minimum bisection (size 3) represented in two colours.

The minimum bisection problem is a classical NP-hard problem [18] that has been widely
studied in the past. Several approximations and polynomial algorithms for special graph classes
exist (cf. [27]), but we put the focus on graphs with bounded pathwidth.

Theorem 4.8. Let G = (V,E) be a graph on n vertices. With a given path decomposition of
width ≤ w, the minimum bisection problem on G can be solved in time O(2w · w · n2).

Proof. The proof of this theorem is similar to that of theorem 4.6. Using lemma 4.4 we transform
the path decomposition into a nice path decomposition (V1, V2, ..., Vr) in linear time. Then set

Wi =

i⋃
j=1

Vj

for every 1 ≤ i ≤ r.
Now for a given i, let (A,B) be a partition of Vi and let ` be an integer 0 ≤ ` ≤ n. Define

bi(A,B, `) to be the minimum cut size over partitions (X,Y) of the graph G[Wi] that preserve
the partition (A,B) (in other words, A ⊆ X and B ⊆ Y) and |X| = `. The values of bi(A,B, `)
can be computed and stored in a table as described below. A value of∞ means that no partition
is possible for the given parameters.

If i = 1, then |Vi| = 1 and the values of b1 are:

b1(V1, ∅, 1) = b1(∅, V1, 0) = 0

b1(V1, ∅, `) = b1(∅, V1, `) =∞ for the remaining values of `

If i > 1, there are two possible cases depending on the type of node:

• Vi = Vi−1 ∪ {v} for some v /∈ Vi−1. As in theorem 4.6, observe that all neighbours of v in
G[Wi] are in Vi. For every partition (A,B) of Vi and for every 0 ≤ ` ≤ n,

bi(A,B, `) =


∞ if ` < |A| or ` > |Wi|
bi−1(A \ {v}, B, `− 1) + CUT({v}, B) if |A| ≤ ` ≤ |Wi| and v ∈ A
bi−1(A,B \ {v}, `) + CUT({v}, A) if |A| ≤ ` ≤ |Wi| and v /∈ A

The value of bi is set to ∞ if the looked up bi−1 is ∞.

The reasoning behind this step is analogous to the one in theorem 4.6, with the introduction
of the parameter ` that restricts the size of the sets in the partition. The bounds of `

30

are |A| and |Wi| because a partition (X,Y) of G[Wi] that preserves (A,B) clearly has
|A| ≤ |X| ≤ |Wi|.

• Vi = Vi−1 \ {v} for some v ∈ Vi−1. In this case Wi = Wi−1, then for every partition (A,B)
of Vi and for every 0 ≤ ` ≤ n,

bi(A,B, `) = min{bi−1(A ∪ {v}, B, `), bi−1(A,B ∪ {v}, `)}

As in the previous case, bi is set to ∞ if both bi−1 values are ∞.

The result of the minimum bisection problem is the minimum value among these four:

min{br(Vr, ∅, dn/2e), br(Vr, ∅, bn/2c), br(∅, Vr, dn/2e), br(∅, Vr, bn/2c)}

which will be only two different values if n is even. Recall that |Vr| = 1 so there are just two
possible partitions of Vr. The actual partition can be computed by tracking back the choices of
the algorithm.

The running time of the algorithm is given by the time needed to fill the bi(A,B, `) table.
For each i, there are at most 2|Vi| partitions (A,B) of Vi and n different values of `. Each value
can be computed in O(|Vi|) time, determined by the cost of the most time-expensive operation:
CUT({v}, A) or CUT({v}, B). Since the nice path decomposition has O(n) bags, the total
running time is

O(

r∑
i=1

2|Vi| · |Vi| · n) = O(2w · w · n2)

4.4 Counting homomorphisms

We introduced the concept of nice path decomposition before because it was useful to perform
dynamic programming over it. Now we will use a similar strategy for tree decompositions.

A tree decomposition (T, (Vt)t∈T) is nice if

1. T is rooted.

2. Every node t ∈ T is one of the following:

• Join node: Has two children t1, t2 ∈ T and Vt = Vt1 = Vt2 .

