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Laburpena

Aurkezten den ikerketa lan honetan saikapen atazak landu dira, non helbu-
rua, sailkapen gainbegiratuaren artearen-egoera aberastea izan den. Sailka-
pen gainbegiratuaren zenbait estrategi analizatu dira, beraien ezaugarri eta
ahuleziak aztertuz. Beraz, ezaugarri positiboak mantenduz, ahuleziak hobet-
zeko saiakera egin da. Hau burutu ahal izateko, sailkapen gainbegiratuaren
zenbait estrategi konbinatzeaz gain, zenbait bilaketa heuristiko ere erabili dira.

Sailkapen gainbegiratuko 3 ikerketa lerro desberdinetan burutu dira ekarpe-
nak. Aurkezten diren lehenengo proposamenak, K-NN algoritmoan zentratzen
dira, honen zenbait bertsio aurkezten direlarik. Ondoren sailkatzaileen kon-
binaketarekin erlazionatutako beste lan bat aurkezten da. Eta azkenik, bi-
nakako sailkapenaren zenbait estrategi berritzaile proposatzen dira. Ekarpen
hauek aldizkari edo konferentzi internazionaletan publikatuak edo bidaliak
izan dira.

Buruturiko experimentuetan, proposatutako algoritmoak artearen-estatuan
aurkituriko zenbait algoritmorekin konparatu dira, emaitza interesgarriak lor-
tuaz. Honetaz gain, emaitza hauetatik ondorio esanguratsuak eskuratzeko as-
moz, test estatistikoen erabilera ere burutu da.





Summary

The work presented here deals with classification problems, where the aim
is to incorporate new Supervised Classification methodologies to the state-of-
the-art. Several Supervised Classification methods are studied, analyzing their
positive points and weaknesses. In order to do so, in addition to combining
different methods of Supervised Classification, Evolutionary Algorithms have
also been used.

Contributions of Supervised Classification are presented in 3 research lines.
The first contributions are focused on K-NN algorithm, proposing several
versions. Next, another work related to the classifier combination is presented.
Finally, several innovative Class Binarization strategies are proposed. All these
contributions have been published or submitted to international journals or
conferences.

In the performed experiments, the proposals are compared with several
state-of-the-art algorithms, obtaining interesting results. Moreover, statistical
tests are applied in order to obtain meaningful conclusions from the obtained
results.
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Introduction

Although we are unaware in our daily life, we apply several complex activities
to routines that we carry out intuitively: when we are selecting the proper key
to open a door, when we are driving and we recognize the traffic sign from a
different angle or distances or when we select the shortest path. To do so, we
obtain information from the environment, our brain processes the information
and decides how to react in each situation.

This human behaviour has been extended to computers, in what it is
known as Artificial Intelligence. The aim of Artificial Intelligence is to learn
how to solve complex problems that require certain skills beyond mere calcula-
tion capacity. There exist several lines of research within Artificial Intelligence
where the classification task is one of the most popular research lines.

Figure 1.1, presents a diagram of how a classification task is organized.
When we have to classify something we usually base our decisions on our
experiences. However, as computers do not have experiences, in those prob-
lems the experiences are represented by a set of examples or instances. Based
on these examples, the learning process is developed and a classifier which is
going to be used to classify future unseen instances is created. In this the-
sis project we will focus on this step, which is commonly known as Machine
Learning.

Machine Learning problems are mainly divided into two categories: Unsu-
pervised Classification and Supervised Classification.

Unsupervised Classification, also known as clustering, is focused on finding
the classes of the problem. In Unsupervised Classification a set of instances
is provided where the class label of those instances is unknown. The aim of
Unsupervised Classification problems is to discover groups of similar examples
within the data and to assign the same class label to the instances of each
group.

Supervised Classification focuses on the problem in a different way. In Su-
pervised Classification a set of well labelled instances is provided, this set is
also known as training data. Based on the those instances, the Supervised
Classification strategies build a classifier, which is used to classify new unla-
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Fig. 1.1: Classification task

belled instances. The error obtained with the training data is a guide to build
the model. However, in order to check the error rate, it is better to use a set
of instances that are not used to train the model.

The aim is to construct a classifier that will be able to classify every
instance as belonging to its real class. In those problems where the classes
are clearly different it is possible to obtain this result. However, this does
not happen in many real problems. Because of that, there exist many types of
classifiers that are based on different paradigms. Moreover, there are also a lot
of proposals that try to improve the performance of those classifiers. Some of
them introduce new variations of existing strategies, other approaches choose
to combine some of them, and others decide to divide the original problem
into several sub-problems that are easier to solve.

The main objective of this thesis project, is to perform a study of different
algorithms within the Supervised Classification area, trying to incorporate
new ideas that contribute to the state-of-the-art. Methodological contributions
have been presented in the following research lines:

Distance-Based Algorithms: a study of the different variations of these algo-
rithms has been performed and several versions are presented that can
improve standard algorithm performance in some kind of classification
problems.

Multi-Classifiers: in this work a new variation of the Stacked Generalization
strategy is presented.

Class Binarization: several versions are presented that try to solve some of the
weaknesses found in the literature. In order to do so, it has been proposed
to combine several Artificial Intelligence strategies.



1.1 Overview of the dissertation 5

1.1 Overview of the dissertation

The document is divided into four parts:

• The first part consists of 8 chapters and describes the framework that has
been developed in the research work. It starts with a description (Chapter
2) of the most relevant concepts and procedures of Supervised Classifi-
cation and the classifiers that have been used in the experiments of the
dissertation. Chaper 3 describes the Distance-Based algorithms, focusing
on K-NN method, one of the most simple methods but which provides
satisfactory results. Chapter 4 introduces the Multi-Classifiers, where the
most popular strategies are explained. In Chapter 5 the most relevant
Class Binarization strategies are presented focusing especially on Pairwise
Classification or One versus One strategy. In Chapter 6 a brief descrip-
tion of the contributions of the dissertation are shown. Finally Chapter 7
exposes the final conclusion of the work and further work.

• The second part presents those publications related to Distance-Based
Algorithms.

• The third part presents those publications related to Multi-Classifiers.
• The fourth part presents those publications related to Class Binarization.
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Supervised Classification

2.1 Introduction

Supervised Classification is one of the most important tasks in the field of
Pattern Recognition, and it is used to solve problems of almost every type of
domains. Supervised Classification is based on the idea of obtaining knowledge
based on past experience. To do so, in Supervised Classification, there is a set
of well-labelled instances, called training data, that describes the experiences.
Those instances contain the available collection of relevant characteristics ex-
tracted from an object and a class that labels an object.

Let training data TR = {xi, θi}Ni=1 denote a set of N well-labelled in-
stances, where xi represents the i-th individual feature vector and θi repre-
sents the class the individual belongs to. In the particular case of the K-class
problem, being θ ∈ {1, ..,K}, the class label is commonly defined as an integer.
Table 2.1 illustrates an example of training data.

Instance X1 X2 . . . XL Class

1 x11 x21 . . . xL1 θ2
2 x12 x22 . . . xL2 θK
. . . . . . . . . . . . . . . . . .
N x1N x2N . . . xLN θ1

Table 2.1: Example of Training Data

Based on the TR, the Supervised Classification techniques create a “gen-
eral rule” that is also known as a classifier. Then, when a new unknown
instance to be classified arrives, the classifier assigns one of the different pre-
viously defined K classes to the unseen instance.

Although the main objective is to create a classifier that classifies cor-
rectly as many instances as possible, there are other criteria that should be
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considered in order to evaluate a classifier. In the following paragraphs we will
describe some of the most important ones:

• Accuracy: this measures the percentage of testing set examples correctly
classified by the classifier.

• Speed: the computational cost involved in generating the classifier or in
predicting new unseen data.

• Interpretability: this is closely related to the concept of explanation; an
interpretable classifier ought to be able to explain its predictions.

• Simplicity: it is preferable to use the simplest classifier among the classifiers
with the same accuracy.

2.2 Types of Classifiers

The aim of the Supervised Classification techniques is to build a model which
will return a prediction for the future test instances.

There exist different paradigms to build the model, in this section we
explain those which have been used in this project.

2.2.1 Distance-Based Classifiers

The Distance-Based classifiers are based on the idea the similar instances
tend to have similar solutions. Because of their simplicity, those classifiers are
frequently used and very well-known in the Machine Learning community.

2.2.1.1 K-Nearest Neighbor (K-NN)

The K-Nearest Neighbor (K-NN) is proposed by Fix and Hodges [36]. When
an instance to be classified arrives, the K-NN algorithm selects its K nearest
instances from the training data. The most represented class among those K
instances is assigned to the new instance.

2.2.2 Decision Trees

Decision Trees are one of the most popular classifiers due to several reasons:
the simplicity of the model, explanation of the decision, the possibility to
represent it graphically and the decision speed. The philosophy of Decision
Trees is to divide the classification space into several areas and a class is
assigned to the patterns that belong to each area.

Usually Decision Trees are represented as a tree structure (see Figure 2.1)
that is formed by nodes. To classify an instance, it is started in the root-
node. Depending on the value of the predictor variable which is asked for, the
instance is moved down the tree to the different internal-nodes until it arrives
at a leaf-node in which there is a class value that is the one assigned to the
new instance.
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Fig. 2.1: Example of a Decision Tree

2.2.2.1 ID3

One of the first Decision Trees is presented by Quinlan [91] and it is called
Itemized Dichotomizer 3 (ID3). ID3 employs a top-down, greedy search
through the space of possible branches with no backtracking. Moreover, it
uses information gain to decide which attribute goes into a decision node.

ID3 does not prune the expanded tree and it has several weaknesses: it is
not able to work with continuous variables, it does not contemplate missing
values and does not allow noise in the data.

2.2.2.2 C4.5

C4.5 is an extension of ID3, it is also introduced by Quinlan [92] and it tries
to outperform some of ID3’s limitations. To achieve this, it performs a post-
pruning phase, based on an error based pruning algorithm, and it uses an
extension to information gain known as gain ratio.

2.2.3 Rule-Based Classifiers

Rule-Based algorithms generate a set of rules which try to explain the feature
space. Each rule is formed by the antecedent (”IF-part”) and a consequent
(”THEN-part”); the antecedent contains a set of conditions over the different
attributes and the consequent contains the class that the rule predicts if the
conditions of the antecedent are fulfilled. An example of the structure of the
rules is illustrated in Figure 2.2.
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Rule1 IF (X2 > 3 &X3 < 0) THEN θ1
Rule2 IF (X1 < 1 &X2 > 2) THEN θ3
. . .

RuleM IF (X4 == True) THEN θK

Fig. 2.2: Example of rules structure

The rules can receive a specific order, such as, it is assigned the class of
the first rule that its antecedent is fulfilled.

There are different algorithms for rule generation:

2.2.3.1 1R

1R algorithm is proposed by Holte [56] and as its names indicates, 1R is
a program that learns 1-rule from the examples. It creates a rule for each
attribute and then it selects the rule with the minimum error.

2.2.3.2 CN2

The CN2 algorithm is introduced by Clark and Niblett [14] and it constructs
rules so that they are evaluated in a specific order. CN2 consists of two main
procedures: the search algorithm performing a beam search in order to find a
good rule, and the control algorithm for repeatedly executing the search.

2.2.3.3 Ripper

RIPPER is proposed by Cohen [17] as an extension of IREP and is the
acronym for Repeated Incremental Pruning to Produce Error Reduction.

IREP orders the classes by increasing frequency. It finds the rule that sep-
arates the minority class from the remaining classes. Those instances covered
by the learnt rule are removed from the dataset. In the next iteration the
second minority class is separated from the remaining ones. This process is
repeated until a single class remains.

RIPPER includes a new pruning and stopping criteria as well as post-
processing phase in order to optimize the set of learned rules.

2.2.4 Bayesian Classifiers

Under this denomination, the classifiers that use the Bayesian reasoning are
grouped in order to assign to a new instance the most likely class value.
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2.2.4.1 Bayesian Networks

Bayesian Networks are a graphic representation of the conditional dependen-
cies between a set of random variables. A Bayesian Network represents a pair
(G,P). G is a directed acyclic graph where each node represents a variable
and P = P (x1|π1, . . . , xn|πn) is a set of n conditional probability functions,
one for each variable, and πi is a set of parents of the node xi in G. P defines
a probability function associated with the following factorization:

P (x) =

n∏
i=1

P (xi|πi) (2.1)

Bayesian Network models stand out because of their interpretability: the
probability relationships allow to understand the influences and dependencies
among variables.

2.2.4.2 Naive Bayes

Naive Bayes is introduced by Cestnik [84]. Naive Bayes classifier assumes
that the predictive variables are independent among them given the class
variable. Hence, the posterior probability can be obtained by the product of
the individual conditional probabilities of each attribute given the class node.

P (xεθj) = P (θj)

n∏
i=1

P (xi|θj) (2.2)

2.2.4.3 Naive Bayes Tree

This method is introduced by Kohavi [65] and it is a hybrid algorithm. A
Decision Tree is generated but in each leaf a Naive Bayes is constructed with
the instances of the node.

2.2.5 Neural Networks

Neural Networks are a parallel distributed processing structure inspired by
human brain performance.

A Neural Network consists of a set of interconnected nodes (neurons).
Those connections receive a weight, where the higher the value the stronger
the connection between the nodes is. Each neuron receives inputs from other
neurons and the activation of a neuron is determined by a mathematical func-
tion, for instance, a weighted sum of the inputs, that determines the output
of the neuron.

One of the most common Neural Networks is the Perceptron. A single
Perceptron has two layers: the input layer and the output layer. One of the
main disadvantages of the single Perceptron is that it is not able to solve
non-linearly separable problems
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2.2.5.1 Multilayer Perceptron

The Multilayer Perceptron [99] is a feedforward artificial neural network which
is trained with a back-propagation learning algorithm.

The Multilayer Perceptron is able to deal with non-linearly separable prob-
lems introducing a new layer (see Figure 2.3). While the single Perceptron only
has two types of layers (input and output), the Multilayer Perceptron intro-
duces a third type, the hidden layer. When an instance to be classified is
presented to a Multilayer Perceptron, the input nodes take the information,
this information is then passed throughout the hidden nodes until it reaches
the output nodes. The main disadvantage of the Multilayer Perceptron is the
interpretability of the algorithm, it does not contain an easily understood
representation of the knowledge.

Fig. 2.3: Example of Multilayer Perceptron

2.2.6 Support Vector Machines (SVM)

Support Vector Machines (SVM) are the most common Kernel based method
and are proposed by Vapnik [7] . SVM performs classification by finding the
hyperplane that maximizes the margin between the two classes.

SVM can be seen as an extension of Maximal Margin Classifiers, classifiers
proposed to solve linear decision boundaries. The motivation behind the SVM
idea is to allow non-linear decision boundaries. To do so, the Support Vector
Machines enlarges the feature space through the use of functions called kernels.

The kernel function can be seen as a similarity function between two in-
stances. There are different kinds of kernel functions but the most popular
are the polynomial and the Gaussian kernels.

In a problem of two classes (θ0, θ1), when an instance x′ to be classified
arrives, the kernel function, k(a, b), that measures the similarities is applied
between the new instance and all the training data instances {x1, ..., xn}. Next
the formula w0+w1∗k(x′, x1)+w2∗k(x′, x2)... is applied, where the wi values
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are fixed in the training phase of the algorithm. If the result is higher than 0,
θ0 is predicted, otherwise θ1 is the predicted class value.

2.3 Performance measures

Several performance measures can be found in the literature. Due to its sim-
plicity, the Classification Rate is the most commonly used metric for calcu-
lating the accuracy of classifiers. However, Ben-David [6] shows that several
hits could be attributed to chance, and in order to compensate these random
hits, he proposes to use Cohen’s Kappa metric [16].

• Classification rate: this is also called accuracy. Among all the classified
instances, it calculates the proportion of well classified instances.

• Cohen’s Kappa [16]: this metric tries to calculate the portion of hits that
can be attributed to the classifier itself and are not obtained by chance.

kappa =
P0 − Pc
1− Pc

(2.3)

where P0 is the total agreement probability and Pc is the agreement prob-
ability that is due to chance.
Cohen’s Kappa also can be easily illustrated through use of a confusion
matrix, and Equation 2.3 is equivalent to this one:

kappa =
n
∑K
i=1 hii −

∑K
i=1 TriTci

n2 −∑K
i=1 TriTci

(2.4)

where n is the number of examples, K is the number of class labels, hii is
the number of true positives for each class (elements of the main diagonal)
and Tri and Tci are the total sum of the i-th row and column, respectively
(Tri =

∑m
j=1 hij , Tci =

∑m
j=1 hji).

Cohen’s Kappa ranges from -1 (total disagreement) through 0 (random
classification) to 1 (perfect agreement). However, most classifiers perform
at least as well as random, so in general they score Kappa higher than 0.

2.4 Classification error estimators

In a classification problem when the dataset of well classified instances is
available but there are no independent testing samples available, there are
several strategies, known as Classification Error Estimators, that allow to
calculate an estimation error given a classifier. In this sub-section, some of
the most popular Classification Error Estimators used in Machine Learning
are presented:
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2.4.1 Bootstrap and 0.632 bootstrap

The bootstrap estimator [30] is based on the statistical procedure of sampling
with replacement. The sampled instances are used as training data and the
original data as testing data.

The 0.632 bootstrap estimator [31] consists of the resubstitution estimator
[24] with a bias correction based on bootstrap samples. The 0.632 bootstrap
is recommended by Rodriguez et al. [98] for problems with low computational
complexity.

2.4.2 Hold-out and repeated hold-out

The hold-out method [71] partitions the dataset into two mutually exclusive
subsets: one subset is the training data and the other is the testing data. The
proportion of the data in each subset can vary, but it is common to hold-out
1/3 of the data for testing and use the remaining 2/3 for training.

Repeated hold-out estimator is based on iterating a random hold-out pro-
cess several times.

2.4.3 Cross-validation and repeated cross-validation

In k-fold cross-validation [55], the dataset is randomly split into k mutually
exclusive subsets. Each of these partitions is known as folds and each fold is
approximately of equal size. The classifier is trained and tested k times; each
time, k − 1 folds are used as training set while the remaining fold is used
as testing set. Commonly the k parameter is given a value of 10, which is
recommended by Kohavi [66].

As in repeated hold-out, the repeated k-fold cross-validation estimator
is based on iterating a random k-fold cross-validation process several times.
In this case the 5x2-fold cross-validation is commonly used, which is recom-
mended by Dietterich [25].

2.4.4 Leave-one-out

The leave-one-out estimator is a k-fold cross-validation estimator with k equal
to the number of instances in the dataset. In each iteration, each instance is
used as testing data, and the learning method is trained on all the remaining
instances.

2.5 Statistical Comparisons of Classifiers

It is often necessary to compare several classifiers over the same problem in
order to decide which of them achieves better results. However, in order to
obtain a meaningful decision, it is necessary to carry out a statistical analysis.
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The statistical tests considers that the null hypothesis being tested is that
all methods obtain similar results with non-signicant differences. Then the
rejection of the null hypothesis means that there exist statistical differences
among the classifiers that are compared.

Although there exist a variety of methods, in this sub-section only two non-
parametric statistical tests are presented: the Wilcoxon test, which is used to
compare two classifiers over multiple databases, and the Friedman test and
Iman-Davenport extension, which is used to compare multiple classifier over
multiple databases.

2.5.1 Wilcoxon Test

The Wilcoxon signed-rank test [118] is a non-parametric test. The use of this
statistical test is suggested by Demšar [21] to compare two algorithms based
on multiple data sets. It ranks the accuracy differences (according to their
absolute values) of two classifiers for each data set, ignoring the signs.

Let R+ be the sum of ranks for the data sets on which the first classifier
obtains the best results and R− the sum of the ranks for the opposite. And
let N be the number of the data sets. Then, the statistic

z =
min(R+, R−)− 1

4
N(N + 1)√

1

24
N(N + 1)(2N + 1)

(2.5)

has approximately a standard normal distribution, N (µ = 0, σ = 1).

2.5.2 Friedman test and Iman-Davenport extension

Friedman test [39] and Iman-Davenport [61] extension are also non-parametric
tests and they are recommended by Garćıa et al. [43] to observe if statistical
differences exist among several classifiers over several data sets.

The Friedman test ranks the classifiers for each data set separately and
compares the average ranks of them:

Ri = 1
N

∑N
j=1 r

j
i

being rji the rank of the ith of n algorithms on the jth of N data sets.
Friedman’s statistics

X2
F =

12N

n(n+ 1)
[

n∑
i=1

R2
i −

n(n+ 1)2

4
] (2.6)

follows, under the null hypothesis, a chi-square distribution with (n − 1)
degrees of freedom.

Iman and Davenport demonstrate that Friedmans X2
F presents a conser-

vative behaviour and propose a better statistic
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FF =
(N − 1)X2

F

N(n− 1−)X2
F

(2.7)

which follows a F-distribution with (n− 1) and (n− 1)(N − 1) degrees of
freedom.

Under the null-hypothesis, these algorithms state that all the classifiers
are equivalent. On the other hand, the rejection of the null-hypothesis implies
the existence of statistical differences among the classifiers. In order to find
the specific pairwise comparisons which produce differences, a post-hoc test
must be carried out. There are different post-hoc procedures. In [44], Garćıa
and Herrera suggest using the Shaffer post-hoc procedure.

The Shaffer post-hoc procedure [103] is an extension of Holm’s procedure
and follows a step down method. Let p1, ..., pm be the ordered p-values (small-
est to largest) and H1, ...,Hm be the corresponding hypothesis. Shaffer’s pro-
cedure rejects Hi if pi 6 α

ti
, where ti is the maximum number of hypothesis

which can be true given that any (i− 1) hypothesis is false.
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Distance-Based Algorithms

Distance-Based algorithms assume that there is a metric that measures the
distance between two instances and they consider the assumption that the
closer two instances are, the more similar they are. In short, they measure
the similarity among the instances based on their distance. The metric can
vary depending on the problem. The most common distance is the Euclidean
Distance, although other distances such as Manhattan or Mahalanobis are
also used.

One of its main advantages is its conceptual simplicity, since the fact that
two instances are similar is instinctive. Because of that, this kind of algorithm
is widely used in the literature.

Among the Distance-Based algorithms, the method called K Nearest
Neighbor (K-NN) is the most popular.

3.1 K Nearest Neighbors (K-NN)

K-NN is the extension of the Nearest Neighbors (NN) classification method,
and it assigns the category of its nearest neighbor to the new case. The first
formulation of a rule of the NN type and primary previous contributions to the
analysis of its properties is presumed to have been made by Fix and Hodges
[36].

Let {xi, θi}Ni=1 denote a training set of N well-labelled examples, where
xi represents i-th individual feature vector, and θi is the class which the
individual belongs to.

Consider a new case (x, θ), where θ is unknown. To estimate θ, the infor-
mation contained in the set of correctly classified examples is used. In this
case, the NN method assigns the class of the most similar point to this new
point. To do so, a distance d is needed, which calculates the dissimilarity
between the cases. So, x′ is called the Nearest Neighbor (NN) of x if
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min
i=1,...,n

d(xi, x) = d(x′, x) . (3.1)

An immediate extension to this decision rule is the so called K-NN ap-
proach [18], which assigns to the candidate x the class which is most frequently
represented among its K nearest neighbors.

The K number is an important parameter. If it is too small, the result
is sensitive to outliers and K-NN will ignore some close points which would
be relevant, while if it is too high, further instances can be included in the
decision, which frustrates the basic philosophy behind K-NN.

Fig. 3.1 illustrates a 3-NN decision rule. The 3 nearest neighbors of the
candidate case are selected, the instances inside the circle. In this case, since
two of the three neighbors belong to θo, applying the majority vote θo is
assigned to the new case.

+

+

+

+

+

+

Candidate

0 Class Case

+ Class case

Fig. 3.1: Three Nearest Neighbor Decision Rule

Much research has been devoted to the K-NN rule [19, 117]. One of the
most important results is that K-NN has very good asymptotic performance.
Broadly speaking, for a very large design set, the expected probability of
incorrect classifications (error) R achievable with K-NN is bounded as follows:

R∗ < R < 2R∗ (3.2)

where R∗ is the optimal (minimal) error rate for the underlying distribu-
tions. This performance, however, is demonstrated for the training set size
tending to infinity, and thus, it is not really applicable to real world problems
in which we usually have a training set of hundreds or thousands of cases, too
few for the number of probability estimations to be performed.

3.1.1 K-NN versions

There also exist several versions of the K-NN algorithm. The Instance-Based
learning algorithms (IBL) [1] are some of the most popular. The main differ-
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ence between IBL and K-NN is that IBL is incremental and it treats the noise
problem in a specific way.

Other versions propose different ways to obtain the K neighbors. Cleary
and Trigg [15] propose to use the entropy-based distance measure, whereas
Hastie and Tibshirani [52] suggest computing neighborhoods in directions
orthogonal to the local decision boundaries; to do so they use a local linear
discriminant analysis.

The dynamic selection of the best K value has also been treated in the
literature. Wang et al. [114] introduce a new method that dynamically adjust
the number of nearest neighbors based on the statistical confidence, whereas
Xie et al. [122] propose to select the K parameter that obtains the highest
estimated accuracy applying Naive Bayes classifier.

3.1.2 Weights in K-NN

In order to improve K-NN accuracy, many proposals consider introducing
weights in K-NN when classifying. On the one hand, it is proposed to select or
to weight the features [50, 100, 111]. On the other hand, the use of probabilistic
voting approaches is advocated [83, 107]; the main idea here is to calculate
the probability of each case belonging to its own class. A weight is assigned
to each case depending on this probability. Another option is to give different
weights to each neighbor.

Aiming to deal with the unbalanced dataset problems, Tan [112] develops
a new method that assigns different weights to the neighbors. This method
assigns higher weight to those neighbors that belong to a class with few solu-
tions. Inversely, a lower weight is assigned to the neighbors that belong to a
class with many solutions.

Arguing that the closer instances should be weighted more heavily than the
farther ones, Dudani [29] presents a new method which weights each neighbor
depending on the distance from the unclassified observation. This method is
called the Distance Weighted K Nearest Neighbor (DW-K-NN). Being Dwj
the weight assigned to the j-th neighbor, the following equation describes how
it is obtained:

Dwj =

{
dK−dj
dK−d1 , for dK 6= d1

1, for dK = d1
(3.3)

where dK , dj and d1 are the distances between the new case and the K-th
neighbor, the j-th neighbor and the nearest neighbor, respectively. Note that
Dwj takes values between 0 and 1.

In this work Dudani also proposes a second equation to weight the neigh-
bors based on distance.

Dwj =
1

dj + c
(3.4)
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where the constant c takes a value near to 0 and is added to avoid the
situation where the denominator takes 0 value, The drawback of this option
is that Dwj takes very large values for distances to dj close to zero, and thus in
many cases the classification algorithm is reduced to a simple nearest-neighbor
rule.

3.1.3 Weakening weaknesses

K-NN also has some drawbacks and several works try to reduce them. For
example Hellman [54] criticizes that K-NN algorithm sometimes makes a de-
cision without enough certainty about the answer it is giving, mainly due to
weak majority results. In order to avoid that, he presents the (K,L)-Nearest
Neighbor rule, where patterns with higher risk of being misclassified are re-
jected. Other approaches [23, 78] propose to extend K-NN in the belief func-
tions framework to better model the uncertain information.

The low tolerance with outliers is another disadvantage of the K-NN
method due to the fact that it considers all data as relevant. In this sense,
Shin et al. [105] propose to remove the outliers from the training set. Using
this idea, they improve the classification rate for text categorization.

Another weakness of the K-NN method is that in the management of large
data sets the computational demands can be high, as it is necessary to calcu-
late a new case’s distance with all the training instances. Some approaches try
to accelerate the execution [74, 115] to obtain a faster classification. Others,
propose a data reduction [34]. A hierarchically structured approach has also
been introduced to deal with this problem [97].

3.2 Contributions on Distance-Based Algorithms

In the presented research work several K-NN versions are presented. Some of
them attempt to minimize some of the K-NN weaknesses, whereas others offer
an innovative extension.

Some of the versions are focused on attempting to select the best K value
dynamically. Another version tries to reduce the influence of the outliers in
K-NN. Finally another version gives to all existing classes the chance to take
part in the final decision.

Summarizing the publication related to K-NN area:

• I. Mendialdua, N. Oses, B. Sierra, E. Lazkano. ”Positive Predictive Value
based dynamic K-Nearest Neighbor”, In Proceedings of the 2012 Knowledge-
Based Intelligent Information & Engineering Systems. 2012.

• B. Sierra, E. Lazkano, I. Irigoien, E. Jauregi, I. Mendialdua. ”K Nearest
Neighbor Equality: Giving equal chance to all existing classes”, Informa-
tion Sciences. 2011.
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• I. Mendialdua, B. Sierra, E. Lazkano, I. Irigoien, E. Jauregi. ”Decreas-
ing K Nearest Neighbor”. In Proceedings of the 2011 Conferencia de la
Asociación Española para la Inteligencia Artificial. 2011.

• I. Mendialdua, B. Sierra, E. Lazkano, I. Irigoien, E. Jauregi. ”Surrounding
Influenced K-Nearest Neighbors: A New Distance Based Classifier”, In
Proceedings of the 2010 Advanced Data Mining and Applications. 2010
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Multi-Classifiers

In the previous chapters we describe several paradigms widely used in the
field of Supervised Classification which provide the researcher important data
mining tools for data analysis. These include Decision Trees, Distance Based
Algorithms or Bayesian Classifiers.

The first considerations when we have to deal with a classification problem
consists of the following :

• Apply different algorithms to the problem.
• Evaluate the results through a validation technique.
• Select the algorithm that provides the best result.

However, with selecting the suitable combination of the classifiers, it can
be possible to obtain better results than selecting only the classifier with the
best result [70]. But in order to achieve this result, the combined classifiers
must satisfy two conditions: each individual classifier has to be accurate and
the classifiers to be combined must be diverse among them [51].

• An accurate classifier is the classifier that obtains better accuracy for the
new cases than the expected accuracy of a classifier that guesses randomly.

• Two classifiers are diverse when they make different errors in a set of new
individuals.

Table 4.1 illustrates an example of why these two conditions improve the
hit rate. The example shows the results obtained by 3 diverse and accurate
classifiers for 10 instances (x1−x10). Each classifier obtains 60% hit rate, but
it can be seen that by combining them it is possible to increment the accuracy
to 80%.

A more comprehensive account of the reasons why the classifiers combi-
nations outperforms the single ones is stated by Dietterich in [26]. He gives 3
reasons: statistical, computational and representational.



24 4 Multi-Classifiers

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Accuracy

Classifier1 X X X X X X × × × × 60%
Classifier2 × × × × X X X X X X 60%
Classifier3 X X X × × × × X X X 60%

Vote X X X × X X × X X X 80%

Table 4.1: Improving the accuracy combining 3 diverse classifiers

• Statistical: there may be several accurate classifiers for a problem. Com-
bining these accurate classifiers, the algorithm can average their votes and
reduce the risk of choosing the wrong classifier.

• Computational: some classification algorithms use local search methods,
which can lead to local optima. A classifier combination can expand the
search space, and offer different local optima which may provide a better
approximation to the true unknown function.

• Representational: it is possible that none of the single classifiers approx-
imates to the true function. Nevertheless, the combination of classifiers
might be able to get a more accurate function.

Commonly these combinations of classifiers are known as Classifier En-
sembles or Multiple Classifier Combinations. Two main approaches for the
design of Classifier Ensembles are defined in the literature: Classifier Fusion
and Classifier Selection. In the latter, each ensemble member is supposed to
have knowledge about the whole feature space; in the former, each ensemble
member is supposed to know well a part of the feature space and be respon-
sible for this subspace. Therefore, in the fusion approach, combiners such as
the majority vote are applied, whereas in the selection approach, a classifier
is selected to classify the new unlabelled instance.

4.1 Classifier Fusion

The motivation behind Classifier Fusion methods is to outperform individual
classifiers by training several models on each problem and then combine their
predictions by voting or by other methods. In the next sections some of the
most popular Classifier Fusion strategies are described:

4.1.1 Bagging

Bagging is proposed by Breimann [8] and it is based on the concepts of boot-
strapping and aggregation, hence its name Bootstrap AGGregatING. The idea
of Bagging is to combine, with a simple vote, the results of various classifiers
built on bootstrap replicates of the training set.

As we have seen, the combination of classifiers requires that the individual
components are diverse from each other. Thus, when Bagging is applied the
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selected base classifier should be unstable. An unstable classifier is a classifier
whose output is strongly affected by small changes in the training set. Decision
Trees are an example of unstable classifiers and that is why they are one of
the most used base classifiers in Bagging.

4.1.2 Random Forests

Random Forests are a variant of Bagging and are also proposed by Breiman
[9]. The new training sets are created as in Bagging but the Decision Trees are
built in a different way. In each node a random subset of features is selected
and only those features are considered to split the node. The tree is expanded
without pruning.

4.1.3 Boosting

Boosting attempts to turn a weak classifier in a considerably stronger clas-
sifier. While in Bagging all individual classifiers are built simultaneously, in
Boosting they are built sequentially, based on the results of the previous ones.
In each iteration, the new classifier assigns higher weight to those instances
wrongly classified by the previous classifier. Adaboost [37] is the most popular
Boosting version.

4.1.4 Stacked Generalization

Stacked Generalization is a well-known ensemble approach and it is also called
Stacking [108, 119]. While ensemble strategies such as Bagging or Boosting
obtain the final decision after a vote among the predictions of the individual
classifiers, Stacking uses another individual classifier to perform the combi-
nation of the predictions in order to detect patters and improve the obtained
accuracy.

Stacking is divided into two levels: in the level-0 each individual classifier
makes a prediction independently, and in the level-1 these predictions are
treated as the input values of another classifier, known as meta-classifier,
which returns the final decision. Figure 4.1 illustrates an example of Stacking.

The data for training the meta-classifier is obtained after a validation
process, where the outputs of the classifiers in level-0 are taken as attributes
and the class is the true class of the examples.

Ting and Witten [113] propose to extend Stacked Generalization using
class probability distributions of the original classifiers. Moreover, they pro-
pose to use the Multi-Response Linear Regression (MRLR) as meta-classifier.

Seewald [102] shows that this new version works correctly for two-class
problems, while it performs worse for multi-class problems. In order to solve
this problem, he introduces a new method called StackingC where, for each
class separately, a meta training set is created with the class probabilities
associated with the class. In this case, he also uses MRLR as meta-classifier.
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SVM

IB1

BNC4.5
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Meta−classifier

New Case (to be classified)

FINAL DECISSION

Fig. 4.1: Example of Stacking

On the other hand, there are some works that attempt to improve the
performance of Stacked Generalization by selecting the best classifiers us-
ing different evolutionary computation strategies. Chen [12, 13], proposes a
new ensemble construction method which applies Ant Colony Optimization
(ACO) in the Stacked Generalization ensemble construction process to gen-
erate domain-specific configurations. Shunmugapriya and Kanmani [106], use
Artificial Bee Colony(ABC) Algorithm as a meta-heuristic search algorithm
to obtain a suitable Stacked Generalization model. To this end, two versions
of the ABC algorithm are used. Ledezma et al. [73] use the genetic algo-
rithms and show that selecting the right classifiers, their parameters and the
meta-classifier is a critical issue.

4.2 Classifier Selection

The Classifier Selection strategies rely on the assumption that each classifier
is an expert in different areas. To do so they divide the feature space into
several local regions, and try to determine which classifier is the best in each
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one. Classifier selection techniques may be divided into two groups: static and
dynamic.

4.2.1 Static Classifier Selection (SCS)

In the Static Classifier Selection (SCS) strategies, the local regions and the se-
lected classifier for each of those are statically defined in the validation phase.
An example can be found on [69] where the training data is clustered into K
clusters and then the most successful classifier for each cluster is selected.

4.2.2 Dynamic Classifier Selection (DCS)

Dynamic Classifier Selection (DCS) strategies have received more attention
in the literature. Instead of selecting the classifiers in the validation step, as
SCS do, DCS strategies select the classifiers dynamically in the classification
phase considering the characteristics of the sample to be classified.

The first Dynamic Classification approaches are introduced by Woods [120]
and are based on the K-NN algorithm. He proposes two methods: Overall Lo-
cal Accuracy (OLA) and Local Class Accuracy (LCA). OLA method obtains
the K nearest neighbors of the new instance to be classified. It estimates each
classifiers’ accuracy for these K neighbors and the most accurate classifier is
selected to classify the new instance. LCA method is similar to OLA but it
considers the classifier’s predicted class to calculate its local accuracy. In other
words, if classifier Cj predicts the class θi for the new instance, the local ac-
curacy of Cj is considered in the following sense: a confidence level is given to
Cj which takes into account the percentage, among the K nearest neighbors,
that have been correctly assigned to this θi class. The classifier which obtains
the highest local accuracy is the selected one, thus, the class predicted by this
classifier is the chosen one.

Smith [109] introduces an immediate extension of OLA applying the Dis-
tance Weighted K-NN (DW-OLA). In this way, each of the K neighbors re-
ceives a weight depending on their distance to the unknown instance where
the closest neighbors have more influence in the classifier selection decision.
Giacinto and Roli [49] also extend Woods’s work proposing two new appo-
raches: A Priori and A Posteriori. A Priori strategy is similar to DW-OLA,
but the selection condition is changed taking into account the posterior prob-
ability of each classifier in the K neighbors. The second proposed approach,
A Posteriori, is a mixture of LCA with A Priori.

Other approaches use paradigms which are different to K-NN to assign
the local regions; Liu and Yuan [77] propose to use clustering. Firstly, for
each base classifier the feature space is divided into several clusters. Secondly,
the unknown sample is assigned to a cluster for each classifier. And finally,
the classifier of the most accurate cluster is selected to classify the unknown
sample.
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Recently, the DCS method has been extended to Dynamic Ensemble Selec-
tion (DES): instead of finding the most suitable classifier, the most suitable
ensemble for each sample is selected. These methods can be considered as
a combination of Classifier Selection and Classifier Fusion methods. Ko et
al. [63] present 4 new dynamic selection schemes that explore the properties
of the oracle concept. On the other hand, Dos Santos et al. [28] propose a
two-step DES method: in the first step, highly accurate candidates ensem-
bles are selected; in the second step, for each test sample, the ensemble with
the largest confidence level is selected among those ensembles. In a further
work Cavalin et al. [10] extend the previous work and adapt it to Dynamic
Multistage Organization strategy.

4.3 Contributions on Multi-Classifiers

A new contribution of Multi-Classifiers is presented in this work. The main
idea is to select the best subset of classifiers in each problem within Stacked
Generalization Multi-Classifier. The following publication has been obtained:

• I. Mendialdua, A. Arruti, E. Jauregi, E. Lazkano, B. Sierra. ”Classifier
Subset Selection to construct multi-classifiers by means of estimation of
distribution algorithms”. Neurocomputing, 2015.
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Class Binarization

As we have introduced previously, there exist different types of classifiers. For
some of them, such as SVM, it is much easier to build a classifier to distinguish
just between two classes. However, many real world problems are multi-class
problems, i.e. K > 2, K being the number of classes. In view of that, there
are some techniques, known as Class Binarization techniques, which divide the
original multi-class problem into many binary classification problems. Usually
the SVM algorithm is used as base classifier in all the binary sub-problems,
but due to the good results obtained, the use of these strategies has been
extended to other base classifiers, such as Ripper [40] or C4.5 [27]. In recent
years, the Class Binarization strategies have been receiving more attention
in the literature, and one indicative of that is that recently several reviews
have been published [41, 46, 81]. Moreover, it has been applied successfully
in different kinds of problems: ranking [59], computer vision [96], fingerprint
identification [57], OCR [22], natural language processing [48, 116]....

It is usual to consider the Class Binarization methods as part of the Clas-
sifier Combination strategies. Although it is true that the Class Binarization
strategies are ensembles, they follow different philosophies. While the Class Bi-
narization strategies aim to solve multi-class problem by dividing the original
into several binary sub-problems, the classical Classifier Combination strate-
gies attempt to improve a single classifier by creating several new classifiers
and combining them in order to obtain a new Multi-Classifier that outper-
forms all of them. Moreover, in the Multi-Classifiers each classifier is able
to return any of the classes, while in Class Binarization strategies each sub-
problem returns 0/1 results; this fact has allowed different output combination
models.

5.1 Structure

Class-Binarization is composed of two steps: decomposition and combination.
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In the decomposition step the original problem is divided into several bi-
nary sub-problems. The most popular strategies consist of grouping classes, in
this way each binary classifier compares two groups of classes between them.
Commonly, a so-called code-matrix is used to represent how the classes are
grouped.

Figure 5.1 shows a code-matrix example, where each row represents a class
and each column represents a binary classifier. Each class takes values in the
set {-1,0,+1}, where +1 indicates the classes associated to the positive-class,
-1 indicates the classes associated to the negative-class and 0 indicates that the
class is ignored for this binary problem. In Figure 5.1 how a 5-class problem
{θ1,θ2,θ3,θ4,θ5} is decomposed into 5 binary problems {f1,f2,f3,f4,f5} can
be seen. For instance, it can be seen that the classification sub-problem f1
is constructed in such a manner that the cases belonging to θ1 and θ2 are
grouped in class +1 and the cases in θ3 and θ5 in class -1. So the classifier
constructed to deal with f1 classification sub-problem aims at distinguishing
θ1 and θ2 classes on the one hand versus θ3 and θ5 on the other hand, while
the cases that belong to θ4 are not considered.

classifiers︷ ︸︸ ︷
f1 f2 f3 f4 f5

classes


θ1
θ2
θ3
θ4
θ5


+1 0 −1 −1 0
+1 +1 −1 −1 +1
−1 +1 +1 −1 0

0 −1 0 +1 0
−1 −1 0 −1 −1


f1 → θ1, θ2 vs θ3, θ5
f2 → θ2, θ3 vs θ4, θ5
f3 → θ3 vs θ1, θ2
f4 → θ4 vs θ1, θ2, θ3, θ5
f5 → θ2 vs θ5

Fig. 5.1: Example of a code-matrix

In the classification step, each binary classifier returns a prediction. So
the combination step consists of combining these predictions. Therefore, it is
crucial to select a proper combination of the outputs, since depending on this
decision the final decision can vary.

Different decomposition strategies have been developed. Two of the most
popular are One-Vs-All and One-Vs-One, which are described below.

5.2 One-Vs-All (OVA)

OVA decomposition scheme divides a K class multi-class problem, θ1, ..., θK ,
into K two-class problems, where each binary problem discriminates one class
from the others.
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In Figure 5.2a OVA’s code-matrix for 4 classes is shown: in each classifica-
tion problem one class is represented as the positive class while all the other
3 classes are represented as the negative-class.

As one class is compared with all the other classes, most of the binary
sub-problems are unbalanced. It is known that one of the drawbacks of an
unbalanced problem is the underestimation for the minority classes, thereby
the most represented class is selected in most cases. In view of that, in OVA
it is very common that all sub-problems return a class-negative prediction,
hence, ties are usual in the final decision when the majority vote is used.
Thus, it is more efficient to use the confidence level of each classifier to decide
the final output. The class with the highest confidence is the selected one.

OVA is introduced by Anand et al. [3]. Among the Class Binarization
strategies, OVA is that which has received less attention in the literature, and
there are not many aggregations. Polat and Günes [89] propose to use OVA
with C4.5 base classifier. Yang et al. [123] propose to integrate Decision Trees
in OVA to order the sequence of classifiers. Hong et al. [57] introduce a similar
idea but they integrate Naive Bayes in OVA; besides, the classifier sequence
is obtained dynamically. On the other hand, Kumar and Gopal [68] present a
method where they reduce the number of samples of the classifier discarding
the instances that are located out of an established region.

