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Abstract

Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide
with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the
performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and
fragmentation. Landscape genetics provides a particularly valuable framework to address the question of functional
connectivity by providing a direct means to investigate the effects of landscape structure on gene flow. The goals of this
study are (1) to evaluate the landscape features that drive gene flow of an EN target species (European pine marten), and (2)
evaluate the optimality of a regional EN design in providing connectivity for this species within the Basque Country (North
Spain). Using partial Mantel tests in a reciprocal causal modeling framework we competed 59 alternative models, including
isolation by distance and the regional EN. Our analysis indicated that the regional EN was among the most supported
resistance models for the pine marten, but was not the best supported model. Gene flow of pine marten in northern Spain
is facilitated by natural vegetation, and is resisted by anthropogenic landcover types and roads. Our results suggest that the
regional EN design being implemented in the Basque Country will effectively facilitate gene flow of forest dwelling species
at regional scale.
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Introduction

Long-term biodiversity conservation requires the preservation of

ecological and evolutionary processes, such as gene flow, dispersal

movements and population range shifts [1]. The ability of

individuals to move across changing landscapes is crucial for

maintaining regional populations [2,3]. The preservation of these

processes requires, in turn, that landscape connectivity be

preserved, especially when we take into account the synergetic

effects of habitat fragmentation and climate change [1]. Landscape

connectivity is defined as the degree to which landscape facilitates

or impedes movement of organisms among resource patches [4].

Connectivity is species-specific and reflects the response of

individuals to landscape features and the patterns of dispersal

and gene flow that result from these individual responses [5].

Thus, landscape connectivity depends to a large extent on how the

spatial configuration of habitat and land use interact with the

movement ecology of particular species [6].

Ecological networks have been promoted as coherent systems

composed of core areas linked by ecological corridors capable of

facilitating the dispersal, migration and gene flow of wild species in

landscapes and regions [7–9]. They are configured and managed

with the objective of maintaining ecological functions and

conserving biodiversity [7]. Although the development of ecolog-

ical networks is based on the precautionary principle and on

ecological theory [8], the absence of empirical evidence regarding

their effectiveness and the difficulty in obtaining this evidence has

been a focus of criticism about the extent to which they have in
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fact ensured landscape connectivity and increased biodiversity

conservation [10,11].

In the design of ecological networks there is a need to predict

regional ecological corridors and to quantify the degree of

expected landscape connectivity between specific areas [3,9,11–

13]. ‘Least-cost modeling’ is one commonly employed approach

for designing ecological corridors [9,14], in which resistance values

are assigned to distinct habitat or land use types and the least-cost

paths (LCP) between specific locations are calculated using a

geographical information system (GIS). How landscape influences

effective distances between locations is calculated as the accumu-

lated cost through the least cost paths [14,15]. However, for most

organisms, setting the resistance values is a difficult process in

which expert judgment and data available in the literature play an

important role [16–19].

Accurate identification of the potential factors that drive gene

flow in heterogenous landscapes and the scales at which they are

acting is a foundation of reliable mapping of corridors [9,18].

Thus, reliable development of corridors must be based on a

correct representation of the local resistance relative to the

movement ecology of the organism of focus [9,18]. Landscape

genetics, a research area that integrates landscape ecology,

population genetics and spatial statistics, provides a valuable

framework for testing the influence of landscape structure and

composition on dispersal and gene flow [20,21]. It facilitates

quantification of the resistance to gene flow a given landscape

element poses [12,22]. Thus, one of the principal applications of

landscape genetics in landscape planning and conservation biology

is to empirically test and optimize resistance maps [23–26]. This

facilitates the optimal design of ecological corridors [3,16,23], the

detection of barriers to gene flow [27–29] and the identification of

the landscape features which favour or impede dispersal [30–35].

Landscape genetics has shifted towards individual-based sam-

pling and analysis, especially when organisms are continuously

distributed [12,22]. However, sufficient sample collection for this

purpose is a difficult task, especially in rare and elusive species in

which sampling is a limiting factor [36]. In this context, non-

invasive genetic sampling allows us to address studies of wildlife

species without the need to capture or even observe them [37–40].

In 2005 a regional ecological network was established in the

Basque Country (North Spain) by delimiting the ecological

corridors linking forest protected areas [41]. A functional group

of forest mammal species was selected to guide the development of

a generic resistance map, which would, in turn, serve as a basis

least-cost modeling of the network of ecological corridors linking

these core areas. These mammals were considered suitable target

species due to their sensitivity to recent fragmentation and

homogenization dynamics in the regional landscape, such as road

construction, urbanization and agrarian intensification [41,42].

The resistance map was parameterized through bibliographical

review and expert opinion and was based on the assignment of

different resistance levels to each land use [41]. The regional

government of the Basque country incorporated that coherent

ecological network as a reference for the environmental assessment

of plans, programs and projects in 2005 [41]. In addition to its

intrinsic internal relevance, the Basque country has been chosen

for its crucial role in the regulation of biotic flows in south-western

Europe [43]. This is because of its strategic location between two

important biodiversity reservoirs in south-western Europe, the

mountain chains of the Pyrenees and the Cantabrian Range [43–

45]. Consequently, the preservation and restoration of connectiv-

ity in this transitional area between mountain ranges requires

reliable knowledge about ecological responses of organisms to

landscape composition and structure [45].

Among the set of functional forest mammals used in the design

of the coherent regional ecological network, the European pine

marten (Martes martes) is the most forest dependent species [46].

The pine marten is generally associated with forest habitats,

mainly mature forests [46–48]. Deforestation and forest fragmen-

tation limit the distribution and density of pine martens [48–50],

which are believed to need a minimum woodland area to survive

(ca. 2km2) [47] and tend to avoid treeless areas [48,51,52]. Their

occurrence patterns are affected by forest patch size, percentage of

woodland cover, food abundance, sex, age class and habitat

fragmentation levels [47,51]. Given their strong associations with

high forest structural complexity, the species is particularly

sensitive to human influences on their habitats, including habitat

loss and landscape-scale effects of habitat fragmentation

[48,51,53]. Nonetheless, they have also been recently reported in

fragmented landscapes characterized by isolated, small forest

fragments within an agricultural landscape matrix [48,51,54],

suggesting they are not as obligately interior-forest dependent as

previously described [51]. However, in such landscapes, linear

features, such as hedgerows and small woods, play a key role to

connect adjacent forest patches [48,54,55].