• Introduce node: Has one child t′ ∈ T and Vt = Vt′ ∪ {v} for some v /∈ Vt′ .
• Forget node: Has one child t′ ∈ T and Vt = Vt′ \ {v} for some v ∈ Vt′ .
• Leaf node: Has no child and contains a single vertex.

A lemma analogous to lemma 4.4 can be proved for nice tree decompositions.

Lemma 4.9. Let G be a graph on n vertices. Given a tree decomposition of G of width k, it
can be transformed in time O(n) into a nice tree decomposition of G of width k and with at most
(k + 3)n nodes.

31

ab

bc

cd ce

ab

b

bc

c

c

cd

d

c

ce

e

Figure 4.5: A tree decomposition and its nice counterpart.

Proof. Transform the given tree decomposition into a nonredundant one, (T, (Vt)t∈T), as shown
in section 2.1. The new tree decomposition has ≤ n bags by lemma 2.3.

Let |T | = m. We will show inductively that a tree decomposition of G of width k and m
nodes can be transformed in linear time into a nice tree decomposition of G of width k with at
most (k + 3)n nodes preserving the bags of the original tree decomposition, i. e., all the bags in
(T, (Vt)t∈T) are present in the nice tree decomposition.

If m = 1, root the tree T at its single node and add child nodes forming a path where each
child has one vertex less than its parent, until a leaf is achieved. This tree decomposition clearly
has n nodes, the original single bag is still present, the width has not changed and time O(n) is
needed.

For the case m > 1, let t be a leaf of T and t′ its neighbour. Set U = Vt \ Vt′ . Then
the deletion of t and its bag Vt yields a tree decomposition of G \ U of width ≤ k as seen in
lemma 2.6. By the induction hypothesis, a nice tree decomposition can be obtained in time O(n)
from the previous one maintaining the width and the original bags, and consisting of at most
(k + 3)(n− |U |) nodes.

Let x be a node in the nice tree decomposition such that Vx = Vt′ .

• If x is not a leaf, transform it into a join node by inserting two children x1 and x2 with
Vx = Vx1 = Vx2 . Set the original children of x as children of x1 and then insert a new path
of nodes under x2, with an introduce node for each v ∈ Vt′ \ Vt and a forget node for each
u ∈ U .

• If x is a leaf, insert a new path as in the previous case directly beneath x.

Notice that the last inserted bag is exactly Vt. If |Vt| > 1, then insert new nodes as in the case
m = 1 until a leaf of size 1 is achieved.

We have got a nice tree decomposition of G, of width k since the original bags are preserved
and the new bags are always smaller. The number of new bags in the worst case (x not being
a leaf) is 2 + |Vt′ \ Vt| + |U | + (|Vt| − 1) ≤ 3k + 1 considering that |U | ≤ k. This makes a total
number of nodes of at most (k + 3)(n − |U |) + 3k + 1 ≤ (k + 3)n − k2 + 1 ≤ (k + 3)n since
−k2 + 1 ≤ 0 for any k > 0. Finally, the process takes time O(n), which completes the proof.

32

Definition 4.10. A homomorphism is a mapping h between two graphs F and G that preserves
adjacency, i.e., uv ∈ E(F)⇒ (h(u), h(v)) ∈ E(G).

a

b

c

d

e

f a’

b’

c’

d’

Figure 4.6: An homomorphism between two graphs, nodes of the same colour are mapped.

In general, counting how many homomorphisms there are from one arbitrary graph to another
is #P-complete [14], but we can do better if the source graph has bounded treewidth. The
following theorem shows how, based on the proof presented in [16].

Theorem 4.11. Let F and G be graphs on m and n vertices, respectively. Given a tree decom-
position (T, (Vt)t∈T) of F of width w, the number of homomorphisms hom(F,G) from F to G
can be computed in time O(w ·m · nw+1 ·max{w, n}) and space O(w ·m · nw+1).

Proof. Transform the tree decomposition into a nice one by lemma 4.9, and let r be the root of
T . For each node i ∈ T , set

Wi =
⋃
j

Vj

where j runs through all nodes in T that lie below i plus i itself, this is, i is on the path from j
to r. Also set Fi = F [Wi].