5.3 One-Vs-One (OVO)

OVO decomposition scheme, also called Pairwise Classification, divides a K
class multi-class problem, θ1, ..., θK , into K(K− 1)/2 two-class sub-problems.
In each sub-problem a classifier is learned using only the cases that belong to
a pair of classes (θi,θj), where θi 6= θj ; the remaining cases are ignored.

In Figure 5.2b OVO’s code-matrix for 4 classes is presented: in each column
one class is represented as +1 class, another one is represented as -1 and the
remaining 2 classes are represented as 0.

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1


(a) One-Vs-All


+1 +1 +1 0 0 0
−1 0 0 +1 +1 0

0 −1 0 −1 0 +1
0 0 −1 0 −1 −1


(b) One-Vs-One

Fig. 5.2: OVA and OVO code-matrix

There are several strategies to combine the outputs. The simplest way is
to use the majority vote strategy [38, 40] also called as Max-Wins; the most
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voted class is the selected one. An immediate extension is the Weighted Vot-
ing (WV) to use the confidence level of each binary problem as a vote. Its
robustness has been shown in [60]. Hastie and Tibshirani [53] propose a new
method called Pairwise Coupling (PC). The aim of the method is to find
the best approximation of the class posterior probabilities given the posterior
probabilities of the pairwise sub-problems. To do so, they transform the prob-
lem into an iterative one where they try to minimize the average weighted
Kullback-Leibler divergence between the obtained pairwise estimates and the
true pairwise probability values. Wu et al. [121] also estimate the posterior
probabilities of each class, but the optimization formulation is different than
the one presented in [53]. Jelonek and Stefanowsky [62] also extend [53] adding
a credibility coefficient. Krzyśko and Wolyński [67] introduce several variations
to combine the outputs of the sub-problems. The use of Belief Functions also
has been proposed by Quost et al. [93]. Savicky and Fürnkranz [101] propose
to replace the voting procedure with Stacked Generalization.

OVO has several drawbacks; 3 of the main disadvantages of OVO are the
followings:

1. Unclassifiable regions: it is possible that each binary classifier votes for a
different class, hence there is no winner. Thus, some tie-breaking technique
is needed.

2. Number of classifiers: compared with OVA, it can be seen that OVO cre-
ates more sub-problems. Moreover, the disadvantage of having so many
sub-problems is that most of them are irrelevant and they are forced to
give wrong answers for many instances, because each classifier must assign
every pattern to one of two classes. If a pattern belongs to class i, all the
classifiers that are not trained to differentiate this class will cast wrong
votes. However, OVO uses fewer examples in each sub-problem and, thus,
has more freedom for fitting a decision boundary between the two classes.

3. Weak classifiers: the classical way is to select the optimal classifier for the
dataset as base classifier. Therefore, all the sub-problems are classified
with this classifier. As there are too many sub-problems, it is possible that
this base classifier has difficulties to distinguish between all of them, thus,
the classifiers return wrong results. This raises the question – should the
same base classifier be used on all sub-problems or should sub-problems
be tuned independently?

Several proposals have been developed in the literature in order to solve
these problems.

In order to resolve the unclassifiable regions Platt et al. [88] publish a
new combination proposal called Decision Directed Acyclic Graph (DDAG).
DDAG builds a rooted binary acyclic graph where in each node a classifier
discriminates between two classes. The final answer is the class assigned by
the leaf node. Liu et al. [76] introduce a tie-breaking technique, in which OVO
is applied using only the examples in the unclassifiable region.
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On the other hand, other approaches try to reduce the number of binary
classifiers in OVO. To do so, some proposals suggest using the Dynamic Clas-
sifier Selection [4, 42]. Park and Fürnkranz [86] propose to count the number
of votes that a class does not received. When the following classes get more no-
votes, further evaluations with this class are ignored because it is impossible
to achieve higher total voting. Other authors propose the use of hierarchical
structure. Fei and Liu [35] present a new architecture called Binary Tree of
SVM (BTS). BTS is a binary tree where in each node two classes are distin-
guished. The main idea of BTS is to use the separating plane for these two
classes, and also to distinguish other classes. Chen et al. [11] introduce a new
BTS version where they try to select the binary SVM with the fewest number
of separating lines. Following the same idea, to reduce the number of classi-
fiers, the hierarchical structure has been extended to other Class Binarization
strategies [47, 80, 82, 90].

Finally, other approaches try to solve the weak classifier problem using
each sub-problem independently. On the one hand, some proposals focus on
attempting to select the best base classifier in each sub-problem [110]. On
the other hand, other approaches try to select the best hyper-parameters of
SVM in each sub-problem. Because of the high number of possible values of the
hyper-parameters, most of these works use evolutionary algorithms. Lebrun et
al. [72] and Liepert [75] propose the use of Genetic Algorithms while Souza et
al. [20] propose the use of Particle Swarm Optimization. The results obtained
by these four works are contradictory, since two of them consider that the
independent tune of the sub-problems is better while the other two consider
that there is no significant difference.

Lorena and Carvalho [79] consider that none of the mentioned works per-
formed a rigorous statistical analysis. Thus, they investigated the use of Ge-
netic Algorithms to automatically tune the parameters of each binary SVM.
They conclude that the use of the same parameter values in all binary SVM
is sufficient to obtain good results.

In his PhD thesis, Reid [94] conclude that, although it is better to use the
same base classifier for all the sub-problems when decision boundaries of the
sub-problems have similar shapes, in the cases where the decision boundaries
have a different shape it is better to treat sub-problems independently.

5.3.1 Combining OVA and OVO

Some authors propose new approaches based on the combination of OVA and
OVO. On the one hand, Moreira and Mayoraz [85] propose to apply OVO
taking into account the probability that the new example belonged to each
pair of classes. This probability is obtained following the OVA idea: creating a
classifier that distinguishes between the two classes and the rest of the classes.
On the other hand, Garćıa-Pedrajas and Ortiz-Boyer [45] and Ko and Byun
[64] present a very similar idea to combine OVA and OVO. In an interesting
motivation section, Garćıa-Pedrajas and Ortiz-Boyer [45] show that in the
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majority of the cases the correct class is between the two largest confident
outputs of OVA. Thus, in their new method they obtain the two classes with
the highest confidence level in OVA first. After that, OVO is applied and a
classifier is built taking into account only the cases that belong to these two
classes.

5.4 Error Correcting Output Codes (ECOC)

Error Correcting Output Codes (ECOC) framework is introduced by Diet-
terich and Bakiri [27] although its origins can be found in the information
transmission [104]. The original ECOC method requires all classes to appear
in each sub-problem; moreover, the code-matrix has more columns (classifiers)
than required. Those additional columns introduce a redundancy which pro-
vide the system the capability to recover from classification errors committed.
Furthermore, the better the separability of the rows and the better the sep-
arability of the columns, the better the error correcting capability obtained.
To take the final decision, the authors propose to create an output-vector
which contains the results of each sub-problem. This output-vector is com-
pared with the row of each code-matrix and the class of the row with the
minimum Hamming distance is assigned to the new instance.

In the ECOC proposed by Dietterich and Bakiri [27], the ”0” symbol in the
code-matrix is not allowed. Thus, Allwein et al. [2] propose to extend ECOC
scheme introducing the ”0” symbol, allowing some classes to be ignored in the
binary classifiers. Furthermore, they consider that only applying Hamming
distance, essential information is lost. Thus, they introduce the Loss-Based
decoding which considers the confidence level of the classifiers.

Several ECOC versions have been developed with different aims. Some of
them try to outperform the outputs combination by proposing to use Eu-
clidean Distance [32] or improving the Loss-Based decoding [33].

As there are too many possible code-matrix solutions, several authors have
focused on reducing the number of sub-problems. Bautista et al. [5] introduce
the minimal ECOC design, whereas other authors proposed ECOCs that can
be converted into binary trees structured hierarchical classifier, where in each
node a binary partition is made [90]. On the other hand, Pimenta and Gama
[87] present a new strategy to define the best number of sub-problems for each
multiclass problem.

5.5 Comparison

In several works different Class Binarization strategies have been compared.
Some of them conclude that OVO is significantly better than OVA [40, 58].
However, Rifkin and Klautau [95] suggest that when the binary classifiers
are well-tuned, OVA performs as well as the other strategies. Recently, two
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empirical studies have appeared concerning this question [41, 46]. Galar et
al. [41] compare different OVO and OVA strategies. While Garćıa-Pedrajas
[46] compare the different Class Binarization strategies among them. They
consider that OVO is the best choice when weak classifiers are used, while
ECOC is recommended with powerful learners. Moreover, they show that
when ECOC uses the same number of classifiers as OVO (K(K−1)/2), OVO
obtains a slight advantage.

5.6 Contribution on Class Binarization

This work is focused on Class Binarization strategy, especially in OVO
method, with which the main contributions have been achieved. Three main
contributions are presented. One of them reduces the number of sub-problems
in OVO strategy. Another one is an OVA and OVO combination which selects
a different base classifier in each sub-problem statically. And the last proposal
selects the base classifier in each sub-problem dynamically.

With these works, the following has been published in international jour-
nal:

• A. Arruti, I. Mendialdua, B. Sierra, E. Lazkano, E. Jauregi. ”NewOne−
V ersusAllOne method: NOV@”. Expert Systems with Applications, 2014.

And another two articles have been submitted to international journals:

• I. Mendialdua, G. Echegaray, I. Rodriguez, E. Lazkano, B. Sierra. ”Undi-
rected Cyclic Graph Based Multiclass Pair-wise Classifier: classifier num-
ber reduction maintaining accuracy”, Neurocomputing.

• I. Mendialdua, J. M. Mart́ınez-Otzeta, I. Rodriguez, T. Ruiz-Vazquez, B.
Sierra. ”Dynamic selection of the best base classifier in One versus One”,
Knowledge-Based Systems.
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Contributions

The main contributions of this research work are briefly described in this
section.

6.1 Contributions published in international journals

6.1.1 K Nearest Neighbor Equality: Giving equal chance to all
existing classes

Authors: B. Sierra, E. Lazkano, I. Irigoien, E. Jauregi and I. Mendialdua.

Journal: Information Sciences. (Q1)

Year: 2011

An extension of the K-NN algorithm is presented in this paper. The new
approach is called K Nearest Neighbor Equality (K-NNE), since all the classes
take part in the final decision. When an instance has to be classified according
to the K-NN algorithm, its K nearest neighbors are obtained and the most
represented class among those neighbors is predicted for the new instance.
However, if there are classes that are not represented among those neighbors,
they are not taken into account. In order to make all the classes participate,
K-NNE finds the K nearest neighbors of each class for the new instance. The
mean distance of the K neighbors of each class is calculated and the class with
the minimum mean distance is predicted. This proposal is compared with the
classical K-NN algorithm for different K values obtaining promising results.
In order to verify this conclusion, the Wilcoxon test is applied, which confirms
the statistical significance of the good performance of the proposal.



38 6 Contributions

6.1.2 New One V ersusAll
One method: NOV@

Authors: A. Arruti, I. Mendialdua, B. Sierra, E. Lazkano and E. Jauregi.

Journal: Expert Systems with Applications. (Q1)

Year: 2014

In this paper, two new algorithms that combine OVA and OVO are pre-
sented. The description of OVA and OVO algorithms can be found in section
5. Usually OVA and OVO use the same base classifier for every sub-problem;
however, some approaches treat each sub-problem independently and their
aim is to find the best base classifier for each sub-problem. The presented
approaches are an extension of these works. The first approach described in
the paper is called OVA+OVO. OVA+OVO is a simple combination of OVA
and OVO: the multi-class problem is decomposed following OVA and OVO
strategies and the outputs of the sub-problems are combined using the ma-
jority vote. An empirical study is carried out, where the new proposal is
compared with other state-of-the-art algorithms. Due to the bad results ob-
tained by OVA, its results are analyzed and therefore the second approach
called NewOne − V ersusAllOne (NOV@) is proposed. NOV@ is also a combi-
nation of OVA and OVO strategies: OVA is applied and the majority vote
is used for the OVA outputs. If there are ties, OVO is applied considering
the tie-classes. Once again, an empirical study is carried out and this time
NOV@ is incorporated to the previous comparison. OVO+OVA and NOV@
show a good performance and the Iman-Davenport test confirms the statisti-
cal significance of this behaviour. Furthermore, the computational load of the
algorithm is analyzed and it is shown that NOV@ needs fewer sub-problems
than OVO to achieve better results.

6.1.3 Classifier Subset Selection to Construct Multi-Classifiers by
means of Estimation of Distribution Algorithms

Authors: I. Mendialdua, A. Arruti, B. Sierra, E. Lazkano and E. Jauregi.

Journal: Neurocomputing. (Q1)

Year: 2015

In this paper a new algorithm that tries to select the best subset of clas-
sifiers for each database is presented. Hence, the new approach is called Clas-
sifier Subset Selection (CSS). To combine the output of the selected classi-
fiers, the well-known Multi-Classifier technique called Stacked Generalization
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is used. In this work, a set of 10 single classifiers are provided initially and in
the validation phase the goal is to select the most diverse and accurate subset
of them; to do so, an evolutionary approach called Estimation of Bayesian
Network Algorithm (EBNA) is used. This proposal is compared with other
Multi-Classifiers obtained from the state-of-the-art. The obtained results are
very good and the statistical test applied confirms the robustness of the pro-
posal.

6.2 Contributions submitted to international journals

6.2.1 Undirected Cyclic Graph Based Multiclass Pair-wise
Classifier: classifier number reduction maintaining accuracy

Authors: I. Mendialdua, G. Echegaray, I. Rodriguez, E. Lazkano and B.
Sierra.

Journal: Neurocomputing. (Q1)

The new approach presented in this paper is called Decision Undirected
Cyclic Graph (DUCG) and its aim is to reduce the number of sub-problems
in OVO. To do so, an undirected cyclic graph is created where each node rep-
resents a class and has degree 2. Instead of comparing all the classes between
them, each class is compared with the classes that are connected in the graph.
To create the graph and try to find the best class comparisons, an evolutionary
computation approach from the state-of-the-art called Edge Histogram-Based
Sampling Algorithm (EHBSA) is used. An empirical comparison with other
state-of-the-art algorithms is carried out over 4 different classifiers. The ob-
tained results show that OVO and DUCG are the most robust algorithms,
although it is worth mentioning that DUCG needs fewer base classifiers than
OVO.

6.2.2 Dynamic selection of the best base classier in One versus
One

Authors: I. Mendialdua, J. M. Mart́ınez-Otzeta, I. Rodriguez, T. Ruiz-
Vazquez and B. Sierra.

Journal: Knowledge-Based Systems. (Q1)

A new approach is presented that combines the research lines developed
in this thesis project: Class Binarization, Multi-Classifiers and K-NN. The
aim of the proposal is to select the best base classifier for each sub-problem
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of OVO dynamically for each unseen instance. The new proposal is called
DYNOVO. Several variations of the proposal are shown. Two of them use
two Dynamic Classifier Selection techniques from the state-of-the-art: Overall
Local Accuracy (OLA) and Distance Weighted Overall Local Accuracy (DW-
OLA). Both methods use K-NN algorithm to obtain the local region of the
unseen instance. Another two variations of DYNOVO are also proposed: when
OLA or DW-OLA are applied, instead of using K-NN, it is proposed to use
K Nearest Neighbor Equality (K-NNE) algorithm. The proposal is compared
with other state-of-the-art methods and it obtains very good results, especially
when OVO, DW-OLA and K-NNE are combined. The Iman-Davenport test
confirms the statistical significance of the good performance of DYNOVO.
Moreover, the computational load of DYNOVO is also analyzed.

6.3 Contributions published in international conferences

6.3.1 Surrounding Influenced K-Nearest Neighbors: A New
Distance Based Classifier

Authors: I. Mendialdua, B. Sierra, E. Lazkano, I. Irigoien and E. Jauregi.

Conference: International Conference on Advanced Data Mining and Ap-
plications. (CoreB)

Year: 2010

A new version of the K-NN is proposed in this paper. The aim of the
algorithm is to reduce the influence of the outliers in K-NN algorithm. To
do so, the limits of the K neighbors are extended obtaining their I nearest
neighbors, where I is a new parameter introduced. The proposed method is
compared with the original K-NN algorithm obtaining promising results for
two-class problems.

6.3.2 Positive Predictive Value based dynamic K-Nearest
Neighbor

Authors: I. Mendialdua, N. Oses, B. Sierra and E. Lazkano.

Conference: International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems. (CoreB)

Year: 2012
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In this paper a new version of K-NN is introduced whose goal is to select
the most reliable K for each test instance. When a test instance to be classified
arrives, it is classified for different K values. Observing for each K how many
votes the winning class receives, the K with the most reliable prediction is
selected. To calculate the reliability, the Positive Predicted Values (PPV)
obtained in a validation process are used. The new algorithm is compared
with K-NN and gets interesting results.

6.3.3 Combination of one-vs-one and one-vs-all using different
base classifiers.

Authors: I. Mendialdua, B. Sierra, E. Lazkano and E. Jauregi.

Conference: The European Research Consortium for Informatics and Math-
ematics. (CoreB)

Year: 2012

It is worth mentioning that in ERCIM only the abstract is presented and
not the full paper. Therefore, in the part where the contributions are presented
there is no contribution with this title.

A preliminary version of the article ”NewOneV ersusAllOne method: NOV@”
is presented in this conference. To be more precise, the first combination
of OVA and OVO called OVA+OVO is presented. In order to validate the
performance of the OVA+OVO, an empirical study has been done where the
new method has been compared with OVA and OVO. Experimental results
show that the new method gets promising results.

6.4 Contributions published in national conferences

6.4.1 Decreasing K Nearest Neighbor

Authors: I. Mendialdua, B. Sierra, E. Lazkano, I. Irigoien and E. Jauregi.

Conference: Conferencia de la Asociación Española para la Inteligencia Ar-
tificial

Year: 2011

In this paper a new version of the K-NN algorithm is proposed. K-NN
sometimes makes the prediction without enough certainty. In order to solve
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this problem, a new algorithm that selects the value of the K parameter dy-
namically is presented. This method is called Decreasing K Nearest Neighbor
(DK-NN). DK-NN starts assigning to the K parameter a high value, and this
value decreases until the most voted class exceeds a percentage of votes. The
aim is to assure that the final decision is made with enough confidence. The
proposed method is compared with K-NN algorithm obtaining interesting re-
sults.
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Conclusion

This work has been devoted to developing several contributions in the Su-
pervised Classification area. To do so, besides combining several Supervised
Classification strategies, other approaches of Artificial Intelligence such as
Evolutionary Algorithms have also been used.

The contributions have been made in 3 research lines: Distance-Based
algorithms, Multi-Classifiers and Class Binarization techniques.

Distance-Based Algorithms: the first contributions of this work are the pro-
posal of several versions of the K-NN algorithm. The main objective of
these versions is to try to solve some of the weaknesses of K-NN propos-
ing innovative ideas. The main contribution among those versions is the
K Nearest Neighbor Equality (K-NNE) algorithm, whose relevance is sup-
ported by a publication in a Q1 journal.

Multi-Classifiers: a novel extension of the well-known Stacked Generalization
Multi-Classifier is introduced. The aim of the proposal is to select the best
subset of classifiers.

Class Binarization: in the Class Binarization research line some of the most
relevant works proposed in this thesis project can be found. A study of
the Class Binarization strategies has been carried out, where the majority
of works are focused on the strategy One versus One (OVO). On the one
hand, it is focused on the reduction of the number of sub-problems in
OVO. To do so, a new algorithm called Decision Undirected Cyclic Graph
(DUCG) is proposed. On the other hand, novel algorithms that treat
independently each sub-problem and tries to find the best classifier for
each sub-problem have been tested. Two proposals have been developed
in this way. The first one is called NewOne − V ersusAllOne (NOV@) and
it is a combination of OVO and One versus All (OVA). The second one
is called DYNOVO and its aim is to select for each test instance the best
base classifier in each sub-problem. Moreover, DYNOVO can be seen as
the union of the three research lines followed in this thesis project, since



44 7 Conclusion

it combines K-NN algorithm, Dynamic Classifier Selection strategies and
OVO.

7.1 Future work

The contributions presented in this thesis project cover several gaps in the
areas mentioned above; however, there are several lines of work that can be
studied in the future. The most direct one is the extension of these methods to
real life problems, especially to those problems that the research group I belong
to is dealing with. Another option is to continue improving the proposed
approaches and to continue trying to solve some of the weaknesses that are
found in the state-of-the-art algorithms. In this section some of the future
works for each of the research lines are presented:

Distance-Based Algorithms: given the good synergy observed between K-
NNE and Dynamic Classifiers Selection strategies for binary problems,
it would be interesting to analyze this combination in multi-class prob-
lems.

Multi-Classifiers: on the one hand, we are working in the next version of
Classifier Subset Selection (CSS), where the objective is to try to select
the best subset of classifiers for each test instance dynamically. On the
other hand, given the interesting results obtained by the proposed Clas-
sifier Subset Selection algorithm, the aim is to apply the proposal in real
problems. Two options are treated in this sense: the first one is to apply
in Natural Language Problems dependency parsing problems: the objec-
tive would be to predict the dependency relations among the words of a
sentence. The second one is to apply in Emotions Recognition.

Class Binarization: related to the Class Binarization strategies, there are also
several promising work lines. One of them could be working on another
version of OVO with the aim of reducing the number of sub-problems
applying One-Class classification strategies. The One-Class classifiers de-
cide if the unseen instance belongs to the same class of the training
set instances or to another unknown class. Thus, the idea is to classify
the unseen instance with the One-Class classifier in each sub-problem. If
the classifier predicts that the instance belongs to the same class as the
training data, the output of the sub-problem is considered, otherwise the
sub-problem is discarded. Another idea is to combine the proposed CSS
method with OVO, where in each sub-problem the CSS is used as base
classifier.
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[59] Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker, K. (2008).
Label ranking by learning pairwise preferences. Artificial Intelligence,
172(16):1897–1916.



References 49
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[89] Polat, K. and Güneş, S. (2009). A novel hybrid intelligent method based
on c4. 5 decision tree classifier and one-against-all approach for multi-class
classification problems. Expert Systems with Applications, 36(2):1587–1592.

[90] Pujol, O., Radeva, P., and Vitria, J. (2006). Discriminant ecoc: a heuris-
tic method for application dependent design of error correcting output
codes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(6):1007–1012.



References 51

[91] Quinlan, R. (1986). Induction of decision trees. Machine Learning,
1(1):81–106.

[92] Quinlan, R. (1993). C4.5: programs for machine learning. Morgan Kauf-
mann Publishers, San Mateo, CA.

[93] Quost, B., Denoeux, T., and Masson, M.-H. (2007). Pairwise classifier
combination using belief functions. Pattern Recognition Letters, 28(5):644–
653.

[94] Reid, S. R. (2010). Model combination in multiclass classification. PhD
thesis, University of Colorado.

[95] Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification.
The Journal of Machine Learning Research, 5:101–141.

[96] Rocha, A., Hauagge, D. C., Wainer, J., and Goldenstein, S. (2010). Au-
tomatic fruit and vegetable classification from images. Computers and elec-
tronics in agriculture, 70(1):96–104.

[97] Rodriguez, C., Boto, F., Soraluze, I., and Pérez, A. (2002). An incremen-
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a b s t r a c t

The nearest neighbor classification method assigns an unclassified point to the class of the
nearest case of a set of previously classified points. This rule is independent of the under-
lying joint distribution of the sample points and their classifications. An extension to this
approach is the k-NN method, in which the classification of the unclassified point is made
by following a voting criteria within the k nearest points.

The method we present here extends the k-NN idea, searching in each class for the k
nearest points to the unclassified point, and classifying it in the class which minimizes
the mean distance between the unclassified point and the k nearest points within each
class. As all classes can take part in the final selection process, we have called the new
approach k Nearest Neighbor Equality (k-NNE).

Experimental results we obtained empirically show the suitability of the k-NNE algo-
rithm, and its effectiveness suggests that it could be added to the current list of distance
based classifiers.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

In a supervised classification problem based on a sample of p-variate observations x1, . . . ,xn classified in h1, . . . ,hM classes
or populations, and given a new observation or case x, the aim is to classify x in its correct class [23]. If the modeler has com-
plete statistical knowledge of the underlying joint distribution of the observation x and the category hm (m = 1, . . . ,M), a stan-
dard Bayes analysis will yield an optimal decision procedure and the corresponding minimum (Bayes) probability of error
classification, R⁄.

However, if the only knowledge the modeler has of the distribution is that which can be inferred from samples, then the
decision to classify x into the category hm depends on the sample x1, . . . ,xn along with its correct classification in categories
h1, . . . ,hM, and the procedure is by no means clear. The classification problem falls into the domain of supervised classifica-
tions, where there is no an optimal classification procedure with regards to all underlying statistics.

Assuming that the classified samples xi are independently identically distributed according to the distribution of x,
certain heuristic arguments may be considered about good decision procedures. For example, it is reasonable to assume that
observations which are close together (in some appropriate distance metric) will have almost the same posterior probability
distributions in their respective classifications.

Thus to classify the unknown sample x we may choose to give a heavier weight to the nearby xi’s. Perhaps the simplest
non-parametric decision procedure of this type is the nearest neighbor (NN) classification method, which assigns the cate-
gory of its nearest neighbor to x.

0020-0255/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2011.07.024
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The first formulation of a rule of the NN type and primary previous contribution to the analysis of its properties is pre-
sumed to have been made by Fix and Hodges [13]. They investigated a method that is known as k Nearest Neighbors (k-NN),
which assigns an unclassified point to the class most heavily represented among its k nearest neighbors.

In this paper we present a modification of the k-NN method that searches for the k nearest neighbors of the point to be
classified in each class, and assigns the point to the class whose k points have the minimal mean distance to the new point.
The idea is based on the assumption that the underlying distribution of the predictor variables (components of x) could be
different in each class.

This paper is organized as follows. In Section 2 we review the k-NN classification method, while Section 3 is devoted to
Related Works in distance based classifiers, the new proposed method is introduced in Section 4, in Section 5 we show the
experimental results obtained and concluding remarks are presented in Section 6.

2. The k-NN classification method

Let x1, . . . ,xn be a correctly classified sample in classes h1, . . . ,hM, where xi takes values in a metric space upon which a
distance function d is defined. We will consider the pairs (xi,hi), where xi is the p-variate observation upon the ith individual,
and hi is the class or category which that individual belongs to. We usually say that ‘‘xi belongs to hi’’ when we mean precisely
that the ith individual, upon which measurements xi have been observed, belongs to category hi 2 {h1, . . . ,hM}.

Consider a new pair (x,h), where only the measurement x is observable, and where we estimate h by using the informa-
tion contained in the set of correctly classified points. We shall call

x0 2 fx1; . . . ; xng

the nearest neighbor (NN) of x if

min
i¼1;...;n

dðxi;xÞ ¼ dðx0;xÞ:

The NN classification decision method gives to x the category hi, that is, the category of its nearest neighbor xi. In case of a tie
between several neighbors, a modification of the decision rule is applied.

An immediate extension to this decision rule is the so called k-NN approach [7], which assigns the candidate x the class
which is most frequently represented in the k nearest neighbors to x. In Fig. 1, for example, the 3-NN decision rule would
decide that class ho is active because two of the three nearest neighbors of x belong to class ho.

3. Related work

Much research has been devoted to the k-NN rule [8]. One of the most important results is that k-NN has a very good
asymptotic performance. Broadly speaking, for a very large design set, the expected probability of incorrect classifications
(error) R achievable with k-NN is bound as follows:

R� < R < 2R�

+

+

+

+

+

+
Candidate

0 Class Case

+ Class case

Fig. 1. Third nearest neighbor decision rule.
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where R⁄ is the optimal (minimal) error rate for the underlying distributions. This performance, however, is demonstrated for
the training set size tending to infinity, and thus, it is not really applicable to real world problems in which we usually have a
training set of hundreds or thousands of cases, too few for the number of probability estimations to be performed.

Some distance based approaches, such as that of Weinberger et al. [34] try to increase the obtained accuracy in distance
based classification by looking for a specific distance, in an automatic way, for each classification problem. The proposed ap-
proach could be used to deal with unbalanced or biased databases; a similar idea can be found in other distance based meth-
ods [32,18,14]. Alternatively, PEBLS instance based inducer (Cost and Salzberg [6]) incorporates MVDM distance metric to
deal with symbolic features, a modification of Stanfill and Waltz’s VDM metric [30].

Improvements in classification can also be achieved by selecting and/or weighting features (see [31] for an example).
Probabilistic voting approaches have also been used [24,29]; the main idea here is that each case among the k nearest ones
makes a weighted vote in favour of the class it belongs to, being the weight the probability each case has of belonging to its
own class. A very well kown approach is the so called Instance Based Learning (IBL), based on the work of Aha [2] and Wett-
schereck [35]; there are several versions of the algorithm [1].

Another problem that arises with the distance based classifier systems is the management of large database. Studies de-
voted to data reduction [12] show interesting approaches which could also be used in combination with any distance based
algorithm when the size of the database is huge; there are also studies that try to accelerate the execution of the distance
based algorithm [33,21] to obtain faster classifications. Other approaches, such as Nearest neighbor editing, aim to increase
the classifier generalization ability by removing noisy instances from the training set [15].

There are other distance based classifiers which aim to deal with the so called multi labeling problem [36], classifying
each case in several categories. For instance, and taking as an example the document categorization area, a newspaper article
reporting the wedding of the president of a certain country would obtain Politics and Society as category labels, both being
adequate for the document.

The next section is devoted to the new approach we present in this paper.

4. The k Nearest Neighbor Equality method

The new approach can be seen as a new distance based classifier within the k-NN family of classifiers. Two are the main
reasons for this new version: to decrease the influence of outliers in the voting process, and to include all the classes as can-
didates in the final selection process.

4.1. Motivation to extend k-NN

Whereas k-NN rule offers good results in general, there are some situations where it could be improved. Let us consider
the following situation with 2 classes where the observations are drawn from bivariate normal populations:

Xh1 � Nðl1;RÞ and Xh2 � Nðl2RÞ;

with l1 = (3,0)0,l1 = (�3,0)0 and variance–covariance matrix R ¼ 22 0
0 32

� �
. We generated 40 cases from each class (see

Fig. 2). Let us consider case x = (1,�1.5) which is more likely drawn from class h1 than from class h2. Under 3-NN, the closest
cases are indicated as shaded symbols and x would be classified in class h2. However, we can see, in general, that cases from
h1 (circles) are closer from x than cases from h2 (triangles). Summarizing, there are situations where a few cases from one
class can ‘‘contaminate’’ the natural surroundings of the other. The method we propose addresses this problem and aims
to solve it by diminishing the importance of outlier cases in the classification process.

We propose a modification of the k-NN algorithm that takes into account the information about the real class given by the
values of the components of the observation x.

In view of the interest in k-NN, it is surprising that – to the best of the authors knowledge – the following generalization of
the rule has not been investigated: given k, search for the k nearest neighbor cases to x in each class h1, . . . ,hM, and classify the
case x to the class hm� whose k nearest neighbor cases have the minimum mean distance to x. That is, considering individuals
xi1m

; . . . ;xikm
are the k NN for x in class hm, m = 1, . . . ,M,

classify x in hm� if min
m¼1;...;M

1
k

X
l¼1;...;k

dðx;xilm
Þ

( )
¼ 1

k

X
l

dðx;xilm�
Þ:

We have called this rule k Nearest Neighbor Equality (k-NNE).
This method will be introduced and empirically investigated below. It will be shown that its application outperforms k-

NN, especially for multi-class problems (M > 2 classes).
The new proposed method, k-NNE is shown in its algorithmic form in Fig. 3. It is a simple method that obtains good re-

sults in multi-class problems. Although the computational cost seems to be expensive, it is very similar to the original k-NN
computational cost, since in both cases the distance with respect to all cases must be calculated. Moreover, the obtained re-
sults are better than those obtained using other classification techniques (Classification Trees, Rule Induction, Instance Based
Learning,. . .) found in the literature.
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As can be seen in Fig. 4, the k-NNE approach works as follows: given a set of n correctly classified cases (x1,h1), (x2,h2), . . . ,
(xn,hn) in a classification problem with M classes h1, . . . ,hM, given a new case to be classified (x,h) in which the class h is un-
known, and once a number k is fixed, the following classification process is performed:

For each class hm, search for the k nearest neighbors to x among the cases belonging to class hm: xi1m
; . . . ;xikm

ðm ¼ 1; . . . ;MÞ.
For the k nearest neighbor cases of x in each class hm, compute the mean distance �dhm :

�dhm ¼
1
k

X
l¼1;...;k

dðx;xilm
Þ; m ¼ 1; . . . ;M:

Assign case x to the class hm� which has the minimum mean distance �dhm� , that is,

ĥ ¼ hm� suchthat hm� ¼ arg minf�dh1 ; . . . ; �dhMg:

In principle, it would be possible to use another measure among the distances between the k NN in each class and case x, for
instance, the median. If the mean distance has been selected here, it is because it can identify scenarios with outliers. That is
to say, when some outliers of a class hm are close to cases of any other class hl, (l – m) and far from cases of the class they
belong to (i.e., hm), �dhm could become big, and therefore, the influence of the outlier in the voting process is diminished.

As in the k-NN classification technique, a tie-break method must be implemented. In this first approach to the method, we
break ties by using the prior probabilities of the classes, that is, selecting the most probable class.

Returning to the situation shown in Fig. 2, the 3 NN to case x in each class h1 and h2 are indicated with connecting seg-
ments and the corresponding mean distances are �dh1 ¼ 1:18 and �dh2 ¼ 1:27. Hence, with 3-NNE case x will be classified in
class h1 whereas by 3-NN it would be classified in class h2.

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

X1

X
2

x

θ1

θ2

Fig. 2. Synthetic data to show situations where k-NNE can overcome some shortcomings of k-NN. The 3 closest cases are indicated as shaded symbols. The 3
closest cases in each class are indicated with connecting segments.

Fig. 3. The pseudo-code of the k Nearest Neighbor Equality Algorithm.
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Fig. 4 shows the behavior of the 3-NNE algorithm in comparison with the 6-NN for two two-class example problems.
Although the computational cost is similar, the behavior of the 6-NNE method could make good use of the discriminant
information provided by the predictor variables. This can be better seen in multi-class problems.

In Fig. 4 we can see the difference between the two methods applied, although the result given in this case example is the
same (Fig. 4a), it can be seen that the methods follow different procedures in the classification process (Fig. 4b).

5. Experimental results

The characteristics of the experimental files are given in Table 1. These domains are public at the Statlog project WEB
page [22], and we have searched for several multi-class problems to compare the behavior of our algorithm with other
algorithms.

5.1. Classifiers

Supervised classifiers [10] from different families are chosen. Seven well known inducers are used in the experiments:

� ID3 decision tree algorithm (Quinlan [25]). It does not prune the expanded tree.
� C4.5 decision tree algorithm (Quinlan [26]). Instead of ID3, it makes a post-pruning phase, based on error based pruning

algorithm.
� Naive Bayes (NB) algorithm (Cestnik [5]). It is based on Bayesian rules and, given that the value of the class is known, it

assumes independence between the occurrences of feature values to predict the class.
� Naive Bayes Tree (NBTree) algorithm (Kohavi [19]). It runs Naive Bayes at the leaves of an induced decision tree. It normally

improves Naive Bayes in large databases.

Table 1
Details of experimental domains.

Domain Training cases Test cases Number of classes Number of attributes

Glass 142 72 7 9
Iris 100 50 3 4
Letters 15,000 5000 26 16
Nettalk 7229 7242 324 203
Optdigit 3823 1797 10 64
Pendigit 7494 3493 10 16
Pima 200 332 2 7
Satimage 4435 2000 7 36
Shuttle 43,500 14,500 7 9
Vote 300 135 2 16

+

+

+

+

+

+
Candidate

0 Class Case

+ Class case

C

C

+

+

+

+

+

+
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0 Class Case

+ Class case

C

C

+

+

(a) (b)

Fig. 4. 3-NNE Decision Rule compared with 6-NN. In Fig. 4a, for a first classification problem, both the 3-NNE and 6-NN result in a tie, while in Fig. 4b, for a
second classification problem, the result of 3-NNE is the + class but the 6-NN has a tie.
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� OneR is a simple classifier that induces a set of rules, where each rule is based on only one predictor variable (the variable
could be different in different rules), i.e., rules based on the value of a single attribute (Holte [16]).
� CN2 rule induction classifier, based on the work of Clark and Nibblet [4]. It uses statistical tests to expand classification

rules.
� Neural Network classifier based on the back-propagation algorithm[23]. Three layers have been used and a different num-

ber of intermediate neurons.

The class distribution of the training databases can be seen in Fig. 5. Different distributions appear, some of them are uni-
formly distributed, while in other cases the distribution is biased.

Fig. 5. Class distributions of the training databases.
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5.2. Datasets

Ten databases are used to test our hypothesis. Most of them are obtained from the UCI Machine Learning Repository [3].
The Nettalk database was obtained from MLC++ main repository [20]. All databases have a separate set of training data and
testing data. The characteristics of the databases are given in Table 1.

We use the Training files as case examples for all the applied techniques, and the Test cases in order to estimate the error
of the approach being used. Table 2 shows the experimental results obtained using standard Machine Learning approaches.

5.3. Distance based classifier comparison: training and test databases

In our experiments, we have run the k-NNE with different k values, and have compared the results obtained with those
obtained with other methods implemented in standard Machine Learning software packages. In Table 3 we can see the re-
sults achieved with the k-NN method, while Table 4 shows the results obtained by the new proposed k-NNE method for
some values of k. Obviously, the k = 1 case is equivalent to the NN method (or to the 1-NN method).

As can be seen in Tables 3 and 4, the new proposed method obtains a better accuracy than the k-NN method, especially in
multi-class problems, i.e., in those problems in which the class number is high. For example, when applying the new method
to the nettalk database (324 classes), the best accuracy result obtained is 66.53 in correctly classified percentage, while the
best result obtained by the k-NN paradigm is 59.80. Although some other paradigms outperform this accuracy (ID3, 72.52,
Neural Net 71.42), we are interested in how our proposed method compares with other distance based paradigms. When
looking to the accuracy obtained with the letter database (26 classes), the k-NNE approach obtains a performance of

Table 2
Details of accuracy level percentages for the databases.

Inducer Glass Iris Letters Nettalk Opdigit Pendigit Pima Satimage Shuttle Vote

ID3 62.50 94.00 76.65 72.52 54.14 91.51 71.71 84.80 99.99 94.17
C4.5 62.50 92.00 87.02 71.50 56.93 92.02 75.39 85.40 99.95 97.04
NB 50.00 96.00 63.20 60.99 82.63 82.22 78.01 79.65 87.61 91.85
NBTree 63.89 96.00 84.30 65.85 89.93 92.74 78.91 81.65 99.98 95.53
oneR 48.61 94.00 16.52 12.48 23.20 36.60 73.82 58.80 94.67 97.04
CN2 76.40 94.00 64.00 75.40 67.40 86.40 75.80 71.30 99.40 95.60
Neural Net 63.89 98.00 89.24 71.42 97.11 93.25 80.42 82.20 98.87 97.04
Best result 76.40 98.00 89.24 75.40 97.11 93.25 80.42 88.80 99.99 97.04

Table 3
Accuracy level percentage of the k-NN method for the databases using different K numbers.

k 1 2 3 4 5 6 7 8 9 10

Glass 81.94 73.61 69.44 68.06 66.67 69.44 62.50 69.44 65.28 66.67
Iris 96.00 90.00 98.00 96.00 94.00 96.00 94.00 92.00 92.00 94.00
Letter 95.62 94.80 95.20 95.00 95.04 95.08 95.00 94.64 94.84 94.66
Nettalk 55.59 52.18 55.40 57.21 58.20 59.02 59.13 59.67 59.80 59.75
Opdigit 98.00 97.44 97.77 97.61 97.83 97.72 97.61 97.61 97.66 97.50
Pendigit 97.74 97.34 97.77 97.54 97.37 97.34 97.34 97.34 97.28 97.28
Pima 68.37 71.99 71.11 76.20 78.92 78.31 78.01 78.01 78.01 77.41
Satimage 89.45 88.95 90.35 90.25 90.35 89.80 89.85 89.25 89.40 89.50
Shuttle 99.88 99.81 99.83 99.81 99.80 99.78 99.79 99.77 99.79 99.75
Vote 93.33 92.59 91.85 92.59 93.33 93.33 93.33 91.85 92.59 92.59

Table 4
Accuracy level percentage of the k-NNE method for the seven databases using different k numbers.

k 1 2 3 4 5 6 7 8 9 10

Glass 81.94 79.17 70.83 69.44 68.06 66.67 63.89 63.89 63.89 62.50
Iris 96.00 96.00 98.00 98.00 96.00 96.00 96.00 92.00 92.00 92.00
Letter 95.62 96.08 96.28 96.28 96.26 95.96 95.80 95.76 95.42 95.16
Nettalk 55.59 60.66 64.24 65.30 66.21 66.53 66.43 66.16 65.66 65.53
Opdigit 98.00 98.33 98.39 98.22 98.11 98.00 97.89 97.83 97.77 97.66
Pendigit 97.74 98.00 98.03 97.97 97.83 97.74 97.74 97.54 97.54 97.48
Pima 68.37 74.10 76.51 76.51 75.60 75.90 76.20 76.20 75.90 76.20
Satimage 89.45 90.65 90.80 90.60 90.75 90.55 90.15 90.00 89.95 90.00
Shuttle 99.88 99.86 99.85 99.85 99.85 99.82 99.79 99.79 99.77 99.77
Vote 93.33 92.59 92.59 93.33 93.33 93.33 92.59 93.33 93.33 93.33
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96.28%, while the k-NN best performance is 95.62%. For this database, both distance based paradigms outperform the results
obtained with the other paradigms (as shown in Table 2).

This better performance of the presented approach with respect to the k-NN does not seem to hold when working with
the databases whose class number is low (iris, vote); in both of them, the obtained performance is equivalent for the k-NN
and k-NNE approaches.

In Table 5 the best results obtained for each database in each of the three previous experiments is presented in a sum-
marized way.

We have applied classifier comparison statistical tests as recommended by Demsar [9], and no significance differences are
obtained when either applying the Fisher-Snedecor test for the three rows or the Wilcoxon rank test for each pair.

Another value we can compare is the mean accuracy obtained for all the ten values of the k parameter. There are pre-
sented in Table 6. As can be seen, on average the k-NNE method outperforms the standard algorithm in 8 of the 10 databases.

This comparison is made because selecting the best k value for the test databases is not considered sound in the Machine
Learning classifier selection process.

In order to better understand the results obtained, and following Demsar [9], a comparison among all k values is per-
formed; in order to compare k-NN and k-NNE, we choose the 20 different results given by 20 different classifiers. As shown
in Table 7, the best rank mean (4.65) is obtained by the k-NNE algorithm with a k value of 4. It can also be seen that the mean
ranks of k-NNE are better in general, and in fact five of them are better than the best mean rank obtained by k-NN (9.60 for
k = 1). The obtained Fisher–Snedecor F9,9 value is 4.53, which does allow to consider k-NNE, with k equal to 4, as the best
algorithm over all the others.

Table 5
Best percentages obtained for the databases in each of the three classifier subsets considered.

Classifier Glass Iris Lett. Nett. Opd. Pend. Pima Satim. Shut. Vote

Standard ML 76.40 98.00 89.24 75.40 97.11 93.25 80.42 88.80 99.99 97.04
k-NN 81.94 98.00 95.62 59.80 98.00 97.77 78.92 90.35 99.88 93.33
k-NNE 81.94 98.00 96.28 66.53 98.39 98.03 76.51 90.80 99.88 93.33

Table 6
Mean percentages of the k-NN and k-NNE methods for the ten values of k in each of the databases.

Classifier Glass Iris Letters Nettalk Opdigit Pendigit Pima Satimage Shuttle Vote

k-NN 69.30 94.2 94.99 57.60 97.68 97.43 75.63 89.71 99.80 92.74
k-NNE 69.03 95.2 95.86 64.23 98.02 97.76 75.15 90.29 99.82 93.10

Table 7
Mean percentages of the k-NN and k-NNE methods for the ten values of k in each of the databases.

