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SUMMARY 

 

This Ph.D. Thesis started in March 2011 with the support of the University of the 

Basque Country (UPV/EHU, Spain), under the program named “Formación de 

Personal Investigador”, to work in the Atmospheric Research Group (GIA) at the 

Chemical and Environmental Engineering Department in the Faculty of Engineering of 

Bilbao (University of the Basque Country, UPV/EHU). Part of this research work has 

also been developed in collaboration with other national and international research 

groups through two research stays. First, with the Chemometrics Group at the 

Department of Analytical Chemistry of the University of Barcelona (UB, Spain), during a 

period of 4 months (April-July 2013). Second, with the Spectroscopy and 

Chemometrics Group at the Department of Food Sciences of the University of 

Copenhagen (Denmark), during also a 4-month period (September-December 2014).  

 

Along these years, this work has been aimed at the development of alternative 

methods to those specified in the current regulations, to determine particle-bound 

polycyclic aromatic hydrocarbons (PAHs) in ambient air, based on fluorescence 

spectroscopic techniques coupled to advanced data analysis methods. As a 

consequence, various scientific articles have been published in different peer-reviewed 

journals, such as Chemometrics and Intelligent Laboratory Systems and Journal of 

Chemometrics, as well as diverse scientific contributions have been presented in 

international conferences. 

 

Regarding the structure of this memory, first, a general index  indicating the starting 

page number of each chapter is shown. Next, a summary , written both in English and 

Spanish, is included providing the reader with an overall idea of the research work 

carried out. Afterwards, the memory has been divided into the following seven 

Chapters: 

 

Chapter 1  consists of an introduction describing the features and significance of the 

PAHs in atmosphere, and evaluating the state-of-the-art of the analysis of PAHs by 

fluorescence spectroscopic techniques. This chapter provides an overview of their 

main properties, fates in the atmosphere, physico-chemical transformations and health 

effects as well as the legislation and existing air quality criteria. Next, PAHs ambient 

levels and the diagnostic ratios used for source identification in urban areas are 

discussed. Finally, the main methods for PAHs analysis in air media are described, 
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emphasizing the state-of-the-art of the fluorescence spectroscopic techniques and 

multivariate data analysis applied up to now. 

 

Chapter 2  presents the methodological approach used in this research and its 

justification. The main objective and the specific objectives of this Ph.D. work are also 

indicated herein. 

 

The experimental section is fully described in Chapter 3 , including the materials and 

the analytical methods used. Moreover, the experimental datasets, how they were 

obtained, and the aim of each one of them are also described in detail. 

 

Chapter 4  specifies the methodology applied in this research. First, the general 

methodology is presented, describing the main aspects developed and the strategies 

adopted during the research work. Second, a brief guide to the discipline of multivariate 

data analysis and the main features of the second-order data analysis algorithms used 

are explained. This part is focused on the practical aspects and on the decision making 

process involved in the multivariate analysis of excitation-emission (EEM) fluorescence 

matrices. This is done by discussing the most important aspects of each method used: 

PARAllel FACtor analysis (PARAFAC), as a multi-way curve resolution method, 

Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS), as a 

multivariate curve resolution method, and Unfolded Partial Least Squares coupled to 

Residual BiLinearization (U-PLS/RBL), as a pure multivariate regression method. 

 

Since the main objective of this Ph.D. Thesis is the development of a new methodology 

based on fluorescence spectroscopic techniques, the use of the above mentioned 

chemometric methods applied on EEMs have been studied and compared. Therefore, 

the developing methodology is applied, optimized and evaluated in Chapter 5 , where 

the main results are summarized in the following sections: 

 

Section 5.1 defines the EEM data acquisition protocol, emphasizing the selection of 

the proper spectral ranges, the optimization of the main instrumental parameters and 

the fluorescence characterization of the target compounds. Moreover, given the 

spectral features of the PAHs under study, it is clearly pointed out the necessity of the 

application of multivariate data analysis coupled to EEMs for qualitative and 

quantitative analysis. 
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The optimization and validation of the main aspects involved in multivariate/multi-way 

data analysis for EEM data are encountered in Section 5.2. In this section, the 

preliminary bases which will be considered for EEM data modeling in aerosol samples 

are set. This implies the analysis and optimization of the preprocessing methods 

required to construct reliable models, selecting the interpolation procedure as the best 

preprocessing strategy to apply in further analysis. Subsequently, the specific 

characteristics and criteria adopted for each data analysis method for second-order 

calibration are defined, stressing the effect of constraints in the context of complex 

samples analysis. Finally, the selected chemometric methods are assessed under the 

presence of uncalibrated interferents, to provide an insight of their performance for 

analyzing PAHs in aerosol samples. In this sense, it is shown how MCR-ALS and 

PARAFAC can be used for a fast qualitative and semi-quantitative screening of 

environmental samples. However, these methods are more sensitive to sample matrix 

effects, according to the different matrix nature of the samples. In contrast, although U-

PLS/RBL provides the best quantitative information, the difficulty in estimating the 

number of unexpected contributions in the RBL step as well as its time-consuming 

analysis are revealed as weak points for fast screening of environmental samples.  

 

Section 5.3 covers the optimization of the extraction protocol of aerosol samples 

required before PAHs fluorescence analysis. First, the selection of the appropriate 

solvent and surrogate to correct for the extraction efficiency is discussed, where n-

hexane as solvent and 2-2’ binaphthyl as surrogate, fulfill the physicochemical and 

spectrofluorimetric requirements. Then, the Soxhlet extraction protocol is optimized by 

means of a design of experiments approach which led to the selection of the warm 

mode as the most suitable extraction mode. Finally, the extraction time was optimized 

by using a standard reference material, where the 5-h procedure was selected as the 

extraction protocol for aerosol sample analysis. 

 

Given the particular complexity of the analysis of PAHs in aerosol samples, in Section 

5.4 the three second-order algorithms are validated for qualitative and quantitative 

purposes in extracts of aerosol samples. The second-order curve resolution methods 

applied, PARAFAC and MCR-ALS, are suitable for semi-quantitative determinations 

and for monitoring PAHs patterns in the fine particulate fraction of ambient air. In 

addition, these methodologies show higher sensitivity than the one obtained by GC-

MS, offering strong advantages from the point of view of the sampling methodology for 

short-time monitoring. Regarding the quantification, both methods lead to inaccurate 

predictions due to the difference in the matrix between the samples analyzed and the 
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calibration samples. Thus, the combination of standard addition methods and second-

order data analysis algorithms is recommended to cope with matrix effects in the urban 

air samples analyzed, being validated by means of a standard reference material. The 

results obtained establish the combination of MCR-ALS with standard addition method 

as the quantification method for aerosol samples analysis. 

 

Once the different approaches have been extensively proven, optimized and validated, 

Section 5.5 explores the application of the developed methodology to carry out a 

preliminary study of determination of 9 PAHs in urban aerosol samples for several 

months. In this sense, monthly and daily variation patterns are compared, discussed 

and related to traffic patterns. Moreover, the complementary monitoring of heavy PAHs 

is pointed out to conveniently assess the total toxic potential of particle-bound PAHs. 

Furthermore, the influence of other factors such as meteorological parameters and 

other related pollutants is analyzed for a better description of the atmospheric fates of 

particle-bound PAHs. Finally, different diagnostic ratios and other multivariate 

approaches (e.g. Principal Component Analysis) are used to give a deeper 

characterization of the area of study, in order to identify and apportion the sources of 

apportionment of these pollutants. 

 

Chapter 6 summarizes the main conclusions achieved throughout this Ph.D. work.  

 

Chapter 7  encloses the bibliography used in this memory, including the articles, 

monographs, dissertations and other publications.  

 

Finally, an Appendix presents the published articles and the list of scientific 

contributions to international conferences. 
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RESUMEN 

 

Este proyecto de Tesis Doctoral se inició en marzo de 2011 gracias a la beca 

predoctoral otorgada por la Universidad del País Vasco (UPV/EHU), a través del 

programa de “Formación de Personal Investigador”, para trabajar en el Grupo de 

Investigación Atmosférica (GIA) del Departamento de Ingeniería Química y del Medio 

Ambiente de la Escuela Técnica Superior de Ingeniería de Bilbao (Universidad del 

País Vasco, UPV/EHU). Asimismo, parte de este trabajo de investigación se ha 

desarrollado en colaboración con otros grupos de investigación nacionales e 

internacionales a través de dos estancias. En primer lugar, con el Grupo de 

Quimiometría del Departamento de Química Analítica de la Universidad de Barcelona 

(UB), durante un período de 4 meses, de abril a julio de 2013. En segundo lugar, con 

el grupo de Espectroscopia y Quimiometría del Departamento de Ciencias de los 

Alimentos de la Universidad de Copenhague (Dinamarca), también durante 4 meses, 

de septiembre a diciembre de 2014. 

 

A lo largo de estos años, el trabajo realizado ha estado orientado al desarrollo de 

métodos, alternativos a los indicados en la normativa actual, para la determinación de 

hidrocarburos aromáticos policíclicos (HAPs) en la fracción particulada del aerosol 

atmosférico, basándose en el uso de técnicas de espectroscopia de fluorescencia en 

combinación con técnicas avanzadas de análisis de datos. Como resultado, se han 

publicado varios artículos científicos en diferentes revistas indexadas como 

Chemometrics and Intelligent Laboratory Systems o Journal of Chemometrics, y se 

han presentado también diversas contribuciones en conferencias internacionales. 

 

En cuanto a la estructura de esta memoria, se presenta en primer lugar un índice 

general  indicando la numeración de cada capítulo. Seguidamente, se incluye un 

resumen , escrito tanto en inglés como en castellano, que proporciona al lector una 

idea general de la labor realizada. Posteriormente, la memoria se estructura en los 

siguientes siete capítulos: 

 

El Capítulo 1  consiste en una introducción en la cual se describen las características y 

la importancia del análisis de los HAPs en la atmósfera, así como una evaluación del 

estado del arte sobre su análisis mediante técnicas de espectroscopia de 

fluorescencia. Este capítulo proporciona una visión general de sus principales 

propiedades, dispersión en la atmósfera, transformaciones físico-químicas, y efectos 

sobre la salud, así como las normas y criterios de calidad del aire existentes. A 
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continuación, se discuten los niveles y los ratios utilizados en la identificación de sus 

fuentes en zonas urbanas. Por último, se describen los principales métodos de análisis 

de los HAPs en aire, haciendo especial énfasis en el estado del arte de las técnicas de 

espectroscopia de fluorescencia y análisis multivariante de datos aplicados hasta 

ahora. 

 

El Capítulo 2 presenta el enfoque metodológico utilizado así como su justificación. 

Además, se indica el objetivo principal y los objetivos específicos de este proyecto de 

tesis doctoral. 

 

La parte experimental se describe en el Capítulo 3 , incluyendo los materiales y los 

métodos analíticos utilizados. Asimismo, se detallan los diferentes conjuntos de datos 

experimentales, la forma en la que se obtuvieron y su finalidad. 

 

El Capítulo 4  desarrolla la metodología aplicada a lo largo de esta memoria. En primer 

lugar, se presenta la metodología general, en la que se describen los principales 

aspectos desarrollados así como las estrategias adoptadas durante este trabajo de 

investigación. En segundo lugar se proporciona una breve guía sobre el análisis 

multivariante de datos, así como las principales características de los algoritmos de 

análisis de datos de segundo orden utilizados. Esta parte se centra en los aspectos 

prácticos y en el proceso de toma de decisiones involucradas en el análisis 

multivariante de matrices de excitación - emisión (MEE) de fluorescencia. Para ello se 

discuten los aspectos más importantes de cada método utilizado: Análisis de Factores 

Paralelos (PARAFAC), como método de resolución de curvas de múltiples vías, 

Resolución Multivariante de Curvas por Mínimos Cuadrados Alternados (MCR-ALS), 

como método de resolución de curvas multivariante, y Mínimos Cuadrados Parciales 

Desdoblados con Bilinealización Residual (U-PLS/RBL), como método de regresión 

multivariante puro. 

 

Dado que el objetivo principal de este proyecto de Tesis Doctoral es el desarrollo de 

una nueva metodología basada en técnicas de espectroscopia de fluorescencia, se 

han estudiado y comparado el uso de diferentes métodos quimiométricos aplicados 

sobre MEE de fluorescencia. Por lo tanto, la evaluación y optimización de la 

metodología desarrollada se realiza a lo largo del Capítulo 5 , donde los principales 

resultados obtenidos se resumen en las siguientes secciones: 
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En la Sección 5.1  se define el protocolo de adquisición de datos de MEE, haciendo 

hincapié en la adecuada selección de los rangos espectrales, la optimización de los 

principales parámetros instrumentales de medida y la determinación de las 

características de fluorescencia de los compuestos objetivo. Además, dadas las 

características espectrales de los HAPs bajo estudio, se señala claramente la 

necesidad de aplicación de métodos de análisis multivariante de datos en combinación 

con las medidas de MEE para fines cualitativos y cuantitativos. 

 

La optimización y validación de los principales aspectos involucrados en el análisis 

multivariante de datos y análisis de múltiples vías de MEE de fluorescencia se recogen 

en la Sección 5.2 . En ella se establecen también las bases preliminares a considerar 

en el modelado de datos de MEE procedentes de muestras de aerosoles. Esto implica 

el análisis y la optimización de los métodos de pre-procesamiento de datos necesarios 

para construir modelos robustos, seleccionando el procedimiento de interpolación 

como la mejor estrategia a seguir para posteriores análisis. A continuación, se definen 

específicamente las características y los criterios adoptados para cada método de 

análisis de datos utilizados en calibración de segundo orden, haciendo hincapié en el 

efecto de las restricciones en el contexto del análisis de muestras complejas. 

Finalmente, se evalúan los métodos quimiométricos seleccionados en virtud de la 

existencia de compuestos interferentes no presentes en las muestras de calibración, 

con el fin de proporcionar una visión general sobre el rendimiento de los modelos en el 

análisis de HAPs en muestras de aerosol. En este sentido, se muestra cómo MCR-

ALS y PARAFAC pueden utilizarse para una rápida detección cualitativa y semi-

cuantitativa de HAPs en muestras ambientales, aunque estos métodos son más 

sensibles a desviaciones provocadas por efectos de matriz en las muestras. En 

contraste, aunque el método U-PLS/RBL proporciona la mejor información cuantitativa, 

la dificultad de estimar el número de contribuciones inesperadas en el paso RBL, así 

como su elevado tiempo de análisis, se revelan como puntos débiles para un cribado 

rápido de muestras ambientales. 

 

La Sección 5.3  engloba la optimización del protocolo de extracción de muestras de 

aerosol, previamente requerido al análisis de HAPs por espectroscopia de 

fluorescencia. En primer lugar, se discute la selección del disolvente y subrogado más 

apropiado para la corrección de la eficiencia de extracción, donde el n-hexano como 

disolvente y el 2-2' binaftilo como subrogado, cumplen con los requisitos fisicoquímicos 

y espectrofluorimétricos necesarios. Después, se presenta la optimización del 

protocolo de extracción Soxhlet, utilizando un diseño de experimentos que condujo a la 
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elección del modo “warm” como el modo de extracción más adecuado. Finalmente, la 

optimización del tiempo de extracción se realizó utilizando un material de referencia 

estándar, con el que se seleccionó un tiempo de extracción de 5 horas para el 

posterior análisis de las muestras de aerosol. 

 

Dada la particular complejidad del análisis de HAPs en muestras de aerosoles, en la 

Sección 5.4 se validan los tres algoritmos de segundo orden indicados, con fines 

cualitativos y cuantitativos, en extractos de muestras de aerosoles. Los métodos de 

segundo orden de resolución de curvas, PARAFAC y MCR-ALS, se muestran 

adecuados para la determinación semi-cuantitativa y el seguimiento de los patrones de 

variación de los HAPs en la fracción fina de partículas en aire ambiente. Además, 

estas metodologías muestran una mayor sensibilidad que la obtenida mediante GC-

MS, ofreciendo grandes ventajas desde el punto de vista del muestreo para la 

monitorización de estos contaminantes con una mayor resolución temporal. En cuanto 

a la cuantificación, ambos métodos proporcionan predicciones inexactas, debido a la 

diferencia en la matriz entre las muestras analizadas y las muestras de calibración. De 

esta forma y con el fin de evitar efectos de matriz en las muestras de aire urbano 

analizadas, se aconseja optar por la combinación de métodos de adición estándar y 

algoritmos de análisis de datos de segundo orden, validados por medio de un material 

estándar de referencia. Los resultados obtenidos definen la combinación de MCR-ALS 

y adición estándar como método de cuantificación para el análisis de muestras de 

aerosol. 

 

Una vez que los diferentes enfoques han sido ampliamente probados, optimizados y 

validados, la Sección 5.5  explora la aplicación de la metodología desarrollada para 

llevar a cabo un estudio preliminar de detección y cuantificación de 9 HAPs en 

muestras de aerosoles urbanos durante varios meses. En este sentido, se discuten y 

comparan los patrones de variación mensual y diaria de los HAPs, en relación con los 

patrones de tráfico. Por otra parte, la vigilancia complementaria de otros HAPs 

pesados se revela necesaria para poder evaluar convenientemente el potencial tóxico 

total de los HAPs asociados a partículas. Además, se analiza la influencia de otros 

factores, como diversos parámetros meteorológicos y otros contaminantes 

convencionales, para una descripción más completa de los patrones atmosféricos de 

los HAPs asociados a partículas. Finalmente, se hace uso de ratios de diagnóstico y 

otros métodos multivariantes (e.g. el Análisis de Componentes Principales) para una 

caracterización más profunda del área de estudio, aplicable a la asignación de fuentes 

de HAPs. 
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El Capítulo 6  presenta las conclusiones alcanzadas a lo largo de este trabajo de 

investigación. 

 

El Capítulo 7  recoge la bibliografía utilizada en esta memoria, incluyendo artículos, 

monografías, tesis y otras publicaciones. 

 

Finalmente, se adjuntan en Anexo  los artículos publicados y la lista de contribuciones 

científicas presentadas en conferencias internacionales, derivadas del trabajo 

realizado. 
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1.1 ATMOSPHERIC POLYCYCLIC AROMATIC HYDROCARBONS 

 

1.1.1  Definition and physicochemical properties  

 

Polycyclic Aromatic Compounds (PACs) encompass a wide variety of congeners 

formed by the condensation of two or more six-carbon aromatic rings, some of which 

may contain N, S, or O heteroatoms within the aromatic rings or functional groups as 

substitutes for ring hydrogen. Within this family, Polycyclic (or Polynuclear) Aromatic 

Hydrocarbons (PAHs) are those PACs that contain only carbon and hydrogen atoms in 

their molecule, grouped into at least two condensed aromatic rings structures (linear, 

cluster or angular arrangement) [CCME, 2010]. This group comprises hundreds of 

individual substances which generally occur as complex mixtures rather than single 

compounds.  

 

The physicochemical properties of PAHs, which vary with their molecular weight and 

structure, make them highly mobile among the environmental compartments (air, soil, 

water) where their presence is ubiquitous [Menzie et al., 1992; Finlayson-Pitts et al., 

2000; Samanta et al., 2002]. In general, these properties are dominated by the 

conjugated π-electron systems which also account for their chemical stability.  

 

Table 1.1 summarizes the physicochemical properties of a few selected PAHs. 

Specifically, the vapor pressure and aqueous solubility of PAHs decrease with 

increasing molecular weight. Besides, PAHs dissolve well in organic solvents and are 

lipophilic, having also high melting and boiling points.  

 

More interestingly, the availability of high-energy π-bounding orbitals and of relatively 

low energy π*-antibonding orbitals in PAHs leads to the absorption of visible or 

ultraviolet radiation by the transition of an electron from the π- to π*-orbital, providing 

characteristic absorption and fluorescence spectra. Hence, PAHs are able to absorb in 

the actinic Ultraviolet (UV) radiation (λ > 290 nm) [Karcher et al., 1985], generating 

characteristic fluorescence emission spectra when they are excited, which is especially 

useful for their identification.  
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Table 1.1. Chemical structure and physicochemical properties of the US-EPA selected PAHs [ATSDR, 1995; EC, 2001]. 

 

 
PAH 

 
 

CAS 
number 

Chemical 
structure 

Molecular 
formula 

Molecular  
weight 

Density 
(g cm -3) 

Melting 
point 
(ºC) 

Boiling 
point 
(ºC) 

Vapor 
pressure 

(Pa at 
25ºC) 

Log 
Kow a 

Log 
Koc b 

Naphthalene 91-20-3 
 

C10H8 128.16 1.145 80.5 218 1.1 · 10-1 3.29 2.97 

Acenaphthylene   
208-96-8 

 

C12H8 152.2 0.8987 91.8 280 1.3 · 10-1 4.07 1.40 

Acenaphthene  
83-32-9 

 
C12H10 154.2 1.20 95 279 4 · 10-1 4.33 3.66 

Fluorene  
86-73-7  

C13H10 166.2 1.202 116 295 9.0 · 10-2 4.18 3.86 

Phenanthrene 85-01-8 
 

C14H10 178.2 1.18 100.5 340 2.0 · 10-2 4.5 4.15 

Anthracene 120-12-7 
 

C14H10 178.2 1.283 216.4 342 1 · 10-3 4.5 4.15 

Fluoranthene  
206-44-0 

 
C16H10 202.26 1.252 108.8 375 1.2 · 10-3 5.1 4.58 

 
Pyrene 

 
129-00-0 

 
C16H10 202.3 1.271 393 150.4 6.0 · 10-4 4.88 4.58 

aKow =octanol/water partition coefficient, bKoc= soil organic carbon/water partition coefficient. 
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Table 1.1.  (continued) Chemical structure and physicochemical properties of the US-EPA selected PAHs. 

 

 
PAH 

 
 

CAS 
number 

Chemical 
structure 

Molecular 
formula 

Molecular  
weight 

Density  
(g cm -3) 

Melting 
point 
(ºC) 

Boiling 
point 
(ºC) 

Vapor 
pressure 

(Pa at 
25ºC) 

Log 
Kow a 

Log 
Koc b 

Benzo[a]anthracene 56-55-3 
 

C18H12 228.3 1.274 160.7 400 2.8 · 10-5 5.63 5.30 

Chrysene  
218-01-9 

 
C18H12 228.3 1.3 253.8 448 5.7 · 10-7 5.9 5.30 

Benzo[b]fluoranthene  
205-99-2 

 
C20H12 252.3 1.286 168.3 481 6.7 · 10-5 6.04 5.74 

Benzo[k]fluoranthene  
207-08-9 

 
C20H12 252.3 1.286 215.7 480 

 
5.2· 10-8 

 
6.84 5.74 

Benzo[a]pyrene  
50-32-8 

 
C20H12 252.3 1.351 178.1 496 7.0 · 10-7 6.04 6.74 

Dibenzo[a,h]anthracene   
53-70-3  

C24H14 278.36 1.28 266.6 524 3.7 · 10-8 6.5 6.52 

Benzo[ghi]perylene  
191-24-2 

 

C22H12 276.3 1.378 277 550 1.0 ·10-8 6.50 6.20 

Indeno[1,2,3-cd]pyrene  
193-39-5  

C22H12 276.3 1.379 163.6 536 1.3 · 10-8 7.66 6.20 

aKow =octanol/water partition coefficient, bKoc= soil organic carbon/water partition coefficient. 
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1.1.2 Origin and sources 

 

PAHs are released to the atmosphere as by-products from all incomplete combustion 

processes of organic material. In nature, PAHs may be formed in three ways: (a) high 

temperature (500 to 800ºC) thermal decomposition (pyrolysis) and subsequent 

recombination (pyrosynthesis) of organic molecules [Haynes, 1991], (b) low to 

moderate (100 to 300ºC) temperature diagenesis of sedimentary organic material to 

form fossil fuel, and (c) direct biosynthesis by microorganisms and plants [Neff, 1979]. 

Comparatively, pyrosynthesis and pyrolysis are the main contribution mechanisms in 

which the amount and range of produced PAHs vary widely according to the type of 

fuel and the combustion conditions (temperature, turbulence, residence time, and 

oxygen availability) [Westerholm et al., 1988]. 

 

PAHs have a widespread occurrence largely due to their production by virtually all 

types of combustion sources of organic substances. But in general, they can be 

grouped in five major emission source types: domestic, mobile, industrial, agricultural, 

and natural [EC, 2001].  

 

In Europe, 27 Member States report emissions data for benzo[a]pyrene (BaP), 

benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF) and indeno[1,2,3-cd]pyrene 

(IcdP) (total PAHs is expressed as the sum of these 4 PAHs), compiled in the annual 

European Union emission inventory report under the UNECE Convention on Long-

range Transboundary Air Pollution [EEA, 2013a]. Other countries (the USA and UK) 

and regions (the former USSR and North America) have also developed PAHs 

emission inventories, which show that the global PAHs emissions are dominated by 

anthropogenic activities (>90%), in which combustion is the major contributor 

[Rehwagen et al., 2005]. In particular, residential heating, coke and aluminum 

production and power generation as stationary sources, and mobile sources comprise 

most of the anthropogenic atmospheric emission sources of PAHs [Baek et al., 1991b; 

Zhang and Tao, 2009]. Forest fires and volcanic eruptions also contribute to the natural 

budget of the PAHs inventory, but in a minor range (<1%) [Zhang and Tao, 2009]. 

 

Recent data on PAHs emissions in Europe evidenced a significantly reduction of 58% 

from 1990 (2596 tonnes) to 2011 (1098 tonnes). The highest relative reduction in 

emissions (between 1990 and 2011) was achieved in the aluminum production 

category (– 81.6 %), mainly due to technological changes. Accordingly, individual 
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PAHs emissions for BaP, BbF, BkF and IcdP, decreased by 45%, 25%, 19% and 14%, 

respectively.  

 

In contrast, the European inventory database shows that the residential and 

commercial combustion sector group was the most important source of total PAHs. 

Figure 1.1 shows the relative contribution of the main anthropogenic sources in 2011. 

 

 

Figure 1.1.  Relative contribution of the main anthropogenic sources of PAHs in 2011. Adapted 

from [EEA, 2013a]. 

 

In general, emissions from these sources have declined since 1990 as a result of 

reduced residential use of coal, improvements in abatement technologies for metal 

refining and smelting, and stricter regulations on emissions from the road transport 

sector [EEA, 2013a]. However, in 2010, only a 6.1% reduction was reported, and Spain 

was one of the Member States that contributed the most (210 tonnes), i.e. more than 

10%.  

 

Even so, recent data on BaP emissions provided by the European Environment 

Agency [EEA,2013b] suggest that the air quality target value setup in the air quality 

directives, is being exceeded in many locations around Europe. Particularly, in Eastern 

Europe, where domestic coal and wood burning is commonly used (e.g. Poland, parts 

of Russia, and the Czech Republic), and the more populated and industrialized areas 

of western Europe, e.g. parts of United Kingdom and The Netherlands [Jaward et al., 

2004].  
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More specifically, it is likely that the overall annual average BaP target value will be met 

in some countries, but it seems more challenging in urban areas and/or near emission 

sources. In fact, although it has been estimated that stationary sources contribute 

approximately 90% of total PAH emissions, in urban and suburban areas the mobile 

sources (motor vehicle exhausts) are prevailing [Baek et al., 1991a; Jamhari et al., 

2014], with some minor contribution from combustion processes, petrogenic sources 

and the resuspension of road dust [Omar et al., 2006, 2007]. 

 

1.1.3  Fate and transformations in the atmosphere 

 

After emission to the atmosphere, PAHs are ubiquitously distributed and partitioned 

between the gaseous and the particulate phase. This distribution varies with the 

properties of the individual PAH (e.g. vapor pressure), meteorological conditions 

(temperature, solar radiation, relative humidity, wind speed and direction), and the 

nature of the aerosol (size distribution, concentrations of PAHs, chemical composition, 

carbon content, etc.) [Ravindra et al., 2008a; Kim et al., 2013].  

 

Generally, ambient temperature, solar radiation, and ozone show opposite trends 

compared to particulate PAHs [Amodio et al., 2009]. In contrast, there is usually a 

positive correlation between relative humidity and total PAHs concentration, due to a 

depositional effect on the particulate matter of PAHs in the gas phase, as a 

consequence of environmental humidity [Mastral et al., 2003]. Additionally, strong 

winds tend to disperse particulate PAHs and reduce their concentration levels [Sikalos 

et al., 2002], whereas wind direction provides information on long-distance transport, 

being an important mechanism to explain PAHs levels. Hence, partitioning of PAHs 

between gas/particulate phases plays an important role, which determines their 

physical and chemical fates in the atmosphere (dry and wet deposition, chemical 

reactivity, lifetime) [Zhu et al., 2009; Delgado-Saborit et al., 2010], transport and 

transformation through the environment, and their toxicological effects [Kaupp and 

McLachlan, 1999; Offenberg and Baker, 2002; Poor et al., 2004].  

  

Low-molecular weight PAHs (two or three aromatic rings) are more volatile (low 

temperatures of condensation), and are almost exclusively found in the gaseous phase 

(>90%) [Kameda et al., 2011]. These hydrocarbons, included in the moderately/high 

mobility categories, are able to undergo world-wide atmospheric dispersion (they 

accumulate preferentially in polar latitudes). Although the lighter PAH compounds are 

considered to be less toxic (section 1.1.4), they are able to react with other pollutants 
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(such as ozone, nitrogen oxides, and sulfur dioxide) to form diones, nitro- and dinitro-

PAHs, and sulfonic acids, respectively, whose toxicity may be more significant [Baek et 

al., 1991b].  

 

Semi-volatile 4-ring PAHs are distributed between both phases and their gas to particle 

partition coefficients are most susceptible to the influence of environmental factors. 

They are deposited and accumulate mainly in mid latitudes. 

 

Low-volatile PAHs with 5 or more aromatic rings (low vapor pressure) show 

insignificant vaporization under all environmental conditions, and are primarily 

adsorbed/absorbed onto the surfaces of fine respirable aerosol particles (aerodynamic 

diameter ≤ 2.5 µm) [Baek et al., 1991a,b; Eiguren-Fernandez et al. 2004]. They are 

classified in the low mobility category of persistent organic pollutants (POPs), subjected 

to rapid deposition and retention close to the source. Since most carcinogenic PAHs (5 

and 6 aromatic rings) (section 1.1.4) are mostly associated with particulate matter (PM) 

(Table 1.2), many studies on PAHs in ambient air have been focused on PAHs bound 

to PM, particularly PM10 and PM2.5 [Ohura et al. 2004; Villar-Vidal et al., 2014; Jamhari 

et al., 2014].  

 

In general, the concentration of PAHs in the gas phase increases with high summer 

temperatures whereas during winter particulate phase PAHs dominate [Subramanyam 

et al., 1994]. Even so, PAHs concentration shows little seasonality in areas where local 

sources are mostly industrial, because the emissions are more uniform throughout the 

year. In contrast, in most urban, residential and rural areas, where the local sources 

are related to residential and commercial heating, seasonal variation in concentrations 

of particle phase PAHs show similar trends (higher concentrations during winter 

[Ravindra et al., 2008b; Amodio et al., 2009]). In fact, several studies carried out in 

Europe and in the USA found that PAHs concentration was generally higher in winter 

than in summer by a factor of 1.5 – 10 [Baek et al., 1991a; Harrison et al., 1996; 

Eiguren-Fernandez et al., 2004]. 

 

In this context, several authors have reported that higher concentrations in winter are 

most likely due to (a) reduced vertical dispersion due to lower thermal inversions; (b) 

less intense atmospheric reactions; (c) enhanced sorption to particles at lower 

temperatures (as a result of reduced vapor pressure and/or shifting in the gas/particle 

distribution induced by ambient temperature variation [Subramanyam et al., 1994]); and 

(d) increased emissions from domestic heating and power plants during winter with low 
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temperatures [Lee et al., 2005]. In addition, some cities show diurnal and nocturnal 

variations of PAH concentrations related to traffic emissions [Ringuet et al., 2012]. 

 

1.1.4  Priority PAHs and Legislation 

 

PAHs are widely distributed in the atmosphere and are of environmental concern due 

to their persistence and toxicity. One member of the PAHs family, benzo[a]pyrene, was 

the first chemical compound and atmospheric pollutant identified as human 

carcinogen [Boström et al., 2002; Chen and Liao, 2006], with also well-known 

mutagenic properties [IARC, 1983; Lewtas, 1993]. Additionally, as mentioned above, 

PAHs belong to the group of POPs, whose persistence increases with the ring number 

and the condensation degree. Thus, due to their mobility, persistence, tendency to 

bioaccumulation, and toxic effects on human health and ecosystems, PAHs were 

included in the list of 16 POPs specified by the UNECE Convention on Long-Range 

Transboundary Air Pollution Protocol on Persistent Organic Pollutants [UNECE, 1979; 

Council Decision 2004/259/EC, 2004].  

 

Because of these features, several international agencies have listed these 

compounds as priority pollutants. Seventeen priority PAHs were chosen by the Agency 

for Toxic Substances and Disease Registry [ATSDR, 1995] on the base of their 

toxicological profile. Except for benzo[j]fluoranthene (BjF), the other 16 compounds 

were also specified by the United States Environmental Protection Agency (US-EPA) 

as priority pollutants [OFR, 1982]. In contrast, the World Health Organization adds 17 

additional PAHs to make a total of 33 [WHO, 1998].  

 

Table 1.2 indicates the toxicology classifications of the 16 US-EPA priority PAHs by 

specific agencies. The carcinogenicity classification by the US-EPA Carcinogenicity 

Risk Assessment Endeavor Work Group [US-EPA, 1994] shows that seven PAH 

compounds are considered to be probable human carcinogens (Group B2): BaA, BaP, 

BbF, BkF, Chr, DahA, and IcdP. In contrast, according to a public health statement by 

the Agency for Toxic Substances and Disease Registry [ATSDR, 1995], the 

International Agency for Research on Cancer (IARC) considers several PAHs to be 

probable (Group 2A): BaA, BaP and DahA, possible (Group 2B): BbF, BjF, BkF, IcdP 

human carcinogens, and not classifiable carcinogens (Group 3) [IARC, 1983; IARC 

1987]. Among these ones, the most potent PAH carcinogens have been identified to be 

benzo[a]anthracene, benzo[a]pyrene and dibenzo[a,h]anthracene [Armstrong et al., 

2004; CCME, 2010]. Nevertheless, benzo[a]pyrene is the only PAH for which 
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toxicological data are sufficient for derivation of a carcinogenic potency factor [Peters et 

al., 1999]. Hence, benzo[a]pyrene has been widely used as a marker for assessing the 

total carcinogenic risk of PAHs, because the relatively large amount of toxicological 

data available, its strong correlation with other PAHs for a given set of conditions 

[Amodio et al., 2009], and the relative abundance of BaP exposure measurements.  

 

Table 1.2. Toxicological profile, classification and phase distribution of the 16 US-EPA priority 

PAHs [IARC, 1987, ATSDR, 1995, Ravindra et al., 2008a]. 

PAH Acronym Nº of 
rings 

US-
EPAa IARCb TEFc Particle/gas 

distribution 
Naphthalene  Naph 2 D 3 0.001 Gas 
Acenaphthylene  Acy 3 D - 0.001 Gas 
Acenaphthene  Ace 3 D 3 0.001 Gas 
Fluorene  Flu 3 D 3 0.001 Gas 
Phenanthrene  Phe 3 D 3 0.001 Particle/gas 
Anthracene  Ant 3 D 3 0.01 Particle/gas 
Fluoranthene  Flt 4 D 3 0.001 Particle/gas 
Pyrene  Pyr 4 D 3 0.001 Particle/gas 
Benzo[a]anthracene  BaA 4 B2 2A 0.1 Particle 
Chrysene  Chr 4 B2 3 0.01 Particle 
Benzo[b]fluoranthene  BbF 5 B2 2B 0.1 Particle 
Benzo[k]fluoranthene  BkF 5 B2 2B 0.1 Particle 
Benzo[a]pyrene  BaP 5 B2 2A 1 Particle 
Dibenzo[a,h]anthracene  DahA 5 B2 2A 1 Particle 
Benzo[ghi]perylene  BghiP 6 D 3 0.01 Particle 
Indeno[1,2,3 -cd]pyrene  IcdP 6 B2 2B 0.1 Particle 
IARCb/US-EPAa carcinogenicity classifications: 1/A = human carcinogen, 2A/B2 = probable 
human carcinogen, 2B/C =possible human carcinogen, 3/D = not classifiable as carcinogen.  
TEFc = standardized benzo[a]pyrene toxic equivalence factors adopted from [WHO, 1998] and 
[Malcom and Dobson,1994]. 
  

Toxic Equivalency Factors (TEFs) have been used to quantify the carcinogenicity of 

other PAHs relative to benzo[a]pyrene. Nowadays, however, the representativeness of 

BaP as a marker is an argument of debate [Gianelle et al., 2013], because of its half-

lifetime and reactivity in the atmosphere (its high photochemical reactivity can 

underestimate the toxic potential of PAHs) [Saarnio et al., 2008; Slezakova et al., 

2013]. 

 

As a consequence of their toxic effects, current international air pollution policies 

include measures for the reduction of PAH emissions through a much tighter legislation 

concerning the allowable concentrations of PAHs in ambient air (in particular 

benzo[a]pyrene). Specifically, the European Union Directive 2004/107/EC on ambient 

air quality proposed a target value for benzo[a]pyrene of 1 ng m-3 for the total content in 

the PM10 fraction averaged over a calendar year [EUD, 2005], taken as a marker of the 

carcinogenic risk of airborne PAHs. Furthermore, this directive also mentions that each 
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member state shall monitor other relevant PAHs to assess the contribution of PAHs in 

ambient air: BaA, BbF, BjF, BkF and IcdP and DahA; although no target values have 

been set yet for these compounds. Other countries, like the United Kingdom, have 

adopted even more strict air quality standards for BaP (annual mean of 0.25 ng m-3).  

 

1.2 PAHs PRESENCE IN URBAN AREAS  

 

1.2.1 Ambient air concentration levels 

 

Several authors have reported high PAH concentrations in ambient air and in street 

dust close to traffic sites in urban areas [Sitaras et al., 2004] probably due to the 

increasing vehicular traffic and the scarce dispersion of the atmospheric pollutants. 

Most of the studies state that the emissions from vehicle exhausts are the largest 

contributors of PAHs in cities [Khalili et al., 1995; Miguel et al., 1998; Ravindra et al., 

2006]. Specifically, in urban and suburban areas, PAHs are present in the fine 

particulate fraction (PM2.5) and within the solvent extractable fraction, in which the most 

toxic PAHs (5 and 6-ring) can contribute to up to 80% of the total PAHs in the 

particulate phase. This, coupled to the higher density of population in cities, makes the 

risk associated with the human exposure to atmospheric PAHs higher in urban areas 

[Sharma et al., 2007].  

 

Hence, many works have been focused on the study of the concentration, distribution 

and sources, to assess the health risk exposure to airborne PAHs in cities. However, a 

mean PAHs concentration value cannot be considered as indicator of urban areas, as it 

can be inferred from the significant variations depending on the location and period of 

study reported in the literature (Table 1.3). 
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Table 1.3. PAHs concentration in urban areas reported in the literature.  

 
Country/City 
 

Particle 
size 

Number of 
PAHs 
measured 

Sampling 
period (h)/ 
Number of 
samples 

Period of 
study 

Total PAHs 
Concentration 
(ng m -3) 

Mean BaP 
Concentration 
(ng m -3) 

Reference 

Spain 

Errenteria PM10 31 24 / 167 1996/97 10.7±10.4 0.50 ± 0.55 Barrero et al., 
2007 

Seville 
aPM10 
bPM2.5 

16 24 / 5 2000/01 
a8.326 
b7.579 

a0.547 
b0.513 

Gutiérrez-Dabán 
et al., 2005 

Zaragoza PM10 17 24 / 50 2003/04 6.0 ± 5.9 0.29 ± 0.34 Callén et al., 2008 

Madrid PM10 12 24 / 55 2008/09 1.250 0.067 Barrado et al., 
2013 

Gipuzkoa PM2.5
 6 24 / 801 2006/11 1.05±0.8 0.15 ± 0.12 Villar-Vidal et al. 

2014 
Europe 

Italy/Rome PM10 8 24 / 20 2000/01 54.5 1.128 Menichini et al. , 
2007 

Czech Republic/Brno PM10 16 24 / 4 2001 5.2 0.52 Ciganek et al., 
2004 

Greece/Athens PM10 13 24 / 58 2001/02 2.839 0.158 Mantis et al., 2005 

Greece/Heraklion TSP 24 24 / 16 2000/02 17.4 (3.2-44.9) 1.07 (0.11-3.07) Tsapakis et al., 
2005 

Belgium/Flanders PM10 7 24 / 365 2006/07 12.0 1.18 Vercauteren et al., 
2011 

Turkey/Zonguldak PM2.5 14 24 / 93 2007 152.6±118.2 (W) 
3.3±4.4 (S) 

15.7±11.7 (W) 
0.4±0.4 (S) 

Akyüz and Çabuc, 
2008 

England/London  PM10 14 24/ 12 2009 2.47 0.22 Brown et al., 2012 
Notes: M= morning, A= afternoon, N= night, S= summer, W= winter. 
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Table 1.3 (continued) PAHs concentration in urban areas reported in the literature.  

 
Country/City 
 

Particle 
size 

Number of 
PAHs 
measured 

Sampling 
period (h)/ 
Number of 
samples 

Period of 
study 

Total PAHs 
Concentration 
(ng m -3) 

Mean BaP 
Concentration 
(ng m -3) 

Reference 

Asia 
Malaysia / Kuala 
Lumpur PM10 17 24 / 24 

a 1998/99 
b 2001 

6.28 ± 4.35a 
5.85 ± 4.05b 0.47 ± 0.36b 

aOmar et al., 2002 

bOmar et al., 2006 

China/Hong Kong PM10 16 24 / 7 (W),  
4 (S) 2000/01 5.82 (S) 

54.72 (W) 
1.22 (S) 
2.65 (W) Guo et al., 2003 

China/Guangzhou PM10 16 24 / 51 2001/02 23.7±18.4 2.3±2.1 Li et al., 2006 

Thailand/Chiang Mai PM10 16 24 / 12 2005/06 6.09±4.43 (S) 
9.91±3.87 (W) 

1±1.08 (S) 
1.33±0.65 (W) 

Pengchai et al., 
2009 

India/Agra PM10 17 24 / 32 2005/06 28.67 3.28 Masih et al., 2010 

India/Delhi PM10 16 24 / 16 (W) 
14 (S) 2007/08 81.5±32.4 W) 

33.1±32.4 (S) 
6.9±2.1 W) 
3.1±1.9 (S) Singh et al., 2011 

Malasya/ Kuala Lumpur PM10 16 24 / 18 2010/11 2.03 ± 0.69 0.17 ± 0.07 Jamhari et al., 
2014 

America 

USA/San Dimas (Los 
Ángeles) PM2.5 15 24 / 50 2001/02 1.36 (W) 

0.30 (S) 0.076 ± 0.093 
Eiguren-
Fernandez et al., 
2004 

Brazil/Sao Paulo PM2.5 14 24 / 65 2002 10.8 ± 3.07 
(∑14 PAH) 0.52 ± 0.26 Bourotte et al., 

2005 

Mexico/Merced PM10 16 8 / 21 2003 
15.7 (M) 
6.4 (A) 
12.2 (N) 

1.730±1.17(M) 
0.683± 0.46(A) 
1.590± 1.29(N) 

Guzmán-Torres et 
al., 2009 

USA/Atlanta PM2.5 19 24 / 30(S) 
/ 27 (W) 2003/04 0.60 (S) 

3.16 (W) 
0.0291(S) 
0.2751 (W) Li et al., 2009 

Notes: M= morning, A= afternoon, N= night, S= summer, W= winter. 
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1.2.2 Source identification of PAHs 

 

Specific PAHs have been suggested as markers for certain processes of PAHs 

release, for which PAHs concentration profiles and ratios could be used as diagnostic 

tools to identify PAH sources, classify samples by location and estimate the importance 

of combustion and petroleum-derived PAHs [Kavouras et al., 1999; Yunker et al., 2002; 

Ravindra et al., 2008a].  

 

Chrysene and benzo[k]fluoranthene were reported to be indicators of coal combustion 

[Ravindra et al., 2006, 2008a]. Higher levels of benzo[ghi]pyrene, coronene, and 

phenanthrene were proposed for motor vehicle emissions [Ravindra et al., 2006]. 

Meanwhile, several authors have found that lighter PAHs (3-benzene ring PAHs and 

naphthalene) are more related to Heavy Duty Vehicles (HDVs), whereas Light-Duty 

Vehicles (LDVs) were the dominant sources of heavy PAHs (4- and 5- benzene ring 

PAHs, such as benzo[a]pyrene and dibenzo[a,h]anthracene) [Miguel et al., 1998; Marr 

et al., 1999]. Pyrene, fluoranthene, and phenanthrene show higher levels in emission 

from incineration [Ravindra et al., 2006], and have been also found associated with salt 

particles (from salting road during winter), which appear to adsorb volatile PAHs 

emissions from motor vehicles [Harrison et al., 1996].  

 

The more volatile PAHs (fluorene, fluoranthene, and pyrene) were reported to be 

associated with oil combustion emissions, along with moderate levels of the higher 

molecular weight compounds (benzo[b]fluoranthene and indeno[1,2,3-cd]pyrene) 

[Harrison et al., 1996; Ravindra et al., 2006]. Specially, benzo[ghi]perylene has been 

identified as a typical tracer of vehicular sources of PAHs [Harrison et al.,1996]. Yang 

et al. (1998) also suggested marker PAHs for cement plants (acenaphthylene, 

acenaphthene and anthracene), waste incineration (indeno[1,2,3-cd]pyrene and 

chrysene), and industrial stacks (4- and 5-benzene ring PAHs). 

 

Nonetheless, ratios of pairs of PAHs are more frequently used for source identification. 

Table 1.4 lists the typical diagnostic ratios, taken from literature, attributed to specific 

sources. 
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Table 1.4. PAH ratios proposed for source identification. 

 
PAH ratio 

 

Gasoline 
exhaust 

Diesel 
exhaust 

Wood 
combustion 

Vehicular 
emission 

Road dust Reference 

Flu/(Flu+Pyr)  < 0.5 > 0.5    Ravindra et al., 2006 
Flt/Pyr     0.6  Ravindra et al., 2008a 

Flt/(Flt+Pyr)   > 0.5 
 

0.40–0.5a 
 

0.42b, 0.52c 

aKavouras et al., 1999 
bYunker et al., 2002 

cOda et al., 2001 

BaA/(BaA+Chr) 0.22-0.55d 0.38-0.64e 0.43f  0.2-0.35g 

dSimcik et al.,1999 
eSicre et al., 1987 

fLi and Kamens, 1993 
gYunker et al., 2002 

BaA/Chr  0.28-1.2 0.17-0.36 0.93 0.63  Simcik et al., 1999 
BaA/BaP  0.5 1.0 1.0   Li and Kamens, 1993 

BaP/(BaP+Chr ) 0.73 0.5    Ravindra et al., 2008a 
BaP/BghiP  0.3-0.4 0.46-0.81    Simcik et al.,1999 

BghiP/BaP 2.5-3.3h 1.2-2.2h   0.86i 
hRogge et al.,1993 

iOda et al., 2001 
BbF/BkF   >0.5    Ravindra et al., 2008a 

BbFs/BghiP  0.33 1.60 2.18   Li and Kamens, 1993 
IcdP/BghiP  0.42-0.47 0.73-0.76    Caricchia et al., 1999 
BghiP/IcdP  3.5-3.8 1.1-1.2 0.8   Li and Kamens, 1993 

IcdP/(IcdP+BghiP)  0.21-0.22j 
0.35-0.70j 

0.37 l 
0.62k 0.18-0.40l 0.36j 

jRogge et al., 1993 
kGogou et al., 1996 

lGrimmer et al.,1983. 



   Introduction 
 

 | 37 
 

Nevertheless, these diagnostic ratios should be used with caution because the 

reactivity of some PAHs species with other atmospheric pollutants, such as ozone 

and/or oxides of nitrogen, can modify the value of the diagnostic ratio [Robinson et al., 

2006 a,b]. In fact, it is assumed that paired chemicals are diluted to a similar extent and 

that the ratios remain constant in route from sources to the downwind point of 

measurement. But the difference in chemical reactivity, volatility and solubility of PAH 

species can modify the atmospheric PAHs levels and thus the ratios between PAHs. 

Herein it is argued that these assumptions only hold for PAHs under a limited set of 

conditions [Galarneau, 2008]. For instance, the ratios of the principal parent PAHs with 

mass 178 (Phe and Ant), 202 (Flt and Pyr), 228 (BaA and Chr) and 276 (IcdP and 

BghiP) have been widely used to distinguish different origins in urban and rural areas 

[Cotham and Bidleman, 1995; Ding et al., 2007]. But, as discussed above, the 

atmospheric degradation of Ant and BaA is much faster than that of their isomers 

[Kamens et al., 1998]. As a consequence, the ratios of Ant/Phe and BaA/Chr will 

change with the aging of the air mass [Ding et al., 2007]. In contrast, the Flt/Pyr and 

IcdP/BghiP isomer pairs, photolytically degrade at comparable rates [Behymer and 

Hites, 1988; Ding et al., 2007]. In this case, their ratios preserve the original 

compositional information during atmospheric transport. Therefore, diagnostic ratios of 

PAHs with similar physicochemical properties should be used to minimize this error 

[Goriaux et al., 2006, Ravindra et al., 2008a].  

 

Studies reported in Table 1.4 also indicate that it is further possible to differentiate the 

traffic emissions from gasoline or diesel exhausts in urban areas. However, due to the 

large variability in reported isomer ratios it is questionable that any single ratio or profile 

selected from the literature will be representative of a source under different conditions 

[Galarneau, 2008]. Thus, source identification can be improved using various other 

ratios proposed in Table 1.4 and performing their relative comparison.  
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1.3 ANALYSIS OF PAHs IN AIR MEDIA 

 

1.3.1 Chromatographic techniques 

 

Although the analysis of PAHs in air is of considerable importance for air quality 

assessment, PAH data in urban air are still scarce, and most of the studies show large 

spatial and temporal uncertainties because of the complex sampling and analytical 

procedures required. Indeed, the analysis of PAHs in aerosol samples faces up to 

many problems because of the very low PAH concentrations in ambient air as well as 

the presence of other organic compounds that can interfere with the PAH determination 

[Liu et al., 2007].  

 

Currently, the most frequently used techniques in standard procedures rely on 

chromatographic methods; mainly, gas chromatography-mass spectroscopy (GC-MS), 

and high-performance liquid chromatography (HPLC-UV/Vis or HPLC-FLD) [Poster et 

al., 2006], as shown in Table 1.5.  

 

Table 1.5. Standard methods for determination of PAHs in air. 

DAD: diode array detector; GC-MS: gas chromatography-mass spectrometry; HPLC: high-
performance liquid chromatography; FID: flame ionization detector; FLD: fluorescence detection 
and UV: ultraviolet detection.  
 

Table 1.5 summarizes the most used PAH-related test methods in air media provided 

by several international organizations: the US-EPA agency, the National Institute for 

Method Document title Analytical 
technique 

Reference  
number 

US-EPA 
TO-13A 

Determination of PAHs in ambient air using 
GC-MS 

GC-MS 181 

NIOSH 
5506 PAHs by HPLC 

HPLC-
FLD/UV 

127 

NIOSH 
5515 PAHs GC GC-FID 126 

UNE-ISO 
16362:2005 

Ambient air. Determination of particle-phase 
PAHs by HPLC 

HPLC-FLD 
or HPLC-
DAD 

84 

UNE-EN 
15549:2008 

Standard method for the measurement of the 
concentration of BaP in ambient air 

HPLC-FLD 
or GC-MS 

59 

ISO 
11338:2003 

Stationary source emissions. Determination of 
gas and particle-phase PAHs 

HPLC or 
GC-MS 

83 

ISO 
12884:2000 

Ambient air. Determination of total (gas and 
particle-phase) PAHs. Collection on sorbent-
backed filters with GC-MS analyses 

GC-MS 82 

ASTM D6209-
98:2004 

Standard Test Method for Determination of 
Gaseous and Particulate PAHs in Ambient Air 
(Collection on Sorbent-Backed Filters with GC-
MS Analysis) 

GC-MS 4 
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Occupational Safety and Health (NIOSH), the International Organization for 

Standardization (ISO), the American Society for Testing and Materials (ASTM), and the 

European Committee for Standardization (CEN), which develops the European 

standards (ENs), now transposed into Spanish legislation as UNE standards. 

 

Chromatographic methods for PAHs analyses have been developed and evaluated 

extensively over the past few decades. Each technique, HPLC or GC, offers unique 

information or has unique aspects. For example, GC-MS provides more accurate 

results than HPLC–FLD for the determination of BghiP because of its inherently low 

fluorescence sensitivity. In contrast, at low concentrations anthracene and perylene are 

best measured by HPLC coupled with fluorescence detection (HPLC-FLD) because of 

their selective and sensitive fluorescence-detection characteristics [Poster et al., 2006]. 

Additionally, GC-MS is often more accurate than GC-FID for the quantification of PAHs, 

because interferences from co-eluting compounds are minimized by the selective 

nature of the detector. 

 

Hence, generally for the analysis of PAHs in air, gas chromatography is the most 

common analytical separation mechanism, in combination with mass spectrometry. 

However, this method usually requires a great number of sample preparation steps, 

including matrix extraction and clean-up approaches, to increase its selectivity, 

resolution, and sensitivity. As a consequence, these measurements tend to be 

laborious, relatively expensive, and time-consuming, which also increases the 

likelihood of sample contamination and losses during their handling and preparation.  

 

Therefore, there is still a great interest in developing more sensitive and selective 

methods to analyze PAHs in aerosol samples for which analytical methods not 

requiring separation of mixture at all, or requiring only a partial fractionation of complex 

mixtures, would be undoubtedly very advantageous. In this sense, there have been a 

number of efforts to develop solvent-free analysis of PAHs. These methods, which 

mostly are still in development, usually rely on the collection of the airborne PAHs on 

filter materials for subsequent release by thermal desorption (TD-GC-MS) [Moltó et al., 

2009] and other approaches such as Laser-Desorption-Ionization Time-Of-Flight MS 

(LDI-TOF-MS) [Pandey et al., 2011].  

 

Alternatively, some methods based on modern fluorescence spectroscopy techniques 

can also comply with these needs, since they are simple, sensitive, rapid and 

nondestructive. They rely on the fact that fluorescence spectroscopy is a powerful tool 
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for the analysis of compounds at very low concentrations, with the additional advantage 

of avoiding the use of large volumes of solvents used in chromatographic techniques.  

 

1.3.2 Fluorescence spectroscopy  

 

Fluorescence is an extremely sensitive analytical technique for PAHs determination 

because of their luminescent properties in the UV–Vis range. Most PAHs have very 

large absorption cross-sections and high fluorescence quantum yields [Karcher et al., 

1985], so they can be detected at sub ppb levels. It is also a selective technique, based 

on the fact that relatively few compounds show intrinsic fluorescence and emission 

intensity, which depends on two variables, excitation and emission wavelengths.  