For every node i and for every mapping Φ : Vi → V (G), we define hom(Fi, G, Φ) to be the
number of homomorphisms h from Fi to G that are an extension of Φ, or in other words, for every
v ∈ Vi, h(v) = Φ(v). The values of hom(Fi, G, Φ) can be computed using dynamic programming,
starting from the leaves and according to the type of each node i:

• Leaf node: Vi = Wi and there is only one vertex in Vi, so for any mapping Φ : Vi → V (G),
hom(Fi, G, Φ) = 1.

Time to compute for all Φ: O(n|Vi|).

• Introduce node: Let j be its child and let v = Vi \ Vj . Clearly Wi = Wj ∪ {v} and
v /∈Wj , so Fi results from adding v and some edges incident to v to Fj . Also observe that
all neighbours of v in Fi are in Vi. This means that homomorphisms from Fi to G are
extensions of those from Fj to G that preserve the new edges.

More precisely, for any mapping Φ : Vi → V (G) where the neighbours of v in Fi are mapped
to neighbours of Φ(v) in G, hom(Fi, G, Φ) = hom(Fj , G, Ψ) where Ψ : Vj → V (G) is the
mapping such that Φ(u) = Ψ(u) for any u ∈ Vj . If the mapping Φ does not preserve the
edges of v, hom(Fi, G, Φ) = 0.

Time to compute for all Φ: O(n|Vi| · |Vi|) because for each mapping Φ all neighbours of v
have to be checked, which are at most |Vi| − 1.

33

v

Wj

Vi

G

Figure 4.7: The mapping of v is given by Φ, but adjacency preservation has to be checked.

• Join node: Let j and k be its children. By lemma 2.8, there are no edges between Fj \ Vi
and Fk \Vi. Then for every Φ : Vi → V (G), hom(Fi, G, Φ) = hom(Fj , G, Φ) ·hom(Fk, G, Φ).

Time to compute for all Φ: O(n|Vi|).

• Forget node: Let j be its child and let v = Vj\Vi. Notice that Fi = Fj , thus homomorphisms
from Fi to G are the same as homomorphisms from Fj to G.

Then for every Φ : Vi → V (G), hom(Fi, G, Φ) =
∑
hom(Fj , G, Ψ) over all mappings

Ψ : Vj → V (G) such that Φ(u) = Ψ(u) for any u ∈ Vi, this is, we add up the number of
homomorphisms for every possible mapping of the removed vertex v.

Time to compute for all Φ: O(n|Vi| · n) because for each mapping Φ the vertex v can be
mapped to any of the n vertices in G.

The overall number of homomorphisms from F to G is

hom(F,G) =
∑

Φ:Vr→V (G)

hom(Fr, G, Φ)

T has at most (w+ 3)m nodes, so in the worst case, computing hom(F,G) requires O(w ·m ·
nw+1 ·max{w, n}). For each node and for each mapping Φ, the number of homomorphisms has
to be stored, taking O(w ·m · nw+1) space.

4.5 Maximum-Weight Independent Set

Definition 4.12. Given a graph G = (V,E) with each vertex v assigned a weight wv, a
Maximum-Weight Independent Set of G is a subset of the vertices whose weights sum as much
as possible and no two of them are adjacent.

The problem of finding such a set in an arbitrary graph is NP-hard, but there exist efficient
algorithms for special graph classes like trees [23, 11]. In this case, we will follow the idea from
the linear-time algorithm for trees and apply it to tree decompositions, hopefully achieving a
reasonable running time.

The previously presented algorithms take advantage of structures related to tree decom-
positions that allow an easier definition of the solution, like path decompositions or nice tree
decompositions. This time we will use regular tree decompositions to demonstrate that algo-
rithms can be presented as well without any additional structure, like Kleinberg and Tardos did

34

1

3 10

5 8

4 5

5

Figure 4.8: A maximum weight (20) independent set, in red.

[21]. One can notice that the complexity of this solution is higher than before and the reasoning
is more difficult to follow.