Cl k Glass Iris Letters Nettalk Opdigit Pendigit Pima Satimage Shuttle Vote Mean

k-NN 1 1.50 7.50 8.50 17.50 6.0 7.50 19.50 16.50 1.50 6.0 9.20
2 4.0 20.0 18.0 20.0 20.0 16.50 17.0 20.0 9.50 15.0 16.0
3 7.50 2.0 11.0 19.0 11.50 5.0 18.0 6.50 7.0 19.50 10.70
4 10.50 7.50 15.50 16.0 17.0 11.0 10.50 8.0 9.50 15.0 12.05
5 13.0 13.0 14.0 15.0 9.50 14.0 1.0 6.50 11.0 6.0 10.30
6 7.50 7.50 13.0 14.0 13.0 16.50 2.0 14.0 16.0 6.0 10.95
7 19.50 13.0 15.50 13.0 17.0 16.50 4.0 13.0 13.50 6.0 13.10
8 7.50 17.0 20.0 12.0 17.0 16.50 4.0 19.0 18.0 19.50 15.05
9 15.0 17.0 17.0 10.0 14.50 19.50 4.0 18.0 13.50 15.0 14.35

10 13.0 13.0 19.0 11.0 19.0 19.50 6.0 15.0 20.0 15.0 15.05

k-NNE 1 1.50 7.50 8.50 17.50 6.0 7.50 19.50 16.50 1.50 6.0 9.20
2 3.0 7.50 4.0 9.0 2.0 2.0 16.0 3.0 3.0 15.0 6.45
3 5.0 2.0 1.50 8.0 1.0 1.0 7.50 1.0 5.0 15.0 4.70
4 7.50 2.0 1.50 7.0 3.0 3.0 7.50 4.0 5.0 6.0 4.65
5 10.50 7.50 3.0 3.0 4.0 4.0 15.0 2.0 5.0 6.0 6.0
6 13.0 7.50 5.0 1.0 6.0 7.50 13.50 5.0 8.0 6.0 7.25
7 17.0 7.50 6.0 2.0 8.0 7.50 10.50 9.0 13.50 15.0 9.60
8 17.0 17.0 7.0 4.0 9.50 11.0 10.50 10.50 13.50 6.0 10.60
9 17.0 17.0 10.0 5.0 11.50 11.0 13.50 12.0 18.0 6.0 12.10

10 19.50 17.0 12.0 6.0 14.50 13.0 10.50 10.50 18.0 6.0 12.70
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5.4. Distance based classifier comparison: cross-validation approach

To make a better comparison between the k-NN algorithm and the new proposed k-NNE paradigm, we have carried out a
more complete experiment dividing the data-files (which came as fixed training and test data files in the repository) into ten
randomly generated training and test files, each of the same size shown in Table 1.

The results obtained by the two algorithms are shown in Fig. 6. As can be seen, the k-NN algorithm results are not as good
as those obtained by the new proposed paradigm. The standard deviation is very low, and thus the statistical testing (using
Wilcoxon range testing) indicates, in almost all the cases, that the new paradigm is more accurate than the standard k-NN.

The results obtained for the data in which the problems have more classes indicate that the approach presented here
could work better when classifications among more than two classes have to be carried out:

Fig. 6. Mean Accuracy level percentage and standard deviation obtained by the k-NN and k-NNE methods for the databases using different k numbers.
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� Letters: 26 classes, k-NN obtains 95.19 ± 00.16 mean accuracy and k-NNE 95.65 ± 01.12.
� Nettalk: 324 classes, k-NN obtains 61.24 ± 00.72 mean accuracy and k-NNE 65.72 ± 00.66.
� Optdigit: 10 classes,k-NN obtains 98.41 ± 00.34 mean accuracy and k-NNE 98.67 ± 00.23.
� Pendigit: 10 classes, k-NN obtains 99.16 ± 00.51 mean accuracy and k-NNE 99.21 ± 00.44.

In the experiment carried out, it can also be seen that the two algorithms offer a similar accuracy, but that the one pre-
sented in this paper outperforms the accuracy in all the multi-class problems.

Once again, as proposed by Demsar in [9], a comparison among all k values is performed. As shown in Table 8, the best
rank mean (5.60) is obtained by the k-NNE algorithm with a k value of 6. It can also be seen that the mean ranks of k-NNE are
better in general than the mean rank obtained by k-NN (10.60 for k = 3). Moreover, the obtained Fisher-Snedecor F9,9 value is
4.92, which leads us to consider k-NNE with k equal to 6 as the best algorithm among the rest.

6. Conclusion and future work

A new method extending the k-NN idea is presented in this paper. The new method, called k-NNE, is based on the idea
that predictor variables could have a different probability distribution in each class. Consequently, it searches for elements of
all classes in the proximity of the new case to be classified.

This new method is used in different multi-class problems, and its final results are compared with those obtained by
using the standard ML paradigms. We do not expect our new method to be better than that of k-NN one in all the classifi-
cation problems, but it works better in almost all the experiments we have performed, and the difference is more evident
when the problem has more than two classes.

Also we would like point out that the new method has been presented in its simplest distance calculation approach, and
compared with the same version of the original k-NN. A lot of extensions could be applied to the algorithm: the distance
metric, the weight of the neighbors depending on its distance, the weighing of the variables in the distance calculation,
and so on. Different versions can be designed to try to decrease the number of calculations to be performed to obtain the
k nearest neighbors of a given case [28,11]. Different techniques of prototype selection and/or attribute selection could also
be used in some extensions of the new algorithm, as has been done with the k-NN algorithm [27,17,29]. The goal of these
extensions would be to decrease the computation order of the algorithm in the distance calculation.

As further work we are going to apply different k-NN extensions to the k-NNE: weighting techniques, condensation meth-
ods, and editing approaches will be combined with the new proposed method in order to compare its behavior with that of
the k-NN.

We are also collecting data from the Basque Country Weather Service in order to apply supervised classification tech-
niques, including k-NNE, to the weather prediction task.

Acknowledgments

This work has been supported by the Basque Country University and by the Basque Government under the research team
grant program.

Table 8
Comparisons among the ten values of k for the k-NN and k-NNE methods. Best value obtained appears in bold.

Cl k Glass Iris Letters Nettalk Opdigit Pendigit Pima Satimage Shuttle Vote Mean

k-NN 1 1.50 15.50 8.0 19.50 9.50 3.50 19.50 15.50 1.50 13.50 10.75
2 3.0 20.0 20.0 18.0 20.0 8.0 18.0 20.0 4.0 16.0 14.70
3 6.0 15.50 5.0 17.0 6.0 7.0 16.0 8.0 8.50 17.0 10.60
4 7.0 15.50 11.0 16.0 14.0 10.0 15.0 11.0 10.50 9.0 11.90
5 8.50 15.50 8.0 15.0 8.0 12.0 13.0 9.0 13.0 13.50 11.55
6 13.0 3.50 12.0 14.0 16.0 15.0 11.50 13.0 13.0 5.0 11.60
7 16.0 3.50 14.0 12.0 12.0 16.0 10.0 14.0 15.50 9.0 12.20
8 18.50 15.50 17.0 11.0 17.0 18.0 8.0 18.0 17.50 18.0 15.85
9 18.50 9.50 16.0 9.0 18.0 19.0 5.0 17.0 19.50 19.0 15.05

10 20.0 15.50 18.50 10.0 19.0 20.0 6.0 19.0 19.50 20.0 16.75

k-NNE 1 1.50 15.50 8.0 19.50 9.50 3.50 19.50 15.50 1.50 13.50 10.75
2 4.0 15.50 2.0 13.0 1.0 1.0 17.0 1.50 3.0 13.50 7.15
3 5.0 11.0 1.0 8.0 2.0 2.0 14.0 1.50 6.0 6.50 5.70
4 8.50 9.50 3.0 7.0 3.0 5.0 11.50 3.0 6.0 3.50 6.0
5 11.0 6.50 4.0 5.0 4.0 6.0 9.0 4.0 6.0 1.0 5.65
6 10.0 1.50 6.0 2.0 5.0 9.0 7.0 5.0 8.50 2.0 5.60
7 12.0 1.50 10.0 1.0 7.0 11.0 4.0 6.0 10.50 3.50 6.65
8 14.0 6.50 13.0 3.0 11.0 13.0 3.0 7.0 13.0 6.50 9.0
9 15.0 6.50 15.0 4.0 13.0 14.0 2.0 10.0 15.50 9.0 10.40

10 17.0 6.50 18.50 6.0 15.0 17.0 1.0 12.0 17.50 11.0 12.15
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Abstract. The nearest neighbor classification method assigns to an un-
classified point the class of the nearest of a set of previously classified
points. An extension to this approach is the K-NN method, in which
the classification is made taking into account the K nearest points and
classifying the unclassified point by a voting criteria from this k points.
We present a new method that extends the K-NN limits, taking into
account, for each neighbor, its I nearest neighbors. Experimental results
are promising, obtaining better results for two class problems than the
original K-NN.

Keywords: Nearest Neighbor, Supervised Classification.

1 Introduction

In supervised classification problems [1] there are two extremes of knowledge
which the modeler may consider. Either (s)he may have complete statistical
knowledge of the underlying joint distribution of the observation x and the cat-
egory θ, or (s)he may have no knowledge of the underlying distribution except
that which can be inferred from samples. In the first extreme, a standard Bayes
analysis will yield an optimal decision procedure and the corresponding mini-
mum (Bayes) probability of error classification R∗. In the other extreme, a de-
cision to classify x into the category θ is allowed to depend only on a collection
of n correct samples (x1, θ1), (x2, θ2), ..., (xn, θn), and the decision procedure is
by no means clear. This problem is in the domain of supervised classification,
and no optimal classification procedure exists with respect to all underlying
statistics.

If it is assumed that the classified samples (xi, θi) are independently identically
distributed according to the distribution of (x, θ), certain heuristic arguments
may be made about good decision procedures. For example, it is reasonable to
assume that observations which are close together (in some appropriate distance
metric) will have almost the same posterior probability distributions on their
respective classifications.

L. Cao, J. Zhong, and Y. Feng (Eds.): ADMA 2010, Part I, LNCS 6440, pp. 270–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Thus to classify the unknown sample x we may wish to weight the evidence
of the nearby xi’s most heavily. Perhaps the simplest non-parametric decision
procedure of this form is the nearest neighbor (NN) classification method, which
assigns to x the category of its nearest neighbor.

The first formulation of a rule of the NN type and primary previous contri-
bution to the analysis of its properties it is presumed to have been made by
Fix and Hodges [2]. They investigated a method that is known as K Nearest
Neighbors (K-NN), which assigns to an unclassified point the class most heavily
represented among its k nearest neighbors.

In this paper we present a modification to the K-NN method. Besides the
K nearest neighbors, our method also considers their I surrounding neighbors
classes. The objetive is to minimize the influence of the outliers in the final
decission.

This paper is organized as follows. In section 2 we review the K-NN classi-
fication method while section 3 is devoted to Related Works in distance based
classifiers; the new proposed method is introduced in section 4, in section 5 we
show the experimental results obtained and in the final section 6 concluding
remarks are presented..

2 The K-NN Classification Method

Let x1, . . . ,xn be a correctly classified sample in classes θ1, . . . , θM , where xi

takes values in a metric space upon which a distance function d is defined.
We will consider the pairs (xi, θ

i) where xi is the p-variate observation upon
the ith individual and θi is the class or category which that individual belongs
to. We usually say that ”xi belongs to θi” when we mean precisely that the ith
individual, upon which measurements xi have been observed, belongs to category
θi ∈ {θ1, . . . , θM}.

Consider a new pair (x, θ), where only the measurement x is observable, and
where we estimate θ by using the information contained in the set of correctly
classified points. We shall call

x′ ∈ {x1, . . . ,xn} , (1)

the nearest neighbor (NN) of x if

min
i=1,...,n

d(xi,x) = d(x′,x) . (2)

The NN classification decision method gives to x the category θi, precisely the
category of its nearest neighbor xi. In case of tie between several neighbors, it
has to be broken by modifying the decision rule.

An immediate extension to this decision rule is the so called K-NN approach
[3], which assigns the candidate x the class which is most frequently represented
in the k nearest neighbors to x.

74 9 Surrounding Influenced K-Nearest Neighbors



272 I. Mendialdua et al.

3 Related Work

Much research has been devoted to the K-NN rule [4]. One of the most important
results is that K-NN has very good asymptotic performance. Broadly speaking,
for a very large design set, the expected probability of incorrect classifications
(error) R achievable with K-NN is bounded as follows:

R∗ < R < 2R∗ , (3)

where R∗ is the optimal (minimal) error rate for the underlying distributions.
This performance, however, is demonstrated for the training set size tending to
infinity, and thus, it is not really applicable to real world problems in which we
usually have a training set of about hundreds or thousands cases, too few for the
number of probability estimations to be performed.

Some distance based approaches, such that of Weinberger et al. [5] try to
increase the obtained accuracy in distance based classification by looking for
a specific distance, in an automatic way, for each classification problem. The
proposed approach could be used to deal with unbalanced or biased databases; a
similar idea can be found in other distance based methods [6]. By the other side,
PEBLS instance based inducer (Cost and Salzberg [7]) incorporates MVDM
distance metric to deal with symbolic features, a modification of Stanfill and
Waltz’s VDM metric [8].

Improvement in classification can also be obtained by selecting and/or weight-
ing features (see [9] for an example). Probabilistic voting approaches have also
been used ([10], [11]); the main idea here is that each case among the K nearest
ones make a weighted vote in favour of the class it belongs to, being the weight
the probability each case has to belong to its own class. A very well kown ap-
proach is the so called Instance Based Learning (IBL), based on the work of Aha
[12] and Wettschereck [13]; there are several versions of the algorithm [14].

By the other side, there are distance based classifiers which aim to deal with
the so called multi labeling problem [15], in which, given a new case to be
classified, a different number of categories could be given to it. For instance,
and taking as example the document categorization area, a newspaper article
relating the wedding of some country president would obtain Politics and Society
as category labels, being both adequate for the document.

4 Surrounding Influenced-K-Nearest Neighbors

When the modeler has to approach the K-NN classification problem, it depends
in its K nearest neighbors and it is possible that some of this may be outliers,
so in this case the assigned category is not suitable. In view of this problem we
think in a new solution to solve this. This solution extends the limits to further
data.

Our method is similar of K-NN method, Figure 1 shows that similarity. We
get the K Nearest Neighbors of the data that we want to classify, but instead of
select its category we look to the I nearest neighbors of each of the K points and
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Fig. 1. Example of SI-K-NN algorithm where K = 3 and I = 2. First get K Nearest
Neighbors and then for each K points get I Nearest Neighbors.

we take into account their categories. So we have two groups; the K-NN group,
where there are the K nearest neighbors of the data that we are clasificating,
and the I-NN group, where there are the I nearest neighbors of each K points.
For all IxK neighbors we count the categories and the category which has the
largest sum is assigned to the new data.

5 Experimental Results

5.1 Datasets

Twenty databases are used to test our hypothesis. All of them are obtained from
the UCI Machine Learning Repository [16]. The characteristics of the databases
are given in Table 1.

Table 1. Datasets used. Different characteristics of the twenty databases used in the
experimental setup.

Domain Num. of Instances Num. of Attributes Num. of Classes
Australian Credit 690 14 2
Balance 625 4 3
Blood 748 5 2
Breast Cancer 569 32 2
Car 1728 6 4
Glass 210 9 7
Haberman 306 3 2
Ionosphere 351 34 2
Iris 150 4 3
Letters 20000 16 26
Magic Telescope 19020 11 2
Optdigit 5620 64 10
Pendigit 10992 16 10
Pima 768 7 2
Spambase 4601 57 2
Statlog (Heart) 270 13 2
Statlog (Img Seg) 2310 19 7
Statlog (Landsat Sat) 6435 36 7
Statlog (Shuttle) 58000 9 7
Wine 178 13 3

76 9 Surrounding Influenced K-Nearest Neighbors



274 I. Mendialdua et al.

5.2 Experiment-Setup

We have applied 5x2 fold cross-validation to each database [17]. In our exper-
iments we have run the SI-K-NN with different K and I values, and we com-
pare obtained results with the results that we obtained with K-NN method.
In Table 2 we can see the results obtained with the K-NN method while
Table 3 and Table 4 show the results obtained by the new proposed SI-K-NN
method.

Table 2. Accuracy level percentage of the K-NN method for the databases using
different K numbers

Datu-Basea K = 1 K = 3 K = 5 K = 7 K = 9 Average
Australian Credit 80,927 84,231 86,028 85,681 86,202 84,614

Balance 77,820 81,474 83,974 87,179 87,756 83,641
Blood 69,679 74,010 74,171 75,454 75,294 73,721

Breast Cancer 95,633 96,760 96,901 96,830 96,901 96,605
Car 85,138 90,532 91,458 90,925 90,416 89,694

Glass 64,672 67,476 64,672 62,803 63,738 64,672
Haberman 64,705 66,405 68,366 70,457 70,849 68,156
Ionosphere 85,828 84,914 84,685 84,228 83,428 84,617

Iris 92,533 93,866 94,666 94,933 94,933 94,1864
Letters 94,338 94,276 93,966 93,598 93,126 93,8608

Magic Telescope 83,730 83,158 82,860 82,637 82,374 82,952
Opt Dig 98,398 98,476 98,370 98,163 98,085 98,298
Pen Dig 99,232 99,144 98,941 98,791 98,635 98,949
Pima 68,947 72,781 74,135 74,511 74,360 72,947

Spambase 88,852 89,060 89,139 88,939 88,426 88,883
Statlog (Heart) 76 79,851 81,333 81,481 81,481 80,029

Statlog (Img Seg) 95,844 95,168 94,233 94,129 93,991 94,673
Statlog (Landsat Sat) 89,574 90,071 89,686 89,344 89,070 89,549

Statlog (Shuttle) 99,930 99,866 99,822 99,782 99,739 99,828
Wine 94,382 95,730 96,404 96,179 96,629 95,865

In Table 5 we compared the results obtained with K-NN and SI-K-NN method.
To make this comparison we have selected the average of K-NN and the best
average between the I of SI-K-NN. As it can be seen, instead of sorting alpha-
betically, we have sort out the table depending on the number of classes that
each database has. At first it may seem that the results are worse, but when
it is sorted depending on the number of classes, it shows more interesting re-
sults. Viewed this way in multi-class problems, our method doesn’t improve in
any database. But in case that the class number is lower the results are better.
When the number of classes is two the number of improved results is a bit more
than the opposite, five better and four worse. It’s the same when the number
of classes is three, two better and one worse. The reason of this improvement is
that our new method expands to a distant values, so the more classes there are,
the more easier is to appear different classes and therefore the main class loses
strength. Instead, the less classes there are, the less probability that the wrong
class gains importance.

9 Surrounding Influenced K-Nearest Neighbors 77



Surrounding Influenced K-Nearest Neighbors 275

Table 3. Accuracy level percentage of the SI-K-NN method for the databases using
different K and I numbers

K = 1 K = 3 K = 5 K = 7 K = 9 Average
I = 1 81,565 82,841 84,812 85,333 85,971 84,104
I = 2 81,565 84,754 85,101 85,449 85,623 84,499

Australian Credit I = 3 84,522 85,739 85,855 85,913 85,565 85,519
I = 4 84,290 85,913 85,507 85,101 85,391 85,241
I = 5 85,623 86,029 85,391 85,275 85,333 85,530
I = 1 75,962 80,769 82,949 83,910 84,551 81,628
I = 2 75,962 83,077 84,551 85,128 85,577 82,859

Balance I = 3 76,218 85,000 85,705 85,705 85,897 83,705
I = 4 75,833 84,872 85,385 85,385 86,090 83,513
I = 5 77,051 84,103 85,000 85,000 85,385 83,308
I = 1 70,214 70,588 71,230 70,749 71,872 70,930
I = 2 73,155 72,834 73,583 74,118 74,866 73,711

Blood I = 3 72,727 73,636 74,332 73,529 74,278 73,701
I = 4 73,904 74,866 74,759 74,385 74,759 74,535
I = 5 73,743 74,171 74,492 73,850 74,385 74,128
I = 1 93,803 95,563 95,704 95,704 96,127 95,380
I = 2 93,803 95,634 96,056 95,845 96,268 95,521

Breast I = 3 93,873 95,845 96,127 95,915 96,197 95,592
I = 4 94,577 95,845 95,915 95,915 95,845 95,620
I = 5 95,775 95,986 96,127 95,704 95,986 95,915
I = 1 76,204 81,505 82,778 83,241 84,144 81,574
I = 2 82,755 83,958 84,699 85,486 85,810 84,542

Car I = 3 79,097 83,657 84,838 85,139 85,926 83,731
I = 4 81,713 83,912 84,884 85,255 85,486 84,250
I = 5 80,347 83,796 84,699 85,116 85,394 83,870
I = 1 59,626 61,121 60,374 60,000 60,000 60,224
I = 2 59,626 62,243 61,121 60,187 60,561 60,748

Glass I = 3 58,505 61,869 60,187 60,561 61,495 60,523
I = 4 59,065 61,308 59,626 60,187 61,121 60,262
I = 5 59,252 59,813 59,813 58,879 59,626 59,477
I = 1 64,837 67,974 69,150 69,542 69,412 68,183
I = 2 64,837 69,150 70,719 70,719 70,196 69,124

Haberman I = 3 67,974 70,719 70,588 70,719 70,327 70,065
I = 4 67,190 69,804 70,196 70,588 70,850 69,725
I = 5 69,935 71,242 70,588 70,719 70,458 70,588
I = 1 83,543 84,000 83,771 83,657 82,629 83,520
I = 2 83,543 84,000 83,771 83,771 82,743 83,566

Ionosphere I = 3 82,400 83,086 82,971 83,200 82,400 82,811
I = 4 82,514 83,314 82,629 82,171 81,600 82,446
I = 5 82,286 82,286 81,486 80,686 80,000 81,349
I = 1 92,533 94,400 94,933 96,000 95,733 94,720
I = 2 92,533 93,867 94,933 95,200 95,467 94,400

Iris I = 3 92,267 94,667 95,200 95,733 95,467 94,667
I = 4 92,533 94,400 94,933 95,733 95,200 94,560
I = 5 92,267 94,667 94,933 95,733 95,467 94,613
I = 1 90,622 91,572 91,750 91,506 91,156 91,321
I = 2 90,622 91,654 91,408 91,066 90,536 91,057

Letters I = 3 90,562 91,482 91,074 90,672 90,130 90,784
I = 4 90,594 91,250 90,904 90,270 89,760 90,556
I = 5 90,360 91,010 90,554 90,008 89,474 90,281
I = 1 81,708 82,008 81,855 81,735 81,567 81,775

Magic Gamma I = 2 81,708 81,924 81,720 81,577 81,468 81,679
Telescope I = 3 81,708 81,886 81,685 81,499 81,367 81,629

I = 4 81,966 81,836 81,655 81,457 81,340 81,651
I = 5 81,794 81,718 81,493 81,335 81,184 81,505
I = 1 97,900 98,221 98,100 97,922 97,915 98,011
I = 2 97,900 98,157 98,078 97,865 97,829 97,966

Optical Digit I = 3 97,765 98,121 98,007 97,843 97,815 97,910
I = 4 97,786 98,121 98,000 97,786 97,737 97,886
I = 5 97,715 98,093 97,957 97,786 97,722 97,855
I = 1 98,897 98,967 98,759 98,661 98,537 98,764
I = 2 98,897 98,952 98,766 98,624 98,472 98,742

Pen Dig I = 3 98,810 98,876 98,675 98,574 98,428 98,672
I = 4 98,857 98,846 98,643 98,490 98,395 98,646
I = 5 98,712 98,715 98,530 98,428 98,341 98,545
I = 1 72,105 72,256 71,729 73,083 73,158 72,466
I = 2 72,105 74,511 74,586 74,286 73,835 73,865

Pima I = 3 72,406 73,233 73,684 74,361 73,835 73,504
I = 4 72,932 73,459 73,759 73,835 73,759 73,549
I = 5 73,609 73,008 73,985 74,211 74,211 73,805
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Table 4. Accuracy level percentage of the SI-K-NN method for the databases using
different K and I numbers

K = 1 K = 3 K = 5 K = 7 K = 9 Average
I = 1 86,602 87,641 87,721 87,653 87,578 87,439
I = 2 86,602 88,225 88,032 87,914 87,684 87,692

Sat Img I = 3 87,087 88,119 87,846 87,833 87,504 87,678
I = 4 87,293 88,287 87,858 87,709 87,529 87,735
I = 5 87,386 87,883 87,684 87,566 87,324 87,569
I = 1 99,869 99,857 99,815 99,782 99,734 99,811
I = 2 99,876 99,827 99,819 99,779 99,732 99,806

Shuttle I = 3 99,826 99,818 99,788 99,768 99,721 99,784
I = 4 99,828 99,819 99,781 99,741 99,717 99,777
I = 5 99,778 99,774 99,751 99,732 99,708 99,749
I = 1 84,383 86,809 87,217 86,930 86,748 86,417
I = 2 84,383 87,061 87,461 87,417 87,174 86,699

Spambase I = 3 85,400 87,217 87,000 86,696 86,678 86,598
I = 4 86,426 87,409 87,165 86,913 86,652 86,913
I = 5 85,783 87,096 86,887 86,617 86,417 86,560
I = 1 74,074 74,815 77,481 78,222 80,741 77,067
I = 2 74,074 78,370 80,148 79,407 81,333 78,667

Statlog Heart I = 3 78,074 80,741 80,741 81,333 82,222 80,622
I = 4 79,556 80,889 80,741 81,778 82,815 81,156
I = 5 81,481 80,889 81,185 82,074 82,370 81,600
I = 1 93,108 93,870 93,576 93,455 93,299 93,461

Statlog Image I = 2 93,108 93,680 93,662 93,558 93,091 93,420
Segmentation I = 3 92,537 93,385 93,541 93,177 92,675 93,063

I = 4 92,641 93,420 93,385 92,918 92,589 92,990
I = 5 92,242 93,299 93,195 92,623 92,346 92,741
I = 1 91,011 93,933 94,607 95,730 95,730 94,202
I = 2 91,011 93,708 94,157 95,056 95,056 93,798

Wine I = 3 91,685 93,933 95,056 95,730 95,281 94,337
I = 4 92,360 95,506 95,506 95,730 95,955 95,011
I = 5 91,910 95,056 95,281 95,730 96,404 94,876

Table 5. Best accuracy level percentage of the K-NN and SI-K-NN method for the
databases sorting by the number of classe

Num. of Classes Domain K-NN SI-K-NN
Australian Credit 84,614 ↑ 85,530

Blood 73,721 ↑ 74,535
Breast Cancer 96,605 ↓ 95,915

Haberman 68,156 ↑ 70,588
2 Classes Ionosphere 84,617 ↓ 83,566

Magic Telescope 82,952 ↓ 81,775
Pima 72,94 ↑ 73,865

Spambase 88,883 ↓ 86,913
Statlog (Heart) 80,0296 ↑ 81,600

Balance 83,641 ↑ 83,705
3 Classes Iris 94,186 ↑ 94,720

Wine 95,865 ↓ 95,011
Car 89,694 ↓ 84,542

Glass 64,672 ↓ 60,748
Letters 93,860 ↓ 91,321

>3 Classes Opt Dig 98,298 ↓ 98,011
Pen Dig 98,949 ↓ 98,764

Statlog (Landsat Sat) 89,549 ↓ 87,735
Statlog (Shuttle) 99,828 ↓ 99,811
Statlog (Img Seg) 94,673 ↓ 93,461

6 Conclusion and Further Results

A new method extending the K-NN idea is presented in this work. The new
method, called SI-K-NN is created with the idea of reducing the influence of
outliers in the final decision.
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This new method is used in different problems, and its final results are com-
pared with those obtained by using the K-NN method. We do not expect our
new method to be better than the K-NN one in all the classification problems,
but it works similar and in some cases improve the results.

As further work we are going to do new experiments in which we will consider
the I and K nearest neighbors classes giving them different weights.
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Abstract. The K Nearest Neighbors classification method assigns to an
unclassified observation the class which obtains the best results after a
voting criteria is applied among the observation’s K nearest, previously
classified points. In a validation process the optimal K is selected for
each database and all the cases are classified with this K value. However
the optimal K for the database does not have to be the optimal K for
all the points. In view of that, we propose a new version where the
K value is selected dynamically. The new unclassified case is classified
with different K values. And looking for each K how many votes has
obtained the winning class, we select the class of the most reliable one.
To calculate the reliability, we use the Positive Predictive Value (PPV)
that we obtain after a validation process. The new algorithm is tested on
several datasets and it is compared with the K-Nearest Neighbor rule.

Keywords: Nearest Neighbor, Supervised Classification, Machine Learn-
ing, Non-parametric Pattern Recognition

1 Introduction

In supervised classification problems [1] there are two extremes of knowledge
which the modeler may consider. Either (s)he may have complete statistical
knowledge of the underlying joint distribution of the observation x and the cat-
egory θ, or (s)he may have no knowledge of the underlying distribution except
that which can be inferred from samples. In the first extreme, a standard Bayes
analysis will yield an optimal decision procedure and the corresponding minimum
(Bayes) probability of error classification R∗. In the other extreme, a decision

to

classify x into the category θ is allowed to depend only on a collection of n
correct samples (x1, θ1), (x2, θ2), ..., (xn, θn), and the decision procedure is by no
means clear. This problem is in the domain of supervised classification, and no
optimal classification procedure exists with respect to all underlying statistics.

If it is assumed that the classified samples (xi, θi) are independently identi-
cally distributed according to the distribution of (x, θ), certain heuristic argu-
ments may be made about good decision procedures. For example, it is reason-
able to assume that observations which are close together (in some appropriate
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distance metric) will have almost the same posterior probability distributions on
their respective classifications.

Thus to classify the unknown sample x we may wish to weigh the evidence
of the nearby xi’s most heavily. Perhaps the simplest non-parametric decision
procedure of this form is the nearest neighbor (NN) classification method, which
assigns to x the category of its nearest neighbor.

The first formulation of a rule of the NN type and primary previous con-
tribution to the analysis of its properties is presumed to have been made by
Fix and Hodges [2]. They investigated a method that is known as K Nearest
Neighbors (K-NN), which assigns to an unclassified point the class most heavily
represented among its k nearest neighbors.

In this paper we present a new version of K-NN method which finds the most
reliable K for each new case. In a validation process we calculate the success rate
when a class is predicted for different K values and for different amounts that
belongs to the predicted class between these K Nearest Neighbors. Thus, when
a new case has to be classified, we will select the K which get the most reliable
result.

This paper is organized as follows. In section 2 we review the K-NN clas-
sification method while section 3 is devoted to related work in distance-based
classifiers. The new proposed method is introduced in section 5. Section 6 shows
the experimental results obtained and in the final section concluding remarks
are presented.

2 The K-NN Classification Method

Let x1, . . . ,xn be a correctly classified sample in classes θ1, . . . , θM , where xi
takes values in a metric space upon which a distance function d is defined.
We will consider the pairs (xi, θ

i) where xi is the p-variate observation upon
the ith individual and θi is the class or category which that individual belongs
to. We usually say that ”xi belongs to θ

i” when we mean precisely that the ith
individual, upon which measurements xi have been observed, belongs to category
θi ∈ {θ1, . . . , θM}.

Consider a new pair (x, θ), where only the measurement x is observable, and
where we estimate θ by using the information contained in the set of correctly
classified points. We shall call x′ the nearest neighbor (NN) of x if

min
i=1,...,n

d(xi,x) = d(x
′,x) . (1)

The NN classification decision method gives to x the category θi, precisely
the category of its nearest neighbor xi. In case of a tie between several neighbors,
it has to be broken by modifying the decision rule.

An immediate extension to this decision rule is the so called K-NN approach
[3], which assigns the candidate x the class which is most frequently represented
among the k nearest neighbors of x. In Figure 1, for example, the 3-NN decision
rule would decide the class θo is active because two of the three nearest neighbors
of x belong to class θo.
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Fig. 1. Third Nearest Neighbor Decision Rule

3 Related work

Much research has been devoted to the K-NN rule [4]. One of the most important
results is that K-NN has very good asymptotic performance. Broadly speaking,
for a very large design set, the expected probability of incorrect classifications
(error) R achievable with K-NN is bounded as follows:

R∗ < R < 2R∗ (2)

where R∗ is the optimal (minimal) error rate for the underlying distributions.
This performance, however, is demonstrated for the training set size tending to
infinity, and thus, it is not really applicable to real world problems in which
we usually have a training set of hundreds or thousands cases, too few for the
number of probability estimations to be performed.

Some distance based approaches, such that of Weinberger et al. [5] try to
increase the obtained accuracy in distance based classification by looking for
a specific distance, in an automatic way, for each classification problem. The
proposed approach could be used to deal with unbalanced or biased databases; a
similar idea can be found in other distance based methods [6]. On the other hand,
PEBLS instance based inducer (Cost and Salzberg [7]) incorporates MVDM
distance metric to deal with symbolic features, a modification of Stanfill and
Waltz’s VDM metric [8].

Improvement in classification can also be obtained by selecting and/or weight-
ing features (see [9] for an example). Probabilistic voting approaches have also
been used ([10], [11]); the main idea here is that each case among the K nearest
ones make a weighted vote in favor of the class it belongs to, being the weight the
probability each case has to belong to its own class. A very well known approach
is the so called Instance Based Learning (IBL), based on the work of Aha [12]
and Wettschereck [13]; there are several versions of the algorithm [14].
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Another problem that arises with distance-based classifier systems is the
management of large databases. Works devoted to data reduction [15] show
interesting approaches which could also be used in combination with any other
distance based algorithm when the size of the database is significant; other works
in this field try to accelerate the execution of the distance based algorithm ([16],
[17]) to obtain faster classifications.

Additionally, there are distance based classifiers which aim to deal with the
so called multi labeling problem [18], in which, given a new case to be classified,
a different number of categories could be given to it. For instance, and taking
as example the document categorization area, a newspaper article relating the
wedding of some country president would obtain Politics and Society as category
labels, being both adequate for the document.

4 PPV K-NN

The standard procedure to use the K-NN algorithm with a new database corre-
sponding to a classification problem, is to first select the appropriate K value for
the datafile (K=5, for instance) and fix this value to deal with all the cases that
have to be classified. The way the most suitable K value is obtained is mainly
based on a validation process, although there are other possibilities found in the
literature, for example Wang et al. [19] proposed a new method that dynamically
adjust the number of nearest neighbors based on the statistical confidence.

As in Wang et al. work, in this paper we propose a new approach to determine
the most likely value of K for each of the new cases to be classified. To do that, a
validation approach is used as well, not to select a fixed K parameter for all the
cases, but to select which K values are best for each of the different categories
of the classification problem for the instance being processed.

To calculate which is the best K value for each new case, we use the Positive
Predictive Value (PPV). The PPV is the proportion of instances which predicted
to belong to certain class and are correctly classified. The Positive Predictive
Value is defined as

PPV =
numberofTruePositive

numberofTruePositive+ numberofFalsePositive
(3)

where a True Positive is the event that the test makes a positive prediction,
and the subject has a positive result. And a False Positive is the event that the
test makes a positive prediction, and the subject has a negative result.

In a validation process, before the proper classifier is used, we calculate the
PPV values for each predicted class, CPr, with different K values. As a result,
for each CPr we obtain a PPV table which contains the different PPV values
for each K value. Table 1 shows an example for a 3 class problem and K values
from 1 to 4. We want to emphasize that the CPr is the class that a classifier
predicted for the instance and no the class that the instance belongs to.

In order to make a deeper analysis of the classifier behavior and based on the
results obtained for high values of K, we realize that it is not the same confidence
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Table 1. Example of the PPV Tables, first version

CPr=1
K PPV

1 PPV1
2 PPV2
3 PPV3
4 PPV4

CPr=2
K PPV

1 PPV1
2 PPV2
3 PPV3
4 PPV4

CPr=3
K PPV

1 PPV1
2 PPV2
3 PPV3
4 PPV4

that 8 of the 9 neighbors belong to the CPr or to belong 5. This is the reason
why we have extended the tables shown in Table 1 and take in consideration not
only the K value and the CPr; we also take in consideration the amount of the
cases that belongs to the CPr between the K neighbors, KPr. Hence, the tables
that are used in classification task are extended to those shown in Table 2.

Table 2. Example of the PPV Tables, improved version

CPr=1
K KPr PPV

1 1 PPV1

2
2 PPV 22
1 PPV 12

3
3 PPV 33
2 PPV 23
1 PPV 13

4

4 PPV 44
3 PPV 34
2 PPV 24
1 PPV 14

CPr=2
K KPr PPV

1 1 PPV1

2
2 PPV 22
1 PPV 12

3
3 PPV 33
2 PPV 23
1 PPV 13

4

4 PPV 44
3 PPV 34
2 PPV 24
1 PPV 14

CPr=3
K KPr PPV

1 1 PPV1

2
2 PPV 22
1 PPV 12

3
3 PPV 33
2 PPV 23
1 PPV 13

4

4 PPV 44
3 PPV 34
2 PPV 24
1 PPV 14

Thus when a new case to be classified arrives, firstly we process it for different
K values. For each K value, we get the CPr and the KPr and from the PPV
tables we obtain the PPV value that correspond for each K. After that, we select
the K with the highest PPV value and finally the K-NN result of this concrete
K is assigned to the new case.

In Figure 2 we could see with an example how our algorithm works. In Figure
2(a) we could see the PPV tables that we obtain after a validation process. These
tables show the real values that we got in our experiments with Ionosphere
database. As it is a two-class problem there are two PPV tables, one for each
CPr. On the other hand, in Figure 2(b) we could see the steps that our algorithm
follows to classify a new case. In the first step, we get the 4 nearest neighbors
classes. After that, in the second step, for different K values we apply the K-NN
method obtaining the CPr and the KPr. In the third step, from the PPV tables
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we obtain the PPV value which belongs to the K, CPr and KPr values. And
finally we select the case with the highest PPV value, and we assign to the new
case its CPr.

(a) PPV table for each CPr

(b) Step by step

Fig. 2. In 2(a) we show the tables that our algorithm get in our experiments after
a validation process with Ionosphere database. Each CPr table shows the PPV for
different K, with different KPr. In 2(b) we show the steps that our algorithm follows
to assign the final class

Sometimes it is possible to be few cases to achieve the PPV value. For ex-
ample, in Figure 2(a), in CPr = 0 Table, we could see that when K = 4 and
KPr = 2, there is only one case. As this case has been classified correctly in
the validation process, its success rate is very high. This success rate is not very
reliable because they do not have enough cases to support this claim, and it is
possible that the case correctly classified in the validation process could be an
exception. To avoid these cases we have included a threshold. If there is no more
than 10 cases, the degree of confidence is multiplied by the degree of confidence
of the K. We could see that in Figure 2(b) for K = 4 case.
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5 Experimental Results

In this section we show the experimental results obtained with different databases.
We have compared our method with K-NN for different K values.

5.1 Datasets

Twenty-six databases are used to test our hypothesis. All of them are obtained
from the UCI Machine Learning Repository [20]. The characteristics of the
databases are given in Table 3.

Table 3. The characteristics of the 26 databases used in this experiment

Domain Num. of Instances Num. of Attributes Num. of Classes
Australian Credit 690 14 2
Balance 625 4 3
Blood Transfusion 748 5 2
Breast Cancer 569 32 2
Car 1728 6 4
Cmc 1473 9 3
Diabetes 768 8 2
Glass 210 9 7
Haberman 306 3 2
Image Segmentation 2310 19 7
Ionosphere 351 34 2
Iris 150 4 3
Letters 20000 16 26
Magic Gamma Telescope 19020 11 2
Optical Digits 5620 64 10
Pen-Based Digits 10992 16 10
Sonar 208 60 2
Spambase 4601 57 2
Statlog(German) 1000 20 2
Statlog (Heart) 270 13 2
Statlog (Landsat) 6435 36 7
Statlog (Shuttle) 58000 9 7
Tic Tac Toe 958 9 2
Vowel Context 528 10 11
Waveform 5000 21 3
Wine 178 13 3

5.2 Experimental setup

In order to give a real perspective we have applied 5x2 fold cross validation to
each database [21]. But firstly our algorithm needs a validation process to get
the PPV values. So we have applied 5-hold out for each fold, where we have used
the %70 as training and %30 as testing.

In Table 4 we show the results obtained by the K-NN method for different K
values, where the best result is written in boldface. We do not include the K=2
value in this Table, because in the case of draw we give the preference to the
nearest neighbor, and hence the K=2 and K=1 results always are the same.

In Table 5 we compare our method with the K-NN. Looking at the results
of Table 5, it could be seen that in most of the cases our method improves
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Table 4. Accuracy level percentage of the K-NN method

Database K-NN=1 K-NN=3 K-NN=4 K-NN=5 K-NN=6 K-NN=7 K-NN=8 K-NN=9 Avg σ
Australian Credit 80.203 83.275 83.565 84.812 84.783 84.870 84.957 85.072 83.942 1.6561
Balance 78.814 81.571 83.109 84.808 86.571 87.436 87.660 87.917 84.736 3.3180
Blood Transfusion 68.797 73.396 73.743 75.374 75.802 76.337 76.417 77.406 74.659 2.7275
Breast Cancer 95.458 96.725 96.761 96.444 96.725 96.444 96.585 96.232 96.422 0.4296
Car 85.509 90.660 90.880 91.551 91.123 90.949 90.856 90.729 90.282 1.9483
Cmc 43.505 45.516 46.250 46.685 46.766 47.242 46.834 46.861 46.208 1.2078
Diabetes 69.474 74.323 73.308 75.602 74.023 75.489 75.451 75.789 74.182 2.1008
Glass 64.299 65.421 63.271 64.860 63.084 63.645 62.523 63.178 63.785 0.9878
Haberman 65.098 68.039 67.908 69.281 69.412 71.830 71.699 73.203 69.559 2.6199
Image Segmentation 95.792 94.909 94.814 94.035 94.424 93.844 94.147 93.706 94.459 0.6897
Ionosphere 85.486 84.171 84.400 83.771 84.171 83.600 83.600 82.743 83.993 0.7909
Iris 93.867 94.400 94.400 94.933 94.267 94.267 94.267 94.933 94.417 0.3595
Letters 94.343 94.291 94.422 94.016 94.098 93.647 93.609 93.217 93.955 0.4251
Magic Gamma Telescope 80.124 82.211 82.462 82.980 83.115 83.212 83.281 83.213 82.575 1.0636
Optical Digits 98.359 98.456 98.491 98.349 98.406 98.185 98.256 98.139 98.330 0.1263
Pen-Based Digits 99.212 99.128 99.148 98.970 99.034 98.810 98.866 98.675 98.981 0.1859
Sonar 82.788 77.692 79.423 74.519 75.385 70.192 72.019 68.173 75.024 4.8764
Spambase 88.530 88.965 89.583 88.757 89.435 88.596 89.178 88.130 88.897 0.4893
Statlog (German) 66.960 69.200 68.840 70.000 70.520 70.620 71.580 71.000 69.840 1.4723
Statlog (Landsat) 89.473 90.002 89.983 89.890 90.045 89.557 89.765 89.442 89.770 0.2478
Statlog (Heart) 75.778 78.963 78.889 81.037 80.222 80.370 80.519 80.593 79.546 1.7060
Statlog (Shuttle) 99.932 99.876 99.880 99.835 99.835 99.794 99.792 99.751 99.837 0.0581
Tic-tac-toe 100.000 99.311 99.478 97.745 98.455 96.013 97.641 95.177 97.978 1.6995
VowelContext 93.758 80.202 76.687 63.737 59.758 49.394 44.626 38.646 63.351 19.1055
Waveform 77.160 80.448 80.348 81.748 81.476 82.696 82.504 83.044 81.178 1.9020
Wine 94.719 95.506 95.843 95.506 95.730 96.180 96.292 96.742 95.815 0.6117

the mean of all the K, only getting worse results in 5 databases. This can be
considered logical because in Table 4, it can be seen that in some databases there
are considerable differences for different values of K, which makes to devalue the
mean.