 

Conventional fluorescence spectroscopy involves generating an emission spectrum by 

scanning the emission wavelengths (λem), while the sample is irradiated at a fixed 

excitation wavelength (λex). Similarly, an excitation spectrum is obtained by scanning 

the excitation wavelength while recording the emission signal at a given emission 

wavelength. Therefore, PAHs can be determined by means of either their excitation or 

their emission spectra [Rodriguez and Sanz, 2000]. However, this limits the detection 

to a single, known analyte, because it does not account for interfering fluorophores at 

or near the same wavelength pair. This lack of selectivity is generated by the strong 

spectral overlapping frequently observed among PAHs and also by the emission from 

the matrix itself, especially when chemically similar compounds must be analyzed in 

complex samples [JiJi et al., 1999]. Therefore, a single-wavelength measurement has 

the limitation of analyzing complex multicomponent PAH samples, or even a simple 

mixture which contains severely overlapping emission and/or excitation spectra, as 

shown in Figure 1.2 [Patra, 2003].  

 
Figure 1.2.  Fluorescence emission spectra of BaP, 6-component PAH mixture (BaP, BkF, BbF, 

Flt, perylene and BghiP) and cigarette smoke (λex 380 nm). Taken from [Patra, 2003]. 
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As an example, Patra (2003) (Figure 1.2) showed that in complex mixtures it was 

difficult to determine the presence of benzo[a]pyrene only from its emission spectrum, 

whereas its quantification became even more difficult, because other PAHs such as 

perylene also contributed in this spectral region. Thus, the application of the traditional 

fluorescence spectroscopy to the determination of PAHs has been limited by its lack of 

selectivity, due to the broad excitation and emission spectra of PAHs and the frequent 

presence of other interfering compounds, which complicate a multi-component analysis 

in environmental samples [Owen et al., 1995; Dissanayake et al., 2004]. In this regard, 

several luminescence techniques have been developed to improve the selectivity of 

fluorescence measurements. These include collecting a two-dimensional total 

fluorescence spectrum, termed an excitation–emission matrix (EEM) [Booksh et al., 

1996], synchronous fluorescence spectroscopy [Patra and Mishra, 2002] and timed-

resolved fluorescence spectroscopy [Bark and Force, 1991], among others. 

 

1.3.2.1 Excitation – emission fluorescence spectroscopy 

 

Excitation-emission fluorescence spectroscopy, also known as total fluorescence 

spectroscopy, was introduced by Johnson et al. in the 70’s [Johnson et al., 1977]. This 

method is a relatively fast and inexpensive analytical technique of moderate selectivity 

and extremely high sensitivity, which has been widely applied to the detection of a very 

wide range of analytes, like polycyclic aromatic hydrocarbons, in environmental and 

biological samples [JiJi et al., 1999]. Its detection capability is approximately one order 

of magnitude greater than that of molecular absorption spectroscopy and its selectivity 

is also clearly greater than that of other spectroscopic methods [Wehry, 1997], so it is 

applied for the analysis of concentrations in the ng mL-1 range. 

  

In EEM spectroscopy, a total fluorescence spectrum is obtained by systematically 

varying the excitation and emission wavelengths and collecting the resulting data 

matrix (J emission wavelengths x K excitation wavelengths). The EEM spectrum of a 

single substance (i) is considered as a bilinear response, since it is a matrix obtained 

by the product of two vectors related with their corresponding excitation and emission 

spectra (Фex,i and Фem,i, respectively). This matrix is also proportional to the 

concentration of the substance (Ci), whereas for a mixture of n fluorescent compounds, 

the obtained EEM spectrum is equal to the addition of the n corresponding spectra. 

 
EEM = ∑ C� ∙ ∅
�,�
��� ∙ ∅
�,�             (1.1) 
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The EEM spectrum can be generated in several ways, but the most common one 

consists of successive recordings of the fluorescent emission spectra at different 

excitation wavelengths using a conventional scanning spectrofluorimeter with 

photomultiplier tube (PMT) detector. Other systems, such as video fluorometers or 

charge-coupled device (CCD) cameras [Nahorniak and Booksh, 2003; JiJi et al., 1999] 

can also be used to detect the emission fluorescence. They are much faster in 

recording the emission spectra than the scanning spectrofluorimeters based on PMT, 

but these have the advantage of greater sensitivity.  

 

Excitation emission fluorescence matrix allows plotting emission intensities at all 

combinations of excitation (K) and emission (J) wavelengths in a single three-

dimensional graph (fluorescence landscape), either as a contour plot or as a 3D 

surface. Figure 1.3 shows a typical EEM contour plot and its coordinates, where in the 

EEM spectrum each of the K columns is the emission spectrum at the kth excitation 

wavelength, and each of the J rows in the EEM spectrum represents the excitation 

spectrum at the jth emission wavelengths.  

 
Figure 1.3.  Typical excitation - emission fluorescence matrix and its coordinates. 

 

Therefore, due to the additional coordinate, the data obtained by EEM is larger than the 

one in conventional fluorescence spectra. As a result of the increase in the 

dimensionality of the measurement, the capability of resolving overlapped fluorescence 

spectra is improved. Furthermore, the selectivity is markedly enhanced by 

simultaneously measuring several fluorescence properties of the analyte in the same 
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experiment. Consequently, in the analysis of relative simple mixtures of fluorophores 

(Figure 1.4 [Wang et al., 2010]), many characteristics can be observed, being possible 

to use the EEM data to analyze multiple PAHs directly.  

 

Figure 1.4. Contour plot of phenanthrene (PHE), pyrene (PY) and anthracene (AN). Taken from 

[Wang et al., 2010]. 

 

Nevertheless, since environmental samples are complex multicomponent systems, the 

EEM performance in multicomponent analysis falls off considerably due to the 

overlapping of the spectra and the presence of spectroscopically interfering species, so 

these kinds of mixtures cannot often be resolved satisfactorily [Andrade-Eiroa et al., 

2013]. Even though, the limited selectivity of EEM spectrofluorimetry can be improved 

by combining the wealth of information offered by EEMs and the power of 

chemometrics. Recently, great developments in data acquisition systems, advanced 

chemometric tools [Bro 2003; Escandar et al., 2007], and related software [Wise et al., 

1995; Hopke, 2003; Jaumot et al., 2005] to deal with 2D fluorescence, measurements, 

have made possible to identify and quantify mixtures of compounds in complex 

environmental fluorescent samples [Mas et al., 2010].  

 

1.3.2.2 Second-order multivariate analysis methods applied to EEMs 

 

Several data analysis methods able to work with second-order data, such as EEM, are 

capable to determine analytes in the presence of interferences, even if these unknown 

compounds are absent in the calibration samples. This property, known as ‘second-

order advantage’ [Arancibia et al., 2008], avoids the major obstacle of univariate and 

first-order analytical methods applied to complex mixtures, namely, the requirement of 
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either interference removal (zeroth-order calibration) or the construction of a large and 

diverse calibration set (first-order calibration) [Escandar et al., 2007]. Therefore, these 

second-order multivariate methods are highly useful for solving analytical problems 

involving complex matrix samples with strong backgrounds, such as aerosol samples. 

 

The most relevant second-order algorithms applied to the analysis of complex mixtures 

are PARAllel FACtor analysis (PARAFAC) [Bro, 1997], Multivariate Curve Resolution – 

Alternating Least Squares (MCR-ALS) [Tauler, 1995; De Juan and Tauler, 2006], and 

latent factors-based methodologies, such as bilinear (BLLS/RBL) least-squares, 

multidimensional (N-PLS/RBL) and Unfolded (U-PLS/RBL) Partial Least-Squares 

[Olivieri, 2005] coupled to Residual BiLinearization (RBL) [Öhman et al., 1990].   

 

PARAFAC and MCR–ALS algorithms belong to the family of curve resolution methods, 

which describe the original dataset (a three-way array or an augmented data matrix, 

respectively) using linear mixture models of all compounds in the dataset in order to 

minimize the global residual. These methods achieve second-order advantage by 

combining data from calibration and test sample before computing the regression 

coefficients. Then, this set is decomposed into contributions from the analyte(s) and 

potential interferences, before the prediction is made in a pseudo-univariate manner.  

 
Figure 1.5.  Graphical representation of the data structure employed by the second-order 

algorithms: (A) parallel factor analysis, (B) multivariate curve resolution – alternating least 

squares, and (C) unfolded partial least squares/residual bilinearization. 
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The most commonly used second-order algorithm, PARAFAC (section 4.5.1), is an 

iterative, least squares-type algorithm that allows the simultaneous extraction of 

multiple pure spectral profiles from multi-way data, even in the presence of unknown, 

uncalibrated interferences. PARAFAC has been extensively applied to the analysis of 

EEMs based three-way arrays (dimension: samples x λem x λex) (Figure 1.5.A), mainly 

due to the trilinear structure of the EEM dataset, which makes it compatible with 

PARAFAC. Trilinear structure to the EEM dataset comes from the fact that the profiles 

of the fluorophores in both orders of the data matrix (excitation and emission profiles) 

for different samples are equal, except in its size that depends on the concentration of 

the sample. Thus, given a number of factors (fluorescent species), PARAFAC yields a 

trilinear decomposition of the data, in which matrix A accounts for pure normalized 

excitation spectra, matrix B for the related normalized emission spectra, and matrix C 

for the PARAFAC scores that contain relative concentration values of the compounds 

in the different samples. This decomposition is often unique, one advantage against 

bilinear models which suffer the known problem of rotational freedom. 

 

Although PARAFAC has been considered as an ideal algorithm for modeling EEM 

data, there are in fact a number of drawbacks for its application: (a) the resolution of 

complex mixtures by iterative procedures is a lengthy task, (b) Rayleigh and Raman 

scattering, which do not have a trilinear structure, must be removed from EEM data by 

selecting a suitable wavelength range or modeled with a specific algorithm [Bahram et 

al, 2006], and (c) this algorithm assumes no interactions between fluorophores and 

thus, it cannot model interactions among solutes such as inner filter effect, quenching, 

or dimer formation.  

 

Hence, when there is no strict trilinearity in any of the orders, MCR-ALS (section 4.5.2) 

is a useful alternative to PARAFAC, because it is more flexible with regards to 

trilinearity. By default, MCR–ALS method relies on a bilinear model and it only requires 

that one of the two dimensions (excitation or emission) matches between the different 

data matrices. Additionally, the trilinear behavior can be introduced as an optional 

constraint to the different compounds in the system. The fact that the implementation of 

this constraint works in a ‘compound-wise’ way allows working on scenarios presenting 

completely trilinear, partially trilinear or completely bilinear models, when all, some or 

none of the compounds are constrained to obey a trilinear behavior, respectively. This 

flexibility in the application of the trilinearity condition is helpful to minimize rotational 

ambiguities, and to accommodate deviations from trilinearity of the experimental data 

[Tauler et al., 2009]. Thus, MCR-ALS provides a basic bilinear decomposition of the 
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matrix D (augmented data matrix) (Figure 1.5.B), in which ST contains normalized pure 

emission spectra and the submatrices in C the excitation profiles related to each of the 

samples. Integrating the areas under the excitation profiles in each of the samples, 

relative concentration values, analogous to PARAFAC scores are obtained. 

 

An alternative to working with second-order data is to rearrange the data into vectors 

and apply a first-order algorithm, leading to Unfolded-Principal Component Regression 

(U-PCR) and Unfolded-Partial Least Squares (U-PLS). These approaches were used 

first to model EEM second-order data, before true second-order methods were 

developed. Recent developments in PLS algorithms have led to their extension to data 

of higher orders, giving rise up to N-PLS, the multidimensional variant of PLS 

regression [Bro, 1996]. However, these methods do not have the second-order 

advantage, because they build the calibration models using the set of training data 

together with the nominal analyte concentrations (which are unavailable for a test 

sample). If any of these models is then applied to a test sample having unexpected 

components, the analyte quantification will not be accurate because the test sample 

signals will give a poor fit to the calibration model. The second-order advantage is 

achieved only when the above mentioned algorithms are coupled to an adequate post-

calibration procedure, known as residual bilinearization (RBL) [Öhman et al., 1990], 

which is able to model the contribution of the potential interferences. U-PLS/RBL 

(section 4.5.3) is therefore a promising method, enjoying all the capabilities of latent 

factors methodologies, while preserving the important second-order advantage. It is 

interesting to note that the combination of N-PLS/RBL has been also suggested in this 

regard [Linder and Sundberg, 2002], although the pertinent algorithms have not yet 

been developed. 

 

In contrast to PARAFAC or MCR-ALS, U-PLS/RBL is a calibration method, therefore, 

no decomposition is obtained; instead, matrices X (containing vectorized EEM data 

matrices) and Y (containing concentration of analytes) from calibration samples are 

related through a PLS model (Figure 1.5.C), and the model obtained is used to predict 

new concentration values for unknown samples from the related EEM matrices. 

Whenever unexpected interferences are found in new samples that were not present in 

the calibration set, the additional RBL step has to be used for accurate prediction of the 

analytes. Additionally, thanks to its flexible structure, U-PLS/RBL algorithm can handle 

signal-to-concentration changes among samples such as inner filter effect, which are 

compensated by adding more latent variables to the model, as long as they are 

represented in the calibration set and they are not too extreme. Even though U-
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PLS/RBL is more flexible, its flexibility implies also non-unique solutions, due to the 

presence of rotation ambiguities in the RBL step. 

 

In the recent years, the applicability of these second-order multivariate methods has 

been increasingly investigated for environmental monitoring, because of the inherent 

complexity of environmental samples. Modern approaches based on fluorescence 

excitation–emission matrices combined with advanced chemometric algorithms, allow 

for a direct determination of PAHs without previous sample separation and 

pretreatment by chromatographic means [Nahorniak and Booksh 2006], providing an 

alternative for qualitative and quantitative PAH environmental monitoring [Jiji et al., 

2000]. PARAFAC seems to be the most frequently applied algorithm, although some 

competitors are increasingly employed, particularly latent variable methodologies, such 

as U-PLS/RBL.  

 

Nahorniak and Booksh (2003) employed a field-portable EEM fluorometer in 

conjunction with PARAFAC for sub-ppb PAHs determination in the presence of spectral 

interferences, for which they studied the combination of data density optimization and 

automation of PARAFAC model selection to lead to a simple and rapid multi-way data 

analysis. Later, Nahorniak and Booksh (2006) used the optimized method to determine 

sub-ppb concentrations of several PAHs (BkF and BaP) in various matrices, including 

aqueous motor oil extract and asphalt leachate, where the rapid field EEM analyses 

proved to be a good screening method for tracking pollutants and prioritizing further 

sampling and analysis. 

 

The application of photocatalytic degradation EEMs in combination with PARAFAC was 

proposed to determine BaA, BkF and DahA in synthetic water samples. Three and 

four-way PARAFAC analyses were employed to extract the fluorescent species spectra 

from overlapping EEMs [Kim et al., 2005], where the additional time profiles yield an 

additional dimension that increased the selectivity for each PAH determination. 

 

Bosco et al. (2006) applied PARAFAC to EEMs, with the aim at determining DahA, 

BaA, BaP and BkF throughout the degradation process in the aqueous medium, 

showing to be a good alternative to the habitual methods of analysis in 

photodegradation processes. Later, Bosco and Larrechi (2007) applied MCR-ALS and 

PARAFAC to obtain semi-quantitative information related to the photodegradation 

processes of PAHs, by using three-dimensional EEMs. The results obtained showed 
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no statistical differences with data obtained using an HPLC reference methodology and 

suggested the EEM approach as a time saving and more ecological alternative. 

 

EEM coupled with multivariate algorithms has also been proposed as an alternative 

method for the characterization and quantification of PAHs in water samples [Beltrán et 

al., 1998]. PARAFAC was compared with other multivariate calibration techniques such 

as PLS1, PLS2, three-way PLS1, and three-way PLS2 to quantify 10 PAHs from the 

EEM spectra of a set of standards in samples of tap and mineral waters. In most cases, 

the best results were obtained by the application of three-way PLS2, due to the use of 

both spectra and concentration of the standards to build the calibration model, whereas 

in PARAFAC calibration, only the spectra are adjusted. 

 

Similarly, PARAFAC showed to have a prediction performance worse than U-PLS/RBL 

in the simultaneous ultra-trace determination of BaP and DahA in presence of the 

remaining fourteen US-EPA PAHs [Bortolato et al., 2008]. The approach consisted of 

measuring EEMs on a nylon-membrane surface, combining the ability of this 

membrane to retain and concentrate PAHs on its surface, the sensitivity of molecular 

fluorescence, and the selectivity of second-order chemometric algorithms: PARAFAC 

and U-PLS/RBL. The superiority of U-PLS/RBL to quantify BaP and DahA at 

concentrations below 10 ng L−1 in tap, underground, mineral and river water samples 

was demonstrated. 

 

Recently, Alarcón et al. (2013) assessed the possibility of simultaneous determination 

of 7 PAHs in extra virgin olive and sunflower oils, using U-PLS/RBL and PARAFAC. 

Again, U-PLS/RBL algorithm exhibited the best performance for resolving the PAH 

mixture in the presence of both highly complex oil matrix and other unpredicted PAHs. 

Moreover, the predicted U-PLS/RBL concentrations were satisfactorily compared with 

those obtained using HPLC with fluorescence detection, suggesting the EEM approach 

as a time saving and simpler alternative.  

 

Additionally, U-PLS/RBL has proved to be a successful method to deal with EEMs 

showing inner filter effects [Bohoyo et al., 2006]. Comparisons of the prediction results 

obtained from PARAFAC and MCR-ALS showed that U-PLS/RBL achieved 

significantly better recoveries, even though MCR-ALS seemed to give better results 

than PARAFAC. 
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Nevertheless, to our knowledge, the use of EEMs coupled to second-order calibration 

algorithms has not yet been evaluated to carry out a qualitative and quantitative 

analysis of multiple PAHs in extracts of aerosol samples, a much more complex type of 

chemical sample from an analytical and compositional point of view.  
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2.1 APPROACH 

 

Air pollution is a major environmental problem in urban areas and also an important 

issue for public health and global climate. In particular, ambient air Particulate Matter 

(PM) represents a complex mixture of substances linked to increased morbidity and 

mortality rates [WHO, 2003]. One group of chemical compounds associated with PM 

are the polycyclic aromatic hydrocarbons (PAHs), which can contribute to, or even 

enhance, the PM adverse health effects due to their well-known carcinogenic and 

mutagenic properties. The occurrence of PAHs in ambient air is an increasing 

environmental concern due to their persistence and toxicity. These adverse properties 

demand an assessment of their concentration, trends and profiles in the ambient air 

and in known emission sources, to provide the basis for source apportionment and air 

pollution control strategies.  

 

Specifically, in urban and suburban areas the most toxic PAHs (5- and 6- rings PAHs) 

are linked to the respirable fraction of particulate matter (aerodynamic diameter ≤2.5 

µm), where their emissions are mainly attributed to vehicle exhausts. Considering the 

population density, the overall risk associated with human exposure to atmospheric 

PAHs is higher in urban environments. For these reasons, 9 particle-bound of the US-

EPA priority list: Flt, BaA, Chr, BbF, BkF, BaP, DahA, BghiP and IcdP, were selected 

as target analytes according to their higher toxic potential [IARC, 1987]. Additionally, 

the sampling site was located in one of the main access to the urban area of Bilbao, 

influenced by traffic emissions.  

 

Monitoring of pollutants, especially PAHs concentrations in air is, arguably, one of the 

most difficult tasks in environmental chemistry. The large variability and uncertainty in 

spatial and temporal trends, together with their complex sampling and analytical 

procedures, promotes that the data available for urban areas is scarce. Indeed, the 

very low PAH concentrations in ambient air in addition to the presence of other 

interfering organic compounds may hamper a proper analysis. 

 

The currently used techniques in standard procedures (mainly chromatographic 

methods) tend to be laborious, relatively expensive, and time-consuming, because they 

require a great pretreatment of the samples in order to increase the sensitivity and 

selectivity of the PAH analysis. Therefore, the development of alternative sensitive and 

selective methods for determining PAHs in aerosol samples is still of great interest for 

routine analysis in environmental monitoring and health protection. 
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Fluorescence spectroscopy is a non-destructive and sensitive analytical technique for 

PAH determination, which can be detected at ppb levels because of their intrinsic 

fluorescence properties in the UV–Vis spectral range. Nonetheless, the lack of 

selectivity in classical fluorescence spectroscopy, due to the high overlapping between 

the PAHs spectra, hinders its direct usage for multi-component analysis in 

environmental samples. 

 

In this regard, continuous developments and improvements in data acquisition 

systems, advanced chemometric tools, and related software to deal with EEM 

fluorescence measurements, have enabled the identification and quantification of 

mixtures of compounds in fluorescent samples. These modern approaches provide a 

promising alternative for fast screening of PAHs in environmental samples without (or 

with minimal) previous sample separation and pretreatment.   

 

Consequently, fluorescence spectroscopy in EEM mode was adopted as data 

acquisition procedure, generating a wide range of datasets to analyze the results from 

which comprehensive methods of analysis of PAHs in urban aerosols will be developed 

and validated. The analysis of the EEMs is carried out by different multivariate/multi-

way data analysis methods, which are able to model and determine the analytes of 

interest in the presence of potential interferences and unexpected constituents, a 

property known as the “second-order advantage”. The most relevant second-order 

algorithms used to analyze complex mixtures, like parallel factor analysis (PARAFAC), 

multivariate curve resolution–alternating least squares (MCR–ALS) and unfolded partial 

least-squares coupled to residual bilinearization (U-PLS/RBL), are consequently 

encountered in this research work. 

 

Due to the complexity of environmental samples, second-order multivariate methods 

have gained strong importance for environmental monitoring in the last years. 

Nevertheless, to our knowledge, the use of EEMs coupled to second-order algorithms 

has not yet been evaluated to carry out a qualitative and quantitative analysis of 

multiple PAHs in extracts of aerosol samples. 

 

Therefore, the application and validation of flexible methods that can successfully 

model the different fluorescence contributions in this kind of samples poses an 

important challenge in this field. 
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2.2 GENERAL OBJECTIVE 

 

This Ph.D. Thesis aims at developing and validating alternative methodologies based 

on the combination of fluorescence spectroscopic techniques and advanced 

multivariate and multi-way data analysis methods to determine particle-bound PAHs in 

ambient air from solvent-extracted samples.  

 

Given the drawbacks of the standard conventional methods presented in the literature 

(e.g. chromatographic techniques) for the qualitative and quantitative measurement of 

PAHs in airborne samples, this research work will also emphasize the reduction of 

sample handling and the time required for sample preparation to allow a fast, easy and 

reliable application for routine control PAHs measurements on urban air quality 

monitoring.  

 

2.2.1 Specific objectives 

 

To achieve the main objective of this Ph.D. Thesis, the following partial objectives need 

to be fulfilled:   

- Selection of appropriate instrumental parameters for fluorescence measurement 

optimization. 

- Characterization of the spectral features of the individual PAHs.  

- Optimization of the preprocessing methods required before modeling. 

- Assessment of the performance of the multi-way/multivariate methods to qualitative 

and quantitative analysis of the selected PAHs in the presence of interferences and 

sample matrix effects. 

- Optimization of the extraction protocol. 

- Evaluation of the extraction recoveries of each PAH, by analysis of standard 

reference materials. 

- Study the feasibility of qualitative and quantitative analysis of target PAHs in aerosol 

samples by combining multi-way/multivariate algorithms and fluorescence 

spectroscopy.  

- Validation of the developed methodologies for PAH determination in aerosol 

samples with the now conventional techniques of liquid extraction and analysis by 

GC-MS. 

- Determination of the figures of merit related to the applicability of the technique for 

the target individual PAHs.  
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- Highlight the advantages and drawbacks of each developed approach to determine 

PAHs in airborne samples. 

- Apply the proposed multi-way/multivariate methods to characterize an urban area by 

studying the PAH concentrations and trends obtained in field measurements.  
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3.1. MATERIALS  

 

3.1.1 Reagents and solutions 

 

Individual US-EPA PAHs solutions at 10 ng µL−1 in acetonitrile were purchased from 

Dr. Ehrenstorfer GmbH (Augsburg, Germany): anthracene (Ant), fluoranthene (Flt), 2-2′ 

binaphthyl (22B), benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene 

(BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthracene 

(DahA), benzo[ghi]perylene (BghiP), and indeno[1,2,3-cd]pyrene (IcdP).  

 

Mixtures of the 16 US-EPA PAHs were supplied by RESTEK Corporation (Bellefonte, 

PA 16823, USA): SV Calibration Mix #5/610 PAH Mix solution in methylene chloride at 

2000 ng µL−1 per compound, and PAH Mix 39 obtained from Dr. Ehrenstorfer with a 

variable PAH concentration in the range 10–100 ng µL−1 in acetonitrile.  

 

For fluorescence analyses, stock solutions of each PAH at 100 ng mL−1 were prepared 

in n-hexane and stored at 4 °C in capped amber vials. 

 

The standard reference material (SRM 1649b urban dust) provided by the National 

Institute of Standards and Technology (NIST, USA) was used for validation of the 

extraction method.  

 

For GC-MS analysis, perdeuterated PAH internal standard solutions of naphthalene-

d8, byphenyl-d10, phenanthrene-d10, pyrene-d10, benzo[a]anthracene-d12, 

benzo[a]pyrene-d10 and benzo[ghi]perylene-d12 at 200 µg mL-1, and surrogate standard 

solution of indeno[1,2,3-cd]pyrene-d12 at 100 µg mL-1 in toluene were supplied by 

Chiron AS (Stiklestadveine 1, N-7041 Trondheim, Norway); whereas surrogate 

solutions of decafluorobiphenyl, 4,4'-dibromobiphenyl and 4,4'-

dibromooctafluorobiphenyl at 2000 µg mL-1 in methylene chloride were obtained from 

RESTEK Corporation. Internal and surrogate standards were used for sample 

quantification and quantifying procedural recovery by GC-MS. 

 

N-hexane 95% analytical HPLC grade (Lab-scan analytical sciences, Spain) was used 

as solvent to prepare the stock and working solutions by dilution of the appropriate 

aliquots.  
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3.1.2 Particle collection filters 

 

Quartz fiber filters (Whatman International Ltd., UK) were selected to collect the 

aerosol samples. Particles were captured onto 47 mm diameter filters in the low-

volume sampling device, whereas for high-volume sampling system 150 mm diameter 

filters were used. 

 

3.2 AIR SAMPLING PROCEDURE 

 

The measurements campaigns analyzed in this research work were carried out at the 

Faculty of Engineering of Bilbao (Spain) (longitude 2°56′56.24″W, latitude 

43°15′44.86″N) (Figure 3.1 right), sited in Bilbao, an urban area in Northern Spain 

(Figure 3.1, left).  

 

The city of Bilbao is located along an estuary that runs almost 16 km from the center of 

the city to the sea. Bilbao has about 400.000 inhabitants, but nearly one million live in 

Bilbao and the surrounding areas along the estuary (metropolitan area of Bilbao). Two 

mountain ranges run parallel to the waterway and, due to this fact, the most frequent 

air circulations are channeled along this valley (SE–NW axis). The combined effect of 

these two facts make Bilbao and surroundings a complex terrain area with land–sea 

interactions. 

 

Although in the past industry was the most important source of air pollution in the 

metropolitan area of Bilbao, with very high levels of SO2, since the 1990s traffic has 

become a very important source of air pollution. Nowadays, the main source of PAHs 

in this urban area should be related to vehicle emissions due to the entrance and exit 

traffic flows to and from the city. 

 

The selected sampling site is located near one of the main access roads to Bilbao city, 

highly influenced by vehicle traffic due to the proximity of the A-8 highway (average 

daily volume of approximately 100000 vehicles in 2012), road N-634 and the central 

bus station (Figure 3.1, right). Thus, this sampling site can be clearly considered as an 

urban area with high traffic flow. 
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Figure 3.1. Geographic location of the sampling site (blue dot on the right). 

 

Two measurement campaigns were carried out as described below. 

 

Campaign #1: 2013 

This sampling campaign was conducted during the winter, from February to March 

2013. PM10 and PM2.5 aerosol sampling was performed using a low-volume sampling 

system (Derenda LVS3.1 sampler, Berlin, Germany) at a flow rate of 2.3 m3 h-1 (Figure 

3.2.A). Samples of PM10 (n = 10) and PM2.5 (n = 7) were captured onto 47 mm diameter 

quartz-fiber filters. A total of 17 PM samples were taken: 24 h average samples on 

working days (n = 12) and 72 h average samples on weekends (n = 5).  

 

 
Figure 3.2.  Sampler devices used in the sampling campaigns: (A) Low volume sampling system 

and (B) High volume sampler. 

B A 
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Campaign #2: 2014 

This sampling campaign was conducted over 4 months: from January to April 2014. 

Airborne particles were collected on previously heat-treated (500°C, 24 h) 150 mm 

diameter quartz fiber filters, by using a high volume sampler (HVS) with a selective 

PM10 inlet (Digitel DHA-80) at a flow rate of 30 m3 h-1 (Figure 3.2.B).  

 

PM10 samples were collected for a four day period every month: Monday, Wednesday, 

Friday and Sunday, during 8 h periods in three time intervals: 04:00–12:00 h; 12:00–

20:00 h, and 20:00–04:00 h UTC (12 samples). The time intervals were selected to see 

the effects of traffic variability in the concentration of ambient PAHs. A total of 48 PM10 

samples were collected throughout this study. 

 

After each sampling campaign, the filters were put into individual Petri dishes, wrapped 

in aluminum foil (pre-cleaned with hexane) to avoid photodegradation, and kept in a 

4°C freezer until analysis (< 15 days). Additionally, filters were kept in a vacuum 

desiccator for 24 h before and after the sampling, to remove any moisture content. 

 

 

3.3 SAMPLE PREPARATION: EXTRACTION PROTOCOL 

 

The extraction of ambient aerosol samples and Standard Reference Material (SRM) 

were performed using an automatic Soxhlet extractor system B-811 (BÜCHI, 

Switzerland) (Figure 3.3) with n-hexane solvent. 

 

 
Figure 3.3. Extraction system B-811 (BÜCHI). 
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This system offers 4 different extraction techniques: Soxhlet Standard, Soxhlet Warm, 

Hot Extraction, or Continuous Flow (Figure 3.4). 

 

 
Figure 3.4.  Extraction techniques available in the B-811 extraction system. 

 

Soxhlet Standard follows the same Soxhlet extraction method as used with manual 

glass apparatus. The solvent is evaporated using the lower heating element, whilst the 

upper heating element is deactivated. The vapor rises up into the condenser and the 

condensed solvent is collected in the extraction chamber while the glass valve is 

closed. As soon as the solvent level reaches the optical sensor, the glass valve opens 

and the solvent containing the dissolved analyte flows back into the solvent cup. 

 

The principle of the Soxhlet Warm method is the same as for the Soxhlet standard 

method, except that the upper level heating is activated. Soxhlet Warm combines the 

benefits of the extraction with fresh solvent and the enhanced extraction with hot 

solvent. Thus, the solubility of the analytes is increased by heating the condensed 

solvent in the extraction chamber. This reduces the duration of the extraction process. 
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In the Hot Soxhlet process, the sample is placed in the boiling solvent and extracted. 

The main difference to Soxhlet Warm is that the sample is continuously surrounded by 

hot solvent. As soon as the solvent level in the extraction chamber has reached the 

optical sensor, the solvent is permitted to enter the beaker by briefly opening the valve. 

This ensures that the solvent level in the extraction chamber remains constant, with the 

result that the sample is contained in boiling solvent throughout the entire extraction 

period. 

 

In the Continuous Flow mode, the sample is continuously washed with freshly 

condensed solvent. The glass valve is open so that the solvent does not accumulate in 

the extraction chamber but continuously flows back to the solvent cup. As a result any 

kind of enrichment of the analyte in the extract is avoided. 

 

For each extraction method, the entire extraction process consists of three individual 

steps: extraction, rinsing and drying (Figure 3.5).  

 

 
Figure 3.5. Steps involved in the extraction procedure. 

 

Extraction step heats up the solvent, the sample and the glassware. The sample is 

placed in the sample tube and is extracted according to the selected extraction 

procedure. During the rinsing the glass sample tube or thimble is washed with fresh 

solvent. The rinsing ensures the removal of all sample residues from the outer side of 

the sample tube and the inner side of the extraction chamber. The optimization of 

rinsing time, solvent volume, and time-dependent drain interval accelerates the process 

and cuts down the total extraction time. In the drying step only a small amount of 

solvent remains in the beaker, which allows for a short drying time. The solvent is 

evaporated, condensed, collected beneath the condenser, and transferred into the 
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solvent tank for re-use. The extract is slowly dried while the solvent is removed. The 

now highly-concentrated extract is available for further analysis. 

 

Hence, given the possibility of using different extraction procedures which can achieve 

a significant reduction in extraction time, a design of experiments approach was used 

to select the best extraction method to be applied. Additionally, other parameters such 

as extraction time and the use of the drying step were considered to determine the 

optimal extraction conditions. The experiments were carried out extracting several 

blank filters spiked with aqueous standards: a mixture of the 16 US-EPA PAHs (SV 

Calibration Mix #5/610) and 22B used as internal standard. Results are presented in 

section 5.3.2.  

 

Automatic Soxhlet extractor in warm mode demonstrated advantages, decreasing the 

extraction time against conventional Soxhlet extraction. Consequently, this procedure 

was selected for further analyses. To optimize the extraction procedure of the target 

PAHs in aerosol samples, analyses of a standard reference material (SRM 1649b 

urban dust) subject to increasing extraction times were done. Several samples of NIST 

SRM 1649b urban dust containing the target US-EPA PAHs were analyzed. These 

samples were used for a double objective: (i) two samples of ~150 mg were analyzed 

at each extraction time: 3, 5, and 8 h (total number of samples = 6), to optimize an 

extraction protocol to be used for further aerosol analysis; and (ii) from five to seven 

additions of increasing amounts of known concentrations of the 10 target PAHs were 

included in all extracts at the different times, in a proper concentration range, to 

evaluate the suitability of second-order standard addition method for the quantitative 

analysis of PAHs when potential sample matrix effects may occur. Results are shown 

in section 5.3.3 and section 5.4.3. 

 

3.4 ANALYTICAL METHODS 

 

In this section the different analytical methods used to chemically characterize the 

samples under analysis are described. 

 

3.4.1 UV-Vis Absorption spectroscopy measurements 

 

Ultraviolet-Visible (UV-Vis) absorption spectra of aerosol samples were measured 

using a JASCO V-630 spectrometer (JASCO Europe S.R.L., Figure 3.6). The V-630 is 

a double-beam spectrophotometer with single monochromator design (wavelength 
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range between 190 and 1100 nm) and a silicon photodiode detector. The spectra 

manager II software recorded and processed the spectral data. 

 

  

Figure 3.6. UV-Vis absorption spectrometer JASCO V-630. 

 

The samples were measured at room temperature and the instrument was kept on for 

30 min stabilization before the analysis. The absorption spectra were obtained between 

200 and 740 nm at 2 nm intervals. The samples were measured in a 1 cm quartz cell 

with a scan speed of 1000 nm min−1 and fixed bandpass of 1.5 nm. N-hexane was 

used as reference. 

 

Two absorbance measurements were made for each aerosol sample. A single 

measurement from averaging the two recorded scans was used to generate the 

corresponding inner filter correction factors, as will be detailed in section 4.4.3. 

 

3.4.2 Gas chromatography Mass spectrometry analysis  

 

An Agilent 6890N gas chromatograph (GC) (Agilent Technologies, Santa Clara, CA, 

USA), coupled to an Agilent 5973N mass selective detector (MS) (Figure 3.7) capable 

of electrical ionization (EI), was used as reference analytical technique to identify and 

quantify the target PAH compounds.  

 

The chromatographic separation of PAHs was conducted on a Meta.X5 (silphenylene 

phase) capillary column (Teknokroma) 30 m x 0.25 mm i.d. x 0.25 µm film thickness.  
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Figure 3.7.  Gas chromatography Mass spectrometer used. 

 

For the GC-MS analysis, aerosol samples were spiked before extraction. A 10 ng µL-1 

surrogate mixture containing decafluorobiphenyl, 4-4´ dibromooctafluorobiphenyl, 4-4´ 

dibromobiphenyl and indeno(1,2,3-c,d)pyrene-d12 was added to the samples to assess 

losses during the extraction and sample workup. Subsequently, the extract of the 

aerosol samples was concentrated under a nitrogen stream to a final volume of 1 mL. 

Then, samples were fortified with 50 µL of an appropriate internal standard solution. A 

mixture of perdeuterated PAH internal standard solution at 200 ng µL-1 (obtained from 

Chiron AS) was used to prepare the internal standard solution (20 ng µL-1 in hexane) to 

quantify the relative native PAHs. 

 

The samples (3 µL) were injected in split mode (split ratio 0.4:1) at an injection 

temperature of 320 °C. The transfer line and ion source temperatures were 280 °C and 

250 °C, respectively. Helium was used as carrier gas, at a constant flow rate of 1.2 mL 

min-1. The column temperature program was: initially held at 45 ºC for 1 min, raised to 

200 ºC at the rate of 20 ºC min-1, then to 320 ºC at the rate of 4ºC min-1, held at final 

temperature for 5 min. The total analysis time was 44 min per sample. Selective ion 

monitoring (SIM) mode was used for the identification and quantification of PAHs. 

 

The identity of PAHs in the samples was confirmed by their retention time and 

abundance of quantitation/confirmation ions compared to the pure PAHs standards 

(Table 3.1). 
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Table 3.1.  Characteristic PAHs ions. 

PAH Quantitation ion  
(m/z) 

Confirmation ion  
(m/z) 

Naphthalene -d8 136  
Naphthalene  128  
biphenyl -d10 164  
Acenaphthylene  152  
Acenaphthene  154  
Fluorene  166  
Phenanthrene -d10 188  
Phenanthrene  178  
Anthracene  178  
Fluoranthene  202  
Pyrene -d10 212  
Pyrene  202  
Benzo[a]anthracene -d12 240  
Benzo[a]anthracene  228 113 
Chrysene  228 225 
Benzo[b]fluoranthene  252  
Benzo[k]fluoranthene  252  
Benzo[a]perylene -d12 264  
Benzo[a]pyrene  252  
Indeno[1,2,3 -cd]pyrene  276 278 
Dibenzo[a,h]anthracene  278 276 
Benzo[ghi]perylene -d12 288  
Benzo[ghi]perylene  276  

  

Target PAHs were quantified using the response factors relative to the respective 

internal standards, based on a five-point calibration curve for each individual 

compound. A 10 ng µL-1 working solution mixture of 16 US-EPA PAHs was used to 

prepare the working calibration solutions, by diluting the standard mixture of 2000 ng 

µL-1 (Mix #5/610 PAH Mix, RESTEK Corporation). The calibration points were: 0.1 – 

0.25 – 0.5 – 1 - 2.5 ng µL-1, for the 16 US-EPA PAHs.  

 

3.4.3 Fluorescence spectrometry measurements 

 

Fluorescence measurements were performed using a modified modular 

spectrofluorometer FluoroLog-3 (Horiba Jobin Yvon Inc., Figure 3.8) controlled by 

FluorEssence software (Origin license) to acquire, record, and analyze the spectral 

data. 

 

The standard emission monochromator included in the FluoroLog-3 was replaced by a 

spectrophotometer iHR320, which allows the selection of three different gratings: 300 

grooves mm-1 (blaze 500 nm), 1200 grooves mm-1 (blaze 500 nm) and 1200-grooves 

mm-1 (330 nm blaze). The 1200-grooves mm-1 (330 nm blaze) grating was selected for 

the measurements due to its higher spectral resolving power. 
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Additionally, two detectors were installed to satisfy diverse measurement requirements. 

A charge-coupled device (CCD) camera (Synapse) was located in the axial exit of the 

spectrophotometer, whereas a photomultiplier (R928P, Hamamatsu Co.) was set at the 

side exit.  

 

The source of electromagnetic radiation is a 450 W xenon lamp, which provides a 

continuous output from 240 to 600 nm. The dispersion is achieved with two Czerny-

Turner monochromators (one for the excitation and one for the emission) of 1200-

grooves mm-1 gratings (330 nm blaze), providing both excitation and emission spectra. 

Figure 3.8 right shows the basic components of the fluorescence spectrophotometer 

used. 

 

 
 Figure 3.8. Schematic drawing of the spectrofluorometer configuration. 

 

The measurements were made at a right angle to the excitation beam, since the scatter 

from the cell walls and the solution increases at other angles. The high-performance 

room-temperature photomultiplier (PMT) was employed as detector for collection of the 

fluorescence spectra, due to its higher sensitivity in comparison with the CCD camera. 

Standard quartz cells of 1 cm path length were used to carry out the measurements at 

room temperature. 

 

Since the analysis of the target PAHs is focused on the fluorescence technique, a 

deeper study was carried out to optimize the instrumental parameters to be used, as 

well as selecting the optimal spectral ranges of analysis. The results of this study are 

given in section 5.1. In summary, EEM spectra were measured on the excitation 

spectral range from 240 to 320 nm (every 2 nm) and on the emission range from 290 to 
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550 nm (every 2 nm). The slit bandwidths for both the excitation and the emission 

monochromators were set to 5 nm and the photomultiplier integration time was set to 

0.1 s. 

 

3.5 DATASETS 

 

Several EEM datasets have been generated, with diverse conditions of sample 

complexity, to analyze the results from which comprehensive methods of analysis of 

PAHs in urban aerosols will be validated and developed. It is essential to remark that 

each dataset responds to different objectives, which will be discussed in the 

corresponding results chapter. Table 3.2 summarizes the datasets used. 

 

Table 3.2. Summary of the datasets used. 

Dataset Abbreviation Objectives 

Pure component samples dpure 
- Study of spectral characteristics of target 

PAHs and selection of spectral ranges 
- Determination of linear range and LODs 

Calibration set samples dcal - Construction of second-order calibration 
models 

Validation set samples dval - External validation of the performance of the 
built models 

Interference set samples dinterf 
- Test the performance of the models in the 

presence of a strong interference 
background 

PAH extraction samples dextract 
- Selection of the best extraction operation 

mode, and comparison with the standard 
Soxhlet method 

NIST SRM 1649b reference  
material samples 

dsrm - Selection of the optimal extraction time 
- Validation of the extraction protocol 

Daily urban aerosol samples d24air 

- Test the feasibility of the models to 
qualitative and quantitative analysis of target 
PAHs in urban aerosol samples  

- Determination of LODs of the methods in 
field conditions and appropriate sampling 
periods 

8-h urban aerosol samples d8air - Application and validation of developed 
methods in urban aerosol samples 

 

These datasets are described in detail below. 

 

 

3.5.1 Pure component samples (dpure) 

 

From 7 to 11 EEM spectra of each pure PAH analyte were recorded in triplicate in 

concentrations ranging from 0.01 to 30 ng mL−1, depending on the compound, as listed 

in Table 3.3. 
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Table 3.3.  Samples of pure PAHs used in the linearity study. 

PAH Samples  
22B 7 samples: 1.0 - 5.0 - 9.0 - 13.0 - 17.0 - 21.0 - 25.0 ng mL−1    

 
BghiP  8 samples: 0.3 – 0.5 - 1.0 - 5.0 - 10.0 - 15.0 - 20.0 – 30.0 ng mL−1 

 
IcdP  8 samples: 0.1 – 0.5 - 1.0 - 5.0 - 10.0 - 15.0 - 20.0 – 30.0 ng mL−1 

 
BaA  8 samples: 0.3 – 0.5 - 1.0 - 5.0 - 10.0 - 15.0 - 20.0 – 30.0 ng mL−1 

 
Flt  8 samples: 0.3 – 0.5 - 1.0 - 5.0 - 10.0 - 15.0 - 20.0 – 30.0 ng mL−1 

 
DahA  8 samples: 0.3 – 0.5 - 1.0 - 5.0 - 10.0 - 15.0 - 20.0 – 30.0 ng mL−1 

 
BbF 8 samples: 0.1 – 0.5 - 1.0 - 5.0 - 10.0 - 15.0 - 20.0 – 30.0 ng mL−1 

 
BaP 9 samples: 0.05 - 0.1 – 0.5 - 1.0 - 5.0 - 10.0 - 15.0 - 20.0 – 30.0 ng mL−1 

 
Chr 8 samples: 0.3 – 0.5 - 1.0 - 5.0 - 10.0 - 15.0 - 20.0 – 30.0 ng mL−1  
BkF 11 samples: 0.01 - 0.05 - 0.1 – 0.5 - 1.0 - 5.0 - 10.0 - 15.0 - 20.0 – 25.0 - 30.0 ng mL−1 

 
 

These samples were analyzed to assess the linearity and the limit of detection (LOD) 

for the 10 PAHs in n-hexane (section 5.2.2). Additionally, spectral features of the 

individual PAHs were studied (section 5.1.3). Afterwards, a total of 81 EEM pure 

analyte spectra were selected, always within the linear range, in concentrations ranging 

from 0.01 to 25 ng mL−1 to form this set (dpure) . 

 

3.5.2 Calibration set samples (dcal) 

 

A set of 49 calibration solutions with the 9 US-EPA PAHs and the compound used as 

internal standard (22B) was measured. Samples containing all the PAHs at seven 

different concentrations were prepared based on a semifactorial design in order to 

avoid correlations between PAH concentrations. Thus, the calibration set was designed 

so that the concentrations of the PAH compounds were orthogonal. The maximum and 

minimum concentration of each component were within the linear range previously 

established, in the following ranges: 1–25 ng mL−1 for 22B and BghiP; 0.5–20.3 ng 

mL−1 for IcdP, BaA, Flt, DahA and BbF; 0.3–20.1 ng mL−1 for BaP and Chr; and 0.3– 

18.3 ng mL−1 for BkF.  

 

The parameters used for constructing the multilevel calibration set (dcal ) are 

summarized in Table 3.4, according to the rules explained in [Brereton, 2003]. The 

number of concentration levels are set from -3 (lowest concentration) to 3 (highest 

concentration) at equally spacing distances for a 7 level calibration design. 
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Table 3.4. Parameters used for the construction of a 7-level calibration set. 

Levels  Experiments  
Max. n o 

of orthogonal  
factors 

Repeater Difference 
vectors 

Cyclic 
permuters 

7 49 16 0 
 

{241 035} 
 

-3→2→3→-1→1→-2→-3 

 

PAH concentrations of each sample used in the calibration set are listed in Table 3.5. 

 

Table 3.5. Concentration levels (ng mL-1) of each PAH compound in the calibration set. 

Sample 22B BghiP IcdP BaA Flt DahA BbF BaP Chr BkF 

1 13.0 13.0 10.4 10.4 10.4 10.4 10.4 10.2 10.2 9.3 

2 13.0 1.0 20.3 0.5 17.0 17.0 13.7 6.9 10.2 15.3 

3 1.0 25.0 0.5 17.0 17.0 13.7 7.1 10.2 16.8 6.3 

4 25.0 1.0 17.0 17.0 13.7 7.1 10.4 16.8 6.9 15.3 

5 1.0 21.0 17.0 13.7 7.1 10.4 17.0 6.9 16.8 18.3 

6 21.0 21.0 13.7 7.1 10.4 17.0 7.1 16.8 20.1 18.3 

7 21.0 17.0 7.1 10.4 17.0 7.1 17.0 20.1 20.1 3.3 

8 17.0 9.0 10.4 17.0 7.1 17.0 20.3 20.1 3.6 12.3 

9 9.0 13.0 17.0 7.1 17.0 20.3 20.3 3.6 13.5 9.3 

10 13.0 21.0 7.1 17.0 20.3 20.3 3.8 13.5 10.2 18.3 

11 21.0 9.0 17.0 20.3 20.3 3.8 13.7 10.2 20.1 12.3 

12 9.0 21.0 20.3 20.3 3.8 13.7 10.4 20.1 13.5 18.3 

13 21.0 25.0 20.3 3.8 13.7 10.4 20.3 13.5 20.1 6.3 

14 25.0 25.0 3.8 13.7 10.4 20.3 13.7 20.1 6.9 6.3 

15 25.0 5.0 13.7 10.4 20.3 13.7 20.3 6.9 6.9 0.3 

16 5.0 17.0 10.4 20.3 13.7 20.3 7.1 6.9 0.3 3.3 

17 17.0 13.0 20.3 13.7 20.3 7.1 7.1 0.3 3.6 9.3 

18 13.0 25.0 13.7 20.3 7.1 7.1 0.5 3.6 10.2 6.3 

19 25.0 17.0 20.3 7.1 7.1 0.5 3.8 10.2 6.9 3.3 

20 17.0 25.0 7.1 7.1 0.5 3.8 10.4 6.9 3.6 6.3 

21 25.0 9.0 7.1 0.5 3.8 10.4 7.1 3.6 6.9 12.3 

22 9.0 9.0 0.5 3.8 10.4 7.1 3.8 6.9 13.5 12.3 

23 9.0 1.0 3.8 10.4 7.1 3.8 7.1 13.5 13.5 15.3 

24 1.0 5.0 10.4 7.1 3.8 7.1 13.7 13.5 16.8 0.3 

25 5.0 13.0 7.1 3.8 7.1 13.7 13.7 16.8 0.3 9.3 

26 13.0 9.0 3.8 7.1 13.7 13.7 17.0 0.3 10.2 12.3 

27 9.0 5.0 7.1 13.7 13.7 17.0 0.5 10.2 13.5 0.3 

28 5.0 9.0 13.7 13.7 17.0 0.5 10.4 13.5 0.3 12.3 

29 9.0 17.0 13.7 17.0 0.5 10.4 13.7 0.3 13.5 3.3 

30 17.0 17.0 17.0 0.5 10.4 13.7 0.5 13.5 3.6 3.3 

31 17.0 21.0 0.5 10.4 13.7 0.5 13.7 3.6 3.6 18.3 

32 21.0 1.0 10.4 13.7 0.5 13.7 3.8 3.6 20.1 15.3 
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Table 3.5. (continued) Concentration levels (ng mL-1) of each PAH compound in the calibration 
set. 

Sample 22B BghiP IcdP BaA Flt DahA BbF BaP Chr BkF 

33 1.0 13.0 13.7 0.5 13.7 3.8 3.8 20.1 16.8 9.3 

34 13.0 17.0 0.5 13.7 3.8 3.8 20.3 16.8 10.2 3.3 

35 17.0 1.0 13.7 3.8 3.8 20.3 17.0 10.2 3.6 15.3 

36 1.0 17.0 3.8 3.8 20.3 17.0 10.4 3.6 16.8 3.3 

37 17.0 5.0 3.8 20.3 17.0 10.4 3.8 16.8 3.6 0.3 

38 5.0 5.0 20.3 17.0 10.4 3.8 17.0 3.6 0.3 0.3 

39 5.0 25.0 17.0 10.4 3.8 17.0 3.8 0.3 0.3 6.3 

40 25.0 21.0 10.4 3.8 17.0 3.8 0.5 0.3 6.9 18.3 

41 21.0 13.0 3.8 17.0 3.8 0.5 0.5 6.9 20.1 9.3 

42 13.0 5.0 17.0 3.8 0.5 0.5 7.1 20.1 10.2 0.3 

43 5.0 21.0 3.8 0.5 0.5 7.1 20.3 10.2 0.3 18.3 

44 21.0 5.0 0.5 0.5 7.1 20.3 10.4 0.3 20.1 0.3 

45 5.0 1.0 0.5 7.1 20.3 10.4 0.5 20.1 0.3 15.3 

46 1.0 1.0 7.1 20.3 10.4 0.5 20.3 0.3 16.8 15.3 

47 1.0 9.0 20.3 10.4 0.5 20.3 0.5 16.8 16.8 12.3 

48 9.0 25.0 10.4 0.5 20.3 0.5 17.0 16.8 13.5 6.3 

49 25.0 13.0 0.5 20.3 0.5 17.0 17.0 13.5 6.9 9.3 

 

3.5.3 Validation set samples (dval) 

 

A different set of solutions was prepared in liquid diluted with n-hexane, for validation of 

the performance of each method. This set involved 25 test solutions of the 10 PAH 

compounds. The validation set (dval ) was based on concentrations provided by a 

semifactorial design at five different levels. The concentration range for the 10 PAHs of 

the validation set was the same as that used for the calibration data. 

 

The parameters used for construction the 5-level validation set are summarized in 

Table 3.6 according to the rules explained in [Brereton, 2003]. The number of 

concentration levels are set from -2 (lowest concentration) to 2 (highest concentration) 

at equally distance for a 5 level semifactorial design. 

 

Table 3.6.  Parameters used for the construction of a 5-level validation set. 

Levels  Experiments  
Max. n o 

of orthogonal  
factors 

Repeater  Difference 
vectors 

Cyclic 
permuters 

5 25 12 0 {0231} -2→-1→2→-1→-2 

 

Table 3.7 shows the PAH concentrations of each sample used in the validation set. 
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Table 3.7 . Concentration levels (ng mL-1) of each PAH compound in the validation set. 

Sample 22B BghiP IcdP BaA Flt DahA BbF BaP Chr BkF 

1 12.5 12.5 10.0 10.0 10.0 10.0 10.0 9.6 9.6 9.6 

2 12.5 2.5 18.0 18.0 10.0 6.0 6.0 5.4 1.2 13.8 

3 2.5 22.5 6.0 10.0 6.0 6.0 18.0 13.8 1.2 18.0 

4 2.5 7.5 18.0 6.0 6.0 14.0 10.0 18.0 18.0 13.8 

5 22.5 22.5 10.0 6.0 14.0 18.0 6.0 13.8 5.4 9.6 

6 7.5 12.5 6.0 14.0 18.0 14.0 6.0 9.6 18.0 18.0 

7 22.5 7.5 6.0 18.0 14.0 10.0 14.0 18.0 9.6 18.0 

8 12.5 7.5 14.0 14.0 10.0 18.0 18.0 18.0 5.4 1.2 

9 7.5 17.5 18.0 10.0 18.0 18.0 14.0 1.2 5.4 13.8 

10 7.5 22.5 14.0 18.0 18.0 2.0 10.0 13.8 13.8 1.2 

11 17.5 17.5 10.0 18.0 2.0 14.0 18.0 1.2 18.0 9.6 

12 22.5 12.5 18.0 2.0 14.0 2.0 18.0 9.6 13.8 13.8 

13 17.5 22.5 18.0 14.0 2.0 10.0 2.0 13.8 9.6 13.8 

14 12.5 22.5 2.0 2.0 10.0 14.0 14.0 13.8 18.0 5.4 

15 22.5 2.5 14.0 10.0 14.0 14.0 2.0 5.4 18.0 1.2 

16 22.5 17.5 2.0 14.0 14.0 6.0 10.0 1.2 1.2 5.4 

17 2.5 2.5 10.0 14.0 6.0 2.0 14.0 5.4 13.8 9.6 

18 17.5 12.5 14.0 6.0 2.0 6.0 14.0 9.6 1.2 1.2 

19 2.5 17.5 14.0 2.0 6.0 10.0 6.0 1.2 9.6 1.2 

20 12.5 17.5 6.0 6.0 10.0 2.0 2.0 1.2 13.8 18.0 

21 17.5 7.5 2.0 10.0 2.0 2.0 6.0 18.0 13.8 5.4 

22 17.5 2.5 6.0 2.0 2.0 18.0 10.0 5.4 5.4 18.0 

23 7.5 7.5 10.0 2.0 18.0 6.0 2.0 18.0 1.2 9.6 

24 2.5 12.5 2.0 18.0 6.0 18.0 2.0 9.6 5.4 5.4 

25 7.5 2.5 2.0 6.0 18.0 10.0 18.0 5.4 9.6 5.4 

 
 

3.5.4 Interference set samples (dinterf) 

 

Two sets of mixtures of the 16 US-EPA PAHs were used to test the methods in the 

presence of a strong interfering background, as follows:  

 

Set no. 1. (dinterf1 ).  Samples were prepared by dilution of a stock solution containing 

each PAH compound in a concentration of 2000 ng µL−1 (SV Calibration Mix #5/610 

PAH) to achieve 12 different concentration levels ranging from 1–20 ng mL−1, in 

triplicate (Table 3.8).The total number of samples of this set no.1 was 12 × 3=36.  