Theorem 4.13. Let G = (V,E) be a graph on n vertices. Given a tree decomposition (T, (Vt)t∈T)
of G of width w, the maximum weight independent set problem on G can be solved in time
O(4w · w · n).

Proof. We can safely assume that the tree decomposition is nonredundant, as it can be trans-
formed into one in linear time.

Roughly, we root the tree T and build the independent set from the bags in the leaves upwards.
For a bag Vt, whose size is at most w+ 1, we consider all possible 2w+1 subsets to be part of the
optimal solution, like we did in the previous problems. Once one of the subsets is fixed, we will
see that the maximum weight independent sets on the subtrees below t can be used to get the
solution for the whole subtree rooted at t.

More precisely, root the tree T at a node r and let t ∈ T be a node. Wt denotes the union of
the bags beneath t and Vt itself, and set Gt = G[Wt]. For a subset U ⊆ V , let w(U) be the total
weight of the vertices in U , w(U) =

∑
u∈U wu.

For each U ⊆ Vt, define ft(U) to be the maximum weight of an independent set S in Gt
subject to S ∩Vt = U , this is, an independent set whose vertices in Vt are exactly U . The values
of ft(U) are computed using dynamic programming and filling a table as usual, and once again,
we will take into account two different situations.

• If t is a leaf, then for each independent set U ⊆ Vt, ft(U) = w(U). If U is not an
independent set, then put ft(U) = −∞.

• Otherwise, t has children t1, t2, ..., td with d ≥ 1 and we may assume that the values of
fti(Ui) for all ti and Ui ⊆ Vti are already computed. For each U ⊆ Vt, the recurrence to
compute ft(U) is

ft(U) = w(U) +

d∑
i=1

max{fti(Ui)− w(Ui ∩ U) : Ui ⊆ Vti and Ui ∩ Vt = U ∩ Vti}

In other words, the recurrence checks if each subset Ui ⊆ Vti is an independent set and
satisfies Ui ∩ Vt = U ∩ Vti , which is the condition needed to build the solution from the

35

subproblems. If positive, the weight of the nodes in Ui∩U is subtracted to fti(Ui) to avoid
counting the nodes in U more than once. The maximum of this values over all possible Ui
is taken, and the process is repeated for every child of t. Finally, all the weights are added
to w(U) to get the value of ft(U).

In order to understand why this recurrence works, one has to observe how an optimal
independent set S of Gt such that S ∩ Vt = U is related to the children of t. Let ti be
any child of t, and set Si to the part of S that lies in Gti , i.e., Si = S ∩Wti . It is easy
to check that Si ∩ Vt = Wti ∩ U , and Wti ∩ U = Vti ∩ U because a vertex in both Wti

and in Vt has to be in Vti too by the definition of tree decomposition, so we have that
Si ∩ Vt = Vti ∩ U (see fig. 4.9). Thus, when looking at the subproblems, we consider just
those Ui ⊆ Vti that satisfy Ui ∩ Vt = U ∩ Vti to guarantee that S can be built from Si.
Moreover, lemma 4.14 (see below) ensures that Si is an optimal solution to the subproblem
satisfying Si ∩ Vt = Vti ∩ U , so its weight has already been computed and we can look it
up in the table.

Vt

Vt1 Vt2

U

Figure 4.9: The green dashes delimit S, and the areas in waves are Si ∩ Vt = Vti ∩ U .

The final solution comes from the root of the tree decomposition. We take the maximum
fr(U) over all independent sets U ⊆ Vr. This gives the maximum weight, but if we need the
independent set itself we can track back through the execution as usual.

The time required to compute a single ft(U) in the worst case is O(2w · w · d): for each of
the d children, 2w+1 sets Ui have to be considered, and checking the condition Ui ∩ Vt = U ∩ Vti
takes time O(w). There are 2w+1 sets U , which make a running time of O(4w ·w · d) for each ft.
As each node is counted as a child once and there are O(n) nodes in the tree decomposition by
lemma 2.3, the total running time of the algorithm is O(4w · w · n).

Lemma 4.14. Si is a maximum weight independent set of Gti subject to Si ∩ Vt = Vti ∩ U .