On the other hand, if we compare our method with the best K, we could
see that it improves in 6 databases, it draws in 1 and get worse in 20. Although
this results do not seem promising, looking in more detail, we could see that the
majority of the improved databases have low standard deviation value, σ, for the
different K values. There are 12 databases which has σ < 1, and the results are
very similar; in 5 of them our method gets the best result, in 1 they draw and
in the other 6 the best K-NN is the optimal. We think that these are optimistic
results taking into account that we are comparing our methods only result with
the best between the K-NN’s 9 results.

6 Conclusion and Further Results

A new method extending the K-NN idea is presented in this work: PPV K-NN.
The main reason of this approach is to ensure that the final decision is made
with some confidence. For doing that we search the most reliable K for each new
case.

The new method has been implemented and tested over 26 databases from
the UCI repository. We have compared our method with the best result and the
mean of K-NN. Getting interesting results for the databases with regular results
for different K in K-NN method.
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Table 5. Comparisson between our method resultd with K-NN’s best result and mean

Database PPV K-NN K-NN Best Avg K-NN
Australian Credit 84.116 85.072 83.942
Balance 86.635 87.917 84.736
Blood Transfusion 76.364 77.406 74.659
Breast Cancer 96.655 96.761 96.422
Car 90.197 91.551 90.282
Cmc 47.541 47.242 46.208
Diabetes 73.947 75.789 74.182
Glass 64.766 65.421 63.785
Haberman 72.484 73.203 69.559
Image Segmentation 95.446 95.792 94.459
Ionosphere 88.286 85.486 83.993
Iris 94.133 94.933 94.417
Letters 94.659 94.422 93.955
Magic Gamma Telescope 82.387 83.281 82.575
Optical Digits 98.491 98.491 98.330
Pen-Based Digits 99.216 99.212 98.981
Sonar 79.904 82.788 75.024
Spambase 89.561 89.583 88.897
Statlog (German) 70.700 71.580 69.840
Statlog (Heart) 79.778 81.037 79.546
Statlog (Landsat) 90.228 90.045 89.770
Statlog (Shuttle) 99.924 99.932 99.837
Tic-tac-toe 99.937 100.000 97.978
VowelContext 92.667 93.758 63.351
Waveform 80.720 83.044 81.178
Wine 96.966 96.742 95.815

As future work it would be interesting to include the reject option. Where
we reject the cases where there are two different K with a high PPV value that
predict different classes.
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Resumen The K Nearest Neighbor classification method assigns to an unclassi-
fied point the class which obtains best results after a voting criterion is applied
among its K previously classified nearest points. There are different aspects which
have to be taken into account in order to use this paradigm: the parameter K to
be used, the voting method to apply, the appropriate distance, among others. In
this paper we present a new version DK-NN where we seek K value in which the
most voted class must exceed a percentage of votes to be assigned. If the most
voted class do not exceed this threshold the value of K will decrease until it is
found a K which meet the condition. In this way, the experimenter does not have
to select a fixed number of K before using the classifier. We have made several
experiments with different threshold values and we have compared these with
the K-NN method. Obtained results support the adequateness of the new distance
based classification paradigm.

Keywords: Nearest Neighbor, Supervised Classification, Machine Learning, Non-
parametric Pattern Recognition

1. Introduction

In supervised classification problems [1] there are two extremes of knowledge which
the modeler may consider. Either (s)he may have complete statistical knowledge of the
underlying joint distribution of the observation x and the category θ, or (s)he may have no
knowledge of the underlying distribution except that which can be inferred from samples.
In the first extreme, a standard Bayes analysis will yield an optimal decision procedure
and the corresponding minimum (Bayes) probability of error classification R�. In the
other extreme, a decision to classify x into the category θ is allowed to depend only on a
collection of n correct samples px1, θ1q, px2, θ2q, ..., pxn, θnq, and the decision procedure
is by no means clear. This problem is in the domain of supervised classification, and no
optimal classification procedure exists with respect to all underlying statistics.

If it is assumed that the classified samples pxi, θiq are independently identically
distributed according to the distribution of px, θq, certain heuristic arguments may be
made about good decision procedures. For example, it is reasonable to assume that
observations which are close together (in some appropriate distance metric) will have
almost the same posterior probability distributions on their respective classifications.
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Thus to classify the unknown sample x we may wish to weight the evidence of the
nearby xi’s most heavily. Perhaps the simplest non-parametric decision procedure of this
form is the nearest neighbor (NN) classification method, which assigns to x the category
of its nearest neighbor.

The first formulation of a rule of the NN type and primary previous contribution
to the analysis of its properties it is presumed to have been made by Fix and Hodges
[2]. They investigated a method that is known as K Nearest Neighbors (K-NN), which
assigns to an unclassified point the class most heavily represented among its k nearest
neighbors.

One problem of this algorithm is that it assigns the final decision to the most voted
class, regardless of its likelihood. In this paper we present a different way to use K-NN
method, where if for one K the classifier has not a minimum of certainty to assign a class,
the K value is decrease until it finds a K that meets the minimum uncertainty.

This paper is organized as follows. In section 2 we review the K-NN classification
method while section 3 is devoted to Related Works in distance based classifiers; the
new proposed method is introduced in section 4, in section 5 we show the experimental
results obtained and in the final section 6 concluding remarks are presented..

2. The K-NN Classification Method

Let x1, . . . , xn be a correctly classified sample in classes θ1, . . . , θM , where xi takes
values in a metric space upon which a distance function d is defined. We will consider
the pairs pxi, θ

iq where xi is the p-variate observation upon the ith individual and θi is
the class or category which that individual belongs to.

We usually say that ”xi belongs to θi”when we mean precisely that the ith individual,
upon which measurements xi have been observed, belongs to category θi P tθ1, . . . , θMu.

Consider a new pair px, θq, where only the measurement x is observable, and where
we estimate θ by using the information contained in the set of correctly classified points.
We shall call

x1 P tx1, . . . , xnu (1)

the nearest neighbor (NN) of x if

mı́n
i�1,...,n

dpxi, xq � dpx1, xq , (2)

The NN classification decision method gives to x the category θi, precisely the
category of its nearest neighbor xi. In case of tie between several neighbors, it has to be
broken by modifying the decision rule.

An immediate extension to this decision rule is the so called K-NN approach [3],
which assigns the candidate x the class which is most frequently represented in the k
nearest neighbors to x.

3. Related work

Much research has been devoted to the K-NN rule [4]. One of the most important
results is that K-NN has very good asymptotic performance. Broadly speaking, for a very
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large design set, the expected probability of incorrect classifications (error) R achievable
with K-NN is bounded as follows:

R�   R   2R� (3)

where R� is the optimal (minimal) error rate for the underlying distributions. This
performance, however, is demonstrated for the training set size tending to infinity, and
thus, it is not really applicable to real world problems in which we usually have a
training set of about hundreds or thousands cases, too few for the number of probability
estimations to be performed.

Some distance based approaches, such that of Weinberger et al. [5] try to increase
the obtained accuracy in distance based classification by looking for a specific distance,
in an automatic way, for each classification problem. The proposed approach could be
used to deal with unbalanced or biased databases; a similar idea can be found in other
distance based methods [6]. By the other side, PEBLS instance based inducer (Cost and
Salzberg [7]) incorporates MVDM distance metric to deal with symbolic features, a
modification of Stanfill and Waltz’s VDM metric [8].

Improvement in classification can also be obtained by selecting and/or weighting
features (see [9] for an example). Probabilistic voting approaches have also been used
([10], [11]); the main idea here is that each case among the K nearest ones make a
weighted vote in favour of the class it belongs to, being the weight the probability each
case has to belong to its own class. A very well known approach is the so called Instance
Based Learning (IBL), based on the work of Aha [12] and Wettschereck [13]; there are
several versions of the algorithm [14].

Other problem that arises with the distance based classifier systems is the large
database management. Works devoted to data reduction [15] show interesting approaches
which could also be used in combination with any other distance based algorithm when
the size of the database is huge; there are as well works that try to accelerate the execution
of the distance based algorithm ([16], [17]) to obtain faster classifications.

By the other side, there are distance based classifiers developed to deal with the
so called multi labeling problem [18], in which, given a new case to be classified, a
different number of categories could be given to it. For instance, and taking as example
the document categorization area, a newspaper article relating the wedding of some
country president would obtain

Next section is devoted to the new approach we present in this paper.

4. Decreasing K Nearest Neighbor

One weaknesses of the K-NN algorithm is that sometimes it makes a decision without
enough certainty about the answer it is giving, mainly due to weak majority results.
Trying somehow to avoid this, in our work we present a new method in which we select
K value which gives high level of certainty in the classification process.

In 1970 Hellman [19] proposed the (K,L)-Nearest Neighbor rule, where it rejected
patterns with higher risk of being misclassified. He introduced a new threshold (L) that
indicated which was the minimum amount of votes that a class had to receive to be
selected. If there is no class which got more votes than the indicated threshold, this case is
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not classified. Rodriguez et al. [20] created a hierarchy for handwritting characters using
(K,L)-Nearest Neighbor algorithm. Their main objective was to reduce the computational
cost. In the first level of the hierarchy they used a small train database for (K,L)-Nearest
Neighbor; in this way the cases that were easy to classify are classified quickly. In the
second one they used a bigger training database to classify more difficult cases that were
rejected in the first level. And in the last one they use the Weighted K-NN to classify the
most difficult cases.

Our method is an extension of Hellman algorithm taking as a reference Rodriguez
et al. idea. In Hellman approach if any class exceeded the threshold the new case is
not classified. Instead of that, while the new case is rejected, we propose to decrease
sequentially the number of the K value until K = 1, in this case we apply the NN approach.
The threshold is updated maintaining the same percentage.

In Figure 1 it could be seen an example of DK-NN. In Figure 1(a) where K = 9,
the threshold L = 7 and there is no class which gets this amount of votes so this case
is rejected. In Figure 1(b) we could see next step where K = 5 and L = 4, in this case
neither the threshold is exceed. And in Figure 1(c) we could see the last step where it is
assigned the Nearest Neighbor to the new case.

(a) K = 9 & L = 7 (b) K = 5 & L = 4 (c) K = 1

Figura 1. Example of DK-NN algorithm

5. Experimental Results

In this section we show the experimental results obtained with different databases.
We have compared DK-NN with K-NN for different K values. To make these experiments
we have used a software for machine learning called Weka (Waikato Environment for
Knowledge Analysis) [21].

5.1. Datasets
Twelve databases are used to test our hypothesis. All of them are obtained from the

UCI Machine Learning Repository [22]. The characteristics of the databases are given
in Table 5.1.
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Cuadro 1. The characteristics of the 12 databases used in this experiment

Domain Instances Attributes Classes
Annealing 798 38 5

Cmc 1493 9 3
Dermatology 366 33 6

Glass 210 9 7
Iris 150 4 3

Nursery 12960 8 5
Optdigit 5620 64 10
Pendigit 10992 16 10

Statlog (Img Seg) 2310 19 7
Statlog (Landsat Sat) 6435 36 7

Statlog (Vehicle) 946 18 4
Wine 178 13 3

5.2. Experimental setup

In order to give a real perspective we have applied 5x2 fold cross validation to each
database [23]. In our experiments we have ran DK-NN with different thresholds and we
compare obtained results with the results obtained with K-NN.

In Table 5.2 we show the results obtained by the K-NN method for different K values,
where the best result is written in boldface. In Table 5.2, 5.2 and 5.2 we show the results
obtained by DK-NN for different reject thresholds. Furthermore, through these Tables it
can be seen how our algorithm acts for different databases, showing for each step the
percentage of classified cases and what percentage were correctly classified.

Cuadro 2. Accuracy level percentage of the K-NN method using different K numbers

K 1 2 3 4 5 6 7 8 9 Avg

Annealing 0.93497 0.93051 0.91670 0.91002 0.89599 0.89488 0.87906 0.87906 0.86993 0.90124
Cmc 0.42376 0.44277 0.45227 0.46083 0.45621 0.46857 0.46327 0.46897 0.46993 0.45629

Derm. 0.95082 0.95082 0.96339 0.96339 0.95683 0.96284 0.95902 0.96011 0.95519 0.95804
Glass 0.67477 0.65327 0.63925 0.64299 0.63084 0.62430 0.61308 0.61682 0.62430 0.63551

ImgSeg 0.95550 0.94511 0.94658 0.94199 0.94009 0.93870 0.93645 0.93602 0.93558 0.94178
Iris 0.94267 0.94800 0.95867 0.95333 0.95733 0.95733 0.95600 0.95600 0.95200 0.95348

Landsat 0.89461 0.89013 0.89896 0.89570 0.89806 0.89514 0.89411 0.89259 0.89308 0.89471
Nursery 0.88463 0.89846 0.92573 0.92824 0.93684 0.93818 0.94182 0.94219 0.94377 0.92665
Optdig 0.98370 0.97918 0.98391 0.98228 0.98242 0.98149 0.98125 0.98064 0.98085 0.98175
Pendig 0.99212 0.99034 0.99103 0.98997 0.98937 0.98865 0.98788 0.98741 0.98637 0.98924
Vehicle 0.66927 0.66998 0.67281 0.67352 0.67541 0.66809 0.66076 0.65981 0.66407 0.66819
Wine 0.95281 0.93146 0.95618 0.94382 0.95506 0.94494 0.95506 0.94944 0.95281 0.94906

Looking at the results, it could be seen that when threshold is 0.8, DK-NN gets better
results than the best K for the K-NN algorithm in 5 of the 12 databases, while the other
thresholds improve in the same 4 databases. Watching more closely, one can see that
the results are interesting in the databases where among the used K values, there are
not remarkable differences in the obtained results, i.e. when the standard deviation is
low. This standard deviation can be seen in Table 5.2. There are 8 databases which has
a regular results; our method gets better results in 4 of them, and even it gets worse in
the other 4, it could be seen that the best threshold is very close to the best K. On the

11 Decreasing K Nearest Neighbor 99



Cuadro 3. Accuracy level percentage when threshold is 0.8

Thresh.=0.8 K=9 L=7 K=5 L=4 K=1
Database Perc. Cases Well C. Perc. Cases Well C. Perc. Cases Well C. Accuracy

Annealing 0.84699 0.93873 0.05991 0.81784 0.09310 0.77990 0.91670
Cmc 0.12003 0.65837 0.16388 0.50041 0.71609 0.38149 0.43422

Derm. 0.87049 0.98933 0.05956 0.84404 0.06995 0.68750 0.95956
Glass 0.38505 0.84466 0.14019 0.61333 0.47477 0.58071 Ò 0.68692
Image 0.86996 0.98358 0.05316 0.81922 0.07688 0.70270 0.95325

Iris 0.89200 0.98655 0.05733 0.79070 0.05067 0.39474 0.94533
Landsat 0.83969 0.95507 0.05047 0.71367 0.10984 0.56989 Ò 0.90057
Nursery 0.61201 0.99889 0.08789 0.97313 0.30011 0.66391 0.89610
Optdig 0.95712 0.99368 0.01897 0.90056 0.02391 0.70982 Ò 0.98512
Pendig 0.97853 0.99470 0.00970 0.89869 0.01177 0.80371 0.99152
Vehicle 0.34917 0.90657 0.17139 0.68828 0.47943 0.50740 Ò 0.67778
Wine 0.90449 0.98012 0.03483 0.87097 0.06067 0.66667 Ò 0.95730

Cuadro 4. Accuracy level percentage when threshold is 0.7

Thresh.=0.7 K=8 L=6 K=4 L=3 K=1
Database Perc. Cases Well C. Perc. Cases Well C. Perc. Cases Well C. Accuracy

Annealing 0.87016 0.93115 0.08263 0.79515 0.04722 0.77358 0.91247
Cmc 0.18303 0.61499 0.29532 0.46023 0.52166 0.36413 0.43842

Derm. 0.89891 0.98602 0.06831 0.74400 0.03279 0.70000 0.96011
Glass 0.45794 0.81020 0.25234 0.54444 0.28972 0.56774 0.67290
Image 0.89290 0.98032 0.06130 0.73729 0.04580 0.67297 0.95134

Iris 0.92667 0.97986 0.04667 0.74286 0.02667 0.35000 0.95200
Landsat 0.86474 0.94781 0.06847 0.67817 0.06679 0.52815 Ò 0.90132
Nursery 0.68850 0.99713 0.11006 0.91139 0.20144 0.59864 0.90742
Optdig 0.96648 0.99275 0.02036 0.83566 0.01317 0.64054 Ò 0.98491
Pendig 0.98333 0.99395 0.01072 0.86927 0.00595 0.74618 0.99114
Vehicle 0.41844 0.87966 0.25910 0.61040 0.32246 0.46848 Ò 0.67730
Wine 0.92022 0.97558 0.04831 0.81395 0.03146 0.67857 Ò 0.95843

Cuadro 5. Accuracy level percentage when threshold is 0.6

Thresh. = 0.6 K=9 L=6 K=6 L=4 K=3 L=2 K =1
Database Perc. Cases Well C. Perc. Cases Well C. Perc. Cases Well C. Perc. Cases Well C. Accuracy

Annealing 0.91537 0.90487 0.04811 0.73148 0.03385 0.73684 0.00267 0.91667 0.89087
Cmc 0.30102 0.57330 0.20937 0.43969 0.34121 0.40191 0.14840 0.34309 0.45268

Derm. 0.93388 0.97601 0.03443 0.76190 0.03115 0.75439 0.00055 0.00000 0.96120
Glass 0.56636 0.74917 0.14579 0.56410 0.23551 0.50397 0.05234 0.57143 0.65514
Image 0.92234 0.96968 0.03801 0.67654 0.03307 0.63351 0.00658 0.63158 0.94519

Iris 0.94667 0.97324 0.03600 0.66667 0.01733 0.69231 0.00000 0.00000 0.95733
Landsat 0.90651 0.93194 0.03972 0.61972 0.04572 0.57648 0.00805 0.43243 Ò 0.89927
Nursery 0.80611 0.99001 0.05622 0.85205 0.07293 0.67626 0.06474 0.55614 0.93128
Optdig 0.97737 0.98955 0.01142 0.77570 0.00961 0.73333 0.00160 0.55556 Ò 0.98395
Pendig 0.98914 0.99128 0.00615 0.84320 0.00428 0.74894 0.00044 0.50000 0.98912
Vehicle 0.52506 0.82530 0.17021 0.59167 0.24161 0.49413 0.06312 0.39700 Ò 0.67849
Wine 0.95393 0.97055 0.02135 0.89474 0.02472 0.81818 0.00000 0.00000 Ò 0.96517
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other hand we consider remarkable the fact that few cases pass the filters arriving to
the K = 1 last step. For example when the threshold is more hard, 0.8, only 4 databases
arrive to the last step with more the %30 cases to be classified. And when the threshold
is more flexible fewer cases arrive to K=1 classification. This means that most cases are
classified with a minimum of certainty.

We do not think it is entirely fair to compare the results of the 9 K with the results of
the 3 thresholds. As the K-NN has more options is more likely to get the best result. One
option to make it more fair, could be to compare the average of all K, but neither seems
to be the most appropriate. So, although the comparison seems too hard, we decide
to compare with the 3 best K values average. In Table 5.2 we show the comparison
of this two means with the mean of the different thresholds. Moreover we show the
corresponding standard deviation.

Cuadro 6. Mean Accuracy level percentage and standard deviation obtained for all the Nearest
Neighbors, 3 best Nearest Neighbors and our method.

9 K 3 Best K Our approach

Database Mean σ Mean σ Mean σ
Annealing 0.90124 0.02330 0.92739 0.00952 0.90668 0.01386

Cmc 0.45629 0.01510 0.46916 0.00070 0.44177 0.00968
Dermatology 0.95804 0.00499 0.96321 0.00032 0.96029 0.00083

Glass 0.63551 0.01953 0.65701 0.01621 0.67165 0.01592
ImgSeg 0.94178 0.00647 0.94906 0.00562 0.94993 0.00421

Iris 0.95348 0.00523 0.95778 0.00077 0.95156 0.00601
Landsat 0.89471 0.00271 0.89757 0.00169 0.90039 0.00104
Nursery 0.92665 0.02111 0.94259 0.00103 0.91160 0.01796
Optdig 0.98175 0.00151 0.98335 0.00081 0.98466 0.00063
Pendig 0.98924 0.00184 0.99116 0.00090 0.99059 0.00129

StatlogVe 0.66819 0.00558 0.67392 0.00134 0.67786 0.00059
Wine 0.94906 0.00795 0.95543 0.00065 0.96030 0.00425

Looking to the results of Table 5.2 it can be seen that the mean of DK-NN gets better
results than the mean of all the K, but aforementioned we regard that this is not the fairest
comparison. Instead, when one compare with the 3 best K, DK-NN gets better results
in 6, while in other 6 gets worst results. If the databases with small standard deviation
are taken into account, one could see that our method outperform in 5 of the 8 regular
databases.

In view of all these results, it seems that our proposal shows competitive behavior,
getting very promising results for some databases. For example there are 4 databases
where for all the thresholds, DK-NN gets better results than the best K of K-NN method.
Furthermore when we compare the mean values our method gets better results in the %50
of the datasets.

6. Conclusion and Further Results

A new method extending the K-NN idea is presented in this work: DK-NN. The main
reason of this approach is to ensure that the final decision is made with some confidence.
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For doing that we find a K which shows a minimum of certainty in making the final
decision.

The new method has been implemented and tested over 12 databases from the UCI
repository. We have given different thresholds to the different K points and we have
compared the results with those obtained by using the K-NN method. We do not expect
our method to be better than the K-NN one in all the classification problems but it gets
very interesting results for some databases, especially for the databases which have a
regular results for different K in K-NN method.

As future work it would be interesting to change the way we assign the threshold.
One option could be that the threshold indicate the minimum difference required between
the two most voted class.
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a b s t r a c t

This paper proposes a novel approach to select the individual classifiers to take part in a Multiple-
Classifier System. Individual classifier selection is a key step in the development of multi-classifiers.
Several works have shown the benefits of fusing complementary classifiers. Nevertheless, the selection
of the base classifiers to be used is still an open question, and different approaches have been proposed
in the literature. This work is based on the selection of the appropriate single classifiers by means of an
evolutionary algorithm. Different base classifiers, which have been chosen from different classifier
families, are used as candidates in order to obtain variability in the classifications given. Experimental
results carried out with 20 databases from the UCI Repository show how adequate the proposed
approach is; Stacked Generalization multi-classifier has been selected to perform the experimental
comparisons.
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1. Introduction

The Machine Learning (ML) research area, and more specifically
supervised classification, addresses the problem of building, from
correctly classified datasets, models able to deal with new unclas-
sified cases and assign them a predicted class; it is worth
mentioning that good classification accuracy is expected from
the classifier.

It has been experimentally observed that the construction of a
perfect classifier, using a single paradigm, is often impossible.
Therefore, designers have tried to combine several classifiers, and
this idea has led to the development of Multiple-Classifier Systems
(MCS), which attempt to combine the advantages of different
individual classifiers, sometimes built using different training
paradigms, to obtain better results. Classifier combination is a
viable alternative to using a single classifier, and has become an
established research area, thriving mostly on heuristic solutions.
Some theoretical results are also available but only for special
cases, usually assuming independent classifier outputs [1–4].

Intuitively, it makes sense that a combination of classifiers
provides better results than a single decision maker. However, this
depends on how independent and diverse the individual classifiers

are [5], and thus the diversity among the selected classifiers is one
of the key design features within a successful multi-classifier.

There are different MCS strategies. Some approaches organize
the different classifiers in a tree [6], other approaches create
various classifiers by using different subsets of features to train
them [7], and certain approaches divide the multi-class classifica-
tion problems into several two-class sub-problems, in the so-
called Class-Binarization strategies [8,9]. The most common stra-
tegies found in the literature are Boosting [10], Bagging [11] and
Stacked Generalization (SG) [12].

In Bagging and Boosting, diversity is achieved by manipulating
the training examples in order to generate multiple hypotheses.
The base classifier is trained several times, each time with a
different subset of the training examples, thus creating different
classifiers. Finally there should be a method to combine the
outputs of this set of classifiers.

Stacked Generalization [13] basically follows a layered archi-
tecture. At the level-0, classifiers are trained using the original
dataset and each classifier outputs a prediction for each token.
Successive layers receive as inputs the predictions of the previous
layer, and at the level-1, a single classifier, also called meta-
classifier, outputs the final prediction. The overall performance
not only depends on the individual classifiers used at the level-0,
but also on the correct selection of classifiers at other levels. One
problem of Stacked Generalization is how to obtain the right
combination of level-0 classifiers and the meta-classifier, espe-
cially in relation to each specific dataset.
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Two difficulties arise when a MCS has to be developed: the
selection of base classifiers, and how to combine their individual
decisions.

By combining the outputs of a team of classifiers, we aim at a
more accurate decision than that of the best member of the team.
The assumption is that developers should introduce diversity in
the ensemble, and therefore enhance the performance. There are
different ways to tackle output combination; a weighted majority
vote is the standard combination method for ensembles but there
are other combination methods which could also be successful.
Many combination methods and algorithms have been developed,
including the use of a meta-classifier, which is the option selected
to construct a Stacked Generalization model.

The difficulty in choosing a suitable combination method for
the problem at hand has been recognized and highlighted numer-
ous times in the literature. Some theoretical works rely on
simplifications and assumptions, and consider mostly special cases
[14–16]. However, even a discipline as mature as pattern recogni-
tion does not offer strict guidelines about how to approach a
dataset and which classifier to select for it; many experimental
studies have been published in the search for such guidelines
[17,18]. This study also belongs to this experimental group.

This paper presents a methodology to incorporate into a
Multiple-Classifier System a mechanism which attempts to adapt
the structure of the MCS to a given classification problem. This
approach has the following properties:

1. To be a global optimization technique which has been shown to
be successful in complex domains, such as the space of the
possible configurations for a Multiple-Classifier System given a
pool of individual classifiers.

2. To provide an easy way to express the problem of optimization
of the multiple-classifier structure.

3. To combine the individual classifier opinions in the form
established by the MCS itself (voting, meta-classifier, etc.); the
searching process itself selects the appropriate base classifiers
taking into account the mode in which the final decision
is taken.

We present a Multiple-Classifier System which incorporates an
automatic self-configuration scheme based on Estimation of Dis-
tribution Algorithms [19] (an evolutionary computation approach).
Our main interest is focused on the constituent classifiers of the
resulting multi-classifier.

To show the behaviour of the proposed method, 20 datasets
have been selected from the UCI repository [20] and 10 standard
classifiers are used by the new Classifier Subset Selection (CSS)
proposed method to construct a Stacked Generalization MCS.
Experiments are carried out comparing the results of the 10 single
classifiers, state-of-the-art multi-classifiers (Boosting, Bagging and
StackingC) and the Stacked Generalization classifiers constructed
with the whole set of 10 base classifiers in the level-0. Results
obtained show the goodness of the approach, as the new paradigm
statistically outperforms the remaining classifiers used.

The rest of the paper is organized as follows: in Section 2
related work in the area of multi-classifiers is presented. Section 3
describes the proposed approach and Section 4 the experimental
setup. Finally, Section 5 depicts some conclusions and future
work lines.

2. Related work

Several papers can be found in the literature about construction
and use of Multiple-Classifier Systems. In this section we reflect
three main aspects: different MCS which have been used in

different tasks; in the next subsection the revision is focused on
the Stacked Generalization paradigm, as it will be that used in the
experimental phase, and in the third subsection we revise the use
of evolutionary algorithms in order to obtain better multi-
classifiers.

2.1. Multiple-Classifier Systems

Combination of classifiers has been widely used as a useful
approach in several Machine Learning tasks [21].

In the field of people detection, several authors have used
multi-classifier approaches: [22] uses Histograms of Oriented
Gradients (HOGs) and Local Receptive Fields (LRFs), which are
provided by a convolutional neural network, and are classified by
Multi-Layer Perceptrons (MLPs) and Support Vector Machines
(SVMs) combining classifiers by majority vote and fuzzy integral;
[23–25] present a MCS to manage image based classification
problems; Batista et al. [26] take advantage of unigrams, bigrams
and trigrams to design a Multiple-Classifier System for Sentiment
Analysis and Opinion Mining.

In [27], to improve the performance of classification, three
classifiers that have the best results among all applied methods
are combined; on the other hand, [28] presents a Multiple-
Classifier System based on colour and texture information for face
image segmentation; Haibo et al. [29] present a hybrid MSC to
improve the precision of remote sensing image classification.
Taking the characteristic of abstract level and measurement level
into consideration, the optimal sub-classifier, Bagging algorithm
and the largest confidence algorithm are combined.

In [30], the problem of Multiple-Classifier System design is
discussed and the reader is provided with a critical survey of the
state-of-the-art. The main conclusion in this section is that optimal
design is still an open problem. More information about Multiple-
Classifier Systems can be found in [31].

2.2. Stacked Generalization

Ting and Witten [32] propose to extend Stacked Generalization
using class probability distributions of the original classifiers.
Moreover, they propose to use the Multi-Response Linear Regres-
sion (MRLR) as meta-classifier. Seewald [33] discovered that this
new version worked correctly for two-class problems while it
performed worse for multi-class problems. In order to solve this
problem, he proposes a new method called StackingC where, for
each class separately, a meta training set is created with the class
probabilities associated with the class. In this case, he also uses
MRLR as meta-classifier.

As can be seen in the literature the Stacked Generalization
multi-classifier has been applied in different types of problems:
For example Ekbal et al. [34] use a Stacked Generalization multi-
classifier for the extraction of biomedical entities in the forms of
genes and gene product mentions in text and Ibarguren et al. [35]
use a Stacked Generalization to real time recognition of the
Fingerspelling Alphabet used by the deaf people.

2.3. Base classifier configuration by means of evolutive computation

Quian et al. investigate MSC as a multi-goal problem from a
theoretical point of view [36]. Whereas Rahman et al. [37] propose a
novel cluster oriented ensemble classifier generation method and a
Genetic Algorithm based approach to optimize the parameters.

Impedovo et. al. [38] propose a new method for handwritten
digit recognition where, for each individual classifier, a feature
selection is applied. They consider the problem of feature selection
as an optimization problem so they use the genetic algorithms in
order to find the best performance of the combined classifier. On
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the other hand, in order to predict subcellular localization of
apoptosis proteins, Ding and Zhang [39] propose a new method
where each individual classifier is trained with different dimen-
sions of protein sequences and they use the genetic algorithms to
find the optimal weight factors.

Zhou et al. [40] have proved that ensembling some of the
available classifiers may be better than ensembling all of them.
Viewing that, Kim and Kang [41] propose a new method where
they use the genetic algorithms for classifier selection in ensem-
bles. In this case they concentrate on the selection process of an
ensemble containing diverse classifiers.

In the literature we can also find some works that try to improve
the performance of Stacked Generalization by selecting the best
classifiers using different evolutionary computation strategies. Chen
[42,43] proposes a new ensemble construction method which
applies Ant Colony Optimization (ACO) in the Stacked General-
ization ensemble construction process to generate domain-specific
configurations. Shunmugapriya and Kanmani [44], use Artificial Bee
Colony (ABC) Algorithm as a meta-heuristic search algorithm to
obtain a suitable Stacked Generalization model. To this end, two
versions of the ABC algorithm are used. Ledezma et al. [45] use the
genetic algorithms and show that selecting the right classifiers,
their parameters and the meta-classifier is a critical issue.

3. Proposed approach

As explained in the Introduction, the main goal of this work is
optimal selection of base classifiers to construct multi-classifiers.
In this section, the elements and processing sequence that con-
stitute the proposed approach are explained in detail.

3.1. Combination of classifiers

To combine the results of the base classifiers, we use Stacked
Generalization (SG) as Multiple-Classifier System. Stacked Gener-
alization is a well known ensemble approach and is also called
Stacking [12,46]. While ensemble strategies such as Bagging or

Boosting obtain the final decision after a vote among the predic-
tions of the individual classifiers, SG applies another individual
classifier to the predictions in order to detect patterns and
improve performance of the vote.

As can be seen in Fig. 1, SG is divided into two levels: in the
level-0 each individual classifier makes a prediction indepen-
dently, and in the level-1 these predictions are treated as the
input values of another classifier, known as meta-classifier, which
returns the final decision.

The data for training the meta-classifier is obtained after a
validation process, where the outputs of the level-0 classifiers are
taken as attributes and the class is the real class of the example.

3.2. Classifier Subset Selection (CSS)

Although using many classifiers may seem more effective, our
believe is that selecting a subset of them can reduce the computa-
tional cost and improve the accuracy, assuming that the selected
classifiers are diverse and independent between them.

In this paper we propose a new multi-classifier paradigm,
which extends the Staking Generalization approach, reducing the
number of classifiers to be used in the final model. We call this
new approach Classifier Subset Selection (CSS) and a graphical
example is illustrated in Fig. 2. As can be seen, we added to the
multi-classifier an intermediate phase in which a subset of the
level-0 classifiers is selected. The criterion to make the selection
depends on the goal of the classification task, and in this case, we
have decided to use classification accuracy. As can be seen in Fig. 2,
discarded classifiers – those with an � – are not used in the multi-
classifier.

3.3. CSS by means of estimation of distribution algorithms (EDAs)

CSS can be contemplated in a similar way as Feature Subset
Selection (FSS) in some ML problems. As reported by Aha and
Bankert [47], the objective of FSS in Machine Learning is to reduce
the number of features used to characterize a dataset so as to

SVM
IB1

BNC4.5

NB

Meta−classifier

New Case (to be classified)

FINAL DECISSION

Fig. 1. Stacked Generalization schemata.
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improve the performance of a learning algorithm on a given task.
Our objective will be the maximization of the classification
accuracy in a multi-classifier; CSS task can be thus exposed as a
search problem, each state in the search space identifying a subset
of possible base classifiers selected.

The method used to select the classifiers could be any one, but
in this type of scenarios evolutionary approaches are often
introduced with promising results. Today, some of the best known
evolutionary algorithms for FSS are based on Estimation of
Distribution Algorithms (EDAs) [19]. EDA combines statistical
learning with population-based search in order to automatically
identify and exploit certain structural properties of optimization
problems. Inza et al. [48] proposed an approach that used an EDA
called Estimation of Bayesian Network Algorithm (EBNA) [49] for a
FSS problem. Viewing that in [50] EBNA shows better behaviour
than genetic and sequential search algorithms for FSS problems
(and hence for CSS in this approach), we decide to use EBNA.

Moreover EBNA has been selected as the model in the recent work
that analyses the behaviour of the EDAs [51].

EBNA is an EDA that learns a Bayesian Network and it follows
the typical EDA structure. It starts with a population of candidate
solutions to the problem, starting with a population generated
with uniform distribution over all admissible solutions. The
population is then scored using a fitness function. This fitness
function gives a numerical ranking for each string, with the higher
the number, the better the string. From this ranked population, a
subset of the most promising solutions are selected by the
selection operator. The characteristic of EBNA is that it uses a
Bayesian Network to deal with the probability distribution of the
selected solutions. Once the model is constructed, new solutions
are generated by sampling the distribution encoded by this model.
These new solutions are then incorporated back into the old
population. The process is repeated until some termination criteria
are met (usually when a solution of sufficient quality is reached or

C1’

C2’ C4’

C1’

C2’

C3’

C4’

Cm’

Cm’C3’

FINAL DECISSION

NEW APPROACH

SE
LE

CT
ED

 C
LA

SS
IF

IE
RS

 O
NL

Y

LE
ARNIN

G PH
ASE

 (A
LL

)

New Case (to be classified)
Training data (Learning phase)

BA
SE

 C
LA

SS
IF

IE
RS

C
LA

SS
IF

IE
R

 S
U

B
SE

T 
SE

LE
C

TI
O

N

Meta−classifier

...

...

EDA CSS Process

YES   NO    NO         YES ...

CL
AS

SI
FI

ER
 C

OM
BI

NA
TI

ON

YES

Fig. 2. Classifier Subset Selection Stacked Generalization.

I. Mendialdua et al. / Neurocomputing 157 (2015) 46–60 49

112 12 Classifier Subset Selection to Construct Multi-Classifiers



when the number of iterations reaches some threshold). Fig. 3
shows the pseudocode of the algorithm.

In our approach, an individual in the EDA algorithm will be
defined as an n-tuple of binary 0, 1 values – the so-called Binary
Encoding – and each position in the tuple refers to a concrete base
classifier, and the value indicates whether this classifier is used (1
value) or not (0 value). An example with 10 classifiers (the value
used in this paper) can be seen in Fig. 4. In this example, Cl1, Cl4
and Cl7 are the selected classifiers, and the remaining seven are
not used.

Once an individual has been sampled, it has to be evaluated. The
aim is to consider the predictive power of each subset of base
classifiers. For this, a multi-classifier is built for each individual
using the corresponding subset of classifiers and the obtained
validated accuracy is used as a fitness function. Thus, when looking
for the individual that maximizes the fitness function, the EDA
algorithm is also searching the optimal subset of base classifiers.

For individual selection we decide to use the range-based
selection, selecting the best S individuals from the N individuals
of the population. Although S can be any value, we decide to set it
to N/2 since it is the most common value in EDA literature.

4. Experimental results

In this section we show the set-up of the experimental frame-
work and the obtained results.

4.1. Datasets

In order to evaluate the performance of the proposed approach,
20 databases have been selected from the UCI repository [20]. In
Table 1 the characteristics of these databases are shown. The
number of cases ranges from 101 to 1728, the number of attributes
from 4 to 35 and the number of classes from 2 to 19, so a wide
variety of problems is represented.

4.2. Base classifiers

To carry out the experiments, we have used 10 well-known ML
supervised classification algorithms from a software package for
Machine Learning called WEKA [52].

Among the classifiers that WEKA offers, we have selected the
following:

1R: is a one level decision tree which tests just one attribute
[53]. The chosen attribute is that which produces minimum error.

KNN: is a case-based, Nearest-Neighbour classifier [54]. To
classify a new test sample, a simple distance measure is used to
find the training instance closest to the given test instance, and
then it predicts the same class as this nearest training instance.

RIPPER: (Repeated Incremental Pruning to Produce Error
Reduction) [55] is a rule-base learner, an optimized version of
IREP, that forms rules through a process of repeated growing (to fit
training data) and pruning (to avoid overfitting). RIPPER handles
multiple classes by ordering them from least to most prevalent,
and then treating each in order as a distinct two-class problem.

Naive Bayes (NB): The Naive-Bayes rule [56] uses the Bayes
theorem to predict the class for each case, assuming that the
predictive genes are independent given the category. To classify a
new sample characterized by d genes X¼ ðX1;X2;…;XdÞ, the NB
classifier applies the following rule:

cNB ¼ arg max
cj AC

pðcjÞ ∏
d

i ¼ 1
pðxi j cjÞ

where cNB denotes the class label predicted by the Naive-Bayes
classifier and the possible classes of the problem are grouped into
C ¼ fc1;…; clg.

C4.5: The C4.5 [57] represents a classification model by a
decision tree. The tree is constructed in a top-down way, dividing
the training set and beginning with the selection of the best
variable in the root of the tree.

Kn: is an instance-based algorithm that uses an entropy-based
distance function [58].

Fig. 3. Main scheme of the EDA approach.

Fig. 4. The combinations of base classifiers as EDA individuals.

Table 1
Characteristics of the databases.

Database #Cases #Classes #Attributes

Balance-scale 625 3 4
Breast-cancer 286 2 9
Car 1728 4 6
Cmc 1473 3 9
Colic 368 2 22
Diabetes 768 2 8
Ecoli 336 8 7
Glass 214 7 9
Hepatitis 155 2 19
Iris 150 3 4
Lymph 148 4 18
Liver-disorders 345 2 6
Solar-flare-1 323 6 12
Solar-flare-2 1066 6 12
Soybean 683 19 35
Vehicle 846 4 18
Vote 435 2 16
Vowel 990 11 13
Wine 178 3 13
Zoo 101 7 17
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Table 2
Single classifiers' results.

Dataset 1R KNN RIPPER NB C4.5 Kn BN NBT RF SVM

Balance-scale 56.32 86.56 80.80 90.40 76.64 88.48 72.32 76.64 80.48 87.68
Breast-cancer 65.73 72.38 70.98 71.68 75.53 73.43 72.03 70.98 69.23 69.58
Car 70.02 93.52 86.46 85.53 92.36 87.56 85.71 94.21 92.65 93.75
Cmc 48.13 44.33 52.41 50.78 52.14 50.24 51.05 51.73 50.85 48.20
Colic 81.52 81.25 84.24 77.99 85.33 76.63 81.25 82.06 86.14 82.61
Diabetes 72.79 70.18 76.04 76.30 73.83 69.14 74.35 74.35 73.83 77.34
Ecoli 64.88 80.36 81.25 85.42 84.23 80.95 81.25 82.14 83.63 84.23
Glass 58.41 70.56 68.69 48.60 66.82 75.23 70.56 70.56 72.90 56.08
Hepatitis 83.23 80.64 78.06 84.52 83.87 81.94 83.23 80.00 82.58 85.16
Iris 93.33 95.33 94.00 96.00 96.00 94.67 92.67 94.00 95.33 96.00
Liver-disorders 59.42 62.90 64.64 55.36 68.70 66.96 56.23 66.09 68.99 58.26
Lymph 75.00 82.43 77.70 83.11 77.03 85.14 85.81 80.41 81.08 86.49
Solar-flare-1 54.80 68.11 72.45 65.64 72.14 69.35 66.87 70.59 68.42 70.28
Solar-flare-2 61.45 72.89 70.45 74.39 74.48 74.67 74.48 74.58 72.98 75.23
Soybean 39.97 91.22 91.95 92.97 91.51 87.99 93.27 91.51 91.66 93.85
Vehicle 51.42 69.86 68.56 44.80 72.46 71.39 60.05 72.93 77.07 74.35
Vote 95.63 92.41 95.40 90.11 96.32 93.33 90.11 95.63 95.86 96.09
Vowel 31.82 99.29 69.70 63.74 81.52 98.99 60.81 93.53 96.06 71.41
Wine 77.53 94.94 91.57 96.63 93.82 98.88 98.88 96.63 97.19 98.31
Zoo 42.57 96.04 86.14 95.05 92.08 96.04 94.06 94.06 89.11 96.04

Table 4
Stacked Generalization results.

Dataset 1R KNN RIPPER NB C4.5 Kn BN NBT RF SVM

Balance-scale 93.12 90.56 92.96 92.48 93.28 89.92 91.68 93.92 94.72 92.80
Breast-cancer 69.23 65.03 69.23 69.23 71.68 65.03 69.93 72.03 70.28 72.73
Car 93.92 96.70 99.07 95.72 98.90 97.22 96.70 98.21 99.31 98.03
Cmc 45.21 45.48 50.85 53.90 47.86 47.73 53.56 52.75 52.48 54.11
Colic 85.60 78.26 84.51 85.05 82.34 79.89 85.60 82.88 84.51 84.24
Diabetes 71.48 70.18 74.87 76.56 76.17 71.22 74.74 75.00 74.22 77.08
Ecoli 72.32 80.95 83.33 74.70 82.74 80.66 83.63 82.44 84.23 53.87
Glass 56.08 66.82 74.30 62.62 71.96 66.82 73.36 65.42 75.70 66.82
Hepatitis 81.29 80.64 81.94 85.16 83.23 81.29 83.23 84.52 83.87 84.52
Iris 92.00 93.33 92.67 95.33 94.67 96.00 95.33 94.67 94.67 93.33
Liver-disorders 62.90 59.42 66.96 71.30 64.06 58.84 70.72 68.12 66.67 70.44
Lymph 81.08 79.05 84.46 81.76 83.78 81.76 83.11 79.73 81.76 84.46
Solar-flare-1 61.30 65.94 66.25 58.51 68.73 69.97 65.64 64.40 67.80 70.90
Solar-flare-2 64.54 70.73 72.05 71.95 71.11 70.36 71.58 70.36 71.39 74.86
Soybean 45.68 93.12 90.34 92.24 90.78 6.04 93.85 91.95 93.27 93.85
Vehicle 54.26 73.88 77.19 75.06 76.60 75.77 78.01 74.94 77.42 78.49
Vote 95.86 95.40 95.40 96.32 96.09 95.86 96.09 95.40 97.01 96.09
Vowel 34.75 99.09 97.37 98.18 98.38 96.97 98.08 94.95 98.89 99.29
Wine 92.70 98.88 98.88 97.19 98.88 98.31 98.88 99.44 98.88 97.75
Zoo 73.27 97.03 95.05 96.04 92.08 97.03 93.07 89.11 93.07 94.06

Table 3
Bagging, Boosting and StackingC results.