 

Table 3.8 . Concentrations (ng mL-1) of each 16 US-EPA PAHs in the interference set no.1. 

Sample 1 2 3 4 5 6 7 8 9 10 11 12 

Concentration (ng mL -1) 1.0 2.0 4.0 5.0 6.0 8.0 10.0 12.0 15.0 16.0 18.0 20.0 
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Set no. 2. (dinterf2 ). Samples were generated by dilution of the stock solution PAH Mix 

39, which presents variable concentrations of the PAHs, to achieve 10 different 

concentration levels ranging from 0.2–20 ng mL−1, in duplicate (Table 3.9). The total 

number of samples was 10 × 2 = 20.  

 

Table 3.9. Concentrations (ng mL-1) of each target PAHs in the interference set no.2. 

Sample 22B BghiP IcdP BaA Flt DahA BbF BaP Chr BkF 

1 1.0 1.0 2.0 0.5 1.0 1.0 0.5 0.5 0.5 0.2 

2 2.0 2.0 4.0 1.0 2.0 2.0 1.0 1.0 1.0 0.4 

3 3.0 3.0 6.0 1.5 3.0 3.0 1.5 1.5 1.5 0.6 

4 4.0 4.0 8.0 2.0 4.0 4.0 2.0 2.0 2.0 0.8 

5 5.0 5.0 10.0 2.5 5.0 5.0 2.5 2.5 2.5 1.0 

6 6.0 6.0 12.0 3.0 6.0 6.0 3.0 3.0 3.0 1.2 

7 7.0 7.0 14.0 3.5 7.0 7.0 3.5 3.5 3.5 1.4 

8 8.0 8.0 16.0 4.0 8.0 8.0 4.0 4.0 4.0 1.6 

9 9.0 9.0 18.0 4.5 9.0 9.0 4.5 4.5 4.5 1.8 

10 10.0 10.0 20.0 5.0 10.0 10.0 5.0 5.0 5.0 2.0 

 

3.5.5 PAH extraction samples (dextract) 

 

This set (dextract ) consists of two sets of samples obtained from extraction tests under 

different conditions. 

 

Set no.1. 36 samples obtained from 12 extraction tests in triplicate based on a design 

of experiments approach, made to test the best extraction operating mode (hot or 

warm), and the influence of two additional operating conditions: drying step and 

extraction time. The parameters of each extraction sample are summarized in Table 

3.10. 

 

Table 3.10. Parameters of the PAH extraction samples set no.1. 

Sample  Extraction mode  Drying  Extraction time (h)  
1 HOT No 1 
2 WARM Yes 1 
3 HOT Yes 1 
4 WARM No 2 
5 WARM Yes 2 
6 WARM Yes 3 
7 HOT Yes 3 
8 HOT No 3 
9 WARM No 1 
10 WARM No 3 
11 HOT No 2 
12 HOT Yes 2 
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Set no.2. 18 samples obtained from 6 extraction tests in triplicate, based on a design of 

experiments approach, and made to compare the above obtained results with the 

standard Soxhlet method, form this set. The parameters considered in these extraction 

tests are listed in Table 3.11.   

 

Table 3.11. Parameters of the PAH extraction samples set no.2. 

Sample  Extraction mode  Drying  Extraction  time (h)  
1 STANDARD No 1 
2 STANDARD Yes 1 
3 STANDARD Yes 3 
4 STANDARD No 3 
5 STANDARD No 2 
6 STANDARD Yes 2 

 

For each test, blank 150 mm diameter quartz fiber filters were cut in half and spiked 

with 150 µL of 22B at 10 ng µL-1 and 200 µL of a mixture of 16 USP-EPA PAHs at 2000 

ng µL−1 (SV Calibration Mix #5/610 PAH Mix solution).  

 

3.5.6 NIST SRM 1649b reference material samples (dsrm) 

 

Several samples of NIST SRM 1649b urban dust containing the nine US-EPA PAHs 

were analyzed. Concentration of each target PAH in the standard reference material 

sample is shown in Table 3.12. 

 

Table 3.12. Concentrations (mg kg-1) of each target PAH in NIST SRM 1649b. 

PAH Mean Concentration (mg kg -1) Standard deviation  (mg kg -1) 
Flt  6.14  0.12 
BaA 2.092  0.048 
Chr  3.008  0.044 
BbF 5.99  0.20 
BkF 1.748  0.083 
BaP 2.47  0.17 
BghiP  3.937  0.052 
IcdP 2.96  0.17 
DahA 0.290  0.004 

 

Two samples of 150 mg were analyzed at each selected extraction time: 3, 5, and 8 h 

(total number of samples = 6), to optimize an extraction protocol to be used for later 

aerosol analysis. Samples used for each extraction time are summarized in Table 3.13. 

. 
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Table 3.13. Mass of NIST SRM 1649b samples used at each extraction time. 

Extraction time (h) 3 5 8 

Sample 1 2 1 2 1 2 

Mass (mg) 151.0 150.1 151.1 150.8 152.1 152.3 

 

Samples were extracted to 100 mL of final volume, and 100 µL of 22B at 10 ng µL-1 

were added to the samples prior to the extraction process to correct for the extraction 

efficiency.  

 

Subsequently, several additions of increasing amounts of known concentrations of the 

10 target PAHs were included in all extracts at different times, in suitable concentration 

ranges. 7 mL aliquots of sample extract were added to a 10 mL volumetric flask.  In the 

sequence, from five to seven successive additions of a stock solution (0, 0.5, 0.8, 1, 

1.3, 1.5, 1.8 y 2.0 mL) were added to the volumetric flask and completed with n-

hexane. All samples were performed in duplicate.  

 

The concentration of each standard added to the samples by the stock solution is 

summarized in Table 3.14. 

 

 Table 3.14.  Concentration of each standard in the stock solution. 

PAH 22B BghiP  IcdP BaA Flt  DahA BbF BaP Chr  BkF 

Concentration (ng mL -1) 50 40 30 22 60 3 60 25 30 18 

 

 

3.5.7 Daily urban aerosol samples (d24air) 

 

A total of 17 samples of PM10 (n = 10) and PM2.5 (n = 7) collected for 24 h in 2013 

(campaign #1) were extracted and analyzed. To correct for the extraction efficiency, 

100 µL of 22B at 10 ng µL-1, used as surrogate, were added to the samples prior to the 

extraction process. 

 

Ambient aerosol samples were analyzed by both fluorescence spectroscopy and GC-

MS. The extracts were concentrated to 10 mL and, then, an aliquot of 5mL was taken 

for each analysis. For GC-MS analysis, the extract was concentrated under a nitrogen 

stream until a volume of 1 mL. EEM measurements were carried out by diluting the 

sample solution in order to minimize inner filter effects. 
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EEMs were measured for each sample, and the concentrations of the nine particle-

bound US-EPA PAHs were estimated using the proposed chemometric algorithms, 

presented in section 4.5, and the standard GC-MS reference technique. 

 
 
3.5.8 8-h urban aerosol samples (d8air) 

 

A total of 48 PM10 samples collected during 2014 (campaign #2) form this set. These 

PM10 samples were collected for 8 h periods, in three time bins: 04:00–12:00 h; 12:00–

20:00 h, and 20:00–04:00 h UTC, corresponding to morning, afternoon and night 

periods.  

 

Filters were extracted for 5 h in warm mode and concentrated to a suitable volume for 

further analysis. To correct for the extraction efficiency, from 50 to 20 µL of 22B at 10 

ng µL-1, used as surrogate, were added to the samples prior to the extraction process. 

 

Additionally, two standard additions of increasing known concentrations of the 10 target 

PAHs were added to all extracts in order to prove the feasibility of second-order 

standard addition methods to avoid potential sample matrix effects in the quantitative 

analysis. 2.5 mL aliquots of sample extract were added to a 5 mL volumetric flask.  In 

the sequence, two standard additions of increasing amounts of known concentrations 

of the 10 target PAHs of a stock solution (2 and 4 ng mL-1, or 4 and 8 ng mL-1, 

depending on the concentration of the compound) were added to the volumetric flask 

and completed with n-hexane. Finally, absorbance measurements were made for each 

extracted sample. 
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4.1 GENERAL METHODOLOGY  

 

This chapter defines the methodology applied in developing and validating alternative 

methods to determine particle-bound PAHs in ambient air. This methodology is based 

in the common analytical steps which include: development- optimization - validation 

and implementation. These steps are implemented for both the fluorescence analytical 

procedure and the multivariate and multi-way data methods, according to each of the 

main tasks illustrated in Figure 4.1.  

 

DEFINITION OF EEM DATA ACQUISITION PROTOCOL 

Fluorescence spectroscopy is the main technique used for PAHs analysis. Thus, the 

development of a measurement protocol, setting the optimal instrumental and spectral 

parameters to be used for further analysis comprises this first (central) task.  

 

First, the proper spectral ranges in which EEM measurements will be recorded, have to 

be set. Second, instrumental parameters, such as bandwidths of both excitation and 

emission monochromators, and photomultiplier integration time, need to be studied and 

optimized. Finally, the spectral characterization of target PAHs is essential to define the 

EEM data acquisition procedure. The tests carried out in this section have been made 

with synthetic PAHs solutions prepared in the laboratory (dpure, dinterf  datasets) 

previously described. 

 

DEVELOPMENT OF PRELIMINARY EEM DATA MODELS 

Given the spectral features of the target PAHs, a combination of EEM measurements 

with advanced multi-way and multivariate methods are required for accomplishing both 

quantitative and qualitative analysis. These data analysis methods need also to be 

optimized and validated. 

 

As a first step, the optimization of the fluorescence signal preprocessing methods 

necessary to construct reliable models is performed. Subsequently, second-order 

calibration models are built using the calibration set of samples (dcal ) for which specific 

characteristics of each proposed method are studied and compared. Validation of the 

performance of the models is then accomplished internally, with mathematical 

parameters, and externally, using the validation dataset (dval ). Finally, the feasibility of 

screening and determination of target PAHs in the presence of interferences is 

explored using the interference dataset (dinterf ).This step is developed using synthetic 

PAHs solutions, setting the preliminary bases for EEM data modeling in more complex 

aerosol samples. 
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Figure 4.1. Main steps in the development, optimization, validation and implementation of 

multivariate/multi-way methods for spectrofluorimetric determination of PAHs in urban air 

samples.  

 

• Selection of spectral ranges  
• Optimization of instrumental parameters  
• Spectral characterization of target PAHs  

 

 

OPTIMIZATION 
of the extraction 

protocol 

 

DEVELOPMENT
of preliminary 

EEM data 
models 

 
 

DEFINITION  
of EEM data 
acquisition 

protocol 

 

VALIDATION of 
the models to 

determine PAHs 
in aerosol 
samples  

APPLICATION OF THE DEVELOPED METHODOLOGY TO URBAN AIR 
SAMPLES 

• Optimization of preprocessing methods for EEM 
modeling  

• Construction and validation of second-order 
calibration models  

• Screening and determination of PAHs in 
presence of interferences 

• Selection of solvent and surrogate  
• Optimization of the extraction mode 
• Optimization of the extraction time 
•  

• Qualitative PAH analysis in aerosol samples 
• Quantitative comparion with GC-MS 
• Validation of the methods with SRM 
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OPTIMIZATION OF THE EXTRACTION PROTOCOL 

Soxhlet extraction method is crucial in the sample preparation step previous to 

fluorescence analysis. Consequently, the selection of the optimal operation parameters 

and the definition of the most suitable extraction protocol according to the 

characteristics of the target PAHs must be thoughtfully evaluated.  

 

First, the selection of the solvent and the surrogate is accomplished taking into account 

their physicochemical and spectrofluorimetric properties. Then, a deeper study, based 

on a design of experiments approach, is used to select the best extraction mode 

(dextract ). Then, standard reference material (dsrm ) subjected to increasing 

extraction times is analyzed in order to optimize the extraction time. 

 

VALIDATION OF THE MODELS TO DETERMINE TARGET PAHs I N AEROSOL 

SAMPLES 

The feasibility to identify and quantify PAHs in extracts of urban PM collection filters is 

tested and validated taking into account the bases established in the second task. 

Figures of merit of the technique for the target PAHs are also defined (d24air ). 

Moreover, the advantages and drawbacks of each developed approach to determine 

PAHs in airborne samples are highlighted. 

 

Validation of the developed methodologies for PAH determination in aerosol samples is 

carried out with the conventional technique of liquid extraction and analysis by Gas 

Chromatography-Mass Spectrometry (GC-MS), comparing the qualitative and 

quantitative performance of each model. 

 

Finally, due to the complexity of aerosol samples, the use of second-order standard 

addition method to account for potential sample matrix effects is assessed, validating 

the optimized analysis method and extraction protocol with an standard reference 

material (dsrm ). 

 

APPLICATION OF THE DEVELOPED METHODOLOGY TO URBAN A IR SAMPLES 

This point combines all the practical aspects and specific approaches developed and 

optimized through the previous steps, in order to develop improved methodologies for 

the sampling and analysis of target PAHs in urban air samples. These improved 

methodologies are applied to characterize PAH pollution in an urban area (d8air ). 
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4.2 EEM MULTIVARIATE AND MULTI-WAY DATA ANALYSIS  

 

As pointed out before, EEM data has an inherent three-dimensional structure (samples 

x emission x excitation). Therefore, the analysis of such data structure is based on 

advanced multivariate and multi-way data methods. This section is an overview of the 

details considered during EEM data modeling as well as the model validation 

procedures.  

 

Analytical data can differ in its dimensionality. Zeroth-order data corresponds to 

instruments producing a single response (i.e. single data point) per sample (scalar 

datum), such as the fluorescence emission at a certain excitation wavelength. For 

analytical purposes, zeroth-order data are usually fitted to a straight line by least 

squares, a procedure known as univariate calibration, which requires full selectivity for 

the analyte of interest. In contrast, multivariate data analysis is concerned with the 

analysis of data consisting of multiple variables measured from many samples. For 

instance, if the fluorescence is measured at more than one emission wavelength, the 

resulting spectrum is arranged as a vector, or first-order tensor (Figure 4.2 [Olivieri, 

2012]). When multivariate data for a single sample can be meaningfully arranged into a 

mathematical object with at least two different ways (e.g. samples and wavelengths) a 

data matrix is created, generating a second-order tensor. Furthermore, when a set of 

samples is arranged into at least a three-way array (third-order tensor), they belong to 

the multi-way class. This is the case of data matrices or second-order data for a single 

sample, such as excitation-emission fluorescence matrices (EEMs). Consequently, 

introducing extra dimensions in the dataset leads to higher-order data. For example, 

the mathematical object obtained by grouping third-order data for several samples into 

a fourth dimension is known as a four-way array and so on. Examples of four-way 

arrays are those obtained by, for instance, following the kinetics of EEM fluorescence 

spectroscopy. In this case, the four dimensions are samples, excitation, emission and 

reaction time.  

 

The mutual relationship among univariate, multivariate and multi-way data is pictorially 

illustrated in Figure 4.2 [Olivieri, 2012].  
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Figure 4.2 . Pictorial illustration of the different data arrays that can be measured for a single 

sample and for a sample set, and the nomenclature employed for their classification. Taken 

from [Olivieri, 2012]. 

 

This work is focused on the analysis of three-way fluorescence data as excitation-

emission matrices by multivariate/multi-way methods for the environmental monitoring 

of PAHs. Measuring and processing multi-way data provides a number of advantages: 

(1) improved sensitivity, derived from noise-averaging multiple measurements of 

redundant data, (2) increased selectivity, because each new data mode provides an 

additional degree of partial selectivity, and, probably the most important one, (3) 

modeling the analyte contribution and its quantitative determination even in the 

presence of unknown interferences, absent in the calibration samples. This advantage 

is the so-called second-order advantage [Booksh and Kowalski, 1994], which states 

that if the true concentrations of the analytes are known in one or more samples, the 

concentrations in the remaining samples can be estimated even in presence of 

uncalibrated species. This is especially relevant in environmental analysis.  

 

Suitable algorithms for analyzing three-way data are PARAllel FACtor analysis 

(PARAFAC) [Bro, 1997], the Generalized Rank Annihilation Method (GRAM) [Sanchez 

and Kowalski, 1986], Direct TriLinear Decomposition (DTLD) [Sanchez and Kowalski, 

1990], Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) [De Juan 

et al., 2002], BiLinear Least Squares (BLLS) [Linder and Sundberg, 1998], and 

Alternating TriLinear Decomposition (ATLD) [Wu et al., 1998] and its variants, among 

others. These algorithms are of prime relevance to the analysis of complex mixtures 

such as aerosol samples, because they achieve the second-order advantage.  
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Altenatively, the three-way arrays can be rearranged into vectors to apply a first-order 

algorithm, leading to Unfolded-Principal Component Regression (U-PCR) and 

Unfolded-Partial Least Squares (U-PLS) [Wold et al., 1987] Another promising 

alternative is multi-way Partial Least Squares (N-PLS) [Bro, 1996], which is a genuine 

multi-way method. However, these latter methods do not obtain the second-order 

advantage, unless they are coupled to a separate procedure known as Residual 

BiLinearization (RBL) [Öhman et al., 1990]. U-PLS/RBL enjoys all the capabilities of 

latent variables methodologies, yet preserving the important second-order 

advantage [Olivieri, 2005] . 

 

In this context, the most relevant second-order algorithms used to analyze complex 

mixtures, PARAFAC, MCR-ALS and U-PLS/RBL, were chosen for being good 

representatives of second-order resolution (PARAFAC, MCR-ALS) and calibration (U-

PLS/RBL) methods. The first two (PARAFAC and MCR-ALS) are curve resolution 

methods that can be easily adapted to quantification purposes. Nevertheless, U-

PLS/RBL is designed only for quantification purposes. As mentioned before, all of them 

achieve the so-called second order advantage. The main features of these methods, 

and the methodology applied in the modeling of EEM samples will be described in the 

following sections. The overall approach to obtaining a reliable model is illustrated in 

Figure 4.3 [Murphy et al., 2013].  

 

 
 

Figure 4.3 . Schematic of the steps involved in multivariate/multi-way analysis of fluorescence 

excitation emission matrices (EEMs). Taken from [Murphy et al., 2013]. 
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The basic steps are (1) import and assemble the dataset; (2) preprocess; (3) explore 

the data and develop preliminary models (4) develop a final, validated model containing 

the correct number of components, and (5) interpret the results. 

  

4.3 DATA IMPORT 

 

The first step is to transfer the data from the instrument to software supporting 

multivariate/multi-way analysis. Data analysis was performed with the commercial 

Matlab (Mathworks, Inc., MA, USA) software which efficiently handles array operations. 

In-house routines were used for importing EEMs and related data files (*.txt, *.csv and 

*.xls) to Matlab, and assembling them into a suitable data structure for further analysis. 

 

4.3.1 Software 

 

All multivariate and multi-way algorithms described in this memory have been 

implemented in Matlab version R2010 (The MathWorks, MA, USA). The routine 

employed for PARAFAC calculations is available on internet at 

(http://www.models.life.ku.dk) [Andersson and Bro, 2000]. MCR–ALS with a user-

friendly interface was downloaded from (http://www.mcrals.info/) [Jaumot et al., 2005]. 

U-PLS/ RBL algorithm was implemented using the graphical interface of the MVC2 

toolbox, downloaded from (http://www.chemometry.com/) [Olivieri et al., 2009]. Finally, 

the PLS toolbox 7.82 (Eigenvector Research, Inc., USA) [Wise et al., 1995] was also 

used in the data analysis. 

 

4.4 PREPROCESSING OF EEM RAW DATA 

 

4.4.1 Instrumental corrections 

 

Fluorescence EEM measurements have to be corrected for systematic biases. Raw 

EEM data are inherently biased due to imperfections in the optical components or their 

alignment, and variations in the efficiency at which different wavelengths are 

transmitted through the various optical components. This results in distorted excitation 

or emission spectra that must be accounted for spectral corrections. 

 

Instrumental corrections on the excitation side are handled by the reference detector. 

This is done by splitting off a known fraction of the incident beam on the sample and 

measuring its intensity I0(λ) as a function of the wavelength. The detected fluorescence 
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is then normalized by dividing the measured intensity by the incident intensity at each 

wavelength. This accounts for any variations or fluctuations in the power of the light 

source as well as losses in the excitation monochromator. 

 

The emission-side corrections must be handled in a differently way. Those corrections 

will account for all losses in traveling from sample to detector, including chromatic 

aberrations in the optic components, as well as for detector spectral sensitivity. They 

only depend on the emission wavelength λem. The correction is applied by multiplying 

the measured intensity at each wavelength by an appropriate correction factor. In 

practice, the emission-side correction factors are determined using either a calibrated 

lamp source or a series of known fluorophores with well-established emission spectra. 

Then, the measured spectra are compared to the known source data to determine the 

correction values. Figure 4.4 shows the correction factors used for the photomultiplier 

intensity correction as a function of the emission wavelength, for a plane diffraction 

grating of 1200 lines mm-1 and a blaze angle of 300 nm. 

 

As explained above, in our analysis, the fluorescence spectra were corrected for 

wavelength-related variations of lamp intensity and photomultiplier sensitivity, being the 

samples recorded in signal/reference mode. 

 

 
Figure 4.4. Correction factors for the photomultiplier signal in the case of a diffraction grating of 

1200 lines mm-1 and a blaze angle of 300 nm, obtained from Horiba Jobin Yvon Inc. 

 

 4.4.2 Scattering Effects 

 

From the fluorescence measurement procedure the emission spectra are set side-by-

side creating a fluorescence landscape (EEM), with the excitation wavelength along the 

x-axis, the emission along the y-axis and the intensity of the fluorescence signal along 

0

60

120

180

290 370 450 530 610 690 770 850

C
or

re
ct

io
n 

F
ac

to
r

Emission wavelength (nm)



Methodology 
 

| 89 
 

the z-axis (Figure 4.5). As it can be seen in Figure 4.5, when recording an EEM in wide 

spectral excitation and emission ranges, other signals are detected by the instrument, 

which do not come from fluorescence processes.  

 

The analyte fluorescence band is usually accompanied by other narrower signals: (1) 

the Rayleigh dispersion, (2) the Raman dispersion, and (3) the second harmonic of the 

Rayleigh dispersion. Figure 4.5 gives an example of an EEM, where Rayleigh 

scattering (both primary and secondary), as well as Raman scattering are visible as 

diagonal ridges. 

 
Figure 4.5. A typical EEM of a mixture of fluorophores in n-hexane. 

 

Rayleigh scattering is a type of elastic scattering, predominantly caused by molecules 

of solute oscillating at the same frequency as the incident light. The 1st order Rayleigh 

scattering appears as a narrow intense signal at the same emission wavelength as the 

excitation wavelength (λem= λex). Generally, harmonic signals are also detected; they 

usually correspond to the second-order of the diffraction grating for the incident 

radiation, also called 2nd order Rayleigh, so that the spectrum shows a narrow peak at 

twice the excitation wavelength (λem= 2λex).  

 

Raman scattering is inelastic; the emitted light has less energy than the absorbed light. 

Thus, the Raman signal appears at longer wavelengths with respect to the excitation 

value and shows a nonlinear pattern. This dispersion is caused by molecules of solute 

absorbing some of the incident light, followed by the emission of photons of less energy 

than the absorbed photons. This energy difference is constant, and consequently, the 
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Raman scattering pattern is at a constant energy loss from the elastic Rayleigh 

scattering pattern throughout the EEM landscape (Figure 4.5). This energy loss is 

dependent on the solute. The energy difference between the excitation and Raman 

dispersion, measured in frequency units, is on the order of a vibrational frequency of 

the solvent molecule. For instance, the distance between the first-order Rayleigh and 

the Raman scattering line for water is 3600 cm−1. This information can be also used in 

the analysis of EEM data to separate the Raman scattering line from the signal of the 

fluorophores. 

 

The light scattering processes described above are unwanted in the analysis of EEM 

data, because they do not hold any chemical information about the fluorophores in the 

solution. Moreover, while the EEM analyte signal is trilinear, these scattering effects 

are not trilinear, so they can disturb the mathematical modeling of the chemical 

compounds. Therefore, it is advisable to remove or reduce the influence of these 

scattering effects before modeling. 

 

There are several ways of removing the Rayleigh or Raman scattering: down-weighting 

of the scattering region (Maximum likelihood via Iterative Least squares EStimation, 

MILES) [Bro et al., 2002], specific modeling of scattering [Rinnan et al., 2005], 

subtraction of a standard [McKnight et al., 2001], application of constraints in the 

decomposition [Andersen and Bro, 2003], inserting missing values [Christensen et al., 

2003], or inserting zeros outside the data area [Thygesen et al., 2004]. Among these, 

the most commonly used consists of subtracting the spectrum of the solvent (if it is 

available), to minimize the Raman scattering, and then, replacing the Rayleigh affected 

areas by missing values [Munck et al., 1998]. Another possibility consists of replacing 

the removed scattering areas with interpolated values.  

 

Therefore, since one important part of analyzing EEM data is the proper handling of 

Rayleigh and Raman scattering, here the two most common methods of handling 

scattering have been evaluated and compared: replacing the scattering area with 

missing elements or with interpolated values. A comparison of how missing or 

interpolated data can affect the modeling of EEMs is given in section 5.2.1. Thus, all 

the EEM data have been preprocessed to remove the scattering effects before 

modeling, which is described in section 4.5. 
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4.4.3 Inner Filter Effect 

 

In fluorescence spectroscopy, there is a linear relationship between concentration and 

fluorescence intensity at low enough optical depths, for which the Beer-Lambert Law 

holds. Deviations from linearity may be caused by inner filter effects and consequently, 

data must be corrected. 

 

The Inner Filter Effect (IFE) refers to an apparent decrease in the emission quantum 

yield and/or a distortion of the band shape as a result of the conjugation of two 

absorption phenomena (Figure 4.6). The first one, known as primary inner filter effect, 

is an attenuation of the excitation beam due to the absorption by chromophores in the 

solution. The second one, known as secondary inner filter effect, results from the 

absorption of the emitted fluorescence radiation by chromophores in the solution. The 

total attenuation of fluorescence due to IFE at each wavelength pair across an EEM is 

function of the absorption coefficients at the respective wavelengths, and the 

pathlength. As a result of the IFE, the shape of the fluorescence spectra can be 

distorted, leading to erroneous interpretations. The result is that traditional linear 

excitation–emission matrix analysis methods cannot be directly applied on the raw 

measured EEMs.  

 

 
Figure 4.6. Schematic representation of the inner filter effects through a solution analyzed by 

fluorescence inside a 1 cm cuvette with right-angle geometry. The IFE is composed by both 

primary inner filter effect, which acts on the excitation beam (I0), and secondary inner filter 

effect, which attenuates the fluorescence intensity until the detected value is reached (I). 

  

Various authors have suggested different approaches to compensate for IFE. The two 

most common approaches are based on the sample dilution to a concentration at 

which IFE effects are negligible, and an empirical correction based on the use of the 
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absorbance profile of the same sample. Both approaches have advantages and 

disadvantages. 

 

Since inner filter effects can be neglected for weak absorbance values, the first 

common procedure is to strongly dilute the solution until maximal absorbance is below 

0.1 [Valeur, 2001]. There is an obvious drawback with this dilution method, since a too 

strong diluting factor would severely reduce the signal to noise ratio. Moreover, this 

procedure must be applied very carefully to avoid contamination or physico-chemical 

changes. Therefore, ensuring the linearity of the EEM data after dilution is not an easy 

task.  

 

The second approach resorts to a mathematical correction of the fluorescence data. A 

number of such corrections have been suggested, but most involve a separate 

absorbance measurement. The most common one, namely the Absorbance-Based 

Approach (ABA) (Eq. 4.1) [Lakowicz, 2006] uses the measured absorbance (Aλ) at 

each pair of excitation (λex) and emission wavelengths (λem) across the EEM to convert 

the observed fluorescence intensity (Fobs) into the corrected fluorescence intensity 

(Fcorr). Since we measure fluorescence in a 1 cm cuvette, and it is assumed that 

absorbance (excitation) and fluorescence (emission) occurs at the midpoint of the 

cuvette, the Aλex and Aλem were multiplied by 0.5. Thus, inner filtering was accounted for 

by element-wise multiplication of each spectrally corrected EEM (Fcorr), by a correction 

matrix (I), calculated for each wavelength pair from the absorbance (Aλ) of the same 

sample. 

 

�λ
�,λ
����� = �λ
�,λ
���� × � = �λ
�,λ
���� × 10	(�.�×(�λ !"�λ #$$                  (4.1)  

 

This involves an additional absorbance measurement, with different instrument 

characteristics from the fluorescence instrument used for recording the EEM. 

Consequently, another uncertainty source is introduced into the analysis. The rather 

short linear range of the absorbance measurement procedure is another limiting factor. 

 

It is important to remark that inner filter effects are very likely to be significant at short 

wavelengths, where the absorbance is higher, as shown in Figure 4.7. 
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Figure 4.7. ( A) Absorbance of an aerosol sample and (B) calculated correction matrix 

accounting for its inner filter effect. 

 

The attenuation of fluorescence attributed to IFE was carried out by using the function 

Flucut from PLS Toolbox ver. 7.8.2 (Eigenvector Research, Inc., WA) according to the 

Eq.4.1. This function allows correcting the inner-filter effect by using the absorbance 

spectrum of the sample (Figure 4.7.A) to calculate the corresponding correction matrix 

(Figure 4.7.B) accounting for its inner effect, as shown in Figure 4.7. The corrected 

EEM matrix is then calculated by multiplying the EEM raw data by the corresponding 

correction matrix. 

 

4.5 MULTIVARIATE AND MULTI-WAY MODELING 

 

4.5.1 Parallel Factor Analysis 

 

PARAFAC is one of the most popular decomposition methods for second-order data. It 

was developed independently by Harshman [Harshman, 1970] and by Carroll and 

Chang [Carroll and Chang, 1970] under the name CANDECOMP (CANonical 

DECOMPosition), and both were based on the principle of parallel proportional profiles 

suggested by Cattell [Cattell, 1944]. 

 

In this method, excitation-emission fluorescence measurements recorded for several 

samples are organized into a three-way array X (I x J x K), where I is the number of 

samples, J the number of emission wavelengths, and K the number of excitation 

wavelengths (Figure 4.8 [Amigo and Marini, 2013]).  

A
A 

B 
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Figure 4.8 . Example of the arrangement of excitation-emission data into a three-way array. 

Taken from [Amigo and Marini, 2013]. 

 

The structure of the EEM data, two independent sets of variables (excitation and 

emission profiles) and one variable dependent on both spectral profiles (concentration 

profiles), fulfills the requirement of trilinearity required by PARAFAC, if no uncontrolled 

effects/artifacts are present in the samples. Trilinearity assumes that the measured 

signal is the sum of the individual peaks of each analyte and that the profiles in each 

mode for the analytes are proportional in all the samples [Smilde et al., 2004]. 

Therefore, for the EEM dataset (X), each responsive component (f) can be defined by a 

triad of profiles: one score vector representing the relative concentration of the samples 

(af) and two loading vectors (for the emission (b f) and the excitation (c f) modes).  

 

Then, the PARAFAC model decomposes the data array X as indicated in Eq.4.2: 

 

x�&' = ∑ a�)*)�� b&)c') + e�&'                         (4.2)  

 

where xijk is the fluorescence intensity of the ith sample, at the kth excitation and the jth 

emission wavelength. The number of columns in the loading matrices (F) is the number 

of PARAFAC factors and eijk the related residual (Figure 4.9 [Amigo and Marini, 

2013]).  

X (J,K) 
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Figure 4.9. Graphical representation of a two-factor PARAFAC model of the three-way X. The 

top part of the figure shows the chemical interpretation, whereas the bottom part shows the 

mathematical representation. Taken from [Amigo and Marini, 2013]. 

 

This decomposition is often unique. This means that, under the proper constraints, 

PARAFAC loadings will resemble the real physicochemical behavior of the analytes 

involved in the variability of the signal. Nevertheless, in PARAFAC modeling, the 

sequence of the compounds and the scale of profiles are arbitrary (intensity ambiguity). 

Hence, after fitting the model, the specific analytes must be identified and normalized.  

 

In the same way, the PARAFAC model can be formulated using the Khatri-Rao product 

in terms of Eq.4.3:  

 

/(0×12$ = 3(4⊙ 6$7 + 8(0×12$	                     (4.3) 

 

The decomposition of X is usually accomplished through Alternating Least Squares 

(ALS), by successively assuming the loadings in two modes known (B and C)  and 

then, estimating the unknown set of parameters of the last mode (A) by minimizing the 

sum of squares of the residuals in Eq.4.4.  

 

9/(0×12$ : 3(4⊙ 6$7‖<=>,?,@A�BCDE
           (4.4) 

 

where ‖F‖< is the Frobenius norm and ⊙ is the Khatri-Rao product, which is a column-

wise Kronecker product. 
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There are two main facts to consider in this iterative process. The first fact is the need 

of initial estimations. Good starting values help to speed up the algorithm and decrease 

the risk of converging to a local minimum.  Several possible kinds of initializations have 

been proposed in the literature [Bro, 1998]. These include the use of random starting 

values, the Direct TriLinear Decomposition/Generalized Rank Annihilation Methods 

(DTLD/GRAM), Singular Value Decomposition (SVD), orthogonalized random 

numbers, or the best-fitting model of many small runs or even using old values. The 

second fact is that an end point of iterations has to be established. That is, the point in 

which the obtained reconstructed data are most similar to the original ones. In most 

cases, a stopping criterion of 10-6 is chosen to assure that the absolute minimum in the 

iterations has been reached. If the model parameters are very difficult to estimate, a 

lower criterion may be chosen.  

 

Specifically, in this research work, the initialization of the PARAFAC models was 

usually made by using the best-fitting model of several models fitted using a few 

iterations. Additionally, a relative change in fit of less than 10-6 was set as a suitable 

stopping criterion. 

 

A critical stage to build a PARAFAC model is the determination of the number of 

factors in the model which are necessary to reconstruct the data [Christensen et al., 

2006]. This is, probably, the most crucial and complex step. Extracting too few factors 

(under-fitted model) is usually detected by the non-random distribution of the residuals 

and their values. On the contrary, extracting too many factors (over-fitted model) does 

not only mean that noise is being increasingly modeled, but also that the true factors 

are being modeled by more (correlated) factors [Bro, 1997]. 

 

There are multiple criteria to do this estimation and it is extremely advisable the 

combined use of several of them. In this work, the CORe CONsistency DIAgnostic test 

(CORCONDIA), which is 100% for a completely trilinear model [Bro and Kiers, 2003], 

the percentage of lack of fit and the variance explained by the model, the residual 

analysis and previous chemical knowledge of the data when available (such as the 

quality of the recovered spectral loadings assessed by a correlation coefficient (r) with 

reference spectral shapes), have been used (section 4.6.1). 

 

The core consistency diagnostic test indicates how well the model is in concert with the 

distribution of superdiagonal and off-superdiagonal elements of the Tucker3 core. If the 

PARAFAC model is correct, then it is expected that the superdiagonal elements will be 
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close to one and the off-diagonal elements close to zero. Thus, the core consistency 

value, expressed as a percentage, indicates the degree of fitting of the Tucker3 core 

with respect to the assumption of the model [Bro and Kiers, 2003], is defined as: 

 
Core Consistency = 100 N1 : ∑ ∑ ∑ (BO PQRO P$STPUVT UVTOUV∑ ∑ ∑ RO PSTPUVT UVTOUV W                  (4.5) 

 

where gdef is the calculated element of the core using the PARAFAC model; tdef the 

element of a binary array with zeros in all elements and ones in the superdiagonal (the 

expected Tucker3 core) and F is the number of factors in the model. If the PARAFAC 

model is valid then gdef should resemble tdef. If the data cannot be described 

approximately by a trilinear model or too many components are used, then, the core 

matrix G will differ from T.  

 

Thus, the core consistency estimates the appropriateness of the PARAFAC solution, 

but it does not mean that the calculated model is the correct one. Moreover, for 

complex data, such as environmental samples, the determination of the number of 

factors by CORCONDIA remains elusive. Therefore, it is often suggested that several 

diagnostic tools like the variance explained of the model (section 4.6.1), should be 

used simultaneously. As a general rule, the variance explained increases and the core 

consistency decreases with the number of factors [Andersen and Bro, 2003]. The point 

is to guess which is real chemical information and which one is only noise. 

 

Imposing constraints (chemical or mathematical properties that the profiles should 

fulfill) usually helps to improve the performance of the algorithm and to obtain more 

meaningful profiles. The fit of a constrained model will always be lower than the fit of an 

unconstrained model, but if the constrained model is more interpretable and realistic 

this justifies the lost in fit. The most common constraints are orthogonality, non-

negativity and unimodality. In the case of EEM data, due to the chemical features of the 

signal, non-negative constraints, i.e. the profiles only contain non-zero values, in the 

three modes (concentration, excitation and emission profiles) were imposed. 

Nonnegative estimates of the three-way profiles can be obtained by replacing the least 

squares update of any given profile with the nonnegative least squares (NNLS) 

solution. Although the conventional NNLS algorithm is numerically intensive compared 

to computing the regular least squares solution for each update, Bro and DeJong 

(1997) developed a fast NNLS algorithm specifically optimized for repetitive NNLS 

optimizations in iterative algorithms such as PARAFAC. 
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As previously mentioned, guessing the proper number of factors and the best 

constraints to be applied are the most cumbersome issues in PARAFAC modeling. 

This is a task to be performed after running several PARAFAC models with different 

number of factors by mathematically validating the model performance with statistical 

parameters (section 4.6.1) and chemically validating the model comparing the obtained 

spectral profiles with databases. 

 

Finally, for quantitative purposes, the related scores of the specific compounds 

identified after fitting the proper PARAFAC model can be used to build a calibration 

model (second-order calibration) for concentration prediction in unknown samples.  

 

 

Figure 4.10. Graphical representation of PARAFAC second-order calibration and prediction. 

 

PARAFAC second-order calibration of three-way data is a two-step process (Figure 

4.10). First, a model that extracts the pure spectral compounds from the set of 

calibration samples (dcal ) and ‘unknown’ samples (test samples) is built. By 

simultaneously modeling the calibration and unknown samples, all interferents can be 

incorporated into the initial model (profiting the second-order advantage). In the second 

step, the triad corresponding to the signature of the target analyte in the calibration set 



Methodology 
 

| 99 
 

is identified to build the calibration model. The PARAFAC scores obtained contain 

concentration information, but the scaling factor between scores and real 

concentrations is unknown. Hence, the scores of each analyte are regressed against 

the nominal concentrations of the analyte in the calibration samples to calculate the 

calibration line. In this manner, estimation of analyte concentration in the unknown 

sample is reduced from a three-way problem to a pseudo-univariate calibration model. 

Thus, the concentration of the target analyte in the test sample is predicted using the 

score of the test sample and the calculated calibration curve. 

 

 

4.5.2 Multivariate curve resolution - alternating l east squares  

 

MCR-ALS aims at recovering the pure response profiles (excitation and emission 

spectra in this case) of the chemical constituents or species of an unresolved mixture 

from the sole information contained in the original dataset (EEM measurements). 

 

Every excitation-emission matrix (D), composed by J columns (emission wavelengths) 

and K rows (excitation wavelengths) containing the fluorescence spectra of the 

fluorophores present in each sample, follows the Beer-Lambert’s law bilinear model. 

Thus, since only fluorescence is observed in this EEM region (nc factors), the bilinear 

decomposition of D can be described by the following equation:  

 

_ = `
�`
�a + 8             (4.6) 

 

where Sex
 (K,nc) is the matrix of excitation spectra, Sem

 (J,nc) is the matrix of emission 

spectra of the detected compounds, and E is the residual matrix describing the 

variance not explained by the bilinear model (Sex Sem
T). The unique bilinear 

decomposition of matrix D into Sex and Sem is not assured if only one sample is 

analyzed (analysis of a single data matrix). That is, the mathematical decomposition of 

matrix D has not a unique solution due to possible rotational ambiguities, but a solution 

with physicochemical meaning can be recovered unequivocally by applying appropriate 

constrains for both emission and excitation spectra (Sex  and Sem ) [Tauler et al., 1995]. 

 

For several measurements, the EEM dataset is structured as an augmented data 

matrix Daug (IKxJ) instead of forming a three-dimensional data array to form a multiset 

structure (Figure 4.11). Augmentation can be performed in either direction (column or 

row), depending on the type of data and the overlap in the modes. In this work, the 
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augmentation was implemented assuming the emission mode as the common one, 

because of the more severe overlap in the excitation mode.  

 

 
 

Figure 4.11. Graphical representation of the data structure employed in MCR-ALS and its 

bilinear model decomposition. (Left) three-way array and (right) augmented data matrix. 

 

Therefore, for an EEM multiset, the Daug augmented matrix is decomposed into the 

product of the augmented Caug matrix mixing pure excitation spectra (Sex ) and 

contribution profiles (C) and the single Sem
T matrix of pure emission spectra, where Eaug 

is the experimental error (Figure 4.11). Decomposition of Daug is achieved by iterative 

alternating least-squares optimization of Caug and Sem
T to minimize the Frobenius norm 

of Eaug.  

 

MCR-ALS requires initial estimates of the spectral or the concentration profiles for each 

compound to start the optimization process. As in PARAFAC, working with good initial 

estimations can help the algorithm to converge to a good solution avoiding local 

minima, for which random estimates should preferably be avoided. In this work, the 

known emission spectral profiles of the standards have been used to initialize the 

optimization process -when they were available-, and an algorithm based on 

SIMPLISMA (SIMPLe-to-use Interactive Self-modeling Mixture Analysis) methodology 

was used to select profiles for additional factors when interfering species or additional 

model contributions were required.  

 

MCR responses can be ambiguous due to the rotational and the intensity ambiguities 

in the solution. The ALS optimization can be drastically improved with the application of 

constraints during the iterative process. One of the strongest points of the MCR-ALS 

approach is the variety and versatility in the treatment of constraints. Accordingly, both 

natural constraints (non-negativity, unimodality, closure…) and more advanced 
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constraints such as multilinear, kinetic or correlation constraints can be chosen [Jaumot 

et al., 2015]. The application of some constraints to the concentration and/or to the 

spectral profiles also helps to minimize the ambiguity during the decomposition.  

 

Consequently, in this research, several constraints have been imposed during ALS 

optimization. The augmented data matrix or multiset has been always decomposed 

implementing non-negativity constraints, by a fast non-negativity least squares 

algorithm, to both emission and excitation spectral profiles, because either emission or 

excitation spectra must be always positive. Additionally, correspondence among 

species has been used to restrict the rotational ambiguity, i.e. the presence/absence of 

analytes in the standard samples has been actively set. This presence/absence 

information is coded in binary format and introduced into the MCR algorithm [Tauler et 

al., 2009]. As a result, when a particular analyte does not exist in a particular Caug  

and/or Sem
T, the elements in the related profile are set to zero. This is usually 

implemented in the case of data matrices of complex mixtures difficult to resolve, such 

as the environmental samples under study, for which a simpler data matrix containing 

only one of the compounds in the mixture (the analyte) is appended. As resolution 

conditions for the analyte in its pure data matrix are trivially achieved without 

ambiguities in its two measurement modes (concentration and spectral profiles), the 

conditions for this compound are immediately extended to the rest of the 

simultaneously analyzed data matrices, whatever the complexity of them. This situation 

can be extended to the achievement of resolution conditions for a set of analytes in 

their mixtures, when these resolution conditions are also achieved in any one of the 

simultaneously analyzed simpler data matrices. This aspect is also related to the so-

called second-order advantage, which means that total resolution and quantification of 

one compound of interest (analyte) can be achieved in the presence of unknown 

interferences. 

 

As explained above, MCR-ALS method relies by default on a bilinear model, hence, it 

only requires that one of the dimensions (excitation or emission) matches between the 

different data matrices. However, the trilinear behavior can be also used as a 

constraint, which is commonly fulfilled by fluorescence data, since excitation and 

emission spectra of the same chemical compound should be the same whatever is the 

sample analyzed where is present. 

 

When the trilinear model [De Juan et al., 1998; De Juan and Tauler, 2001] holds, every 

individual data matrix, Di, is decomposed by the following equation:  
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_� = 4	AbB`
�c +8AbB = `
�4�`
�c +8AbB                                          (4.7) 

 

where Sex and Sem
T matrices are the same for all Di simultaneously analyzed. Only the 

new Ci diagonal matrix of dimensions (nc, nc) changes from sample to sample and it 

gives in its diagonal the relative spectral contributions of the nc factors to the 

fluorescence signal of sample matrix i (Figure 4.12 [Zhang et al., 2014]).  

 

 
Figure 4.12. Decomposition of the EEM multiset using the trilinearity constraint during the 

Alternating Least Squares optimization in MCR-ALS. Modified from [Zhang et al., 2014]. 

 

It is important to remark that Sex (excitation profiles) and C (concentration profiles) are 

mixed in the augmented Caug matrix. These two matrices can be finally recovered using 

a similar procedure as in the application of the trilinearity constraint. According to 

Figure 4.12 [Zhang et al., 2014], when trilinearity constraint is applied during the ALS 

optimization, Caug is first decomposed by SVD for each factor. Only the first singular 

value is considered in this decomposition, implying that for this factor, the shape of its 

excitation spectrum is exactly the same for all the considered samples and that it will 

only change its relative intensity according to concentration of this compound. After this 

decomposition, the full Caug is rebuilt and updated for the next ALS iteration. Therefore, 

apart from forcing the shape of the excitation spectrum of the considered factor to be 

the same for all different samples, this procedure captures the relative intensity 
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variation of this factor, which is stored in a contribution or concentration C matrix, giving 

the relative contribution of this factor in the different samples.  

 

Accordingly, results obtained by MCR-ALS with the trilinearity constraint applied to all 

the factors will give practically the same results as other trilinear model-based methods 

such as PARAFAC, when applied to the same system. However, the main advantage 

of the trilinearity constraint in MCR-ALS is that it is applied independently, and 

optionally, to each factor of the dataset, giving more flexibility to the data analysis and 

allowing for fully trilinear, partially trilinear or completely bilinear models. This makes a 

clear difference with PARAFAC, where all resolved factors should fulfill the sought 

trilinear condition. This flexibility allows a more representative modeling of some real 

situations, such as those of systems where the profiles of some factors may behave in 

a trilinear manner (e.g. analytes) and the profiles of some others may not (e.g. strong 

backgrounds or interferences in environmental samples). Accordingly, in this work, 

MCR-ALS models with total trilinearity (ideal EEM behavior) and partial trilinearity have 

been tested. Partial trilinearity has been applied so that the analyte contributions are 

always considered trilinear, whereas additional model contributions related to 

background or interferences have been modeled in a bilinear way. 

 

The ALS optimization is finished when the relative difference in fit obtained in two 

consecutive iterations is below a threshold value. Other possibilities include setting a 

maximum number of iteration cycles as a stop criterion, or comparing the shape of the 

resolved concentration profiles and spectra in consecutive iterations. In our case, a 

difference in fit below 0.1% between two consecutive iterations has been used as stop 

criterion. The selection of the proper number of factors is usually performed after 

running several MCR-ALS models with different number of factors and comparing the 

parameters obtained for each model (section 4.6.1). 

 

Similarly to PARAFAC, once MCR-ALS results are obtained and the compounds are 

identified, MCR-ALS can be used as a second-order calibration method. In this case, 

the MCR-ALS scores are obtained per each analyte and sample as the integrated area 

under the related resolved excitation spectrum. Then, the scores of a particular analyte 

are regressed against nominal concentration values to build a calibration curve that can 

be used afterwards for concentration prediction in unknown samples.  
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4.5.3 Unfolded Partial Least Squares coupled to Res idual Bilinearization 

 

U-PLS/RBL algorithm belongs to the family of multivariate calibration methods and, 

therefore, no decomposition like that in PARAFAC or MCR-ALS is obtained. Instead, 

U-PLS/RBL algorithm mainly aims at the optimal prediction of concentrations (or 

parameters of interest), in Y, from a model linking the concentrations with the 

information in the EEM measurement (in X). In the U-PLS/RBL method, the second-

order data are unfolded and rearranged into sample vectors before applying the PLS 

first-order algorithm (Figure 4.13 [Amigo and Marini, 2013]). 

 
 

Figure 4.13. Two samples with different amounts of three fluorophores measured by EEM 

giving two landscapes/matrices of data shown in the middle. The data can be arranged and 

decomposed as a three-way array (left) or as an unfolded two-way array (right). Taken from 

[Amigo and Marini, 2013]. 

 

The first step aims at building a PLS linear model to enable the prediction of the 

chemical variable Y (PAH concentration) from the measured spectra X, described by: 

 

d = /6 + �∗              (4.8) 

 

where B is a matrix which contains the regression coefficients expressed as: B 

=W(PTW)−−−−1QT , and F* is a noise term for the model which has the same dimensions 

as Y.  

 

To extract maximum information to a lower dimension space, matrices X and Y are 

decomposed to the product of:  

 

/ = afa + 8 = ∑ gh3h�i jha + 8                      (4.9) 

d = kla + � = ∑ mh3h�i nha + �                   (4.10) 
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where T and P are the scores and loadings in X; U and Q are the scores and loadings 

of the Y-space; E and F are the residuals in X and Y respectively, and A the number of 

latent variables of the model. The decompositions of X and Y are not independent, 

establishing an internal relationship (R) made so as to maximize the covariance of T 

and U scores, as it is illustrated in Figure 4.14. 

 

 
Figure 4.14. Graphical representation of PLS model. 

 

One of the most popular algorithms for solving the equation 4.8 is based on the 

Nonlinear Iterative PArtial Least Squares (NIPALS) algorithm [Wold, 1975]. NIPALS 

finds weight vectors (or projection vectors) w, c for X and Y respectively, such that: 

 

oOHp(g, m$q= = argmax‖u‖�‖�‖��oOHp(/	v, d	w$q=          (4.11)  

  

where t and u are a column of T and U respectively and cov indicates the sample 

covariance. The NIPALS algorithm starts with random initialization of Y-space score 

vector u and repeats a sequence of the following steps for a trial number of latent 

variables (a=(1,2,….,A)) until convergence. At the end of NIPALS procedure, w and c 

vectors are computed and collected in matrices W and C.  

 

The number of latent variables (A) is usually estimated by cross-validation (CV) 

methods [Haaland and Thomas, 1988]. In our case, leave-one-out cross-validation was 

used to estimate the proper number of latent variables. Each sample is left out from the 

calibration set, and its concentration is predicted using a model built with the spectra 

for the remaining samples and a trial number of PLS factors. The squared error for the 

prediction of the left out sample is summed into a parameter called PRedicted Error 

Sum of Squares (PRESS), which is a function of A.  

 

YX T U

P Q

Y = UQ' + FX = TP' + E

u1=r1t1

u2=r2t2
U = RT

etc.



Chapter 4 
  

106|  
 

PRESS =  ∑ uy�,
�� : y�,v�
wx=y���                    (4.12) 

 

where I is the number of calibration samples, and “nom” and “pred” stand for nominal 

and predicted, respectively.  

 

The PRESS is estimated for values of A ranging from 1 to a certain maximum, larger 

than the suspected optimal value. As an example, Figure 4.15 shows the evolution of 

the PRESS statistic against the number of latent variables. As shown, PRESS initially 

decreases with increasing values of A, but then tends to increase, because the last 

latent variables represent noise rather than true chemical effects. Intuitively, one would 

select the optimum A as that corresponding to the minimum PRESS, but some 

uncertainty is always involved in the cross-validation process, and therefore, in the 

PRESS values. The principle of parsimony, popularly known as Ockham’s razor 

[Hoffmann et al., 1997], suggests that the optimum A is the minimum value whose 

PRESS is not statistically larger than the minimum PRESS. 

 
Figure 4.15. Plot of PRESS against the number of latent variables (A). 

 

In this context, the optimum number of latent variables can be obtained by computing 

the following F(A) ratios: 

 

F(A$ = PRESS(A < A∗$/PRESS(A∗$                   (4.13) 

 

where A* leads to the minimum PRESS. Then a probability p(A) is assigned to each 

F(A), corresponding to the Snedecor’s F value with I degrees of freedom for both the 

numerator and denominator. The optimum value of A is selected as the one leading to 

a probability of less than 75% (i.e., p(A) < 0.75), and F>1.  

 

In contrast to PARAFAC and MCR-ALS, where the calibration and test samples are 

jointly decomposed by the model, U-PLS does not include the unknown samples in the 

calibration step. Hence, once the optimum number of latent variables is calculated, a 
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PLS model is built for the calibration samples. There are two main PLS versions, 

named PLS1 and PLS2. In PLS1, a calibration model is built for each compound; e.g. 

for a 10-compound sample 10 different models have to be built. PLS2 is better suited 

for multicomponent analysis, when the Y-variables are somehow correlated. However, 

due to the spectral features of the target analytes, a PLS1 model was calculated for 

each PAH analyte (Figure 4.16). This variant has the advantage of producing sets of 

loadings and scores which are analyte-specific, and hence PLS1 calibration is 

conducted for each analyte at a time. In any case, the loadings and scores do not bear 

physically recognizable information, as they are linear combinations of real profiles and 

concentrations. 

 

 
Figure 4.16. Graphical representation of the data structure employed in PLS. 

 

When there are no unexpected compounds in the test samples, the analyte 

concentration is calculated using the regression coefficients (v) according to Eq. 4.14: 

 

~[ =  `[\�              (4.14) 

 

where tu is the test sample score obtained by projecting the vectorized data for the test 

sample, vec(Xu), onto the space of the A latent variables (Eq.4.15): 

 

`[ = (�\_$Q��\vec(/[)                    (4.15) 

� = u__ZxQb
            (4.16)  

 

Unfortunately, the latter does not take into account the presence of unexpected 

constituents in a test sample, but U-PLS is able to recognize a sample containing 

unexpected constituents and flag it as an outlier, indicating that the test sample data 

cannot be appropriately modeled using the current calibration. 

 

If unexpected constituents not considered in the calibration set are present in the 

samples, the sample scores, tu, obtained are unsuitable for concentration prediction, 
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because the residuals of the U-PLS prediction step (sp), will be abnormally large in 

comparison with the typical instrumental noise level (Eq.4.17): 

 

�v =  9�v9/(JK : A$� =� =  ‖vec(/[$ : _`[‖/(JK : A$� =�                  (4.17) 

 

Of course this is not the aim of second-order calibration, where we wish to employ 

simple calibration sets, and demand to the processing algorithm, not only to recognize 

the presence of an unexpected component, but also to model it, remove its contribution 

from the test sample, and accurately quantify the analyte, i.e., to achieve the second-

order advantage. Here, a complementary technique was developed to be applied 

together with U-PLS, a post-calibration procedure called Residual BiLinearization 

(RBL), a name which derives from its intention to model the residues of U-PLS for the 

test sample as a sum of bilinear contributions from the unexpected components. The 

mission of RBL is to free the “raw” test sample scores from potential interfering effects, 

leaving filtered scores, which do only contain information about calibrated constituents, 

to be employed in Eq. 4.14 for analyte prediction.  