36

Proof. Suppose for a contradiction that there is an independent set S′i of Gti such that S′i ∩Vt =
Vti ∩ U and w(S′i) > w(Si). Set S′ = (S \ Si) ∪ S′i. Clearly w(S′) > w(S) and S′ ∩ Vt = U .
If S′ was also an independent set, it would contradict the choice of S as the maximum weight
independent set of Gt such that S ∩Vt = U , hence such S′ could not exist and the lemma would
hold.

So let us show that S′ is an independent set. Again, suppose that it is not and let uv be an
edge with u, v ∈ S′. By the choice of S and S′i they are independent sets, so it cannot be that
u, v ∈ S or u, v ∈ S′i. Thus, u ∈ S \ S′i and v ∈ S′i \ S, and therefore u is not in Gti and v is in
Gti \ (Vti ∩ Vt). This contradicts lemma 2.10 as there cannot be an edge joining u and v, then
S′ must be an independent set.

An algorithm for this problem in terms of a nice tree decomposition is easy to obtain by
following the same idea we have explained, and it is likely easier to understand. Refer to [8]
for such an algorithm. However, the purpose of this section was to show that regular tree
decompositions can be used to formulate dynamic programming algorithms too.

37

Appendix A

A note on computing the
treewidth

The algorithm seen in chapter 3 allows to compute the treewidth of an arbitrary graph by brute-
force searching on the input parameter w. However, as the running time is exponential in w, in
practice this is only feasible for low values of the treewidth. Since computing the treewidth is
NP-hard, it is unlikely that a polynomial time algorithm is found, so the efforts are being directed
towards finding heuristics that bound the treewidth and using state space search algorithms to
find the exact value.

Several upper bound heuristics are given in [9] to construct elimination orderings, that can
be later transformed efficiently into tree decompositions (cf. Lemma 8 in [9]). Their experiments
show that these heuristics work reasonably well, refer to their article for more detailed results.
The same authors studied lower bound heuristics in [10], which are useful for their use in branch-
and-bound algorithms and to discard some approaches in graphs with high lower bounds on the
treewidth. A web platform developed by one of the authors is available 1 where some of these
heuristics are implemented.

In order to find the actual treewidth of the graph, we need an exact algorithm. One of
the most famous ones is QuickBB, a branch and bound algorithm that searches in the space
of elimination orderings of the graph [19]. Other recent algorithms [2012] are analysed and
experimental results given in [7]. Similar experiments have been carried out recently [2014] for
pathwidth [12].

There are few implementations of these algorithms publicly available. The most relevant one
is probably LibTW2, a library written in Java that implements the heuristics mentioned above
and a couple of exact algorithms (branch and bound and a dynamic programming approach),
available under the GNU LGPL. The library uses its own internal representation of graph, but
can read them from input files in the DIMACS format. An analysis and comparison of the
algorithms implemented is also available.

Another implementation is included in the SageMath mathematics software3. This software
is standalone but open-source, so the code, written in Python, is accessible. It includes a method
to compute the pathwidth of a graph too, using three different approaches.

1http://www.math2.rwth-aachen.de/de/mitarbeiter/koster/ComputeTW/home
2http://www.treewidth.com/
3http://www.sagemath.org/

38

http://www.math2.rwth-aachen.de/de/mitarbeiter/koster/ComputeTW/home
http://www.treewidth.com/
http://www.sagemath.org/

Bibliography

[1] Ahuja, R. K., Orlin, J. B., and Magnanti, T. L. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[2] Arnborg, S., Corneil, D. G., and Proskurowski, A. Complexity of finding embed-
dings in a k-tree. SIAM. J. on Algebraic and Discrete Methods 8, 2 (1987), 277–284.

[3] Bertelé, U., and Brioschi, F. Nonserial Dynamic Programming. Academic Press, 1972.

[4] Bodlaender, H. L. A tourist guide through treewidth. Tech. rep., Utrecht University,
1993.

[5] Bodlaender, H. L. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science 209 (1998), 1–45.