Consequently, the pine marten is a species which is well suited

to studies focused on the effects of forest fragmentation on genetic

structure and gene flow [56]. However, whether habitat charac-

teristics that predict marten occupancy act as barriers to dispersal,

influencing gene flow and population genetic structure across the

landscape, is largely unknown [56].

The main objective of this research is to evaluate a large suite of

alternative resistance hypotheses for the pine marten and compare

the most supported empirical model with the expert-derived

landscape resistance model used to parameterize the corridor

network for the Basque Country. Specifically, we aim to evaluate

(1) different binary landscape resistance maps which cover a

gradient from greater to lesser preference of the pine marten for

forest environments in order to identify which land uses favour or

impede genetic interchange in the study area; and secondly (2)

whether or not the resistance map with which the regional

ecological network was originally designed in the Basque Country

was correctly parametrized to reflect European pine marten gene

flow.

If there is no effect of landscape structure on dispersal and gene

flow in martens, then we expected either: (a) panmixia, where

there is no genetic pattern, or (b) isolation-by-distance, where

genetic differences increase with geographic distance [57]. If

landscape structure influences marten dispersal, then we expected

(c) isolation by landscape resistance [30]. Given that the most

consistent marten-habitat relation appears to be a general

association with forest habitats, and avoidance of open, non-

forested habitats [47,48,51,52], we expected that open and human

altered landscapes would act as a barrier for martens, and hence

that landscape structure would have an effect on gene flow. In

addition, we hypothesize that the intervening landscape features

between forest patches (i.e., matrix) could also play a key role to

substantially affect pine marten dispersal, and consequently the

connectivity between forest environments [48,55,58].

Methods

Study area and spatial data
The region of the Basque Country is located in the northern

Iberian Peninsula (Fig. 1) within the Atlantic and Mediterranean

biogeographical regions. It comprises an area of 7,235 km2 and

has an average human population density of 298 inhabitants per

square kilometer. Forests cover 28%, forestry plantations 29%,
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non-wooded mountains 24%, cultivated land 14%, and urban

land and infrastructures 5.7% of the land area, respectively.

Land use information was obtained in vector format from the

most recent forest map of Spain [59] and from national road

network maps [60].

Non-invasive genetic sampling and species identification
We used non-invasive scat sampling to collect genetic samples

from the Martes sp. (Martes martes and Martes foina) in the study

area between 2004 and 2010. Thus, no specific permissions were

required for faecal sampling purposes, as the sampling was carried

out without needing to intervene directly in the species in focus.

We conducted a multi-stage sampling scheme, in which samples

from a pilot study were used to assess the appropriateness of the

sampling with respect to the research questions. Thus, two scat-

based surveys were conducted between 2004 and 2010 across the

sympatric range of both species in the study area. The first survey,

conducted in 2004–2005, was used to initially estimate the

distribution range of the two sympatric species of the genus Martes
in the study area and isolate genetic samples of the focal species

(M. martes). The second, conducted in 2006–2010, was used to

refine species distribution information and to obtain a higher

number of M. martes samples for microsatellite genotyping after a

genetic species identification process [52] Aiming to homoge-

nously cover the wide study area and obtain the highest number of

different individuals we prioritized our sampling to faecal samples

that were separated a minimum of 1km apart (i.e. potentially

avoiding re-samplings of the same individual). We also prioritized

fresh scat samples to increase genotyping success [61]. Addition-

ally, fresh tissue specimens from road-killed pine martens were

included in the data base, when possible. Tissue specimens were

collected by authorized veterinarian personnel of the Wildlife

Figure 1. Ecological network resistance map (EN) and LCP analysis between European pine marten individuals in the study area.
Least cost paths (LCP) obtained between the 101 pine marten individuals in accordance with the EN resistance map, analogous to that used in the
design of the corridors in the ecological network of the Basque Country (North Spain) [41]. Resistance values for each land use are indicated in
brackets.
doi:10.1371/journal.pone.0110552.g001
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Rehabilitation Centre of Martioda (Alava Regional Council.

Department of Environment. Biodiversity section), in line with the

laws and ethical protocols governing wildlife management (Law

42/2007) and were submitted to Department of Zoology and

Animal Cell Biology (UPV/EHU) for further DNA analyses. No

animals were sacrificed for the only purposes of this study.

Therefore, a formal approval by an Institutional Animal Care and

Use Committee was not necessary. Universal Transversal Merca-

tor (UTM) coordinates were recorded for all the samples collected

using a global positioning system (Garmin eTtrex) [61]. The faecal

samples were stored in autoclaved tubes containing ethanol 96%

and frozen at 220uC until processed [52]. DNA was isolated from

tissues and scat using the Qiagen DNeasy Tissue DNA (Qiagen,

Hombrechtikon, Switzerland) and DNA Stool MiniKit (Qiagen,

Hombrechtikon, Switzerland) according to the manufacturer’s

instructions, respectively. As pine marten faeces cannot be

distinguished from those of the sympatric stone marten (M. foina),

which is widespread in the study area, and can also be easily

confused with those of other carnivores [62], a molecular

technique was applied for the identification of faecal samples.

Species identification was accomplished by a polymerase chain

reaction – restriction fragment length polymorphism (PCR-RFLP)

method, providing for an effective genetic identification of

sympatric marten species following the method described in

Ruiz-González et al. [52].

Microsatellite analyses and individual identification
Identification of individual pine martens used nuclear DNA

following methods in Ruiz-González et al. [61]. All the faecal

samples identified by the PCR-RFLP method [52] as pine marten

were genotyped at 15 variable microsatellite loci (Table S1) using a

multiplex protocol specifically designed for degraded faecal DNA

analysis [61] and following a modified multitube-approach [63].

The multitube-approach of 4 independent replicates followed by a

stringent criteria to construct consensus genotype (i.e. accepting

heterozygotes if the two alleles were seen at least in two replicates

and homozygotes if a single allele was seen at least in three

replicates) is a commonly used approach in non invasive genetic

studies leading to a low probability of retaining a false homozygote

or false allele error (e.g. [64–66]). Briefly, DNA quality was initially

screened by PCR-amplifying each DNA sample four times at four

loci (Multiplex 1: MP0188; MP0059; Gg-7; Ma-1), since the results

obtained for this four loci are indicative of the genotyping success

for the full panel of 15 microsatellites [61].

Only samples showing. 50% positive PCRs were further

amplified four times at the remaining 11 loci. Samples with

ambiguous results after four amplifications per locus or with ,

50% successful amplifications across loci were removed from

further analysis as they were not considered reliable genotypes.