 

RBL intends to model the residuals (the part of the test sample unexplained by the PLS 

model) assuming that they can be arranged into a bilinear matrix, minimizing the norm 

of the residual vector eu, computed while fitting the sample data to the sum of the 

relevant contributions. For a single unexpected component, the expression is: 

 

vec(/[$ = _`[ +  h�[
�g[
�(q[
�$\l + ����         (4.18) 

 

where gunx is a scaling factor appropriate for SVD (Single Value Decomposition) 

analysis, bunx and cunx  are the left and right eigenvectors of the residual matrix ERBL, 

obtained after reshaping the computed residual vector eRBL, and assuming that 

interferences are absent, as indicated in Eq. 4.19: 

 

�[
�g[
�(q[
�$\ = SVD{reshapehvec(/[$ : _`[l}                  (4.19) 

 

Specifically, the RBL procedure fits the sample data to the sum of two contributions: (1) 

the fraction of the test data which can be explained by the calibration PLS loadings, 

and (2) the contribution from potential interferents, modeled by a number of principal 

components (NRBL). SVD is performed using the first Nunx principal components, where 
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Nunx indicates the number of unexpected test sample constituents. When Nunx = 1, the 

RBL profiles should be excellent approximations to those for the potential interferents 

in each data mode. Unfortunately, for additional unexpected components, these 

matrices contain linear combinations of profiles, because they are the result of a SVD 

analysis, and these profiles are no longer recognizable as true unexpected profiles. 

 

The RBL procedure consists of maintaining the matrix of loadings P (in 

Eq. 4.18) constant at the calibration values, and varying tu in this latter equation (4.19) 

to minimize the norm of eRBL (║eRBL║). During the RBL minimization, profiles for the 

unexpected constituents are continually updated through Eq. 4.18. Once eRBL is 

minimized, the compound concentrations are calculated by Eq. 4.14, introducing the 

final tu vector found by the RBL procedure. 

 

U-PLS/RBL is intrinsically more flexible than PARAFAC or MCR–ALS, it can handle 

signal-to-concentration changes among samples, which are compensated by adding 

more latent variables to the model, as long as they are represented in the calibration 

set, and they are not too extreme. But this added flexibility comes at the cost of some 

disadvantages. First, its flexibility implies also non-unique solutions, due to rotation 

ambiguities in the RBL step. Second, and the most conspicuous one, is the inability of 

U-PLS/RBL to render approximations to pure constituent profiles, thereby loosing 

chemical interpretability for the sake of accurate analyte quantification. 

 

 

4.6 VALIDATION OF THE MODELS 

 

Since it is always possible to make a mathematical model of any system, validation of 

the built models is a crucial step to make sure that the results can be extrapolated to 

new data, and also to decide whether the conclusions drawn from it are reliable. 

 

Validation can be divided into two main types: internal and external. Internal validation 

means utilizing the data that has been used to build the model to validate it. External 

validation means that new data, not previously used in the model, are used for 

validation. As a general rule, the models should be first internally validated 

(mathematically), and then they should be externally validated, applying the 

constructed model to new datasets. In internal and external validation a number of 

statistical parameters are applied and the discussion that follows relies on the 

chemometric methods used in this research. 
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4.6.1 Internal validation of PARAFAC and MCR-ALS 

 

The quality and reliability of the model solution may be assessed using the variance 

explained (r2), and the Lack Of data Fit (LOF), parameters that allow assessing the 

dissimilarity among the experimental data and the data modeled.  

 

For PARAFAC, the percentage of variance explained for the assumed number of 

factors (F) is calculated by taking into account the sum of the squares of the 

residuals, eijk, and the sum of the squares of the elements of the matrix X, xijk, as 

follows: 

 

r=	(%$ = 100 × Q1 : ∑ ∑ ∑ 
¡¢£Z¤£\]¥¢\]¦¡\]∑ ∑ ∑ �¡¢£Z¤£\]¥¢\]¦¡\] ^                    (4.20) 

 

The percentage of LOF is calculated according the following equation: 

 

Lack	of	Fit	(LOF$	(%$ = 100	x	®∑ ∑ ∑ 
¡¢£Z¤£\]¥¢\]¦¡\]∑ ∑ ∑ �¡¢£Z¤£\]¥¢\]¦¡\]                               (4.21) 

 

Similarly, for MCR-ALS the equations defining these two parameters are: 

 

r=	(%$ = 100 ×	®∑ }¡¢Z¡,¢ W∑ 
¡¢Z¡,¢∑ }¡¢Z¡,¢                      (4.22) 

 

Lack	of	Fit	(LOF$	(%$ = 100	 ×	®∑ 
¡¢Z¡,¢∑ }¡¢Z¡,¢                                (4.23) 

 

where dij is an element of the experimental data matrix and eij is the related residual 

value obtained from the difference between the experimental data (matrix D) and the 

reproduced data (CST matrix product obtained by MCR-ALS). 

 

The variance explained measures the fraction of the total variability in the response 

that is accounted by the model. Thus, the variance explained should be high in order to 

consider the built model as reliable. 
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The lack of fit gives a measure of the fit quality in relative terms with the same units as 

the measured data, and is comparable with experimental relative error estimations. A 

low lack of fit percentage indicates that a model fits the data well.  

 

Since PARAFAC and MCR-ALS are able to calculate the spectral profiles of the 

fluorophores present in the samples, the similarity between the recovered spectral 

profiles and the pure spectra of the target PAH compounds is used here also to assess 

the performance of the models. This is expressed by the correlation coefficients (rem 

and rex) in the emission and excitation modes with the related reference spectra. 

Correlation coefficients r=1 indicate a completely similarity between calculated and 

pure profiles of the analytes in the samples, calculated in accordance with the following 

equation: 

 

I = cos ° = 	 ±²³±̂²‖±²‖∙‖±̂²‖                     (4.24) 

 

where °  is the angle defined by the vectors associated with the recovered spectra (L̂D)  
and the pure spectra (LD) of the studied compound. 

 

4.6.2 Internal validation of U-PLS 

 

In contrast, cross validation methods (section 4.5.3) are used to estimate the predictive 

ability of the U-PLS models. The statistical parameters of Table 4.1 are used to 

internally validate the U-PLS models. This table shows the progression of the PRESS 

values (Eq. 4.12) for an increasing number of latent variables (A), the Standard Error of 

Prediction (SEP) and the associated values of the Snedecor’s F statistical indicator and 

its probability, p. The last column is the probability associated to Van der Voet’s 

randomization test: p < 0.05 indicates that the PRESS with A latent variables is 

significantly larger than the minimum PRESS. 

 

The predictive applicability of the U-PLS regression model is described by the Standard 

Error of Prediction (SEP), or Standard Error of Calibration (SEC), which is given in the 

following equation: 

 

SEP	(SEC$ = µ∑ R¶¡,·¸#W¶¡,¹º »YZ¦¡\] 
W�          (4.25) 

 



Chapter 4 
  

112|  
 

where ypred contain the values of the Y variable that are estimated by cross-validation 

(where the value for each sample i is estimated using a model that was built using a set 

of samples that does not include sample i), ynom contains the known values of the Y 

variable, and n is the total number of samples in the dataset. 

 

Additionally, the statistical parameters in the second part of the table allow for 

identification of outliers. For each sample, the F ratio of squared spectral residues is 

provided. Outlier = 1 indicates an outlier sample, 0 otherwise. As can be seen in this 

table, sample 2 is marked as an outlier, a fact which sometimes occurs with samples 

having extreme concentrations. 

 

Table 4.1.  Cross-validation parameters used for U-PLS validation. 
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Moreover, for U-PLS models, the variance explained of the model for the X and Y 

variables are calculated in the same way as PARAFAC or MCR-ALS models. 

 

Finally, in the internal validation of a model the residuals are also important. The 

residuals are the difference between the experimental and modeled values. They 

should be normally distributed around 0, with a magnitude lower than the signal-to-

noise ratio of the data, and without any trend. In this regard, plots of the residuals of a 

model help to reveal the presence of outliers, trends, unexplained sources of variability, 

and so on.  

 

 

4.6.3 External validation  

 

In external validation, new data, not used in the construction of the model, and for 

which the concentration of the components is perfectly known, are used to check the 

prediction ability of the model. These sets of new samples are usually called test sets 

or validation sets. The combination of model and number of factors that perform best 

on the test set is usually selected as the right model. By the parsimony principle, if a 

number of models perform equivalently, the simplest model should be chosen. 

 

Hence, in second-order calibration, once the calibration model is built, a good estimate 

of the predictive ability of the model can be made by comparing the predictions with the 

true values of the test set samples, and thereby validation of the model can be 

achieved. The statistical parameters used here to assess the goodness of the 

calibration models will be the Root Mean Square Error of Prediction (RMSEP), the 

Relative Error of Prediction (REP) and the coefficient of determination (R2). 

 

The RMSEP, an estimator of the prediction performance during the external validation 

of the calibration model, is defined as: 

 

	RMSEP = ¼(1 I⁄ $∑ (y
���~� :	y|�
}	$=¿� =�     (4.26) 

 

where I is the total number of samples in the test set, ynom are the known 

concentrations and ypred the calculated concentrations by the calibration model. The 

RMSEP value gives an average error in the analysis for each compound in the same 

units as the concentration values used, in this case ng mL-1. 
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The REP, which estimates the accuracy of the prediction for each compound in 

percentage, is calculated as: 

 

 REP = 100 × RMSEP C�
A
⁄        (4.27)  

 

where Cmean is the mean of the true concentrations in the test set. 

 

The coefficient of determination (R2) indicates the quality of the fit between the 

experimental concentration and the one calculated by the model, and is calculated for 

testing each calibration as follow: 

 

R= = 1 :  ∑u§�,¨©#Q §�,ª« OxS
∑u§�,¨©#Q §xS           (4.28) 

 

where ° denotes the mean of the nominal y values. 
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5.1 DEFINITION OF EEM DATA ACQUISITION PROTOCOL 

 

This section deals with the selection of the appropriate spectral ranges of 

measurement, optimization of the instrumental parameters and spectral 

characterization of target PAHs, in order to establish an EEM data acquisition protocol. 

For this purpose, different solutions of the 16 US-EPA PAHs standards and pure 

individual standards will be used. 

 

5.1.1 Selection of spectral ranges 

 

The optimal excitation and emission wavelengths are the wavelengths that create the 

most intense emission or excitation spectrum for a given sample. However, for many 

PAHs, the optimal wavelengths are unknown and also depend on the solvent used. 

Hence, they must be empirically determined in order to obtain the best possible results. 

Accordingly, the spectral regions were selected based on the spectral characteristics of 

the target PAHs under study.  

 

First, EEM measurements were collected over a broad spectral range to determine the 

appropriate excitation and emission wavelengths. EEM were recorded by exciting 

samples in the range 260 – 400 nm (each 1 nm) and recording the corresponding 

emission spectra between 260 and 600 nm (each 1 nm). As an example, Figure 5.1 

shows the corresponding EEM for several target PAHs. 

 

The analysis time was nearly 1 hour per sample for this wide spectral range. However, 

as shown in Figure 5.1, the excitation maxima of the target PAHs were usually below 

320 nm of excitation wavelength and only some of them presented weak fluorescence 

emission peaks above this range. Meanwhile, emission maxima peaks were between 

340 - 500 nm for the PAHs studied.  

 

Thus, the final selected spectral ranges were reduced to 240 – 320 nm (each 2 nm) 

and 290 – 550 nm (each 2 nm) for excitation and emission ranges, respectively. This 

decreased significantly the analysis time to approximately 35 minutes per sample. 

 

Finally, the EEMs landscapes were reduced, in order to mitigate the effects of Rayleigh 

and Raman scattering, by selecting shorter spectral ranges (λem from 330 to 550 nm), 

generating matrices sized 111 x 41 per sample. 
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Figure 5.1.  EEMs of several target PAHs. 

 

 

 

 

Benzo[ghi]perylene (BghiP)  Indeno[1,2,3 -cd]pyrene (IcdP)  

Benzo[ a]anthracene (BaA ) Benzo[ k]fluoranthene (BkF ) 

Benzo[ a]pyrene (BaP ) Dibenzo[a,h]anthracene (DahA)  
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5.1.2 Fluorescence measurements optimization 

 

Several instrumental parameters have to be analyzed and optimized in fluorescence 

measurements in order to obtain reliable information. The quality of the acquired data 

is largely determined by the signal-to-noise ratio (S/N), which is especially important for 

weakly fluorescing samples with low quantum yields. In this sense, the S/N can be 

improved by: 

 

- Changing the spectral resolution and bandwidth by adjusting the slit widths. 

- Using the appropriate integration time. 

- Scanning a region several times and averaging the results. 

- Mathematically smoothing the data. 

 

The first two options can be instrumentally modified, and are the subject of this section. 

 

5.1.2.1 Selection of the bandwidths 

 

The slit width of the monochromators affects the resolution of the recorded spectra. If 

the slit width is too broad, narrow peaks separated by a small change in wavelength 

may be unresolved. By adjusting the slit widths, the intensity and bandwidth of the light 

can be controlled. In this regard, the slits of the excitation monochromator determine 

the amount of light that passes through the sample. In contrast, the slits of the emission 

spectrometer control the amount of luminescence recorded by the detector. 

 

The use of narrow excitation bandwidths generally means increased selectivity and 

decreased sensitivity, while wide emission bandwidths result in high sensitivity. Thus, a 

good selectivity-sensitivity relationship relies on finding a proper agreement between 

the bandwidths of both monochromators. Consequently, the effect of the bandwidths of 

both excitation and emission monochromator on two 16 US-EPA PAHs solutions at 1 

ng mL-1 and 10 ng mL-1, were assessed by using the bandwidths listed in Table 5.1.  

 

Table 5.1. Excitation and emission bandwidths used in the optimization study. 

Excitation bandwidth (nm) Emission bandwidth (nm) 

2.5 5 

2.5 2.5 

5 5 

1 5 
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The following Figure 5.2 shows an example of the effect of the bandwidth on the 

fluorescence measurement of 16 US-EPA PAHs at different concentrations. In Figure 

5.2.A, the fluorescence spectra obtained with fixed excitation bandwidth and varying 

emission bandwidth are plotted, in order to show the relationship between the 

monochromator bandwidth and the light arriving at the detector. In contrast, Figure 

5.2.B illustrates the influence of the excitation monochromator bandwidth on the 

sensitivity of the recorded spectra. Measurements were performed using fixed emission 

wavelength with varying excitation bandwidths. 

 

 

Figure 5.2.  Effects of the bandwidths on the fluorescence measurements of 16 US-EPA PAHs 

at 1 ng mL-1 and 10 ng mL-1 varying (A) the emission bandwidths and (B) the excitation 

bandwidths. Fixed excitation wavelength at 260 nm. 
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An emission bandwidth of 5 nm results in a maximum of light and therefore an 

optimized S/N. When measuring with an emission bandwidth of 2.5 nm, the signal 

decreases dramatically, indicating the loss of light at the photomultiplier tube (PMT). 

However, lowering of the emission bandwidth enhances the resolution of the 

fluorescent signal. It can be concluded that the emission monochromator bandwidth 

has a direct impact on the amount of light arriving at the instrument detector, and 

maximizing the bandwidth is optimal for the performance of fluorescence scans. 

 

The use of narrow bandwidths in the excitation monochromator led to an increase in 

the noise, especially at low PAH concentrations (Figure 5.2.B). On the contrary, with an 

excitation bandwidth of 5 nm the amount of light is maximized resulting in a well-

resolved emission spectrum.  

 

In summary, a 1 – 5 nm relation between excitation/emission bandwidths showed the 

best selectivity (spectral resolution) but at the expense of maximizing the spectral 

noise. 2.5 – 2.5 nm excitation/emission bandwidths relation proved to be also a good 

combination in terms of spectral resolution. However, a poor sensibility was achieved. 

In contrast, a 2.5 – 5 nm relation achieved a better sensitivity, but a worse resolution of 

the PAH peaks. Finally, the excitation/emission bandwidth 5 – 5 nm relation obtained 

the best compromise between sensitivity and resolution. Accordingly, for further 

analysis throughout the measurements, the bandwidths for both excitation and 

emission monochromators were set to 5 nm.  

 

5.1.2.2 Selection of the integration time 

 

The time during which photons are counted and averaged for each data point is called 

the integration time. An unwanted portion of the signal comes from shot noise, thermal 

noise and dark noise counts (inherent to the detector’s signal and its electronics when 

high-voltage is applied). Generally, by increasing the integration time the signal is 

averaged longer, resulting in a better S/N. To prove this, the integration time of the 

photomultiplier was varied as follow: 0.01s – 0.1s and 0.5s, in order to study the effect 

of this parameter on the fluorescence measurements of 16 US-EPA PAHs at different 

concentrations.  

 

As expected (Figure 5.3), the integration time of the photomultiplier did not have a 

significant influence on the magnitude of the measured signal. However, an increase in 
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the S/N was observed at higher values of this variable. Thereby, integration times 

below 0.1 s increased significantly the noise, especially at low PAH concentrations 

(Figure 5.3.A). In contrast, an integration time of 0.5 s did not improve either the 

sensitivity or the selectivity of the measurements and, more important, it resulted in an 

excessive analysis time. Therefore, in view of the results obtained, an integration time 

of 0.1s was considered as the optimal value of this variable, giving good sensitivity and 

S/N.  

 

 

 

Figure 5.3 . Effects of the photomultiplier integration time on the fluorescence measurements: 

(A) PAHs at 1 ng mL-1, (B)  PAHs at 10 ng mL-1. Fixed excitation wavelength 260 nm. 
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5.1.2.3 Other considerations 

 

It is also important to remark that the Xenon lamp, like most of the light sources, 

requires a definite warming up time to yield stable output power. Any measurement of 

spectra before this time results in an unwanted spectral variation correlated with the 

source fluctuation. In our case, the Xenon lamp takes around 30 minutes to get 

stabilized, thus 45 min of warming up were established before measuring. After this 

time, this source can be employed continuously for several hours without significant 

fluctuations in intensity. 

 

5.1.2.4 Conclusions 

 

In fluorescence spectroscopy, the flexibility of the monochromators bandwidth selection 

as well as the integration time, enables us to improve the data quality (S/N ratio) while 

maintaining a good spectral resolution. When it comes to determinations near to the 

detection limit, optimizing the relation of the adjustable slit widths and the value of the 

integration time yields an optimal operation of the PMT and amplification electronics, 

and a minimization of the background noise.  

 

Summarizing, the instrumental parameters obtained as optimal and, therefore, used 

throughout this research work, were: 

 

- The bandwidths for both excitation and emission monochromators were set to 5 nm. 

- The integration time was set to 0.1s. 

- The measurements were made after 45 m of warming up the Xenon lamp. 

 

5.1.3 Spectral characterization of target PAHs 

 

The identification and quantification of each PAH by fluorescence routine analysis 

benefits from the availability of their reference spectra. However, due to the different 

instrumental conditions and solvents used in fluorescence measurements, nowadays 

there is not a standard data collection of these compounds available.  

 

Therefore, given the instrumental and analytical conditions of the measurement, the 

EEM of each target PAH needing identification and quantification were obtained using 

the corresponding pure standard diluted in n-hexane, as shown in the following figures, 

where the excitation and emission wavelengths of the maximum are also indicated. 
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2-2’ Binaphthyl  

 
Figure 5.4. Normalized EEM and excitation and emission profiles of 2-2’ binaphthyl. 

 

Fluoranthene 

Figure 5.5. Normalized EEM and excitation and emission profiles of fluoranthene. 
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Benzo[a]anthracene 

Figure 5.6.  Normalized EEM and excitation and emission profiles of benzo[a]anthracene. 

 

 

Chrysene

 
Figure 5.7.  Normalized EEM and excitation and emission profiles of chrysene. 
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Benzo[b]fluoranthene  

 

Figure 5.8.  Normalized EEM and excitation and emission profiles of benzo[b]fluoranthene. 

 

Benzo[k]fluoranthene  

 

Figure 5.9.  Normalized EEM and excitation and emission profiles of benzo[k]fluoranthene. 
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Benzo[a]pyrene  

 

Figure 5.10.  Normalized EEM and excitation and emission profiles of benzo[a]pyrene. 

 

Dibenzo[a,h]anthracene  

 

Figure 5.11.  Normalized EEM and excitation and emission profiles of dibenzo[a,h]anthracene. 
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Benzo[ghi]perylene  

 

Figure 5.12.  Normalized EEM and excitation and emission profiles of benzo[ghi]perylene. 

 

Indeno[1,2,3-cd]pyrene  

 Figure 5.13.  Normalized EEM and excitation and emission profiles of indeno[1,2,3-cd]pyrene. 
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The previous figures show that the PAHs spectra possess many bands in both the 

excitation and the emission ranges. Generally, the excitation spectra of target PAHs 

are characterized by unresolved and broadband structures, due to the fact that 

excitation can result from any transition reaching one of the vibrational sub-levels of 

one of the excited electronic states. In contrast, fluorescence spectra of most PAHs 

exhibit some resolved vibrational structures with well-structured emission bands. 

Furthermore, at room temperature the fluorescence emission spectra of PAHs are 

always shifted to higher wavelengths compared to the excitation one. 

 

The fact that the PAHs have several excitation and/or emission peaks is of analytical 

usefulness. These differences in excitation and emission maxima present some 

opportunities for distinguishing between PAHs present in mixtures. However, these 

possibilities are restricted by the widths of the individual spectra. Table 5.2 summarizes 

the spectral characteristics of the selected PAHs. 

 

Table 5.2.  Maximum excitation and emission wavelengths for each PAH.  

PAH Acronym  Nº of rings  λex max  λem max  
2-2’ Binaphthyl  22B 4 254 348 
Fluoranthene  Flt 4 286 460 
Benzo[a]anthracene  BaA 4 286 384 
Chrysene  Chr 4 266 380 
Benzo[b]fluoranthene  BbF 5 254 446 
Benzo[k]fluoranthene  BkF 5 248 402 
Benzo[a]pyrene  BaP 5 262 402 
Dibenzo[a,h]anthracene  DahA 5 296 394 
Benzo[ghi]perylene  BghiP 6 298 418 
Indeno[1,2,3 -cd]pyrene  IcdP 6 248 512 

 

Target PAHs present excitation maxima in the 240–300 nm range and produce 

fluorescence bands, usually narrower than excitation bands, which extend over a 

limited wavelength region, typically 100 nm, with emission maxima between 340-515 

nm. Additionally, both the excitation and emission spectra tend to shift to longer 

wavelengths as the number of conjugated aromatic ring increases. Thus, high 

molecular weight PAHs predominate at longer wavelengths.  

 

Moreover, it is important to note that the shape of the fluorescence emission spectrum 

for a given PAH is always the same and does not depend on the excitation wavelength, 

since the fluorescence emission always takes place from the lowest vibrational level of 

an excited electronic state. However, the intensity of the fluorescence will vary with the 

relative strength of the absorption. Thus, PAHs differ greatly in their quantum yields, 

and consequently in the sensitivity of the detection. As an illustration, matrix norms of 
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each PAH at 15 ng mL-1 were calculated and normalized with respect to the highest 

one, benzo[k]fluoranthene, and are shown in Table 5.3. 

 

Table 5.3. Fluorescence intensity norms of target PAHs. 

PAH BkF BbF 22B BaP IcdP Chr Flt  BaA DahA BghiP  

Norm  1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05 

 

As can be seen, there are significant differences among the different PAH fluorescence 

intensities. Thus, eight PAHs emit below a 20% of the emission signal of the strongest 

one (BkF), being specifically, benzo[ghi]perylene (BghiP) the PAH with the lowest 

signal (5%). This complicates the quantification of BghiP in complex mixtures of PAHs. 

 

Indeed, the characterization of PAHs in complex mixtures is a challenging analytical 

problem, due to the overlapping of their broad spectral bands and the similarities in the 

spectral features between the pure compounds. Figure 5.14 gives the contour map of 

the EEM of the pure target PAHs after removing the scattering.  

 

 
Figure 5.14.  Contour plot of all excitation–emission fluorescence spectra for the 10 pure PAHs. 

 

Although each target PAH has specific maximum excitation and emission peaks, it is 

obvious that the excitation and emission spectra of the selected PAHs are seriously 

overlapped, so simultaneous fluorimetric determination of these organic compounds 

represents an analytical challenge, whereby fluorescence measurements coupled with 

three-way analysis will be used here to obtain qualitative and quantitative information 

about components in PAH mixtures. 
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5.2. DEVELOPMENT OF PRELIMINARY EEM DATA MODELS 

 

Before developing EEM models for the analysis of target PAHs in urban aerosol air 

samples, some aspects involved in multivariate/multi-way data analysis need to be 

evaluated, optimized and validated. These theoretical and methodological aspects are 

therefore presented in the following sections as follows: 

 

Section 5.2.1 deals with the spectral corrections required to remove broad features, 

such Rayleigh and Raman scattering, that inhibit the correct modeling by contributing 

with random or systematic variation, or both, to the raw EEM data. Although specific 

methods of scattering correction exist in the literature, there is not an unified protocol 

for the treatment of these scattering effects among the scientific community, coexisting 

many different approaches. Thus, a further study was required in order to optimize and 

define the best strategy for the preprocessing step required before EEM modeling. 

 

Section 5.2.2 includes a detailed analysis of the different modeling approaches used to 

build second-order calibration methods for efficient qualitative and quantitative analysis 

of multicomponent PAHs samples. Here, the best possible strategies for EEM modeling 

are set, stressing the different criteria required to build each calibration model. 

 

Finally, section 5.2.3 provides an insight into how each second-order calibration 

method performs under the presence of uncalibrated interferences, a common situation 

to be taken into consideration when analyzing PAHs in aerosol samples. 
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5.2.1 Optimization of preprocessing methods for EEM  modeling 

 

The intrinsic presence of scattering effects in the EEM measurements poses a practical 

problem because they do not hold any chemical information about the fluorophores in 

the solution. Thus, appropriate handling of the scattering is necessary to avoid its 

detrimental influence on the models. 

 

Among the available methods for removing scattering (section 4.4.2), the most 

commonly used one consists of subtracting the spectrum of the solvent (if it is 

available) to minimize the Raman scattering, and then, replacing the Rayleigh affected 

areas by missing values. However, in some situations it is preferred to avoid the use of 

missing values for various reasons. For example, some algorithms (like U-PLS) or 

visualization tools do not handle missing data or, even worse, interesting information 

might be removed. Moreover, algorithms dealing with missing data can be extremely 

slow and computationally cumbersome, and the amount of missing values may 

possibly affect the convergence of the models and the quality of the results.  

 

Another possibility consists of replacing the removed scatter areas with interpolated 

values. This can potentially speed up the modeling and allows the use of software that 

is not able to handle missing data. Despite these potential advantages, there has not 

been yet thoughtfully discussed -nor published- any comprehensive comparison of the 

effect of inserting missing data or interpolated data on the quality of the obtained model 

or even the resolved spectra and subsequent predictions. Thus, it is of great interest to 

evaluate the two most common methods of handling scatter: replacing the scattering 

area with missing elements or with interpolated values, in order to optimize the 

preprocessing step required before EEM modeling.  

 

Given that the U-PLS algorithm implemented in this research work does not handle 

missing data, one of the other second-order multi-way methods, PARAFAC, was 

selected for this analysis. In addition, since the objective here is the optimization of the 

preprocessing methods, no information about how to select the appropriate PARAFAC 

model is included, as this will be discussed in detail in section 5.2.2. 

 

5.2.1.1 Objective 

 

In this section a comparison of how missing or interpolated data can affect the 

PARAFAC modeling of EEMs is provided. Both approaches were evaluated and 
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compared on different datasets of diverse complexity and different scatter situations. 

The ability of each strategy to remove scattering, and lead to adequate recoveries of 

the fluorophores present in the samples, is assessed in terms of the stability of the 

models and the quality of the predictions. 

 

5.2.1.2 Theory 

 

Detailed theory about how PARAFAC handles missing values can be found in more 

theoretical works [Tomasi and Bro, 2005]. Moreover, the interpolation procedure is 

described in [Bahram et al., 2006]. Hence, only a brief description is presented below. 

 

Handling missing data by PARAFAC 

The PARAFAC model is usually estimated by minimizing the loss function: 

 

9/(0×12$ : 3(4⊙ 6$7‖<=>,?,@A�BCDE
           (5.1) 

 

where ‖F‖< is the Frobenius norm, F  the number of factors, and A, B and C the score 

and loading factors obtained by the PARAFAC model. The ⊙ is the Khatri-Rao product 

which is a column-wise Kronecker product. However, the ALS algorithm usually 

employed for fitting this model, cannot handle missing values. Single imputation is 

mostly applied to deal with incomplete observations. Instead of using the original array 

X in Eq. 5.1, an array �Ç defined as: 

 

/Ç(�$ = / ∗ È+ d(�$		 ∗ (i :È$                                                                             (5.2) 

 

is used; where Y(s) is the interim model computed at the s-th iteration, and 1 is an array 

of ones having the same dimensions of X. M is an array whose elements are defined 

as:  

m�&' = É 0					if		x�&'			is	missing							1					if		x�&'			is	not	missing 
 

Since �Ç does not contain missing values, it allows using the PARAFAC-ALS algorithm 

to estimate the model parameters, where	�Ç(Ë$ is updated at every iteration. The zero-

iteration approximation Y(0) is reckoned depending on the pattern of the missing values. 

In general, it is taken as the average of the observed values in the corresponding 

columns/tubes or of the whole array. 
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Handling missing data by imputation generally leads to slower convergence. 

Furthermore, a large amount of missing elements may increase the risk of 

convergence to a local minimum. 

 

Replacing scattering areas with interpolated data 

The interpolation procedure is based on excising scatter areas and replacing them 

using a shape-preserving piecewise cubic polynomial. 

 

The interpolation is implemented in the following way. The first step consists of defining 

the window width for the relevant areas. Normally this would be done for the first and 

possibly also the second-order Rayleigh, but it can also be done for the Raman scatter 

region. These widths are user-defined parameters required in the interpolation. In the 

second step, the measured signal in the width-defined window is removed around the 

scatter lines for every emission spectrum. Subsequently, the whole spectrum, except 

the window, is used for interpolation, and the window is replaced with the interpolated 

values. 

 

Two parts of the EEM require special care during the interpolation. In the first situation, 

where there is no emission below the window, an artificial lower emission zero is added 

during interpolation 30 nm below the window of interpolation. In the second one, where 

there are no emission values at greater wavelengths than the window to be 

interpolated, the missing values in the last excitation spectrum are interpolated in order 

to provide end values for the emission interpolation. 

 

5.2.1.3 Data and software 

 

For analyzing the performance of the two methods, two EEM datasets of different 

complexity and scattering situations were used, as described below. 

 

Dataset 1: second-order Rayleigh overlapping the ch emical signal 

From the dpure  dataset, a total of twelve samples of indeno[1,2,3-cd]pyrene (IcdP) at 

four different concentration levels: 5-10-15-20 ng mL-1, measured by triplicate, were 

used. In this dataset a two-component PARAFAC model was the most suitable due to 

the presence of an additional interfering compound. Moreover, solvent blank 

subtraction (n-hexane) was made for each measure to mitigate the Raman scattering in 

each EEM.  
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In this case, the most problematic area is related to the second-order Rayleigh 

overlapping the signal of the target compound, which is also emitting in a noisy region 

at low excitation wavelengths, as shown in Figure 5.15.A. 

 

Dataset 2: first, second-order Rayleigh and Raman b and overlapping the 

chemical signals of complex mixtures. 

This dataset consists of 130 samples belonging to these groups: 49 solutions 

containing 10 PAHs (dcal ) and 81 EEM pure PAH spectra of the 10 target PAHs 

(dpure ) (used to provide information in the analysis of the more complex calibration 

samples). An eleven-factor PARAFAC model was required to correctly recover all the 

components, due to an interference present in the samples. In this dataset, the 

spectrum of the solvent (n-hexane) was subtracted to minimize the Raman scattering, 

and then, the remaining scattering effects (first, second-order Rayleigh and Raman) 

were removed and replaced with missing or interpolated data (Figure 5.15.B). 

 

 
Figure 5.15. One sample for each dataset: (A) Dataset 1, (B) Dataset 2, showing the raw data, 

data after removing scattering effects and replacing them with missing data, and landscapes 

with interpolated values. 
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Software 

All the routines were implemented in Matlab version R2010 (The MathWorks, MA, 

USA). The PARAFAC algorithm in use was from PLS_Toolbox ver. 7.8.2 (Eigenvector 

Research, Inc., WA). The correction function EEMscat available for Matlab, used to 

implement the interpolation methodology, was downloaded from 

http://www.models.life.ku.dk/EEM_correction.  

 

5.2.1.4 Results and discussion 

 

In order to remove the scattering effects, the width of the scatter areas was assessed 

for each dataset. The widths used for first-order Rayleigh, Raman and second-order 

Rayleigh scatter areas were ± 10, ± 10, ± 15 nm for  dataset 1, and ± 15, ± 10, ± 15 nm 

for dataset 2. No inner filter corrections were made for any of the datasets, because the 

mixtures were sufficiently diluted to avoid inner filter effects. In this sense, there are no 

additional implications for interpreting the PARAFAC results, since the fluorescence 

signal is proportional to the fluorophore concentration in the solution and the shapes of 

the PARAFAC loadings (excitation and emission profiles) are not affected by 

absorption. 

 

Subsequently, fifty PARAFAC models were calculated for each dataset using both 

interpolated and missing data, and random starting values. Non-negativity constraints 

were imposed in all three modes. Table 5.4 shows the quality parameters of the 50 

models calculated for each dataset. 

 

Table 5.4 . Quality parameters of the PARAFAC models (percentage of fit (%), core consistency 

value (CORCONDIA)), number of iterations (# it.) and computational time obtained from each 

dataset (number of PARAFAC factors). Values of Average (± standard deviation). 

Dataset Type 
Missing  
Values 

(%) 
Fit (%) CORCONDIA

(%) # It. Time 
(s)  

1 
(2) 

Interpolated 0 
99.05 

(±0.00000003) 
96.79 

(±0.0055) 
19 

(±0) 
2 

(±0.1) 

Missing 8.7 99.03 (±0.12) 
94.94* 
(±1.89) 

150 
(±196) 

22 
(±29) 

2 
(11) 

Interpolated 0 
99.50 

(±0.000007) 
46.87 (±0.02) 

59 
(±24) 

14 
(±6) 

Missing 7.4 
99.23 

(±0.20) 
40.7* 

(±0.11) 
113 

(±153) 
224  

(±302) 
* Core consistency values of local minima models were taken out. 
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As can be seen in the Table 5.4, the models obtained using interpolated data seem to 

be more robust, showing lower standard deviations from the average fit values. Hence, 

they converge to the same fit value every time. In contrast, many of the models 

obtained with missing data converged to local minima solutions, which are also 

highlighted in Figure 5.16. 

 

 
Figure 5.16. Fitting values (percent variation explained) of each PARAFAC model calculated 

using interpolated or missing values for (A) Dataset 1 and (B) Dataset 2. 

 

Figure 5.16 shows the 50 fit values obtained for each dataset, given as percent 

variance explained. The variance explained is similar in both cases, but the models 

calculated using interpolated data seem to avoid local minima for both datasets. For 

missing data though, 22 local minima models were found for dataset 1 and 27 for 

dataset 2. The models built with missing data lead to lower core consistency values, 

especially for the more complex dataset 2. This may indicate that these models are 

less well-founded and accurate than the ones found using interpolated data. It is also 

remarkable to observe the high fraction of local minima values obtained for the simple 

dataset 1, due to the additional difficulty of having the target chemical signal in a noisy 

spectral region. 

 

An added advantage of the models with interpolated data is that the convergence is 

achieved in fewer iterations. The number of iterations is clearly greater using missing 

data. This is most likely due to convergence problems caused by a more complex 

problem being solved (fitting a model and imputing missing data), especially for dataset 

1, where the missing values are present in a key chemical area of high spectral noise. 
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In terms of time consumption, the models calculated with interpolated data were also 

significantly faster. 

 

From a chemical point of view, the results of the 50 models built with interpolated data 

resulted in practically identical decompositions, recovering the same scores and 

emission and excitation loadings for each dataset. The models fitted in presence of 

missing values in key chemical areas led to local minima in which the solutions had 

artifacts similar to those shown in Figure 5.17. Thus, the local minima which really do 

not represent a least squares solution also appear peculiar visually in many cases. 

 
 

 
 
Figure 5.17. 50 PARAFAC decompositions of dataset 2 for (A) missing data, (B) interpolated 

data.  

 
Therefore, using interpolated values instead of missing values to remove scattering 

areas is a more advantageous approach, because it prevents the convergence to local 

minima, and leads to solutions that are physically and chemically meaningful. 

 
If one takes the best fitting model obtained using interpolated or missing data for each 

dataset, the full recovery in the spectral modes, calculated as the correlation coefficient 

between the resolved spectral loadings and the pure spectral profiles (rem and rex, 

respectively), is apparently the same. Moreover, both methods, in terms of quality of 
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the prediction, show similar values of relative error of prediction for the best fitting 

models (Table 5.5). 

 

Finally, it is also remarkable that, for the tested datasets, the Raman signal of the blank 

was aligned with the Raman signal of the samples. Thus, blank subtraction helped to 

reduce Raman scattering. 

 

Table 5.5.  Emission and Excitation correlation coefficients and relative error of prediction 

(*REP(%)) for the best fitting PARAFAC models with interpolated and missing data. 

Dataset 1       

Compound   IcdP    

Interpolated 
rem/rex 0.9955/0.9643    

REP (%) 3.34    

Missing 
rem/rex 0.9894/0.9986    

REP (%) 3.20    

Dataset 2        

Compound   BkF BbF 22B BaP IcdP 

Interpolated 
rem/rex 0.9959/0.9592 0.9997/0.9928 0.9988/0.9822 0.9982/0.9850 0.9995/0.9714 

REP (%) 5.01 14.84 4.89 23.94 7.14 

Missing 
rem/rex 0.9955/0.9621 0.9998/0.9930 0.9986/0.9800 0.9982/0.9846 0.9966/0.9444 

REP (%) 5.16 14.67 4.96 23.00 7.16 

Compound   Chr  Flt  BaA DahA BghiP  

Interpolated 
rem/rex 0.9998/0.9988 0.9993/0.9965 0.9981/0.9537 0.9998/0.9704 0.9923/0.7787 

REP (%) 9.47 11.90 10.6 8.83 28.2 

Missing 
rem/rex 0.9990/0.9986 0.9991/0.9971 0.9980/0.9522 0.9994/0.9697 0.9850/0.7718 

REP (%) 9.40 12.58 10.6 8.77 26.6 

*REP (%) (See Eq.4.27). 

 

5.2.1.5 Conclusions 

 

The results suggested that the use of missing values lead to more problems related to 

local minima, which also considerably increases the time of analysis. Only the best 

fitting models obtained with missing values showed similar spectral recoveries and 

predictions in comparison with the models obtained with interpolated data. 

Furthermore, the use of missing values in the PARAFAC models hindered the correct 

decomposition of very complex samples, which showed to be more robust by means of 

using interpolated data. 
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5.2.2 Construction and validation of second-order c alibration models 

 

As discussed in section 5.1.3, the spectral overlapping of pure components of interest 

is very significant. This strong overlapping also hinders the direct fluorescent 

quantification and restricts the use of univariate calibration. Nowadays, a modern 

strategy of overcoming this problem is to resort to second-order calibration (section 

1.3.2.2). This new avenue is focused on replacing the physical or chemical separation 

with mathematical separation, extracting the signal of the components of interest from 

those of background or interferences. In this regard, three kinds of second-order 

calibration algorithms, PARAFAC, MCR-ALS and U-PLS/RBL, were selected to resolve 

the spectral and concentration profiles of these similar target PAHs.  

 

To develop these second-order calibration models, several steps, including the 

definition of the number of factors to build the right model and the validation of the 

performance of the proposed methods through some statistical parameters and figures 

of merit, need to be discussed and analyzed. 

 

5.2.2.1 Objective 

 

The scope of the selected second-order multivariate/multi-way methods for qualitative 

and quantitative analysis of the target PAHs is discussed here. The compounds were 9 

of the 16 US-EPA priority PAHs: fluoranthene, benzo[a]anthracene, chrysene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, 

benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and one internal standard: 2-2’ binaphthyl. 

 

Strong points and limitations of these methods, based on the total qualitative and 

quantitative description provided about the samples are presented, stressing points 

linked to the information used by the algorithms, the criteria required to build the 

calibration models, and the computational effort needed to obtain the final results. 

 

5.2.2.2 Data  

 

Pure Component samples (dpure). From 7 to 11 EEM spectra of each pure analyte 

were recorded in triplicate in concentrations ranging from 0.01 to 30 ng mL-1, 

depending on the compound (section 3.5.1), to assess different figures of merit of the 

10 PAHs in n-hexane. Finally, a total of 81 EEM pure analyte spectra are selected to 
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form this set. The excitation and emission spectra of the PAHs studied are shown in 

Figure 5.18. 

 

Figure 5.18.  Excitation and emission spectra of (A) benzo[ghi]perylene (BghiP), 

benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DahA), 

benzo[a]anthracene (BaA); (B) indeno[1,2,3-cd]pyrene (IcdP), benzo[b]fluoranthene (BbF), 2-2’ 

Binaphthyl (22B), chrysene (Chr), fluoranthene (Flt). 

 

Calibration set samples (dcal). A set of 49 calibration solutions with the 9 US-EPA 

PAHs and the compound used as internal standard (22B) was measured at seven 

different concentrations (section 3.5.2).  

 

Validation set samples (dval). The validation set involved 25 test solutions of the 10 

compounds measured at five different concentration levels (section 3.5.3). The 

concentration range of this set was the same as that used for the calibration data. 

 

Figure 5.19 shows how the different groups of samples will be treated depending on 

the data analysis performed (see next sections).  

 
Figure 5.19. Different sample set configurations used for PAHs analysis. 



Chapter 5 
 

142| 
 

5.2.2.3 Data treatment 

 

EEMs were preprocessed to reduce the effects of Rayleigh and Raman scatterings by 

selecting shorter spectral ranges (λem from 330 to 550 nm, matrices sized 111 x 41 per 

sample) and using the correction function EEMscat, available for Matlab [Bahram et al, 

2006]. Following the results obtained in section 5.2.1, the specific bands of Raman and 

first and second Rayleigh scattering were removed and replaced with interpolated 

values. A contour map of a mixture of the 10 PAH compounds is shown in Figure 5.20, 

where the difference between a full and a reduced and processed EEM matrix can be 

appreciated. 

 

 
Figure 5.20. Contour map of the EEM matrices before (left) and after (right) scatter correction. 

Ellipses highlight Rayleigh and Raman scattering in the raw EEM spectrum. 

 

Subsequently, EEM spectra collected in the different sets of samples were arranged in 

different ways depending on the algorithm used (Figure 1.5): (a) as a three-way array 

X, sized I x J x K, where I are samples, J emission wavelengths and K excitation 

wavelengths, for PARAFAC; (b) as an augmented matrix D, sized IK x J, for MCR-ALS; 

(c) forming a matrix X of I x JK vectorized samples and using the related vector of 

concentration y, for U-PLS/RBL. 

 

5.2.2.4 Results and discussion 

 

Preliminary experiments were carried out to assess the linear range and Limit Of 

Detection (LOD) of the 10 selected PAHs. Three replicate measurements per 

concentration level, at 30 ng mL-1 and below, were used to calculate the calibration 

line. The LODs were estimated from the calibration line as the ratio between three 
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times the standard deviation of the intercept and the slope of the calculated line. The 

sensitivity (SEN) is calculated as the slope of the calibration line.  

 

Table 5.6  shows the results obtained for the selected algorithms. PAHs are sorted in 

decreasing order according to the norm of unit PAH EEM signal. Norms are normalized 

with respect to the highest one (benzo[k]fluoranthene). In this regard, it is noticeable 

the significant differences existing among the different PAH signal magnitudes. 

 

Table 5.6.  Limit of detection and sensitivity for each PAH, calculated by MCR-ALS, PARAFAC 

and U-PLS algorithms. 

PAH BkF BbF 22B BaP IcdP 

Norm 1 0.40 0.23 0.21 0.14 

Algorithm  SENa LODb SEN LOD SEN LOD SEN LOD SEN LOD 

MCR-ALS 5.26·106 0.25 2.11·106 0.29 1.24·106 0.89 1.10·106 0.45 7.41·105 0.25 

PARAFAC  5.26·106 0.25 2.11·106 0.30 1.23·106 0.89 1.09·106 0.51 7.45·105 0.26 

U-PLS 5.00·106 0.25 2.11·106 0.30 1.26·106 0.52 1.11·106 0.45 8.10·105 0.23 

PAH Chr Flt  BaA DahA BghiP  

Norm 0.12 0.12 0.12 0.09 0.05 

Algorithm  SEN LOD SEN LOD SEN LOD SEN LOD SEN LOD 

MCR-ALS 6.10·105 0.36 5.79·105 0.65 5.79·105 0.65 4.78·105 0.36 1.91·105 0.41 

PARAFAC  6.01·105 0.35 5.81·105 0.65 5.81·105 0.65 4.79·105 0.36 1.92·105 0.43 

U-PLS 6.12·105 0.34 5.79·105 0.65 5.79·105 0.65 4.80·105 0.36 1.94·105 0.44 

(a, b) ng mL-1. 

 

In the absence of interferences, all the algorithms led to similar results, showing a good 

linear behavior (R2 > 0.99) and low limits of detection (LOD < 1 ng mL-1) for every PAH. 

This demonstrates the high sensitivity of fluorescence spectroscopy to quantify the 

target PAHs. These linear ranges and LODs were taken into account to design the 

calibration set samples. 

 

In order to build a second-order calibration model, EEMs were measured for the 

calibration set (dcal ), designed as explained in section 3.5.2. The analysis of the 

calibration data were carried out by PARAFAC, U-PLS/RBL and MCR-ALS algorithms.  

 

First, the results of the two resolution methods PARAFAC and MCR-ALS are analyzed. 

The first point of interest was to compare the effect of the differences in the underlying 

linear decomposition model on the final results. Thus, PARAFAC was applied with its 

natural trilinear structure and MCR-ALS was tested using total and partial trilinearity. A 
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full bilinear model was not used since EEM fluorescence data are supposed to behave 

in a trilinear manner. 

 

The samples of pure PAHs (dpure ) used for PARAFAC and MCR-ALS modeling 

(Figure 5.19.A), were rescaled to balance the relative intensities of their signal norms. 

In PARAFAC, the selection of the optimum number of factors was performed by using 

CORCONDIA, the lack of fit (%), the variance explained (%)(r2) (Table 5.7) and the 

quality of the recovered spectral profiles, expressed by the correlation coefficients (rem 

and rex) in the emission and excitation modes with the related reference spectra (Table 

5.8). All criteria, except CORCONDIA were used to select the number of factors of 

MCR-ALS models as well.  

 

Table 5.7.  Quality parameters of the MCR-ALS and PARAFAC models for an increasing 

number of factors.  

Nº. of Factors  10 11 12 

Algorithms  MCR-ALS PARAFAC  MCR-ALS PARAFAC  MCR-ALS PARAFAC  

Trilinearity  TTa TT TPb TT TT TP TT TT 

LOF (%) c 30.29 9.04 9.16 10.01 7.06 8.70 10.18 6.56 

Variance 

explained (r 2) 
90.83 99.18 99.16 98.99 99.50 99.24 98.96 99.57 

CORCONDIA d - 71.33 - 64.61 - 39.44 

aTT= Total Trilinearity, bTP=Partial Trilinearity, cLOF= Lack Of Fit (%),dCORCONDIA= core consistency. 

 

It should be noticed that, according to the number of PAH compounds present in the 

samples, a ten-factor trilinear model should be sufficient. However, the ten-factor 

PARAFAC model did not achieve the correct spectral resolution of all compounds 

present in the calibration set. Specifically, the PAH giving the lowest signal, 

benzo[ghi]perylene (BghiP), could not be correctly resolved, being identified instead a 

factor related to residual scattering.  

 

The ten–factor MCR-ALS model could recover correctly the identity of all components 

because of the use of the correspondence of species constraint, applied in the samples 

containing EEM spectra of pure PAH compounds. The role of this constraint is, 

therefore, particularly important when the relative signal of the analytes of interest is 

almost at the same level of other background contributions. The high lack of fit 

obtained by the ten-factor MCR-ALS model, in which total trilinearity was used, implies 

that part of the variance not linked to the analytes and non-trilinear in nature was left 

out from the model, i.e., the residual scattering.  
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For both PARAFAC and MCR-ALS eleven–factor models, the spectral profiles of all 

compounds were correctly recovered, including BghiP, which is successfully separated 

from the residual scattering. The quality parameters obtained with MCR-ALS are better 

applying a partially trilinear model, as a consequence of the non-trilinear behavior of 

the residual scattering, which was modeled as a bilinear contribution, whereas 

trilinearity was applied to model the signals of PAH analytes. The presence of the non-

trilinear residual scattering contribution is also reflected in the PARAFAC model 

through the decrease in the core consistency value. For both algorithms, twelve–factor 

models did not offer any significant improvement to the results obtained. Thus, for both 

algorithms, the eleven–factor models are taken as definitive results. Table 5.8 shows 

the recovery of spectral profiles, similar for both algorithms with eleven–factor models 

(with partial trilinearity for MCR-ALS).  

 

Table 5.8.  Emission and excitation correlation coefficients between resolved and reference PAH 

spectra obtained with eleven–factor PARAFAC and MCR-ALS models.  

PAH BkF BbF 22B BaP IcdP 

Norm 1 0.40 0.23 0.21 0.14 

Algorithm rem rex rem rex rem rex rem rex rem rex 

MCR-ALS 0.9994 0.9900 0.9990 0.9775 0.9996 0.9975 0.9989 0.9988 0.9995 0.9893 

PARAFAC 0.9986 0.9669 0.9997 0.9964 0.9989 0.9965 0.9991 0.9994 0.9938 0.9954 

PAH Chr Flt  BaA DahA BghiP  

Norm 0.12 0.12 0.12 0.09 0.05 

Algorithm rem rex rem rex rem rex rem rex rem rex 

MCR-ALS 0.9987 0.9991 0.9988 0.9944 0.9992 0.9979 0.9983 0.9995 0.9974 0.9943 

PARAFAC 0.9994 0.9991 0.9948 0.9978 0.9992 0.9978 0.9988 0.9992 0.9943 0.9952 

 

 

High values for the correlation coefficients between the pure spectra of each PAH and 

the emission and excitation resolved profiles (rem>0.99 and rex>0.96), confirmed the 

good resolution of the overlapped signal for each PAH. Slightly lower correlation 

coefficient values of some excitation spectra reveal the higher overlap among 

compounds in this mode. 

 

The difficulty of the individual resolution of PAH compounds is related to the similarity 

in emission (Table 5.9) and/or excitation spectra (Table 5.10), and to the different 

relative fluorescence intensities.  
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Table 5.9. Emission correlation coefficients between reference PAHs. 

PAH BkF BbF 22B BaP IcdP Chr Flt  BaA DahA BghiP  
BkF   0.34 0.07 0.89 0.11 0.00 0.04 0.25 0.32 0.49 
BbF 0.34   0.40 0.21 0.01 0.18 0.73 0.01 0.10 0.45 
22B 0.07 0.40   0.03 0.34 0.35 0.48 0.00 0.01 0.06 
BaP 0.89 0.21 0.03   0.15 0.01 0.00 0.39 0.34 0.46 
IcdP 0.11 0.01 0.34 0.15   0.31 0.26 0.26 0.19 0.21 
Chr 0.00 0.18 0.35 0.01 0.31   0.36 0.22 0.02 0.00 
Flt  0.04 0.73 0.48 0.00 0.26 0.36   0.07 0.01 0.05 
BaA 0.25 0.01 0.00 0.39 0.26 0.22 0.07   0.43 0.28 
DahA 0.32 0.10 0.01 0.34 0.19 0.02 0.01 0.43   0.50 
BghiP  0.49 0.45 0.06 0.46 0.21 0.00 0.05 0.28 0.50   

 

Table 5.10. Excitation correlation coefficients between reference PAHs. 

PAH BkF BbF 22B BaP IcdP Chr Flt  BaA DahA BghiP  
BkF   0.03 0.05 0.00 0.32 0.05 0.05 0.07 0.03 0.03 
BbF 0.03   0.62 0.75 0.37 0.33 0.25 0.24 0.00 0.23 
22B 0.05 0.62   0.29 0.62 0.27 0.11 0.03 0.23 0.01 
BaP 0.00 0.75 0.29   0.12 0.34 0.32 0.40 0.08 0.40 
IcdP 0.32 0.37 0.62 0.12   0.02 0.05 0.00 0.06 0.00 
Chr 0.05 0.33 0.27 0.34 0.02   0.04 0.05 0.15 0.00 
Flt  0.05 0.25 0.11 0.32 0.05 0.04   0.88 0.00 0.12 
BaA 0.07 0.24 0.03 0.40 0.00 0.05 0.88   0.07 0.30 
DahA 0.03 0.00 0.23 0.08 0.06 0.15 0.00 0.07   0.65 
BghiP  0.03 0.23 0.01 0.40 0.00 0.00 0.12 0.30 0.65   

 

When quantitative information is the goal, PARAFAC and MCR-ALS can also be 

compared with U-PLS. Due to the complexity of the mixed PAH signals in the 

calibration samples, PLS1 models were employed for modeling individual compounds 

by U-PLS, where RBL was not required because the calibration set did not include 

unexpected compounds. For U-PLS calculations, the original matrix X is preprocessed 

by mean-centering. 

 

The optimum number of factors for each PLS1 model was selected using the F-ratio 

criterion explained in section 4.4.3. Figure 5.21 shows the number of latent variables 

needed for every U-PLS1 model as a function of the signal norm of the related PAH 

compound. 

 

On the one hand, the number of latent variables in the U-PLS models of the different 

PAHs ranged from 6 (22B) to 12 (BghiP). The number of latent variables of the PLS 

model was generally related to the PAH signal intensity and, hence, the PAH with 

lowest intensity, BghiP, required the highest number of latent variables. Notice that the 

signal intensity of eight PAHs is 80% lower than the one of benzo[k]fluoranthene.  
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Figure 5.21.  Number of latent variables of U-PLS models versus the PAH signal norm. 

 

On the other hand, it must be considered that some PAH spectra are highly correlated 

in the emission mode (see, for instance, BaP – BkF, or Flt – BbF correlations in Table 

5.9) and in the excitation mode (see, for instance, BaA – Flt or BaP – BbF correlations 

in Table 5.10).  

 

For this reason, the number of PLS latent variables required is higher for some PAH 

compounds, e.g., BkF higher than 22B, than what could be expected considering only 

the compound signal intensity. Therefore, even using PLS1 models, more than ten 

factors were needed when the norm of the analyte was very low or when the signal 

was very overlapped with other compounds.  

 

Table 5.11 shows the comparison of the determination coefficients (R2) between 

predicted concentrations and nominal values obtained using MCR-ALS, PARAFAC and 

U-PLS models. 

 

Table 5.11.  Determination coefficient between predicted and nominal values in the calibration 

set (dcal) obtained by MCR-ALS, PARAFC and U-PLS. 