Dataset AdaBoost M1 Bagging AdaBoost M1 Bagging StackingC
(DS) (REPTree) (C4.5) (C4.5)

Balance-scale 72.32 82.72 78.88 82.24 88.96
Breast-cancer 70.28 68.88 69.58 73.43 73.08
Car 70.02 91.67 96.12 93.52 95.54
Cmc 42.70 54.24 50.78 54.11 53.77
Colic 81.25 84.78 83.42 85.60 84.51
Diabetes 74.35 74.48 72.40 74.09 76.17
Ecoli 64.58 83.33 81.25 84.82 86.01
Glass 44.86 71.03 74.30 71.03 74.77
Hepatitis 82.58 83.23 85.81 83.23 83.87
Iris 95.33 94.67 93.33 95.33 93.33
Liver-disorders 66.09 71.30 71.59 72.75 70.72
Lymph 74.32 79.05 81.08 79.05 85.14
Solar-flare-1 46.75 73.38 71.21 72.14 72.75
Solar-flare-2 53.47 74.86 73.17 73.83 75.42
Soybean 27.97 87.12 92.83 93.27 93.70
Vehicle 39.95 72.34 76.24 76.60 76.83
Vote 95.40 95.86 95.86 96.32 96.09
Vowel 17.37 86.87 93.33 90.40 99.09
Wine 91.57 94.94 96.63 94.94 97.75
Zoo 60.40 42.57 95.05 93.07 95.05
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Bayesian Networks (BN): A Bayesian network [59], belief network
or directed acyclic graphical model is a probabilistic graphical model
that represents a set of random variables and their conditional
independencies via a directed acyclic graph (DAG).

Naive Bayes Tree (NBT): uses a decision tree with naive Bayes
classifiers at the leaves [60].

Random Forest (RF): constructs a combination of many
unpruned decision trees [61]. The output class is the mode of
the classes output by individual trees.

Support Vector Machines (SVM): are a set of related supervised
learning methods used for classification and regression [62].
Viewing input data as two sets of vectors in an n-dimensional
space, an SVM will construct a separating hyperplane in that
space, one which maximizes the margin between the two datasets.

As can be seen, we have selected classifiers with different
approaches to learning, and widely used in different classification
tasks. The goal is to combine them in a multi-classifier to
maximize the benefits of each modality by intelligently fusing
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Fig. 5. Stacked Generalization results obtained for each database and meta-classifier.

Table 5
Results obtained by the proposed approach.

Dataset 1R KNN RIPPER NB C4.5 Kn BN NBT RF SVM

Balance-scale 93.12 95.04 95.20 93.92 94.72 95.20 93.44 95.68 96.48 94.24
Breast-cancer 74.13 74.48 75.17 75.52 75.17 74.83 73.43 75.52 75.52 74.48
Car 93.92 99.13 99.48 98.15 99.48 99.42 98.78 99.42 99.77 98.67
Cmc 48.47 52.00 53.90 55.67 53.23 53.16 55.53 55.13 52.68 55.33
Colic 86.69 85.33 87.77 86.69 87.77 87.23 86.96 87.23 85.60 86.14
Diabetes 77.34 77.60 78.13 78.00 78.52 78.65 76.82 78.00 78.13 77.47
Ecoli 75.89 86.01 86.61 84.23 86.91 86.61 85.42 84.82 87.80 88.09
Glass 64.49 75.23 78.04 73.83 77.57 78.97 78.50 72.43 79.91 79.44
Hepatitis 85.81 85.16 87.74 86.45 87.74 85.81 85.81 87.74 87.74 85.16
Iris 96.00 97.33 96.67 96.67 96.67 97.33 96.67 96.67 96.67 96.67
Liver-disorders 71.01 68.70 72.46 73.04 71.88 71.30 71.88 71.59 70.44 72.75
Lymph 83.78 86.49 86.49 87.16 86.49 85.81 88.51 85.14 87.16 87.84
Solar-flare-1 63.78 75.23 73.06 70.59 73.99 74.30 73.06 73.38 73.99 73.99
Solar-flare-2 66.04 75.05 73.64 73.45 75.23 75.33 72.89 74.39 75.33 76.36
Soybean 50.22 94.14 93.70 93.56 93.41 93.41 92.83 91.65 94.44 94.44
Vehicle 63.00 77.54 78.72 77.31 78.49 78.84 78.84 77.19 80.38 79.79
Vote 96.78 96.78 96.78 97.01 96.32 97.01 97.24 97.24 97.24 96.55
Vowel 37.98 99.50 99.29 99.09 99.29 99.19 98.28 98.79 99.50 99.39
Wine 92.70 100.00 100.00 100.00 100.00 99.44 100.00 100.00 98.88 100.00
Zoo 75.25 98.02 96.04 98.02 97.03 98.02 95.05 95.05 98.02 98.02
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their information, and by overcoming the limitations of each
modality alone. As we treat the classifiers as black boxes, we have
used the default parameters of the classifiers.

4.3. Method

The experimental phase is divided into four steps that are
applied to each of the 20 databases:

1. Single classifiers: build 10 classifiers, applying the 10 base
Machine Learning algorithms to the training dataset, and get
validated classification accuracies.

2. Standard multi-classifiers: build 5 classifiers, applying Bagging
(REPTree and C4.5), Boosting (DecitionStump and C4.5) and
StackingC Machine Learning algorithms to the training dataset,
and get validated classification accuracies.

3. Stacked Generalization: applying classic Stacked Generalization
algorithm (with the ten base classifiers at level-0), build 10
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Fig. 6. Results obtained by the proposed approach for each database and meta-classifier.

Table 6
Mean and standard deviation results obtained for each of the classifier sets used: single, ensemble, Stacked Generalization and CSS.

Classifier set Single Ensemble Stacking CSS

Dataset Mean StDev Mean StDev Mean StDev Mean StDev

Balance-scale 79.63 10.13 79.04 4.79 92.54 1.46 94.70 1.04
Breast-cancer 71.15 2.63 70.54 2.01 69.44 2.63 74.83 0.70
Car 88.18 7.30 87.83 12.01 97.38 1.69 98.62 1.72
Cmc 49.99 2.47 50.46 5.41 50.39 3.51 53.51 2.20
Colic 81.90 2.98 83.76 1.90 83.29 2.48 86.74 0.84
Diabetes 73.82 2.59 73.83 0.97 74.15 2.39 77.86 0.56
Ecoli 80.83 5.86 78.50 9.39 77.89 9.32 85.24 3.50
Glass 65.84 8.58 65.30 13.72 67.99 6.01 75.84 4.70
Hepatitis 82.32 2.20 83.71 1.43 82.97 1.59 86.52 1.12
Iris 94.73 1.19 94.67 0.94 94.20 1.30 96.73 0.38
Liver-disorders 62.75 5.11 70.43 2.97 65.94 4.52 71.51 1.27
Lymph 81.42 3.92 78.38 2.87 82.09 1.86 86.49 1.35
Solar-flare-1 67.86 5.07 65.87 12.78 65.94 3.82 72.54 3.31
Solar-flare-2 72.56 4.15 68.83 10.26 70.89 2.58 73.77 2.91
Soybean 86.59 16.46 75.29 31.68 79.11 29.60 89.18 13.71
Vehicle 66.29 10.69 66.28 17.66 74.16 7.15 77.01 5.03
Vote 94.09 2.44 95.86 0.38 95.95 0.50 96.90 0.31
Vowel 76.69 21.60 71.99 36.51 91.60 20.01 93.03 19.35
Wine 94.44 6.38 94.52 2.12 97.98 1.97 99.10 2.28
Zoo 88.12 16.34 72.77 25.65 91.98 7.01 94.85 7.00
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Fig. 7. Comparison of CSS, SG and single classifiers for each database with different meta-classifiers.
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Fig. 8. Comparison of CSS, SG and single classifiers for each database with different meta-classifiers.
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classifiers, one for each base classifier at level-1, and get
validated classification accuracies.

4. Classifier Subset Selection for Stacked Generalization: using our
new approach, build 10 classifiers, one for each base classifier
at level-1, and each of them with only a subset of classifiers,
selected by EDA algorithm.

4.4. Experimental setup

In all the experiments 10-fold cross-validation [63] has been
used to get a validated classification accuracy (well classified rate),
and this accuracy has been the criterion to define the fitness of an
individual, inside the evolutionary algorithm.

For Classifier Subset Selection, the EDA algorithm used has
been EBNA (Estimation of Bayesian Network Algorithm) [49],
with Algorithm B [64] for structural learning of the Bayesian
Network. Population size N has been set to 50 individuals,
representing 50 combination of classifiers, the number S of
selected individuals at each generation is 20 (40% of the popula-
tion size), and the number of generations of new individuals was
set to 4.

4.5. Obtained results

4.5.1. Single classifiers' results
All base classifiers are evaluated independently for each data-

set; it is worth mentioning that the obtained results are supposed
to be outperformed by multi-classifiers.

Table 2 shows the results obtained by each single classifier on
each dataset. As can be seen, the type of classifier that obtains the

best accuracy for each classification problem varies considerably.
As a matter of fact, all of the base classifiers, except 1R, obtain the
best validated result for at least one dataset.

4.5.2. Standard multi-classifiers' results
In order to obtain a more honest comparison with the proposed

approach, some state-of-the-art multi-classifier results are also
shown; we have used Bagging, Boosting and StackingC

Table 3 shows the result obtained by those standard multi-
classifiers. The best results are obtained by different approaches
for different datasets as well.

4.5.3. Stacked Generalization results
Obtained results for Stacked Generalization classifier ensem-

bles are shown in Table 4, using the 10 base paradigms as meta-
classifier (level-1) in the SG structure. All paradigms used as meta-
classifier, except C4.5, obtain the best result for at least one of the
classification problems. It should be noticed that the meta-
classifier with the best result differs in general from the best
single classifier obtained for the same dataset; only in five of the
20 datasets (diabetes, lymph, solar-flare-2, soybean and zoo) there
is a coincidence.

A graphical image of the results obtained by the SG paradigm is
shown in Fig. 5; it can be seen that, for each dataset, the result
varies significantly for each meta-classifier. This fact could indicate
that the selection of an appropriate meta-classifier is very impor-
tant in the SG classifier design.
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Fig. 9. Proposed approach versus best results obtained by the remaining paradigms.
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4.5.4. Classifier Subset Selection for Stacked Generalization
Finally CSS has been applied to each of the datasets and meta-

classifiers; obtained results indicate the appropriateness of the
proposed approach.

It should be noticed that, although the learning time is time
consuming (until the EDA search converges), the classification
time is very short, and it can be done in real time. In this way, and
for any dataset used, once the classifier is constructed it can be
used at a very high frequency, as it is composed of fast classifiers.

The results obtained by the proposed approach are shown in
Table 5; in this case, 1R is the only meta-classifier for which a best
result is not obtained in any dataset. Best SG meta-classifier is also
different in 10 of the 20 classification problems, which indicates
different structures between the standard SG and the CSS
approaches. Regarding the best results obtained, RF appears as
meta-classifier in 10 datasets, while KNN, NB and SVM obtain as
meta the best results in 5 classification problems.

A graphical image of the results obtained by the CSS paradigm
is shown in Fig. 6. Comparing themwith the results of standard SG
(Fig. 5), it can be seen that, together with the improvement of
accuracy, the variance of results for each database is reduced. In
Table 6 means and standard deviations of accuracy values are
listed for different types of classifiers and for each database. The
best means and lowest standard deviation have been marked. As it
can be seen. the proposed approach obtains the best mean in all
the databases and the lowest standard deviation in most of the

databases. We consider that this fact shows the effectiveness of
our method and that it is not related with the type of classifier that
is used as meta-classifier.

In Figs. 7 and 8 comparisons of CSS, SG and single classifiers are
shown for each database. These figures show the best results
obtained for each base classifier (single) and using this classifier
type as meta (SG, CSS).

To emphasize the differences between paradigms, Fig. 9 shows
a comparison of best results (maximum accuracy) obtained for
each database. As can be seen, CSS paradigm outperforms the
others in all used datasets except breast-cancer. It is worth noting
that the aim of this paper is to present a new competitive
approach; it is not the authors' intention to show a MSC that
always sets the best results, although this has been obtained with
the selected datasets.

Finally, to have a more accurate idea of the kind of classifier
subsets selected by CSS method, Table 7 shows the configurations
that give the best results for each dataset.

4.5.5. Statistical tests
According to [65], we have used the Iman–Davenport test to

detect statistical differences among the different strategies. This test
rejects the null hypothesis of equivalence between algorithms, since
p-value (2.2e�16) is lower than our α-value (0.1). Thus, we have
applied Shaffer post hoc test in order to find out which algorithms

Table 7
Configuration of the best multi-classifiers obtained for each dataset.

Dataset Meta Base classifiers

Balance-scale RF 1R, RIPPER, NB, Kn, BN, SVM
Breast-cancer NB 1R, KNN, RIPPER, NB, Kn, BN, NBT, RF, SVM

NBT 1R, KNN, RIPPER, NB, C4.5, BN, NBT, RF
RF 1R, KNN, RIPPER, NB, BN, RF

Car RF 1R, KNN, NB, C4.5, Kn

Cmc NB 1R, RIPPER, C4.5, Kn, NBT, SVM
Colic RIPPER KNN, Kn, BN, NBT, RF

C4.5 NBT, RF, SVM
Diabetes Kn RF, SVM
Ecoli SVM 1R, NB, Kn, RF
Glass RF 1R, KNN, C4.5, Kn

Hepatitis RIPPER KNN, RIPPER, NB, SVM
C4.5 RIPPER, NB, BN, NBT, SVM
NBT 1R, KNN, RIPPER, NB, RF, SVM
RF 1R, NB, BN, RF, SVM

Iris KNN 1R, KNN, NB, C4.5, RF, SVM
Kn KNN, NB, C4.5, Kn, BN, SVM

Liver-disorders NB KNN, RIPPER, C4.5, RF, SVM
Lymph BN KNN, NB, C4.5, Kn, BN, NBT, RF, SVM
Solar-flare-1 KNN 1R, SVM
Solar-flare-2 SVM KNN, NB, NBT, RF, SVM
Soybean RF 1R, RIPPER, C4.5, Kn, BN, NBT, SVM

SVM NB, RF, SVM
Vehicle RF 1R, NB, C4.5, Kn, BN, NBT, RF
Vote BN C4.5, Kn, NBT, RF, SVM

NBT KNN, RIPPER,C4.5, RF
RF 1R, KNN, NB, C4.5, NBT, RF, SVM

Vowel KNN KNN, NB, C4.5, Kn, SVM
RF KNN, NB, C4.5, Kn, RF

Wine KNN RIPPER, NB, BN, NBT, RF
NB 1R, RIPPER, NB, Kn, NBT, RF, SVM
C4.5 RIPPER, NB, C4.5, RF, SVM
BN 1R, C4.5, Kn, BN, RF, SVM
NBT 1R, KNN, NB, C4.5, Kn, RF, SVM
RF C4.5, Kn, BN, RF
SVM 1R, KNN, RIPPER, C4.5, BN, SVM

Zoo KNN 1R, KNN, RIPPER, NB, C4.5, RF, SVM
NB KNN, Kn, BN, NBT, SVM
Kn KNN, RIPPER, NB, C4.5, BN, NBT, SVM
RF NB, C4.5
SVM RIPPER, NB, BN, NBT, RF
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are distinctive among them. Table 8 shows the statistical differences
that our approach has obtained with the rest of methods. The table
shows that when RF or SVM are used as meta-classifier in CSS (CSS-

RF and CSS-SVM) best results are obtained, closely followed by CSS-
Kn and CSS-C4.5. In the case of CSS-RF and CSS-SVM, they signifi-
cantly improve most of the cases and draw with only 3 of them:
StackingC, SG-RF and SG-SVM. On the other hand, CSS-1R obtains the
worst results because it draws with all the cases. We also want to
emphasize that our algorithm never gets worse results.

In Table 8 it can be seen that CSS does not significantly improve
StackingC, SG-RF and SG-SVM with any of the meta-classifiers.
Because of that we have compared these 3 methods with our
approach applying Wilcoxon signed-rank test by pairwise. Table 9
shows the p-values obtained, where “þ” symbol implies that the
CSS is statistically better than the confronting one, whereas “¼”

means that there are no significant differences between the
compared algorithms and “�” means that the CSS is statistically
worse. It can be seen that, with the exception of 1R, the rest of
meta-classifiers significantly improve the rest of algorithms. View-
ing the results of both statistical tests, considerably demonstrates
the strength of our new method.

Table 8
Significant differences obtained with Shaffer post hoc test.

CSS Individual Ensemble Stacked Generalization

Win Draw Loose Win Draw Loose Win Draw Loose

RF ALL – – BAG-C4.5 STC – 1R KNN –

BAG-REP RIP NB RF
BOS-DS C4.5 Kn SVM
BOS-C4.5 BN NBT

SVM ALL – – BAG-C4.5 STC – 1R KNN –

BAG-REP RIP NB RF
BOS-DS C4.5 Kn SVM
BOS-C4.5 BN NBT

Kn ALL – – BAG-C4.5 STC – 1R KNN BN –

BAG-REP RIP NB RF
BOS-DS C4.5 Kn SVM
BOS-C4.5 NBT

C4.5 ALL – – BAG-C4.5 STC – 1R KNN BN –

BAG-REP RIP NB RF
BOS-DS C4.5 Kn SVM
BOS-C4.5 NBT

RIP ALL – – BAG-REP – 1R KNN BN –

BOS-DS STC RIP NB RF
BOS-C4.5 BAG-C4.5 C4.5 Kn SVM

NBT

KNN 1R KNN SVM – – 1R KNN NB –

RIP NB BAG-REP STC RIP BN
C4.5 Kn BOS-DS BAG-C4.5 C4.5 RF
BN NBT BOS-C4.5 Kn SVM
RF NBT

NB 1R KNN SVM – – 1R KNN NB –

RIP NB BAG-REP STC RIP BN
C4.5 Kn BOS-DS BAG-C4.5 C4.5 RF
BN NBT BOS-C4.5 Kn SVM
RF NBT

NBT 1R KNN – BAG-REP – 1R KNN NB –

RIP NB C4.5 BOS-DS STC RIP C4.5 BN
Kn BN SVM BOS-C4.5 BAG-C4.5 Kn RF
NBT RF NBT SVM

BN 1R KNN – BAG-REP – 1R RIP NB –

RIP NB C4.5 BOS-DS STC KNN C4.5 BN
Kn BN SVM BOS-C4.5 BAG-C4.5 Kn RF
NBT RF NBT SVM

1R – ALL – – ALL – – ALL –

Table 9
The p-values obtained with Wilcoxon test.

CSS SG-RF SG-SVM STC

1R �(0.01923) ¼(0.10540) �(0.02148)
KNN þ(0.00032) þ(0.00365) þ(0.00584)
RIPPER þ(0.00001) þ(0.00058) þ(0.00058)
NB þ(0.00401) þ(0.00199) þ(0.00745)
C4.5 þ(0.00027) þ(0.00068) þ(0.00008)
Kn þ(3.8E-006) þ(0.00010) þ(0.00008)
BN þ(0.00032) þ(0.00315) þ(0.00745)
NBT þ(0.00233) þ(0.00121) þ(0.02944)
RF þ(0.00014) þ(0.00050) þ(0.00005)
SVM þ(0.00004) þ(1.9E-006) þ(1.9E-006)
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5. Conclusions and future work

In this paper an evolutionary computation based Classifier
Subset Selection process is presented to construct a Multiple-
Classifier System. To this end, ten base classifiers have been
selected to construct an MCS. Stacked Generalization is the model
used, although other possibilities can be considered as well:
voting, hierarchical classifiers, etc.

Estimation of Distribution Algorithm is the evolutionary com-
putation algorithm selected to perform the Classifier Subset
Selection, but other approaches could be used: Genetic algorithms,
Ant, Colony, etc.

The obtained experimental results are very good, and a better
or equal result has been obtained by using the proposed approach,
compared to other state-of-the-art paradigms. It is not the aim of
the authors to present an MCS better than existing ones, but a
competitive one. The results obtained in these datasets indicate
the validity of the approach, but certainly there would be some
other datasets in which the results are worse than those obtained
by other paradigms.

As future work, the performance of the presented approach to a
real problem is going to be investigated, and compared to other
models. More base classifiers can be included as well to improve
the MCS accuracy.

Based on this work, another approach is planned that takes into
account the diversity among the different base classifiers for each
classification problem, and selects the classifier subset which
increases, in a validation phase, the obtained accuracy considering
the different classifications given to each case.
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Binarization strategies decompose the original multi-class dataset into multiple two-class subsets, learn-
ing a different binary model for each new subset. One-vs-All (OVA) and One-vs-One (OVO) are two of the
most well-known techniques: One-vs-One separates a pair of classes in each binary sub-problem, ignor-
ing the remaining ones; and One-vs-All distinguishes one class from all the other classes. In this paper,
we present two new OVA and OVO combinations where the best base classifier is applied in each sub-
problem. The first method is called OVA + OVO since it combines the outputs obtained by OVA and
OVO decomposition strategies. The second combination is named New One VersusAll

One (NOV@), and its
objective is to solve the problems found in OVA when different base classifiers are used in each sub-
problem. In order to validate the performance of the new proposal, an empirical study has been carried
out where the two new methods are compared with other well-known decomposition strategies from the
literature. Experimental results show that both methods obtain promising results, especially NOV@.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The goal in a supervised classification problem consists in clas-
sifying a new unlabeled example x in its correct class using a train-
ing set. Let TR ¼ fxi; higN

i¼1 denote a training set of N well-labeled
examples, where xi represents the ith individual feature vector
and hi represents the class the individual belongs to. In the partic-
ular case of the K-class problem, being h 2 f1; . . . ;Kg, the class label
is commonly defined as an integer. Based on the TR, the supervised
classification techniques create a ‘‘general rule’’ or a function
which is used to classify each new unlabeled case. This general rule
is also known as a classifier.

For some types of classifiers, such as SVM, it is much more eas-
ier to build a classifier to distinguish just between two classes.
However, many real world problems are multi-class problems,
i.e. K > 2. In view of that, there are some techniques, known as
class-binarization techniques, which divide the original multi-class
problem into many binary classification problems. These tech-
niques are two-step methods: in the first step, called decomposi-
tion step, a classifier is learned for each of the sub-problems, and
in the second step, called combination step, the outputs of these
classifiers are combined to obtain the final prediction.

There are three different class-binarization strategies: ‘‘One-vs-
All’’ (OVA), ‘‘One-vs-One’’ (OVO) and ‘‘Error Correcting Output
Codes’’ (ECOC). OVA and OVO are the most relevant ones in the lit-
erature due to their simplicity and clarity.

� One-vs-All (OVA) (Anand, Mehrotra, Mohan, & Ranka, 1995): In
each sub-problem one class is compared with the rest of classes.
� One-vs-One (OVO) (Fürnkranz, 2002): In each sub-problem only

the cases belonging to two classes are compared with each
other, and the remaining ones are ignored.
� Error Correcting Output Codes (ECOC) (Dietterich & Bakiri,

1995): In each sub-problem all the classes are grouped into
two groups, and the two groups are compared with each other.

The procedure followed in the classical binary classification
strategies is to use the same base classifiers in each binary sub-
problem. However, if the selected base classifier does not correctly
discriminate in some of the sub-problems, the obtained results will
be wrong. To overcome this drawback, each sub-problem can be
treated as an independent classification problem so that a different
base classifier can be used for each sub-problem.

In this paper, we propose two new combinations of the meth-
ods OVA and OVO. We compare these two methods with other
class-binarization strategies over 20 UCI databases, and obtain
promising results. In all methods we try to find the best base clas-
sifiers for each sub-problem. To do so, we have chosen
several well-known classifiers from different Machine Learning

http://dx.doi.org/10.1016/j.eswa.2014.04.010
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paradigms: SVM, C4.5 Decision Tree, Ripper, K-NN, Multilayer
Perceptron and Naive Bayes. The first combination that we have
proposed is called OVA + OVO. OVA + OVO basically combines
the sub-problems obtained after the OVA and OVO methods are
applied. Comparing this new method with other class-binarization
strategies we have found that strategies – such as OVA – are not
suitable when different base classifiers are used in each sub-problem.
Therefore, we propose a second approach that we have called
New One VersusAll

One (NOV@). NOV@ is an extension of OVA: at
decomposition time OVA is applied, whereas at combination time
the majority vote is used to make the final decision. In case of a
tie among several classes, OVO is applied for tie-breaking – taking
just into account the tied classes.

Although in the specialized literature, there are several propos-
als that select the best base classifier for each sub-problem, none of
them compares different class-binarization techniques in order to
study how each technique performs. In our work we have com-
pared the two new methods with other state-of-the-art class-
binarization strategies in an empirical study.

The rest of the paper is organized as follows. In Section 2 we
review the decomposition techniques, with special attention to
OVA and OVO strategies. In Section 3 we show the compatibility
between OVA and OVO strategies and we present the first pro-
posed method: OVA + OVO. Section 4 describes our second
approach and Section 5 shows the results of the experiments car-
ried out. Finally, Section 6 states the conclusions of our work and
suggests future research lines.

2. Class-binarization

The first class-binarization strategies were made to solve the
problems that some base classifiers have for the multi-class prob-
lems, since algorithms such as Support Vector Machine (SVM) and
Multi-Layer Perceptron (MLP), worked better for binary problems.
However, due to the good results obtained, the use of these strat-
egies has been extended to other base classifiers, such as Ripper
(Fürnkranz, 2002) or C4.5 (Polat & Günes�, 2009).

Class-binarization is composed of two steps: decomposition
and combination.

In the decomposition step the original problem is divided into
several binary sub-problems. The most popular strategies consist
of grouping classes, in this way each binary classifier compares
two groups of classes between them. Commonly the code-matrix
is used to represent how the classes are grouped.

Fig. 1 shows a code-matrix example, where each row represents
a class and each column represents a binary classifier. Each class
takes values in the set {�1,0,+1}, where +1 indicates the classes
associated to the positive-class, �1 indicates the classes associated
to the negative-class and 0 indicates that the class is ignored for
this binary problem. In Fig. 1 how a 5-class problem
{h1; h2; h3; h4; h5} is decomposed into 5 binary problems
{f1; f2; f3; f4; f5} can be seen. For instance, it can be seen that the clas-
sifier f1 is constructed in such a manner that the cases belonging to
h1 and h2 are grouped in class +1 and the cases in h3 and h5 in class
�1. So this classifier compares h1 and h2 classes with h3 and h5,
while the cases that belong to h4 are ignored.

In classification time, each binary classifier returns a prediction.
So the combination step consists of combining these predictions.
Therefore, it is crucial to select a proper combination of the outputs
in order to make a correct prediction.

Different decomposition strategies have been developed. Two of
the most popular are OVA and OVO, which are described next.

2.1. One-vs-All (OVA)

OVA decomposition scheme divides a K class multi-class prob-
lem, h1; . . . ; hK , into K two-class problems, where each binary prob-
lem discriminates one class from the others.

In Fig. 2(a) OVA’s code-matrix for 4 classes is shown: in each
classifier one class is represented as positive class while all the
other 3 classes are represented as negative-class.

As one class is compared with all the other classes, most of the
binary sub-problems are unbalanced. It is known that one of the
drawbacks of an unbalanced problem is the underestimation for
the minority classes, thereby the most represented class is selected
in most cases. In view of that, in OVA it is very common that all
sub-problems return a class-negative prediction, hence, ties are
usual in the final decision when the majority vote is used. Thus,
it is more efficient to use the confidence level of each classifier to
decide the final output. The class with the highest confidence is
the selected decision.

2.2. One-vs-One (OVO)

OVO decomposition scheme divides a K class multi-class prob-
lem, h1; . . . ; hK , into KðK � 1Þ=2 two-class sub-problems. In each
sub-problem a classifier is learned using only the cases that belong
to a pair of classes (hi; hj), where hi – hj; the remaining cases are
ignored.

In Fig. 2(b) OVO’s code-matrix for 4 classes can be observed: in
each classifier one class is represented as +1 class, another one is
represented as�1 and the remaining 2 classes are represented as 0.

There are several strategies to combine the output, the simplest
way to combine the outputs is to use the majority vote strategy
(Friedman, 1996; Fürnkranz, 2002) also called as Max-Wins; the
most voted class is the selected one. An immediate extension is
the Weighted Voting (WV): to use the confidence level of each bin-
ary problem as a vote. Its robustness has been shown in Galar,
Fernández, Barrenechea, Bustince, and Herrera (2011). Hastie and
Tibshirani (1998) proposed a new method called Pairwise Coupling
(PC). The aim of the method is to find the best approximation of the
class posterior probabilities given the posterior probabilities of the
pairwise sub-problems. To do so, they transform the problem into
an iterative problem where they try to minimize the average
weighted Kullback–Leiber divergence between the obtained pair-
wise estimates and the true pairwise probability values.

OVO has several drawbacks 3 of the main disadvantages of OVO
are the following:

1. Unclassifiable regions: It is possible that each binary classifier
votes for a different class, hence there is no winner. Thus, some
tie-breaking technique has to be applied.

2. Number of classifiers: Compared with OVA, it can be seen that
OVO creates more sub-problems. Moreover, the disadvantage
of having so many sub-problems is that most of them are

Fig. 1. Example of a code-matrix. Fig. 2. OVA and OVO code-matrix.
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irrelevant and they are forced to give wrong answers for many
instances, because each classifier must assign every pattern to
one of two classes. If a pattern belongs to class i, all the classi-
fiers that are not trained to differentiate this class will cast
wrong votes. However, OVO uses fewer examples in each sub-
problem and, thus, has more freedom for fitting a decision
boundary between the two classes.

3. Weak classifiers: The classical way selects the optimal base
classifier for the database and all the sub-problems are classi-
fied with this classifier. As there are too many sub-problems,
it is possible that this base classifier has difficulties to distin-
guish between all of them, thus, the classifiers return wrong
results. This raises the question – should the same base classi-
fier be used on all sub-problems or should sub-problems be
tuned independently?

Several proposals has been developed in the literature in order
to solve these problems.

In order to resolve the unclassifiable regions Platt, Cristianini,
and Shawe-Taylor (2000) published a new combination proposal
called Decision Directed Acyclic Graph (DDAG). DDAG builds a
rooted binary acyclic graph where in each node a classifier discrim-
inates between two classes. The final answer is the class assigned
by the leaf node. Liu, Hao, and Yang (2007) proposed a tie-breaking
technique, where OVO is applied using only the examples in the
unclassifiable region.

On the other hand, other approaches try to reduce the number
of binary classifiers in OVO using the Dynamic Classifier Selection
(Bagheri, Gao, & Escalera, 2012; Galar, Fernández, Barrenechea,
Bustince, & Herrera, 2013). Other authors propose the use of hier-
archical structure. Fei and Liu (2006) proposed a new architecture
called Binary Tree of SVM (BTS). BTS is a binary tree where in each
node two classes are distinguished. The main idea of BTS is to use
the separating plane for these two classes, also to distinguish other
classes. Chen, Wang, and Wang (2009) proposed a new BTS version
where they tried to select the binary SVM with the fewest number
of separating lines. Following the same idea, to reduce the number
of classifiers, the hierarchical structure has been extended to other
class-binarization strategies (Ghaffari & Yazdi, 2013; Lorena & de
Carvalho, 2010; Madzarov & Gjorgjevikj, 2009; Pujol, Radeva, &
Vitria, 2006).

Finally other approaches try to solve the weak classifier prob-
lem using each sub-problem independently. Szepannek, Bischl,
and Weihs (2009) proposed to extend OVO selecting the optimal
classifier for each pair of classes, i.e. the base classifier which
obtains the best result. Something similar was proposed by
Lebrun, Lezoray, Charrier, and Cardot (2007), where they tried to
find the best hyper-parameters of the SVM for each sub-problem.
Due to the high number of hyper-parameters in the SVM, they pro-
posed to use an evolutionary algorithm. The experimental results
of both works showed that they outperformed the classical indi-
vidual base-classifier option. Liepert (2003) also proposed a similar
approach to Lebrun, but she concluded that the selection of the
best models for each binary-classifier does not obtain a significant
improvement.

In his PhD thesis, Reid (2010) concluded that despite it is better
to use the same base classifier for all the sub-problems when deci-
sion boundaries of the sub-problems have similar shapes, in the
case where the decision boundaries have a different shape it is bet-
ter to treat sub-problems independently.

2.3. Related work

In several works in the literature, OVA and OVO have been com-
pared, showing that in most of the cases OVO outperformed OVA
(Fürnkranz, 2002; Hsu & Lin, 2002). Rifkin and Klautau (2004)

did not consider that these experiments were carefully controlled
and they demonstrated that when OVA classifier is well-tuned it
performs as well as OVO.

In some recent works, it is possible to find some reviews related
with the class-binarization strategies (Lorena, de Carvalho, &
Gama, 2008). Other recent works made empirical studies for differ-
ent binarization strategies (Galar et al., 2011; García-Pedrajas &
Ortiz-Boyer, 2011). Both works analyse the behavior of OVA and
OVO for different base classifiers and the results of both works con-
cluded that OVO outperformed OVA. However, neither work dares
to contradict Rifkin and Klautau (2004) arguing that they did not
use fine-tuned classifiers.

Some authors proposed new approaches based on the combina-
tion of OVA and OVO. On the one hand, Moreira and Mayoraz
(1998) proposed to apply OVO taking into account the probability
that the new example belonged to each pair of classes. This prob-
ability was obtained following the OVA idea: creating a classifier
that distinguishes between the two classes and the rest of the clas-
ses. On the other hand, García-Pedrajas and Ortiz-Boyer (2006) and
Ko and Byun (2003) proposed a very similar idea to combine OVA
and OVO. In an interesting motivation section García-Pedrajas and
Ortiz-Boyer (2006) showed that in the majority of the cases the
correct class was between the two largest confident outputs of
OVA. Thus, in their new method they obtain the two classes with
the highest confidence level in OVA first. After that, OVO is applied
and a classifier is built only taking into account the cases that
belong to these two classes. This method was called All-And-One
(A&O) (García-Pedrajas & Ortiz-Boyer, 2006).

3. Combining OVA and OVO

Hansen and Salamon (1990) showed that in order to obtain
good performance when classifiers are combined, the classifiers
should be diverse among them. It is said that two algorithms
are diverse when they commit different errors. If two algorithms
are not diverse they commit the same errors, whereas if they are
diverse they may be able to correct the committed errors.

It must be said that, although several diversity measures exists
in the literature Kuncheva and Whitaker (2003), they have been
proved to be ineffective Tang, Suganthan, and Yao (2006). Hence,
instead of applying those measures, we choose to perform a simple
experiment using decision trees as base classifier, in order to con-
clude if OVA and OVO are compatible.

Twenty databases are used to test our hypothesis. All of them
are obtained from the UCI Machine Learning Repository (Bache &
Lichman, 2013). The characteristics of the databases are given in
Table 1.

In Table 2 we show the results of the compatibility test. In the
first two columns we show the accuracy obtained by OVO and
OVA, while in the third the accuracy of OVA is shown considering
only the cases where OVO makes errors. In the fourth column the
accuracy of OVO is shown for the cases that OVA has failed.

It is interesting to note that in the case where one strategy fails
the other gets a hit rate higher than 20% in most of the cases, which
leads us to consider that the methods are compatible and that they
could correct some of the errors made by the other strategy.

3.1. Our first proposal to combine OVA and OVO

This new method combines the sub-problems obtained apply-
ing OVA and OVO decomposition strategies. To take the final deci-
sion the results obtained for each sub-problem are combined
applying the majority vote. We have called this new method
OVA + OVO. Following the idea proposed by Szepannek et al.
(2009), we apply the most reliable base classifier for each sub-
problem.
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3.1.1. Decomposition
In our method, we propose to combine the sub-problems

obtained with OVA and OVO; on the one hand, we create several
sub-problems where the classes are compared by pairs, ignoring
the other classes, and on the other hand, we create several sub-
problems which compare one class with all the other classes.

Fig. 3 shows the code-matrix of the sub-problems obtained in
the decomposition phase in a 4-class problem. The 4 columns of
the left are the sub-problems obtained with OVA and the next 6
columns are the sub-problems obtained with OVO.

We consider that the combination of these methods could
obtain a classifier that outperforms both methods separately for
two reasons:

1. As shown in Section 3 both methods are able to correct the
errors committed by the other one.

2. As mentioned before, when majority vote is used for the final
decision it is common for both, OVA and OVO, to produce ties.
� In the case of OVA, it is possible that all sub-problems return

a negative-class prediction.
� In the case of OVO, the most voted class could be more than

one.
Therefore, we consider that combining their outputs could serve to
break some of these ties.

3.1.2. Best base classifier for each sub-problem
Each sub-problem is treated independently from the others, the

optimal base classifier for each one is sought. In a validation pro-
cess each binary sub-problem is tested with different base classifi-
ers, and the base classifier which obtains the best accuracy is
selected.

In Fig. 4 an example where a different base classifier is applied
for each sub-problem can be seen.

3.1.3. Combination
To take the final decision, we have decided to apply the major-

ity vote; the most voted class is that which is selected. We consider
this due to three reasons:

1. As different base classifiers are used for each sub-problem,
combination strategies based on the confidence level are not
appropriate because each base classifier confidence level is cal-
culated differently.

2. As stated in Galar et al. (2011) the majority vote obtains robust
results compared with other combination strategies in OVO.

3. It is the simplest one.

Table 1
The characteristics of the 20 databases used in this experiment.

Domain Num. of
instances

Num. of
attributes

Num. of
classes

Abalone 4177 8 29
Annealing 798 38 5
Arrhythmia 452 279 13
Balance 625 4 3
Car 1728 6 4
Cmc 1473 9 3
Dermatology 366 33 6
Ecoli 336 7 8
Flare 1389 11 6
Glass 214 9 6
Iris 150 4 3
Nursery 12960 8 5
Page-blocks 5473 10 5
Optdigits 5620 64 10
Pendigits 10992 16 10
Satimage 6435 36 7
Segment 2310 19 7
Vehicle 846 18 4
Waveform 5000 21 3
Wine 178 13 3
Winequality red 1599 10 6
Winequality

white
4898 10 7

Yeast 1484 8 10
Zoo 101 16 7

Table 2
Compatibility between OVO and OVA.

Accuracy of OVO Accuracy of OVA Accuracy of OVA when OVO fails Accuracy of OVO when OVA fails

Abalone 24.946 18.793 12.268 18.910
Annealing 92.383 92.116 25.214 26.508
Arrhythmia 65.885 63.496 29.720 34.319
Balance 78.910 78.910 20.898 20.742
Car 95.914 95.972 34.780 32.725
Cmc 51.460 52.016 24.408 23.597
Dermatology 95.574 91.530 41.702 66.882
Ecoli 81.667 78.571 25.653 35.844
Flare 59.962 56.023 20.195 26.7482
Glass 63.084 60.374 30.566 35.531
Iris 93.467 92.800 1.250 12.500
Nursery 98.622 98.647 6.287 4.172
Optdigits 92.281 87.434 52.325 70.732
Page-blocks 96.824 96.642 17.794 22.202
Pendigits 95.950 94.039 58.541 71.864
Satimage 86.017 83.708 40.617 49.052
Segment 95.039 94.251 45.869 53.228
Vehicle 68.842 68.251 39.939 40.984
Waveform 76.212 74.144 49.187 53.193
Wine 88.202 89.888 54.609 47.018
WineRed 57.486 58.649 29.100 26.977
WineWhite 54.924 53.973 26.774 28.273
Yeast 56.267 55.418 17.459 19.071
Zoo 90.297 90.693 43.222 38.770

Fig. 3. Code-matrix of OVA + OVO.

6254 A. Arruti et al. / Expert Systems with Applications 41 (2014) 6251–6260

132 13 New One V ersusAll
One method: NOV@



3.2. Experimental setup

In this section we show the experimental results obtained with
different databases. We compare our method with other state-
of-the-art strategies and we run our experiments over the datasets
shown in Table 1.

3.2.1. Classifiers
To carry out our experiments we use some classifiers from

WEKA (Waikato Environment for Knowledge Analysis) (Hall
et al., 2009).

Among the classifiers that Weka offers, we have selected the
following ones:

� Naive Bayes (John & Langley, 1995), statistical learning algo-
rithm. It is based on Bayesian rules and, given that the value
of the class is known, it assumes independence between the
occurrences of feature values to predict the class.
� J48 (C4.5 clone) (Quinlan, 1993), decision tree algorithm. It

makes a post-pruning phase, based on error based pruning
algorithm.
� IBK (K-NN clone) (Aha, Kibler, & Albert, 1991), distance based

algorithm. An object is classified by a majority vote of its K near-
est neighbors. The value of K is set to 3.
� SM0 (SVM clone) (Platt, 1999), kernel methods. It creates a

hyperplane where the categories are divided by a clear gap that
is as wide as possible.
� JRip (Ripper clone) (Cohen, 1995), rule induction classifier. It

builds a rule-set by repeatedly adding rules to an empty rule-
set until all positive examples are covered.
� MultilayerPerceptron (Rumelhart, Hinton, & Williams, 1985), an

artificial neural network. It is a feedforward network of neurons
which map input vectors to output vectors.

As it can be seen, the selected classifiers are from different nat-
ures in order to give variability and reliability to the experimental
phase. It is worth saying that in our experiments we have used the
default parameters of the classifiers.

3.2.2. Strategies summarized
In this sub-section we briefly describe the class-binarization

strategies that are used for the comparison. It is worth remember-
ing that in all the strategies the best base classifier is selected for
each sub-problem.

� One-vs-All (OVA): Each sub-problem compares one class with
the rest of classes. The class with the highest confidence level
is selected.
� All-And-One (A&O) (García-Pedrajas & Ortiz-Boyer, 2006; Ko &

Byun, 2003): Combination of OVA and OVO. First OVA is applied
and the two classes with the highest confidence level are
selected. A classifier that discriminates between the selected
classes is built and the result of the classifier is the final decision.
� Max-Wins (Friedman, 1996; Fürnkranz, 2002): For decomposi-

tion OVO is applied: each sub-problem compares two classes
between them, ignoring the rest. And the majority vote is used
to take the final decision.

� Weighted Voting (WV): The weight for the vote is given by the
confidence level of the classifier. The class with the largest sum
value is predicted.
� Pairwise Coupling (PC) (Hastie & Tibshirani, 1998): PC tries to

find the posterior probability of each class (p1 . . . pK ) given the
posterior probability of all the pairwise sub-problems (rij). To
do so, the problem is transformed into an iterative problem
where the Kullback–Leibler distance between rij and lij is min-
imized (lij ¼ pi=ðpi þ pjÞ).
� Decision Directed Acyclic Graph (DDAG) (Platt et al., 2000): The

DDAG is equivalent to operating on a list. A list is initialized
with all the classes. In each step a classifier discriminates
between two classes selected from the list, and the class which
is not selected is eliminated. The DDAG terminates when only
one class remains in the list.
� OVA + OVO: Combination of OVA and OVO outputs. The

majority vote is used to take the final decision.