Multiplex PCR products were run on an ABI (Foster City, CA)

3130XL automated sequencer (Applied Biosystems), with the

internal size standard GS500 LIZ (Applied Biosystems). Fragment

analyses were conducted using the ABI software Genemapper 4.0.

RELIOTYPE software [67] was used to assess genotype

reliability obtained by 4 independent replicates. Samples that

were not reliably typed at all loci after 4 replicates (at score

threshold R = 0.95) were discarded from the analysis. GIMLET

software v 1.3.4 [68] was used to calculate the probabilities of

identity (PID and PID-sibs) so as to quantify the efficacy in

discriminating the fifteen loci in combination. Consensus geno-

types from four replicates were reconstructed using GIMLET,

accepting heterozygotes if the two alleles were seen at least in two

replicates and homozygotes if a single allele was seen at least in

three replicates (e.g. [64–66]). GIMLET was also used to estimate

genotyping errors: allelic dropout (ADO) and false alleles (FA)

[63,69].

The raw microsatellite data and geographic coordinates of the

101 pine marten individuals are included in Table S2.

Genetic diversity and pairwise individual genetic
distances

We summarized genetic variation through the number of alleles

per locus (A), expected (HE) and observed (HO) heterozygosities

using GENETIX v 4.05.2 [70]. Estimates of pairwise linkage

disequilibria for each pair of loci and deviation from Hardy

Weinberg equilibrium (HWE) genotypic proportions at each locus

were tested using the exact test implemented in GenePop version

4.0 [71]. Statistical significance was evaluated by running a

Markov Chain Monte Carlo (MCMC) consisting of 10,000

batches of 10,000 iterations each, with the first 10,000 iterations

discarded before sampling [72]. Significance levels were adjusted

with sequential Bonferroni correction in order to correct for the

effect of multiple tests [73], (i.e. a= 0.05/number markers).

MICRO-CHECKER software [74] was used to check for

potential scoring errors and the presence of null alleles. The

Rousset’s ar inter-individual genetic distance [75] was computed

using the program SPAGeDI [76] since this parameter of

relatedness does not rely on a reference population [77] and has

been successfully applied to infer the effect of landscape on genetic

structure of continuously distributed vertebrates [32,78–80].

Construction of landscape resistance models
We produced different resistance maps representing 59 different

hypotheses about the resistance of different land use types using

ARCGIS version 9.3 [81], with a raster cell size set to 50 m

(Table 1; File S1). As suggested by Anderson et al. [82] the

sampling grain selected (i.e. 50650 m) is adequate to infer

landscape effects on gene flow as is smaller than the average

home-range size of the study species (i.e.. 0.5Km2, [47]). In

addition, this resolution allows representation of small landscape

patches, but also those smaller elements in the landscape that will

be crucial for the resulting effective distances, including linear

elements such roads and highways [14].

1) Isolation by distance: Our first hypothesis and null model

was a test of isolation by distance across a uniform resistance

landscape [57,83]. In this model we assumed movement could

occur with equal facility in any direction, with all raster cell values

equal in resistance (i.e. resistance value 1).

2) Binary Landscape resistance maps: Our second set of

hypotheses propose that some land uses promote genetic

connectivity for forest dependant species, such as the pine marten,

that specialize in such habitats [47,48], while others resist gene

flow. Thus, different binary resistance maps were developed to

evaluate the specific land uses which were favourable and

unfavourable to the dispersal movements of the martens (i.e.

habitat vs non-habitat-model). As pine martens are believed to

need a minimum woodland area to survive (ca. 2km2) [47] and

tend to avoid treeless areas [48,49,51], we expected to find a

positive effect of closed-canopy forest habitats and negative effect

of open areas and human transformed landscapes on gene flow.

Thus, the different binary resistance maps created (Land_A,

Land_B, Land_C, Land_D, Land_E, Land_F and Land_G)

covered a gradient from greater to lesser preference of the focal

species for forest environments, ranging from strictly forest land

(Land_A) up to and including open spaces (Land_G) (Table 1,

Fig. 2). Therefore, we classified land use data as habitat vs. non-

habitat and parameterized the models according to a range of

plausible resistance values. As there is not a general rule for the
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Figure 2. Binary landscape resistance maps on a gradient from greater to lesser preference of the focal species in relation to forest
environment. Binary landscape resistance maps, on a gradient from greater to lesser preference of the focal species in relation to forest
environment (Land_A to Land_G). Green-coloured cells represent ‘‘Habitat’’ (resistance value 1) and yellow-coloured cells ‘‘Non-Habitat’’ (resistance
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assignment of resistance values to non-habitat, we explored 4

different resistance values (5, 25, 50, 100) of non-habitat relative to

habitat to verify if it could affect the detectability of landscape

genetic relationships, as it has been previously shown in both

empirical [24] and simulation [84] studies. In this way, preferential

land uses for dispersal were assigned a value of 1 (i.e. Habitat),

while non-favourable to dispersal habitat (i.e. non-habitat) sites

were assigned a value of 5, 25, 50 or 100, depending on the

scenario.

For each of the resistance maps described above, we tested the

effect of potential anthropogenic barriers, including national roads

(resistance 200), highways, urban areas, reservoirs and quarries

(resistance 1000) (Land_Ab to Land_Gb resistance maps;

Table 1), using the same resistance values of the ecological

network resistance map (see below), for comparative purposes

[41]. As each resistance map (Land_A to Land_G; Land_Ab to

Land_Gb) was explored for 4 different resistance values, we

evaluated 56 different binary resistance maps (i.e. without barrier

effect: Land_Ax to Land_Gx; With barrier effect: Land_Abx to

Land_Gbx; where X corresponds to the 4 evaluated resistances

values per model: 5, 25, 50, and 100) (Table 1).

3) Ecological network resistance map: We evaluated the

resistance map previously utilized in the design of ecological

corridors linking forest Natura 2000 areas of the Basque Country

[41]. The resistance map was based on the assignment of different

resistance levels to each land use and parameterized through

bibliographical review and expert opinion [41]. The resistance

surface outlined in [41] was updated with the new available spatial

data regarding land uses in the study area [59,60] (Table 1).

Raster breaks in linear barrier elements were avoided by the

reinforcement of the size of national roads and highways [14].

Sections of highways which run through viaducts or tunnels were

assigned the resistance value corresponding to the land use of the

surrounding area. Additionally, a second resistance map was used,

with a view to testing the effect of noticeably decreasing the

resistance value attributed to the potential barrier effects of

national roads, highways, urban areas, reservoirs and quarries

(ENnb map) (Table 1).