PAH BkF BbF 22B BaP IcdP Chr Flt  BaA DahA BghiP  

Norm  1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05 

MCR-ALS  0.9778 0.9161 0.9965 0.8875 0.9849 0.9879 0.4666 0.9923 0.9861 0.7215 

PARAFAC  0.9935 0.9918 0.9959 0.9076 0.9907 0.9816 0.9745 0.9867 0.9844 0.8488 

U-PLS 0.9988 0.9976 0.9972 0.9984 0.9986 0.9993 0.9980 0.9980 0.9947 0.9964 
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In this table, it can be seen that satisfactory R2 values were obtained with all applied 

algorithms, i.e., the predictions are in good agreement with the nominal values, except 

for fluoranthene (Flt). This difference may be attributed to a possible detection of 

changes of signal-to-concentration ratio among samples by MCR-ALS, a question that 

will be discussed in following sections. As expected, U-PLS gives slightly better 

quantitative results, since it is a pure calibration method. PARAFAC and MCR-ALS, 

instead, give slightly worse figures of merit for quantification, but provide an additional 

qualitative description of the system, i.e., pure excitation and emission spectral profiles. 

 

Finally, twenty-five test solutions of the ten PAH compounds (dval ) were prepared to 

test the prediction ability of each algorithm. The multiset shown in Figure 5.19.B was 

used for MCR-ALS and PARAFAC preserving the augmented matrix and data cube 

structures, respectively. For both methods, the samples of pure components (dpure ) 

were employed to improve the resolution, whereas the calibration set (dcal ) was used 

to build the calibration curve. For U-PLS calculations, only the calibration set was used. 

Figures of merit calculated by each method are shown in Table 5.12. 

 

Table 5.12. Statistical results for the quantification of the target PAHs in validation samples. 

PAH BkF BbF 22B BaP IcdP Chr Flt  BaA DahA BghiP  

Norm  1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05 

RMSEP a 

(ng mL -1) 

MCR-ALS 0.66 2.46 0.52 1.75 0.88 0.61 8.49 0.59 1.10 8.86 

PARAFAC  0.39 0.86 0.56 1.91 0.99 0.60 0.92 0.92 0.80 3.25 

U-PLS 0.40 0.74 0.76 0.67 0.51 0.41 0.53 0.88 0.65 2.34 

REP b (%) 

MCR-ALS 6.86 24.63 4.13 18.20 8.81 6.38 84.89 5.93 10.97 70.88 

PARAFAC  4.02 8.64 5.19 19.86 9.92 6.26 9.19 9.22 8.05 25.98 

U-PLS 4.18 7.37 6.07 6.98 5.07 4.25 5.27 8.81 6.46 18.73 

aRMSEP (ng mL-1) (See Eq.4.26); bREP (%) (See Eq.4.27). 

 

Good prediction ability was achieved for most compounds by all algorithms, and U-PLS 

generally yielded the best predictions, with a low relative error (REP), less than 10%, 

except for BghiP, which presented the highest error related to its low signal intensity 

and highly overlapped signal. The few PAH compounds for which PARAFAC or MCR-

ALS gave better results, i.e., BkF, 22B and BaA, are compounds with the highest signal 

(BkF) or with the best spectral selectivity (22B and BaA). Although U-PLS yielded 

better quantitative results, it is important to note that the correlation coefficient (r2) 

between the predicted and nominal values (Table 5.13) show that global resolution 

models (PARAFAC and MCR-ALS) give in general very good results, which means that 

the trends in relative concentration of the samples are very well described. It is also 
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important to remark that PARAFAC and MCR-ALS require a single model to describe 

the whole chemical system, whereas U-PLS needs one model per each PAH. This 

allows a better focus on the individual predictions and, hence, better quantitative 

results, but it is also more time-consuming. 

 

Table 5.13.  Correlation coefficients between the predicted and nominal concentration values in 

the validation set obtained by MCR-ALS, PARAFAC and U-PLS/RBL. 

PAH BkF BbF 22B BaP IcdP Chr Flt  BaA DahA BghiP  

Norm 1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05 

MCR-ALS 0.9881 0.8622 0.9952 0.9259 0.9817 0.9913 0.2379 0.9891 0.9779 0.5143 

PARAFAC 0.9961 0.9870 0.9921 0.9192 0.9826 0.9903 0.9773 0.9742 0.9826 0.8676 

U-PLS 0.9957 0.9878 0.9893 0.9909 0.9960 0.9967 0.9979 0.9770 0.9880 0.9547 

  

To compare the similarity in performance among algorithms, a comparison of predicted 

values calculated by PARAFAC, MCR-ALS and U-PLS in the validation samples was 

tested, using a paired t-test of the slope (comparing slopes of predicted values 

between methods pairwise) [Miller and Miller, 2010]. The calculated α significance 

levels are shown in Table 5.14.  

 

Table 5.14.  Calculated α level between algorithms predictions for validation samples (calculated 

from the calibration model obtained with the calibration set (dcal)) 

PAH BkF BbF 22B BaP IcdP Chr Flt BaA DahA BghiP 

MCR-ALS/  

PARAFAC 
0.948 0.532 0.041 0.001 0.285 0.054 1.4·10-4 0.288 0.003 5.4·10-5 

MCR-ALS/  

U-PLS 
0.998 0.014 0.263 0.020 0.690 0.004 1.5·10-4 0.040 1.6·10-4 8.3·10-5 

PARAFAC/  

U-PLS 
0.990 1.7·10-15 0.032 0.559 0.605 0.341 0.729 0.466 0.163 0.483 

 

Significance levels higher than 0.1% (i.e., higher than 0.001 in Table 5.14) indicate that 

no significant differences between predictions made by the employed algorithms. This 

is the case for most PAH compounds, except for some few examples, such as Flt and 

BghiP between MCR-ALS/PARAFAC, and MCR-ALS/U-PLS, DahA between MCR-

ALS/U-PLS, or BbF between PARAFAC/U-PLS. These differences are mostly related 

to compounds with low fluorescence intensity, e.g., BghiP or DahA, or maybe to 

changes in the signal-to-concentration ratio of some PAHs depending on the 

composition of the sample (which we can denominate sample matrix effect). These 

changes could be more noticeable for PARAFAC or MCR-ALS, which are not pure 

calibration methods, always assume a single contribution per compound, and are not 
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prepared to actively correct variations in signal-to-concentration ratio among samples. 

U-PLS, instead, compensates better these differences among samples by adapting the 

number of latent variables included in the model. This kind of effect will be further 

analyzed in the following section 5.2.3, devoted to the study of samples with 

interferences. 
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5.2.3 Screening and determination of PAHs in presence of interferences 

 

As discussed in Chapter 1, several authors have proven the efficiency of the selected 

second-order calibration methods to quantify PAHs in the presence of unexpected 

species which are absent in the calibration samples. However, few studies have been 

conducted to simultaneously analyze a large number of PAHs in complex matrices with 

a strong interference background. In fact, EEM matrices containing interfering species 

and also sample matrix effects require the application of flexible methods, which can 

successfully model qualitatively and quantitatively the different fluorescence 

contributions. In this regard, sample matrix effects in second–order data of 

multicomponent samples of PAHs have not yet been extensively studied and compared 

with a wide range of datasets.  

 

5.2.3.1 Objective 

 

This section explores the feasibility of screening and determination of ten PAHs 

through EEM in the presence of interferences and sample matrix effects, by using 

different second-order data analysis algorithms: PARAFAC, MCR-ALS, and U-

PLS/RBL.  

 

The scope of the proposed techniques is discussed for qualitative and quantitative 

analysis of the selected PAHs. To understand the performance of PARAFAC, MCR-

ALS and U-PLS/RBL, and to propose a joint strategy of application, they were applied 

to mixtures of standard reference materials containing interfering species such as the 

16 US-EPA PAHs. Additionally, the importance of the complexity of the sample in 

terms of number of target and interference compounds, and sample matrix effects, is 

also discussed. 

 

5.2.3.2 Data  

 

Two sets of mixtures of the 16 US-EPA PAHs (dinterf ) were used as follows (section 

3.5.4):  

Set no.1.  A total of 36 samples at 12 different concentration levels ranging from 1 - 20 

ng mL-1.   

Set no.2.  20 samples at 10 different concentration levels ranging from 0.2– 20 ng mL-1.  

 



Chapter 5 
 

152| 
 

The values of concentration were set in the same range of the calibration samples, and 

are comparable to those expected for the selected PAHs in environmental sampling 

scenarios.  

 

5.2.3.3 Results and discussion 

 

It is known that other PAHs are able to emit in the same spectral range as the analytes 

of interest and, if not emitting, they can contribute to the overall complexity of the 

sample analyzed. Among the 16 US-EPA PAHs, 9 were selected as target compounds, 

and the remaining 7 US-EPA PAHs were present in the samples as interfering 

compounds. From these interfering compounds, fluorene, naphthalene and 

acenaphthene have a maximum fluorescence emission signal below the range of 

interest, but they contribute to the complexity of the samples, whereas acenaphthylene 

is not fluorescent. Additionally, phenanthrene (λex,max= 364 nm), pyrene (λex,max= 382 

nm) and anthracene (λex,max= 398 nm) emit in the same emission range of those of 

interest. In fact, anthracene has a relative fluorescence intensity 13% lower than 

benzo[k]fluoranthene, so it is expected that it can be resolved as one additional factor. 

In contrast, phenanthrene and pyrene have a signal lower than benzo[ghi]perylene 

and, therefore, their individual spectra are not expected to be recovered. 

 

Therefore, an interference study was undertaken with two mixtures containing the 16 

US-EPA PAHs in order to investigate this effect. Hence, 22 different test samples (12 

from set no.1 (in triplicate = 36) and 10 from set no.2 (in duplicate = 20)) containing the 

10 selected PAHs (9 US-EPA PAHs and 2BB) and the remaining 7 US-EPA PAHs 

were evaluated with PARAFAC, U-PLS/RBL and MCR-ALS. Figure 5.22 shows the 

multiset configuration used in this analysis.  

 

 
Figure 5.22. Multiset configuration for PAH analysis. 
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A crucial step for PARAFAC modeling is to set the suitable number of factors. In simple 

scenarios with a low number of compounds, CORCONDIA is a good tool to estimate 

this parameter. Nevertheless, in this case CORCONDIA did not lead to good results, 

because of the large number of spectrally similar compounds and the presence of 

minor compounds similar in intensity to the residual scattering in the samples. For that 

reason, the selection of the number of PARAFAC factors was made based on the 

recovery of the spectral profiles of the 10 expected compounds, the quality of the fitting 

model parameters, and the figures of merit of the quantitative prediction of calibration 

samples. Taking into consideration these criteria, a 13-factor PARAFAC model was 

selected (lack of fit of 5.6% and 99.68% of variance explained), being the model with 

the smallest number of factors that could resolve all target spectral profiles avoiding 

overfitting.  

 

In MCR-ALS, the additional implementation of the correspondence among species 

constraint, and the higher flexibility offered by a partially trilinear model, helped in the 

recovery of spectral profiles for all analytes and, in this case, a 12-factor MCR-ALS 

model was sufficient to identify correctly all target components. However, a 13-factor 

model (lack of fit of 8.1% and 99.33% of variance explained) improved the quantitative 

prediction of the analyte with the lowest signal, benzo[ghi]perylene, and this was the 

model size selected for further calculations. 

 

The three additional factors different from the 10 analyte contributions in both 

PARAFAC and MCR-ALS models have diverse nature and behavior. Thus, both 

methods recognize a contribution related to anthracene (Figure 5.23), a PAH with high 

signal in the working spectral range and that is present in the EPA-PAH mixtures. 

 
Figure 5.23.  Excitation and emission loading for the interferences: (Left) MCR-ALS (rem=0.9909 

and rex=0.9990), (Right) PARAFAC (rem=0.9848 and rex=0.9981). Plots show the real spectra of 

anthracene (black solid line) and loadings (red dotted line). Loadings and spectra have been 

normalized to unit amplitude.  
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It is important to note that, being resolution methods, both could identify the presence 

of an unexpected compound without any a priori information given to the analysis, an 

asset that a pure calibration method cannot provide. The two additional contributions 

are linear combinations of minor compounds and residual scattering needed to 

describe the rest of relevant variance of the system. In this sense, MCR-ALS using 

partial trilinearity adapted better to the real non-trilinear nature of these mixed 

contributions.  

 

Once decomposition was accomplished, the quality of the MCR-ALS and PARAFAC 

models was evaluated, through the criterion of similarity, by comparing the reference 

and resolved spectrum for all 10 analytes. The value of the correlation coefficient (r) 

found for the PAHs spectra recovery in the excitation and emission modes were > 0.99 

for most of them (Table 5.15), corroborating the excellent identification of the target 

compounds. 

 

Table 5.15.  Emission and excitation correlation coefficients between resolved and reference 

PAH spectra obtained with thirteen–factor PARAFAC and MCR-ALS models. 

PAH BkF BbF 22B BaP IcdP 

Norm 1 0.40 0.23 0.21 0.14 

Algorithm rem rex rem rex rem rex rem rex rem rex 

MCR-ALS 0.9920 0.9910 0.9990 0.9269 0.9980 0.9983 0.9984 0.9943 0.9993 0.9927 
PARAFAC  0.9964 0.9576 0.9993 0.9978 0.9961 0.9963 0.9954 0.9938 0.9925 0.9951 
PAH Chr Flt  BaA DahA BghiP  

Norm 0.12 0.12 0.12 0.09 0.05 

Algorithm rem rex rem rex rem rex rem rex rem rex 

MCR-ALS 0.9992 0.9991 0.9981 0.9678 0.9989 0.9976 0.9963 0.9978 0.9901 0.9792 
PARAFAC  0.9994 0.9985 0.9957 0.9973 0.9974 0.9971 0.9970 0.9965 0.9942 0.9871 

 

Subsequently, predicted concentrations in samples from the interference set were 

calculated as follows:  

 

a) Using the calibration line built by samples of the calibration set (dcal , without 

interferences). 

b) Using a calibration line built with a subset of samples of the interfering set (dinterf ).  

 

Table 5.16 shows the parameters of the predicted versus nominal concentration for all 

the analytes when the two kinds of calibration lines are used. Ideal results would be 

slope = 1, intercept = 0 and r2 close to 1. 
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Table 5.16. Regression line between predicted and nominal concentrations using the calibration 

model obtained from the calibration or the interfering set. 

SET Nº1 Nº2 
PAH Algorithm  Regression  Slope  Intercept  r2 Slope  Intercept  r2 

BkF 
MCR-ALS 

dcal  1.421 1.333 0.9752 1.728 -0.184 0.9877 
dinterf  0.993 -0.332 0.9777 0.914 0.141 0.9935 

PARAFAC  
dcal  1.000 0.615 0.9831 1.254 -0.566 0.9945 
dinterf  1.059 -0.103 0.9933 0.848 0.103 0.9962 

BbF 
MCR-ALS 

dcal  0.884 -1.643 0.9439 0.492 -1.596 0.5160 
dinterf  0.934 0.628 0.9728 0.168 0.979 0.4412 

PARAFAC  
dcal  1.057 0.517 0.9206 1.092 0.454 0.9583 
dinterf  1.133 0.436 0.9949 1.166 0.029 0.9958 

22B 
MCR-ALS 

dcal  0.553 0.390 0.9123 1.183 -0.210 0.9748 
dinterf  1.200 1.361 0.9435 1.222 0.203 0.9943 

PARAFAC  
dcal  0.820 1.073 0.9546 1.246 0.027 0.9807 
dinterf  1.076 0.606 0.9623 1.200 0.279 0.9919 

BaP 
MCR-ALS 

dcal  0.873 -5.470 0.9031 0.992 -5.050 0.9848 
dinterf  0.995 0.098 0.9743 0.945 0.281 0.9882 

PARAFAC  
dcal  1.540 -3.970 0.9036 1.215 -3.258 0.9660 
dinterf  1.367 -0.551 0.9337 0.960 0.624 0.9913 

IcdP 
MCR-ALS 

dcal  0.865 1.230 0.9604 1.149 -0.220 0.9847 
dinterf  1.140 -0.412 0.9725 0.817 1.845 0.9982 

PARAFAC  
dcal  0.917 1.490 0.9517 1.155 0.193 0.9900 
dinterf  1.161 0.297 0.9879 0.857 1.650 0.9983 

Chr 
MCR-ALS 

dcal  1.030 1.449 0.9616 1.076 0.456 0.9668 
dinterf  1.093 0.469 0.9909 1.130 0.019 0.9866 

PARAFAC  
dcal  1.030 0.588 0.9771 1.107 -0.417 0.9213 
dinterf  0.965 0.984 0.9715 1.348 -0.358 0.9797 

Flt 
MCR-ALS 

dcal  0.689 3.322 0.7592 2.584 2.950 0.6702 
dinterf  0.749 0.534 0.7789 2.598 -3.924 0.9750 

PARAFAC  
dcal  1.000 -0.079 0.9470 1.091 -0.258 0.9837 
dinterf  0.875 -0.274 0.9258 0.850 0.507 0.9881 

BaA 
MCR-ALS 

dcal  1.013 1.352 0.9647 1.069 0.481 0.9100 
dinterf  1.048 1.014 0.9785 1.450 -0.452 0.9900 

PARAFAC  
dcal  0.852 1.383 0.9343 1.226 0.790 0.8361 
dinterf  1.049 2.248 0.9191 1.700 -0.737 0.9805 

DahA 
MCR-ALS 

dcal  1.095 1.109 0.9881 1.109 0.260 0.9834 
dinterf  1.062 -0.073 0.9908 1.039 0.114 0.9925 

PARAFAC  
dcal  1.290 0.213 0.9788 1.209 -1.654 0.9924 
dinterf  0.961 0.053 0.9772 0.926 0.311 0.9904 

BghiP  
MCR-ALS 

dcal  0.839 5.172 0.8051 2.911 1.102 0.7548 
dinterf  1.417 -0.032 0.9354 2.065 -2.779 0.9802 

PARAFAC  
dcal  0.648 -3.142 0.1933 0.872 -5.216 0.8348 
dinterf  0.129 0.836 0.1102 1.125 -0.798 0.9055 

 

The first aspect to note for MCR-ALS and PARFAC is that, irrespective of the 

calibration line used (with calibration samples containing only analytes or calibration 

samples having interferences), good correlation coefficients among predicted and 
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nominal values are found for almost all analyzed compounds. The estimates of 

concentration values show a general improvement (slight in some compounds) when 

samples containing interferences are used as calibration set, but even if interferences 

are absent in the calibration set, the information related to relative concentration among 

samples is well defined. This is an important fact, since it gives a lot of value to 

resolution methods when fast qualitative and quantitative screening of samples is the 

main purpose, or when the evolution in relative concentrations among different 

scenarios is the information sought, and not as much the exact concentration value of 

the analytes in the sample. 

 

Concerning the absolute quantitative predictions of analytes in samples, in most cases 

there is a general worsening when predictions are performed with the calibration set 

without interferences, a bit more noticeable in MCR-ALS calculations, perhaps because 

of the more flexible underlying model used. However, even in this situation, good 

results were obtained with REP values, less than 30% for several PAHs, e.g., Chr, 

DahA and IcdP. The worst prediction was obtained for BghiP concentrations by both 

algorithms, because of the very low signal of this analyte compared with the rest of 

analytes, and some interfering species. When samples of the same interfering matrices 

are used to build the calibration line, predictions improve significantly. In fact, for almost 

all compounds, REP values were less than 30% except for BghiP, probably because of 

the reason discussed above, and MCR-ALS had less satisfactory results for Flt and 

BbF.  

 

As a general result, PARAFAC and MCR-ALS are very suitable algorithms for 

screening purposes, since they provide with a single model good qualitative and 

relative quantitative information about the system analyzed. Nevertheless, one should 

be aware that, for some compounds, these algorithms may be sensitive to potential 

changes in signal-to-concentration ratio linked to the sample matrix and, therefore, 

calibration sets without interferences might provide less accurate results, particularly 

when the samples analyzed are extremely complex in terms of number of compounds 

and signal overlap.  

 

In the case of U-PLS model, the RBL step is required when samples with interferences 

are analyzed, because they contain unexpected components absent in the set of 

calibration samples. As a result, when U-PLS/RBL is used, two steps are required: a) 

per each analyte, the number of latent variables in the U-PLS1 models is estimated 

using the calibration set and b) per each sample to be predicted in the RBL step, an 
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estimate of the additional number of factors corresponding to the unexpected 

constituents is required. Because of the individual RBL step per each analyte in each 

sample, it is important to note that the accurate estimation of the concentration implies 

a dramatic increase of the computation time, since the number of models that must be 

calculated is equal to: (number of samples × number of analytes), against the single 

resolution model that is needed when PARAFAC or MCR-ALS algorithms are used. 

 

Typically, the estimation of the number of factors in the RBL step is performed 

comparing the RBL residuals (sRBL) of the decomposition, computed for different values 

of unexpected components (Nunx) with the experimental noise (section 4.5.3). The 

smallest number of factors that provides residuals at a value statistically comparable to 

the experimental noise is chosen. But the number of RBL latent variables for real 

samples is not easy to calculate, and mistakes in this step can lead to wrong predicted 

concentrations.  

 

For this reason, we compared the number of unexpected components for each PAH U-

plS model and sample calculated considering the methods described in [Braga et al., 

2010] and [Bortolato et al., 2008]. Braga et al. (2010) et al. propose a method to 

compare the residuals of the U-PLS/RBL test samples with results of t-student 

confidence intervals for the mean residuals of decomposition of the calibration 

samples. In contrast, Bortotalo et al. estimate the number of optimum RBL factors 

based on a ratio between the RBL residuals (sRBL):  

 

s��� = ‖e���‖/h(¶ : N[
�$(¸ : N[
�$ : Al� =�           (5.3) 

 

and a penalized residual error (spen): 

 

sv

 = s��� ¹(¶x¸$/h(¶ : N[
�$(¸ : N[
�$ : Al� =� º          (5.4) 

 

This ratio is computed for increasing values of unexpected components (Nunx) as 

follows: 

 

R = sv

(N[
�$/hs���(N[
� : 1$]           (5.5)  

 

The first value of Nunx for which R did not exceed 1 was then selected as the number of 

RBL components. 
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To see an example, Table 5.17 shows the number of RBL components calculated for 

IcdP and DahA U-PLS models in several samples of set no.1 at different 

concentrations.  

 

Table 5.17.  Number of RBL factors for several samples of set no.1, estimated according to 

Braga and Bortolato methods. 

Sample  no. 1 2 3 4 5 6 7 

PAH Concentration 
(ng mL -1) 1 2 4 5 15 18 20 

IcdP Braga  1 1 3 3 6 7 7 
Bortolato  6 9 7 6 6 5 6 

DahA Braga  1 1 2 2 3 4 5 
Bortolato  8 8 6 6 5 5 6 

 

The method proposed by Braga et al. (2010) proved to be more robust when the 

residual error to be modeled by the RBL step was close to the one in the calibration 

set, as happens in samples 1 to 4, where the total concentration of PAHs is low and the 

contribution of the unexpected components is not very significant. In contrast, 

according to Bortolato et al. (2008), the number of Nunx in these samples (1 to 4) is very 

large, and does not have chemical sense, showing the difficulty of the method in finding 

Nunx when low signal contributions of interferences and low concentration samples are 

analyzed. When the impact of the signal of unexpected constituents is large, as 

happens in the samples 5 to 7, where the concentrations of these compounds are 

higher, the two methods seem to give similar results. This is a positive outcome since 

samples with high concentrations of contaminants are those with most environmental 

interest.  

 

As a consequence of these difficulties, it is advisable, whenever possible, to check the 

number of factors in the RBL step with samples of similar nature and known reference 

concentrations of the analytes. If this is not the case, one should be aware of the 

difficulty in the estimation of Nunx, particularly in cases where the signal of these 

contributions is not big or distinct from the analyte signals, and the consequent effect in 

the predicted concentrations of analytes.  

 

Taking the comments above into consideration about both criteria, the estimated value 

of unexpected components in the interference set samples ranged from 1 to 6 for most 

cases, depending on the PAH and the concentration level of the sample analyzed. The 

fact that the seven new PAHs incorporated as interferences provided less additional 

latent variables than the number of real chemical species is related to the spectral 
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range of emission of the interferences (not always in the working range), the signal 

overlap among them and their relative contribution to the total sample signal.  

 

Table 5.18 is a summary of the figures of merit related to predicted concentration 

values in the samples with interferences. U-PLS/RBL performs better because it is a 

pure calibration method, and the effect of the presence of interferences and possible 

sample matrix effect is considered individually, with a single model per analyte and per 

sample. Good results have been obtained for the predicted PAHs concentrations, even 

when a high concentration of interfering compounds was present in the test samples.  

 

Table 5.18.  Statistical results for the quantification of the target PAHs in interfering samples by 

U-PLS/RBL. 

PAH BkF BbF 22B BaP IcdP Chr Flt  BaA DahA BghiP  

Norm  1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05 

Set 

no.1 

RMSEP a  

(ng mL -1) 
1.19 1.79 1.53 1.43 1.18 1.55 1.12 0.62 1.47 2.25 

REP b  

(%) 
12.20 18.36 15.72 14.71 12.11 15.86 11.52 6.37 15.11 23.06 

Set 

no.2 

RMSEP a  

(ng mL -1) 
0.07 0.15 0.37 0.23 0.50 0.41 0.24 0.17 0.20 0.58 

REPb  

(%) 
6.26 5.43 6.68 8.32 4.59 14.78 4.42 6.26 3.70 10.55 

aRMSEP (ng mL-1) (See Eq.4.26); bREP (%) (See Eq.4.27). 

 

Based on the obtained results, U-PLS/RBL applied to EEMs proved to be the best 

method to provide quantitative information, overcoming sample matrix effects and the 

presence of unexpected interfering components. However, U-PLS/RBL algorithm has 

two main drawbacks: the correct estimation of the suitable number of unexpected 

components present in the interference set samples, which gets more relevant when 

similar samples contain interferences and reference concentrations of the analytes are 

not available, and the huge computational effort needed to calculate as many models 

as (no. analytes × no. samples), which can last for several days compared with the few 

minutes needed to obtain a single PARAFAC or MCR-ALS model describing all 

samples and analytes in the system of interest. 

 

5.2.3.5 Conclusions 

 

MCR-ALS, PARAFAC and U-PLS/RBL algorithms were tested and compared to obtain 

qualitative and quantitative information of analytes and interferences in complex 
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samples of PAH mixtures analyzed by EEM fluorescence spectroscopy. Advantages 

and drawbacks associated with these methods are related mainly to the main 

resolution (MCR-ALS and PARAFAC) or calibration (U-PLS/RBL) purpose of the 

algorithms. 

 

Thus, MCR-ALS and PARAFAC are clearly the recommended methods for a fast 

qualitative and quantitative screening of environmental samples. Even in samples 

containing 10 analytes with overlapped signals and several interferences, the single 

resolution model provided by both algorithms manages to recover the identity (spectral 

profiles) of the analytes and is able to find out the identity of interfering compounds, 

e.g., anthracene, when the signal of the unexpected compound is within the spectral 

working range. It is important to note this capability for both methods, which are often 

assumed to be able to work only with systems with a small number of compounds.  

 

It is interesting to stress the effect of MCR-ALS constraints in the context of these 

complex systems, notably the correspondence of species to identify more clearly the 

analytes present in the sample and the partial trilinearity, which can provide a more 

accurate description of the system behavior when deviations from ideal trilinearity due 

to residual scattering exist. The active use of this kind of constraints is still not 

sufficiently exploited and remains a point for which a more general diffusion within the 

chemical community should be performed.  

 

Quantitative information can also be extracted by both MCR-ALS and PARAFAC 

algorithms, although predicted concentration values can be sometimes affected by 

changes in the signal-to-concentration ratio (matrix effect) of the real samples when 

compared with a calibration set without interferences. Since these algorithms are not 

calibration-oriented methods, they are more sensitive to sample matrix effects. 

However, relative concentration values are always correctly estimated and this 

provides a good screening tool to obtain relative or approximate concentration values, 

and to point out the most contaminated samples, which may deserve a more accurate 

quantitative analysis. They would also be the algorithms of choice when environmental 

trends in concentrations (due to seasonality, location or other factors) are the main 

purpose of the study, rather than an exact determination of analyte concentration in 

individual samples.  

 

U-PLS/RBL, the only pure calibration method used here, provided the best quantitative 

information for samples containing interferences and potential sample matrix effect, 
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with low values of RMSEP and REP, below 1.8 ng mL-1 and 20% respectively, 

comparable to those provided by separation and analysis techniques, more expensive 

and time consuming. However, it presented as weak points the difficulty in estimating 

the number of unexpected contributions in the RBL step (particularly for low 

concentration samples) and the huge computation effort linked to calculate as many 

models as (no. samples × no. analytes), which makes the algorithm unsuitable for fast 

screening purposes.  

 

From the above discussion, it seems recommendable a combined use of the presented 

algorithms. A first application of PARAFAC or MCR-ALS for screening purposes, with 

the added value of detecting unexpected compounds in the samples, and the capability 

to point out the most contaminated samples, which are the most relevant from an 

environmental point of view. For those samples, a second step using U-PLS/RBL can 

be carried out to accurately estimate the concentrations of the analytes of interest, 

knowing that the predicted concentration will be more reliable than the first estimation 

provided by the screening resolution methodologies. 
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5.3. OPTIMIZATION OF THE EXTRACTION PROTOCOL 

 

Extraction is one of the most crucial points in the analytical chain in the effort of 

achieving a complete recovery of target compounds. It is also one of the most complex 

steps and it rarely yields reproducible results. The standard extraction procedures for 

sample preparation of particle-bound PAHs described in the standards listed in Table 

1.5 recommend the incorporation of Soxhlet extraction methods  that are labor 

intensive (>8 h/sample), and consume large amounts of solvents (>150 mL/sample), to 

achieve considerable PAH extraction efficiencies. Nonetheless, the Soxhlet extraction 

is still the preferred method because of its comparative extraction results despite the 

nature of matrix sample.  

 

Automated Soxhlet extraction represents an improvement over the classic Soxhlet 

extraction. The automated Soxhlet extraction design allows several samples to be 

extracted simultaneously with its multiple extraction cells assembly while being cycle 

and/or time monitoring for unattended operation, leading to a better reproducibility. 

Since extraction is crucial in the sample preparation steps previous to fluorescence 

analysis, the selection of the optimal operation parameters and the definition of the 

most suitable extraction protocol according to the characteristics of the target PAHs is 

thoughtfully studied in the following sections. 

 

First, section 5.3.1 discusses the selection of the appropriate solvent and surrogate to 

correct for the extraction efficiency, according to the extraction and fluorescence 

analysis requirements.  

 

In section 5.3.2 an examination with an automated extraction system is made to test 

whether savings in time can be obtained in daily routine analysis. This system offers 

the use of warm and hot extraction modes, which were developed to speed up the 

classic Soxhlet extraction. Hence, a deeper study was undertaken to select the best 

extraction mode.  

 

Finally, section 5.3.3 explores the optimization of the extraction time, by analyzing a 

standard reference material subjected to increasing extraction times required for later 

aerosol analysis. 
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5.3.1 Selection of solvent and surrogate 

 

N-hexane was selected as the extraction solvent because of its good extractive 

capacity for organic compounds in different matrices. N-hexane has chemical 

properties that provide ideal functionality as a solvent for extraction of PAHs as well as 

being less toxic and environmentally hazardous than other conventional solvents (e.g., 

toluene, benzene, chlorocarbons, etc.). Besides, n-hexane has a fairly narrow boiling 

point range of approximately 63 – 69.8°C and it is an excellent solvent in terms of PAH 

solubility and ease to recover. In addition, its spectrofluorimetric properties, which do 

not show any interfering fluorescence peaks (Figure 5.24), make it very suitable for 

subsequent fluorescence analysis.  

 

 
Figure 5.24. Contour plot of the excitation- emission fluorescence matrix of n-hexane showing 

only the signals due to the Raman and Rayleigh scattering phenomena. 

 

Another important issue is the selection of a proper extraction surrogate. Prior to the 

extraction, it is mandatory to add an appropriate surrogate standard to the Soxhlet 

solvent. A surrogate standard (i.e. a chemically compound not expected to appear in 

an environmental sample) should be added to each sample, blank, and matrix spike 

sample just prior to extraction or processing. The recovery of this surrogate standard is 

used to monitor for unusual matrix effects, gross sample processing errors, etc. 

Surrogate recovery is evaluated by determining whether the measured concentration 
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falls within the acceptance limits. In this regard, the extraction procedures described in 

several international standards specify different surrogates (Table 5.19), according to 

fluorescence detection. For that reason, the standards in Table 5.19 were selected to 

be tested and to determine the most suitable one. 

 

Table 5.19. Chemical properties of selected surrogates. 

Surrogate CAS 
number 

Molecular 
formula 

Molecular 
weight 

Melting 
point 

Boiling 
point 

Flash 
point 

Reference  
number 

2,2'binaphthyl 612-78-
2 C20H14 254.33 187 428.9 206.3 79 

7- 
methylbenzo[a]pyrene 

63041-
77-0 C21H14 266.34 219 479.4 236.7 59 

6-metylchrysene 1705-
85-7 C10H14 242.31 161 449.4 217.8 83 

 

The selected standards have similar physicochemical properties. Thus, the selection 

was made based on their spectrofluorimetric features (Figure 5.25). 

 

 
 

Figure 5.25.  Excitation and emission spectra of the selected surrogates: 7- 

methylbenzo[a]pyrene (black line), 6-metylchrysene (black dotted line) and 2,2'binaphthyl (grey) 

 

Figure 5.25 shows the excitation and emission spectra of each selected surrogate. 

From this figure, it can be observed that 7- methylbenzo[a]pyrene and 6-metylchrysene 

emit in the same spectral range as the target PAHs. Thus, the signal of these 

surrogates could be more difficult to be mathematically modeled due to their higher 

spectral overlapping. In contrast, 2,2'binaphthyl fulfills both requirements, optimal 

physicochemical and spectrofluorimetric properties, which makes it the most suitable to 

be used as extraction surrogate standard. 
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5.3.2 Optimization of the extraction mode 

 

The optimization of the extraction conditions is usually assessed by systematic 

alteration of one variable while the others are kept constant. However, this approach is 

unable to determine interactions between parameters and predict extraction conditions. 

In this regard, experimental designs (a.k.a. Design of Experiments, DoE) are 

appropriate tools for this purpose. Furthermore, DoE allows efficient testing of the 

method robustness. Among all plausible DoE types, the so-called full factorial designs 

allow us to reveal the significance of the factors under investigation as well as the 

interactions between them. 

 

 5.3.2.1 Objective 

 

The objective of this section is the optimization of the Soxhlet extraction protocol by 

means of DoE. The chosen DoE method was based on a two-level factorial design with 

center points, applied to evaluate interactions between the selected Soxhlet factors as 

well as to optimize them.  

 

5.3.2.2 Data  

 

PAH extraction samples (dextract).  It consists of two sets of samples (section 3.5.5):   

Set no.1.  36 samples obtained from 12 extraction tests in triplicate, constructed to test 

the differences between the hot and warm operation mode. 

Set no.2.  18 samples obtained from 6 extraction tests in triplicate, constructed to 

compare the above obtained results with the standard Soxhlet method. 

 

5.3.2.3 Method 

 

To test the recovery of the extraction method, a half of 150 mm diameter quartz blank 

filters were spiked with 150 µL of internal standard 22B at 10 ng µL-1 and 200 µL of the 

16 US-EPA PAHs standard. Samples without drying step were extracted to a final 

volume of 100 mL, whereas samples under drying conditions were concentrated to a 

final volume of 10 mL and subsequently diluted to obtain extracts with concentrations in 

the order of 10 ng mL-1.  

 

For these preliminary experiments, filters spiked with standards were preferred over 

extracting certified materials for two reasons. The first one was to homogenize the 
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matrix, since samples are collected onto filters and certified materials are normally 

presented as a powder. The second one, the certified material SRM 1649b was more 

expensive than the PAH standards solution. Therefore, the use of the standards 

solution for method development and the use of the certified material for method 

validation was preferred, considering the large number of tests performed to optimize 

the extraction method. 

 

In order to determine the influencing factors as well as their interactions, a 2 full 

factorial design with center points was carried out for each set of samples. Center point 

experiments were used to evaluate the response curvature. Three extraction factors 

were selected for the experimental design: Soxhlet mode (X1), extraction time (X2) and 

the use of the drying step (X3), in order to investigate their effect on the yield (Y) from 

chemical PAHs extraction. As response, the percentage of recovery of each selected 9 

PAHs and the surrogate used as internal standard (22B) was used. The recoveries 

were compared and the robustness of the extraction method estimated. 

 

It is also important to remark that the efficiencies of extraction of PAHs are also 

dependent on the temperature. However, in our case, the extraction temperature is 

controlled by the heating power of the heater. Thus, this was established according to 

the manufacturer's specifications referring to the solvent used, n-hexane, as follows: 

heating level below: 10; heating level above: 4. 

 

The statistical significance of each experimental variable studied was established in 

relation to the percentage of recovery of each target PAH (Y). Running the full 

complement of all possible factor combinations means that all the main and interaction 

effects can be estimated. Hence, there are three main effects (X1, X2, X3), three two-

factor interactions (X1X2, X1X3, X2X3), and one three-factor interaction (X1X2X3), all of 

which appear in the full linear regression model as follows: 

 

Y= β0 +β1X1 +β2X2 +β3X3 +β12X1X2 +β13X1X3 +β23X2X3 +β123X1X2X3 +ε          (5.6) 

 

where β0 represents the overall mean; β1, β2 and β3 represent the independent effect of 

factor X1, X2 and X3 respectively; β12, β23 and β13 are related to the two factor 

interaction effects, β123 represent the three factor interaction effect and ε is the random 

error term. A full factorial design allows us to estimate all “beta” coefficients {β0,…,β123} 

to investigate their effect on the response. These data were processed using Minitab 

16.1 software package (Minitab Inc., UK). 
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The experiments were carried out in two blocks with 4 center points per block as shown 

in Table 5.20. All experiments were randomly performed in duplicate. The quantitative 

analysis was carried out by fluorescence spectroscopy and the U-PLS/RBL calibration 

method as explained in section 5.2.3. 

 

Table 5.20. Two-factor full factorial design with center points. 

BLOCK TRIAL EXPERIMENTAL FACTORS  
Soxhlet  Mode Extraction time  Drying step  

1 

1 - - - 
2 - + - 
3 + + - 
4 + - - 
5 + - + 
6 + 0 + 
7 + + + 
8 - 0 + 
9 + 0 - 
10 - + + 
11 - - + 
12 - 0 - 

2 

13 + - - 
14 + + - 
15 + + + 
16 - 0 - 
17 - 0 + 
18 - + + 
19 + 0 - 
20 - + - 
21 - - + 
22 + - + 
23 - - - 
24 + 0 + 

 

Two set of samples were studied according to the above experimental design. The 

experimental values of these variables are presented in Table 5.21 and Table 5.22. 

The low and high levels will be used as corner points, whereas the center level will 

correspond to the center point in the next figures. 

 

Table 5.21. Experimental domain set no.1. 

Factor  Low level ( -) Center level (0)  High level (+)  
Soxhlet  mode  WARM - HOT 

Extraction time  1 2 3 
Drying step  NO - YES 

 

Table 5.22. Experimental domain set no.2. 

Factor  Low level ( -) Center level (0)  High level (+)  
Soxhlet  mode  WARM - STANDARD 

Extraction time  1 2 3 
Drying step  NO - YES 
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5.3.2.4 Results and discussion 

 

Efficiencies of extraction by different methods 

The quantities of the target PAHs extracted by each method tested are shown in Table 

5.23 and Table 5.24. The extraction recoveries were calculated comparing the amount 

recovered in each test with the total amount initially spiked to the blank filters. The 

extraction recovery is expressed as recovery percentage, and the precision is 

calculated as the Relative Standard Deviation (RSD (%)). The samples were analyzed 

in triplicate. 

 

Table 5.23. Recovery Levels (%) ± RSD (%), according to different extraction modes and time, 

without drying step. PAHs are sorted in decreasing order of volatility. 

PAH MODE 
EXTRACTION TIME (h)  

1 2 3 

Flt 
WARM 99.8 ± 4.1 96.7 ± 2.7 98.8 ± 3.3 
STANDARD 99.6 ± 8.1 101.9 ± 3.6 103.0 ± 4.5 
HOT 101.2 ± 8.4 98.9 ± 0.9 95.9 ± 0.4 

BaA 
WARM 94.5 ± 6.6 93.9 ± 2.4 95.6 ± 4.0 
STANDARD 92.4 ±14.9 104.9 ± 7.1 105.1 ± 1.2 
HOT 93.6 ± 3.6 99.4 ± 0.0 96.9 ± 3.3 

Chr 
WARM 102.0 ± 10.4 106.6 ± 7.6 100.4 ± 4.7 
STANDARD 103.8 ± 14.3 112.5 ± 3.9 117.8 ± 3.8 
HOT 113.6 ± 13.1 108.8 ± 0.6 100.9 ± 3.9 

BaP 
WARM 85.9 ± 4.7 89.4 ± 5.3 95.0 ± 3.9 
STANDARD 80.0 ± 8.2 88.5 ± 0.21 94.8± 1.2 
HOT 84.6 ± 0.7 96.9 ± 4.2 82.0 ± 5.5 

BbF 
WARM 110.5 ±  12.6 108.1 ± 9.5 110.3 ± 4.0 
STANDARD 113.4 ± 2.1 119.7 ± 8.5 126.0 ± 1.2 
HOT 105.7 ± 0.6 113.1 ± 4.0 107.9 ± 1.4 

22B 
WARM 91.7 ± 6.6 92.8 ± 5.9 91.8 ± 3.3 
STANDARD 92.0 ± 13.1 98.6 ± 1.4 105.2 ± 1.2 
HOT 94.8 ± 0.81 97.8 ± 1.7 89.9 ± 3.9 

BkF 
WARM 87.5 ±  4.5 79.4 ± 4.9 94.4 ± 14.0 
STANDARD 106.5 ± 4.5 79.9 ± 1.8 88.4 ± 3.4 
HOT 117.1 ± 4.9 94.6 ± 16.5 84.3 ± 0.5 

BghiP 
WARM 108.2 ± 9.3 101.0 ± 17.9 101.3 ± 10.6 
STANDARD 89.6 ± 1.5 116.6 ± 9 84.3 ± 7.5 
HOT 99.7 ± 14.8 99.6 ± 33.3 101.3 ± 8.9 

DahA 
WARM 103.6 ± 7.7 106.7 ± 7.7 101.2 ± 3.7 
STANDARD 104.1 ± 9.4 109.1 ± 2.3 114.8 ± 4.2 
HOT 103.2 ± 1.6 105.7 ± 4.0 103.2 ± 1.6 

IcdP 
WARM 101.9 ± 8.0 104.1 ± 6.7 105.8 ± 5.6 
STANDARD 112.0 ± 4.7 109.7 ± 9.0 106.0 ± 3.5 
HOT 99.9 ± 7.5 102.2 ± 1.7 107.0 ± 7.0 
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Table 5.24. Recovery Levels (%) ± RSD (%), according to different extraction modes and time, 

under drying step. PAHs are sorted in decreasing order of volatility. 

PAH MODE 
EXTRACTION TIME (h)  

1 2 3 

Flt 
WARM 95.5 ± 2.2 88.3 ± 10.5 91.8 ± 9.8 
STANDARD 92.6 ± 9.1 80.3 ± 10.3 75.8 ± 43.2 
HOT 86.2 ± 3.0 79.5 ± 10.9 91.2 ± 2.7 

BaA 
WARM 93.5 ± 6.4 90.4 ± 10.4 88.4 ± 4.2 
STANDARD 89.2 ± 10.5 83.0 ± 4.5 84.5 ± 9.3 
HOT 87.2 ± 4.7 80.6 ± 5.7 87.6 ± 3.9 

Chr 
WARM 100.7 ± 6.5 104.2 ± 8.1 89.7 ± 6.2 
STANDARD 97.0 ± 2.4 96.5 ± 3.4 91.8 ± 6.5 
HOT 96.5 ± 7.5 85.2 ± 11.3 100.0 ± 8.9 

BaP 
WARM 86.9 ± 4.0 94.6 ± 2.8 87.6 ± 6.7 
STANDARD 84.0 ± 1.0 78.5± 3.7 92.0 ± 5.6 
HOT 87.9 ± 6.1 76.5 ± 3.1 90.8 ± 33.7 

BbF 
WARM 106.8 ± 6.5 109.2 ± 2.8 98.5 ± 9.0 
STANDARD 105.9 ± 0.6 106.0 ± 1.2 117.1 ± 0.3 
HOT 101.6 ± 10.9 96.9 ± 15.4 108.6 ± 37.0 

22B 
WARM 86.2 ± 6.1 88.8 ± 3.7 84.7 ± 7.9 
STANDARD 82.1 ± 5.2 92.8 ± 4.2 83.2 ± 5.9 
HOT 90.1 ± 5.2 77.7 ± 5.4 89.9 ± 1.9 

BkF 
WARM 96.1 ± 19.7 92.8 ± 10.0 96.6 ± 7.6 
STANDARD 130.7 ± 7.5 96.1 ± 2.7 71.8 ± 2.2 
HOT 110.0 ± 8.0 56.5 ± 29.8 62.2 ± 23.6 

BghiP 
WARM 105.4 ± 8.6 93.6 ± 15.0 93.1 ± 11.8 
STANDARD 102.7 ± 8.7 127.3 ± 6.5 87.6 ± 8.1 
HOT 121.1 ± 4.8 104.9 ± 6.5 101.5 ± 9.6 

DahA 
WARM 101.0 ± 2.2 109.1 ± 6.3 101.2 ± 3.7 
STANDARD 94.3 ± 3.8 94.8 ± 6.1 100.1 ± 0.8 
HOT 97.8 ± 9.2 95.3 ± 14.6 99.2 ± 9.6  

IcdP 
WARM 107.9 ± 6.7 103.4 ± 3.1 105.0 ± 10.1 
STANDARD 101.0 ± 12.5 105.6 ± 8.9 114.7 ± 5.1 
HOT 101.9 ± 2.8 106.1 ± 15.9 104.6 ± 7.1 

 

Without drying step, the average recoveries of the spiked standards across the whole 

range of tested extraction times (Table 5.23) were: 80.0 ± 8.2 to 117.1 ± 4.9, 79.9 ± 1.8 

to 119.7 ± 8.5 and 84.3 ± 7.5 to 126.0 ± 1.2, for 1, 2 and 3 hours, respectively.  Looking 

into the different PAHs, the highest recoveries were obtained for the less volatile 

compounds, i.e. indeno[1,2,3-c,d]pyrene and dibenzo[a,h]anthracene, with recovery 

percentages ranging 99.9–114.8%. 

 

The values obtained for RSD (%) for each PAH were usually less than 10%, with 

higher values for BghiP. This is, as it has been explained previously (section 5.2.3), 

related to the U-PLS/RBL quantification method.  
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On the other hand, under drying step, the average recoveries (Table 5.24) for 1, 2 and 

3 hours were: 84.0 ± 1.0 to 130.7 ± 7.5, 56.5 ± 29.8 to 127.3 ± 6.5 and 62.2 ± 23.6 to 

117.1 ± 0.3, respectively. Again, the less volatile PAHs (DahA and IcdP) show higher 

extraction efficiencies, ranging from 94.3 to 114.7%. However, the rest of the 

compounds present slightly lower extraction recovery levels and higher values of RSD 

(%) than those obtained without drying step.  

 

This could be caused by evaporation losses during this drying process, so that the 

more volatile compounds are directly lost by evaporation or recovered to a greater 

extent in the solvent instead of the extract. To prove this, the PAHs were quantified 

both in the solvent and in the extract during the drying step and the percentage of 

recovery between both fractions was calculated. 

 

As an example, Figure 5.26 show the recovery distribution values obtained for two of 

the less volatile PAHs, i.e. DahA and IcdP. As it can be noted, the percentage of 

recovery in the solvent is negligible, obtaining values lower than 5%.  

 
Figure 5.26. Recovery distribution between the extract and solvent under drying step for: (A) 

Dibenzo[a,h]anthracene and (B) Indeno[1,2,3-c,d]pyrene. 

 

 
Figure 5.27. Recovery distribution between the extract and solvent under drying step for: (A) 

Fluoranthene and (B) Benzo[a]pyrene. 
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In contrast, for the most volatile PAHs, such as Flt or BaP, the recovery rate in the 

solvent can be appreciable for some of the extraction modes (Figure 5.27). In fact, a 

trend toward greater recovery in the solvent obtained for standard and hot modes is 

observed. This can be related also with the lower recoveries and higher RSD values 

calculated for these modes. Additionally, the possibility of thermal decomposition of 

these volatile target compounds cannot be ignored when the extraction occurs at the 

boiling point of the solvent for a long time. 

 

Therefore, to gain further insight into this complex extraction process, the effect of the 

different extraction variables and their interactions will be subsequently investigated in 

detail. 

 

Optimization procedure  

The aim of this study was to verify that a DoE approach permits (a) to establish the 

effect of the variables (factors) involved in the extraction step over the analytical 

response (PAH recovery) and, (b) to find the optimum values of those factors that give 

a maximum in the analytical response. 

 

As previously explained, for each analytical response a full linear model was 

calculated. Nevertheless, only results for DahA (low volatility) and Flt (high volatility) 

are presented here for illustration. 

 

Comparison of warm and hot mode 

Normal plots of standardized effects (α=0.05) allowed us to detect the factors and 

interaction effects which were most important for the optimization of the extraction 

procedure. The main and interaction effects of factors are plotted against cumulative 

probability (percent) showing the significant effects for the response (percentage of 

recovery) of DahA (Figure 5.28) and Flt (Figure 5.29). Square symbols in red identify 

significant terms. 

 

The inactive main and interaction effects tend to fall roughly along a straight line 

whereas active effects tend to appear as extreme points falling off each end of the 

straight line. According to this, the factors A (Mode) and C (dry) and the interaction AC 

have a statistically significant effect on the response, since their p-values are less than 

the α value of 0.05 (Table 5.25).  
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Figure 5.28. Normal plot 1 of the standardized effects for the percentage of recovery of 

Dibenzo[a,h]anthracene. 

 

 

Figure 5.29. Normal plot 1 of the standardized effects for the percentage of recovery of 

Fluoranthene. 

 

Additionally, the normal probability plot displays negative effects on the left side of the 

graph and positive effects on the right side of the graph. Therefore, the factor mode (A) 

has a significant negative effect on the percentage of recovery, while the drying step 

(C) and the interaction mode-drying step (AC) have significant positive effects. 

 

The absolute values for these effects let us compare their relative magnitudes, 

revealing that for Flt the drying step was the most significant effect, while for DahA was 

the interaction Mode-drying step. Moreover, the center point experiments used to 
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evaluate the response curvature showed that there was not a probable curvature 

(p>0.05) in the experimental domain. 

 

Table 5.25. Figures of merit for DahA and Flt linear models 1. 

PAH Variable  Mode  Time Dry Mode*Time  Mode*Dry  Time*Dry  Mode*Time*Dry  

DahA 
Effect  -3.810 2.319 4.637 -0.034 7.685 -0.385 0.590 

Coefficient  -1.905 1.160 2.318 -0.017 3.843 -0.192 0.295 
p-value  0.037 0.271 0.014 0.987 0.000 0.852 0.775 

Flt 
Effect  -5.035 1.019 6.498 -0.263 3.048 0.058 -1.042 

Coefficient  -2.518 0.510 3.249 -0.131 1.524 0.029 -0.521 
p-value  0.002 0.537 0.000 0.873 0.036 0.972 0.528 

 
More specifically, the main effects plots for the response (Figure 5.30 and Figure 5.31) 

indicate that the highest recovery values were achieved for the warm mode, with a 

significant decrease in the recovery yield in the hot mode.  

 

 
Figure 5.30. Main effects plot for the percentage of recovery of Dibenzo[a,h]anthracene. 

 

 
Figure 5.31. Main effects plot for the percentage of recovery of Fluoranthene. 
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Regarding to the drying step, this experimental variable led to a decrease in the 

recovery yields. Additionally, although the time does not have a significant effect on the 

response, it can be noted that for DahA, which is less volatile than Flt, there was an 

increase in the recovery according to the extraction time. 

 
 
As shown above, not only the drying step and the mode have significant effects 

separately, but also their interaction. Thus, the following interaction plots illustrate the 

impact that changing the setting of the mode has on the drying step in order to evaluate 

which mode can magnify or diminish the effect of the drying step on the recovery yield.  

 

 
Figure 5.32. Mode-drying step interaction plot for the percentage of recovery of 

Dibenzo[a,h]anthracene. 

 

 
Figure 5.33. Mode-drying step interaction plot for the percentage of recovery of Fluoranthene. 
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From the above figures it can be noted that the interaction between the hot mode and 

the drying step is the highest one in magnitude. In contrast, the interaction between the 

warm mode and the drying step is not so significant, since the lines tend to be more 

parallel. In addition, the use of hot mode under drying conditions lead to a higher 

decrease in the recovery yield, especially for fluoranthene. This may be related to its 

higher volatility, being more susceptible to evaporation during the extraction at higher 

temperatures. 

 

As a result, the warm mode presented a better performance than the hot mode, and it 

was consequently selected to be compared with the standard Soxhlet extraction 

procedure. 

 

Comparison of warm and standard mode 

As before, the normal plots of standardized effects (α=0.05) plot the main and 

interaction effects of factors against cumulative probability (percent) showing the 

significant effects for the response (p-values < 0.05 (Table 5.26)) of DahA (Figure 5.34) 

and Flt (Figure 5.35), where the square symbols in red identify significant terms. 

 

In this case, the factors B (Time) and C (dry) as well as the interaction AC (mode*dry) 

have a statistically significant effect on the response of DahA, whereas for the Flt 

recovery the factor B (Time) has not a significant effect. Moreover, these significant 

factors have a positive effect on both responses. 

 

 
Figure 5.34. Normal plot 2 of the standardized effects for the percentage of recovery of 

Dibenzo[a,h]anthracene. 
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Figure 5.35. Normal plot 2 of the standardized effects for the percentage of recovery of 

Fluoranthene. 

 

In this case, the absolute values for these effects highlight again that for Flt the drying 

step was the most significant effect, while for DahA was the interaction Mode-drying 

step. Additionally, the center point experiments proved that there was not a probable 

curvature (p>0.05) in the experimental domain. 

 

Table 5.26. Figures of merit for DahA and Flt linear models 2. 

PAH Variable  Mode  Time Dry Mode*Time  Mode*Dry  Time*Dry  Mode*Time*Dry  

DahA 
Effect  1.381 5.285 4.941 2.932 7.990 0.734 1.709 

Coefficient  0.690 2.643 2.470 1.466 3.995 0.367 0.854 
p-value  0.399 0.017 0.008 0.154 0.000 0.712 0.395 

Flt 
Effect  -5.189 -2.731 11.024 -4.013 7.573 5.623 4.524 

Coefficient  -2.594 -1.365 5.512 -2.007 3.787 2.812 2.262 
p-value  0.162 0.536 0.007 0.367 0.049 0.213 0.311 

 
 
The main effects plots (Figure 5.36 and Figure 5.37), indicate that for both compounds 

the drying step has a significant effect, leading to a decrease in the recovery yields.   

 

With respect to time, this factor was significant in the case of DahA, for which its 

percentage of recovery increased with the time. In contrast, although for Flt the time is 

not significant, this variable has a negative effect on its recovery yield. This can be 

related to their different volatilities. Thus, low volatile compounds, such as DahA, 

require higher extraction times, whereas for high volatile compounds, such as Flt, 

increasing times may lead to higher volatilization losses.  
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Looking at the mode factor (not significant), the highest recovery values were achieved 

for the warm mode for the more volatile compound (Flt), while for DahA the recovery 

yield values were similar.  

 

 
Figure 5.36. Main effects plot 2 for the percentage of recovery of Dibenzo[a,h]anthracene. 