[6] Bodlaender, H. L. Treewidth: Characterizations, applications, and computations. Lec-
ture Notes in Computer Science 4271 (2006), 1–14.

[7] Bodlaender, H. L., Fomin, F. V., Koster, A. M. C. A., Kratsch, D., and Thi-
likos, D. M. On exact algorithms for treewidth. ACM Transactions on Algorithms 9, 1
(2012).

[8] Bodlaender, H. L., and Koster, A. M. C. A. Combinatorial optimization on graphs
of bounded treewidth. The Computer Journal 51, 3 (2008), 255–269.

[9] Bodlaender, H. L., and Koster, A. M. C. A. Treewidth computations i. upper bounds.
Information and Computation 208, 3 (2010), 259–275.

[10] Bodlaender, H. L., and Koster, A. M. C. A. Treewidth computations ii. lower bounds.
Information and Computation 209, 7 (2011), 1103–1119.

[11] Chen, G. H., Kuo, M. T., and Sheu, J. P. An optimal time algorithm for finding
a maximum weight independent set in a tree. BIT Numerical Mathematics 28, 2 (1988),
353–356.

[12] Coudert, D., Mazauric, D., and Nisse, N. Experimental evaluation of a branch and
bound algorithm for computing pathwidth. Experimental Algorithms. Lecture Notes in
Computer Science Volume 8504, 1 (2014), 46–58.

[13] Diestel, R. Graph Theory, 4th ed. Springer-Verlag, 2010.

[14] Dyer, M., and Greenhill, C. The complexity of counting graph homomorphisms. Ran-
dom Structures and Algorithms 17, 3-4 (2000), 260–289.

39

[15] Fiala, J. Graph minors, decompositions and algorithms, June 2014.

[16] Fomin, F. V., and Kratsch, D. Exact Exponential Algorithms. Springer, 2010.

[17] Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman, 1979.

[18] Garey, M. R., Johnson, D. S., and Stockmeyer, L. Some simplified np-complete
graph problems. Theoretical Computer Science 1, 3 (1976), 237–267.

[19] Gogate, V., and Dechter, R. A complete anytime algorithm for treewidth. Proceedings
of the 20th conference on Uncertainty in Artificial Intelligence (2004), 201–208.

[20] Heinz, M. Tree-decomposition. graph minor theory and algorithmic implications. Master’s
thesis, Technischen Universität Wien, 2013.

[21] Kleinberg, J., and Tardos, É. Algorithm Design. Addison-Wesley, 2005.

[22] Korach, E., and Solel, N. Tree-width, path-width, and cutwidth. Discrete Applied
Mathematics 43, 1 (1993), 97–101.

[23] Pawagi, S. Maximum weight independent set in trees. BIT Numerical Mathematics 27, 2
(1987), 170–180.

[24] Robertson, N., and Seymour, P. D. Graph minors. iii. planar tree-width. Journal of
Combinatorial Theory, Series B 36 (1984), 49–64.

[25] Seymour, P. D., and Thomas, R. Graph searching, and a min-max theorem for tree-
width. Journal of Combinatorial Theory, Series B 58 (1993), 22–33.

[26] Thulasiraman, K., and Swamy, M. N. S. Graphs: Theory and Algorithms. John Wiley
& Sons, 1992.

[27] van Bevern, R., Feldmann, A. E., Sorge, M., and Suchý, O. On the parameterized
complexity of computing graph bisections. Lecture Notes in Computer Science 8165 (2013),
76–87.

[28] Wilson, R. J. Introduction to Graph Theory, 4th ed. Longman, 1996.

40

	Introduction
	Preliminaries
	Graphs
	Paths and connectivity
	Trees
	Flow networks

	Characterizations
	Tree Decompositions
	Connectivity and separation

	Elimination Orderings
	Brambles
	Pursuit-evasion games

	Constructing a tree decomposition
	Strongly interlaced sets
	Description of the algorithm

	Algorithms for graphs of bounded treewidth
	Path decompositions
	Nice path decompositions

	Maximum Cut
	Minimum Bisection
	Counting homomorphisms
	Maximum-Weight Independent Set

	A note on computing the treewidth
	Bibliography