The raw ascii file of the EN is included in File S1. Following the

resistance values outlined in Table 1, all the 59 resistance maps

evaluated can be produced from the raw ascii EN resistance map

(File S1).

The effective and Euclidean distances between each pair of

individuals were calculated with PATHMATRIX 1.1 [15]. Pair-

wise effective distances between individuals were calculated as the

accumulated cost through the least cost paths (LCP) throughout

each resistance surface [14,15] (Fig. 1).

We proposed 59 alternative landscape models: 1) 56 binary

landscape resistance maps; 2) two complex resistance maps based

on the resistance surfaces used to develop the regional ecological

network (EN and ENnb) (Table 1), and 3) the null model of

Isolation by Distance.

Relationship between genetic and geographical
distances within a reciprocal causal modeling framework

Mantel correlations between genetic distance and

alternative resistance hypotheses. The pairwise genetic

distances matrix (Rousset’s ar) was correlated with different

matrices of geographical and (cost) distances encompassing a total

number of 5151 pairwise comparisons, including: i) Euclidean

distance, to determine whether the patterns of differentiation

follow an isolation by distance pattern (null hypothesis) and ii) the

effective distances calculated for each of the 58 resistance maps, to

infer landscape structure effects on gene flow. The correlation

between distance matrixes was calculated by means of the Mantel

test [85] and partial Mantel tests [86] as implemented in the

ECODIST package [86] in R version 2.7 (R Development Core

Team 2008) with 10,000 permutations. Given the potential

sensitivity of Mantel tests to non-linear relationships between

genetic and cost-distances [87], we compared results between two

sets of analyses, one log transforming the effective and Euclidean

distances, and one using the original untransformed cost-distance

matrices.

Factorial hypothesis cube randomization: Evaluation of

the unimodality of support across landscape

models. When hypotheses are constructed across a quantitative

range of values for a parameter, it is possible to evaluate the degree

to which the analysis indicates a unimodal peak of support for a

global best model [30]. The degree of unimodality of model

support in a factorial hypothesis cube is one measure of the

reliability of model results [13]. This is done by computing the

differences in support (in our case partial Mantel r values) among

all neighbouring cells (i.e. different models) in the hypothesis cube

and comparing the sum of those differences to the distribution of

the sum of differences from a large number of randomizations of

the hypothesis cube (e.g. [13]). We evaluated the unimodality of

support across the 56 binary resistance hypotheses (i.e. without

barrier effect: Land_Ax to Land_Gx; With barrier effect: Land_-

Abx to Land_Gbx; where X corresponds to the 4 evaluated

resistances values per model: 5, 25, 50, and 100) for the

transformed and untransformed analyses using the randomization

procedure introduced by Cushman et al. [13], in which the order

of hypotheses in the hypothesis cube is randomized a large number

of times and each time the difference in partial Mantel r

(partialling out distance) is calculated between neighboring

hypotheses in the cube. The sum of squared neighbor distances

from the actual hypothesis cube (Actual Sum Differences, ASD) is

then compared to the distribution of squared neighbor distances in

the randomized hypothesis cubes (Mean Sum Randomized

Differences, MSRD). We conducted this analysis with 1,000,000

randomizations of the hypothesis cube for both the untransformed

and transformed analysis. If no randomizations produce a sum of

squared neighbor distances as small as observed, it is strong

evidence that the analysis has shown a strong peak of support (i.e.

unimodal support).

Original causal modeling. In addition to the reciprocal

causal modeling approach [84] (see below), we conducted the

original causal modeling [30] as a comparative framework, in

which the 58 alternative landscape resistance models are tested

against the null model of isolation by distance (IBD) as described in

Cushman et al. [30]. There were 3 sets of diagnostic Mantel and

partial Mantel tests to complete the causal modeling. These

included: (i) simple Mantel tests between genetic distance and

landscape resistances; (ii) partial Mantel tests between genetic

distance and landscape cost distances, partialling out the effects of

Euclidean distance; (iii) partial Mantel tests between genetic

distances and Euclidean distance, partialling out the effects of

landscape resistance. To infer an effect of a landscape resistance

scenario on dispersal, we expected (i) and (ii) to be significant, and

we expected (iii) to be negative or non-significant if that scenario

values evaluated, 5, 25, 50,100). Models Land_Ab to Land_Gb additionally include black-coloured cells representing the barrier effect of national
roads (resistance value 200), highways, urban areas, reservoirs and quarries (resistance value 1000).
doi:10.1371/journal.pone.0110552.g002
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‘correctly’ explained population connectivity in our study popu-

lation [30].

Reciprocal causal modeling. We used (partial) Mantel tests

in a reciprocal causal modeling framework [84] to analyse the

influence of landscape structure on gene flow and to determine the

extent to which possible landscape resistance models (i.e. resistance

maps) explained the spatial pattern of genetic distance between

individuals. Cushman and Languth [88] found that the inherent

Figure 3. Factorial hypothesis cube randomization. Visualization of the 56 binary landscape-resistance hypotheses after the effects of
geographical distance are partialed out on the a) log transformed and b) untransformed cost distances. The cubes each represent one of the 56
binary landscape-resistance models. The cubes are colored in a gradient from blue to red, with red being the most supported models based on the
partial Mantel r value. The Mantel r values corresponding to each cube are found in Table 2 and Table S3 for the log transformed and the
untransformed matrices, respectively.
doi:10.1371/journal.pone.0110552.g003
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high correlation among alternative resistance models results in a

high risk of spurious correlations using simple Mantel tests. Several

refinements, including causal modeling [30], have been developed

to reduce the risk of affirming spurious correlations and to assist

model selection. However, Cushman et al. [84] showed these still

suffer from elevated Type I error rates. Consequently, Cushman et

al. [84] proposed ‘‘reciprocal causal modeling’’ which they showed

greatly lessens Type I error rates in landscape genetic analysis

[89]. In reciprocal causal modeling, each alternative resistance

hypothesis is tested against all others with partial Mantel tests. A

matrix of relative support is calculated by taking the difference

between a) the partial Mantel r of each candidate model partialling

out each alternative model, and b) the partial Mantel test of the

alternative model partialling out the candidate model [84]. A fully

supported hypothesis will have positive values of this difference

with all alternative models, and no alternative models will have

positive values compared to the supported model.

Results

Non-invasive sample collection and species identification
Out of 733 faecal samples collected from the entire study area,

141 were discarded because they were not fresh or because they

presumably belong to the same individual (samples separated by ,

1km). 494 out of 592 analyzed samples were classified as Martes
sp. (M. martes and M. foina) based on genetic species identification

results. Thus, unequivocal species identification was possible in

83.45% of the samples. We effectively identified 232 faecal

samples as stone marten and 262 as pine marten. Additionally, we

obtained 57 tissue samples from road-killed pine martens.