 

 
Figure 5.37. Main effects plot 2 for the percentage of recovery of Fluoranthene. 

 

In connection with the previous discussion, the interaction mode-drying step proved to 

have a significant effect on the recovery response. In this sense, the following 

interaction plots illustrate its impact on the recovery yield of DahA (Figure 5.38) and Flt 

(Figure 5.39). 

 

As it can be noted, the use of the drying step has a negative impact on the recovery 

yield, especially for the standard mode. However, in the warm mode the variation in the 
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recovery yield according to the use of the drying step could be considered as not 

meaningful. Hence, the use of the drying step in the warm mode do not lead to a 

significant loss in the recovery yield, and therefore, it can be used when the ambient air 

PAH concentrations are expected to be low. 

 

 

Figure 5.38. Mode-drying step interaction plot 2 for the percentage of recovery of 

Dibenzo[a,h]anthracene. 

 

 
Figure 5.39. Mode-drying step interaction plot 2 for the percentage of recovery of Fluoranthene. 

 

Optimization graphs 

Finally, the extraction process was optimized by identifying the combination of variable 

settings that jointly optimize the set of responses (recovery yields of PAHs). The 

optimal values were searched based on the following requirements for each response: 

the smallest acceptable response or lower value = 95% recovery, the most desirable 
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response or target value = 100% recovery, and the highest acceptable response upper 

value = 105% recovery. The software calculates an individual desirability for each 

response and these values are combined to determine the composite, or overall 

desirability of the multi-response system. Individual desirability (d) evaluates how the 

settings optimize a single response; composite desirability (D) evaluates how the 

settings optimize a set of responses overall. An optimal solution occurs where 

composite desirability obtains its maximum.  Here, the composite desirability (0.86231) 

is close to 1, which indicates that the settings achieve satisfactory results for all 

responses as a whole. However, the individual desirability indicates that the settings 

are more effective at maximizing DahA recovery yield (0.91129) than at the one of the 

Flt (0.81597). This could be related to the different volatility, as already discussed. 

 
Figure 5.40. Values obtained in the optimization of the extraction process. 

 

Furthermore, the optimal values (Figure 5.40) were found for the warm mode, 3 hours 

of extraction time and not drying step. These results are in good agreement with those 

previously discussed, but it should be also taken into account that in practice, the 

drying step does not affect significantly the recovery yields in the warm mode and 

therefore, it could be used for sample concentration. 
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5.3.2.5 Conclusions 

 

The use of a full factorial DoE enabled the evaluation of the main significant factors and 

interactions over the extraction process and the optimization of the extraction 

conditions.  

 

The results show that the warm mode is a valuable alternative to classical standard 

extraction method, demonstrating advantages of robustness against conventional 

Soxhlet extraction. Optimal extraction conditions were obtained for 3 hours of 

extraction time and not drying step. However, the results obtained for warm mode 

under drying conditions fulfilled also the requirements of good recovery yields and 

therefore it could be used when low ambient air PAH concentrations are expected.  

 

Among the different PAHs, the most volatile PAHs proved to be more sensitive to 

volatility losses during the drying step, whereas for the low volatile PAHs the extraction 

time had a more significant effect. 

 

 

5.3.3 Optimization of the extraction time 

 

Soxhlet extraction time strongly depends on matrix characteristics and particle size, as 

the internal diffusion may be the limiting step during extraction. Thus, the efficiency of 

the Soxhlet procedure to extract the target analytes was tested on other certified 

matrix, the NIST (National Institute of Standards and Technology) SRM 1649b 

reference material. This material has a variable PAHs content present in a powder 

matrix similar to the one of the aerosol samples and hence, it can be considered useful 

to optimize the Soxhlet extraction time, for which the previously optimized extraction 

time of 3 hours was taken as the lower value. 

 

5.3.3.1 Objective 

 

This section explores the feasibility of applying the second-order data analysis methods 

to optimize the extraction procedure for aerosol sample analysis by analyzing EEMs 

obtained from a standard reference material, SRM 1649b urban dust, subjected to 

increasing extraction times.  
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5.3.3.2 Data  

 

NIST SRM 1649b reference material samples (dsrm). Six samples of 150 mg of 

NIST SRM 1649b urban were analyzed at three extraction times: 3, 5, and 8 h (section 

3.5.6). Following the results obtained in section 5.3.2, these samples were extracted in 

the warm mode with no concentration step required.  

 

5.3.3.3 Results and discussion 

 

Because PARAFAC and MCR-ALS are the appropriate methods for qualitative 

analysis, provide always good relative quantitative information and are computationally 

very fast, they were chosen to optimize the extraction time on samples from an SRM of 

urban dust.  

 

The effect of the extraction time was investigated with samples in duplicate, to develop 

an extraction protocol to be applied in further aerosol analysis. The sample sets used 

for PARAFAC and MCR-ALS analyses are shown in Figure 5.41.  

 

 
Figure 5.41.  Multiset used in the optimization of the extraction protocol by PARAFAC and MCR-

ALS. 

 

The pure component samples (dpure ) were used to help in the identification of the 

presence of the selected PAHs in the more complex extracts (dsrm ) of particulate 

samples.  

 

As an example, Figure 5.42 shows the fluorescence landscape of an urban dust 

sample (dsrm ).  

Pure 

Components 

(dpure ) 

SRM  

set 

(dsrm ) 
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Figure 5.42.  Three-dimensional plot for the excitation-emission fluorescence matrix 

corresponding to an urban dust sample (dsrm ). 

 

Because of the complexity of the dsrm samples (Figure 5.42), more components than 

the selected PAHs were extracted and were present as interferences. As a 

consequence, to identify all target PAHs, a partial trilinear 15-factor MCR-ALS model 

was needed (lack of fit of 9.73% and 99.05% of variance explained). The spectral 

profiles of all compounds were correctly recovered (Table 5.27). A higher number of 

factors did not improve the performance of the models. 

 

Table 5.27. Emission and excitation correlation coefficients between resolved and reference 

PAH spectra obtained with a partial trilinear fifteen–factor MCR-ALS model. 

PAH BkF BbF 22B BaP IcdP 

Algorithm rem rex rem rex rem rex rem rex rem rex 

MCR-ALS 0.9953 0.9830 0.9978 0.8407 0.9837 0.9802 0.9997 0.9881 0.9993 0.9691 
PAH Chr Flt  BaA DahA BghiP  

Algorithm rem rex rem rex rem rex rem rex rem rex 

MCR-ALS 0.9970 0.9895 0.9979 0.9921 0.9985 0.9676 0.9993 0.9784 0.9907 0.8062 

 

Correlation coefficients rem,ex>0.96 were obtained in both excitation and emission 

mode, with the exceptions of the excitation profiles of BghiP (rex = 0.806) and BbF (rex = 

0.841). It should be noted that the excitation mode was more severely affected by 

spectral overlapping. 
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Accordingly, MCR-ALS model resolved five additional factors related to interfering 

contributions. These unknown compounds were needed to describe the variance of the 

total signal, but they did not follow a trilinear behavior because they were mixtures of 

many other fluorescent species (major or minor) and residual scattering. In this regard, 

Figure 5.43 shows the excitation and emission spectra of the five additional factors 

estimated by PARAFAC, where it can be seen that factors from 1 to 3 show spectral 

profiles which are a linear combination of many unknown species, whereas factors 4 

and 5 are related to scattering residuals.  

 

Again, PARAFAC models were affected by the lack of trilinearity, shown through a low 

value of the core consistency test, even though the variance explained was 99.78% 

and 4.60% of lack of fit. In this situation, where the analyte of interest and the 

interfering background have similar relative intensities and not all the contributions 

follow a trilinear behavior, the additional implementation of the correspondence among 

species in the partial trilinear MCR-ALS model allowed better spectral recoveries of the 

analytes of interest. 

 

 
Figure 5.43. PARAFAC excitation and emission spectra of the five additional factors calculated 

for the NIST SRM 1649b set. 

 

To see the effect of the extraction time on the recovery of the PAHs from the standard 

dust sample (dsrm ), the MCR-ALS normalized scores of the 10 target PAHs, 



Chapter 5 
 

184| 
 

representing the relative concentration in the respective samples were displayed 

versus the extraction time (Figure 5.44).  

 

 
Figure 5.44.  Evolution of the MCR-ALS normalized scores as a function of the time for the 10 

target PAHs.  

 

It is clear that the PAH recovery highly increased in the extraction time range from 3 to 

5 h (Table 5.28). However, no significant differences were obtained when the extraction 

time is further increased until 8 h. Only the concentration of DahA increased (32%) 

when going until 8 h of extraction. This result is in agreement with the one obtained for 

this compound in the section 5.3.2, where it was highlighted the higher influence of the 

extraction time on the recovery of DahA. 

 

Table 5.28. Increment of the recovery rate (%) between 3 to 5 hours of extraction. 

PAH BkF BbF 22B BaP IcdP Chr  Flt  BaA DahA BghiP  
Recovery 
Rate 
Increment 
(%) 

58.3 64.2 58.4 62.3 71.0 63.2 67.6 64.6 45.1 59.9 

 

In the same way, the MCR-ALS scores of the interfering species follow the same 

pattern as the one of the target PAHs, with no significant increments after 5 hours of 

extraction (Figure 5.45). 
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Figure 5.45.  Evolution of the MCR-ALS scores of the interfering species as a function of the 

time. Left axis for 3 hours scores. Right axis for 5 and 8 hours scores. 

 

In contrast, the recovery of other PAHs, such as Flt (the most volatile one), was 

reduced with increasing extraction times, likely because of the losses of the analyte 

(previously discussed in section 5.3.2). As a specific case, BaP may be affected by the 

interaction with other analytes present in the background. Besides, it is interesting to 

note that the concentration of the 22B compound, selected as surrogate to indicate the 

extraction efficiency, behaved in the same way as the majority of PAHs (except for 

DahA), and consequently allow corrections in quantitative analysis. Therefore, the 5-h 

procedure was selected as the extraction protocol for aerosol sample analysis. 
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5.4 VALIDATION OF THE MODELS TO DETERMINE TARGET PA Hs IN 

AEROSOL SAMPLES 

 

In this section, a novel method based on the combination of EEMs and three second-

order algorithms: PARAFAC, MCR-ALS and U-PLS/RBL, is evaluated to identify and 

quantify 9 US-EPA PAHs in extracts of urban aerosol samples, taking into account the 

bases established in previous sections. 

 

Aerosol samples comprise a particularly complex sample matrix because of the low 

amount of PAHs and the numerous fluorescent interferences. Therefore, the 

application of flexible methods that can successfully model the different fluorescence 

contributions is required in order to achieve a good qualitative and quantitative 

description of this kind of samples. 

 

Consequently, in section 5.4.1, the global decomposition methods, i.e. PARAFAC and 

MCR-ALS, were tested to describe the evolution of environmental patterns of variation 

of PAHs in an urban ambient for routine environmental monitoring. 

 

For quantitative analysis, in section 5.4.2, second-order calibration developed 

methodologies were tested and compared with the conventional technique of liquid 

extraction and analysis by GC-MS. Figures of merit related to the applicability of the 

technique for the target PAHs are also defined. Moreover, the advantages and 

drawbacks of each developed approach to determine PAHs in airborne samples are 

highlighted.  

 

Finally, taking into account the results obtained in the previous section, the presence of 

a significant background signal associated with the complexity of the sample matrix, 

and the presence of interferences, second-order standard addition methods were 

tested also to carry out the quantitative analysis by PARAFAC and MCR-ALS, while U-

PLS/RBL predictions were carried out directly on the sample extracts. Thus, the 

combination of standard addition methods and second-order data analysis algorithms 

will be studied in the last section. 

 

Section 5.4.3 presents the validation of the optimized extraction protocol and 

quantitative methods, which was carried out by means of second-order standard 

addition method on a standard certified material, in order to avoid sample matrix 

effects. 
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5.4.1 Qualitative PAH analysis in aerosol samples 

 

5.4.1.1 Objective 

 

To develop and compare methods based on the combination of EEM matrices and 

second-order curve resolution algorithms, proposed to identify 9 PAHs in extracts of 

aerosol samples, a particularly complex sample matrix because of the low amount of 

PAHs and the numerous fluorescent interferences. 

 

5.4.1.2  Data  

 

Daily urban aerosol samples (d24air). 10 samples of PM10 and 7 samples of PM2.5 

collected for 24 h (labor days, n = 12) and 72 h periods (weekend days, n = 5) were 

extracted for fluorescence spectroscopy and GC-MS analysis (section 3.5.7). Main 

sample characteristics are summarized in the following Figure 5.46. 

 

 

 

 

 

Figure 5.46. Mass of PM collected, in mg, and concentration, in µg m-3 (bold and italics), for the 

PM sampling campaign # 1 (2003). 

 

5.4.1.3  Results and discussion  

 

The methods developed in section 5.2, were applied to the extracts of ambient air 

particulate matter samples collected near the central bus station of Bilbao (Spain), 

severely affected by diesel engines.  
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Figure 5.47 shows the sample sets used for analysis in MCR-ALS and PARAFAC. The 

pure component samples (dpure ) were used as in previous sections to improve the 

identification of analytes by the global resolution algorithms; whereas the calibration set 

(dcal ) was used to create the calibration curve for each PAH by all employed methods 

and to quantify the target PAHs in section 5.4.2. The air samples were diluted to avoid 

inner filter effects.  

 
Figure 5.47.  Multiset used for PAHs calculation by PARAFAC and MCR-ALS in section 5.4. 

 

As an example, Figure 5.48 shows the three-dimensional plot for the EEM of an extract 

of aerosol sample (d24air).  

 

 
Figure 5.48.  Three-dimensional plot for the excitation-emission fluorescence matrix 

corresponding to an aerosol sample (d24air). 

 

The EEMs of ambient air samples show that these sample matrices are highly 

complex, and contain many other fluorescent compounds together with the PAHs, 

which can drastically hinder the determination of the analytes of interest. This 

complexity was already reflected through the performance of the selected algorithms. 
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Regarding the results of the global decomposition methods, that is, PARAFAC and 

MCR-ALS, 15-factor models were built, with an variance explained higher than 99.3% 

and a lack of fit lower than 8% by both methods. 

 

Even under the presence of interfering species, good qualitative results were obtained 

because of the implementation of the correspondence among the species (MCR-ALS) 

and the use of pure standard samples (dpure ), achieving high values of the correlation 

coefficients in the emission and excitation modes for almost all of PAHs (rem>0.99 and 

rex>0.91) by both methods (Table 5.29); except for BghiP, which was more difficult to 

resolve in the excitation mode.  

 

Table 5.29.  Emission and excitation correlation coefficients between resolved and reference 

PAH spectra obtained with fifteen–factor PARAFAC and MCR-ALS models. 

PAH BkF BbF 22B BaP IcdP 

Norm 1 0.40 0.23 0.21 0.14 

Algorithm rem rex rem rex rem rex rem rex rem rex 

MCR-ALS 0.9974 0.9890 0.9990 0.9145 0.9983 0.9785 0.9997 0.9874 0.9982 0.9694 
PARAFAC  0.9968 0.9817 0.9996 0.9917 0.9969 0.9909 0.9974 0.9867 0.9991 0.9742 
PAH Chr Flt  BaA DahA BghiP  

Norm 0.12 0.12 0.12 0.09 0.05 

Algorithm rem rex rem rex rem rex rem rex rem rex 

MCR-ALS 0.9978 0.9994 0.9934 0.8601 0.9959 0.9679 0.9982 0.9787 0.9931 0.7677 
PARAFAC  0.9992 0.9981 0.9956 0.9962 0.9989 0.9580 0.9988 0.9702 0.9951 0.7808 

 

Among the five additional factors, it was not possible to identify other chemical analytes 

because there was no enough information about the samples, and the spectral profiles 

were a linear combination of many unknown species (Figure 5.49).  

 
Figure 5.49.  PARAFAC excitation and emission spectra of the five additional factors calculated 

for the urban aerosol samples set. 
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For qualitative purposes, the scores obtained by the MCR-ALS and PARAFAC models, 

used as indicators of the relative concentrations of each analyte in the samples, can be 

applied to describe the variation pattern of each PAH through the aerosol samples. As 

an example, Figure 5.50 shows how the evolution of the scores (normalized to avoid 

scale differences) follows the same variation pattern as that followed by the quantitative 

results obtained by CG-MS.  

 

 

Figure 5.50.  Scores of PARAFAC and MCR-ALS and mass (ng) calculated by GC-MS of: (A) 

DahA, (B) BaP, (C) Flt and (D) Chr, in PM10 and PM2.5 fraction. *Indicates 72 h average 

samples. 

 

The scores calculated by MCR-ALS and PARAFAC models show low values, but 

keeping the linear range in fluorescence, and over the LOD of these models (Figure 

5.50). In fact, multivariate methods performed better when the results obtained by GC-

MS were below the limit of detection (LOD), as in the DahA quantification: samples 12 

and 13 are below the GC-MS LOD and are plotted as zero values (Figure 5.50.A). This 

example shows the high sensitivity of the fluorescence spectroscopy coupled to 

chemometric methods to identify and obtain a qualitative response of the target PAHs 

<LOD 
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in the PM10 and PM2.5 size fractions of urban aerosols, making them suitable for routine 

monitoring instead of the chromatographic techniques.  

 

5.4.1.4  Conclusions  

 

PARAFAC and MCR-ALS algorithms may be recommended when a fast data analysis 

providing qualitative information of the samples is required, which is the perfect 

scenario for screening and monitoring of PAHs in aerosol samples.  

 

5.4.2 Quantitative comparison with GC-MS  

 

5.4.2.1 Objective 

 

The second-order calibration developed methodologies were tested and compared with 

the conventional technique of liquid extraction and analysis by GC-MS to quantify 9 

PAHs in extracts of aerosol samples. 

 

5.4.2.2  Data  

 

The dataset used is the same specified in section 5.4.1.2, employing the multiset 

structure defined in Figure 5.47 for PARAFAC and MCR-ALS quantification of target 

PAHs. For U-PLS/RBL quantitative analysis, the rules defined in section 5.2.3 were 

applied. 

 

5.4.2.3. Results and discussion  

 

As it has been highlighted in the previous section, the extracts of aerosol samples 

contain a large number of compounds that contribute to a greater or lesser extent to 

the total fluorescence signal (Figure 5.49). This may lead to inaccurate predictions 

when the regression of the scores is made against the calibration curve obtained with a 

set of calibration samples (dcal ) of different nature/sample matrix than the samples to 

be analyzed (dair ). 

 

Therefore, the quantitative results obtained (Table 5.30) were often in excess, because 

of a false increase of the PAHs signals due to the presence of other interfering species 

in the aerosol samples, except for PAHs with relative high intensities such as BkF or 

BbF, which were in better agreement with the values obtained by GC-MS technique. 



Chapter 5 
 

192| 
 

Nevertheless, the good determination coefficients (r2) between the predicted and 

nominal values indicate that, even with sample matrix effects, PARAFAC and MCR-

ALS were able to provide correct relative concentrations of each US-EPA PAH in the 

aerosol samples, as it was proved in the previous section.  

 

Table 5.30.  Regression line (slope and intercept) and determination coefficients of the mass 

(ng) calculated between PARAFAC, MCR-ALS, U-PLS/RBL and the values provided by GC-MS. 

PAH GC-MS/MCR-ALS GC-MS/PARAFAC  GC-MS/U-PLS/RBL  
ng r2 n Slope Intercept r2 n Slope Intercept r2 n Slope Intercept 

BkF 
(1.0) 

0.91 15 1.12 14.71 0.92 15 1.18 -2.89 0.91 17 0.84 10.52 

BbF  
(0.40) 

0.92 14 1.76 -51.74 0.92 14 2.22 37.7 0.92 15 0.45 19.14 

BaP 
(0.21) 

0.88 12 0.78 -49.95 0.83 12 0.86 -24.00 0.85 15 1.18 -15.26 

Chr  
(0.12) 

0.92 15 4.12 57.39 0.91 15 3.89 36.02 0.83 14 0.91 75.02 

Flt  
(0.12) 

0.97 14 1047 4423 0.93 14 3.57 22.11 0.83 14 1.80 -2.65 

BaA 
(0.12) 

0.94 15 10.03 -18.12 0.93 14 12.19 -136.47 0.93 15 2.18 61.68 

DahA 
(0.09) 

0.97 15 20.75 -12.47 0.91 15 34.81 1.98 0.90 15 12.71 33.94 

BghiP  
(0.05) 

0.96 14 12.34 -36.26 - - No correlation 0.89 15 2.28 113.48 

 IcdP was not compared because it was no correctly quantified by GC-MS. n= number of samples.  

 

Regarding the U-PLS/ RBL predictions, the values obtained were closer to the values 

obtained by the standard GC-MS reference technique than those calculated by 

PARAFAC and MCR-ALS models. Indeed, for five of the target PAHs, the value of the 

slope were close to 1, but the quantitative values were far from ideal due to a bias in 

the intercept. However, in this very complex situation, it was difficult to compensate the 

very large influence of many interfering compounds by the RBL step.  

 

Table 5.31 shows the number of RBL latent variables calculated for the 10 target PAHs 

in 17 urban aerosol samples. As expected, this value varies depending on the PAH 

analyzed and the sample complexity.  

 

In this scenario, the estimation of the correct number of RBL contributions in urban air 

environmental samples was revealed to be a highly difficult task because the lack of 

reference values available and the scarce information about the composition of the 

samples. 
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Table 5.31.  Number of RBL latent variables for the 17 urban aerosol samples, after 5 hours of 

extraction. 

PAH BkF BbF 22B BaP IcdP Chr Flt BaA DahA BghiP  

1 1 2 3 2 2 3 2 2 2 2 

2 4 5 4 5 5 6 7 4 3 4 

3 2 4 4 2 3 5 5 5 5 3 

4 5 4 4 5 4 5 5 5 4 4 

5 4 4 4 3 3 4 4 5 4 4 

6 6 4 5 5 6 5 5 5 5 5 

7 4 4 5 4 4 4 5 4 3 4 

8 5 7 5 5 6 5 7 6 5 5 

9 4 6 5 5 5 4 5 5 5 5 

10 4 5 4 5 4 4 4 5 5 4 

11 5 5 5 5 4 5 5 5 5 5 

12 5 5 5 5 5 5 5 5 5 5 

13 6 6 6 6 5 6 7 7 6 5 

14 3 5 5 5 4 4 5 5 3 5 

15 5 4 5 2 3 4 4 4 4 3 

16 3 3 4 3 3 4 4 3 3 3 

17 3 4 4 3 5 4 3 4 4 4 

 

As an example, Figure 5.51 shows the evolution of the mass of BkF and BbF 

calculated by the second-order algorithms combined with EEMs measurements and 

GC-MS results. The obtained values were normalized to avoid the difference in the 

scale.  

 
Figure 5.51. Normalized mass (ng) of (A) BkF and (B) BbF calculated by each method in PM10 

and PM2.5 fraction. *Indicates 72 h average samples. 

 

As it has been discussed previously, since the linear relationship among results 

obtained by classical quantitative methods, such as GC-MS, and those found 

combining EEMs and second-order data analysis, are in good agreement, this opens 
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the possibility of using the proposed methodologies for PAHs quantitative monitoring 

over time.  

 
Quantitative information of the urban aerosol samples analyzed and the LODs of each 

method is presented in Table 5.32. Particulate matter mass and mass fractions are 

shown as mean ± standard deviation. For GC-MS, PARAFAC and MCR-ALS models 

the LODs were calculated from the calibration line as the ratio between three times the 

standard deviation of the intercept and the slope of the calculated line. For U-PLS/RBL 

the LOD was estimated according to [Bortolato et al., 2008], from aerosol samples with 

very low analyte concentration.  

 

Table 5.32.   Concentrations and LODs of US-EPA PAHs in aerosol samples. 

PAH BkF BbF BaP Chr Flt BaA DahA BghiP 

LOD GC-MS  
(ng mL -1) 31 30 35 34 30 24 56 30 

LOD MCR-ALS  
(ng mL -1) 0.75 1.64 2.06 0.55 10.32 0.44 0.94 4.21 

LOD PARAFAC  
(ng mL -1) 0.42 0.54 1.83 0.49 0.81 0.56 0.70 2.63 

LOD U-PLS/RBL  
(ng mL -1) 0.23 0.48 0.60 1.00 0.93 0.67 0.49 2.10 

Mass 
fraction 

(ng mg -1) 

PM10 
31.3 ± 
32.5 

71.6 ± 
65.2 

41.5 ± 
39.2 

40.7 ± 
41.6 

26.2 ± 
29.5 

16.4 ± 
16.2 

5.1 ± 
8.6 

43.3 ± 
48.5 

PM2.5 
21.7 ± 
10.6 

39.8 ± 
41.6 

26.8 ± 
17.7 

30.7 ± 
27.7 

25.1 ± 
35.7 

14.5 ± 
11.6 

1.8 ± 
1.6 

20.1 ± 
20.4 

PM (mg) 
PM10 2.1 ± 1.0 

PM2.5 2.9 ± 2.1 

Note: IcdP was not compared because it was no correctly quantified by GC-MS.  

 

Additionally, the high sensitivity of the multi-way/multivariate methods coupled to EEMs 

in comparison with GC-MS, suggest the possibility of reduction of the sampling period 

to less than 24 hour, providing a cost-effective approach for the intraday analysis of 

urban particle-bound PAHs. 

 

Finally, the general results obtained and the high value of the intercept in some of 

these regression models suggest that the samples used to build the calibration model 

and those of the aerosol samples were quite different, hence, confirming the need for a 

standard addition procedure in this kind of samples.  

 



Results 
 

| 195 
 

5.4.2.4  Conclusions 

 

A novel method for the determination of PAHs in ambient air aerosol samples, based 

on the combination of EEMs and several second-order algorithms was evaluated and 

compared with the results obtained with the standard technique of GC-MS. 

 

MCR-ALS and PARAFAC proved to be fast methods to extract the target chemical 

information of complex mixtures in presence of unknown and complex interference 

contributions. The constraint of correspondence of species applied by MCR-ALS was a 

decisive factor to achieve a better qualitative analysis when the analyte of interest and 

the interfering background have similar relative signal intensities and high spectral 

overlap. Because of the non-trilinear behavior of the unknown contributions present in 

environmental samples, which are mixtures of many compounds and other interferents, 

the partial trilinear model (MCR-ALS) was very well adapted to describe the behavior of 

the dataset under study. 

 

Even with very complex sample matrix effects, the analytical performance of PARAFAC 

and MCR-ALS shows that they are suitable for monitoring PAHs patterns in the fine 

particulate fraction (PM2.5) of ambient air. In addition, these methodologies could be 

used when a high sensitivity is needed, as in studies of background atmospheres, or 

when a fast analysis is required, because PARAFAC and MCR-ALS can describe a 

large number of samples and analytes with a single model. Therefore, for qualitative 

determinations or description of patterns of variation of PAHs, these methods are a 

good alternative to the traditional methods of analysis, showing advantages in terms of 

time of analysis, use of solvents, and sensitivity. 

 

For quantitative analysis, U-PLS/RBL demonstrated a superior predictive capability as 

long as no severe matrix effects are present. However, this algorithm is very time-

consuming, because a model is required per sample and per analyte, and the selection 

of the correct number of RBL factors is a difficult task when many unexpected and 

unknown compounds are present, as it happens in environmental samples. In this 

situation, it could be worth exploring the combination of PARAFAC or MCR-ALS 

algorithms with standard addition method and correction by a surrogate, which could 

provide a faster quantitative analysis without needing prior information about the nature 

of the unknown compounds in environmental samples. 
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5.4.3 Validation of the methods  

 

The analytical method for PAH extraction and quantification is validated using the 

Standard Reference Material NIST SRM 1649b (Urban Dust), determining the 

accuracy of the quantification method and the recovery of the extraction method as 

well. 

 

As noted in sections 5.3.3 and 5.4.1, this standard reference material contains 

interfering species, apart from the target PAHs and similar to the ones resolved in 

aerosol samples (see Figure 5.43 and Figure 5.49), which can exhibit significant 

spectral overlap and relative fluorescence intensities higher than those of the target 

analytes. Additionally, sample matrix effects should be considered in the analysis of 

SRM samples as well as atmospheric particulate matter, where other organic 

compounds could affect the fluorescence emission of the PAHs, by leading to signal 

enhancement or signal suppression. In this regard, quantification by standard addition 

is employed to cope with background effects, which are usually due to a change in 

analyte response due to interactions with the background. Therefore, because of the 

complexity of SRM and aerosol samples, in this section the use of second-order 

standard addition method was tested for quantitative analysis aiming at avoiding 

plausible sample matrix effects. 

 

5.4.3.1 Objective 

 

This section explores the feasibility of applying second-order standard addition 

methods to validate the extraction procedure for aerosol sample analysis, by analyzing 

EEM spectra obtained from a Standard Reference Material (SRM) subject to increasing 

extraction times, and to validate the method of quantification by the selected second-

order algorithms. 

 

5.4.3.2 Data  

 

NIST SRM 1649b reference material samples (dsrm). Two samples of 150 mg of 

NIST SRM 1649b urban dust were extracted at different extraction times: 3, 5 and 8 

hours. From five to seven additions of increasing amounts of known concentrations of 

the 10 target PAHs were spiked in all extracts (section 3.5.6).  

The sample sets used for PARAFAC and MCR-ALS analyses are shown in Figure 

5.52. 



Results 
 

| 197 
 

 
Figure 5.52.  Multiset used for PAHs calculation by PARAFAC and MCR-ALS. 

 

5.4.3.3 Results and discussion 

 

As highlighted in section 5.2.3, PARAFAC and MCR-ALS are more sensitive to sample 

matrix effects. For this reason and due to the presence of a significant background 

signal associated with the complexity of the sample matrix and the presence of 

interferences (Figure 5.43), second-order standard addition methods were tested to 

carry out the quantitative analysis by PARAFAC and MCR-ALS models [Peré-Trepat et 

al., 2007].  

 

Thus, the analyte scores related to the different additions of analytes over the extracted 

samples were employed to build a pseudo-univariate standard addition calibration 

model per analyte and sample, where the scores (from MCR-ALS or PARAFAC) were 

regressed against the concentrations of added analyte taking into account the volume 

of each added standard and its concentration in the stock solution prepared.  

 

As an example, Figure 5.53 shows the plot of the PARAFAC scores for the two 

extracted samples (1) and (2) at the three different extraction times (3, 5, and 8 h) for 

the analyte BkF. As it has been mentioned in section 5.3.3, it is appreciable the 

increment in the recovery rate between 3 and 5 hours and the no significant difference 

for higher extraction times (8 hours). Thus, hereafter the results will be referred to the 

ones related to 5 hours of extraction time. 

Pure 
Components 

(dpure ) 

SRM set with 
standard 
additions 
 (dsrm ) 
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Figure 5.53.  Evolution of the PARAFAC scores for Benzo[k]fluoranthene as a function of the 

time applying the standard addition method. 

 

As mentioned in section 5.3.3, 15-factor PARAFAC and MCR-ALS models were built. 

For PARAFAC, the linearity of the regression models (scores against concentration of 

added standard) was good for the PAHs of higher relative intensity, which have a major 

contribution onto the total signal (BkF, BbF, 22B, BaP, Flt, and BaA). In contrast, the 

MCR-ALS model was able to obtain models for all the selected PAHs with a linearity 

r2>0.90 in most of the compounds (Table 5.33), likely because of the combined 

influence of the use of correspondence of species constraints and the partial trilinear 

model used.  

 

Table 5.33.  Correlation coefficient between MCR-ALS scores and concentration of added 

standard for samples extracted after 5 hours. 

PAH BkF BbF 22B BaP IcdP Chr  Flt  BaA DahA BghiP  

Norm  1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05 

R2 0.9718 0.9827 0.9005 0.9352 0.8008 0.9388 0.8293 0.9529 0.9488 0.7647 

 

However, even using a standard addition method, the results obtained by both 

PARAFAC and MCR-ALS models overestimated the nominal concentrations, which 

may be due to analyte-background interactions. For MCR-ALS model, this excess was 

similar for almost all the compounds while PARAFAC results were more severely 

affected. Thus, for quantitative analysis, MCR-ALS calculations were used and 

corrected taken the reference of the surrogate 22B because, as it has been 

demonstrated in section 5.3.3, it follows a similar pattern than the one of the target 

PAHs. 
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For U-PLS/RBL predictions, analyte concentrations were obtained directly on the 

sample extracts (without standard addition) by using the regression line calculated by 

the calibration set (dcal ). In addition, because of the presence of unexpected 

interfering species, absent in the calibration set of samples, an additional number of 

RBL latent variables were calculated per each PAH and sample, as shown in Table 

5.34. The concentrations were also corrected according to the results obtained with the 

surrogate 22B.  

 

Table 5.34.  Number of RBL latent variables for NIST SRM 1649b reference material samples 1 

and 2, after 5 hours of extraction. 

PAH BkF BbF 22B BaP IcdP Chr Flt BaA DahA BghiP  

1 3 3 2 3 3 3 3 6 2 7 

2 3 4 2 4 3 4 3 5 2 6 

 

Finally, Table 5.35 shows the predictive results obtained by MCR-ALS and U-PLS/RBL 

algorithms to quantification of the nine US-EPA PAHs in NIST SRM 1649b, after 5 h of 

extraction time.  

 

The accuracy of the methods was expressed as the difference between the certified 

value and the calculated mean normalized by the certified value times 100. Meanwhile, 

the mean recovery was expressed as the percentage between the calculated mean 

and certified value for the duplicate measurements.  

 

MCR-ALS model achieved good accuracy values for most of the PAHs; it has an 

average accuracy of 11% ranging from -17 to 22%, except for BaP and Flt. These 

values were even better than U-PLS/RBL results (average accuracy 35%), which is a 

pure regression method. The recovery efficiency values were also better by combining 

the MCR-ALS model with the standard addition method, showing an average recovery 

of 98% ranging from 78 to 115% (taken out BaP and Flt values).  

 

These results suggest that the RBL step in U-PLS/RBL models was more difficult to be 

applied correctly because of the lack of knowledge about the sample matrix and the 

high influence of the interference signal in the global measurement. 
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Table 5.35.  Quantification of 9 US-EPA PAHs in NIST SRM 1649b by chemometric methods. 

PAHs are sorted in decreasing order, according to the norm of unit PAH EEM signal normalized 

with respect to benzo[k]fluoranthene (norm value in brackets). 

PAH Algorithm Certified ±  STD  
(mg kg -1) 

Calculated Mean ± 
STD (mg kg -1) 

Accuracy 
(%) 

Mean 
Recovery 

(%) 
BkF 
(1.0) 

MCR-ALS 
1.748 ± 0.083 

1.74 ± 0.4 0.46 99.42 
U-PLS/RBL  1.48 ± 0.1 15.33 84.42 

BbF 
(0.40) 

MCR-ALS 
5.99 ± 0.20 

6.25 ± 2.4 -4.34 104.30 
U-PLS/RBL  3.66 ± 1.2 38.90 61.10 

BaP 
(0.21) 

MCR-ALS 
2.47 ± 0.17 

0.31 ± 0.3 87.45* 12.41* 
U-PLS/RBL  1.49 ± 0.5 39.68 60.28 

IcdP 
(0.14) 

MCR-ALS 
2.96 ± 0.17 

2.41 ± 1.4 18.58 81.39 
U-PLS/RBL  1.45 ± 0.3 51.01 48.90 

Chr 
(0.12) 

MCR-ALS 
3.008 ± 0.044 

3.34 ± 0.5 -11.04 111.04 
U-PLS/RBL  2.99 ± 0.9 0.60 99.30 

Flt 
(0.12) 

MCR-ALS 
6.14 ± 0.12 

2.12 ± 0.7 65.47* 34.52* 
U-PLS/RBL  1.86 ± 0.5 69.71 30.36 

BaA 
(0.12) 

MCR-ALS 
2.092 ± 0.048 

2.03 ± 0.9 2.96 97.11 
U-PLS/RBL  2.36 ± 1.6 -12.81 112.96 

DahA 
(0.09) 

MCR-ALS 
0.290 ± 0.004 

0.34 ± 0.3 -17.24 115.86 
U-PLS/RBL  0.10 ± 0.03 65.52 36.13 

BghiP 
(0.05) 

MCR-ALS 
3.937 ± 0.052 

3.08 ± 0.6 21.77 78.16 
U-PLS/RBL  2.93 ± 1.0 25.58 74.45 

 

The values of accuracy and recovery of the MCR-ALS and extraction method 

accomplish the quality objectives for ambient air PAHs stated by the ISO 12884:2002 

standard, which establishes a recovery between 75 and 125% and an accuracy of ± 

20%. Only BaP and Flt show values of accuracy and recovery above and below this 

limit of the requirement (see * values in Table 5.35). The poorer accuracy and recovery 

efficiencies obtained for Flt, BaP, and benzo[ghi]perylene could be related to the high 

volatility, a possible analyte-sample matrix interaction, and the low relative 

fluorescence intensity, respectively.  

 

5.4.3.4 Conclusions 

 

The results suggest that the combination of MCR-ALS with standard addition method is 

a better choice than U-PLS/RBL to lead to a more accurate quantification in very 

complex matrices such as the aerosol ones, under analyte-sample matrix interactions. 

Consequently, the validated MCR-ALS with standard addition method was selected as 

quantification method for aerosol samples analysis. 
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5.5 APPLICATION OF THE DEVELOPED METHODOLOGY TO URB AN AIR 

SAMPLES 

In previous sections, different methods for second-order calibration have been 

validated and optimized in deep. Finally, the MCR-ALS method, in combination with 

standard addition, was selected as the most suitable one for quantitative analysis of 

PAHs in aerosol samples. Additionally, the extraction protocol was optimized and 

validated, being selected the 5-h procedure in warm mode.  

 

In this section, this methodology is applied to carry out a preliminary study for the 

characterization of PAH pollution in an urban area, for several months. Due to the low 

limit of detection of the method, a shorter-time monitoring (8 h sampling period) was 

adopted. It is important to remark that there are very few studies quantifying PAHs in 

PM10 size fraction with this temporal resolution, which can contribute to a better 

understanding of the transformations, sources and fate of the PAHs in the atmosphere. 

 

In this study, monthly and daily variation patterns are compared, discussed and related 

to traffic patterns and other potential sources. The benzo[a]pyrene-equivalent toxicity 

associated with ambient particle-bound PAHs is also evaluated, to discern the toxicity 

contribution of other PAHs to the total toxicity and their relationships with the different 

sampling periods. Additionally, diagnostic ratios are used for the assessment and 

identification of the main contribution sources of particle-bound PAHs in the area. 

 

Although most of the studies on particulate PAHs have been focused on source 

identification, this study also includes the influence of meteorological conditions and 

other conventional pollutants for a better understanding of the atmospheric fates of 

particle-bound PAHs.  

 

Then, multivariate approaches such as Principal Component Analysis is used to gain a 

deeper characterization of the pollution scenarios, revealing different relationships 

between the meteorology and pollution trends. 
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5.5.1 Data  

8-h urban aerosol samples (d8air). This set consists of a total of 48 PM10 samples 

collected for 8 h periods, in three time intervals: 04:00–12:00 h; 12:00–20:00 h, and 

20:00–04:00 h UTC, corresponding to morning (M), afternoon (A) and night (N) periods 

(section 3.5.8). Selected sampling days correspond to 3 labor days: Friday (Fri), 

Monday (Mon) and Wednesday (Wed), and one weekend day: Sunday (Sun), for each 

month. Main sample characteristics are summarized in the following figure. 

 

 

 
Figure 5.54. Mass collected, mg (top), and concentration, µg m-3 (bottom), for the PM10 2014 

sampling campaign #2 (2014). 

 

Meteorological conditions and conventional pollutan ts concentrations. 

Conventional pollutants (e.g. NOx or Volatile Organic Compounds – VOCs – among 

others) and meteorological data were also collected for further analysis. These data 

were taken from the Feria and Mazarredo fixed monitoring stations from the Regional 

Air Quality Monitoring Network of the Basque Government. These stations are located 

less than 500 meters (Feria) and ~ 1.5 km (Mazarredo) from the sampling point (Figure 

5.55). 
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Figure 5.55. Geographic location of the sampling site (blue dot on the left) and fixedsite 

monitoring stations. 

 

Table 5.36 shows the average meteorological conditions prevailing during the sampling 

campaign. The mean temperature was between 10.0 and 14.5°C, and the relative 

humidity was between 55.8% and 75.0%. The wind speed ranged from 2.4 to 

3.9 m s−1, and the atmospheric pressure was between 1017 and 1020 mbar, while the 

rainfall was weak or inexistent. April was the month with higher solar radiation. The 

predominant wind directions were west and north-west during the whole sampling 

period.  

 

Table 5.36.  Mean and Standard Deviations (SD) of the meteorological conditions for the whole 

sampling campaign (n = number of samples = 12 for each month). 

Month  January  February  March  April  

Meteorological  

parameters 
Mean SD Mean SD Mean SD Mean SD 

Wind direction (°) 252 43 197 76 247 68 244 59 

Wind speed (m s-1) 3.8 2.3 3.3 1.3 3.9 2.2 2.4 1.6 
Rainfall (L m-2) 0.08 0.06 0.00 0.01 0.03 0.06 0.01 0.02 

Temperature (°C) 10.0 2.9 11.6 3.4 10.1 2.8 14.5 2.2 

Relative humidity (%) 75.0 7.9 55.8 13.8 74.2 6.7 72.6 9.3 

Pressure (mbar) 1012 9 1017 6 1017 3 1020 2 
Solar radiation (W m-2) 40.9 39.9 128.1 135.9 106.6 108.2 216.5 179.7 

 

The organic and inorganic pollutant (a.k.a. conventional pollutant) concentrations 

during the sampling campaign are summarized in Table 5.37.  

 

Sampling site  

Feria 
meteorological data 

Mazarredo  
pollutants 

Feria 
Meteorological station 

Mazarredo  
Air quality station 
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Table 5.37.  Mean and Standard Deviations (SD) of organic and inorganic pollutants (µg m-3) for 

the whole sampling campaign (n = number of samples = 12 for each month). 

Month  January  February  March  April  

Pollutants  Mean SD Mean SD Mean SD Mean SD 

SO2 7 1 8 2 7 2 4 3 
NO 13 15 12 7 10 10 11 12 
NO2 37 15 45 14 33 17 37 16 
NOX 58 36 64 24 48 31 55 31 
O3 39 13 34 14 50 22 46 24 
Benzene  0.32 0.07 0.44 0.15 0.38 0.20 0.39 0.19 
Toluene  1.70 0.67 2.10 1.06 1.94 1.76 2.93 2.13 
Orto -xylene  1.41 0.76 1.65 1.01 1.25 1.12 2.03 1.28 
CO 219 60 255 64 301 67 317 68 
PM10 9 5 11 4 15 9 25 9 

 

PM10 concentration was between 9 and 25 µg m−3, with an increasing trend during the 

spring period, but below the regulatory limits (daily limit value 50 µg m−3). SO2 

concentrations have been decreased substantially over the years in the studied area, 

showing average levels ranged from 4 to 8 µg m−3, far from the diary limit value of 125 

µg m−3. The average concentrations of NO, NO2 (hourly limit value of 200 µg m−3) and 

NOx were between 10 to 13 µg m−3, 33 to 45 µg m−3 and 48 to 64 µg m−3, respectively. 

O3 concentrations ranged from 34 to 50 µg m−3 (8-h averaged limit value 120 µg m−3). 

 

Average concentration for the volatile organic compounds, benzene (annual limit value 

5 µg m−3), toluene and orto-xylene, ranged from 0.32 to 0.44 µg m−3, 1.70 to 2.93 

µg m−3 and 1.25 to 2.03 µg m−3. Finally, CO concentration levels were between 219 

and 317 µg m−3 (8-h averaged limit value 10 mg m-3). 

 

5.5.2 Data treatment and structure 

 

Due to the inherent complexity and the large variety of compounds present in the 

aerosol samples, absorbance spectra of each extracted sample were recorded to 

correct the EEM data for potential inner filter effects as described in section 4.4.3.  The 

following figure shows the maximum correcting matrix calculated for the set of samples. 



Results 
 

| 205 
 

 
Figure 5.56. Maximum calculated correction factor matrix accounting for its inner filter effect. 

 

As it can be noted, inner filter effects are more significant at short wavelengths, where 

the absorbance is higher. Nevertheless, the maximum and minimum correction factors 

calculated for the set of samples were between 1.0065 and 0.9999, respectively, 

showing that in this case, this effect was negligible.  

 

Additionally, Figure 5.57.A shows the sample sets used for analysis in MCR-ALS, 

where the pure component samples (dpure ) and the calibration set (dcal ) were used 

as in previous sections to improve the identification of analytes.  

 

Aerosol samples were extracted and conveniently diluted to avoid inert filter effects. 

Then, two standards additions of proper concentration were added to each sample in 

order to create a standard addition calibration curve (Figure 5.57.B).  

 
Figure 5.57.  (A) Multiset used for PAHs calculation in section 5.5 and (B) standard addition 

calibration curve. 

A B 
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5.5.3 PAH analysis 

 

MCR-ALS models with 15-factor were built for each set of samples obtaining an 

variance explained higher than 99.3% and a lack of fit lower than 8%. Subsequently, 

the corresponding scores of the standards additions were regressed against the known 

added concentrations to create the calibration curve, showing a very good linearity (r2 

>0.90) for most of the compounds in the aerosol samples. 

 

From aerosol samples with very low analyte concentrations, the Limits Of Detection 

(LODs) were calculated from the standard addition calibration curve, as the ratio 

between three times the standard deviation of the intercept and the slope. The Limits 

Of Quantification (LOQs) were calculated as the ratio between ten times the standard 

deviation of the intercept and the slope. The LODs and LOQs of this combined method 

are presented in Table 5.38. 

 

Table 5.38. Limit of detection and quantification of the method in aerosol samples. 

PAH BkF BbF BaP IcdP Chr Flt BaA DahA BghiP  

LOD (ng mL -1) 0.11 0.10 0.27 0.87 0.25 0.14 0.22 0.12 0.35 

LOQ (ng mL -1) 0.37 0.34 0.89 2.92 0.84 0.47 0.73 0.41 1.18 

 

It is important to remark that for some compounds, such as IcdP, the LOD is higher 

than the one found in other compounds because its concentration in aerosol samples 

was also much higher. Despite this fact, this method presents very low limits of 

detection (LODs < 1 ng mL-1) for the entire set of target PAHs, demonstrating the high 

sensitivity of the technique for analyzing even such very complex samples. 

 

5.5.4 Results and discussion 

 

5.5.4.1 Monthly variation of ambient concentrations of particulate PAHs in PM10  

 

The concentrations of particulate PAHs measured during the sampling period (4 

months) were averaged to obtain monthly mean concentrations and the corresponding 

standard deviation, as shown in Table 5.39. 
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Table 5.39.  Monthly average concentrations (n=12 per month) and Standard Deviation in 

brackets (SD) (in ng m-3) of individual PAHs and total PAHs for the sampling period. 

Number 
or rings PAH January February March April Jan-April 

4 
Flt 0.07 (0.05) 0.28 (0.16) 0.28 (0.22) 0.16 (0.17) 0.20 (0.18) 

BaA 0.07 (0.05) 0.32 (0.18) 0.29 (0.27) 0.17 (0.17) 0.21 (0.20) 
Chr  0.75 (0.39) 0.76 (0.39) 0.62 (0.40) 0.44 (0.43) 0.64 (0.41) 

5 

BbF 0.28 (0.25) 0.26 (0.27) 0.32 (0.18) 0.14 (0.14) 0.25 (0.22) 
BkF 0.17 (0.15) 0.15 (0.09) 0.12 (0.08) 0.09 (0.15) 0.13 (0.12) 
BaP 0.08 (0.10) 0.31 (0.19) 0.12 (0.07) 0.12 (0.15) 0.16 (0.16) 

DahA 0.05 (0.05) 0.11 (0.08) 0.05 (0.04) 0.08 (0.08) 0.07 (0.07) 

6 
IcdP 0.13 (0.09) 0.16 (0.17) 0.16 (0.23) 0.38 (0.26) 0.21 (0.22) 

BghiP  0.18 (0.18) 0.86 (0.50) 0.30 (0.18) 0.02 (0.02) 0.33 (0.41) 
∑ 9 PAHs 1.72 (0.65) 3.12 (1.22) 2.13 (1.41) 1.56 (1.31) 2.13 (1.30) 
4 ring (%)  48.2 43.5 52.5 48.9 47.7 
5 ring (%)  33.7 25.9 26.3 25.3 27.5 
6 ring (%)  18.1 30.6 21.2 25.8 24.8 

 

PAHs concentration values ranged from 0.05 ± 0.04 to 0.86 ± 0.50 ng m-3, whereas the 

average concentration of total PAHs (Σ9 PAHs) was between 1.56 ± 1.31 and 3.12 ± 

1.22 ng m-3. The high values of the standard deviation are due to the high variability in 

the samples. These results show the highest PAHs concentrations in February and 

March and similar concentrations in January and April.  

 

As regards to the PAHs contribution (%) to the total PAHs (∑9 PAHs) according to the 

number of rings, 4-ring PAHs follow a similar trend during the sampling period, while 5-

ring PAHs where higher in January and 6-ring PAHs show a significant increment in 

February, the only month without rain. 

 

BaP concentrations measured (considered to be a representative marker of total 

PAHs) ranged from 0.08 ± 0.10 to 0.31 ± 0.19 ng m -3, which is much lower than the 

target value established by the European legislation (annual average, 1 ng m-3) 

(Directive 2004/107/EC11). These concentrations are comparable with those reported 

previously in a similar urban location in Spain (Zaragoza city), 0.29 ± 0.34 ng m-3 

[Callén et al., 2008]. 

 

Among the 9 EPA-PAHs, Chr was the major mass contributor to total PAHs. The 

average monthly concentration of this compound ranged from 0.44 ± 0.43 to 0.76 ± 

0.39 ng m-3. This compound is considered as a marker of coal combustion [Ravindra et 

al., 2008a] and waste incineration [Yang et al., 1998]. Additionally, the most abundant 

PAHs found were, in order of importance, BbF > BghiP (5 – 6 ring PAHs), which are 

indicative of diesel exhausts [Harrison et al.,1996], in agreement with the type of 
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vehicular traffic around the area of study. Thus, these data suggest different sources of 

pollution (stationary and vehicular) affecting the PAHs concentrations in the sampling 

area. 

 

Regarding to differences between labor days and weekends, Figure 5.58 shows the 

average concentration for Monday, Wednesday, Friday and Sunday during the sampling 

period (January – April). The lowest concentrations were obtained for most PAHs during 

the weekend period. 

 

 
 

Figure 5.58. Average concentration (ng m-3) for each day of measurement for the whole 

sampling period (January – April).  

 

5.5.4.2 Temporal evolution: diurnal variability 

 

Average and standard deviation values of PAHs for the 8 h time-bins are presented in 

Table 5.40. 

 

The average concentration of total PAHs (Σ9 PAHs) varied from 1.14 ± 0.20 to 4.35 ± 

0.56 ng m-3, and the time-bins with the highest concentrations were the morning (in 

January and March) and the afternoon (in February and April). As regards to BaP 

concentrations, it was mainly linked to the morning periods, ranging from 0.02 ± 0.01 to 

0.38 ± 0.27 ng m-3. 
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Table 5.40.  8-h time-bins average concentrations (n=4 per month) and Standard Deviation in 

brackets (SD) (in ng m-3) of individual PAHs and total PAHs for the sampling period. 

PAH Period  January  February  March  April  

Flt 
M 0.05 (0.06) 0.16 (0.05) 0.40 (0.33)* 0.26 (0.28)* 
A 0.06 (0.06) 0.36 (0.14)* 0.28 (0.11) 0.09 (0.03) 
N 0.10 (0.05)* 0.31 (0.21) 0.16 (0.11) 0.12 (0.06) 

BaA 
M 0.05 (0.06) 0.14 (0.09) 0.44 (0.36)* 0.22 (0.30)* 
A 0.06 (0.05) 0.49 (0.13)* 0.14 (0.08) 0.16 (0.02) 
N 0.10 (0.05)* 0.34 (0.11) 0.26 (0.22) 0.13 (0.10) 

Chr 
M 1.13 (0.47)* 0.36 (0.12) 0.84 (0.55)* 0.64 (0.73)* 
A 0.51 (0.15) 1.06 (0.39)* 0.51 (0.15) 0.33 (0.15) 
N 0.70 (0.35) 0.85 (0.22) 0.49 (0.33) 0.34 (0.18) 

BbF 
M 0.41 (0.36)* 0.07 (0.06) 0.38 (0.23) 0.19 (0.23)* 
A 0.17 (0.08) 0.28 (0.14) 0.43 (0.11)* 0.12 (0.07) 
N 0.25 (0.23) 0.49 (0.43)* 0.18 (0.12) 0.10 (0.08) 

BkF 
M 0.12 (0.13) 0.11 (0.07) 0.15 (0.11)* 0.16 (0.25)* 
A 0.13 (0.06) 0.24 (0.09)* 0.09 (0.06) 0.05 (0.04) 
N 0.27 (0.22)* 0.11 (0.05) 0.12 (0.08) 0.05 (0.04) 

BaP 
M 0.19 (0.12)* 0.22 (0.16) 0.15 (0.09)* 0.22 (0.21)* 
A 0.02 (0.01) 0.31 (0.14) 0.11 (0.04) 0.05 (0.04) 
N 0.02 (0.02) 0.38 (0.27)* 0.09 (0.05) 0.08 (0.10) 

IcdP 
M 0.14 (0.12)* 0.13 (0.11) 0.31 (0.35)* 0.35 (0.38) 
A 0.12 (0.10) 0.21 (0.26)* 0.09 (0.08) 0.27 (0.13) 
N 0.13 (0.09) 0.15 (0.14) 0.07 (0.09) 0.52 (0.22)* 

DahA 
M 0.02 (0.01) 0.12 (0.10) 0.06 (0.05)* 0.14 (0.11)* 
A 0.04 (0.05) 0.13 (0.09)* 0.03 (0.03) 0.06 (0.02) 
N 0.09 (0.05)* 0.09 (0.05) 0.05 (0.05) 0.03 (0.04) 

BghiP 
M 0.21 (0.22)* 0.58 (0.23) 0.36 (0.21)* 0.03 (0.04)* 
A 0.19 (0.23) 1.28 (0.43)* 0.35 (0.16) 0.01 (0.01) 
N 0.13 (0.11) 0.65 (0.47) 0.19 (0.13) 0.02 (0.02) 

∑ 9 PAHs 
M 2.05 (0.25)* 1.75 (0.25) 3.09 (1.97)* 1.38 (0.49) 
A 1.30 (0.71) 4.35 (0.56)* 1.68 (0.78) 2.17 (2.29)* 
N 1.80 (0.77) 3.25 (0.75) 1.62 (0.99) 1.14 (0.20) 

* Indicates the maximum concentration for the time-bins. 

 

Thanks to this higher temporal resolution, it was already possible to discern that the 

typical markers of traffic emissions, such as BghiP and BbF, also showed higher 

concentrations mostly during the morning and afternoon periods, synchronized with the 

rush traffic hours. 

 

Nevertheless, some PAHs concentrations also show high values during the night 

period, suggesting that the day-night variation could be affected also by meteorological 

factors (air temperature, atmospheric mixing height, photolytic activity), as well as the 

contribution of other local emissions apart from traffic. 
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5.5.4.3 PAH toxicity assessment 

 

As already discussed in section 1.1.4, BaP has been widely used as a marker for 

assessing the total carcinogenic risk of the PAHs in ambient air. However, its high 

photochemical reactivity can underestimate the toxic potential of these compounds 

[Slezakova et al., 2013]. In addition, other PAHs such as DahA, BaA, BbF, BkF and 

IcdP have a proved toxic effect [IARC, 1987]. 