3.2.3. Experimental results
In order to give a real perspective, we have applied 5 � 2 fold

cross validation to each database (Demšar, 2006). But firstly each
binarization strategy needs a validation process to select the most
accurate base classifiers for each binary sub-problem. Therefore,
we have applied 5-hold out for each fold, where we have used
the 70% as training set and the 30% as testing set.

In Table 3 we show the results obtained for our new method
and those obtained with state-of-the-art methods. The best result
is highlighted in bold. It can be observed that OVA + OVO obtains
the best result in 14 databases. Although OVA + OVO obtains prom-
ising results, we have continued with the experiments and in the
next Section we will show the main proposal of this paper.

4. Proposed approach: NOV@

In this section we present our new proposal New One VersusAll
One.

But before explaining the method, we will show the reasons that
have led us to develop this proposal.

4.1. Motivation through NOV@

In the previous experiment the results obtained by A&O and
OVA methods were lower than expected. Rifkin and Klautau
(2004) showed the strength of OVA when the classifier was well-
tuned and we consider that selecting the best base classifier for
each sub-problem is a good way to tune the sub-problems. Conse-
quently we have made an analysis in order to find the reason for
these low results.

4.1.1. The strength of OVA
In order to analyse the behavior of OVA, we have carried out a

new experiment. Firstly, we have seen how OVA works by only tak-
ing into account the cases where there is only one sub-problem
that returns a positive-class prediction. In other words, there is
only one case among all the sub-problems in which one class is
selected instead of the rest of the classes.

In Table 4 it can be seen the percentage of the cases where OVA
takes the final decision under the aforementioned circumstances
and which is the accuracy obtained. The results show that a large
amount of cases are classified under these circumstances, obtain-
ing high accuracy. Therefore, we deduce that OVA fails with the
remaining cases, so they are analysed.

4.1.2. The weakness of OVA
After the analysis, we have deduced that the reason for the bad

results of OVA and A&O is because the type of classifier used in

Fig. 4. Different base classifier for each sub-problem.
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each sub-problem has a big influence on the final decision. OVA
and A&O obtain each class confidence level taking into account
only one sub-problem, and in each sub-problem different base
classifiers are applied. Each type of classifier uses a different meth-
odology to calculate the confidence level, hence, these confidence
levels have different meanings. Some classifiers tend to distribute
the confidence level among the classes more equally than others.
As a consequence, in the cases where all the output of OVA is neg-
ative, the classes obtained using these classifiers are more likely to
be selected. We will try to clarify this problem with the following
example:

Example: Let us consider a 3-class problem fh1; h2; h3g and a
new case to be classified. The confidence levels obtained for each
OVA sub-problem for classifiers C1 and C2 can be seen in Table 5.

It can be observed in Table 5 that in both classifiers, h1 obtains
the highest confidence levels; as a consequence, h1 should be
assigned to the new case. Moreover, it is possible to observe that
all the classes obtain higher confidence levels with C1 than with
C2. So, let us consider that after the validation phase, C2 is selected
for h1 � vs� all and C1 for h2 � vs� all and for h3 � vs� all. In this
case, h2 is the class with the highest confidence level (0.20), so h2 is
assigned to the new case.

In this example, it can be seen that the classes classified with C1

have higher probability to be selected than the classes classified
with C2. Hence, the final decision could be different, depending
on the type of classifier selected in each sub-problem. That is
why we consider it is not fair to compare the confidence levels
among them.

In order to avoid this problem, the accuracy obtained for each
classifier of the sub-problems in the validation phase, could be
used as a confidence level. But we do not consider this appropriate
because the accuracy depends on how the classes are distributed.
The best differentiated classes are more likely to be selected,
because the sub-problems where they take part obtain a higher
accuracy in the validation phase.

4.2. New One VersusAll
One (NOV@)

We have shown that it is not a sound alternative to depend on
the confidence levels when different base classifiers are used,
moreover we show the strength of OVA in the case that among
the sub-problems in only one of them one class outperforms the
rest. Furthermore, previously was shown that OVO is able to
correct some errors made by OVA.

Table 3
Accuracy using the six compared methods and different base classifiers for each sub-problem.

Database OVA A&O Max-Wins WV PC DDAG OVA + OVO

Abalone 16.553 22.993 26.598 26.589 26.426 25.171 26.598
Annealing 98.062 97.929 98.196 98.196 98.129 98.085 98.307
Arrhythmia 63.850 65.265 69.292 69.292 71.150 68.407 71.018
Balance 90.128 89.840 90.096 90.929 90.865 90.641 91.058
Car 96.273 95.914 95.787 95.984 95.741 95.845 96.296
Cmc 48.350 49.220 52.831 52.492 52.465 51.840 53.646
Dermatology 95.519 97.158 97.541 97.596 97.596 97.541 97.432
Ecoli 82.202 83.452 83.095 83.988 83.869 83.631 83.810
Flare 54.540 58.668 60.094 59.756 59.587 59.606 60.094
Glass 64.206 63.458 64.112 64.486 65.327 63.458 65.140
Iris 95.333 94.800 94.800 94.800 94.800 94.800 94.933
Nursery 99.336 99.384 99.451 99.477 99.452 99.431 99.653
Optdigits 98.456 98.480 98.466 98.463 98.470 98.395 98.473
Page-blocks 96.707 96.799 96.751 96.828 96.667 96.777 96.897
Pendigits 99.250 99.221 99.210 99.214 99.207 99.143 99.238
Satimage 89.958 90.126 90.051 90.058 90.098 89.961 90.256
Segment 95.844 96.017 96.104 96.277 96.329 95.983 96.476
Vehicle 80.567 79.551 78.842 79.362 79.433 79.102 79.905
Waveform 84.152 86.436 86.636 86.636 86.636 86.636 86.276
Wine 95.955 96.404 96.404 96.292 96.404 96.404 96.742
WineRed 57.949 57.423 57.711 57.761 57.811 57.386 58.111
WineWhite 52.748 52.523 54.332 54.075 54.067 53.050 55.039
Yeast 56.631 56.536 57.615 57.655 57.251 57.049 57.803
Zoo 92.875 92.282 93.267 92.875 92.678 93.071 92.875

Table 4
Accuracy and percentage of the cases where OVA takes the final decision when in only
one sub-problem the class is selected instead of the rest of the classes.

Accuracy Percentage

Abalone 40.146 0.656
Annealing 99.070 97.996
Arrhythmia 79.207 71.593
Balance 95.746 89.327
Car 98.024 94.005
Cmc 63.399 51.677
Dermatology 98.401 95.574
Ecoli 87.537 88.691
Flare 82.237 47.636
Glass 74.842 69.626
Iris 95.830 99.067
Nursery 99.818 98.307
Optdigits 98.545 99.797
Page-blocks 97.809 97.552
Pendigits 99.393 99.556
Satimage 90.873 97.725
Segment 98.240 94.762
Vehicle 87.301 76.809
Waveform 89.241 83.200
Wine 96.901 96.854
WineRed 63.311 69.206
WineWhite 58.871 65.039
Yeast 67.274 59.973
Zoo 97.613 91.287

Table 5
Confidence levels obtained in OVA for each sub-problem for C1 and C2 classifiers.

Sub-problem C1 C2

hi All hi All

h1-vs-All 0.33 0.67 0.17 0.83
h2-vs-All 0.20 0.80 0.11 0.89
h3-vs-All 0.07 0.93 0.05 0.95
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Considering these three facts, we propose a new version of OVA
where the confidence level is not taken into account; instead the
majority vote is used. As previously mentioned, the problem of
the majority vote in OVA is that it is common for there to be ties.
In this case, the ties are broken by applying OVO only taking into
account the tie-classes. We have denoted this new method as
New One VersusAll

One (NOV@). When a new case to be classified
arrives there are 3 possibilities:

� If only one of the sub-problems gives a positive result, we con-
sider that it is sufficiently reliable, therefore NOV@ returns this
class.
� If in more than one case a positive result is obtained, then there

is a tie. Hence, Max-Wins is applied only taking into account the
tie classes.
� If all the sub-problems obtain a negative result, we consider

that OVA has not enough reliability to take the final decision,
so Max-Wins is applied with all the classes.

With this new algorithm our aim is to improve OVA’s perfor-
mance. Moreover since the majority of instances are classified
applying OVA (Table 4), the new algorithm reduces the number
of sub-problems of OVO.

5. Experimental results

We run this new method with the same characteristics as run in
the previous experiments (Section 3.2). Table 6 shows the obtained
results. The best result is highlighted in bold. It can be seen that
NOV@ obtains the best result in 15 of the databases, whereas
OVA + OVO obtains the best result in 5. Moreover NOV@ obtains
the best mean followed by OVA + OVO.

We have shown in the previous section (Section 4.1) when dif-
ferent base classifiers are being used, care must be taken when
strategies that depend on the confidence level are used. However
WV and PC also depend on the confidence levels of the sub-prob-
lems and, oddly, WV and PC are the state-of-the-art algorithms
that obtain the best mean results. The difference between A&O
and OVA with WV and PC is that A&O and OVA obtain the

confidence level of each class only taking into account one
sub-problem, while WV and PC take into account the confidence
levels of the different sub-problems. This leads us to think that this
combination tends to compensate the confidence levels.

In order to obtain a meaningful conclusions, we carry out statis-
tical analysis to find whether significant differences among the
results obtained exists or not. According to García, Fernández,
Luengo, and Herrera (2010), we have used the Iman-Davenport test
to detect statistical differences among the different strategies. This
test rejects the null hypothesis of equivalence between algorithms
since p-value (0.0001) is lower than our a-value (0.1). Thus, we
have applied Shaffer post hoc test in order to find out which algo-
rithms are distinctive among them. Table 7 shows the most rele-
vant results of the test, where ‘‘+’’ symbol implies that the first
algorithm is statistically better than the confronting one, whereas
‘‘=’’ means that there are not significant differences between the
compared algorithms. The method having the best performance

Table 6
Accuracy using the seven compared methods and different base classifiers for each sub-problem.

Database OVA A&O Max-Wins WV PC DDAG OVA + OVO NOV@

Abalone 16.553 22.993 26.598 26.589 26.426 25.171 26.598 26.560
Annealing 98.062 97.929 98.196 98.196 98.129 98.085 98.307 98.396
Arrhythmia 63.850 65.265 69.292 69.292 71.150 68.407 71.018 72.124
Balance 90.128 89.840 90.096 90.929 90.865 90.641 91.058 90.994
Car 96.273 95.914 95.787 95.984 95.741 95.845 96.296 96.563
Cmc 48.350 49.220 52.831 52.492 52.465 51.840 53.646 53.863
Dermatology 95.519 97.158 97.541 97.596 97.596 97.541 97.432 97.377
Ecoli 82.202 83.452 83.095 83.988 83.869 83.631 83.810 84.643
Flare 54.540 58.668 60.094 59.756 59.587 59.606 60.094 59.794
Glass 64.206 63.458 64.112 64.486 65.327 63.458 65.140 67.009
Iris 95.333 94.800 94.800 94.800 94.800 94.800 94.933 95.467
Nursery 99.336 99.384 99.451 99.477 99.452 99.431 99.653 99.671
Optdigits 98.456 98.480 98.466 98.463 98.470 98.395 98.473 98.452
Page-blocks 96.707 96.799 96.751 96.828 96.667 96.777 96.897 97.003
Pendigits 99.250 99.221 99.210 99.214 99.207 99.143 99.238 99.221
Satimage 89.958 90.126 90.051 90.058 90.098 89.961 90.256 90.030
Segment 95.844 96.017 96.104 96.277 96.329 95.983 96.476 96.667
Vehicle 80.567 79.551 78.842 79.362 79.433 79.102 79.905 80.922
Waveform 84.152 86.436 86.636 86.636 86.636 86.636 86.276 85.948
Wine 95.955 96.404 96.404 96.292 96.404 96.404 96.742 96.629
WineRed 57.949 57.423 57.711 57.761 57.811 57.386 58.111 58.487
WineWhite 52.748 52.523 54.332 54.075 54.067 53.050 55.039 55.300
Yeast 56.631 56.536 57.615 57.655 57.251 57.049 57.803 58.679
Zoo 92.875 92.282 93.267 92.875 92.678 93.071 92.875 93.267

Mean 79.394 79.995 80.720 80.795 80.852 80.475 81.087 81.378

Rank 6.2 6.0 4.6 4.0 4.5 5.8 2.5 2.3

Table 7
Shaffer test.

Hypothesis p-Value

NOV@ vs OVA +(1.1904E�006)
OVA + OVO vs OVA +(3.2931E�006)
NOV@ vs A&O +(5.2983E�006)
NOV@ vs DDAG +(1.5605E�005)
OVA + OVO vs A&O +(1.8148E�005)
OVA + OVO vs DDAG +(5.0998E�005)
NOV@ vs Max-Wins +(0.0250)
WV vs OVA +(0.0376)
NOV@ vs PC +(0.0376)
OVA + OVO vs Max-Wins +(0.0424)
OVA + OVO vs PC +(0.0682)
WV vs A&O +(0.0820)
WV vs DDAG =(0.1524)
PC vs OVA =(0.2552)
NOV@ vs WV =(0.2552)
Max-Wins vs OVA =(0.3269)
OVA + OVO vs WV =(0.4067)
PC vs A&O =(0.4309)
Max-Wins vs A&O =(0.5548)
PC vs DDAG =(0.5709)
Max-Wins vs DDAG =(0.6998)
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is NOV@, closely followed by OVA + OVO. Both methods signifi-
cantly improve all the remaining strategies, except WV. However,
it can be seen that our proposed methods obtain more robust
results since WV only outperforms significantly OVA and A&O.
Moreover if we compare the rank of NOV@, OVA + OVO and WV,
our two methods obtain more stable results.

5.1. Computational load

In order to measure the computational cost and complexity of
our proposals, in Tables 8–10 we show the training and testing
times and the number of binary classifiers used in each strategy.

Table 8 shows the training time of each strategy for the differ-
ent databases. It is observed that the strategies are divided into
three groups: OVA, OVO aggregations (Max-Wins, WV, PC and
DDAG) and combinations of OVA and OVO (A&O, OVA + OVO and
NOV@). It can be seen that the combinations of OVA and OVO need
more training time. On the other hand, the classification time
needed by OVA is slightly longer than OVO aggregations for prob-
lems with few classes. Although OVA uses less sub-problems than
OVO, the size of the sub-problems is higher in OVA and that is why
the time required to train the classifier is longer. However, it can be
noted that when the number of classes is high, the training time of
OVA is shorter than in OVO.

Table 8
Comparison of the training time of 8 methods (in milliseconds).

Database OVA A&O OVO WV PC DDAG OVA + OVO NOV@

Abalone 752,004 2,00,0680 1,248,676 1,248,676 1,248,676 1,248,676 2,000,680 2,000,680
Annealing 168,841 304,570 135,729 135,729 135,729 135,729 304,570 304,570
Arrhythmia 5,401,826 10,538,305 5,136,479 5,136,479 5,136,479 5,136,479 10,538,305 10,538,305
Balance 3782 6611 2829 2829 2829 2829 6611 6611
Car 12,948 22,779 9831 9831 9831 9831 22,779 22,779
Cmc 15,569 25,635 10,066 10,066 10,066 10,066 25,635 25,635
Dermatology 46,394 86,553 40,159 40,159 40,159 40,159 86,553 86,553
Ecoli 6182 13,078 6896 6896 6896 6896 13,078 13,078
Flare 34,020 63,916 29,896 29,896 29,896 29,896 63,916 63,916
Glass 3889 7656 3767 3767 3767 3767 7656 7656
Iris 777 1362 585 585 585 585 1362 1362
Nursery 516,714 857,053 340,339 340,339 340,339 340,339 857,053 857,053
Optdigits 3,734,410 7,035,312 3,300,902 3,300,902 3,300,902 3,300,902 7,035,312 7,035,312
Page-blocks 286,433 534,925 248,492 248,492 248,492 248,492 534,925 534,925
Pendigits 1,731,714 3,190,942 1,459,228 1,459,228 1,459,228 1,459,228 3,190,942 3,190,942
Satimage 1,622,867 2,789,917 1,167,050 1,167,050 1,167,050 1,167,050 2,789,917 2,789,917
Segment 203,956 371,821 167,865 167,865 167,865 167,865 371,821 371,821
Vehicle 33,051 57,489 24,438 24,438 24,438 24,438 57,489 57,489
Waveform 298,047 470,827 172,780 172,780 172,780 172,780 470,827 470,827
Wine 2563 4298 1735 1735 1735 1735 4298 4298
WineRed 48,824 91,505 42,681 42,681 42,681 42,681 91,505 91,505
WineWhite 323,583 591,057 267,474 267,474 267,474 267,474 591,057 591,057
Yeast 51,559 103,720 52,161 52,161 52,161 52,161 103,720 103,720
Zoo 3501 7313 3812 3812 3812 3812 7313 7313
Mean 637,643.92 1,215,721.83 578,077.92 578,077.92 578,077.92 578,077.92 1,215,721.83 1,215,721.83

Table 9
Comparison of the testing time of 8 methods (in milliseconds).

Database OVA A&O OVO WV PC DDAG OVA + OVO NOV@

Abalone 2168 108,513 25,320 29,089 167,479 2950 25,897 132,295
Annealing 570 670 1065 1068 1225 437 1633 579
Arrhythmia 5886 6354 19,193 19,255 20,736 3806 25,061 9873
Balance 24 44 34 35 127 42 50 24
Car 48 94 352 357 547 220 399 68
Cmc 28 58 51 51 140 31 76 43
Dermatology 256 394 338 342 440 110 588 257
Ecoli 182 234 289 294 484 83 470 203
Flare 139 275 386 392 676 125 498 315
Glass 35 44 45 47 103 25 77 46
Iris 10 17 12 12 55 14 21 12
Nursery 804 1023 1379 1409 3686 616 2162 817
Optdigits 579,849 1,204,315 646,695 646,861 652,546 107,932 1,226,422 581,075
Page-blocks 1805 2030 3705 3718 4675 2971 5503 1856
Pendigits 403,145 673,507 556,751 557,102 568,207 84,669 959,782 404,812
Satimage 149,632 241,427 138,126 138,159 139,908 51,400 287,481 151,562
Segment 2248 2381 3312 3331 4233 1046 5546 2322
Vehicle 71 98 129 129 219 64 198 85
Waveform 372 567 309 317 823 225 661 397
Wine 39 57 40 41 54 22 76 35
WineRed 149 230 513 531 1,186 236 656 314
WineWhite 5148 5322 5521 5563 7524 1658 10,650 6971
Yeast 1028 1082 1859 1899 3386 478 2871 1892
Zoo 46 50 105 108 149 23 148 48
Mean 48,070.08 93,699.42 58,563.71 58,754.58 65,775.33 10,799.29 106,538.58 53,995.88
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Table 9 shows the testing time of each strategy for the differ-
ent databases. It can be seen that NOV@ tends to be one of the
fastest among the 8 methods. Only DDAG and OVA tend to be
faster closely followed by A&O. Moreover except for in Abalone
database, NOV@ spends a bit more time than OVA. Immediately
below them on the table are OVO and WV that need similar
time, while PC needs slightly more time since it follows an iter-
ative procedure. Finally, OVA + OVO tends to be the slowest
method.

Table 10 shows the mean number of classifiers needed in each
strategy for the different databases. The obtained results tend to be
similar to those found in Table 9. However, this time NOV@ needs
slightly more classifiers than A&O.

Viewing the results obtained in Tables 8–10, although NOV@ is
one of the slowest strategies to train, it is one of the fastest strat-
egies at classification time, only outperformed by OVA and DDAG.
On the other hand, OVA + OVO is the slowest strategy.

6. Conclusion

This paper has presented a new approach to combine pairwise
classifiers which aims to improve classification accuracy in super-
vised classification multi-class problems. Starting from a single
combination of two well-known approaches (One-vs-All and
One-vs-One), a new procedure to make a classifier combination
is presented, NOV@, in which both OVA and OVO are combined
in a different way than found in the rest of literature. The results
obtained by the new approach on different datasets are subjected
to in-depth analyses and compared with those of the most used
state-of-the-art methods. From the comparison, it is shown that
the results are very competitive, ranking in the first position from
the accuracy point of view, and among the best in classification
time; this last due to a low number of classifiers.

It has also been shown that OVA and OVO strategies are com-
patible and can be combined with each other, even when different
base classifiers are used for each sub-problem. This is possible
because each sub-problem has been tackled as an independent
one, and hence it is treated as a new classification problem in

which two classes are to be discriminated. The proposed methods
– the single one, OVA + OVO, and NOV@ – have been implemented
and tested over 20 databases from the UCI repository, obtaining
significant improvements over other state-of-the-art strategies.
In addition to this, the two methods maintain the simplicity that
has made of OVA and OVO the most used class-binarization
methods. Furthermore, comparing our methods with other state-
of-the-art algorithms, we have made an empirical study in order
to analyse how different class-binarization strategies work when
different base classifiers are applied in each sub-problem.

A further analysis of the computational load of the used
approaches has shown that the proposed approach – NOV@ – has
competitive classification times compared with the state-of-the-
art approaches, and that it has a lower computational cost with
respect to the most powerful classifiers. When training time is
compared, though, the results were worse than those of other
approaches. However, this was expected given that all the sub-
problems decomposed by OVA and OVO have to be trained.

As future works, we are planning to apply more single classifi-
ers in the best classifier selection phase as well as other approaches
to combine the different results. In this sense, the method pro-
posed by Polat (2013) seems to set the right direction for future
experiments.

On the other hand, real applications of the proposed model are
to be analysed. We are going to test the approach with real prob-
lems related data, for example we are trying to obtain new data
related to our previous work (Ferreiro, Arnaiz, Sierra, & Irigoien,
2012) in order to carry on with the experiments. Other application
of the proposed approach can be website phishing, which is con-
sidered one of the crucial security challenges for the online com-
munity due to the massive numbers of online transactions
performed on a daily basis. We are also planning to perform an
experiment similar to the one proposed by Abdelhamid, Ayesh,
and Thabtah (2014).
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Abstract

Supervised Classification approaches try to classify correctly the new unlabelled examples based on a set of well-
labelled samples. Nevertheless, some classification methods were formulated for binary classification problems and
has difficulties for multi-class problems. Binarization strategies decompose the original multi-class dataset into mul-
tiple two-class subsets. For each new sub-problem a classifier is constructed. One-vs-One is a popular decomposition
strategy that in each sub-problem discriminates the cases that belong to a pair of classes, ignoring the remaining ones.
One of its drawbacks is that it creates a large number of classifiers, and some of them are irrelevant. In order to reduce
the number of classifiers, in this paper we propose a new method called Decision Undirected Cyclic Graph. Instead
of making the comparisons of all the pair of classes, each class is compared only with other two classes; evolution-
ary computation is used in the proposed approach in order to obtain suitable class pairing. In order to empirically
show the performance of the proposed approach, a set of experiments over four popular Machine Learning algorithms
are carried out, where our new method is compared with other well-known decomposition strategies of the literature
obtaining promising results.

Keywords: Machine Learning, Supervised Classification, Decomposition Strategies, One-vs-One

1. Introduction

In supervised classification the goal is to build a classifier which given a new case, makes a prediction about the
class to which the new observation belongs. To do so, the supervised classification paradigms requires a training set,
i.e. a collection of well classified samples. Let TR = {xi, θi}Ni=1 be the training set of N well labeled examples, where
xi represents i-th individual feature vector, and θi is the class the individual belongs to. Based on the training set
the supervised classification builds a general rule, also called as classifier, that is used to predict the class of the new
unlabelled case.

Although many real world problems are multi-class problems, some kind of approaches, such as SVM, has dif-
ficulties to build a classifier to distinguish between more than two classes. In order to solve this problem Class
Binarization strategies were proposed. Class Binarization strategies decompose the original multi-class problem into
many binary classification sub-problems. In each sub-problem the classes are decoded with 3 possible values {-1,0,+1}
and a classifier is constructed to differentiate between positive and negative values; normally the same base classifier
is used in all the sub-problems. These techniques are two-step methods: in the first step a classifier is learned for
each binary sub-problem, and in the second step the outputs of these binary classifiers are combined to obtain the final
prediction.
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In the specialized literature three main Class Binarization strategies can be found: ”One vs One” (OVO), ”One vs
All” (OVA) and “Error Correcting Output Codes” (ECOC).

• One vs All (OVA) [1]: In each sub-problem one class is compared with the rest of classes.

• One vs One (OVO) [12]: In each sub-problem only the cases belonging to two classes are compared between
them, ignoring the remaining ones.

• Error Correcting Output Codes (ECOC) [8]: In each sub-problem all the classes are grouped into two groups,
and the two groups are compared between them.

Among these three strategies OVO is which more attention has received in the literature. Some proposals try to
improve the combination of the outputs, while other approaches try to solve some of the disadvantages of OVO. One
of its main drawbacks is the number of sub-problems that OVO needs. Many of the binary classifiers are irrelevant
and are forced to give wrong answers for many instances, because each binary classifier must classify every pattern
with one of the two classes used in its training set. If a pattern belongs to class i, all the classifiers that are not trained
to differentiate this class will cast wrong votes

In this paper our aim is to present a novel strategy which reduces the number of classifiers in OVO in the classifi-
cation phase. Instead of being compared with all the other classes, each class is only compared with other 2 classes.
We represent our method as an undirected cyclic graph or a list, that is why we call it Decision Undirected Cyclic
Graph (DUCG). In order to find the best ordering of the list we have used an evolutionary computation approach
obtained from the state-of-the-art called Edge Histogram-Based Sampling Algorithm (EHBSA) [35]. To show the
behaviour of our proposal, we have compared it with other Class Binarization strategies over 27 UCI databases. We
have carried out these experiments over 4 well known Machine Learning methods: SVM, C4.5 Decision Tree, Ripper
and Multilayer Perceptron. Two performance measures have been used to evaluate the results: Classification rate and
Cohen’s Kappa. The obtained results show competitive performance of our proposal, specially in the problems with a
large number of classes.

The rest of the paper is organized as follows. In Section 2 we review the decomposition techniques, with special
attention to OVO and OVA strategies. Section 3 describes the proposed approach and Section 4 shows the experimental
results obtained. Finally, Section 5 states the conclusions of our work and future research lines.

2. Class Binarziation

Class Binarization is performed in two steps: decomposition and combination.
The decomposition step consists of dividing the K class problem into several binary sub-problems. The most

popular strategy is to divide the classes into two groups; in this way the binary classifier distinguishes the classes of
one group with the classes of the other group. Commonly the code-matrix is used to represent how the classes are
grouped.

Figure 1 illustrates a code-matrix example: each row represents a class and each column represents a binary
classifier. Each class takes values in the set {-1,0,+1}, where +1 indicates the classes associated to the positive-class,
-1 indicates the classes associated to the negative-class and 0 indicates that the class is ignored for this binary problem.
Figure 1 illustrates an example of a decomposition of a 5-class problem {θ1,θ2,θ3,θ4,θ5} into 6 binary sub-problems
{ f1, f2, f3, f4, f5, f6}. For instance, it can be seen that the classifier f1 is constructed in such a manner that the cases
belonging to θ1 and θ2 are grouped in class +1 and the cases belonging to θ3 and θ5 in class -1. So this classifier
compares θ1 and θ2 classes with θ3 and θ5, while the cases that belong to θ4 are ignored.

In classification time, each binary classifier returns a prediction. So the combination step consists of combining
these predictions. Therefore, once the decomposition strategy is fixed, it is crucial to select a proper combination of
the outputs in order to make the final prediction.

Different decomposition strategies have been developed. Two of the most popular are OVA and OVO, which are
described next.

2
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classi f iers︷                           ︸︸                           ︷
f1 f2 f3 f4 f5 f6

classes



θ1
θ2
θ3
θ4
θ5



+1 0 −1 −1 0 +1
+1 +1 −1 −1 +1 0
−1 +1 +1 −1 0 0
0 −1 0 +1 0 +1
−1 −1 0 −1 −1 −1



f1 → θ1, θ2 vs θ3, θ5
f2 → θ2, θ3 vs θ4, θ5
f3 → θ3 vs θ1, θ2
f4 → θ4 vs θ1, θ2, θ3, θ5
f5 → θ2 vs θ5
f6 → θ1, θ4 vs θ5

Figure 1: Example of a code matrix

2.1. One Vs All (OVA)

OVA decomposition scheme divides a K class multi-class problem into K two-class problems, where in each
binary sub-problem a single class is separated from all other classes.

In Figure 2(a) OVA’s code matrix for 4 classes can be seen: in each classifier one class is represented as positive
class while all the other 3 classes are represented as negative-class.



+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1


(a) One Vs All



+1 +1 +1 0 0 0
−1 0 0 +1 +1 0

0 −1 0 −1 0 +1
0 0 −1 0 −1 −1


(b) One Vs One

Figure 2: OVA and OVO code-matrix

One of the disadvantages of OVA is that most of the binary sub-problems are unbalanced. As one class is compared
with all the other classes, it is common that all sub-problems return a class-negative prediction, hence is obtained a tie
between all the classes when the majority vote is used. Due to that problem, it is common to select the class with the
highest confidence level as a final prediction.

2.2. One Vs One (OVO)

In OVO the original K class multi-class problem, θ1, ..., θK , is divided into K(K − 1)/2 two-class sub-problems. In
each sub-problem a classifier is learnt using only the cases that belong to a pair of classes (θi,θ j), where θi , θ j; the
remaining cases are ignored.

Figure 2(b) illustrates a code-matrix of OVO for 4 classes: in each classifier one class is represented as +1 class,
another one is represented as -1 and the remaining two classes are represented as 0.

Different aggregations of OVO are proposed in the literature to combine the outputs of the sub-problems. The
simplest combination strategy is the majority vote, where each output gives a vote for a class and that class which
obtains the largest number of votes is returned [12] [11]. An immediate extension is the Weighted Voting strategy: to
use the confidence level of each base classifier as a vote [23]. Hastie and Tibshirani [20] present another combination
where they try to find the best approximation of the class posterior probabilities given the posterior probabilities of
the pairwise sub-problems. Wu et al. [36] also estimate the posterior probabilities of each class, but the optimization
formulation is different from [20].

One of the disadvantages of OVO is the number of sub-problems that it creates. It is worth mentioning that
most of them are irrelevant and they return wrong answers for many instances: if an instance belongs to class θi,
all the classifiers that are not trained to differentiate θi will return wrong predictions. On the other hand, one of the
advantages of OVO is that these sub-problems are constructed with fewer examples and thus has more freedom for
fitting a decision boundary between two classes.

3
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2.3. Related Works

Various popular machine learning techniques, such as Support Vector Machines (SVM), were originally conceived
for the solution of two-class classification problems. As a consequence, they were not able to solve multi-class
problems. Therefore, in order to deal with this problem the first Class Binarization problems were proposed, and due
to the promising results obtained, this strategies has been extended to other kind of classifiers, like Ripper [12] and
C4.5 [8].

In several works different Class Binarization strategies have been compared. Some of them conclude that OVO is
significantly better than OVA[12] [22]. However, Rifkin and Klautau [33] suggest that when the binary classifiers are
well-tuned, OVA performs as well as the other strategies. Recently two empirical studies have appeared concerning
to this question [13] [17]. Galar et al. [13] compare different OVO and OVA strategies. While Garcı́a-Pedrajas and
Ortiz-Boyer [17] compare the different Class Binarization strategies among them. They consider that OVO is the best
choice when weak classifiers are used, while ECOC is recommended with powerful learners. Moreover, they show
that when ECOC uses the same number of classifiers as OVO (K(K − 1)/2), OVO obtains a slight advantage.

Among the Class Binarization strategies, OVA is which less attention has received in the literature, and there are
not many aggregations. Hong et al. [21] propose integrate Naive Bayes in OVA to order dynamically the sequence of
the classifiers. On the other hand, Kumar and Gopal [26] propose a method where they reduce the number of samples
of the classifier discarding the instances that are out of a established region.

2.4. Reducing the number of classifiers

Some works try to reduce the number of sub-problems in OVO. Among those works one of the most popular
method is the Decision Directed Acyclic Graph (DDAG) [29]. This method constructs a rooted binary acyclic graph.
In each level a classifier discriminates between two classes and the selected class is compared with another class in
the next level. In this way they reduce the number of sub-problems to K − 1. One of the disadvantages of this method
is that the classes compared in the first level are less likely to be predicted than the classes compared in the last levels.
Various versions of this method have been proposed in the literature; one of the most famous is the so called ADAG
[24].

Other techniques also are based on a hierarchical structure: Fei and Liu [9] introduce a binary tree where in each
node two or more classes are distinguished, Lorena and Carvalho [28] propose to use 4 different separability criteria
and they use Kruskal algorithm to generate a tree of binary classifiers, Pujol et. al. [31] use Mutual Information for
class separation, Ghaffari and Yazdi [18] use divisive clustering for class partitioning and Kumar et. al. [27] also
use clustering, at the same time in each node a feature extractor is applied in order to maximize the discrimination
between meta-classes.

Garcı́a-Pedrajas and Ortiz-Boyer [16] and Ko [25] present independently a combination of OVA and OVO. Firstly
they apply OVA. Next they select the two classes with the highest confidence level. And finally OVO is applied with
these two classes. Then only K + 1 classifiers have to be used in the classification process. This method is called
All-And-One (A&O).

On the other hand Galar et. al. [14] and Bagheri et. al [2] present a similar idea: they suggest to use the dynamic
classifier selection for OVO in order to avoid the non-competent classifiers. The K nearest neighbors of the instance
to be classified are obtained and the classes that appear in this neighborhood are considered as the probable classes.
With these most probable classes OVO is applied ignoring the remaining ones.

Bautista et. al. [3] propose to create the minimal ECOC. They try to find the minimal ECOC using Evolutionary
Computation, at the same time they try to find the best parameters of each classifier.

3. Proposed Approach: Decision Undirected Cyclic Graph (DUCG)

As mentioned in previous sections one of the disadvantages of OVO is the large amount of classifiers that it builds.
In order to avoid it, DDAG method was proposed, but this algorithm implies another problem: the classes that are
compared first are less likely to be predicted because they have to be selected in all the comparisons.

In order to avoid these weaknesses we propose a new method called Decision Undirected Cyclic Graph (DUCG),
where the classes are compared in pairs, as in OVO, but instead of performing all the comparisons, each class is
compared only with other two classes. This way permits to reduce the amount of binary classifiers and the same
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chance is given to all the classes. Although the use of all pair comparisons seems to be more effective, our believe is
that selecting the proper comparisons the accuracy can be improved.

DUCG can be represented as a cycle graph: a single graph where the number of nodes and edges are the same and
every node has degree 2. Figure 3 shows an illustrative example of 6 classes where each node corresponds to a class
and the edges denote the pairwise comparisons of the classes. It can be seen that our method compares only 6 pair of
classes, ignoring the remaining comparisons.

θ1 θ3

θ6

θ1vsθ6

θ4

θ2

θ6vsθ2

θ1vsθ4 θ4vsθ3

θ3vsθ5

θ2vsθ5
θ5

Figure 3: Example of the structure of DUCG for a 6-class problem

It is worth mentioning that as in our method is common to be ties (each class obtains at most 2 votes), DUCG is
applied recursively considering only the tie-classes.

In order to give a better explanation of how DUCG works, in Figure 4 an example of a 10-class problem is
illustrated. Firstly our method creates the graph to decide the pairwise comparisons. Each sub-problem returns a
prediction and then the number of votes that each class receives are computed. It can be seen in the example that there
are 4 classes that receive 2 votes (the maximum they can receive). In order to break the ties, our method repeats the
process only considering those 4 classes. The new graph is created, the sub-problems return the predictions and the
votes are counted. This time there is only one class that receives 2 votes, thus DUCG assigns this class to the new
instance.
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Figure 4: Illustrative example of DUCG for a 10-class problem
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S1 = (θ1, θ2, θ3, θ4, θ5)
S2 = (θ4, θ2, θ5, θ1, θ3)
S3 = (θ4, θ5, θ1, θ3, θ2)
S4 = (θ3, θ4, θ2, θ1, θ5)
S5 = (θ4, θ2, θ1, θ3, θ5)
S6 = (θ5, θ2, θ3, θ4, θ1)

(a) Permutations


0 3.1 3.1 1.1 5.1

3.1 0 3.1 4.1 2.1
3.1 3.1 0 4.1 2.1
1.1 4.1 4.1 0 3.1
5.1 2.1 2.1 3.1 0


(b) EHM Adjacency


− 0.25 0.25 0.09 0.41

0.25 − 0.25 0.33 0.17
0.25 0.25 − 0.33 0.17
0.09 0.33 0.33 − 0.25
0.41 0.17 0.17 0.25 −


(c) EHM Normalized

Figure 5: Example of Edge Histogram Matrix

3.1. Build the graph

The pairwise organization of the classifiers can also be seen as a list where each class is compared with the classes
that are next to it. Moreover, comparing the last class with the first in the list a cyclic solution is obtained, for instance
(θ1, θ4, θ3, θ5, θ2, θ6) is equivalent to the graph of Figure 3. Since our aim is to find the best ordering of classes we treat
our problem as a permutation-based problem.

There exist many combinational problems whose solutions can be naturally represented as permutations. However,
the meaning of these permutations can vary throughout the problems. In our particular case, our problem can be
considered similar to the Travelling Salesman Problem (TSP). TSP is a problem where the solutions are cyclic and
the relevant information is given by the relative ordering of the classes in the permutation. The information drawn
from the absolute positions of each class is not meaningful. For instance, σ = (θ1, θ3, θ2, θ4) and σ′ = (θ2, θ3, θ1, θ4)
represent the same solution since both make the same classes comparisons: [θ1vsθ3, θ1vsθ4, θ2vsθ3, θ2vsθ4]. Thus, the
search space of the solutions is reduced from K! to K!/2K.

As we mentioned before, the base classifier can have difficulties to differentiate some pairs of classes, so our
aim is to avoid them. So in a validation phase we try to find the best combination of two-class comparisons. If the
number of classes is low, the treatment of all the candidate-solutions is possible, but while the number of classes
increases the computational cost is higher and it could become unaffordable. Because of that fact, this problem can
be considered as an optimization design process. One promising strategy for this optimization issue is to use an
evolutionary algorithm-based approach. Recently, some of the most well-known evolutionary algorithms used for
the permutation problems are based on the Estimation of Distribution Algorithms (EDA). EDAs combine statistical
learning with population-based search in order to automatically identify and exploit certain structural properties of
optimization problems.

Recently, Ceberio et al. [5] have carried out a review of state-of-the-art EDAs applied to permutation-based
problems and they concluded that Edge Histogram-Based Sampling Algorithm (EHBSA) [35] is the most successful
proposal to solve the TSP.

3.1.1. Edge Histogram-Based Sampling Algorithm (EHBSA)
Given a sample of solutions, EHBSA estimates a bi-variate probabilistic model which learns the pairwise adja-

cency of the items within the permutation.
The algorithm starts by generating a random population of samples and the best solutions are selected. In the next

step, an Edge Histogram Matrix (EHM) for the selected solutions is constructed. Based on EHM, new solutions are
generated. Some of the old solutions are replaced by the new ones and the process is repeated until the termination
criteria is met.

EHM counts the number of times that two items are next to each other in the given sample of solutions. In Figure
5 an example of the construction of an EHM given 6 permutations of 5 classes θ1, θ2, θ3, θ4, θ5 is illustrated. In order
to avoid probability 0, in Figure 5(b) an ε value is added to the sum of the adjacency. Normalizing the rows of Figure
5(b) the probabilities of adjacency are obtained, which are shown in Figure 5(c).

Based on EHM, EHBSA generates new solutions following the next procedure:

1. The class of the first position is fixed randomly.
2. To sample the next positions

(a) Discard previously sampled classes of EHM
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S ′ = (θ4, )
− 0.25 0.25 0.09 0.41

0.25 − 0.25 0.33 0.17
0.25 0.25 − 0.33 0.17
0.09 0.33 0.33 − 0.25
0.41 0.17 0.17 0.25 −


(a) Step 1

S ′ = (θ4, θ3)
− 0.27 0.27 − 0.45

0.37 − 0.37 − 0.25
0.37 0.37 − − 0.25
− − − − −

0.55 0.22 0.22 − −


(b) Step 2

S ′ = (θ4, θ3, θ5)
− 0.38 − − 0.62

0.60 − − − 0.40
− − − − −
− − − − −

0.71 0.29 − − −


(c) Step 3

S ′ = (θ4, θ3, θ5, θ1, θ2)
− − − − −
− − − − −
− − − − −
− − − − −
− − − − −


(d) Step 4

Figure 6: Example of sampling a permutation from Edge Histogram Matrix. Circled areas are used to sample the class of the next position

(b) Normalize the rows of EHM
(c) Sample next class using the row of EHM that correspond to the class sampled in the previous position.

3. If the list is not finished, go to step 2.
4. Obtain the final list.

In order to explain it better, we illustrate step by step in Figure 6 how EHBSA generates a new solution based on
the EHM shown in Figure 5.

Step 1 (Figure 6(a)): Let consider that θ4 is selected in the first position. The row that correspond to θ4 is used to
sample the class in position 2.

Step 2 (Figure 6(b)): Let consider that θ3 is sampled. In the EHM of Step 2 we discard the row and column that
correspond to θ4 and we normalize the rows of EHM. The row that correspond to θ3 is used to sample the class
in position 3.

Step 3 (Figure 6(c)): Let consider that θ5 is sampled. Again we actualize EHM discarding the row and column that
correspond to θ3 and normalizing the rows, and the row that correspond to θ5 is used to sample the class in
position 4.

Step 4 (Figure 6(d)): Let consider that θ1 is sampled. As only θ2 is left we sample it at the last position and we obtain
the new solution: S ′ = (θ4, θ3, θ5, θ1, θ2).

3.2. Evaluation of samples
In order to select the best samples in EHBSA, we evaluate each sample as follows: in a validation process, for

each binary sub-problem the number of well classified instances is calculated. Thus, given a permutation sample, its
fitness is the sum of the number of instances well classified in each binary sub-problem. In Figure 7 we illustrate how
two individuals are evaluated in a 4 class problem. In the left side it is shown the number of well classified instances
for each sub-problem in the validation phase; in the right side two graph samples are shown and how their fitnesses
are obtained: summing the number of well classified instances in those sub-problems that are taken into account in
the samples.

4. Experiments

In this section we explain the experimental setup of the empirical study we have carried out in order to analyse
the performance of DUCG method. We have compared DUCG with several state-of-the-art methods and discuss the
obtained results.

4.1. Datasets
In order to evaluate the performance of the proposed approach 27 datasets have been selected from the UCI

repository [10]. Table 1 summarizes their properties. In order to complete the information, Table 2 shows the number
of instances per class in each database. For the databases with more than 10 classes, in the column denoted as ”Mean
rest” the mean number of instances of the remaining classes is indicated. Moreover, the last two columns show the
mean number of instances and the standard deviation per class.
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3

12

11

5

8

15

15

39

41

Evaluation of two samples

Number of well classified

instances in each sub−problem

θ1 θ3

θ2θ4

θ4 θ3

θ2θ1

∑

∑

θ3vsθ4 = 8

θ2vsθ4 = 3

θ2vsθ3 = 11

θ1vsθ4 = 15

θ1vsθ3 = 12

θ1vsθ2 = 5

Figure 7: Example of the evaluation of samples

4.2. Base Classifiers
To carry out the experiments, we have used 4 well known supervised classification algorithms from a software

package for Machine Learning called WEKA [19].

• J48 (C4.5 clone)[32], decision tree algorithm. It makes a post-pruning phase, based on error based pruning
algorithm.

• SMO (SVM clone)[29], kernel methods. It creates a hyperplane where the categories are divided by a clear gap
that is as wide as possible.

• JRip (Ripper clone)[7], rule induction classifier. It builds a rule-set by repeatedly adding rules to an empty
rule-set until all positive examples are covered.