Out of 262 faecal samples identified as pine marten, 108 were

not included to the microsatellite genotyping procedure. These

samples correspond to the sampling period from 2004–2005,

which was used for a first distribution assessment of sympatric

martens in the study area and were not potentially fresh enough

for microsatellite analysis. Thus, 213 pine marten samples (154

faecal samples and 59 tissue samples) were used for microsatellite

genotyping.

Individual identification, genotype checking and genetic
diversity

The first quality-screening test, based on 4 replicates of four loci,

was not passed by 73 non-invasive samples (47.40%), which were

immediately discarded. The remaining 81 samples (52.59%) were

amplified at the other 11 loci. After multiple-tubes genotyping, 27

samples from this sub-set (17.53% from the total analyzed samples)

were then discarded because they showed ,50% PCR success, or

because of high failure rates. Full multilocus microsatellite

genotypes were obtained for the remaining 54 samples (66.67%

from the samples that passed the screening and 35.06% from the

total samples analyzed) all showing reliability score. 0.95 [67].

The observed average error rates across loci were: ADO = 0.188

and FA = 0.017. PID analysis showed that the set of 15 loci would

produce an identical genotype with a probability of 1.69610210,

and with a probability of 4.4561025 for a full-sib, suggesting no

‘‘shadow effect’’ (i.e. all the genotypes identify distinct individuals;

[90], and that matching genotypes were recaptures of the same

individual).

After a regrouping procedure, we identified 42 individual

genotypes from faecal samples. All of the 59 tissue samples were

correctly genotyped at 15 loci and all provided new individuals. In

total we identified 113 genotypes that corresponded with 101

different individuals. The number of times each individual was

detected in the survey varied from 1 to 3, with a total number of

12 re-samplings. Complete genetic profiles and the geographic

coordinates for the 101 pine marten individuals are included in

Table S2.

The average observed (HO) and expected (HE) heterozygosity

values were 0.53 and 0.58, respectively (Table S1). All 15 loci were

variable with total numbers of alleles ranging between 3 and 8 per

locus. The overall pine marten dataset showed a significant deficit

of heterozygotes as compared to Hardy-Weinberg expectations (p

,0.001). Despite the broad scale of sampling, the majority of loci

were in Hardy-Weinberg proportions (13 out of 15). Only loci

Mp0188 and Lut-435 were out of Hardy-Weinberg proportions

(Table S1). These results suggest signs of a Wahlund effect, due to

the existence of an isolation by distance (Euclidean or effective)

pattern in the study area. Linkage disequilibrium was not apparent

for any pair of loci after performing Bonferroni corrections.

Correlation between genetic and effective distances
Factorial hypothesis cube randomization. We evaluated

the unimodality of support across the 56 binary resistance maps for

the log transformed and untransformed data to determine which

form of the data should be used for subsequent analyses. After the

effects of distance are partialled out, ranking the models by partial

Mantel r value provides a means to determine which hypotheses

have the greatest support and to identify the most related model to

the genetic structure (Table 2, Fig. 3). According to the results

outlined in Figure 3, there is a more coherent, unimodal pattern of

support in the transformed analysis than the untransformed

analysis. Additionally, factorial randomization of the hypothesis

cube, in both the transformed and untransformed analyses, no

instance of 1,000,000 randomizations produced a sum of squared

differences between neighboring hypotheses (MSRD) as small as

the actual sum of squared differences (ASD) in partial Mantel r

values (Table 3), indicating very high unimodality in both forms of

analysis. However, the transformed analysis had higher total

support for optimal unimodal support of the best hypothesis as

indicated by the larger number of standard errors of MSRD

between neighboring hypotheses across the 1,000,000 randomi-

zations (Table 3). Accordingly, all subsequent analyses are

restricted to the log transformed resistance distances. As indicated

Table 3. Factorial randomization of the hypothesis cube.

Untransformed Transformed

Rank 1 1

Actual Sum Differences (ASD) 19.6325 17.81

Mean Sum Randomized Differences (MSRD) 26.4738 24.17

SD error from MSRD 6.59E+04 6.97E+04

doi:10.1371/journal.pone.0110552.t003
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by the hypothesis cube (Fig. 3), the different resistance values

evaluated (5, 25, 50, 100) slightly modified the (partial) Mantel

correlation results obtained for each model for both the log

transformed (Table 2; Fig. S1 and Fig. S2) and the untransformed

distances (Table S3; Fig. S3 and Fig. S4), but overall a consistent

pattern was obtained.

Figure 4. Mantel r results for the different landscape resistance maps evaluated (log transformed). a) Pearson correlation coefficients
(Mantel r) between genetic distance and effective distance (log transformed) and b) Pearson correlation coefficients (Partial Mantel r) between
genetic distance and effective distance (log transformed) after factoring out the effect of the Euclidean distance in the different landscape resistance
maps examined. Models marked with an asterisk correspond to the models supported within the causal modeling framework [30].
doi:10.1371/journal.pone.0110552.g004
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Simple Mantel correlations between genetic

differentiation and alternative landscape models. 1) Iso-
lation by distance: A significant positive correlation was obtained

between the genetic distances and Euclidean distances (r = 0.214; p

,0.0001), bearing clear witness to the existence of a pattern of

isolation by distance (IBD) (Table 2, Fig. 3). However, when the

models were ranked based on Mantel r, all the landscape models

performed better than the null model (Table 2, Fig. 4).