  

A better estimation of the toxic potential could be obtained by using the equivalent 

concentration of BaP (BaPeq). That is, determining the carcinogenic potency of total 

PAH calculated by the sum of the BaPeq concentration of each PAH, using Toxic 

Equivalency Factors (TEF) as follows: 

 

BaP
¼ = ∑ PAH�¾���  × TEF�            (5.7) 

 

In this study, the TEFs by Malcolm and Dobson (1994) (Table 1.2) were employed to 

calculate the carcinogenic potential for each time bin (Table 5.41). 

 

Table 5.41. 8 h average benzo[a]pyrene equivalent concentration over the sampling period.  

 Period  January  February  March  April  Jan-April  

BaPeq 
M 0.29 (0.12)* 0.39 (0.05) 0.35 (0.18)* 0.42 (0.30)* 0.36 (0.18) 

A 0.12 (0.09) 0.59 (0.21)* 0.17 (0.11) 0.16 (0.03) 0.26 (0.23) 
N 0.19 (0.10) 0.58 (0.24) 0.21 (0.13) 0.18 (0.10) 0.29 (0.22) 

* Indicates maximum concentration. 

 

The average BaPeq values ranged from 0.12 ± 0.09 to 0.59 ± 0.21 ng m -3, with an 

average of 0.30 ± 0.21 ng m-3 for the whole sampling campaign. The maximum 

average BaPeq corresponded to February in the afternoon period; whereas for the rest 

of months the maximum toxic potential was obtained for the morning bins. This value is 

similar to the one obtained in other published works in a similar urban area (Zaragoza 

city, Spain): 0.54 ng m-3 [Callén et al., 2011]. 

 

Regarding the diurnal evolution, the carcinogenic potential shows the same profile as 

the one of concentrations, with higher values during the morning and the afternoon, 

following a probable traffic pattern.  
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Finally, the average BaP/BaPeq ratio was 0.41 ± 0.23, confirming the important role that 

play the high molecular weight PAHs, and therefore, the necessity of monitoring them 

to conveniently assess the total toxic potential of particle-bound PAHs. 

 

5.5.4.4 Potential PAHs sources 

 

As it has been discussed in section 1.2.2, some PAHs ratios can give some indication 

about the impact of different sources of airborne compounds and can be used in 

source identification. However, this information must be used with caution, due to the 

influence of other atmospheric processes that PAHs could suffer from their sources to 

the receptor site. 

  

In this study, the following PAH concentration diagnostic ratios, characteristic of 

anthropogenic emissions, were calculated: BaA/(BaA + Chr), BaP/BghiP, BbF/BkF and 

Icd/(IcdP+BghiP). Comparison between the various diagnostic ratios obtained in this 

study (Table 5.42) with standard values reported in the literature (Table 1.4) is 

discussed below.  

 

Table 5.42. Diagnostic ratios calculated during the sampling campaign. 

Ratio  January  February  March  April  Jan-April  
BaA/(BaA+Chr) 0.09 0.29 0.28 0.28 0.24 

BaP/BghiP  0.34 0.29 0.42 0.18 0.31 
BbF/BkF  1.84 1.77 2.34 2.82 2.19 

IcdP/(IcdP+BghiP)  0.47 0.30 0.28 0.94 0.50 

 

The BaA/(BaA+Chr) ratio is found to be 0.28 - 0.29 except for January, which is similar 

to that reported for gasoline emissions. The different trend in January could be 

indicating a different source contribution. In fact, BaA/(BaA+Chr) ratios lower than 0.2 

is associated to petrogenic sources [Yunker et al., 2002].  

 

The vehicular influence can further be assessed from BaP/BghiP ratio, whose values in 

this study were between 0.18 - 0.42, indicating the influence of gasoline exhausts 

mainly. In contrast, the IcdP/(IcdP+BghiP) ratios, whose values ranged from 0.28 -0.47 

except for April, are comparable to the values reported for diesel emissions. In a similar 

way, BbF/BkF values higher than 0.5. 
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It is also remarkable the different trend obtained in April for the BaP/BghiP and  

IcdP/(IcdP+BghiP) ratios, which may be indicating the influence of a coal combustion 

source [Yunker et al., 2002]. 

 

These results suggest the influence of multiple combustion sources, burning diesel, 

gasoline, and coal as fuels. Thus, diagnosis of ratios can contribute qualitatively to the 

identification of the main emission sources in the studied area.  

 

Nevertheless, these ratios can also be altered due to the reactivity of some PAHs with 

other atmospheric species, like ozone and/or oxides of nitrogen [Robinson et al., 2006 

a]. For instance, The BaA/(BaA+Chr) ratio tends to change due to atmospheric 

photoreactions, as a result of which BaA decays faster when adsorbed on soot, 

resulting in strong shifts of the ratio towards low values [Kim et al., 2009]. 

Consequently, a further study including meteorological conditions and other 

conventional pollutants was carried out and is presented in the following section.  

 

5.5.4.5 Influence of physical-chemical and meteorological factors 

 

PAHs determined in airborne particles are also influenced by several processes and 

factors such as regional weather and source characteristics. Indeed, heterogeneous 

reactions (photo-oxidations) and gas-particle partitioning, the main atmospheric 

transformation processes for PAHs, are dependent on the meteorological conditions. 

 

Thus the aim of this section was to analyze the simultaneous effects of the emission 

sources (traffic and industrial sources), and parameters linked to the meteorological 

conditions, on PAHs concentration patterns observed in the area under study. 

 

Previous sections only involved the analysis of the variables in an independent manner 

or using few combinations of specific PAHs (e.g. diagnostic ratios). However, this kind 

of data analysis does not consider the plausible correlations between all the variables 

at the same time. Hence, the use of multivariate data analysis is needed in order to 

develop a more comprehensive study.  

 

Principal Component Analysis (PCA) was selected as a pattern recognition technique. 

By grouping variables with similar characteristics into Principal Components (PCs), 

PCA transforms the original set of variables into a smaller set of linear combinations 

that retain the original information as much as possible. Basically, the systematic 
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variation of the X matrix is extracted in two smaller matrices, the score T and the 

loading PT matrices. The PCs of the T matrix can be plotted in two-dimensional space 

to produce score plots. In a score plot, the relationship between objects is visualized, 

hence, two objects close to each other are similar and vice versa. The loading plots of 

the PT matrix are produced in the same way and visualize how the variables are related 

to each other. Comparing the score and loading plots reveals the relationship between 

the objects and the variables. 

 

The PLS_Toolbox ver. 7.8.2 (Eigenvector Research, Inc., WA, USA) was used to 

perform the PCA calculations on the dataset, with 31 columns (variables) and 48 rows 

(objects-samples). Before that, a pretreatment involving autoscaling of the data was 

carried out. In this autoscaling procedure all variables were mean centered and scaled 

to unit variance. As a result, each variable has about the same range, avoiding scale 

effects.  

 

The following figures show the loading plot (Figure 5.59) for the PC1 (29.46% of 

variance explained) and PC2 (14.62% of variance explained) and the score plots 

grouped into classes: rain (yes or no) (Figure 5.60), month (Figure 5.61) and wind 

direction (Figure 5.62). 

 

 

Figure 5.59. Loading plot of the PCA global model. 



Chapter 5 
 

214|  
 

It can be observed that some meteorological factors predominate on the left hand side 

(negative part of PC1), with temperature and ozone concentration at the top (positive 

part of PC2), wind speed and rain at the bottom (negative part of PC2). In contrast, on 

the right hand side of the plot (positive part of PC1), we find practically all the chemical 

variables, with the predominance of the PAHs, SO2, NOx at the bottom and the 

remaining indicators of pollution at the top. Thus, the main source of variation of the 

model including all variables (PC1), accounting for 29% of total variance, corresponds 

to a global pollution trend.   

 

On the other hand, it was clear that the increase in the concentration of ozone causes 

the disappearance of the PAHs (negative correlation with O3 concentration in PC1 and 

PC2) due to possible chemical and photochemical reactions (negative correlation with 

solar radiation in PC1), which may be attributed to a greater volatilization from 

particulates into the gas phase. These factors are commonly inversely related to the 

levels of these toxic compounds. Nevertheless, there is still a small correlation on the 

PC2 (15% of variance) between O3 and VOCs. This matches with the two major 

classes of directly emitted precursors of ozone: NOx and VOCs. This observation could 

be indicating that the ozone formation is highly correlated with the VOCs. Also, CO 

appears in the positive side of PC2 indicating a probable precursor of the ozone. 

Regarding NOx, there is also a clear negative correlation between NO2 with O3 (r2= 

0.809), as expected. 

 

Another conventional pollutant, SO2, is highly linked to chrysene (very similar PC1 and 

PC2 scores values). This may point out a common source. SO2 is mainly a primary 

pollutant and local industries using heavy oil and coal may be a major emission source 

of SO2. This is in agreement with previous results showing a plausible coal combustion 

source for chrysene. Moreover, the association of SO2 and NOx with the PAHs 

suggests fossil fuel combustion and traffic sources. Indeed, the IcdP/(IcdP+BghiP) ratio 

shows the same pattern as PM10, probably indicating a diesel source of emissions for 

these compounds, especially for IcdP. However, the difference between CO (positive 

part of PC1), PAHs and NOx (negative part of PC2) corroborates again that these 

compounds had mixed sources, other than vehicular emissions. For example, the 

positive correlation between benzene and SO2 may indicate that these PAHs could be 

originated from industrial sources. 

 

It is also interesting to remark a confounded effect with the rain (Figure 5.60). Samples 

with low pollution values in the dry cluster match with all the samples collected in rainy 
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days, a logical effect because of the wet deposition of the air pollutants from the 

atmosphere.  

 

 

Figure 5.60. Score plot according to the rain. The samples are colored depending on the rain. 

 

Another meteorological parameter, the temperature, is oppositely correlated to the 

PAHs in the PC2, while it has no influence in PC1. This is due to the strong difference 

between April and the rest of the months shown by PC2 (Figure 5.61). It can be also 

noted that April samples are more correlated to VOCs. This is in agreement with the 

previous discussed results, which indicated a different pollution source during April. 

 

Figure 5.61. Score plot of PAHs according to month. The samples are colored depending on 

the month. 
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In fact, the higher solar radiation and temperature in this month can enhance the 

reaction of VOCs in forming active OH radicals that react with PAHs and reduce their 

concentrations [Sin et al., 2003].  

 

In contrast, the high correlation between different PAHs, NOX and SO2 (all of them in 

the positive part of PC1 and negative part of PC2), happens mainly in February. 

 

Wind speed has also been recognized as an important controlling factor on 

concentrations of air pollutants. There was also a negative relationship between 

particle-associated PAHs and wind speed (located in positive and negative parts of 

PC1). It is obvious that the concentrations of pollutants decrease effectively with 

increasing wind speed, while poor dispersion conditions associated with low wind 

speeds play an important role in elevating PAH levels.  

 

Looking at Figure 5.62 it can be observed how wind speed is also correlated to the 

wind coming from the west (West and Nord-West), that, indeed, matches with the 

highest rain period and the lowest pollution of the sampling campaign. 

 

Figure 5.62. Score plot of PAHs according to the wind direction. The samples are colored 

depending on the wind direction. 

 

These conclusions are, of course, preliminary, and hampered by the low number of 

samples and the high variability between the different groups studied. Despite this fact, 

-5 0 5
-6

-4

-2

0

2

4

6

Scores on PC 1 (29.46%)

S
co

re
s 

o
n 

P
C

 2
 (

14
.6

2%
)

 

 
E
NW
S
SE
SW
W
95% Confidence Level



Results 
 

| 217 
 

very interesting and conclusive assessments have been already observed. Thus, to 

further explore PCA on this dataset, two new models were built.  

 

The first model will only include chemical variables. In this way, influence of the 

meteorological trends will be avoided and a deeper study can be done on the chemical 

behavior. As we can see in the loading plot of Figure 5.63, the behavior does not 

changes significantly from the previous model, at least concerning the first source of 

variance. PC1 explains more than 41% of variance explained, and it accounts to the 

global concentration of pollutants. 

 

  

Figure 5.63. Loading plot of the PCA model including only the chemical variables. 

 

The significant change comes in the PC2. This PC explains around 15% of the total 

variance. Now, the PAHs and SO2 are clearly separated from the rest of the chemical 

variables. However, IcdP trend is still more related to possible traffic sources (CO and 

NOx).  

 

Plotting the score plot of this analysis (Figure 5.64) considering the months, it can be 

seen the distinction previously observed between April and the rest of the months. April 
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is still the less polluted month in relation to PAHs. Nevertheless, now this distinction is 

less evident. 

 

Figure 5.64.  Score plot of the PCA model including only the chemical variables. The samples 

are colored depending on the month. 

 

Considering these observations, an individual analysis for every month might be 

advisable. As an example, the PCA model of March is shown. This PCA model (Figure 

5.65) shows a very different pattern of pollution between morning (M), afternoon (A) 

and night (N). 

 

 

Figure 5.65.  Score plot of the PCA model for March including only the chemical variables. The 

samples are colored depending on the period of the day. 
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According to this plot, the samples of the night period are the less polluted ones, while 

the samples from the morning and afternoon are the ones suffering higher pollution 

due to the PAHs. 

 

These results must be taken with care, since only 48 samples have been analyzed 

here. Nevertheless, there are three main conclusions to extract from the multivariate 

perspective: the results match with the ones obtained in the previous sections. They 

highlight new aspects, and there is still room for fostering a better understanding of the 

behavior between the chemical and the meteorological variables, by applying more 

dedicated methods, like canonical correlation analysis.  

 

5.5.5 Conclusions 

 

The MCR-ALS method coupled to standard addition was successfully applied for the 

quantification of 9 particle-bound US-EPA PAHs in urban PM10 samples, with LODs < 1 

ng mL-1. 

 

The average concentration of total PAHs (Σ9 PAHs) was found between 1.56 ± 1.31 

and 3.12 ± 1.22 ng m-3, showing the highest concentrations in February and March and 

the lowest concentrations in January and April. Specifically, BaP concentration ranged 

from 0.08 ± 0.10 to 0.31 ± 0.19 ng m -3, which is much lower than the target value 

established by the European legislation (annual average, 1 ng m-3). Indeed, the 

monthly average BaPeq values were between 0.12 ± 0.09 to 0.59 ± 0.21 ng m-3, 

showing an average of 0.30 ± 0.21 ng m-3. Additionally, the average BaP/BaPeq ratio 

obtained, 0.41 ± 0.23, confirmed that the only evaluation of BaP underestimates the 

carcinogenic potential of the urban PAH mixtures. 

 

Among the 9 EPA-PAHs, Chr was the major contributor, pointing out a plausible source 

of coal combustion or waste incineration. This observation is corroborated by its strong 

relationship with SO2, primary pollutant of local industries using heavy oil and coal. The 

abundance of another PAHs species such as BbF and BghiP also indicates an 

influence of vehicular traffic emissions on the site, lower during the weekend period.  

 

Concerning the diurnal evolution, the time-bins with the highest concentrations were 

the morning (in January and March) and the afternoon (in February and April), 

following a probable traffic pattern.  However, the day-night variation indicates that the 
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emissions could be highly affected by the meteorological factors as well as the 

contribution of other local sources apart from traffic. 

 

The use of diagnostic ratios confirmed the vehicular traffic presence (diesel and 

gasoline exhaust), but pointed out also the influence of other stationary sources, like 

the burning of coal, showing also a different trend between months. 

 

The PCA analysis corroborated that, not only the vehicular emissions, but also 

stationary sources were important sources of PAHs in the area of study. However, the 

exact contribution of each source remains unclear due to the low number of samples 

analyzed, which needs to be confirmed by further studies. 

 

Conventional pollutants such as ozone showed a clear trend with the decrease of 

PAHs, due to chemical and photochemical reactions. 

 

Meteorological parameters also affected the air concentrations of PAHs, but their 

influence was not independent. Indeed, it was shown that west and nord-west winds 

were less polluted, but they also coincided with raining and higher wind speed periods. 

Further, the temperature was oppositely correlated to the PAHs and positively 

correlated with a different pollution source of VOCs during April, meanwhile the highest 

correlation between the different PAHs, NOX and SO2, happened mainly in February. 

 

Finally, the short-term monitoring of PAHs confirms the diurnal variation of the chemical 

composition of the PM10, showing different trends for the morning, afternoon and night 

periods, and helps on the source apportionment for air quality management.  
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6. CONCLUSIONS 

 

This Chapter collects the main conclusions in an itemized manner, so the reader can 

follow all the achievements in a sequential way.  

 

6.1 DEFINITION OF EEM DATA ADCQUISITION PROTOCOL 

 

Setting the monochromators bandwidths at 5 nm, and the integration time to 0.1s 

yielded the optimal amplification of the PMT, while minimizing the background noise.  

 

The analysis of the fluorescence features of the target PAHs allowed us to reduce the 

measurement spectral ranges to 240 – 320 nm (each 2 nm) and 330 – 550 nm (each 2 

nm) for excitation and emission ranges, respectively. This allows for time savings in the 

measurements (less than 35 minutes per sample), and to reduce the effects of 

Rayleigh and Raman scattering.  

 

The high overlapping of the broad spectral bands, and similarities in the spectral 

features of the target PAHs, can be overcome coupling the EEM fluorescence 

measurements with multivariate and three-way analysis. 

 

6.2. DEVELOPMENT OF PRELIMINARY EEM DATA MODELS 

 

The use of missing values to remove the scattering effects leads to problems related to 

local minima in the built models, increases considerably the time of analysis, and 

hinders the correct decomposition of very complex samples, contributing to the 

appearance of spectral artifacts. 

 

The use of interpolated data instead of missing values to remove the scattering effects 

reduces the time of analysis and helps to build more robust models, being more 

suitable as preprocessing method. 

 

In the absence of interferences, the three algorithms (PARAFAC, MCR-ALS and 

UPLS-RBL) lead to similar results, showing a good linear behavior (r2 > 0.99) and low 

Limits Of Detection (LOD < 1 ng mL-1) for every target PAH.  

 

The presence of non-trilinear contributions affects mostly to the performance of 

PARAFAC models, whereas the use of partial trilinearity, and correspondence among 
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species as constraints in MCR-ALS models, provide a more accurate description of 

complex samples. This is especially true if the relative signal of the analytes is at the 

same level of other background contributions, and deviations from the ideal trilinearity 

exist. The active use of this kind of constraints is still not sufficiently exploited. 

 

Properly constrained MCR-ALS and PARAFAC models are able to recover the spectral 

profiles of the analytes and other interfering compounds, even in samples containing a 

great number of analytes with overlapped signals and several interferences, if the 

signal of the unexpected compounds is within the spectral working range. This 

challenges the common assumption that these models are only able to work with 

samples with a small number of compounds. 

 

As a first step, MCR-ALS and PARAFAC are the methods of choice for fast qualitative 

and quantitative screening of environmental samples, although they are more sensitive 

to changes in the signal-to-concentration ratio (matrix effects).  

 

As a second step, U-PLS/RBL provides better quantitative information for samples 

containing interferences and potential matrix effects, with low values of RMSEP and 

REP, comparable to those achieved by other more expensive and time consuming 

separation techniques.  

 

6.3. OPTIMIZATION OF THE EXTRACTION PROTOCOL 

 

N-hexane as solvent, and 2,2’binaphthyl as surrogate, fulfill the requirements of optimal 

physicochemical and spectrofluorimetric properties for particle-bound PAHs extraction 

and fluorescence analysis. 

 

The results of a full factorial DoE pointed out that the warm mode is a valuable 

alternative to the standard extraction methods, demonstrating advantage of robustness 

against conventional Soxhlet extraction. 

 

Desirability values of the multi-response system indicated 3 hours of extraction time 

without drying step as the optimal extraction conditions for liquid PAH mixtures 

standards. However, the variation in the recovery yield including the drying step in the 

warm mode could be considered as meaningless and, therefore, it can be used when 

the PAH concentrations are expected to be low. 
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The evaluation of the extraction protocol with standard reference material in particulate 

phase proved the 5-h procedure as the optimum extraction time. The analysis also 

highlighed the time dependence of some heavy PAHs (e.g. DahA); probably losses of 

most volatile analytes (e.g. Flt), and plausible interactions between BaP and other 

analytes present in the background, for increasing extraction times.  

 

6.4 VALIDATION OF THE MODELS TO DETERMINE TARGET PA Hs IN 

AEROSOL SAMPLES 

 

Validation of the proposed models demonstrated that PARAFAC and MCR-ALS are 

reliable methods for qualitative analysis, when a fast data analysis is required, which is 

the perfect scenario for screening and monitoring of PAHs in aerosol samples.  

 

Even with complex sample matrix effects, these curve resolution methodologies could 

be used when a high sensitivity is needed, as in studies of background atmospheres, 

overtaking other traditional methods of analysis -in terms of time, use of solvents, and 

sensitivity- for qualitative analysis or monitoring patterns of variation of PAHs. 

 

U-PLS/RBL exhibited better predictive capability for quantitative analysis, as long as no 

severe matrix effects are present. Nevertheless, it is a very time-consuming method, 

and the selection of the correct number of RBL factors becomes a difficult task when 

many unexpected and unknown compounds are present in the environmental samples. 

 

For quantitative analysis of complex environmental samples, the combination of MCR-

ALS with standard addition method is a better choice than U-PLS/RBL. It led to a more 

accurate quantification, accomplishing the quality objectives for ambient air PAHs, 

(recovery rates between 75 and 125% and accuracy values of ± 20%). 

 

6.5 APPLICATION OF THE DEVELOPED METHODOLOGY TO URB AN AIR 

SAMPLES 

 

MCR-ALS coupled to standard addition for the quantification of 9 particle-bound US-

EPA PAHs in urban PM10 samples, achieves low limits of detection (< 1 ng mL-1), and 

allows shorter time sampling periods. 

 

BaP concentration values obtained were much lower than the target value established 

in the EU (annual average, 1 ng m-3), and similar to other urban locations in Spain. 
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The average BaP/BaPeq ratio obtained confirms that the use of BaP alone 

underestimates the carcinogenic potential of the PAH mix in ambient air. 

 

The average concentration of total PAHs (Σ9 PAHs) did not show any clear temporal 

trend. The diurnal evolution of PAHs concentrations revealed that their emissions could 

be highly affected by meteorological factors and the contribution of local non-traffic 

emission sources. 

 

The analysis of individual PAH source markers, diagnostic ratios, and PCA 

decomposition, confirmed the presence of traffic sources (diesel and gasoline 

exhaust), pointed out the influence of other stationary sources burning coal, and 

revealed also a different trend between months. However, the exact contribution of 

each source remains unclear yet, due to the low number of samples analyzed. 

 

Conventional pollutants such as ozone showed a clear influence on the decrease of 

PAHs concentrations, due to chemical and photochemical reactions. Meteorological 

parameters also affect the concentrations of PAHs, but their effects are not 

independent, resulting from the combined impact of various meteorological conditions.  

 

Finally, the use of shorter time sampling periods for PAHs, confirms the diurnal 

variation of the PM10 chemical composition, showing different trends for the morning, 

afternoon and night periods, and helps on the source apportionment tasks for air 

quality management. 
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Excitation-Emission Matrix (EEM) fluorescence spectroscopy combined with second order decomposition
algorithms such as PARAFAC provides interesting opportunities in analytical chemistry. However, the intrinsic
presence of scattering effects in the EEM measurements poses a practical problem. Appropriate handling of the
scatter is necessary to avoid detrimental influence on the models. The two most common methods of handling
scatter are evaluated in this paper: replacing the scattering area with missing elements or with interpolated
values. Both were assessed in terms of stability of the models and quality of predictions. Themethodswere com-
pared using four different datasets showing diverse scattering effects that was also partly overlapping key chem-
ical areas. The results suggested that the use of missing values lead to more problems related to local minima,
which also considerably increases the time of analysis. Only the best fitting models obtained withmissing values
showed similar spectral recoveries and good predictions in comparison with those ones obtained with interpo-
lated data. Furthermore, the use of missing values in the PARAFACmodels hindered the correct decomposition of
very complex samples, which showed to be more robust by means of using interpolated data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Excitation–emission Matrix (EEM) fluorescence spectroscopy is a
relatively fast and inexpensive analytical technique of moderate selec-
tivity and high sensitivity, which has been applied to the detection of
a very wide range of analytes [1,2]. In EEM spectroscopy, a total fluores-
cence spectrum is obtained by systematically varying the excitation and
emission wavelengths and collecting the resulting data matrix. Due to
the additional mode, the capability for resolution of overlapped fluores-
cence spectra is improved, and this is widely applied for the analysis of
chemical compounds at concentrations in the ppb range [3].

Several data analysis methods able to work with second-order data,
such as EEMs, are capable to determine analytes in the presence of
interferences, even if these unknown compounds are absent in the
calibration samples. This property is known as the ‘second-order
advantage’ [4]. PARAllel FACtor analysis (PARAFAC) is the most
commonly used second-order algorithm to decompose EEMs. The
ideal trilinear structure of EEM data makes such data nicely compatible
with the PARAFAC model.

One important part of analyzing EEMdata is thehandling of Rayleigh
and Raman scatter [5]. The scattering does not follow a trilinear

structure and consequently, it cannot be described by a few PARAFAC
factors. Hence, these scatter effects, which do not hold any chemical in-
formation about the fluorophores in the solution, can disturb the math-
ematical modeling of the chemical compounds. Thus, it is advisable to
remove or reduce the scatter as much as possible before modeling.

There are several ways of removing the Rayleigh or Raman scatter:
down-weighting of the scatter region (MILES) [6], specific modeling of
scatter [7], subtraction of a standard [8], application of constraints in
the decomposition [9], inserting missing values [10], or inserting zeros
outside the data area [11]. Among these, the most commonly used
consists of subtracting the spectrum of the solvent (if it is available) to
minimize the Raman scattering, and then, replacing the Rayleigh affect-
ed areas by missing values [12].

In some situations it is preferred to avoid the use of missing values
for various reasons. For example, some algorithms or visualization
tools do not handle missing data, some interesting information might
be removed inserting missing data, algorithms dealing with missing
data can be extremely slow and computationally cumbersome and the
amount of missing values may possibly affect the convergence of
PARAFAC and the quality of the results. In contrast, another possibility
consists of replacing the removed scatter areaswith interpolated values.
This can potentially speed up PARAFAC modeling and allow using soft-
ware that is not able to handle missing data. Despite these advantages,
there has not been any thorough discussion and comparison on how
inserting missing data or interpolated data affects the quality of the ob-
tained model or even the resolved spectra and subsequent predictions.
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This paper provides a comparison of how missing or interpolated
data can affect the PARAFAC modeling of EEMs. Both methods were
evaluated and compared on different datasets of diverse complexity
and different scatter situations. The ability of each method to remove
scattering and lead to adequate recoveries of the fluorophores present
in the samples was assessed in terms of stability of the models and
quality of predictions.

2. Theory

Detailed theory about PARAFAC and how it handles missing values
can be found in more theoretical works [13,14]. Moreover, the interpo-
lation procedure is described in [15]. Hence, only a brief description is
presented below.

2.1. Handling missing data by PARAFAC

The PARAFAC model is usually estimated by minimizing the loss
function

argmin
A;B;C X I� JKð Þ−A C⊙Bð ÞT

��� ���2
F

1

where ‖ · ‖F is the Frobenius norm, F the number of factors, and A, B and
C are the score and loading factors obtained by the PARAFACmodel. The
⊙ is the Khatri–Rao productwhich is a column-wise Kronecker product.
However, the ALS algorithm usually employed for fitting this model,
cannot handle missing values. Single imputation is mostly applied to
deal with incomplete observations. Instead of using the original array

X in Eq. (1), an array eX defined as:

eX sð Þ ¼ X �MþY sð Þ � 1−Mð Þ 2

is used; where Y(s) is the interim model computed at the s-th iteration,
and 1 is an array of ones having the same dimensions of X.M is an array
whose elements are defined as:

mijk ¼
0 if xi jk is missing
1 if xi jk is not missing:

�

Since eX does not contain missing values, it allows using the

PARAFAC-ALS algorithm to estimate the model parameters, where eX sð Þ

is updated at every iteration. The zero-iteration approximation Y(0) is
reckoned depending on the pattern of the missing values. In general, it
is taken as the average of the observed values in the corresponding
columns/tubes or of the whole array.

Handling missing data by imputation, generally leads to slower
convergence. Furthermore, a large amount of missing elements may
increase the risk of convergence to a local minimum.

2.2. Replacing scattering areas with interpolated data

The interpolation procedure is based on excising scatter areas and
replacing them using a shape-preserving piecewise cubic polynomial.

The interpolation is implemented in the followingway. Thefirst step
consists of defining the window width for the relevant areas. Normally
this would be first and possibly also second-order Rayleigh, but it can
also be for the Raman scatter region. The widths are the user-defined
parameters required in the interpolation. In the second step, the
measured signal in the width-defined window is removed around the
scatter lines for every emission spectrum. Subsequently, the whole

spectrum except the window is used for interpolation and the window
is replaced with the interpolated values.

Two parts of the EEM require special care during the interpolation. In
the first situation, where there is no emission below the window, an ar-
tificial lower emission zero is added during interpolation 30 nm below
the window of interpolation. In the second one, where there are no
emission values at greater wavelengths than the window to be interpo-
lated, themissing values in the last excitation spectrumare interpolated
in order to provide end values for the emission interpolation.

3. Experimental

3.1. Data

For analyzing the quality of the two methods, four different EEM
datasets were used. The first two datasets were taken from a big dataset
of 405 samples with six fluorophores: catechol (Sigma, approx. 99%),
hydroquinone (Riedel-deHaën, min. 99.5%), indole (Riedel-deHaën,
min. 99%), resorcinol, L-tryptophan (Merck, min. 99%) and DL-tyrosine
(Sigma, min. 98%), described by Rinnan [16].

These fluorescence landscapes were measured on a Varian Eclipse
Fluorescence spectrometer, exciting the samples in the range of 230–
320 nm (recorded every 5 nm), and recording the emission spectra
between 230–500 nm (every 2 nm). Excitation and emission mono-
chromator slit widths were set to 5 nm, respectively, and a PMT Detec-
tor of 600 V voltage was used. Every sample was left in the instrument
for a total of five replicate scans, but in this paper, only the first replicate
measurement of each sample was used in the analysis.

3.1.1. Dataset 1: scattering in a key chemical area
Sixteen mixtures of three fluorophores containing tyrosine, trypto-

phan and resorcinol with rather similar spectral properties, were used
in the following concentrations: tyrosine was kept constant at
12.1 · 10−6 M, while tryptophan and resorcinol varied from 0 to
7.4 · 10−6 M and 0 to 40 · 10−6 M, respectively. All the mixtures
were dissolved in de-ionized water.

In this dataset, the first and second-order Rayleigh scattered areas
were replaced with missing and interpolated values, as shown in
Fig. 1.A. Since there are three components in dataset 1, a three-
component PARAFAC model was therefore the most suitable.

3.1.2. Dataset 2: amount of scattering high compared to the chemical
signals

Fifteen samples of mixtures of five fluorophores containing catechol,
hydroquinone, indole, tryptophan and tyrosine in the range 0–
22 · 10−6 M, 0–5.6 · 10−6 M, 0–1.3 · 10−6 M, 0–1.9 · 10−6 M and 0–
3.0 · 10−6 M, respectively, were used. All the mixtures were dissolved
in de-ionized water.

For this dataset, a five-component PARAFAC model was built. In this
case, a different procedure was tested. The solvent blank was not
subtracted from the data. This allows us to examine removal of Raman
scattering when no solvent blank is available. Thus, three scattered
areas corresponding to first and second-order Rayleigh and Raman
bands were removed from the data and replaced with missing and in-
terpolated values as shown in Fig. 1.B.

Note that for areas where the Stokes shift is very small, the interpo-
lation can lead to slight non-zero intensities at emission wavelengths
below excitation. This is physically impossible, but it is indeed consis-
tent with the trilinear PARAFAC model structure when the Stokes shift
is small.

The following two datasets are related to polycyclic aromatic hydro-
carbons (PAHs) measurements taken from [17]. Individual US-EPA

Fig. 1. One sample for each dataset: (A) dataset 1, (B) dataset 2, (C) dataset 3, and (D) dataset 4, showing the raw data, data after removing scattering effects and replacing them with
missing data, and landscapes with interpolated values.
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PAHs solutions at 10 ng μL−1 in acetonitrile were purchased from
Dr. Ehrenstorfer GmbH (Augsburg, Germany). Working solutions were
prepared in n-hexane 95% analytical HPLC grade (Lab-scan analytical
sciences) and stored at 4 °C in capped amber vials. These samples
were measured with a modified modular spectrofluorometer
FluoroLog-3 (Horiba Jobin Yvon Inc.), equipped with two Czerny-
Turner monochromators and a 450 W xenon lamp. The slit widths for
both excitation and emission monochromators were set to 5 nm and
the photomultiplier integration time was 0.1 s. EEM spectra were mea-
sured on the excitation spectral range from 240 to 320 nm (every 2 nm)
and on the emission range from 330 to 550 nm (every 2 nm). Analyses
were done in a quartz cell of 1 cm pathlength at room temperature, and
the fluorescence spectra were corrected for wavelength-related
variations of lamp intensity and photomultiplier sensitivity.

3.1.3. Dataset 3: second-order Rayleigh overlapping the chemical signal
A total of twelve samples of indeno[1,2,3-cd]pyrene (IcdP) at four

different concentration levels: 5–10–15–20 ng mL−1 measured by
triplicate, were used for the analysis.

In this dataset a two-component PARAFACmodel was themost suit-
able due to the additional presence of an interfering compound. More-
over, solvent blank subtraction (n-hexane) was made for each
measure to mitigate the Raman scattering in each EEM.

In this case, themost problematic area is related to the second-order
Rayleigh overlapping the signal of the target compound which is also
emitting in a noisy region at low excitation wavelengths as shown in
Fig. 1.C.

3.1.4. Dataset 4: first, second-order Rayleigh and Raman band overlapping
the chemical signals of complex mixtures

A set of 49 solutions containing 10 PAHs at seven different concen-
trations were prepared based on a semifactorial design in the following
concentration ranges: 1–25 ng mL−1 for 2–2′ binaphthyl (22B) and
benzo[ghi]perylene (BghiP); 0.5–20.3 ng mL−1 for IcdP, benzo[a]
anthracene (BaA), fluoranthene (Flt), dibenzo[a,h]anthracene
(DahA) and benzo[b]fluoranthene (BbF); 0.3–20.1 ng mL−1 for
benzo[a]pyrene (BaP) and chrysene (Chr); and 0.3–18.3 ng mL−1

for benzo[k]fluoranthene (BkF). Additionally a total of 81 EEM
pure PAH spectra of the 10 target PAHs, in a concentration range
from 0.01 to 25 ngmL−1 were used to provide information in the anal-
ysis of these more complex samples. An eleven-factor PARAFAC model
was required to correctly recover all the components due to an interfer-
ence present in the samples.

In this case, the spectrum of the solvent (n-hexane) was subtracted
to minimize the Raman scattering, and then the remaining scattering

effects (first, second-order Rayleigh and Raman) were removed and
also replaced with missing or interpolated data as shown in Fig. 1.D.

3.2. Software

All the routines were implemented in MATLAB version R2010 (The
MathWorks, MA, USA). The PARAFAC algorithm in use was from
PLS_Toolbox ver. 7.8.2 (Eigenvector Research, Inc., WA). The correction
function EEMscat available forMatlab, used to implement the interpola-
tion methodology, was downloaded from http://www.models.life.ku.
dk/EEM_correction.

4. Results and discussion

In order to remove the scattering effects, the width of the scatter
areaswas assessed for each dataset. Thewidths used for first-order Ray-
leigh, Raman and second-order Rayleigh scatter areas were for dataset
1, ±10, ±0, and ±10 nm; for dataset 2, ±10, ±10, and ±15 nm; for
dataset 3, ±10, ±10, and ±15 nm and for dataset 4, ±15, ±10, and
±15 nm, respectively. No inner filter corrections were made for any
of the datasets used, because the mixtures were sufficiently diluted to
avoid inner filter effects. In this sense, there are no additional implica-
tions for interpreting the PARAFAC results, since the fluorescence signal
is proportional to the fluorophore concentration in the solution and the
shape of the PARAFAC loadings (excitation and emission profiles) are
not affected by absorption.

Subsequently, fifty PARAFAC models were calculated for each
dataset using both interpolated and missing data and using random
starting values. Non-negativity constraints were imposed in all three
modes. Table 1 shows the quality parameters of the 50models calculat-
ed for each dataset.

As can be seen in Table 1, the models obtained using interpolated
data seem to be more robust, showing low standard deviations from
the average fit values. Hence, they converge to the same fit value
every time. In contrast, in the models obtained with missing data,
many models converged to local minima solutions, which are also
highlighted in Fig. 2.

Fig. 2 shows the 50 fit values obtained for each dataset given as per-
cent variance explained. The explained variance is similar in both cases,
but the models calculated using interpolated data seem to avoid local
minima for all datasets. For missing data though, three local minima
models were found for dataset 1, one for dataset 2, 22 for dataset 3
and 27 for dataset 4. The models built with missing data lead to lower
core consistency values, especially for the more complex datasets 2
and 4. Thismay indicate that thesemodels are lesswell-founded and ac-
curate than the ones found using interpolated data. It is also remarkable

Table 1
Quality parameters of the PARAFACmodels (percentage of fit (%), core consistency value (CORCONDIA)), number of iterations (# it.) and computational time obtained from each dataset
(number of PARAFAC factors). Values of average (±standard deviation).

Dataset Type Missing values (%) Fit (%) CORCONDIA (%) # It. Time (s)

1
(3)

Interpolated 0 99.94
(±0.0000009)

98.95
(±0.0004)

82
(±42)

11
(±6)

Missing 9.4 99.88 (±0.37) 99.37a

(±0.0096)
349
(±90)

47
(±12)

2
(5)

Interpolated 0 99.95
(±0.0000005)

11.88 (±0.29) 104
(±30)

16
(±6)

Missing 13.1 99.96 (±0.06) −28.34a

(±0.47)
186
(±60)

29
(±10)

3
(2)

Interpolated 0 99.05
(±0.00000003)

96.79
(±0.0055)

19
(±0)

2
(±0.1)

Missing 8.7 99.03 (±0.12) 94.94a

(±1.89)
150
(±196)

22
(±29)

4
(11)

Interpolated 0 99.50
(±0.000007)

46.87 (±0.02) 59
(±24)

14
(±6)

Missing 7.4 99.23
(±0.20)

40.7a

(±0.11)
113
(±153)

224
(±302)

a Core consistency values of local minima models were taken out.
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to observe the high fraction of local minima values obtained for the
simple dataset 3, due to the additional difficulty of having the target
chemical signal in a noise region.

An added advantage of themodels with interpolated data is that the
convergence is achieved after fewer iterations. The number of iterations
is clearly greater using missing data. This is most likely due to conver-
gence problems caused by a more complex problem being solved
(fitting a model and imputing missing data), and especially for dataset
1, where themissing values are present in a key chemical area of highly
spectral overlapping between the target compounds.

In terms of time consumption, the models calculated with interpo-
lated data were significantly faster.

From a chemical point of view, the results of the 50 models built
with interpolated data resulted in practically identical decompositions,
recovering the same scores and emission and excitation loadings for
each dataset. The models fitted in presence of missing values in key
chemical areas led to local minima in which the solutions had artifacts
similar to those in Fig. 3. Thus, the local minima which really do not

represent a least squares solution also appear peculiar visually in
many cases.

If one takes the best fitting model obtained using interpolated or
missing data for each dataset, the full recovery in the spectral modes,
calculated as the correlation coefficient between the resolved spectral
loadings and the pure spectral profiles (rem and rex, respectively), is
apparently the same. Moreover, both methods, in terms of quality of
the prediction show similar values of relative error of prediction for
the best fitting models (Table 2).

Hence, both methods using the best fitting models, in terms of
quality of the predictions, performed equivalently for all datasets,
except for dataset 1, where the pattern of missing data matches with
the overlapping spectra, for which the spectral recoveries and relative
errors of prediction were better by using interpolated data.

There may be situations where interpolation can be so inaccurate
that it may severely bias the solution. This could be anticipated to
happenwhen the signal-to-noise is very low either due to low chemical
signals or due to extremely high scatter signals. Even though we have

Fig. 2. Fitting values (percent variation explained) of each PARAFACmodel calculated using interpolated ormissing values for (A) dataset 1, (B) dataset 2, (C) dataset 3, and (D) dataset 4.
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not been able to find such examples here, it may be anticipated that
setting the scatter to missing values can be better in such scenarios.

Finally, it is also remarkable that for the datasets we tested the
Raman signal of the blank was aligned with the Raman signal in the
samples. Thus, blank subtraction helped to reduce Raman scattering.

In cases where a suitable blank (with aligned Raman scatter) is not pos-
sible to obtain, it is not clear what the best approachwill be for handling
the Raman scatter. The scatter may be better replaced with interpola-
tion or missing values, but it is outside the scope of the present paper
to investigate this.

Table 2
Emission and excitation correlation coefficients and relative error of prediction (aREP (%)) for the best fitting PARAFAC models with interpolated and missing data.

Dataset 1

Type Tryptophan Tyrosine Resorcinol

Interpolated rem/rex 0.9994/0.9961 0.9992/0.9974 0.9983/0.9946
REP (%) 15.86 17.63 13.84

Missing rem/rex 0.9993/0.9958 0.9642/0.6372 0.9718/0.7357
REP (%) 14.09 17.63 23.50

Dataset 2

Compound Indole Tryptophan Catechol Hydroquinone Tyrosine

Interpolated rem/rex 0.9998/0.9998 0.9998/0.9994 0.9999/0.9988 0.9996/0.9982 0.9975/0.9952
REP (%) 9.14 20.48 10.75 5.68 6.55

Missing rem/rex 0.9998/0.9997 0.9998/0.9995 0.9996/0.9986 0.9990/0.9976 0.9971/0.9950
REP (%) 7.94 19.88 10.15 6.66 6.74

Dataset 3

Compound Indeno[1,2,3-cd]pyrene

Interpolated rem/rex 0.9955/0.9643
REP (%) 3.34

Missing rem/rex 0.9894/0.9986
REP (%) 3.20

Dataset 4

Compound BkF BbF 22B BaP IcdP

Interpolated rem/rex 0.9959/0.9592 0.9997/0.9928 0.9988/0.9822 0.9982/0.9850 0.9995/0.9714
REP (%) 5.01 14.84 4.89 23.94 7.14

Missing rem/rex 0.9955/0.9621 0.9998/0.9930 0.9986/0.9800 0.9982/0.9846 0.9966/0.9444
REP (%) 5.16 14.67 4.96 23.00 7.16

Compound Chr Flt BaA DahA BghiP

Interpolated rem/rex 0.9998/0.9988 0.9993/0.9965 0.9981/0.9537 0.9998/0.9704 0.9923/0.7787
REP (%) 9.47 11.90 10.6 8.83 28.2

Missing rem/rex 0.9990/0.9986 0.9991/0.9971 0.9980/0.9522 0.9994/0.9697 0.9850/0.7718
REP (%) 9.40 12.58 10.6 8.77 26.6

a REP (%): Relative error of prediction. REP = 100 × RMSEP/Cmean.

Fig. 3. 50 PARAFAC decompositions of dataset 1 for (A) missing data, and (B) interpolated data.
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5. Conclusions

Using interpolated values instead of missing values to remove
scattering areas helps PARAFAC to converge faster, and leads to
solutions that are physically and chemically meaningful.

Moreover, this approach is more advantageous because it prevents
the convergence to localminima, which is highly affected by themodels
built using missing data.
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Thiswork explores the feasibility of screening and determination of ten polycyclic aromatic hydrocarbons (PAHs)
through excitation–emission fluorescence matrices (EEMs) and in the presence of interferences by using
different second-order data analysis algorithms: parallel factor analysis (PARAFAC), multivariate curve
resolution–alternating least squares (MCR–ALS), and unfolded partial least squares coupled to residual
bilinearization (U-PLS/RBL).
The scope of the proposed techniques is discussed for qualitative and quantitative analysis of the selected PAHs in
the presence of interferences and sample matrix effects. The target compounds were 9 of the 16 United States
Environmental Protection Agency (US-EPA) priority PAHs: fluoranthene, benzo[a]anthracene, chrysene, benzo
[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[ghi]perylene, indeno
[1,2,3-cd]pyrene, and one internal standard: 2-2′ binaphthyl.
The suitability of these methods was compared under different chemical situations, where they were demon-
strated to be powerful tools to resolve complexmixtures of analytes of similar structure in the presence of unex-
pected compounds. Qualitative and quantitative analysis of samples required the joint effort of the different
algorithms to exploit the advantages of fast screening (PARAFAC andMCR–ALS) and accurate analyte determina-
tion (U-PLS/RBL) provided by the different methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are complex organic com-
pounds consisting of carbon and hydrogen atoms only, with two or
more fused aromatic rings. These compounds are primarily released
during incomplete combustion processes of organic material, being a
group of semi-volatile substances of high mobility among all environ-
mental compartments [1–3].

PAHs are of environmental concern due to their persistence and
proven toxic effects on human health and ecosystems; benzo[a]pyrene
is classified as carcinogenic and other PAHs as potential carcinogenic
agents [4]. Several international organisms have listed them as priority
pollutants. Thus, the US Environmental Protection Agency (EPA) regu-
lates 16 unsubstituted PAHs (16 US-EPA PAHs) in wastewaters and 24
in soils, sediments, hazardous wastes and groundwaters [5] and the
World Health Organization (WHO) lists 31 parent PAHs plus two alkyl
derivatives [6]. Among the 16 most used in routine monitoring for
regulatory purposes, only seven are considered as probable human
carcinogens [7]. Therefore, since the adverse effects depend on their

chemical structure, qualitative and quantitative speciation of PAHs is
necessary.

The standard procedures for PAH determination in complex envi-
ronmental samples rely on chromatographic methods with specific
detectors (GC–MS,HPLC–UV/Vis orHPLC–FLD) [8]. Although the analyt-
ical performance of these methods is widely accepted, PAH analysis
tends to be laborious, relatively expensive and time-consuming, since
these substances require an intensive sample treatment, which makes
their use cumbersome for screening or routine analysis. For these rea-
sons, the development of simpler and sensitive methods, or the im-
provement of the existing ones is of great interest, for the detection
and determination of PAH compounds.

Fluorescence spectroscopy appears as an alternative, it allows de-
tecting PAHs at sub-ppb levels, due to the luminescent properties of
these compounds in the UV–Vis range, and provides a cheap and fast
measurementmethod. Nevertheless, significant overlap between emis-
sion and excitation bands of PAHs and other interfering compounds in
complex samples results in a lack of selectivity. Hence, fluorescence
spectroscopy has been often limited to screening of environmental
exposures [9,10] or used in combination with separation techniques
[11,12]. Recently, great developments in data acquisition systems,
advanced chemometric tools [13–15], and related software [16–18] to
deal with 2D fluorescence measurements havemade possible to identi-
fy and quantify mixtures of compounds in fluorescent samples [19].
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Modern approaches based on fluorescence excitation–emission ma-
trices (EEMs) or total fluorescence spectroscopy, combined with ad-
vanced chemometric algorithms, allow for a direct determination of
PAHs without previous sample separation and pretreatment [20]. The
analysis of the EEMs is carried out by different multivariate calibration
methods, which are able to model and determine the analytes of inter-
est in the presence of potential interferences and unexpected constitu-
ents, a property known as “second-order advantage” [21]. In this
regard, the most relevant algorithms are: parallel factor analysis
(PARAFAC) [22,23], multivariate curve resolution–alternating least-
squares (MCR–ALS) [24,25], and latent factors-based methodologies,
such as bilinear (BLLS/RBL) least-squares, multi-way (N-PLS/RBL) and
unfolded (U-PLS/RBL) [26] partial least-squares coupled to residual
bilinearization (RBL) [27].

Several authors have proven the efficiency of these methods to
quantify PAHs in the presence of unexpected species, which are absent
in the calibration samples, e.g. simultaneous determination of dibenzo
[a,h]anthracene and benzo[a]pyrene with 16 US-EPA PAHs present as
interferences in aqueous samples [28], or determination of 7 PAHs in
edible oils by differentmultivariate techniques [29]. However, few stud-
ies have been conducted to simultaneously analyze a large number of
PAHs in complex matrices with a strong interference background.
Moreover, sample matrix effects in second-order data of multicompo-
nent samples of PAHs have not yet been extensively studied and com-
pared with a wide range of datasets. In fact, EEM matrices containing
interfering species and also sample matrix effects require the applica-
tion of flexible methods, which can successfully model qualitatively
and quantitatively the different fluorescence contributions.

In thiswork, the importance of the complexity of the sample in terms
of number of target and interference compounds, and sample matrix ef-
fects, has been assessed with datasets of increasing complexity, using
PARAFAC, MCR–ALS and U-PLS/RBL. These algorithms were chosen for
being good representatives of second-order resolution (PARAFAC,
MCR–ALS) and calibration (U-PLS/RBL) methods. Strong points and lim-
itations of these methods based on the total qualitative and quantitative
description provided about the samples are commented, stressing points
linked to the information used by the algorithms and the criteria re-
quired to build the models, the complexity of the dataset studied, or
the computational effort needed to obtain the final results.

The final aim of this work is to develop a fast and reliable method
based on total fluorescence spectroscopy and the combined use of
second-order data analysis algorithms, to identify and determine 9
selected US-EPA PAHs in sample extracts, using 2-2′ binaphthyl (22B)
as internal standard. The target compounds are: fluoranthene (Flt),
benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene
(BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,
h]anthracene (DahA), benzo[ghi]perylene (BghiP), and indeno[1,2,3-
cd]pyrene (IcdP). To understand the performance of the PARAFAC,
MCR–ALS and U-PLS/RBL algorithms, and propose a joint strategy of ap-
plication, theywere applied to diverse PAHs datasets ranging from pure
standard solutions to mixtures of standard reference materials contain-
ing interfering species such as the 16 US-EPA PAHs.

2. Experimental

2.1. Reagents and solutions

Individual US-EPA PAHs solutions at 10 ng μL−1 in acetonitrile were
purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany): anthra-
cene, fluoranthene, benzo[a]anthracene, chrysene, benzo[b]fluoran-
thene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene,
benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene. 2-2′ binaphthyl at
10 ng μL−1 in acetonitrile from Dr. Ehrenstorfer was used as internal
standard. Mixtures of the 16 US-EPA PAHs were supplied by RESTEK
Corporation: SV CalibrationMix #5/610 PAHMix solution inmethylene
chloride at 2000 ng μL−1 per compound, and PAH Mix 39 obtained

from Dr. Ehrenstorfer with a variable PAH concentration in the
range 10–100 ng μL−1 in acetonitrile.

Stock solutions of each PAH at 100 ng mL−1 were prepared in n-
hexane and stored at 4 °C in capped amber vials. N-hexane 95% analytical
HPLCgrade (Lab-scan analytical sciences)was used as solvent to prepare
the stock and working solutions by dilution of the appropriate aliquots.

2.2. Apparatus

Fluorescencemeasurementswere performedwith amodifiedmodu-
lar spectrofluorometer FluoroLog-3 (Horiba Jobin Yvon Inc.), equipped
with two Czerny-Turner monochromators and a 450 W xenon lamp.
The slit widths for both excitation and emission monochromators were
set to 5 nm and the photomultiplier integration time was 0.1 s. Analyses
were done in a quartz cell of 1 cm pathlength at room temperature. The
fluorescence spectrawere corrected forwavelength-related variations of
lamp intensity and photomultiplier sensitivity. The samples were ana-
lyzed in signal/reference mode and a blank subtraction was made for
each measure to mitigate the Raman scattering in each corrected EEM.

2.3. Experimental procedure

EEM spectra were measured on the excitation spectral range from
240 to 320 nm (every 2 nm) and on the emission range from 290 to
550 nm (every 2 nm). Several sets of EEM spectra were recorded with
PAHs at variable concentration levels and with diverse conditions of
sample complexity. These sets were combined afterwards in a suitable
way depending on the kind of data analysis problem to be solved and
the algorithm used. Sets of spectra coming from samples with similar
characteristics are described below.

2.3.1. Pure component samples (dpure)
From7 to 11 EEM spectra of each pure analytewere recorded in trip-

licate in concentrations ranging from 0.01 to 30 ngmL−1, depending on
the compound. These samples were analyzed to assess the linear range
and limit of detection (LOD) of the 10 PAHs in n-hexane. Afterwards, a
total of 81 EEM pure analyte spectra were selected, always within the
linear range, in concentrations ranging from 0.01 to 25 ng mL−1 to
form this set. The excitation and emission spectra of the PAHs studied
are shown in Fig. 1.

2.3.2. Calibration set samples (dcal)
A set of 49 calibration solutions with the 9 US-EPA PAHs and the

compound used as internal standard (22B) was measured. Samples
containing all the PAHs at seven different concentrations were pre-
pared based on a semifactorial design in the following concentration
ranges: 1–25 ng mL−1 for 22B and BghiP; 0.5–20.3 ng mL−1 for IcdP,
BaA, Flt, DahA and BbF; 0.3–20.1 ng mL−1 for BaP and Chr; and 0.3–
18.3 ng mL−1 for BkF.

2.3.3. Validation set samples (dval)
A different set of solutions was prepared in liquid samples diluted

with n-hexane, for validation of the performance of each algorithm.
The validation set involved 25 test solutions of the 10 compounds to
evaluate the quality of the predictions. The validation set samples
were based on concentrations provided by a semifactorial design at
five different levels. The concentration range for the 10 PAHs of the val-
idation set was the same as that used for the calibration data.

2.3.4. Interference set samples (dinterf)
Two sets of mixtures of the 16 US-EPA PAHs were used to test the

performance of the algorithms in the presence of a strong interfering
background, as follows: Set no. 1. Samples were prepared by dilution
of a stock solution containing each PAH compound in a concentration
of 2000 ng μL−1 (SV Calibration Mix #5/610 PAH) to achieve 12 differ-
ent concentration levels ranging from 1–20 ng mL−1, in triplicate. The
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total number of samples was 12 × 3= 36. Set no. 2. Samples were gen-
erated by dilution of the stock solution PAH Mix 39, which presents a
variable concentration of the PAH compounds, to achieve 10 different
concentration levels ranging from 0.2–20 ng mL−1, in duplicate. The
total number of samples was 10 × 2 = 20. The PAHs concentrations in
the test samples varied as follows: BkF: 0.2–2, Δc = 0.2 ng mL−1; BaA,
BbF, BaP and Chr: 0.5–5, Δc = 0.5 ng mL−1; BghiP, DahA and Flt: 1–
10,Δc=1ngmL−1; and IcdP: 2–20,Δc=2ngmL−1. The values of con-
centrationwere set in the same range of the calibration samples, and are
comparable to those expected for the selected PAHs in environmental
sampling scenarios.

Fig. 2 shows how the different groups of samples will be treated de-
pending on the data analysis performed (see next sections).