• Multilayer Perceptron[34], an artificial neural network. It is a feedforward network of neurons which maps
input vectors to output vectors.

In recent reviews, [13] and [17] show that the performance of the different Class Binarization strategies varies
depending on the base classifier. Viewing that, in order to give a real perspective, we have selected classifiers with
different approaches. As we treat the classifiers as black boxes we have used the default parameters of the classifiers.

4.3. Strategies summarized
In this sub-section we briefly describe the Class Binarization strategies that are used for the comparison.
State-of-the-art methods:

• One-vs-All (OVA): Each sub-problem compares one class with the rest of classes. The class with the highest
confidence level is selected.

• One-vs-One (OVO) [12, 11]: Each sub-problem compares two classes between them, ignoring the rest. And
the majority vote is used to take the final decision.

• Decision Directed Acyclic Graph (DDAG) [30]: The DDAG is equivalent to operating on a list. A list is
initialized with all the classes. In each step a classifier discriminates between two classes selected from the list,
and the class which is not selected is eliminated. The DDAG terminates when only one class remains in the list.

• All-And-One (A&O) [16, 25]: Combination of OVA and OVO. First OVA is applied and the two classes with
the highest confidence level are selected. A classifier that discriminates between the selected classes is built and
the result of the classifier is the final decision.

Our proposals:

8
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Domain #Instances #Attrib #Classes
Car 1728 6 4
Vehicle 846 18 4
Annealing 798 38 5
Gesture 9873 32 5
Nursery 12960 8 5
Page-blocks 5473 10 5
Autouniv 25000 45 6
Dermatology 366 33 6
Flare 1066 11 6
Glass 214 9 6
Satimage 6435 36 6
Winequality Red 1599 10 6
Image Segmentation 2310 19 7
Shuttle 58000 9 7
Winequality White 4898 10 7
Zoo 101 16 7
Ecoli 336 7 8
Optdigits 5620 64 10
Pendigits 10992 16 10
Yeast 1484 8 10
Pokerhand 25010 10 10
Vowel 990 12 11
Arrhythmia 452 279 13
Chess 28056 6 18
Soybean 683 35 19
Letters 20000 16 26
Abalone 4177 8 28

Table 1: The main characteristics of the 27 databases

• DUCG-Rand: Algorithm proposed in Section 3 where the order of the list is decided randomly.

• DUCG-EHBSA: Algorithm proposed in Section 3 where the order of the list is decided with EHBSA.

To see the performance of the proposed approach we have compared our algorithm with other state-of-the-art
methods. Moreover, in our method we propose to use EHBSA in order to select the proper order of the classes;
however, we have considered suitable to compare it with DUCG-Rand to remark the obtained benefits of the used
strategy.

4.4. Performance measures

Several performance measures can be found in the literature. Due to its simplicity, the Classification Rate is the
most commonly used metric for calculating the accuracy of classifiers. However, Ben-David [4] showed that several
hits can be attributed to chance, in order to compensate the random hits he proposed to use Cohen’s Kappa metric [6].
Following Galar’s et. al overview [13] both metrics are used in this paper.

• Classification rate: Also is called accuracy. Among all the classified instances, it calculates the proportion of
well classified ones.

• Cohen’s Kappa [6]: This metric tries to calculate the portion of hits that can be attributed to the classifier itself
and are not obtained by chance.

kappa =
P0 − Pc

1 − Pc
(1)

where P0 is the total agreement probability and Pc is the agreement probability that is due to chance.

Cohen’s Kappa also can be easily illustrated through use of a confusion matrix, and Equation 1 is equivalent to
this one:

kappa =
n
∑K

i=1 hii −∑K
i=1 TriTci

n2 −∑K
i=1 TriTci

(2)

9
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Domain C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Mean rest Mean σ
Car 1210 384 69 65 432.0 ±539.8
Vehicle 218 217 212 199 211.5 ±8.7
Annealing 608 88 60 34 8 159.6 ±252.4
Gesture 2950 2741 2097 1087 998 1974.6 ±907.7
Nursery 432 426 405 32 1 259.2 ±222.1
Page-blocks 4913 329 115 88 28 1094.6 ±2137.6
Autouniv 8345 7981 3309 1987 1813 1565 4166.7 ±3156.0
Dermatology 112 72 61 52 49 20 61.0 ±30.4
Flare 331 239 211 147 95 43 177.7 ±104.2
Glass 76 70 29 17 13 9 35.7 ±29.7
Satimage 1533 1508 1358 707 703 626 1072.5 ±436.5
Winequality Red 681 638 199 53 18 10 266.5 ±312.3
Image Segmentation 330 330 330 330 330 330 330 330.0 ±0.0
Shuttle 45580 9004 3191 159 46 11 9 8285.7 ±16772.2
Winequality White 2198 1457 880 175 163 20 5 699.7 ±852.3
Zoo 41 20 13 10 8 5 4 14.4 ±12.9
Ecoli 143 77 52 35 20 5 2 2 42.0 ±48.7
Optdigits 572 571 568 566 562 558 558 557 554 554 562.0 ±6.8
Pendigits 1144 1144 1143 1143 1142 1056 1055 1055 1055 1055 1099.2 ±46.4
Yeast 463 429 244 163 51 44 37 30 20 5 148.6 ±173.5
Pokerhand 10599 12493 1206 513 93 54 36 6 5 5 2501 ±4802.7
Vowel 90 90 90 90 90 90 90 90 90 90 90 90 ±0.0
Arrhythmia 245 50 44 25 22 15 15 13 9 5 3 34.8 ±64.9
Chess 4553 4194 3597 2854 2796 2166 1985 1712 1433 683 260.38 1558.7 ± 1503.2
Soybean 92 91 91 88 44 44 20 20 20 20 17 35.9 ±30.2
Letters 813 805 803 796 792 789 787 786 783 783 753.94 769.2 ±23.2
Abalone 689 634 568 487 391 267 259 203 115 103 19.71 150.0 ±214.8

Table 2: Class distribution, mean and standard deviation of the 27 databases

where n is the number of examples, K is the number of class labels, hii is the number of true positives for each
class (elements of the main diagonal) and Tri and Tci are the total sum of the i-th row and column, respectively
(Tri =

∑m
j=1 hi j, Tci =

∑m
j=1 h ji).

Cohen’s Kappa ranges from -1 (total disagreement) through 0 (random classification) to 1 (perfect agreement).
However, most classifiers do at least as good as random, so by definition they score kappa higher than 0.

4.5. Experimental setup

In the experimental phase 5x2 fold cross-validation has been used. As the proposed approach needs the best order
to be fixed, a pre-process step is applied in each fold. It consists on a five times repeated hold-out in which 70% of
the cases are used as validation and the remaining 30% are used to tune the order candidates.

4.6. Obtained results

In this sub-section the accuracy and Cohen’s Kappa results obtained with the different base classifiers are shown.
In order to illustrate better the obtained results, they are shown in tables where the databases are ordered by the number
of classes. Moreover, each table is divided into 3 sections: in the first section the results are shown, in the second
section the average results and average ranking for each method are shown and in the third section are shown the
average results and average ranking for each method only considering the 10 databases with more than 9 classes. In
all these tables we will show that OVO and DUCG-EHBSA obtain the most promising results.

Tables 3 and 4 show the accuracies and kappa results obtained with SVM. The results follow similar pattern in
both tables and it can be seen that DUCG-EHBSA gets the best result in the majority of the cases: 15 in Table 3
(accuracy) and 12 in Table 4 (kappa). Furthermore, in both cases DUCG-EHBSA achieves the best mean and rank. It
can be seen also that DUCG-EHBSA obtains interesting results in databases with high number of classes; it obtains
the best mean, rank and the best results in 6 of those databases. On the other hand, OVA receives the worst results.
The reason of this fact is that for some instances all the outputs are negative, with 1.0 confidence level, hence all
classes are tied, and in this case the most represented class is returned.

Tables 5 and 6 show the accuracies and kappa results achieved with Ripper. Taking into account only the accuracy
(Table 5), it can be observed that OVO gets the best results: it obtains the best result in the majority of the cases (in 12
databases) and also it obtains the best mean and rank values. Moreover, it can be seen that in the databases with more
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Table 3: Classification accuracies of different methods using SVM
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 73.218 83.484 83.264 82.280 83.299 83.484
Vehicle 52.931 71.749 71.797 71.820 71.655 71.891
Annealing 83.408 84.009 83.831 85.011 83.987 83.942
Gesture 29.879 45.318 45.330 45.293 45.224 45.678
Nursery 78.244 90.909 90.909 90.253 90.909 90.909
PageBlocks 91.891 93.506 93.689 92.721 93.674 93.528
Autouniv 47.960 53.754 54.648 52.601 54.365 55.454
Dermatology 95.519 97.268 97.268 97.486 97.268 97.268
Flare 38.574 60.525 60.619 60.469 60.563 60.619
Glass 44.673 52.430 52.336 52.897 52.710 52.897
Satimage 73.445 86.692 86.670 85.949 86.667 86.645
WineRed 45.641 57.386 57.411 57.448 57.373 57.386
ImgSeg 77.680 92.823 92.831 92.571 92.814 92.814
Shuttlle 84.081 97.189 97.087 96.744 97.101 97.203
WineWhite 47.162 51.940 51.935 51.940 51.940 51.940
Zoo 90.297 93.663 92.277 92.871 92.871 92.871
Ecoli 65.357 81.488 81.845 81.190 81.726 81.667
OptDig 92.285 97.972 97.890 97.431 97.886 98.000
Pendig 86.619 97.698 97.575 96.090 97.706 97.775
Yeast 38.598 55.849 55.822 55.836 55.970 55.889
Pokerhand 49.952 49.952 49.952 49.952 49.952 49.952
Vowel 14.505 67.354 67.535 66.182 67.495 68.101
Arrhythmia 65.310 67.345 66.593 68.274 66.858 66.770
Chess 16.349 35.086 34.376 33.960 34.472 35.075
Soybean 91.567 92.152 91.654 93.353 92.328 92.592
Letters 32.062 82.328 81.867 80.507 82.035 82.384
Abalone 16.495 25.142 25.229 25.085 25.186 25.238
Mean 60.137 72.778 72.676 72.452 72.742 72.888
Rank 5.91 2.85 3.22 3.72 3.09 2.20
Mean>9Class 50.374 67.088 66.849 66.667 66.989 67.178
Rank>9Class 5.75 2.85 3.75 3.95 2.85 1.85

Table 4: Cohen’s Kappa results of different methods using SVM. When ”*” appears before a database name, it indicates that for this database the
accuracy of OVO is greater than the accuracy of DUCG-EHBSA, but the kappa result is worse.

Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
*Car 0.20750 0.60973 0.61059 0.57835 0.61093 0.60977
Vehicle 0.38171 0.62425 0.62475 0.62525 0.62290 0.62605
Annealing 0.43214 0.47855 0.47503 0.52090 0.47813 0.47722
Gesture 0.00000 0.23477 0.23585 0.23436 0.23440 0.24197
Nursery 0.67687 0.86603 0.86603 0.85559 0.86603 0.86603
PageBlocks 0.33417 0.55207 0.57426 0.44683 0.57429 0.56889
Autouniv 0.22310 0.34002 0.36181 0.31140 0.35407 0.37706
Dermatology 0.94345 0.96574 0.96574 0.96848 0.96574 0.96574
Flare 0.12802 0.48630 0.48790 0.48503 0.48714 0.48761
Glass 0.21449 0.31885 0.32023 0.32736 0.32520 0.32865
Satimage 0.66162 0.83498 0.83479 0.82540 0.83474 0.83442
WineRed 0.06683 0.27504 0.27571 0.27605 0.27483 0.27504
ImgSeg 0.74025 0.91624 0.91634 0.91331 0.91614 0.91614
Shuttlle 0.37492 0.92047 0.91783 0.90661 0.91820 0.92090
WineWhite 0.05774 0.18940 0.18936 0.18940 0.18941 0.18940
Zoo 0.86738 0.91550 0.89754 0.90525 0.90552 0.90536
Ecoli 0.46162 0.73910 0.74455 0.73418 0.74263 0.74168
OptDig 0.91429 0.97746 0.97655 0.97145 0.97651 0.97777
Pendig 0.85127 0.97442 0.97305 0.95654 0.97450 0.97527
Yeast 0.13314 0.41504 0.41609 0.41408 0.41762 0.41640
Pokerhand 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Vowel 0.07474 0.64139 0.64325 0.62871 0.64283 0.64947
Arrhythmia 0.36811 0.46341 0.46259 0.46308 0.46429 0.46234
*Chess 0.00177 0.26695 0.26100 0.25170 0.26176 0.26727
Soybean 0.90733 0.91381 0.90833 0.92703 0.91578 0.91869
Letters 0.29371 0.81620 0.81140 0.79726 0.81315 0.81678
Abalone 0.00000 0.13315 0.13464 0.13198 0.13414 0.13453
Mean 0.38208 0.58774 0.58834 0.57947 0.58892 0.59076
Rank 5.91 3.19 2.87 3.94 2.74 2.35
Mean>9Class 0.35444 0.56018 0.55869 0.55418 0.56006 0.56185
Rank>9Class 5.75 3.05 3.35 4.25 2.65 1.95
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classes OVO obtains the best results. However, in Table 6 the results are not so differential. This time, OVO gets the
best result in 8 databases and is nearly followed by DUCG-EHBSA which obtains the best results in 6. Furthermore,
the means of both methods are similar, slightly better the OVO’s one. It can be observed that the rank is in favour of
DUCG-EHBSA. OVO continues having the the best mean for databases with more classes, but the rank is equal for
OVO and DUCG-EHBSA.

Table 5: Classification accuracies of different methods using Ripper
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 92.940 94.005 93.935 94.363 93.900 93.808
Vehicle 68.463 67.069 66.950 67.470 67.234 67.305
Annealing 93.742 94.165 93.541 93.363 93.697 93.808
Gesture 46.871 51.417 50.815 46.703 51.123 50.990
Nursery 98.744 97.802 97.785 97.744 97.779 97.798
PageBlocks 96.722 96.726 96.653 96.722 96.715 96.781
Autouniv 63.682 65.687 65.697 65.690 65.648 65.654
Dermatology 90.328 94.645 94.863 94.098 94.754 94.536
Flare 56.323 59.456 59.362 59.756 59.287 59.362
Glass 60.467 65.140 64.486 61.589 65.140 65.047
Satimage 85.246 86.782 86.151 85.815 86.427 86.567
WineRed 57.674 57.123 56.748 57.486 56.898 56.923
ImgSeg 93.671 94.251 94.286 94.398 94.390 94.554
Shuttlle 99.957 99.951 99.948 99.950 99.951 99.951
WineWhite 53.018 54.447 53.859 53.744 54.087 54.390
Zoo 90.693 87.723 88.317 90.297 88.515 88.713
Ecoli 77.738 81.250 81.071 80.179 80.714 81.369
OptDig 89.349 92.865 90.068 91.085 91.327 91.278
Pendig 94.256 96.021 95.093 94.914 95.482 95.639
Yeast 54.299 56.685 56.199 55.849 56.442 56.321
Pokerhand 55.212 55.640 55.750 55.701 55.764 56.122
Vowel 58.404 66.747 63.717 61.576 65.293 66.101
Arrhythmia 65.929 67.168 65.088 68.009 66.372 66.770
Chess 41.433 63.763 60.769 47.411 62.017 62.824
Soybean 88.404 90.249 88.960 89.693 89.370 90.307
Letters 82.283 88.816 83.745 83.866 86.032 86.391
Abalone 18.937 26.579 25.765 21.350 26.215 26.411
Mean 73.140 76.006 75.171 74.401 75.577 75.767
Rank 4.80 2.20 4.20 3.87 3.39 2.54
Mean>9Class 64.851 70.453 68.515 66.945 69.431 69.816
Rank>9Class 5.90 1.60 4.40 4.10 2.90 2.10

Tables 7 and 8 show the accuracies and kappa results obtained with C4.5. The patterns of these tables are similar
to those obtained with Ripper. In Table 7 the results are in favour of OVO. It gets the best results in 15 databases. Fur-
thermore, it can be seen that OVO obtains the best results specially with databases with more classes. Nevertheless, as
in Ripper, the results in kappa are slightly different. Although OVO continues obtaining the best mean, the difference
is lower and DUCG-EHBSA’s one is close to it. Moreover, DUCG-EHBSA acquires the best rank and the superiority
of OVO in databases with more classes is decreased since the mean difference is low and DUCG-EHBSA achieves
better rank.

Finally Tables 9 and 10 show the accuracies and kappa results obtained with Multilayer Perceptron. In Table 9
OVA gets the best accuracy in the majority of the cases and is closely followed by OVO. OVO achieves the best mean
and rank, but these values are nearly from those obtained by DUCG-EHBSA. In this table it can be appreciated that
our proposed approach DUCG-EHBSA achieves the best results for the databases with more classes. On the other
hand, in Table 10, the best kappa results are more distributed. In this case, it is DUCG-EHBSA which obtains the best
mean and rank. Furthermore, in this time also, DUCG-EHBSA achieves the best results for the databases with more
classes.

Summarizing the results obtained from this analysis we conclude that OVO and DUCG-EHBSA are the most
robust approaches, OVO performs better with C4.5 and Ripper whereas DUCG-EHBSA performs better with SVM
and Multilayer Perceptron. In fact, Multilayer Perceptron is the base classifier that obtains the best results among the
base classifiers. Besides, it can be seen that when kappa is considered DUCG-EHBSA achieves interesting results.
We want to emphasize also the results obtained by DUCG-RAND, where in most of the cases it obtains better mean
and rank than OVA, DDAG and A&O. In addition to this, it can be seen that in almost all the methods there is a
considerable difference between the mean of OVO, DUCG-EHBSA and DUCG-RAND, and the remaining methods,
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Table 6: Cohen’s Kappa results of different methods using Ripper . When ”*” appears before a database name, it indicates that for this database
the accuracy of OVO is greater than the accuracy of DUCG-EHBSA, but the kappa result is worse.

Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 0.84428 0.87061 0.86975 0.87794 0.86886 0.86659
Vehicle 0.57928 0.56166 0.55944 0.56586 0.56316 0.56438
Annealing 0.83758 0.84995 0.83541 0.83287 0.83920 0.84179
*Gesture 0.26626 0.34259 0.34310 0.27525 0.34755 0.34449
Nursery 0.98158 0.96779 0.96754 0.96691 0.96745 0.96772
PageBlocks 0.81750 0.82641 0.82491 0.82504 0.82793 0.83050
*Autouniv 0.50419 0.52775 0.53151 0.52584 0.53074 0.52839
Dermatology 0.87911 0.93296 0.93572 0.92613 0.93439 0.93163
Flare 0.43428 0.47710 0.47744 0.47797 0.47658 0.47707
*Glass 0.44605 0.50776 0.50711 0.45663 0.51537 0.51387
Satimage 0.81837 0.83639 0.82898 0.82500 0.83232 0.83400
WineRed 0.31107 0.30165 0.30153 0.29717 0.30514 0.29993
ImgSeg 0.92613 0.93292 0.93331 0.93462 0.93453 0.93645
Shuttlle 0.99878 0.99861 0.99853 0.99858 0.99862 0.99861
*WineWhite 0.23372 0.27723 0.27842 0.24210 0.27788 0.27794
Zoo 0.87685 0.83801 0.84572 0.87267 0.84842 0.85134
Ecoli 0.69311 0.73605 0.73502 0.72473 0.72985 0.73911
OptDig 0.88166 0.92072 0.88963 0.90094 0.90363 0.90307
Pendig 0.93615 0.95577 0.94546 0.94348 0.94979 0.95153
Yeast 0.39506 0.43398 0.43129 0.41293 0.43227 0.43060
Pokerhand 0.14100 0.16611 0.17137 0.16690 0.16965 0.17656
Vowel 0.54131 0.63479 0.60106 0.57695 0.61848 0.62730
*Arrhythmia 0.43117 0.45464 0.45904 0.49025 0.47652 0.48317
Chess 0.33332 0.59368 0.56207 0.40113 0.57557 0.58391
Soybean 0.87223 0.89277 0.87870 0.88647 0.88318 0.89344
Letters 0.81576 0.88368 0.83094 0.83222 0.85472 0.85846
*Abalone 0.04142 0.16163 0.15930 0.07362 0.16144 0.16263
Mean 0.62360 0.66234 0.65564 0.64112 0.66012 0.66202
Rank 5.0 2.76 3.74 4.11 2.93 2.46
Mean>9Class 0.53891 0.60978 0.59289 0.56849 0.60252 0.60707
Rank>9Class 6.00 2.00 4.40 4.10 2.90 2.00

Table 7: Classification accuracies of different methods using C4.5
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 95.972 95.914 95.799 96.215 95.787 95.741
Vehicle 68.251 68.251 67.825 68.983 68.203 68.298
Annealing 92.116 92.227 91.960 92.272 91.893 92.183
Gesture 49.618 53.202 51.105 50.609 51.881 52.302
Nursery 98.647 98.622 98.608 98.603 98.608 98.622
PageBlocks 96.642 96.824 96.810 96.645 96.835 96.850
Autouniv 61.777 64.727 64.379 61.370 64.499 64.519
Dermatology 91.530 95.574 95.355 94.262 95.301 95.410
Flare 56.023 59.962 59.812 60.225 59.606 59.887
Glass 60.374 63.084 61.682 60.748 61.589 62.710
Satimage 83.708 85.946 85.442 84.525 85.678 85.803
WineRed 58.649 57.486 57.198 57.899 57.298 57.286
ImgSeg 94.251 95.030 94.857 94.563 95.100 95.299
Shuttlle 99.949 99.944 99.945 99.960 99.946 99.948
WineWhite 53.973 54.924 53.748 54.904 54.079 54.892
Zoo 90.693 90.297 90.693 92.673 90.297 90.693
Ecoli 78.571 81.726 81.190 79.048 81.548 81.429
OptDig 87.434 92.295 89.288 89.356 90.669 90.751
Pendig 94.039 95.941 94.985 94.649 95.298 95.486
Yeast 55.418 56.267 55.755 55.984 56.253 56.132
Pokerhand 49.730 49.895 50.138 49.483 50.026 50.625
Vowel 66.121 71.434 67.556 68.768 69.939 70.141
Arrhythmia 63.496 65.885 62.788 61.460 65.133 64.867
Chess 54.569 63.669 61.008 58.308 62.635 62.735
Soybean 86.559 90.893 89.136 88.316 90.015 90.571
Letters 83.181 89.002 83.595 84.398 86.199 86.587
Abalone 18.793 24.946 24.228 20.062 24.870 25.310
Mean 73.707 76.073 74.996 74.603 75.525 75.744
Rank 4.87 2.02 4.31 3.89 3.41 2.43
Mean>9Class 65.934 70.023 67.848 67.078 69.104 69.321
Rank>9Class 5.70 1.40 4.30 4.80 2.80 2.00
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Table 8: Cohen’s Kappa results of different methods using C4.5. When ”*” appears before a database name, it indicates that for this database the
accuracy of OVO is greater than the accuracy of DUCG-EHBSA, but the kappa result is worse.

Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 0.91185 0.91117 0.90882 0.91745 0.90861 0.90752
Vehicle 0.57654 0.57854 0.57228 0.58756 0.57741 0.57822
Annealing 0.79060 0.79565 0.78992 0.79622 0.78915 0.79527
Gesture 0.48860 0.37119 0.35682 0.34830 0.36608 0.36912
Nursery 0.98017 0.97981 0.97961 0.97955 0.97961 0.97981
PageBlocks 0.81941 0.82825 0.82905 0.82270 0.82986 0.83023
*Autouniv 0.48259 0.51600 0.51736 0.47977 0.51882 0.51740
Dermatology 0.89396 0.94451 0.94182 0.92808 0.94118 0.94251
Flare 0.42048 0.48183 0.48078 0.48044 0.47794 0.48135
*Glass 0.46057 0.48535 0.47544 0.46890 0.47482 0.48558
Satimage 0.79860 0.82593 0.82019 0.80893 0.82305 0.82448
WineRed 0.33021 0.30979 0.31267 0.31821 0.31498 0.30888
ImgSeg 0.93291 0.94201 0.93998 0.93655 0.94281 0.94514
Shuttlle 0.99856 0.99842 0.99846 0.99887 0.99849 0.99853
*WineWhite 0.27633 0.29874 0.29432 0.30170 0.29791 0.30038
Zoo 0.87754 0.87118 0.87658 0.90327 0.87137 0.87661
Ecoli 0.70339 0.74637 0.74100 0.71067 0.74558 0.74386
OptDig 0.86037 0.91439 0.88097 0.88172 0.89631 0.89722
Pendig 0.93375 0.95488 0.94427 0.94053 0.94775 0.94983
Yeast 0.41296 0.42735 0.42423 0.42209 0.42880 0.42703
Pokerhand 0.06596 0.05349 0.06139 0.06021 0.05881 0.06863
Vowel 0.62748 0.68599 0.64299 0.65629 0.66932 0.67158
*Arrhythmia 0.45228 0.42685 0.43234 0.42938 0.45915 0.45592
Chess 0.33497 0.59191 0.56382 0.53112 0.58155 0.58226
Soybean 0.85171 0.89983 0.88058 0.87131 0.89017 0.89634
Letters 0.82508 0.88561 0.82938 0.83773 0.85646 0.86050
Abalone 0.04087 0.13551 0.13541 0.05793 0.13849 0.14335
Mean 0.63510 0.66150 0.65298 0.64724 0.65868 0.66065
Rank 4.59 2.65 4.13 3.93 3.31 2.39
Mean>9Class 0.54054 0.59758 0.57954 0.56883 0.59268 0.59527
Rank>9Class 5.30 2.35 4.20 4.60 2.65 1.90

Table 9: Classification accuracies of different methods using Multilayer Perceptron
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 95.162 95.868 95.845 95.660 95.764 95.856
Vehicle 80.449 79.196 79.574 80.236 79.314 79.551
Annealing 98.040 98.151 98.129 98.062 98.151 98.151
Gesture 50.793 51.255 50.511 50.957 51.062 50.888
Nursery 98.119 99.466 99.469 99.255 99.468 99.474
PageBlocks 96.079 96.397 96.371 96.401 96.357 96.357
Autouniv 61.338 60.026 58.811 61.191 59.318 59.227
Dermatology 96.066 96.995 96.995 96.995 96.995 96.995
Flare 59.568 58.780 58.856 58.949 58.630 58.874
Glass 65.234 64.579 64.112 64.206 64.206 63.738
Satimage 89.330 89.551 89.483 89.650 89.532 89.629
WineRed 58.487 57.836 57.674 58.186 57.799 57.736
ImgSeg 96.052 96.554 96.563 96.433 96.623 96.528
Shuttlle 99.647 99.771 99.766 99.705 99.764 99.778
WineWhite 54.153 53.699 53.018 53.173 53.499 53.687
Zoo 93.663 94.059 93.465 93.069 93.663 94.455
Ecoli 86.190 85.179 84.762 85.774 85.060 85.119
OptDig 97.890 97.886 97.801 97.954 97.886 97.989
Pendig 95.213 99.010 98.956 95.122 98.983 98.997
Yeast 58.693 57.480 57.264 57.642 57.224 57.453
Pokerhand 53.525 52.300 52.450 52.457 52.385 52.830
Vowel 85.071 88.646 88.505 85.212 89.091 89.071
Arrhythmia 65.575 68.319 67.168 67.434 67.965 68.230
Chess 58.926 62.546 60.716 60.979 61.459 62.054
Soybean 92.943 91.332 91.157 91.654 91.742 91.567
Letters 86.467 93.084 91.865 86.750 92.710 92.828
Abalone 26.052 26.220 25.564 26.517 25.746 26.004
Mean 77.731 78.303 77.957 77.764 78.163 78.262
Rank 3.76 2.76 4.48 3.43 3.63 2.94
Mean>9Class 72.035 73.682 73.145 72.172 73.519 73.702
Rank>9Class 3.80 2.75 4.90 3.50 3.55 2.50
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Table 10: Cohen’s Kappa results of different methods using Multilayer Perceptron. When ”*” appears before a database name, it indicates that for
this database the accuracy of OVO is greater than the accuracy of DUCG-EHBSA, but the kappa result is worse.

Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 0.89512 0.91024 0.90995 0.90596 0.90827 0.91005
Vehicle 0.73917 0.72220 0.72711 0.73603 0.72365 0.72679
Annealing 0.95064 0.95330 0.95279 0.95123 0.95329 0.95329
*Gesture 0.34651 0.34724 0.34391 0.35040 0.35104 0.34815
Nursery 0.97232 0.99218 0.99222 0.98909 0.99220 0.99229
PageBlocks 0.76714 0.79907 0.79928 0.80122 0.79885 0.79875
Autouniv 0.47417 0.45137 0.44608 0.47249 0.45169 0.44872
Dermatology 0.95070 0.96232 0.96232 0.96232 0.96232 0.96232
Flare 0.48135 0.47356 0.47565 0.47647 0.47222 0.47541
Glass 0.51690 0.51257 0.51020 0.51028 0.51056 0.50399
Satimage 0.86804 0.87074 0.87003 0.87207 0.87066 0.87175
*WineRed 0.32796 0.32486 0.32836 0.33254 0.32897 0.32581
ImgSeg 0.95392 0.95979 0.95988 0.95837 0.96059 0.95948
Shuttlle 0.99004 0.99353 0.99338 0.99166 0.99335 0.99374
*WineWhite 0.28690 0.26485 0.26412 0.26470 0.26669 0.26579
Zoo 0.91563 0.92105 0.91347 0.90796 0.91590 0.92600
Ecoli 0.80797 0.79426 0.78900 0.80296 0.79279 0.79364
OptDig 0.97655 0.97651 0.97556 0.97726 0.97651 0.97766
Pendig 0.94679 0.98900 0.98839 0.94578 0.98870 0.98886
*Yeast 0.46408 0.44286 0.44272 0.44795 0.44117 0.44390
Pokerhand 0.11204 0.08084 0.09086 0.08476 0.08698 0.09389
Vowel 0.83571 0.87508 0.87347 0.83725 0.87992 0.87971
*Arrhythmia 0.43798 0.48585 0.48418 0.48592 0.48635 0.49054
Chess 0.53974 0.57988 0.56085 0.56284 0.56907 0.57516
Soybean 0.92257 0.90481 0.90292 0.90842 0.90935 0.90744
Letters 0.85924 0.92807 0.91539 0.86219 0.92418 0.92541
*Abalone 0.15764 0.16152 0.15943 0.16444 0.15943 0.16176
Mean 0.68507 0.69176 0.69006 0.68750 0.69166 0.69260
Rank 4.0 3.28 4.20 3.41 3.28 2.83
Mean>9Class 0.62523 0.64244 0.63938 0.62768 0.64217 0.64443
Rank>9Class 4.10 3.25 4.65 3.60 3.30 2.10

and this difference is increased when the databases with 10 or more classes are considered.
However, we can not obtain any meaningful conclusion without using a statistical test. Hence, in the next sub-

section, we carry out an statistical analysis in order to find whether signicant differences among the results obtained
exist or not.

4.6.1. Statistical analysis
As we have several methods to compare, according to Garcı́a et al. [15], we have used the Iman-Davenport test

to detect statistical differences among the different strategies. If the difference exists, we apply the Shaffer post-hoc
test in order to find out which algorithms are distinctive among them. We show the most relevant p-values obtained
in the pairwise comparisons in tables, where ”+” symbol implies that the first algorithm is statistically better than the
confronting one, whereas ”=” means that there are not signicant differences between them.

With respect to SVM, the results of the statistical analysis reject the null hypothesis that all the methods are equiv-
alent, since the p-values returned by the Iman-Davenport test are lower than our α-value (0.1) for both performance
measures. In Table 11 we show the most relevant p-values obtained with Shaffer post-hoc test. In both cases all
the strategies outperform significantly OVA, mainly because OVA obtains the worst result in all the databases. This
fact makes to be more difficult to find more statistical differences since the p-value is re-adjusted after each pairwise
comparison in Shaffer post-hoc test. However, DUCG-EHBSA also outperforms A&O in both tables. Viewing these
results we consider that DUCG-EHBSA is the most suitable method for SVM.

Considering Ripper, the Iman-Davenport test returns p-values lowers than 0.0001 for both cases, so we execute
the Shafer post-hoc test. The obtained p-values can be seen in Table 12. The accuracy results show that OVO and
DUCG-EHBSA outperform significantly OVA, DDAG and A&O, whereas DUCG-RAND outperforms OVA. The
Kappa results are similar since OVO and DUCG-EHBSA get significantly better results than OVA and A&O. Seeing
these results we conclude that OVO and DUCG-EHBSA are equivalent between them and they perform better than
other approaches for Ripper.

Concerning C4.5, this time again the obtained p-values in Iman-Davenport test are very low, lower than 0.0001.
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Table 11: Shaffer test for SVM base classifier
Accuracy
DUCG-EHBSA vs OVA +(5.2E-12)
OVO vs OVA +(1.9E-8)
DUCG-RAND vs OVA +(3.2E-7)
DDAG vs OVA +(1.3E-6)
A&O vs OVA +(1.8E-4)
DUCG-EHBSA vs A&O +(0.0286)
DUCG-EHBSA vs DDAG =(0.3183)
DUCG-EHBSA vs DUCG-RAND =(0.5660)
OVO vs A&O =(0.6117)

Kappa
DUCG-EHBSA vs OVA +(4.3E-11)
DUCG-RAND vs OVA +(5.0E-9)
DDAG vs OVA +(2.5E-8)
OVO vs OVA +(9.0E-7)
A&O vs OVA +(0.0012)
DUCG-EHBSA vs A&O +(0.0176)
DUCG-RAND vs A&O =(0.1265)
DDAG vs A&O =(0.2443)
DUCG-EHBSA vs OVO =(0.7119)
OVO vs A&O =(0.8155)

Table 12: Shaffer test for Ripper base classifier
Accuracy
OVO vs OVA +(5.3E-6)
DUCG-EHBSA vs OVA +(9.1E-5)
OVO vs DDAG +(8.6E-4)
OVO vs A&O +(0.0106)
DUCG-EHBSA vs DDAG +(0.0106)
DUCG-RAND vs OVA +(0.0571)
DUCG-EHBSA vs A&O +(0.0618)
OVO vs DUCG-RAND =(0.1395)
A&O vs OVA A&O =(0.4829)
DUCG-EHBSA vs DUCG-RAND =(0.5660)
DUCG-RAND vs DDAG =(0.5660)
DDAG vs OVA =(0.9780)

Kappa
DUCG-EHBSA vs OVA +(9.4E-6)
OVO vs OVA +(1.1E-4)
DUCG-RAND vs OVA +(4.6E-4)
DUCG-EHBSA vs A&O +(0.0121)
OVO vs A&O +(0.0793)
DUCG-EHBSA vs DDAG =(0.1209)
DDAG vs OVA =(0.1209)
DUCG-RAND vs A&O =(0.1395)
OVO vs DDAG =(0.3773)
A&O vs OVA =(0.4851)
DUCG-RAND vs DDAG =(0.4851)

In Table 13 we show the results obtained with Shaffer pos-hoc test. The p-values obtained in accuracy indicate that
OVO outperforms OVA, DDAG, A&O and DUCG-RAND. DUCG-EHBSA also obtains interesting results since it
overcomes OVA, DDAG and A&O. And DUCG-RAND outperforms OVA. The Kappa results, however, show that
DUCG-EHBSA continues outperforming OVA, DDAG and A&O, but OVO only obtains significant improvements
against OVA and DDAG. Viewing that, we conclude that OVO and DUCG-EHBSA are equivalent and are the most
robust strategies.

Finally, we apply the statistical test to the results obtained with Multilayer Perceptron. The Iman Davenport
test rejects the null hypothesis of equivalence of accuracy (p-value 0.026), but it does not reject the null hypothesis
for kappa (p-value 0.113). We execute Shaffer post-hoc for accuracy and the results are shown in Table 14. Once
again, OVO and DUCG-EHBSA perform better than the other approaches. On the other hand, although there are no
statistical differences among methods in kappa, the p-value is very low and regarding the mean and rank results we
may stress the good behaviour of DUCG-EHBSA.

Viewing all these results, we conclude that the most robust strategies are OVO and DUCG-EHBSA. They show
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Table 13: Shaffer test for C4.5 base classifier
Accuracy
OVO vs OVA +(3.2E-7)
DUCG-EHBSA vsOVA +(1.6E-5)
OVO vs DDAG +(6.5E-5)
DUCG-EHBSA vs DDAG +(0.0021)
OVO vs A&O +(0.0024)
OVO vs DUCG-RAND +(0.0406)
DUCG-EHBSA vs A&O +(0.0406)
DUCG-RAND vs OVA +(0.0446)
DUCG-EHBSA vs DUCG-RAND =(0.2672)
A&O vs OVA =(0.3234)
DUCG-RAND vs DDAG =(0.4068)

Kappa
DUCG-EHBSA vs OVA +(2.3E-4)
OVO vs OVA +(0.0013)
DUCG-EHBSA vs DDAG +(0.0063)
DUCG-EHBSA vs A&O +(0.0254)
OVO vs DDAG +(0.0362)
DUCG-RAND vs OVA =(0.1209)
OVO vs A&O =(0.1209)
DUCG-EHBSA vs DUCG-RAND =(0.4829)
DUCG-RAND vs DDAG =(0.7668)

Table 14: Shaffer test for Multilayer Perceptron base classifier
Accuracy
OVO vs DDAG +(0.0108)
DUCG-EHBSA vs DDAG +(0.0254)
A&O vs DDAG =(0.3817)
OVO vs OVA =(0.4953)
OVO vs DUCG-RAND =(0.8738)
DUCG-RAND vs DDAG =(0.9433)
DUCG-EHBSA vs OVA =(0.9433)

better behaviour and in almost all the experiments they get significant improvements comparing with the other meth-
ods. We also want to emphasize the results achieved by DUCG-RAND, since several times shows better behaviour
than OVA, DDAG and A&O.

4.6.2. Computational Load
In order to complete the experimental study we have performed another comparison analysing the computational

cost of each method. To do so, we have calculated the testing time (Table 15) and the number of classifiers (Table
16) that each method needs using Multilayer Perceptron as base classifier. Among all the base classifiers, Multilayer
Perceptron has been the selected one because it obtains the best accuracy and kappa results. Nevertheless, the obtained
conclusion can be extended to the remaining base classifiers.

The results obtained in Tables 15 and 16 show that OVA, DDAG and A&O are the fastest methods and which need
less classifiers. DUCG-RAND needs slightly more time and classifiers. On the other hand, OVO requires the most
testing time and uses the most classifiers. Finally, in the case of DUCG-EHBSA, although it needs few number of
classifiers, the testing time that it spends is between OVO and the rest methods.

4.7. Discussion
Regarding the obtained results, we emphasize the following:

• OVO and the proposed method DUCG-EHBSA obtain the best results. In the majority of the cases the best result
of each database is obtained by one of these methods and they always achieve the best rank and mean. Their
improvement is more clear for the databases with more classes. Moreover, the statistical analysis reinforces
these conclusions.

• Considering only the accuracy, OVO performs quite well with all base classifiers, however, when kappa is con-
sidered, DUCG-EHBSA offers better results. After we have analysed the obtained results in several databases,
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Table 15: Comparison of the testing time of 6 methods (in milliseconds)
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 10.1 14.8 8.7 11.1 10.1 12.8
Vehicle 54.3 54.2 49.2 50.7 53.1 51.8
Annealing 71.1 122.7 59.6 82.9 77.1 80
Gesture 6301 6548.1 6262.3 6360.5 6363.3 6363.8
Nursery 1350.1 1445.8 1342.7 1379.6 1376.3 1375.4
PageBlocks 895.5 918.6 900.6 906.6 908.2 892.9
Autouniv 10803.1 13010.3 10685.4 11063.6 11084.3 11373.2
Dermatology 22.5 42.1 20.6 31 25.3 25.9
Flare 20.4 37.6 20 22.5 21.7 23.3
Glass 2.3 4.7 3.3 2.7 2.7 3.1
WineRed 90.8 107.7 88.7 91.5 92.1 93.5
Satimage 4517.8 4878.8 4511.4 4573.4 4584.1 4630
ImageSeg 315.6 390.1 313.7 323.1 328.6 325
Shuttle 52334.5 53063.4 51657.7 52150.8 51913.3 51908
WineWhite 812.6 892.5 812.4 820.7 826.9 823
Zoo 1.6 4 1.4 1.9 2 2
Ecoli 6 10.3 6.6 8.8 6 6.3
Optdig 4030.5 7241 3976.9 4135.8 4366 4495.9
Pendig 2995 3764.3 2994.2 3027.5 3099.9 3128.9
Yeast 48.2 101.2 47.6 49.1 54.3 60.3
Pokerhand 13555.7 14727.4 13534.9 13649.3 13642.7 13922.9
Vowel 48.6 116 49.4 49.5 59.2 62.7
Arrhythmia 1916.5 10039.3 1763.3 2046 2541.8 2835.1
Chess 2552 16383.8 2723.9 2662.6 3736.1 13103.4
Soybean 366.6 3720.8 399.8 387.7 544.2 714.1
Letters 11047.8 30520.8 11399.1 10950 12810.5 25233.9
Abalone 520.2 3067.5 571.4 530.9 773.4 5527.4
Mean 4247.8 6341.8 4229.8 4273.0 4418.6 5447.2

Table 16: Number of classifiers used by different methods
Database OVA OVO DDAG A&O DUCG-RAND DUCG-EHBSA
Car 4 6 3 5 4.15 4.84
Vehicle 4 6 3 5 4.28 4.52
Annealing 5 10 4 6 5.66 5.64
Gesture 5 10 4 6 5.71 5.84
Nursery 5 10 4 6 5.45 5.68
PageBlocks 5 10 4 6 5.54 5.93
Autouniv 6 15 5 7 6.99 7.22
Dermatology 6 15 5 7 7.26 7.42
Flare 6 15 5 7 6.96 7.77
Glass 6 15 5 7 7.04 8.32
WineRed 6 15 5 7 6.99 7.97
Landsat 6 15 5 7 6.98 8.03
ImageSeg 7 21 6 8 8.65 9.13
Shuttle 7 21 6 8 8.57 8.86
WineWhite 7 21 6 8 9.03 9.89
Zoo 7 21 6 8 8.77 8.88
Ecoli 8 28 7 9 9.56 10.31
Optdig 10 45 9 11 13.27 13.92
Pendig 10 45 9 11 13.16 14.01
Yeast 10 45 9 11 13.13 14.58
Pokerhand 10 45 9 11 13.11 15.60
Vowel 11 55 10 12 14.81 15.81
Arrhythmia 13 78 12 14 17.21 18.88
Chess 18 153 17 19 25.06 28.70
Soybean 19 171 18 20 26.18 27.65
Letters 26 325 25 27 36.80 38.31
Abalone 28 378 27 29 36.11 41.56
Mean 9.44 59.04 8.44 10.44 12.09 13.16

we conclude that selecting the best pairwise comparison is beneficial for the unbalanced problems. One indica-
tive of this behaviour is that in several unbalanced databases OVO obtains better accuracy than DUCG-EHBSA,
while it obtains worst result in kappa. These databases are indicated with ”*” in the Tables 4, 6, 8 and 10. The
reason of this fact is that trying to select the best class order, the minority classes are more likely to be compared
with those classes that are easier to distinguish.
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• Depending on the base classifier the results vary. Although the majority of the papers in the literature use
an unique base classifier (usually SVM) we use other extra base classifiers in order to obtain a better view
of the proposed approach. In fact, the results show that when SVM is used, our approach, DUCG-EHBSA,
shows the best performance. On the other hand, for Multilayer Perceptron DUCG-EHBSA and OVO are the
most remarkable strategies. Finally, for Ripper and C4.5 base classifiers, the statistical tests also conclude that
DUCG-EHBSA and OVO are the most robust ones, however, it is worth mentioning that OVO obtains the best
mean and the best result in the majority of the databases with these base classifiers.