2) Binary resistance maps: All of the simple Mantel tests were

significant when analyzed in log-transformed form (Table 2). The

correlation between genetic and effective distance gradually

increased on including, in addition to natural forest (Land_A),

forestry plantations (Land_B), scrublands (Land_C), agroforestry

mosaics (Land_D), and pastures and meadows (Land_E) as

environments favouring dispersal (Table 2, Fig. 4). This correla-

tion did not change on including rocky areas as dispersal

environments (Land_F), while it decreased on including cultivated

land (Land_G). The same pattern was obtained with models which

specifically increase the cost value of the main barrier features

(national roads, highways, urban areas, reservoirs and quarries;

Land_Ab to Land_Gb resistance maps), but with an increase of

Mantel r values with respect to Land_A to Land_G models

(Table 2, Fig. 4), indicating that including barrier effects due to

linear features improves the resistance model. The correlation

reached its maximum value on including barrier effects in

resistance maps Land_E and Land_F (i.e. resistance maps

Figure 5. Reciprocal causal modeling results. Results of reciprocal causal modeling on the log transformed cost distances. A single resistance
model (Model 48-Land_Fb100) is supported in analysis of the transformed cost distances. Columns indicate focal models, and rows indicate
alternative models. The color gradient from blue to red indicates support for the focal model independent of the alternative model (e.g. focal model |
alternative model – alternative model | focal model is positive). A fully supported model would have all positive values in the vertical dimension (e.g.
that model is supported independently of all other models), and all negative values in the horizontal dimension (no other model is supported
independently of the focal model). Model number and associated resistance map: 1 - EN, 2 - ENnb, 3 - Geo_dist, 4 - Land_A100, 5 - Land_A25. 6-
Land_A5. 7 - Land_A50, 8 - Land_Ab100, 9 - Land_Ab25, 10 - Land_Ab5. 11 - Land_Ab50. 12 - Land_B100, 13 - Land_B25, 14 - Land_B5, 15 - Land_B50,
16 - Land_Bb100, 17 - Land_Bb25, 18 - Land_Bb5, 19 - Land_Bb50, 20 - Land_C100, 21 - Land_C25, 22- Land_C5, 23 - Land_C50, 24- Land_Cb100, 25 -
Land_Cb25, 26 - Land_Cb5, 27 - Land_Cb50, 28 - Land_D100, 29 - Land_D25, 30 - Land_D5, 31 - Land_D50, 32 - Land_Db100, 33 - Land_Db25, 34 -
Land_Db5, 35 - Land_Db50, 36 - Land_E100, 37 - Land_E25, 38 - Land_E5, 39 - Land_E50, 40 - Land_Eb100, 41 - Land_Eb25, 42 - Land_Eb5, 43 -
Land_Eb50, 44 - Land_F100, 45 - Land_F25, 46 - Land_F5, 47 - Land_F50, 48 - Land_Fb100, 49 - Land_Fb25, 50 - Land_Fb5, 51 - Land_Fb50, 52 -
Land_G100, 53 - Land_G25, 54 - Land_G5, 55 - Land_G50, 56 - Land_Gb100, 57 - Land_Gb25, 58 - Land_Gb5, 59 - Land_Gb50.
doi:10.1371/journal.pone.0110552.g005

Landscape Genetics of the European Pine Marten

PLOS ONE | www.plosone.org 13 October 2014 | Volume 9 | Issue 10 | e110552



Land_Eb and Land_Fb; r = 0.25660.0060; p ,0.0001) (Table 2,

Fig. 4). The different resistance values (5, 25, 50, 100) slightly

modified the correlation results obtained for each model (see

Figure S2 and S4 for further details), with the highest correlations

for Land_Fb100 (Table 2, Table S3; Fig. 4).

3) Ecological network resistance map: The effective distances

calculated on the basis of the EN map were positively correlated

with genetic distances and explained a slightly higher proportion

of the observed genetic variance than the Euclidean distances (EN,

r = 0.256; p ,0.0001; Table 2, Fig. 4). The degree of correlation

when using the ENnb map was less than that obtained with EN,

though still greater than that obtained using Euclidean distance

(r = 0.237; p ,0.0001; Table 2, Fig. 4). However, the original

model used in the design of the ecological network (EN), which

included a higher barrier effect for national roads, highways,

urban areas, reservoirs and quarries was better supported than the

alternative model (ENnb).

Partial Mantel correlations between genetic

differentiation and alternative resistance hypotheses. We

found significant effects of nearly all of the landscape resistance

models (46 out of 52), as the relationship between genetic distance

and effective distance was always significant when Euclidean

distance was factored out of the relationship (p ,0.05) (Table 2;

Table S3).

1) Binary landscape resistance maps: The correlation values

after factoring out the effect of Euclidean distance showed the

same pattern of increase of that obtained by means of a simple

Mantel test, with Land_Fb50 showing the highest partial Mantel r

correlation (Table 2; Figure 4 and Fig. S2). However, Land_Ax,

Land_Bx, Land_C5 and Land_D5 were not significant when the

Euclidean distance was partialled out. Factorial support cubes

indicate a clear unimodal peak of support in models Land_Fb50,

Land_Eb50, Land_Fb100, Land_Eb100 (Figure 3) that are

ranked from first to fourth according to partial r values. Similarly,

these models have the highest simple Mantel r values of all of the

evaluated models (Table 2; Figure 4). These results suggest that

there is a strong peak of support for Land_Fb50 with a clear

similarity with Land_Eb50, Land_Fb100 and Land_Eb100. Thus,

the best supported models were associated with minimum

resistance to movement on forest, forestry plantations, scrublands,

agroforestry mosaics and pastures habitats and clear support for

the barrier effect.

2) Ecological network resistance map: Both EN and ENnb

models appeared better supported than the null model of IBD as

this latter retained a significant positive relationship with ar-based

genetic distance after factoring out the effects of Euclidean

distance, but less supported than the top resistance models

(Land_Eb50, Land_Fb100, Land_Eb100; Table 2).

Original and reciprocal causal modeling. Using the

original form of causal modeling approach [30] we found that

all binary resistance hypotheses except Land_Ax, Land_Bx,

Land_C5 and Land_D5 were supported (Table 2).

Using the novel Cushman et al. [84] method of "reciprocal

causal modeling", only one resistance model out of the 59

candidate models was fully supported. The single supported model

is model number 48, Land_Fb100. The reciprocal causal

modeling method shows that the indexes of relative support of

this model [i.e. calculated by taking the difference between 1) the

partial Mantel r value of the candidate model partialling out each

alternative model and 2) the partial Mantel r of the alternative

model partialling out the candidate model (reciprocal partial

Mantel test)] are all positive (Fig. 5). In addition to model

Land_Fb100, several others are nearly perfectly supported.

Land_Eb100 is supported independently of all but model

Land_Fb100. Similarly, Land_Fb50 is supported independently

of all except Land_Fb100 and Land_Eb100. Model Land_Eb50 is

supported independently of all but Land_Fb100, Land_Fb50, and

Land_Eb100. This verifies the peak of support seen in the

hypothesis cube, with highest support for Land_Fb100, followed

by Land_Eb100, Land_Fb50, and Land_Eb50 [i.e. models that

included in addition to natural forest, forestry plantations,

scrublands, agroforestry mosaics, pastures and meadows (Land

Eb) and rocky areas (Land_Fb) as environments favouring

dispersal and importance effect of roads as potential barriers to

gene flow]. Importantly, the Ecological Network model EN was

supported independently of all other models except Land_Fb100,

Land_Eb100, Land_Fb50 and Land_Eb50, indicating that it is a

highly effective surrogate for landscape resistance to pine marten

gene flow.

Discussion

Recent studies suggested that individual-based landscape

genetic analysis using partial Mantel tests in a causal modeling

framework have high power to correctly identify landscape

resistance as a driving process and reject spurious correlations

with isolation by distance [84,88]. Cushman et al. [84] showed

that the reciprocal causal modeling method we employed here

substantially reduces the frequency of Type I errors. In this

regards, Castillo et al. [91] recently showed that simulations

support the reciprocal causal modeling with partial Mantel tests

approach as an effective means to identifying the relationship

between gene flow and landscape variables. Although there has

been recent controversy over the use of Mantel tests in landscape

genetics [92–94], a preferable alternative has yet to be identified

that does not also suffer drawbacks [84]. There is no one-size- fits-

all approach, and the most appropriate methodology will depend

on the research question and landscape under investigation [92].

We use here the more robust modeling framework, proposed by

Cushman et al. [84], that is based on the relative support of each

candidate model and includes a reciprocal causal modeling step in

the model optimization process. Moreover, we used the original

causal modeling approach [30], factorial hypothesis cube ran-

domization and ranking by simple Mantel test values as a

comparative framework to further explore the performance of

these several approaches.

Our results clearly indicate that a standard isolation-by-distance

model is not sufficient to explain the observed genetic pattern, and

including landscape variables through different resistance maps

significantly improves the prediction of the target species gene

flow. One model was supported in the transformed analysis using

reciprocal causal modeling. This model, Land_Fb100, indicates

that pine marten gene flow in northern Spain is facilitated by

forests, forestry plantations, scrubland, agroforestry mosaics and

pastures and meadows, and that crops have roughly 100 times

higher resistance than optimal habitat. Further, this uniquely

supported model indicates that anthropogenic barriers, such as

national roads, highways, urban areas, reservoirs and quarries and

wetlands likely pose much greater resistance to marten gene flow.

This suggests that the population connectivity of pine martens in

the study area may be vulnerable to habitat loss and fragmentation

processes, due to the presence of anthropogenic barriers as has

been previously suggested in other forest-dependant species

[25,32,95].

The reciprocal causal modeling approach [84] clearly improved

discrimination among the competing models, from only one fully

supported model (i.e. Land_Fb100) versus more than 80% of

models supported equivocally by the original form of causal
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modeling [30]. Indeed, recent studies showed that the novel

reciprocal causal modeling approach is a strong improvement over

other methods [91,96]. Even thought reciprocal causal modeling

has a greater discrimination to detect the top model, the Cushman

et al. [30] method (i.e. causal modeling + model rank + hypothesis

cube) reached nearly identical conclusions. We found that ranking

models based on simple or partial Mantel r gave consistent

support. Likewise, our evaluation of unimodality of support in the

hypothesis cube (e.g. [13,24,30]) verified the same peak of support.

Reciprocal causal modeling resolved the Type I error problem

that we saw in our results from the original form of causal

modeling (evaluating support relative to isolation by distance), and

was consistent with the peak of support seen in the factorial

hypothesis cube. Thus, both forms of causal modeling are

complementary and provided independent support to the obtained

results, as did evaluating unimodality of support in the hypothesis

cube.

In landscape genetics a large number of pairwise genetic

relatedness measures have been applied to infer effects of

landscape structure on gene flow [12,97], with Rousset’s ar or â

[75] being one of the most widely used measures (e.g.

[79,80,98,99]). Watts et al. [100] proposed a differentiation

statistic (ê) that seems to improve Rousset’s â performance for

populations with large neighborhood-size (Ds2) values (i.e. weak

IBD pattern). However, differences in statistical performance

usually highly depend on the data set used and the sampling

scheme as well as how well the data set meets the underlying

model assumptions [77]. Thus, and even if the results among

different genetic distance measures have generally agreed

[24,29,30,101] further studies based on empirical analyses of

genetic patterns and simulation modeling are needed to properly

evaluate the potential effect of different genetic distance estimator

on disentangling landscape effects on gene flow.

Influence of land uses on gene flow: insights into pine
marten ecology

The most consistent marten-habitat relation appears to be a

general association with forest habitats, and avoidance of open,

non-forested habitats [48,51,52]. Thus, the marten’s unwillingness

to cross open habitats may restrict the species’ ability to disperse

and colonise new forested areas [51,55]. Ruiz-González et al. [52]

found that pine marten occurrence in the study area is highly

dependent on the presence of forest and consequently sensitive to

forest fragmentation as has been previously suggested in other

studies across Europe [49,51]. Nevertheless, the presence of forest

habitats is not the only factor which explains pine marten gene

flow in the study area, indicating that the habitat selection and

gene flow of pine martens may be driven by different factors

[17,25,31].This may be because gene flow is driven by mating and

dispersal events and habitat selection reflects the behaviour of

individual organisms to maximize fitness within home ranges (e.g.

[102]).

Our results suggest that it is not only forest masses which serve

as favourable environments for dispersal. Scrubland, agroforestry

mosaics and grassland habitats also potentially favour dispersal,

since the correlation increases as, step by step, these environments

are included as predictor variables of pine marten gene flow

[Land_B(b) ,Land_C(b) ,Land_D(b) ,Land_E(b),Land_F(b)].

Original causal modeling identified the same pattern and

suggested that Land_Eb and Land_Fb for resistance values of 50

and 100 are the most supported models. Likewise, novel reciprocal

causal modeling highlighted similar results, identifying

Land_Fb100 as the uniquely supported model, due to its greater

discriminatory power [84].

These results are in consonance with recent ecological studies of

European pine martens, based on radio tracking, which provide

new data substantially differing from traditional descriptions in the

scientific literature as strictly forest dependant species [48,51,55].

These studies show that martens are not exclusively confined to

extensive forest patches but that they also use other patches

including scrubland and agroforestry mosaics [48,51,54,55].

Indeed, the inclusion of scrub habitat in marten home ranges is

likely to be related to its role in the connectivity of forest habitats

[48,55]. In the same way, the improvement in correlation obtained

by including pastures and meadows indicates that the species does

not always avoid crossing these open spaces areas when there is

forest habitat in the immediate vicinity as has been previously

suggested by radiotracking data [48]. This is precisely the case in

the area under study, where pastures and meadows are typically

found in the immediate vicinity of forest. However, the inclusion of

homogeneous croplands reduces the correlation between genetic

distance and effective distance, suggesting that zones with intensive

agriculture potentially impede species dispersal. This could be due

to the scarcity of natural vegetation in these zones and the distance

separating them from forest in the study area [41].