• Although OVO and DUCG-EHBSA are the strategies that need more classification time, as the results are
considerably in favour of them, we consider that their good performance compensates their computational cost.
However, if Occam razor’s principle (in equal conditions simplest model is selected) is used for tie-breaking,
DUCG-EHBSA would be selected since it needs less testing time and classifiers than OVO.

• The achieved results show the importance to sort the classes in the proper order since DUCG-EHBSA shows
better performance than DUCG-RAND. DUCG-EHBSA obtains better results in most of the databases and it
outperforms DUCG-RAND in the mean and rank of all the experiments.

• DUCG-RAND obtains interesting results since it obtains better rank and mean than OVA, DDAG and A&O in
almost all the experiments, besides several statistical tests show its better performance. Moreover, with SVM it
obtains better kappa mean and rank than OVO and in Multilayer Perceptron it obtains the same kappa rank.

• The state-of-the-art approaches that try to reduce the number of classifiers in OVO obtain poor results. We
refer to DDAG and A&O. Not considering OVA, they obtain the worst mean and rank result in almost all the
experiments. Moreover, they are significantly improved several times by other methods. Although they obtain
competitive results with the databases with less classes, they show a worst tendency in the databases with high
number of classes where they obtain considerable worse mean than OVO and DUCG-EHBSA.

5. Conclusion

In this work, we have presented a new method called Decision Undirected Cyclic Graph that reduces the number
of classifiers in OVO. We have carried out our experiments for four different Machine Learning algorithms and we
have compared the obtained results with those obtained with several state-of-the-art methods. We have carried out
this experiments using two different metrics to calculate the accuracy.

We conclude that DUCG-EHBS is a promising decomposition strategy, since the experimental results show that
OVO and DUCG-EHBSA are the most robust methods. We show that the best aggregation within a problem depends
on the base classifier that is considered, since SVM works better when DUCG-EHBSA decomposition is used, and in
Ripper, C4.5 and Multilayer Perceptron both decomposition strategies are equivalent. Moreover, we also have shown
that DUCG-EHBSA obtains better performance than OVO for kappa metric.

We have obtained several interesting conclusions, one of the most important one is the good behaviour of DUCG-
EHBSA in problems with large amount of classes, where it performs as well as OVO, whereas other state-of-the-art
strategies that attempt to reduce the number of classifiers show their weakness. Moreover, the new proposal needs
less testing time and less classifiers to take the final decision than OVO.

As we present a novel strategy to reduce the number of classifiers it gives the possibility for future works. One
option is to try to reduce the classification time using other faster strategies, such as genetic algorithms or Kruskal
graph constructor algorithm, to obtain the class order. Other option is to calculate the class order fitness using different
strategies, for example class separability measures. And another option is to observe the performance of this strategy
incrementing the number of edges in each node.
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Abstract

Class Binarization strategies decompose the original multi-class problem into several binary sub-problems. One
versus One (OVO) is one of the most popular Class Binarization techniques, which considers every pair of classes
as a different sub-problem. Usually, the same classifier is applied to every sub-problem and then all the outputs are
combined by some voting scheme. In this paper we present a novel idea where for each test instance we try to assign
the best classifier in each sub-problem of OVO. To do so, we have used two simple Dynamic Classifier Selection
(DCS) strategies that have not been used in this context. The two DCS strategies use K-NN to obtain the local region
of the test-instance, and the classifier that performs the best for those instances in the local region, is selected to
classify the new test instance. The difference between the two DCS strategies remains in the weight of the instance.
In this paper we also have proposed a novel approach in those DCS strategies. Instead of using the K-NN method
to achieve the local regions, we propose to use a version of K-NN obtained from the state-of-the-art called K-NN
Equality (K-NNE). K-NNE is similar to K-NN, but it obtains the K nearest neighbors of each class. We have carried
out an empirical study over several UCI databases, which shows the robustness of our proposal.

Keywords: Machine Learning, Supervised Classification, Decomposition Strategies, One against One, Classifier
Combination, Dynamic Classifier Selection

1. Introduction

The objective of the Supervised Classification strategies is to classify the new unlabelled samples in their correct
class. To do so, these strategies create a prediction model (also denoted as classifier) based on a training set of well
labelled instances.

A classification problem with only two classes is known as a binary classification problem. A simple example of
a binary classification problem are the yes/no or true/false problems. On the other hand the problems with more than
two classes are known as multi class problems. However for several kind of classifiers, such as SVM, it is easier to
build a classifier to distinguish only between two classes. Because of that, two general approaches have been adopted
to deal with multi class problems: to create a single decision function that considers all the classes or to decompose
the problem into several binary sub-problems (also known as class-binarization).

In the latest years the class-binarization strategies are getting more common in the literature. There are 3 main
techniques: One versus All (OVA)[2], One versus One (OVO)[12] and Error Correcting Output Codes (ECOC)[9].
In this work we focus our attention on OVO strategy, which compares the cases belonging to two classes in each
sub-problem; the remaining classes are ignored in each sub-problem.
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OVO gives the option to consider each sub-problem as independent and to select a different base classifier in
each sub-problem, which could be considered as an example of static classifier selection problem. For classification
selection scheme two categories exist: static and dynamic. In the first case, regions of competence are defined during
the training phase, while in the second case, they are defined during the classification phase taking into account the
characteristics of the sample to be classified.

In the literature it is possible to find several works that propose the selection of different base classifiers in each
sub-problem statically; however conclusions of these works are contradictory: some works obtain significant improve-
ments, while others reject this hypothesis.

In this paper, we propose to extend this idea trying to assign dynamically the best base classifier in each sub-
problem of OVO. We have called to this new approach DYNOVO. We present several variations of DYNOVO using
two simple Dynamic Classifier Selection (DCS) strategies from the state-of-the-art. Those strategies select the classi-
fier that obtains the best accuracy in a local region, which is defined by the K-Nearest Neighbor (K-NN) algorithm. In
order to adapt those DCS strategies we have made several changes on the K-NN algorithm, moreover we propose the
use of another K-NN version called K-Nearest Neighbor Equality (K-NNE) from the state-of-the-art which fits prop-
erly in this problem. For our experiments we have chosen several well-known classifier from the Machine Learning
paradigms: SVM, C4.5, Ripper, Naive Bayes and Bayesian Network. We have carried out our experiments over 22
UCI databases. Experimental results show that DYNOVO obtains very good results.

The rest of the paper is organized as follows: In Section 2 we review the Class Binarization techniques, focusing
on OVO strategy. In Section 3 we review the Dynamic Classifier Selection technique while Section 4 is devoted
to related work. Section 5 describes the proposed approach and Section 6 shows the experimental results obtained.
Finally, Section 7 states the conclusions of our work and future research lines.

2. Class Binarization

Several machine learning techniques, such as SVM, were designed to solve two-class problems. However many
real-word problems involve the discrimination of more than two classes. In order to use those algorithms in multi-
class problem the class binarization strategies divide the original problem into several two-class problems. It has been
proven the benefits to use the binarization techniques in multi-class problems [15] and due to those promising results
the use of these strategies has been extended to other base classifiers, such as Ripper [14] or C4.5 [9]. In the recent
years the class binarization strategies are receiving more attention in the literature, and one indicative of that is that
recently several reviews have been published [29] [18] [15].

The Class Binarization techniques are divided by two steps: decomposition and combination.
In the decomposition step, the multi-class problem is decomposed into several binary sub-problems. The most

popular strategies consist on grouping classes into two groups in each sub-problem, in this way each binary classifier
compares two groups of classes between them. The code-matrix is an easy way to represent how the classes are
grouped.

In the code matrix each class takes values in the set of {+1, -1, 0}, where +1 indicates that the class is associated to
the positive class, -1 indicates that the class is associated to the negative class and 0 indicates that the class is ignored
in this binary sub-problem. In Figure 1 an example of a code matrix can be seen; it shows how a 5-class problem
{θ1, θ2, θ3, θ4, θ5} is decomposed into a 6 binary sub-problems { f1, f2, f3, f4, f5, f6}. For instance, it can be seen that in
the sub-problem f1, the classifier is constructed in such manner that the cases belonging to θ1 and θ2 are grouped in
class +1 and the cases of θ3 and θ5 in class -1. So this classifier compares θ1 and θ2 classes with θ3 and θ5, whereas
the cases that belong to θ4 are ignored.

Each of these sub-problems returns an output with a prediction. The combination step consists on combining these
predictions to made the final decision. The simplest combination is the majority vote, where each sub-problem returns
a vote and the class with the largest number of votes is predicted.

Different decomposition strategies have been developed where One Vs One (OVO) is one of the strategies that has
received more attention in the literature.

2.1. One versus One (OVO)
OVO decomposition scheme decomposes a K class multiclass problem into a K(K − 1)/2 sub-problems. Each

sub-problem is responsible to differentiate one pair of classes (θi, θ j), where θi , θ j; the remaining classes are ignored.
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classi f iers︷                           ︸︸                           ︷
f1 f2 f3 f4 f5 f6

classes



θ1
θ2
θ3
θ4
θ5



+1 0 −1 −1 0 +1
+1 +1 −1 −1 +1 0
−1 +1 +1 −1 0 0
0 −1 0 +1 0 +1
−1 −1 0 −1 −1 −1



f1 → θ1, θ2 vs θ3, θ5
f2 → θ2, θ3 vs θ4, θ5
f3 → θ3 vs θ1, θ2
f4 → θ4 vs θ1, θ2, θ3, θ5
f5 → θ2 vs θ5
f6 → θ1, θ4 vs θ5

Figure 1: Example of a code matrix

Figure 2 illustrates a code matrix of how a 5-class problem is decomposed in OVO: in each sub-problem one class
is represented as +1 class, another one is represented as -1 and the remaining classes are represented as 0.



+1 +1 +1 +1 0 0 0 0 0 0
−1 0 0 0 +1 +1 +1 0 0 0

0 −1 0 0 −1 0 0 +1 +1 0
0 0 −1 0 0 −1 0 −1 0 +1
0 0 0 −1 0 0 −1 0 −1 −1



Figure 2: OVO code-matrix

There are different aggregations of combining the output predictions of the sub-problems. The simplest combina-
tion strategy is the majority vote [14] [12]. An immediate extension is the Weighted Voting, where the vote of each
output is weighted based on the confidence level returned by the classifier [22]. Hastie and Tibshirani [21] propose
another combination that tries to find the best approximation of the class posterior probabilities given the posterior
probabilities of the pairwise sub-problems.

Although OVO requires a high number of sub-problems (specially when the number of classes is high), it is worth
mentioning that each classifier is trained only with the samples from the corresponding pair of classes, hence the
decision boundaries to distinguish the classes are simpler and the required time is not high. However there are several
proposals that try to reduce the number of sub-problems, where most of these works are based on a hierarchical
structure [32] [11].

3. Dynamic Classifier Selection (DCS)

As different classifiers usually make different error on different samples, Dynamic Classifier Selection (DCS)
based methods attempt to predict the single classifier which is most likely to be correct for a given sample. To do so,
the best classifier for each partition is determined on a validation process. For classification, an unknown sample is
assigned to a partition, and the output of the best classifier for that partition is the one used to make the final decision.

The first Dynamic Classification approaches are introduced by Woods [39] and are based on K-NN algorithm.
He proposes two methods: Overall Local Accuracy (OLA) and Local Class Accuracy: both methods obtain the
classifiers’ accuracy in local regions in the surroundings of the unknown test sample, the classifier with the best
accuracy is selected to classify the unknown sample. Smith [36] proposes an immediate extension of OLA applying
the Distance Weighted K-NN (DW-OLA). Giacinto and Roli [19] also extend Woods’s work incorporating distance
weighted and classifiers confidence levels to two new methods called A Priori and A Posteriori. On the other hand,
there are also other works which are not based on the K-NN method, for instance, Liu and Yuan [28] propose to use
clustering: they divide the feature space into several clusters for each base classifier. The unknown sample is assigned
to a cluster for each base classifier, and the classifier of the most accurate cluster is selected to classify the unknown
sample.

Recently, the DCS methods have been extended to Dynamic Ensemble Selection (DES): instead of finding the
most suitable classifier, the most suitable ensemble for each sample is selected. Ko et al. [25] propose 4 new dynamic
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selection schemes. Those methods obtain the K nearest neighbors of the test point and the classifiers that classify
correctly those neighbors, are used as ensemble to classify the test instance. On the other hand, Dos Santos et al.
[10] introduce a two step DES method: in the first step, highly accurate candidates ensembles are selected; in the
second step, among those ensembles, for each test sample, the ensemble with the largest confidence level is selected.
In a further work Cavalin et al. [7] extend the previous work and they adapt it to Dynamic Multistage Organization
strategy.

4. Related Works

In a classification problem, the classical way is to select the optimal base classifier for the database and all the
sub-problems are classified with this classifier. As in binarization strategies there are too many sub-problems, it is
possible that this base classifier could have difficulties to deal with all the sub-problems appeared, returning the wrong
result in some of them. This raises the question - should the same base classifier be used on all sub-problems? or
should sub-problems be tuned independently?

In the literature there are several works that treat the sub-problems independently. But to our knowledge excepting
the introduced by Arruti et al [3] and Bautista et al [6] there are not more works that present an algorithm specifically
for the cases that the sub-problems are treated independently. The majority of the approaches propose a method that
try to select the best classifier or best parameters of the classifier for each sub-problem and they compare the new
proposal with the results obtained without tuning.

On the one hand, some proposals focus on attempting to select the best base classifier in each sub-problem [38].
On the other hand, other approaches try to select the best hyper-parameters of SVM in each sub-problem. Because of
the high number of possible values of the hyper-parameters, most of these works use evolutionary algorithms. Lebrun
et al [26] and Liepert [27] propose the use of Genetic Algorithms while Souza et al [37] propose the use of Particle
Swarm Optimization. The results obtained by these four works are contradictory since two of them consider that the
independent tune of the sub-problems is better while the other two consider that there is no significant difference.

Lorena and Carvalho [30] consider that none of the mentioned works perform a rigorous statistical analysis.
Thus, they investigate the use of Genetic Algorithms to automatically tune the parameters of each binary SVM. They
conclude that the use of same parameter values in all binary SVM is sufficient to obtain good results.

In his Phd Thesis Reid [34] also deals with this problem and he concludes that it is better to tune the classifiers
when the decision boundaries of sub-problems have different shape, otherwise, he concludes that it is better the same
base classifier.

In the literature we have found an algorithm, proposed by Galar et al. [16] and Bagheri et al. [5] independently,
that combine OVO with DCS strategies. Their main idea is to reduce the number of classifiers in OVO avoiding the
no competent pairwise comparisons. The K nearest neighbors of a new instance are obtained and OVO is applied only
considering those classes which are in the neighborhood.

On the other hand, there is also another work proposed by Kapp et al. [24] that selects the hyper-parameters of
SVM dynamically. But this work does not use the DCS strategies and does not treat each sub-problem independently;
it is oriented to data-streaming and similar problems. The authors consider that when knowledge about the environ-
ment is updated with new observations, the previously parametrized models need to be re-evaluated. To do so, they
use the Particle Swarm Optimization.

5. Proposed approach: Dynamic Classifier Selection in OVO (DYNOVO)

Most of the works mentioned in Section 4 follow a similar procedure: they tune statically the classifier of each
pairwise sub-problem. The hypothesis that the previous works follow is that the boundaries that distinguish the
different sub-problems vary depending on the classes. We extend this idea and we consider that the shape of the
boundaries between two classes can vary also, hence the use of the different base classifiers can be appropriate.
Because of that, we propose a new method, called DYNOVO, that tries to select the best base classifier dynamically
for each test pattern in each binary sub-problem: basically our method combines OVO with Dynamic Classifier
Selection (DCS) strategies.

4

168 15 Dynamic selection of the best base classier in One versus One



The structure of DYNOVO is similar to those most common DCS strategies and it is divided into two levels:
validation and classification. The only difference is that the method is adapted to the pairwise decomposition strategy
format.

The aim of the validation step is to see with which base classifier each training instance obtains correct or incorrect
results by the different sub-problems. Each training sample is classified by different base classifiers for the different
pairwise sub-problems. But instead of classifying it for every sub-problem, it is classified only in those sub-problems
where the class the training sample belongs to is distinguished, since the remaining sub-problems can not return the
correct result: if the training set belongs to class θi, the sub-problem that distinguish θ j and θk (θi , θ j, θi , θk) never
will return the correct class. Hence, these sub-problems don’t need to be treated and computational load is saved in
the validation phase.

In the classification step, when an instance to be classified is arrived, our method tries to select the best base clas-
sifier for each sub-problem. To do so each sub-problem is treated independently. In each sub-problem the surrounding
training samples of the new instance are obtained and the base classifier that obtains the best results for these instances
in the validation phase is selected to classify it. In order to make this selection we have chosen the following DCS
strategies:

• Overall Local Accuracy (OLA) [39]: When an instance to be classified is arrived, its surrounding region is
selected obtaining its K-Nearest Neighbors. It calculates the local accuracy of each base classifier for these K
neighbors. The base classifier with the highest local accuracy is selected to classify the test sample.

• Distance Weighted - Overall Local Accuracy (DW-OLA) [36]: This method is an immediate extension of OLA.
When the local accuracy is calculated, each K neighbor receives a weight depending on their distance to the test
sample, where the closer ones receive a higher weight.

Both strategies use K-NN method to delimit the local region. As we have mentioned previously, our approach has
to be adapted to the OVO strategy. Because of that we have made a little change in the K-NN algorithm when the
local region is obtained. Moreover we also propose to use a K-NN variation presented in the state-of-the-art called
K-NN Equality (K-NNE) [35].

• K Nearest Neighbor (K-NN) [1]: K-NN is one of the most popular machine learning algorithms. When a new
instance to be classified is arrived, the K most similar training instances are obtained and the most represented
class among those K neighbors is assigned to the new instance. In order to measure the similarity, it is necessary
to use a metric, being the euclidean distance one of the most common.

It is worth mentioning that in this case K-NN is not used to classify a new unlabelled instance, but to delimit
the local region of it. Our method tries to select the best base classifier for each sub-problem; because of that
each sub-problem is treated independently. Therefore instead of taking into account all the training instances,
for each sub-problem it only finds the K nearest neighbors of the test sample that belong to the classes of the
sub-problem.

• K Nearest Neighbor Equality (K-NNE) [35]: K-NNE is an extension of K-NN in which the classes are treated
independently: it searches in each class the K nearest neighbors and assigns the class whose K neighbors have
the minimal mean distance to the sample test. In this way all the classes take part in the final decision.

5.1. Example: obtaining the local regions

Figure 3 illustrates how the local-regions are obtained for 3 new cases in a 3-class problem with different strategies:
OLA and our proposal applying K-NN and K-NNE. In the figures the 3 new cases are represented as �, 4 and ◦. We
want to emphasize that the local regions are not used to classify the unlabelled instances as in K-NN, indeed they are
used to select the classifier which will be used to classify the unlabelled instances.

In Figure 3(a) it is shown an example of how OLA method obtains the local region applying K-NN method for
the 3 unknown samples; in this example the K parameter is given a value of 6. The circle around the new case and
with the same color represents its local region, and the 6 nearest neighbors are highlighted in bold. It can be seen that
a different base classifier is selected for each of those samples.
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Figure 3: Example of how the local regions are obtained for each strategy.
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Figure 3(b) shows the extension of OLA to OVO. It can be seen that in each sub-problem different samples take
part in the decision of the base classifier, hence, in some cases different base classifier are selected to classify the same
unlabelled instance in each sub-problem.

Figure 3(c) illustrates an extension of the previous figure using in this case K-NNE to select the local regions, in
this approach the value of K is 3. The way to represent the local region of each new case varies: they are formed by the
3 nearest neighbors of each class. The instances that correspond to the local region of each new case are connected by
a line of their color and they are highlighted in bold with a circle around them. Comparing with the previous example
more distant instances take part in the classifier selection decision, but both classes are in equal conditions.

6. Experiments

In this section we explain the experimental setup. Moreover we carry out an empirical study in order to analyzed
the usefulness of DYNOVO. To do so we compare the proposed variations of DYNOVO with the state-of-the-art
methods.

6.1. Datasets

We have selected 22 databases from the UCI repository [4] to perform the experiments. A summary of these
databases is shown in Table 1.

Table 1: Characteristics of the databases
Database #Cases #Atributes #Classes
Annealing 798 38 5
Balance-scale 625 4 3
Car 1728 6 4
Cmc 1473 9 3
Dermatology 366 33 6
Ecoli 336 7 8
Glass 214 9 7
Image Segmentation 2310 19 7
Iris 150 4 3
Lymph 148 18 4
Nursery 12960 8 5
Optdigits 5620 64 10
Page-blocks 5473 10 5
Pendigits 10992 16 10
Satimage 6435 36 6
Solar-flare-1 323 12 6
Solar-flare-2 1066 12 6
Vehicle 846 18 4
Vowel 990 13 11
Waveform 5000 21 3
Wine 178 13 3
Zoo 101 17 7

6.2. Base Classifiers

To carry out the experiments we have chosen 5 different base classifiers from a software package for Machine
Learning Called WEKA [20]. The selected classifiers are from different natures in order to give variability and
reliability to the experimental phase. It is worth saying that in our experiments we have treated the classifiers as black
boxes and we have used their WEKA package default parameters.

• J48 (C4.5 clone) [33], decision tree algorithm. It makes a post-pruning phase, based on error based pruning
algorithm. The parameters used are the following:

– Confidence Factor = 0.25.

– Minimum number of instances = 2.

– Unpruned = False.
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• SM0 (SVM clone) [31], kernel methods. It creates a hyperplane where the categories are divided by a clear gap
that is as wide as possible. The parameters used are the following:

– Fit logistic models = False.

– C = 1.0.

– Epsilon = 1.0E-12.

– Kernel = Polynomial kernel.

– Tolerance parameter = 0.001.

• JRip (Ripper clone) [8], rule induction classifier. It builds a rule-set by repeatedly adding rules to an empty
rule-set until all positive examples are covered. The parameters used are the following:

– Check error rate: True.

– Minimal weights of instances: 2.0.

– Number of runs of optimizations: 2.

– Prune: True.

• Naive Bayes [23], statistical learning algorithm. It is based on Bayesian rules and, given that the value of the
class is known, it assumes independence between the occurrences of feature values to predict the class.

• Bayesian Network, [13] statistical learning algorithm. It is a probabilistic graphical model that represents a set
of random variables and their conditional independences via a directed acyclic graph. The parameters used are
the following:

– Estimator: Simple Estimator.

– Search Algorithm: K2.

– ADTree: False.

6.3. Experimental setup

The classification performance is obtained by means of a stratified 10-fold cross-validation. Some of the com-
pared algorithms need a validation process which consists of a 5-fold cross-validation made for each training fold
independently.

The DCS methods that we have selected in our proposal, use K-NN algorithm to define the local region, and de-
pending on the K value the results vary. Because of that we have run these methods over several K values: 6,12,18,24,
30 when K-NN is used and 3,6,9,12,15 when K-NNE is used. It is worth mentioning that as in each sub-problem there
are two classes and K-NNE obtains the K nearest neighbors of each class, the number of neighbors that take part in
K-NN and K-NNE are the same.

6.4. Obtained results

In this sub-section we show the results obtained by 4 different variations of DYNOVO.
Table 2 shows the results obtained by DYNOVO when K-NN is used to obtain the local regions. This table

is separated into two sections: in the left side are shown the results obtained when OLA is used as DCS method
(DYNOVO-OLA-KNN), whereas in the right side are shown those obtained when DW-OLA is used (DYNOVO-DW-
OLA-KNN).

Table 3 shows the results obtained by DYNOVO when K-NNE is used to obtain the local regions. As in the
previous table, this time also the table is divided into two parts: in the left side are shown the results obtained when
OLA is used as DCS method (DYNOVO-OLA-KNNE) and in the right side the results obtained when DW-OLA is
used (DYNOVO-DW-OLA-KNNE).

For each DYNOVO variation the average of the best K is remarked in bold. These K values are used in the next
sub-section to compare DYNOVO’s variations with other state of the art methods.
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DYNOVO-OLA-KNN DYNOVO-DW-OLA-KNN
DB K=6 K=12 K=18 K=24 K=30 K=6 K=12 K=18 K=24 K=30
anneal 98.998 98.886 98.886 98.664 98.775 99.220 99.109 99.332 99.220 99.109
balance-scale 89.600 89.600 89.760 89.920 89.760 89.600 89.760 89.600 89.760 89.760
car 96.065 96.181 96.296 96.296 96.296 96.065 96.007 96.123 96.123 96.123
cmc 54.175 54.039 52.682 54.311 54.175 53.700 54.447 53.225 54.107 54.039
dermatology 96.721 97.268 97.541 97.541 97.541 96.721 96.721 96.448 97.268 97.268
ecoli 86.905 87.202 87.798 87.500 87.202 86.905 87.798 87.202 87.202 87.202
glass 68.224 71.495 70.093 70.093 69.626 68.692 71.495 70.561 71.028 71.028
iris 95.333 97.333 96.667 95.333 95.333 96.000 96.000 95.333 95.333 95.333
imgsegment 97.229 97.359 97.489 97.273 97.229 97.229 97.229 97.532 97.229 97.229
lymph 87.838 87.162 85.135 83.784 85.135 87.838 88.514 85.811 83.784 84.459
nursery 98.526 98.526 98.549 98.573 98.573 98.526 98.526 98.611 98.634 98.634
optdigits 98.310 98.203 98.132 98.132 98.132 98.238 98.149 98.043 98.043 98.060
page-blocks 97.278 97.058 97.077 97.040 97.131 97.223 97.150 97.223 97.186 97.278
pendigits 98.781 98.817 98.763 98.799 98.754 98.772 98.790 98.790 98.817 98.790
satimg 89.464 89.448 89.510 89.371 89.355 89.510 89.588 89.588 89.448 89.542
solar-flare1 70.279 70.279 69.969 69.969 69.969 71.827 71.827 71.517 71.207 71.827
solar-flare2 75.328 75.235 75.141 75.141 75.141 75.235 75.235 75.141 75.047 75.141
vehicle 73.995 74.823 74.586 74.232 74.586 73.404 74.941 73.759 73.759 74.941
vowel 90.909 89.192 89.495 89.495 89.293 91.818 90.909 90.808 90.909 90.909
waveform-5000 84.520 84.520 85.180 85.260 85.560 84.020 83.860 84.600 84.800 85.040
wine 95.506 95.506 95.506 95.506 95.506 96.629 96.629 96.629 96.629 96.629
zoo 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030
Mean 88.228 88.416 88.240 88.148 88.186 88.373 88.623 88.314 88.298 88.426

Table 2: Classification accuracies of DYNOVO when K-NN is used to obtain the local region.

DYNOVO-OLA-KNNE DYNOVO-DW-OLA-KNNE
DB K=3 K=6 K=9 K=12 K=15 K=3 K=6 K=9 K=12 K=15
anneal 98.998 98.775 98.886 98.886 98.664 99.332 99.220 99.443 99.443 99.443
balance-scale 88.640 89.600 89.600 89.440 89.760 89.440 90.720 90.720 90.560 90.880
car 96.065 95.428 96.181 96.296 96.238 96.817 96.181 96.470 96.470 96.470
cmc 53.836 54.243 53.225 53.496 53.632 61.371 62.322 62.322 63.069 62.865
dermatology 96.995 97.541 96.995 97.268 97.541 96.995 96.995 96.721 97.268 97.541
ecoli 86.310 86.905 86.905 87.798 87.500 87.798 88.095 89.583 89.583 90.179
glass 72.897 71.495 71.963 71.495 71.028 75.701 76.636 75.234 75.701 75.234
iris 96.000 96.667 96.000 96.000 96.000 95.333 96.000 96.000 96.000 95.333
imgsegment 97.186 97.143 96.883 97.013 96.797 97.532 97.749 97.706 97.532 97.403
lymph 87.838 87.162 87.162 86.486 86.486 87.162 87.838 86.486 87.162 86.486
nursery 98.511 98.349 98.156 98.526 98.573 98.634 98.495 98.387 98.696 98.719
optdigits 98.149 98.132 98.096 98.025 97.954 98.096 98.096 98.060 98.007 97.883
page-blocks 96.638 96.821 96.675 96.656 96.620 97.625 97.625 97.533 97.552 97.460
pendigits 98.362 98.353 98.435 98.444 98.444 98.408 98.344 98.372 98.444 98.490
satimg 88.594 88.205 88.625 88.656 88.485 89.899 89.806 89.930 90.070 90.023
solar-flare1 70.279 69.969 69.969 69.659 69.659 73.994 73.994 73.994 73.684 73.375
solar-flare2 74.953 75.235 75.235 74.953 75.047 76.735 77.486 77.486 76.923 76.923
vehicle 74.823 74.704 73.641 75.296 75.414 80.733 82.151 82.388 83.097 83.688
vowel 90.404 90.000 89.293 89.293 88.889 91.818 91.616 90.909 90.707 91.616
waveform-5000 84.000 83.920 84.160 84.540 84.540 84.380 84.320 84.400 84.980 85.160
wine 95.506 95.506 95.506 95.506 95.506 96.067 96.629 96.629 96.629 96.629
zoo 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030 97.030
Mean 88.273 88.236 88.119 88.217 88.173 89.586 89.879 89.809 89.937 89.947

Table 3: Classification accuracies of DYNOVO when K-NNE is used to obtain the local region.
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6.5. Comparing the results

In this sub-section we compare our proposals with other state-of-the-art methods. We have divided the experiments
into two parts: in the first one OLA is applied in those methods that select the classifiers dynamically, while in the
second one DW-OLA is applied. We show the results of each part on Tables 4 and 5. Following, we briefly describe
the strategies that correspond to each column of the tables.

• Best Single (OVO-BS) [12]: Each database is classified with every classifier defined in sub-section 6.2 applying
OVO decomposition strategy. The result of the best base classifier is shown in each database.

• Galar et al. (Galar) [16]: It finds the K nearest neighbors of the test instance and it applies OVO only considering
those classes in the neighborhood. The K value is established to 3 times the number of classes. The result of
the best base classifier is shown in each database.

• Static selection (OVO-ST) [38]: For each sub-problem it is selected independently the base classifier that obtains
the best result after a validation process.

• DCS methods (OLA [39] or DW-OLA [36]): Depending on the table the DCS strategy that is used vary. In
the first table is OLA the strategy that is compared, while in the second table is DW-OLA. As it has been
commented before, the DCS strategies are run over several K values, in the tables the results of the K value with
the highest mean are shown.

• Dynamic selection of the base classifier in each sub-problem with K-NN (DYNOVO-OLA-KNN or DYNOVO-
DW-OLA-KNN): It is tried to select the best base classifier in each sub-problem independently and dynamically.
K-NN is used to obtain the local region in DCS strategies. The results obtained by the best K value in Table
2 are shown. In Figure 3(b) it can be seen a graphical example of how DYNOVO-OLA-KNN and DYNOVO-
DW-OLA-KNN obtain the local regions.

• Dynamic selection of the base classifier in each sub-problem with K-NNE (DYNOVO-OLA-KNNE or DYNOVO-
DW-OLA-KNNE): Similar to the previous one with the difference that it uses K-NNE instead of K-NN. The
results obtained by the best K value in Table 3 are shown. In Figure 3(c) it can be seen a graphical example of
how DYNOVO-OLA-KNNE and DYNOVO-DW-OLA-KNNE obtain the local regions.

Table 4 shows the results obtained when OLA is used in the methods that select dynamically the base classifiers.
It could be seen that our proposal DYNOVO-OLA-KNN shows the best result in the majority of the cases: it reaches
the best result in 8 of the databases. Moreover it achieves the best mean and rank values also. Our other proposal,
DYNOVO-OLA-KNNE, obtains the best results in 4 of the databases and it gets the third best mean.

Table 5 shows the results obtained when DW-OLA is used in the methods that select dynamically the base clas-
sifiers. Our proposal DYNOVO-DW-OLA-KNNE shows the best result in 15 of the databases and it reaches also the
best mean and rank. This time our other proposal, DYNOVO-DW-OLA-KNN, also gets interesting results since it
obtains the second best mean and rank.

These results, show that methods which select the base classifiers dynamically in OVO obtain promising results.
However, we can not obtain any meaningful conclusion without using a statistical test. Hence, in the next sub-section,
we carry out an statistical analysis in order to find whether signicant differences among the results obtained exists or
not.

6.6. Statistical analysis

As we have several methods to compare, according to Garcı́a et al. [17], we have used the Iman-Davenport test
to detect statistical differences among the different strategies. If the difference exists, we apply the Shaffer post-hoc
test in order to find out which algorithms are distinctive among them. We show the most relevant p-values obtained
in the pairwise comparisons in tables, where ”+” symbol implies that the first algorithm is statistically better than the
confronting one, whereas ”=” means that there are not signicant differences between them.

With respect to OLA the results of the statistical analysis reject the null hypothesis that all the methods are
equivalent, since the p-value (0.0200) returned by the Iman-Davenport test is lower than our α-value (0.1). In Table 6
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DB OVO-BS Galar OVO-ST OLA DYNOVO-OLA-KNN DYNOVO-OLA-KNNE
anneal 98.552 98.552 98.998 98.664 98.886 98.998
balance-scale 90.400 90.400 89.120 89.440 89.600 88.640
car 93.866 93.866 93.692 95.833 96.181 96.065
cmc 54.582 54.447 53.089 51.663 54.039 53.836
dermatology 97.541 98.361 96.995 95.902 97.268 96.995
glass 73.832 73.832 70.561 71.495 71.495 72.897
ecoli 86.607 86.905 85.417 86.607 87.202 86.310
imgsegment 97.186 97.013 97.143 97.143 97.359 97.186
iris 96.667 96.667 96.667 94.667 97.333 96.000
lymph 87.162 87.162 86.486 86.486 87.162 87.838
nursery 97.238 97.130 97.824 98.071 98.526 98.511
optdigits 98.292 98.523 98.256 98.256 98.203 98.149
page-blocks 97.223 97.168 97.003 97.003 97.058 96.638
pendigits 98.026 98.299 98.426 98.690 98.817 98.362
satimg 88.283 88.361 88.454 88.858 89.448 88.594
solar-flare1 70.279 70.588 69.969 71.517 70.279 70.279
solar-flare2 75.516 75.516 75.141 74.672 75.235 74.953
vehicle 75.414 75.887 76.123 74.941 74.823 74.823
vowel 82.828 83.636 84.949 83.232 89.192 90.404
waveform-5000 86.700 86.720 86.680 84.500 84.520 84.000
wine 98.876 98.876 96.067 98.315 95.506 95.506
zoo 96.040 96.040 95.050 95.050 97.030 97.030
Mean 88.232 88.361 87.823 87.773 88.416 88.273
Rank 3.16 2.93 4.20 4.16 2.72 3.82

Table 4: Classification accuracies of different methods. In those approaches that select the classifiers dynamically, OLA method is used.

we show the most relevant p-values obtained with Shaffer post-hoc test. Although there are not statistical differences
in each pairwise comparisons, DYNOVO-OLA-KNN is close to outperform statistically OVO-ST and OLA, since
the p-value is low. Because of that, and taking into account that the results obtained in Table 4, we consider that
DYNOVO-OLA-KNN performs better than the other methods.

Considering DW-OLA, the Iman-Davenport test also returns p-value (0.0002) lower than α-value, so we execute
the Shafer post-hoc test. The achieved p-values could be seen in Table 7. The results show that DYNOVO-DW-OLA-
KNNE is the most robust strategy since it outperforms significantly OVO-BS, OVO-ST and DW-OLA.

6.7. Computational complexity

In order to provide a more complete study, we analyze the time and space complexity of our proposal.
The computational load of building the model is pretty big, since it involves to classify every training instance

over every classifiers for every pair of classes. Those results are stored on a table, hence, this task only needs to be
executed once. At classification time the information of the tables is retrieved from the table.

To analyse the computational and spatial complexity of classifying a new instance, let us examine the process that
such instance undergoes.

• For every pair of classes in the dataset, a vote is cast: The number of pair of classes is O(C2), where C is the
number of classes.

– Search the K nearest neighbors: K-NN using kd-tree has a search time of O(K log(ITR)), where ITR the
number of instances in the training set from where the model has been built and K is the number of nearest
neighbours.

– Search the classifier that best classifies the neighbors: This is achieved by a search in a table that stores
if a classifier type classified correctly an instance in the sub-problem associated to a pair of classes. The
table has the pair of classes, the training instances and the classifier types as keys and a boolean as value.
If implemented as a hash table, the searching time is O(1) in the average.

– The instance is classified according to the best classifier: It is clear that this depends of the classifier, but
being K-NN a lazy algorithm, and thus a slow one, it looks sensible to assume O(K log ITR) is an upper
bound in the execution time.

• The instance is assigned the class with the majority of votes: It takes O(C2) time to tally all the votes.
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DB OVO-BS Galar OVO-ST DW-OLA DYNOVO-DW-OLA-KNN DYNOVO-DW-OLA-KNNE
anneal 98.552 98.552 98.998 99.220 99.109 99.443
balance-scale 90.400 90.400 89.120 89.120 89.760 90.880
car 93.866 93.866 93.692 95.833 96.007 96.470
cmc 54.582 54.447 53.089 51.663 54.447 62.865
dermatology 97.541 98.361 96.995 95.082 96.721 97.541
glass 73.832 73.832 70.561 71.495 71.495 75.234
ecoli 86.607 86.905 85.417 84.821 87.798 90.179
imgsegment 97.186 97.013 97.143 96.926 97.229 97.403
iris 96.667 96.667 96.667 94.667 96.000 95.333
lymph 87.162 87.162 86.486 88.514 88.514 86.486
nursery 97.238 97.130 97.824 98.071 98.526 98.719
optdigits 98.292 98.523 98.256 98.185 98.149 97.883
page-blocks 97.223 97.168 97.003 96.766 97.150 97.460
pendigits 98.026 98.299 98.426 98.717 98.790 98.490
satimg 88.283 88.361 88.454 88.827 89.588 90.023
solar-flare1 70.279 70.588 69.969 72.136 71.827 73.375
solar-flare2 75.516 75.516 75.141 74.578 75.235 76.923
vehicle 75.414 75.887 76.123 75.650 74.941 83.688
vowel 82.828 83.636 84.949 85.455 90.909 91.616
waveform-5000 86.700 86.720 86.680 83.920 83.860 85.160
wine 98.876 98.876 96.067 98.315 96.629 96.629
zoo 96.040 96.040 95.050 96.040 97.030 97.030
Mean 88.232 88.361 87.823 87.909 88.623 89.947
Rank 3.59 3.36 4.50 4.16 3.30 2.09

Table 5: Classification accuracies of different methods. In those approaches that select the classifiers dynamically, DW-OLA method is used.

Table 6: Shaffer test results when OLA is used
Hypothesis p-value
DYNOVO-OLA-KNN vs OVO-ST =(0.1323)
DYNOVO-OLA-KNNvs OLA =(0.1323)
Galar vs OVO-ST =(0.2405)
Galar vs OLA =(0.2958)
DYNOVO-OLA-KNN vs DYNOVO-OLA-KNNE =(0.5312)
OVO-BS vs OVO-ST =(0.6383)
OVO-BS vs OLA =(0.6383)
Galar vs DYNOVO-OLA-KNNE =(0.8127)

Table 7: Shaffer test results when DW-OLA is used
Hypothesis p-value
DYNOVO-DW-OLA-KNNE vs OVO-ST +(2.9E-4)
DYNOVO-DW-OLA-KNNEvs DW-OLA +(0.0025)
DYNOVO-DW-OLA-KNNE vs OVO-BS +(0.0783)
DYNOVO-DW-OLA-KNNE vs Galar =(0.2405)
DYNOVO-DW-OLA-KNNE vs DYNOVO-DW-OLA-KNN =(0.3273)
DYNOVO-DW-OLA-KNN vs OVO-ST =(0.3273)
Galar vs OVO-ST =(0.3273)
OVO-BS vs OVO-ST =(0.7493)
DYNOVO-DW-OLA-KNN vs OLA =(0.8803)
Galar vs OLA =(0.9509)

Within these assumptions the average execution time of all the process is O(K log(ITR)C2). Let us note that ITR

is different for every pair of classes in the C2 sub-problems, but in average will be (N/C) ∗ 2. If N is the number
of instances in the original database, the average execution time will be O(K log(N)C2), so the classification time
is logarithmic in the number of instances in the original dataset and quadratic in the number of classes, provided
reasonable classification complexity of the classifiers used.

With respect to space complexity, the approach would request O(C2ITRT ) space, that, as stated above, amounts to
O(NCT ), with N the number of instances in the original database. Storage of the classifier models should never be
bigger than O(KN), even with lazy paradigms using kd-trees structures or similar.

Compared with other OVO versions, our proposal has a bigger space complexity, due to the need of storing big
tables. About time complexity, only the search for the K neighbours and the lookup in the hash table are not made
in other OVO versions. As the comparisons with other methods are considerably in favour of DYNOVO-DW-OLA-
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KNNE, and the differences with other OVO versions are mostly in space requirements, we consider that its good
performance compensates this extra computational cost.

6.8. Discussion
After all these experiments, considering only the state-of-the-art methods, the first conclusion that we have ob-

tained is that selecting different base classifier for each sub-problem statically in OVO (OVO-ST), does not outperform
the best single classifier in OVO (OVO-BS). These results coincide with those found in the state-of-the-art [27] [37].
On the other hand, it is worth mentioning that the algorithm proposed by Galar et al. [16] obtains interesting result
and although it uses less sub-problems than OVO, it shows the best performance among the state-of-the-art methods.

On the other hand it can be seen that the proposed approach obtains promising results. It gets better mean and
rank than the compared methods with almost all the variations (the exception is DYNOVO-OLA-KNNE strategy).
Moreover the statistical tests show the good performance of our proposal.

Finally DYNOVO-DW-OLA-KNNE is which shows the best performance. It obtains the best mean with a signif-
icant difference and the statistical test shows its solidity. Furthermore, it can be seen in Table 3 that all the averages
obtained with the different K values overcome the averages obtained by state-of-the-art methods. The combination
of DW-OLA and K-NNE gives some advantages which result beneficial to select the appropriate base classifier. Let
us consider that we are trying to select the appropriate base classifier to classify a new unknown instance for the
sub-problem that distinguishes between θi and θ j classes. Also consider that all its K nearest nehighbors belong to θi

class. Under these circumstances, it is more likely to select a base classifier that tends to return θi class. But if the
new unknown sample belongs to θ j, it is more likely to predict the wrong class. This problem can be minimized using
K-NNE algorithm, since it gives the chance to participate to all the classes. In this manner the selected base classifier
should be able to differentiate both classes. However, it is possible to be a significant difference in the distance to the
new unknown sample between the K nearest neighbors of θi and θ j. Therefore it is not completely adequate that all
the neighbors have the same influence when the base classifier is selected. So one possibility is to assign different
weights to each neighbor depending in their distance to the new sample, in other words, apply DW-OLA.

7. Conclusion

In this paper we present a new proposal called DYNOVO which aims to improve classification accuracy in su-
pervised classification multi-class problems. Among several base classifiers, the approach attempts to select the best
base classifier in OVO dynamically for each test patterns. To do so we have chosen several well-known classifiers
from different Machine Learning paradigms: SVM, C4.5 Decision Tree, Ripper, Bayes Networks and Naive Bayes.
We have presented 4 different variations of our proposal which have been tested over 22 databases from the UCI
repository.

The novel procedure proposed has shown its usefulness due to the competitive results obtained. We have shown
the positive synergy existing between OVO and DCS strategies, specially when K-NNE is utilized to obtain the local
region and the instances of the local region are weighted by the distance to the new unknown case.

This fact open doors for future combinations of OVO and DCS using more complex DCS strategies or to extend
it to Dynamic Ensemble Selection strategies. Furthermore, it would be interesting to introduce these strategies in the
more general ECOC framework.
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