Additionally, models that increase the barrier effect of major

roads and urban areas leads to a substantial improvement in the

correlation between genetic distances and cost distances. The

correlation with models Land_Ab-Land_Fb was greater than that

obtained with models Land_A-Land_F, and the uniquely

supported model in reciprocal causal modeling included the

barrier effect (Land_Fb100). This suggests that the potential

barrier effect of these land uses could have a synergic effect within

a fragmented landscape, decreasing the gene flow due to road

avoidance behaviour and/or road mortality [103–106].

Similar landscape genetics studies have also been conducted on

other forest dependant Martes sp., providing contrasting results

regarding landscape effects on gene flow [25,32,107–110]. Similar

to the results found in this study, Broquet et al. [32], found that

American marten (Martes americana) dispersal in Ontario is

impeded by the loss and fragmentation of suitable habitat.

Wasserman et al. [25] showed that gene flow in the Northern

Idaho American marten population is driven by a gradient

function of elevation, which was a proxy for snowpack, with

marten avoiding lower elevations and dispersing in mid to high

elevation montane forests. In contrast, Koen et al. [110] found

that marten dispersal across Ontario can best be described as

neighbour-mating with no directional bias caused by forest-

management induced landscape structure, resulting in a pattern of

isolation by distance, suggesting that Ontario landscape is well

connected with respect to suitable marten habitat. These

contrasting landscape hypotheses governing gene flow could be

explained by the different limiting factors that could be acting in

each of landscape under study [22].

Even though no previous individual-based landscape genetics

data was available for the pine marten, Mergey et al. [58] found

that genetic diversity is not associated with habitat fragmentation

metrics in France, in spite of the existence of a high degree of

forest fragmentation in the studied marten populations. However,

this result does not demonstrate that the pine marten gene flow is

not affected by forest fragmentation processes. Thus, a more

detailed individual-based landscape genetics analysis (Larroque et

al. Unpublished data), could provide better insights into the

landscape processes governing gene flow and an interesting

comparative framework with Spanish pine marten populations.
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Empirical evaluation of ecological network resistance
maps through landscape genetics

Maps of ecological corridors are commonly used in land use

planning, but unfortunately are more often the product of expert

opinion rather than empirical data [9,10]. Thus, using landscape

genetic analysis, we could partially solve this limitation by studying

the gene flow of a target species with regards to the resistance

maps used to design the ecological networks [11,12]. Here, the

parameterization found in the resistance map which was used to

design the regional corridors linking forest protected areas of the

Basque Country (north Spain) [41] was adequate to explain pine

marten gene flow, with one of the highest partial Mantel r value

(r = 0.145) of all the evaluated models. Based on reciprocal causal

modeling only Land_Fb100, Land_Eb100, Land_Fb50 and

Land_Eb50 were supported independently of EN. Even though

Land_Fb100 better explains pine marten gene flow, the high

mantel correlation value between the cost distances for

Land_Fb100 and EN (Mantel r = 0.9362 p,0.001) suggests EN

is a good proxy. This indicates that the EN model used to develop

regional connectivity networks among protected areas [41] likely

performs very well as a surrogate for landscape resistance for pine

marten.

Thus, the resistance map with which the regional ecological

network was originally designed in the Basque Country (EN),

appears to have high congruence with one of its official target

species at regional scale [41]. This is a welcome finding, given that

most past evaluations of expert-derived resistance values found

that they performed poorly in comparison to empirically

optimized models [18,24]. Given the importance of pine marten

as a bio-indicator of species associated with natural vegetation

[41], our results emphasize the importance of incorporating

regional corridors into land use planning and management to

preserve landscape connectivity for forest dwelling species.

The influence of resistance values and logarithmic
transformations to detect landscape genetic
relationships

Since our ability to detect the effects of landscape structure on

genetic differentiation depends on both the landscape features

used and the relative costs of each feature, different resistance

values could provide different results [17,19,83]. Previous studies

have found that the degree of contrast in resistance to gene flow in

habitat as compared to non-habitat could affect whether or not a

given landscape configuration will significantly affect genetic

differentiation [22]. We found an increasing reliability of

predictions as resistance contrast increased, with several models

only supported by 25, 50 and 100 resistance values and unimodal

peak of support for 50 and 100 resistance values. The hypothesis

that was uniquely supported by reciprocal causal modeling

indicated that non-habitat was 100 times more resistant than

habitat, and anthropogenic barriers may impart additional

resistance as high as 1000 times that of optimal habitat.

Some landscape genetic studies have found that the untrans-

formed geographic distances perform better than logarithmic

transformation (e.g. [24,30]), while most previously studies used

transformed distances without any evaluation. However, the

relationship between cost distances and genetic distances is highly

dependant on the study area and the focal species. For example, at

small extents the relationship between cost and genetic distances is

nearly linear and the untrasformed correlations may fit the data

better [24,30]. However, when the study area is large in extent

relative to the dispersal ability of the species, as in the present

study, the relationship between cost distance and genetic distance

will be nonlinear and the logarithm transform will improve fit.

Thus, taking into account the potential bias due to an incorrect use

of transformations, we propose that future landscape genetics

should evaluate the unimodality of support among the hypotheses

as a means to determine the degree to which the transformation

improves the analysis.

Conclusions

This paper presents a comprehensive individual-based land-

scape genetic analysis of the European pine marten, and the first

formal use of landscape genetics to evaluate the effectiveness of

regional ecological networks. We compared results from several

methods of model selection and found that ranking based on

Mantel r or partial Mantel r, the unimodality of support in the

hypothesis cube, causal modeling and reciprocal causal modeling

all identified the same best models of landscape resistance for

European pine marten in northern Spain. Reciprocal causal

modeling appeared to provide the strongest differentiation among

hypotheses and enabled the identification of a single, indepen-

dently supported model. Gene flow of European pine marten is

facilitated by natural land cover, such as forest, scrublands and

pastures and meadows, and is resisted by anthropogenic land uses

and linear barriers such as major roads. We confirm that the

resistance map used to develop the regional ecological network in

the Basque Country is a close surrogate to the empirically

optimized resistance model for marten.
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Madis Podra (Asoc. Visón Europeo); Nerea Ruiz de Azua (EKOS, S.L.);

Gorka Belamendia (CEA); Felipe Canales and Miguel Ángel Campos
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