3. Data treatment

3.1. Data structure

EEMs from the different samples were collected exciting samples in
the range 240–320 nm (each 2 nm) and recording the corresponding
emission spectra between 290 and 550 nm (each 2 nm). EEMs were
preprocessed to reduce the effects of Rayleigh and Raman scatterings
by selecting shorter spectral ranges (λem from 330 to 550 nm, matrices
sized 111 × 41 per sample) and using the correction function EEMscat,
available for Matlab [30]. Another correction method for handling scat-
tering in three-way fluorescence has been recently proposed in [31].
The EEMscat function removes the specific bands of Raman and first
and second Rayleigh scattering by replacing them with interpolated
values. A contour map of a mixture of the 10 PAH compounds is
shown in Fig. 3, where the difference between a full EEM data and the
reduced and processed matrix can be appreciated.

EEM spectra collected in the different sets of samples can be ar-
ranged in different ways (Fig. 4), depending on the algorithm used:
(A) as a three-way arrayX, sized I × J × K, where I is the number of sam-
ples, J is the number of emission wavelengths and K is the number of

excitation wavelengths, for the PARAFACmethod; (b) as an augmented
matrixD, sized IK× J, used forMCR–ALSmodeling; (c) or forming ama-
trix X of I × JK vectorized samples and using the related vector of con-
centration y, when U-PLS/RBL is used.

3.2. Methods

PARAFAC and MCR–ALS algorithms belong to the family of resolu-
tion methods, which describe the original dataset (a three-way array
or an augmented datamatrix, respectively) using linearmixturemodels
of all compounds in the dataset in order tominimize the global residual.
U-PLS/RBL, instead, is a multivariate calibration method, which aims at
predicting the Y concentration values of samples by means of a model
that expresses the maximum covariance between the data matrix X
and the matrix to be predicted, Y. Detailed theory about PARAFAC,
MCR–ALS and U-PLS/RBL algorithms can be found in more theoretical
works [22,24,26] and only a brief description is presented below.

3.2.1. Parallel factor analysis (PARAFAC)
PARAFAC is one of themost popular resolution methods for second-

order data. In this case, excitation–emission fluorescence measure-
ments (EEMs) are organized into a three-way array X (I × J × K),
where I is the number of samples, J is the number of emission wave-
lengths, and K contains the number of excitation wavelengths
(Fig. 4A). If the X dataset is trilinear, each responsive component (f)
can be defined by a triad of profiles: one score vector representing the
relative concentration of the samples (af) and two loading vectors (for
the emission (bf) and the excitation (cf) modes). The PARAFAC model
decomposes the data array X as indicated in Eq. (1):

xijk ¼ Σ F
f ¼ 1 ai f b j f ck f þ ei jk ð1Þ

where xijk is the fluorescence intensity of the ith sample at the kth exci-
tation and jth emissionwavelength, the number of columns in the load-
ingmatrices (F) is the number of PARAFAC factors and eijk is the related
residual. The decomposition of X is usually accomplished through alter-
nating least squares (ALS), by successively assuming the loadings in two
modes known and then, estimating the unknown set of parameters of
the last mode by minimizing the sum of squares of the residuals.

A critical stage to build a PARAFACmodel is the determination of the
number of factors of themodel [32]. There aremultiple criteria to do this
estimation and it is advisable to use the combination of several of them.
These include the core consistency test (CORCONDIA), which is 100% for
a completely trilinear model [33], the percentage of fit or the variance
explained by the model, the residual analysis and the quality of the re-
covered spectral loadings assessed by a correlation coefficient (r) with
reference spectral shapes, when available.

PARAFAC is suitable when the data follow the so-called trilinear
model: the excitation and emission spectral profiles of the components

Fig. 1. Excitation and emission spectra of (A) benzo[ghi]perylene (BghiP), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DahA), benzo[a]anthracene (BaA);
(B) indeno[1,2,3-cd]pyrene (IcdP), benzo[b]fluoranthene (BbF), 2-2′ binaphthyl (22B), chrysene (Chr), fluoranthene (Flt).

Fig. 2. Different sample set configurations used for PAHs analysis.
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for different samples are equal, except for their size that depends on the
concentration of the sample. This decomposition is often unique, advan-
tage in the face of bilinear models which suffer the known problem of
rotational freedom. In our case, non-negative constraints in the three
modes (concentration, excitation and emission) helped to extract
meaningful profiles. It has to be reminded that PARAFAC is not meant
to work with non-trilinear data but, in practice, PARAFAC models with
higher number of components can still yield satisfactory results as
long as deviations from trilinearity are very mild and not linked to the
signal of the analytes to be determined.

In PARAFAC modeling, the sequence of the components and the
scale of profiles are arbitrary. Hence, for quantitative purposes, the spe-
cific componentsmust be identified after fitting themodel and then, the
related scores of calibration samples can be regressed against reference
concentrations to build a calibrationmodel that can be used for concen-
tration prediction in unknown samples.

3.2.2. Multivariate curve resolution–alternating least squares (MCR–ALS)
MCR–ALS intends the recovery of the pure response profiles (excita-

tion and emission spectra in this case) of the chemical constituents or

species of an unresolved mixture from the sole information contained
in the original dataset (EEM measurements).

In MCR–ALS, the EEMmeasurements are structured as an augment-
ed data matrix instead of forming a three-dimensional data array
(Fig. 4B). Augmentation can be performed in either direction (column
and row), depending on the type of data and the overlap in the
modes. In the present work, the augmentation was implemented as-
suming the emissionmode as the common one, because of themore se-
vere overlap in the excitation mode.

MCR techniques are based on the bilinear decomposition of the ma-
trix D (IK × J) into its pure contributions according to Eq. (2):

D ¼ CST þ E ð2Þ

For EEMmeasurements, the D rows contain the emission spectra as
a function of excitation wavelengths and the augmented matrix con-
taining the EEM measurements of all samples is decomposed into the
product of the augmented Cmatrix of pure excitation spectra by the sin-
gle ST matrix of pure emission spectra. E is the experimental error.

Fig. 3. Contour map of the EEMmatrices before (left plot) and after (right plot) scatter correction. Ellipses highlight Rayleigh and Raman scattering in the raw EEM spectrum.

Fig. 4. Graphical representation of the data structure employed in the second-order algorithms: PARAFAC (A), MCR–ALS (B) and U-PLS/RBL (C).
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Decomposition ofD is achieved by iterative alternating least-squares
optimization of C and ST to minimize of the Frobenius norm of E. To ini-
tialize the optimization process, the known emission spectral profiles of
the analyte standards were used when theywere available, and an algo-
rithm based on the SIMPLISMAmethodology, to select profiles for addi-
tional factorswhen interfering species or additionalmodel contributions
were required. The iterative cycles were repeated until convergence
under the suitable constraints for C and ST throughout the ALS process
was achieved. In thiswork, the augmented datamatrixwas decomposed
during ALS optimization implementing non-negativity constraints to
both emission and excitation spectral profiles by a fast non-negativity
least squares algorithm. Correspondence among species was used to re-
strict the rotational ambiguity, i.e. presence/absence of analytes in stan-
dard samples was actively set.

Once MCR–ALS results are obtained and compounds are identified,
theMCR–ALS scores are obtained per analyte and sample as the integrat-
ed area under the related resolved excitation spectrum. The scores of a
particular analyte for the calibration samples are then regressed against
nominal concentration values to build a calibration curve that can be
used afterwards for concentration prediction in unknown samples.

By default,MCR–ALSmethod relies on a bilinearmodel and it only re-
quires that one of the two dimensions (excitation or emission) matches
between the different datamatrices. However, the trilinear behavior can
be introduced as a constraint in an optional way to the different com-
pounds in the system. The fact that the implementation of this constraint
works in a ‘compound-wise’ way allows for scenarios presenting
completely trilinear, partially trilinear or completely bilinear models,
when all, some or none of the compounds are constrained to obey a tri-
linear behavior, respectively. The flexibility in applying the trilinearity
condition is helpful tominimize rotational ambiguities and to accommo-
date deviations from trilinearity of the experimental data [33].

In the EEM context, MCR–ALS models with total trilinearity (ideal
EEMbehavior) andpartial trilinearity have been tested. Partial trilinearity
has been applied so that identified analyte contributions (PAHs) are al-
ways considered trilinear, whereas additional model contributions re-
lated to residual scattering and interferences are modeled in a bilinear
way. The introduction of partially trilinear models in MCR–ALS allows
the modeling of contributions other than the target analytes, usually
formed by linear combinations of signals of interfering minor com-
pounds overlapping with residual scattering, the behavior of which
was closer to a bilinear description than to a perfect trilinear behavior.

3.2.3. Unfolded partial least squares coupled to residual bilinearization
(U-PLS/RBL)

U-PLS/RBL algorithm belongs to the family of multivariate calibra-
tionmethods, whichmainly aim at the optimal prediction of concentra-
tions (or parameters of interest), in matrix Y, from a model linking the
concentrations with the information in the EEM measurement (in ma-
trix X). In the U-PLS/RBL method, the second-order data are unfolded
and rearranged into sample vectors before applying the PLS first-order
algorithm (Fig. 4C). In contrast to PARAFAC and MCR–ALS, where
the calibration and test samples are jointly decomposed by the
model, U-PLS/RBL does not include the unknown samples in the
calibration step. First, the calibration samples are vectorized, giv-
ing a matrix (I × JK) to build a PLS model relating the EEMmeasure-
ments to the nominal sample concentrations y (I × 1). The model
provides a set of loadings P, weight loadingsW (JK × A) and regres-
sion coefficients v (A × 1), as a function of the number of latent fac-
tors (A), that are usually estimated by cross-validation methods [35].

When there are no unexpected compounds in the test samples, the
analyte concentration is calculated using the regression coefficients
(v) according to Eq. (3):

yu ¼ tTuv ð3Þ

where tu is the test sample score obtained by projecting the vectorized
data for the test sample, vec(Xu), onto the space of the A latent factors
(Eq. (4)):

tu ¼ WTP
� �−1

WTvec Xu
� � ð4Þ

If unexpected constituents are present in the samples and were not
considered in the calibration set, the sample scores, tu, obtained are un-
suitable for concentration prediction because the residuals of the U-PLS
prediction step (sp), will be abnormally large in comparison with the
typical instrumental noise level (Eq. (5)):

sp ¼ ‖ep‖= JK−Að Þ
1=2 ¼ ‖vec Xuð Þ−Ptu‖= JK−Að Þ

1=2 ð5Þ

This situation is often handled by a post-calibration procedure called
residual bilinearization (RBL), which is based on the use of principal
component analysis (PCA) tomodel thepresence of unexpected constit-
uents. RBL aims at minimizing the norm of the residual vector eu, com-
puted while fitting the sample data to the sum of the relevant
contributions. For a single unexpected component, the expression is
(Eq. (6)):

vec Xuð Þ ¼ Ptu þ bunxgunx cunxð ÞT
h i

þ eu ð6Þ

where gunx is a scaling factor appropriate for SVD (Single Value Decom-
position) analysis,bunx and cunx are the left and right eigenvectors of the
residual matrix Ep respectively, obtained after reshaping the computed
residual vector ep and assuming that interferences are absent, as indi-
cated in Eq. (7):

bunxgunx cunxð ÞT ¼ SVD reshape vec Xuð Þ−Ptu½ �f g ð7Þ

The SVD operation is performed using the first Nunx principal com-
ponents, where Nunx indicates the number of unexpected test sample
constituents.

During the RBL procedure, thematrix of loadings P from the calibra-
tion model is kept constant and tu varies to minimize the norm of eu in
Eq. (6). Once eu is minimized, the compound concentrations are calcu-
lated by Eq. (3), introducing the final tu vector found by the RBL
procedure.

U-PLS/RBL algorithm can handle signal-to-concentration changes
among samples, which are compensated by adding more latent vari-
ables to the model, as long as they are represented in the calibration
set and are not too extreme. Even though U-PLS/RBL is more flexible,
its flexibility implies also non-unique solutions due to the presence of
rotation ambiguities in the RBL step.

3.3. Software

All multivariate algorithms described in this work were implement-
ed in Matlab version R2010 (The MathWorks, MA, USA). The routine
employed for PARAFAC calculations is available on the internet at [36].
MCR–ALS with a user-friendly interface was downloaded from [18]. U-
PLS/RBL algorithm was implemented using the graphical interface of
the MVC2 toolbox, which can be freely downloaded from [37].

4. Results and discussion

4.1. Pure component samples

Preliminary experiments were carried out to assess the linear range
and limit of detection (LOD) of the 10 selected PAHs (9 analytes and the
internal standard). Three replicate measurements per concentration
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level, at 30 ng mL−1 and below, were used to calculate the calibration
line. The LODs were estimated from the calibration line as the ratio be-
tween three times the standard deviation of the intercept and the slope
of the calculated line. The sensitivity (SEN) is calculated as the slope of
the calibration line.

Table 1 shows the results obtained for the selected algorithms. PAHs
are sorted in decreasing order according to the norm of unit PAH EEM
signal. Norms are normalized with respect to the highest one, from
benzo[k]fluoranthene. As it can be seen, significant differences exist
among the different PAH signal magnitudes.

In the absence of interferences, all algorithms led to similar results,
showing a good linear behavior (R2 N 0.99) and low limits of detection
(LOD b 1 ng mL−1) for every PAH. This demonstrates the high sensitiv-
ity of fluorescence spectroscopy to quantify the target PAHs. These line-
ar ranges and LODswere taken into account to design the calibration set
samples.

4.2. Calibration set samples

In order to build a second-order calibration model, EEMs were
measured for the calibration set (dcal), designed as explained in
Section 2.3.2. Chemometric analysis of the calibration data were carried
out by PARAFAC, U-PLS/RBL and MCR–ALS algorithms, with the re-
quired data structures shown in Fig. 4.

First, the results of the two resolution methods PARAFAC and MCR–
ALS are analyzed. The first point of interest was comparing the effect of
the differences in the underlying linear decomposition model on the
final results. Thus, PARAFACwas applied with its natural trilinear struc-
ture and MCR–ALS was tested using total and partial trilinearity. A full
bilinear model was not used since EEM fluorescence data are supposed
to behave in a trilinear manner. The samples of pure PAHs (dpure) used
for PARAFAC andMCR–ALSmodeling (Fig. 2A),were rescaled to balance
the relative intensities of their signal norms. In PARAFAC, the selection

of the optimumnumber of factorswas performed by using the core con-
sistency test (CORCONDIA), the lack of fit (%), the variance explained
(r2) (Table 2) and the quality of the recovered spectral profiles,
expressed by the correlation coefficients (rem and rex) in the emission
and excitation modes with the related reference spectra (Table 3). All
criteria, except CORCONDIA were used to select the size of MCR–ALS
models as well.

It should be noticed that, according to the number of PAH com-
pounds present in the samples, a ten-factor trilinear model should be
sufficient. However, the ten-factor PARAFAC model did not achieve
the correct spectral resolution of all compounds present in the calibra-
tion set. Specifically, the PAH of lowest signal, benzo[ghi]perylene
(BghiP), could not be correctly resolved, being identified instead a factor
related to residual scattering. The ten-factor MCR–ALS model could re-
cover correctly the identity of all components because of the use of
the correspondence of species constraint, applied in the samples con-
taining EEM spectra of pure PAH compounds. The role of this constraint
is, therefore, particularly important when the relative signal of the
analytes of interest is almost at the same level of other background con-
tributions. The high lack of fit obtained by the 10-factor MCR–ALS
model, in which total trilinearity was used, implies that part of the var-
iance not linked to the analytes and non-trilinear in nature was left out
from the model, i.e., the residual scattering. For both PARAFAC and
MCR–ALS eleven-factor models, the spectra profiles of all compounds
were correctly recovered, including BghiP, which is successfully sepa-
rated from the residual scattering. The quality parameters obtained
with MCR–ALS are better applying a partially trilinear model, as a con-
sequence of the non-trilinear behavior of the residual scattering,
which was modeled as a bilinear contribution, whereas trilinearity
was applied to model the signals of PAH analytes. The presence of the
non-trilinear residual scattering contribution is also reflected in the
PARAFAC model through the decrease in the core consistency value.
For both algorithms, twelve-factor models did not offer any significant

Table 1
Limit of detection and sensitivity for each PAH, calculated by MCR–ALS, PARAFAC and U-PLS algorithms.

PAH BkF BbF 22B BaP IcdP

Norm 1 0.40 0.23 0.21 0.14

Algorithm SENa LODb SEN LOD SEN LOD SEN LOD SEN LOD

MCR–ALS 5.26 · 106 0.25 2.11 · 106 0.29 1.24 · 106 0.89 1.10 · 106 0.45 7.41 · 105 0.25
PARAFAC 5.26 · 106 0.25 2.11 · 106 0.30 1.23 · 106 0.89 1.09 · 106 0.51 7.45 · 105 0.26
U-PLS 5.00 · 106 0.25 2.11 · 106 0.30 1.26 · 106 0.52 1.11 · 106 0.45 8.10 · 105 0.23

PAH Chr Flt BaA DahA BghiP

Norm 0.12 0.12 0.12 0.09 0.05

Algorithm SEN LOD SEN LOD SEN LOD SEN LOD SEN LOD

MCR–ALS 6.10 · 105 0.36 5.79 · 105 0.65 5.79 · 105 0.65 4.78 · 105 0.36 1.91 · 105 0.41
PARAFAC 6.01 · 105 0.35 5.81 · 105 0.65 5.81 · 105 0.65 4.79 · 105 0.36 1.92 · 105 0.43
U-PLS 6.12 · 105 0.34 5.79 · 105 0.65 5.79 · 105 0.65 4.80 · 105 0.36 1.94 · 105 0.44

(a,b) ng mL−1.

Table 2
Quality parameters of the MCR–ALS and PARAFAC models for an increasing number of factors.

No. of Factors 10 11 12

Algorithms MCR–ALS PARAFAC MCR–ALS PARAFAC MCR–ALS PARAFAC

Trilinearity TTa TT TPb TT TT TP TT TT

LOF (%) c 30.29 9.04 9.16 10.01 7.06 8.70 10.18 6.56
Variance explained (r2) 90.83 99.18 99.16 98.99 99.50 99.24 98.96 99.57
CORCONDIA d – 71.33 – 64.61 – 39.44

a TT = total trilinearity.
b TP = partial trilinearity.
c LOF = lack of fit (%).
d CORCONDIA = core consistency.
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improvement to the results obtained. Thus, for both algorithms, the
eleven-factor models are taken as definitive results. Table 3 shows the
recovery of spectra profiles, similar for both algorithms with eleven-
factor models (with partial trilinearity for MCR–ALS).

High values for the correlation coefficients between the pure spectra
of each PAH and the emission and excitation resolved profiles
(rem N 0.99 and rex N 0.96), confirmed the good resolution of the over-
lapped signal for each PAH. Slightly lower correlation coefficient values
of some excitation spectra reveal the higher overlap among compounds
in this mode.

The difficulty of the individual resolution of PAH compounds is relat-
ed to the similarity in excitation and/or emission spectra and to the dif-
ferent relative fluorescence intensities.

When quantitative information is the goal, PARAFAC and MCR–ALS
can also be compared with U-PLS. Due to the complexity of the mixed
PAH signals in the calibration samples, PLS1 models were employed
for modeling individual compounds by U-PLS, where RBL was not re-
quired because the calibration set did not include unexpected com-
pounds. For U-PLS calculations, the original matrix X is preprocessed
by mean-centering.

The optimum number of factors for each PLS1 model was selected
using the F-ratio criterion proposed by Haaland and Thomas [34]. This
F-ratio is calculated as: F (A) = PRESS(A b A⁎) / PRESS(A⁎), where
PRESS is the predicted error sumof squares obtained by cross validation,

defined asPRESS ¼ ∑ I
1 ynominal−ypredicted
� �2

, A is a trial number of fac-

tors and A* corresponds to the number of factors providing a PLSmodel
with minimum PRESS. The optimal number of factors is selected as that
leading to a probability of less than 75% and F N 1. Fig. 5 shows the num-
ber of latent variables needed for every U-PLS1 model as a function of
the signal norm of the related PAH compound.

On the one hand, the number of latent variables in the U-PLSmodels
of the different PAHs ranged from 6 (22B) to 12 (BghiP). The size of the
PLSmodel was generally related to the PAH signal intensity and, hence,

the PAH with lowest intensity, BghiP, required the highest number of
factors. Notice that the signal intensity of eight PAHs is 80% lower than
the one of benzo[k]fluoranthene. On the other hand, it must be consid-
ered that some PAH spectra are highly correlated in the emissionmode,
e.g., BaP–BkF (r2 = 0.89) and Flt–BbF (r2 = 0.73) and in the excitation
mode, for instance, BaA–Flt (r2 = 0.88) and BaP–BbF (r2 = 0.75). For
this reason, the number of PLS factors required is higher for some PAH
compounds, e.g., BkF higher than 22B, than what could be expected
only considering the compound signal intensity. Therefore, even using
PLS1 models, more than ten factors were needed when the norm of
the analyte was very low or when the signal was very overlapped
with other compounds.

Table 4 shows the comparison of the correlation coefficients (r2) be-
tween predicted concentrations and nominal values obtained using
MCR–ALS, PARAFAC and U-PLS models.

It can be seen that satisfactory r2 values were obtained with all ap-
plied algorithms, i.e., the predictions are in good agreement with the
nominal values, except for fluoranthene (Flt). This differencemay be at-
tributed to a possible detection of changes of signal-to-concentration
ratio among samples by MCR–ALS, a question that will be discussed in
following sections. As expected, U-PLS gives slightly better quantitative
results, since it is a pure calibrationmethod. PARAFAC andMCR–ALS, in-
stead, give only slightly worse figures of merit for quantification but
provide an additional qualitative description of the system, i.e., pure ex-
citation and emission spectral profiles.

4.3. Validation set samples

Twenty-five test solutions of the ten PAH compounds (dval) were
prepared to test the prediction ability of each algorithm. The multiset
shown in Fig. 2B was used for MCR–ALS and PARAFAC preserving the
augmented matrix and data cube structures, respectively. For both
methods, the samples of pure components (dpure) were employed to
improve the resolution, whereas the calibration set (dcal) was used to
build the calibration curve. For U-PLS calculations, only the calibration
set was used. Figures of merit calculated by each method are shown in
Table 5.

Good prediction ability was achieved for most compounds by all al-
gorithms, and U-PLS yielded generally the best predictions with a low
relative error (REP), less than 10%, except for BghiP, which presented
the highest error related to its low signal intensity and highly overlap-
ped signal. The few PAH compounds for which PARAFAC or MCR–ALS
gave better results, i.e., BkF, 22B and BaA, are compounds with the
highest signal (BkF) or with the best spectral selectivity (22B and
BaA). Although U-PLS yielded better quantitative results, it is important
to note that the correlation coefficient (r2) between the predicted and
nominal values (Table 6) shows that global resolution models
(PARAFAC and MCR–ALS) give in general very good results, which
means that the trends in relative concentration of the samples are
very well described. It is also important to remark that PARAFAC and

Table 3
Emission and excitation correlation coefficients between resolved and reference PAH spectra obtained with eleven-factor PARAFAC and MCR–ALS models.

PAH BkF BbF 22B BaP IcdP

Norm 1 0.40 0.23 0.21 0.14

Algorithm rem rex rem rex rem rex rem rex rem rex

MCR–ALS 0.9994 0.9900 0.9990 0.9775 0.9996 0.9975 0.9989 0.9988 0.9995 0.9893
PARAFAC 0.9986 0.9669 0.9997 0.9964 0.9989 0.9965 0.9991 0.9994 0.9938 0.9954

PAH Chr Flt BaA DahA BghiP

Norm 0.12 0.12 0.12 0.09 0.05

Algorithm rem rex rem rex rem rex rem rex rem rex

MCR–ALS 0.9987 0.9991 0.9988 0.9944 0.9992 0.9979 0.9983 0.9995 0.9974 0.9943
PARAFAC 0.9994 0.9991 0.9948 0.9978 0.9992 0.9978 0.9988 0.9992 0.9943 0.9952

Fig. 5. Number of latent variables of U-PLS models versus the PAH signal norm.
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MCR–ALS require a singlemodel to describe thewhole chemical system,
whereas U-PLSmodeling needs onemodel per PAH. This allows a better
focus on the individual predictions and, hence, better quantitative re-
sults, but it is also more time-consuming.

To compare the similarity in performance among algorithms, a com-
parison of predicted values calculated by PARAFAC,MCR–ALS andU-PLS
in the validation samples was tested using a paired t-test of the slope
(comparing slopes of predicted values between methods pairwise)
[38]. The calculated α levels are shown in Table 7.

Significance levels higher than 0.1% (i.e., higher than 0.001 in
Table 7) indicate that there are no significant differences between
predictions made by the employed algorithms. This is the case for
most PAH compounds, except for some few examples, such as Flt and
BghiP between MCR–ALS/PARAFAC and MCR–ALS/U-PLS, DahA
between MCR–ALS/U-PLS or BbF between PARAFAC/U-PLS. These
differences in results are mostly related to compounds with low
fluorescence intensity, e.g., BghiP or DahA, or maybe to changes in the
signal-to-concentration ratio of some PAHs depending on the composi-
tion of the sample (which we can denominate sample matrix effect).
These changes could be more noticeable for PARAFAC or MCR–ALS,
which are not pure calibration methods, always assume a single contri-
bution per compound and are not prepared to actively correct varia-
tions in signal-to-concentration ratio among samples. U-PLS, instead,
compensates better these differences among samples by adapting the
number of latent variables included in the model. This kind of effect
will be better described in the section related to the study of samples
with interferences.

4.4. Interference study

The predictive capacity of the models was tested in the presence of
other potentially interfering PAHs to estimate their potential to over-
come the problem of unexpected species in complex samples. It is
known that other PAHs are able to emit in the same spectral range as
the analytes of interest and, if not emitting, can contribute to the overall
complexity of the sample analyzed. Among the 16 US-EPA PAHs, 9 were
selected as target compounds, and the remaining 7 US-EPA PAHs were
present in the samples as interfering compounds. From the interfering
compounds,fluorene, naphthalene and acenaphthene have amaximum
fluorescence emission signal below the range of interest, but they con-
tribute to the complexity of the samples, whereas acenaphthylene is
not fluorescent. Additionally, phenanthrene (λexmax = 364 nm),

pyrene (λexmax = 382 nm) and anthracene (λexmax = 398 nm) emit
in the same emission range as those of interest. In fact, anthracene has
a relative fluorescence intensity 13% less than benzo[k]fluoranthene,
so it is expected that it can be resolved as one additional factor. In con-
trast, phenanthrene and pyrene have a signal lower than benzo[ghi]
perylene and, therefore, their individual spectra are not expected to be
recovered.

Therefore, an interference study was undertaken with twomixtures
containing the 16US-EPA PAHs in order to investigate this effect. Hence,
22 different test samples (12 from set no. 1 (in triplicate = 36) and 10
from set no. 2 (in duplicate = 20)) containing the 10 selected PAHs (9
US-EPA PAHs and 2BB) and the remaining 7 US-EPA PAHswere evaluat-
ed with PARAFAC, U-PLS/RBL and MCR–ALS.

A crucial step for PARAFACmodeling is to set the suitable number of
factors. In simple scenarios with a low number of compounds, the core
consistency test is a good tool to estimate this parameter but, in this
case, it did not lead to good results because of the large number of spec-
trally similar compounds and the presence of minor compounds similar
in intensity to the residual scattering in the samples. For that reason, the
selection of the number of PARAFAC factors was made based on the re-
covery of the spectral profiles of the 10 expected compounds, the qual-
ity of the fitting model parameters, and the figures of merit of the
quantitative prediction of calibration samples. Taking into consideration
these criteria, a 13-factor PARAFAC model was selected (lack of fit of
5.6% and 99.68% of variance explained), this being the model with the
smallest number of factors that could resolve all target spectral profiles
avoiding overfitting.

In the MCR–ALS model, the additional implementation of the corre-
spondence among species constraint and the higher flexibility offered
by a partially trilinear model helped in the recovery of spectral profiles
for all analytes and, in this case, a 12-factor MCR–ALS model was suffi-
cient to identify correctly all target components. However, a 13-factor
model (lack of fit of 8.1% and 99.33% of variance explained) improved
the quantitative prediction of the analyte with the lowest signal,
benzo[ghi]perylene, and this was the model size selected for further
calculations.

The three additional factors different from the 10 analyte contribu-
tions in both PARAFAC and MCR–ALS models have diverse nature and
behavior. Thus, on one hand, both methods recognize a contribution
related to anthracene (Fig. 6), a PAH with high signal in the working
spectral range and that is present in the EPA-PAHmixtures. It is impor-
tant to note that, being resolution methods, both could identify the

Table 4
Correlation coefficient between predicted and nominal values in the calibration set (dcal) obtained by MCR–ALS, PARAFC and U-PLS.

PAH BkF BbF 22B BaP IcdP Chr Flt BaA DahA BghiP

Norm 1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05
MCR–ALS 0.9778 0.9161 0.9965 0.8875 0.9849 0.9879 0.4666 0.9923 0.9861 0.7215
PARAFAC 0.9935 0.9918 0.9959 0.9076 0.9907 0.9816 0.9745 0.9867 0.9844 0.8488
U-PLS 0.9988 0.9976 0.9972 0.9984 0.9986 0.9993 0.9980 0.9980 0.9947 0.9964

Table 5
Statistical results for the quantification of the target PAHs in validation samples.

PAH BkF BbF 22B BaP IcdP Chr Flt BaA DahA BghiP

Norm 1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05
RMSEPa (ng mL−1) MCR–ALS 0.66 2.46 0.52 1.75 0.88 0.61 8.49 0.59 1.10 8.86

PARAFAC 0.39 0.86 0.56 1.91 0.99 0.60 0.92 0.92 0.80 3.25
U-PLS 0.40 0.74 0.76 0.67 0.51 0.41 0.53 0.88 0.65 2.34

REPb (%) MCR–ALS 6.86 24.63 4.13 18.20 8.81 6.38 84.89 5.93 10.97 70.88
PARAFAC 4.02 8.64 5.19 19.86 9.92 6.26 9.19 9.22 8.05 25.98
U-PLS 4.18 7.37 6.07 6.98 5.07 4.25 5.27 8.81 6.46 18.73

a RMSEP (ng mL−1): Root mean square error of prediction. RMSEP ¼ 1=Ið Þ∑ I
1 Cnominal−Cpredicted
� �2#1=2

:

2
4

b REP (%): Relative error of prediction. REP = 100 × RMSEP / C mean.
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presence of an unexpected compound without any a priori information
given to the analysis, an asset that a pure calibration method cannot
provide. The two additional contributions are linear combinations of
minor compounds and residual scattering, needed to describe the rest
of relevant variance of the system. In this sense, MCR–ALS using partial
trilinearity adapted better to the real non-trilinear nature of these
mixed contributions.

Once decomposition was accomplished, the quality of the MCR–ALS
and PARAFAC models was evaluated through the criterion of similarity
by comparing the reference and resolved spectrum for all 10 analytes.
The value of the correlation coefficient (r) found for the PAHs spectra
recovery in the excitation and emission modes were N0.99 for most of
them, corroborating the excellent identification of the target compounds.

Subsequently, predicted concentrations in samples from the inter-
ference set were calculated as follows: a) using the calibration line
built by samples of the calibration set (dcal, without interferences)
and b) using a calibration line built with a subset of samples of the
interfering set (dinterf). Table 8 shows the parameters of the predicted
versus nominal concentration for all the analytes when the two kinds of
calibration lines are used. Ideal results would be slope= 1, intercept=
0 and r2 close to 1.

The first thing to note for MCR–ALS and PARFAC is that, irrespective
of the calibration line used (with calibration samples containing only
analytes or calibration samples having interferences), good correlation
coefficients among predicted and nominal values are found for almost
all analyzed compounds. The estimates of concentration values show a
general improvement (slight in some compounds) when samples con-
taining interferences are used as calibration set, but even if interferences
are absent in the calibration set, the information related to relative con-
centration among samples iswell defined. This is an important fact since
it gives a lot of value to resolution methods when fast qualitative and
quantitative screening of samples is themain purpose, orwhen the evo-
lution in concentration among different scenarios is the information
sought and not as much the exact concentration value of the analytes
in the sample.

Concerning the absolute quantitative predictions of analytes in sam-
ples, there is a general worsening in most cases when predictions are
performedwith the calibration setwithout interferences, a bit more no-
ticeable in MCR–ALS calculations, perhaps because of the more flexible
underlying model used. However, even in this situation, good results
were obtained with REP values, less than 30% for several PAHs, e.g.,
Chr, DahA and IcdP. The worst prediction was obtained for BghiP con-
centrations by both algorithms because of the very low signal of this an-
alyte compared with the rest of the analytes and some interfering
species. When samples of the same interfering matrices are used to
build the calibration line, predictions improve significantly. In fact, for
almost all compounds REP values were less than 30% except for BghiP,
probably because of the reason discussed above and MCR–ALS had
less satisfactory results for Flt and BbF.

As a general conclusion, PARAFAC andMCR–ALS are very suitable al-
gorithms for screening purposes instead of U-PLS, since they provide
with a single model good qualitative and relative quantitative informa-
tion about the system analyzed. Nevertheless, one should be aware that,
for some compounds, these algorithms may be sensitive to potential
changes in signal-to-concentration ratio linked to the sample matrix
and, therefore, calibration sets without interferences might provide
less accurate results, particularly when the samples analyzed are ex-
tremely complex in terms of number of compounds and signal overlap.

In the case of U-PLS model, the RBL step is required when samples
with interferences are analyzed because they contain unexpected com-
ponents, absent in the set of calibration samples. As a result, when U-
PLS/RBL is used, two steps are required: a) per analyte, the number of
latent variables in the PLS1 models is estimated using the calibration
set and b) per sample to be predicted in the RBL step, an estimate of
the additional number of factors corresponding to the unexpected con-
stituents is required. Because of the individual RBL step per analyte in
each sample, it is important to note that the accurate estimation of the
concentration implies a dramatic increase of the computation time,
since the number of models that must be calculated is equal to:
(number of samples × number of analytes) towards the single resolu-
tion model that is needed when PARAFAC or MCR–ALS algorithms are
used.

Typically, the estimation of the number of factors in the RBL step is
performed comparing the RBL residuals (sRBL) of decomposition comput-
ed for different values of unexpected components (Nunx) with the exper-
imental noise. The smallest number of factors that provides residuals at a
value statistically comparable to the experimental noise is chosen. But the
number of RBL latent variables for real samples is not easy to calculate,
and mistakes in this step can lead to wrong predicted concentrations.

For this reason, we compared in this work the number of unexpect-
ed components calculated considering the methods described in [39]
and [28]. Braga et al. [39] propose a method to compare the residuals
of the U-PLS/RBL test sampleswith results of t-student confidence inter-
vals for themean residuals of decomposition of the calibration samples.
In contrast, Bortolato et al. [28] estimate the number of optimum RBL

latent variables based on a ratio between the RBL residuals (sRBL): sRBL ¼
eRBLk k= J−Nunxð Þ K−Nunxð Þ−A½ �1=2 and a penalized residual error (spen):

spen ¼ sRBL J� Kð Þ= J−Nunxð Þ K−Nunxð Þ−A½ �1=2

h i
. This ratio is computed

for increasing values of unexpected components (Nunx) as follows:
R = spen(Nunx)/[sRBL(Nunx − 1)]. The first value of Nunx for which R
did not exceed 1 was then selected as the number of RBL components.

We considered these twomethods to estimate the number of unex-
pected components for each PAH U-PLS model and sample. To show an
example, Table 9 shows the number of RBL latent variables calculated
for IcdP and DahA U-PLSmodels in several samples of set no. 1 at differ-
ent concentrations (the rest of the samples were analyzed in this way
and are not shown for brevity, however, they are available on request).

Table 6
Correlation coefficients between the predicted and nominal concentration values in the validation set obtained by MCR–ALS, PARAFAC and MCR–ALS.

PAH BkF BbF 22B BaP IcdP Chr Flt BaA DahA BghiP

Norm 1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05
MCR–ALS 0.9881 0.8622 0.9952 0.9259 0.9817 0.9913 0.2379 0.9891 0.9779 0.5143
PARAFAC 0.9961 0.9870 0.9921 0.9192 0.9826 0.9903 0.9773 0.9742 0.9826 0.8676
U-PLS 0.9957 0.9878 0.9893 0.9909 0.9960 0.9967 0.9979 0.9770 0.9880 0.9547

Table 7
Calculated α level between algorithms predictions for validation samples (calculated from the calibration model obtained with the calibration set (dcal)).

PAH BkF BbF 22B BaP IcdP Chr Flt BaA DahA BghiP

MCR–ALS/ PARAFAC 0.948 0.532 0.041 0.001 0.285 0.054 1.4 · 10−4 0.288 0.003 5.4 · 10−5

MCR–ALS/ U-PLS 0.998 0.014 0.263 0.020 0.690 0.004 1.5 · 10−4 0.040 1.6 · 10−4 8.3 · 10−5

PARAFAC/ U-PLS 0.990 1.7 · 10−15 0.032 0.559 0.605 0.341 0.729 0.466 0.163 0.483
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Themethod proposed by Braga et al. proved to bemore robustwhen
the residual error to be modeled by the RBL step was close to the one in
the calibration set, as what happens in samples from 1 to 4, where the
total concentration of PAHs is low and the contribution of the unexpect-
ed components is not very significant. In contrast, according to Bortolato
et al., the number of Nunx in these samples (1–4) is very large and does
not have chemical sense; this showing the difficulty of the method in
finding Nunx when low signal contributions of interferences and low

concentration samples are analyzed. When the impact of the signal of
unexpected constituents is large, as what happens in the samples
from 5 to 7, where the concentrations of these compounds are higher,
the two methods seem to provide similar results. This is a positive out-
come since sampleswith high concentrations of contaminants are those
with most environmental interest.

As a consequence of these difficulties, it is advisable that, whenever
possible, the number of factors in the RBL could be checked with

Fig. 6. Excitation and emission loading for the interferences: (Left) MCR–ALS (rem = 0.9909 and rex = 0.9990), (Right) PARAFAC (rem = 0.9848 and rex = 0.9981). Plots show the real
spectra of anthracene (black line) and loadings (red line). Loadings and spectra have been normalized to unit amplitude.

Table 8
Regression line between predicted and nominal concentrations using the calibration model obtained from the calibration or the interfering set.

SET No. 1 No. 2

PAH Algorithm Regression Slope Intercept r2 Slope Intercept r2

BkF MCR–ALS dcal 1.421 1.333 0.9752 1.728 −0.184 0.9877
dinterf 0.993 −0.332 0.9777 0.914 0.141 0.9935

PARAFAC dcal 1.000 0.615 0.9831 1.254 −0.566 0.9945
dinterf 1.059 −0.103 0.9933 0.848 0.103 0.9962

BbF MCR–ALS dcal 0.884 −1.643 0.9439 0.492 −1.596 0.5160
dinterf 0.934 0.628 0.9728 0.168 0.979 0.4412

PARAFAC dcal 1.057 0.517 0.9206 1.092 0.454 0.9583
dinterf 1.133 0.436 0.9949 1.166 0.029 0.9958

22B MCR–ALS dcal 0.553 0.390 0.9123 1.183 −0.210 0.9748
dinterf 1.200 1.361 0.9435 1.222 0.203 0.9943

PARAFAC dcal 0.820 1.073 0.9546 1.246 0.027 0.9807
dinterf 1.076 0.606 0.9623 1.200 0.279 0.9919

BaP MCR–ALS dcal 0.873 −5.470 0.9031 0.992 −5.050 0.9848
dinterf 0.995 0.098 0.9743 0.945 0.281 0.9882

PARAFAC dcal 1.540 −3.970 0.9036 1.215 −3.258 0.9660
dinterf 1.367 −0.551 0.9337 0.960 0.624 0.9913

IcdP MCR–ALS dcal 0.865 1.230 0.9604 1.149 −0.220 0.9847
dinterf 1.140 −0.412 0.9725 0.817 1.845 0.9982

PARAFAC dcal 0.917 1.490 0.9517 1.155 0.193 0.9900
dinterf 1.161 0.297 0.9879 0.857 1.650 0.9983

Chr MCR–ALS dcal 1.030 1.449 0.9616 1.076 0.456 0.9668
dinterf 1.093 0.469 0.9909 1.130 0.019 0.9866

PARAFAC dcal 1.030 0.588 0.9771 1.107 −0.417 0.9213
dinterf 0.965 0.984 0.9715 1.348 −0.358 0.9797

Flt MCR–ALS dcal 0.689 3.322 0.7592 2.584 2.950 0.6702
dinterf 0.749 0.534 0.7789 2.598 −3.924 0.9750

PARAFAC dcal 1.000 −0.079 0.9470 1.091 −0.258 0.9837
dinterf 0.875 −0.274 0.9258 0.850 0.507 0.9881

BaA MCR–ALS dcal 1.013 1.352 0.9647 1.069 0.481 0.9100
dinterf 1.048 1.014 0.9785 1.450 −0.452 0.9900

PARAFAC dcal 0.852 1.383 0.9343 1.226 0.790 0.8361
dinterf 1.049 2.248 0.9191 1.700 −0.737 0.9805

DahA MCR–ALS dcal 1.095 1.109 0.9881 1.109 0.260 0.9834
dinterf 1.062 −0.073 0.9908 1.039 0.114 0.9925

PARAFAC dcal 1.290 0.213 0.9788 1.209 −1.654 0.9924
dinterf 0.961 0.053 0.9772 0.926 0.311 0.9904

BghiP MCR–ALS dcal 0.839 5.172 0.8051 2.911 1.102 0.7548
dinterf 1.417 −0.032 0.9354 2.065 −2.779 0.9802

PARAFAC dcal 0.648 −3.142 0.1933 0.872 −5.216 0.8348
dinterf 0.129 0.836 0.1102 1.125 −0.798 0.9055
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samples of similar nature and known reference concentrations of the
analytes.When this is not the case, one should be aware of the difficulty
in the estimation of Nunx, particularly in cases where the signal of these
contributions is not big or distinct from the analyte signals, and the con-
sequent effect in the predicted concentrations of analytes.

Taking the comments above into consideration about both criteria,
the estimated value of unexpected components in the interference set
samples ranged from 1 to 6 for most cases, depending on the PAH and
the concentration level of the sample analyzed. The fact that the seven
new PAHs incorporated as interferences provided less additional latent
variables than the number of real chemical species is related to the spec-
tral range of emission of the interferences (not always in the working
range), the signal overlap among them and their relative contribution
to the total sample signal.

Table 10 collects a summary of thefigures ofmerit related to predict-
ed concentration values in the samples with interferences. U-PLS/RBL
performs better because it is a pure calibration method, and the effect
of the presence of interferences and possible sample matrix effect is
considered individually with a singlemodel per analyte and per sample.
Good results have been obtained for the predicted PAHs concentrations,
even when a high concentration of interfering compounds was present
in the test samples.

Based on the obtained results, U-PLS/RBL applied to EEMs proved to
be the best method to provide quantitative information, overcoming
sample matrix effects and presence of unexpected interfering compo-
nents. However, U-PLS/RBL algorithm has two main drawbacks: the
correct estimation of the suitable number of unexpected components
present in the interference set samples, which gets more relevant
when similar samples containing interferences and with reference con-
centrations of the analytes are not available, and the huge computation-
al effort needed to calculate as many models as (nr. analytes × nr.
samples), which can last for several days compared with the few mi-
nutes needed to obtain a single PARAFAC orMCR–ALSmodel describing
all samples and analytes in the system of interest.

5. Conclusions

MCR–ALS, PARAFAC and U-PLS/RBL algorithms were tested and
compared to obtain qualitative and quantitative information of analytes
and interferences in complex samples of PAHmixtures analyzed by EEM
fluorescence spectroscopy. Advantages and drawbacks associated with

these methods relate mainly to the main resolution (MCR–ALS and
PARAFAC) or calibration (U-PLS/RBL) purpose of the algorithms.

Thus, MCR–ALS and PARAFAC are clearly the methods recommend-
ed for a fast qualitative and quantitative screening of environmental
samples. Even in samples containing 10 analytes with overlapped sig-
nals and several interferences, the single resolution model provided
by both algorithms manages to recover the identity (spectral profiles)
of the analytes and is able to find out the identity of interfering com-
pounds, e.g., anthracene, when the signal of the unexpected compound
is within the spectral working range. It is important to note this capabil-
ity for both methods, which are often assumed to be able to work only
with systems with a small number of compounds. It is interesting to
stress the effect ofMCR–ALS constraints in the context of these complex
systems, notably the correspondence of species to identify more clearly
the analytes present in the sample and the partial trilinearity, which can
provide a more accurate description of the system behavior when devi-
ations from ideal trilinearity due to residual scattering exist. The active
use of this kind of constraints is still not sufficiently exploited and re-
mains a point for which more general diffusion within the chemical
community should be performed.

Quantitative information can also be extracted by both MCR–ALS
and PARAFAC algorithms, although predicted concentration values can
be sometimes affected by changes in the signal-to-concentration ratio
(matrix effect) of the real samples when compared with a calibration
set without interferences. Since these algorithms are not calibration-
oriented methods, they are more sensitive to sample matrix effects.
However, relative concentration values are always correctly estimated
and this provides a good screening methodology to have approximate
concentration values and to point out the most contaminated samples,
which may deserve a more accurate quantitative analysis. They would
also be the algorithms of choice when environmental trends in concen-
tration variation (due to seasonality, location or other factors) are the
main purpose of the study rather than an exact determination of analyte
concentration in samples.

U-PLS/RBL, the only pure calibration method, provided the best
quantitative information for samples containing interferences and po-
tential sample matrix effect. U-PLS/RBL provided good quantitative re-
sults with low values of RMSEP and REP below 1.8 ng mL−1 and 20%
respectively, which can be comparable to those provided by separation
techniques,more expensive and slower, in this kind of samples. Howev-
er, it presented asweak points the difficulty in estimating the number of
unexpected contributions in the RBL step (particularly for low concen-
tration samples) and the huge computation effort linked to calculate
as many models (nr. samples × nr. analytes), which makes the algo-
rithm unsuitable for fast screening purposes.

From all of what has been commented above, it seems recommend-
able to use a combination of the presented algorithms. A first ap-
plication of PARAFAC or MCR–ALS, for screening purposes, with the
added value of detecting unexpected compounds in the system, and
the capability to point out the most contaminated samples, which are
the most relevant from an environmental point of view. For the most

Table 10
Statistical results for the quantification of the target PAHs in interfering samples by U-PLS/RBL.

PAH BkF BbF 22B BaP IcdP Chr Flt BaA DahA BghiP

Norm 1 0.40 0.23 0.21 0.14 0.12 0.12 0.12 0.09 0.05
Set no. 1 RMSEPa

(ng mL−1)
1.19 1.79 1.53 1.43 1.18 1.55 1.12 0.62 1.47 2.25

REPb

(%)
12.20 18.36 15.72 14.71 12.11 15.86 11.52 6.37 15.11 23.06

Set no. 2 RMSEPa

(ng mL−1)
0.07 0.15 0.37 0.23 0.50 0.41 0.24 0.17 0.20 0.58

REPb

(%)
6.26 5.43 6.68 8.32 4.59 14.78 4.42 6.26 3.70 10.55

a RMSEP (ng mL−1): Root mean square error of prediction.
b REP (%): Relative error of prediction.

Table 9
Number of RBL latent variables for several samples of set no. 1, estimated according to
Braga and Bortolato methods.

Samples no. 1 2 3 4 5 6 7

PAH Concentration (ng mL−1) 1 2 4 5 15 18 20
IcdP Braga 1 1 3 3 6 7 7

Bortolato 6 9 7 6 6 5 6
DahA Braga 1 1 2 2 3 4 5

Bortolato 8 8 6 6 5 5 6
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contaminated samples, a second step using U-PLS/RBL can be carried
out, to estimate accurately the concentrations of the analytes of interest,
knowing that the concentration predicted will have more reliability than
the first estimate provided by the screening resolution methodologies.

Acknowledgments

The authors gratefully thank the University of the Basque Country
(UPV/EHU, UFI 11/47) and the Spanish Ministry of Science and Innova-
tion (MICINN) for financing the projects PROMESHAP (CTM 2010-
20607) and GRACCIE (CSD 2007-00067), co-financed with FEDER
funds. Saioa Elcoroaristizabal also thanks UPV/EHU for the doctoral
grant and the Chemometrics group of the University of Barcelona (UB)
for its scientific support during her research stage.

References

[1] S.K. Samanta, O.V. Singh, R.K. Jain, Polycyclic aromatic hydrocarbons: environmental
pollution and bioremediation, Trends Biotechnol. 20 (2002) 243–248.

[2] C.A. Menzie, B.B. Potocki, J. Santodonato, Ambient concentrations and exposure to
carcinogenic PAHs in the environment, Environ. Sci. Technol. 26 (1992) 1278–1284.

[3] B.J. Finlayson-Pitts, J.N.J. Pitts, Chemistry of the Upper and Lower Atmosphere: The-
ory, Experiments, and Applications, Academic Press, San Diego, 2000.

[4] International Agency for Research on Cancer (IARC), Polynuclear aromatic com-
pounds, Part 1: Chemical, environmental, and experimental data, Monographs on
the Evaluation of the Carcinogenic Risk of Chemicals to Humans, vol. 321983.
(Lyon, France).

[5] Office of the Federal Registration, Appendix A: priority pollutants, Fed. Regist. 47
(1982) 52309.

[6] International Programme on Chemical Safety, selected non-heterocyclic polycyclic
aromatic hydrocarbons, Environment Health Criteria No. 202,World Health Organi-
zation, Geneva, Switzerland, 1998.

[7] Agency for Toxic Substances, Disease Registry (ATSDR), Chemical and physical infor-
mation, Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs), ATSDR,
Atlanta, Georgia, USA, 1995.

[8] D.L. Poster, M.M. Schantz, L.C. Sander, S.A. Wise, Analysis of polycyclic aromatic hy-
drocarbons (PAHs) in environmental samples: a critical review of gas chromato-
graphic (GC) methods, Anal. Bioanal. Chem. 386 (2006) 859–881.

[9] C.J. Owen, R.P. Axler, D.R. Nordman, M. Schubauer-Berigan, K.B. Lodge, J.P.
Schubauer-Berigan, Screening for PAHs by fluorescence spectroscopy: a comparison
of calibrations, Chemosphere 31 (1995) 3345–3356.

[10] R.C. Sundt, J. Beyer, S. Vingen, M.O. Sydnes, Highmatrix interference affecting detec-
tion of PAH metabolites in bile of Atlantic hagfish (Myxine glutinosa) used for bio-
monitoring of deep-water oil production, Mar. Environ. Res. 71 (2011) 369–374.

[11] W.R. Biggs, J.C. Fetzer, Analytical techniques for large polycyclic aromatic hydrocar-
bons: a review, Trends Anal. Chem. 15 (1996) 196–206.

[12] A.I. Barrado, S. García, E. Barrado, R.M. Pérez, PM2.5-bound PAHs and hydroxy-PAHs
in atmospheric aerosol samples: correlations with season and with physical and
chemical factors, Atmos. Environ. 49 (2012) 224–232.

[13] R. Bro, Multivariate calibration. What is in chemometrics for the analytical chemist?
Anal. Chim. Acta. 500 (2003) 185–194.

[14] G.M. Escandar, N.K.M. Faber, H.C. Goicoechea, A. Muñoz de la Peña, A.C. Olivieri, R.J.
Poppi, Second- and third-order multivariate calibration: data, algorithms and appli-
cations, Trends Anal. Chem. 26 (2007) 752–765.

[15] K. Kumar, A.K. Mishra, Application of parallel factor analysis to total synchronous
fluorescence spectrum of dilute multifluorophoric solutions: addressing the issue
of lack of trilinearity in total synchronous fluorescence data set, Anal. Chim. Acta.
755 (2012) 37–45.

[16] B.M.Wise, N.B. Gallagher, PLS Toolboox Version 1.5 for Use withMatlab, Eigenvector
Technologies, Manson, 1995.

[17] P.K. Hopke, The evolution of chemometrics, Anal. Chim. Acta. 500 (2003) 365–377.
[18] J. Jaumot, R. Gargallo, A. de Juan, R. Tauler, A graphical user-friendly interface for

MCR–ALS: a new tool for multivariate curve resolution in MATLAB, Chemom. Intell.
Lab. Syst. 76 (2005) 101–110.

[19] S. Mas, A. de Juan, R. Tauler, A.C. Olivieri, G.M. Escandar, Application of chemometric
methods to environmental analysis of organic pollutants: a review, Talanta 80
(2010) 1052–1067.

[20] M.L. Nahorniak, K.S. Booksh, Excitation–emission matrix fluorescence spectroscopy
in conjunction with multiway analysis for PAH detection in complex matrices, Ana-
lyst 131 (2006) 1308–1315.

[21] J.A. Arancibia, C.E. Boschetti, A.C. Olivieri, G.M. Escandar, Screening of oil samples on
the basis of excitation–emission room-temperature phosphorescence data and
multiway chemometric techniques. Introducing the second-order advantage in a
classification study, Anal. Chem. 80 (2008) 2789–2798.

[22] R. Bro, PARAFAC. Tutorial and applications, Chemom. Intell. Lab. Syst. 38 (1997)
149–171.

[23] N.K.M. Faber, R. Bro, P.K. Hopke, Recent developments in CANDECOMP/PARAFAC
algorithms: a critical review, Chemom. Intell. Lab. Syst. 65 (2003) 119–137.

[24] A. de Juan, S.C. Rutan, R. Tauler, Chapter 2.19. Two-way data analysis: multivariate
curve resolution — iterative resolution methods, in: S.D. Brown, R. Tauler, B.
Walczak (Eds.), Comprehensive Chemometrics, Chemical and Biochemical Data
Analysis, vol. 2, Elsevier, The Netherlands, 2009, pp. 325–344.

[25] R. Tauler, Multivariate curve resolution applied to second order data, Chemom.
Intell. Lab. Syst. 30 (1995) 133–146.

[26] A.C. Olivieri, On a versatile second-order multivariate calibration method based on
partial least-squares and residual bilinearization: second-order advantage and pre-
cision properties, J. Chemom. 19 (2005) 253–265.

[27] J. Öhman, P. Geladi, S. Wold, Residual bilinearization. Part 1: theory and algorithms,
J. Chemom. 4 (1990) 79–90.

[28] S.A. Bortolato, J.A. Arancibia, G.M. Escandar, Chemometrics-assisted excitation–
emission fluorescence spectroscopy on nylon membranes. Simultaneous determi-
nation of benzo[a]pyrene and dibenz[a, h]anthracene at parts-per-trillion levels in
the presence of the remaining EPA PAH priority pollutants as intereferences, Anal.
Chem. 80 (2008) 8276–8286.

[29] F. Alarcón, M.E. Báez, M. Bravo, P. Richter, G.M. Escandar, A.C. Olivieri, E. Fuentes,
Feasibility of the determination of polycyclic aromatic hydrocarbons in edible
oils via unfolded partial least-squares/residual bilinearization and parallel fac-
tor analysis of fluorescence excitation emission matrices, Talanta 103 (2013)
361–370.

[30] M. Bahram, R. Bro, C. Stedmon, A. Afkhami, Handling of Rayleigh and Raman scatter
for PARAFAC modeling of fluorescence data using interpolation, J. Chemom. 20
(2006) 99–105.

[31] P.H.C. Eilers, P.M. Kroonenberg, Modeling and correction of Raman and Rayleigh
scatter in fluorescence landscapes, Chemom. Intell. Lab. Syst. 130 (2014) 1–5.

[32] J. Christensen, L. Nørgaard, R. Bro, S.B. Engelsen, Multivariate autofluorescence of in-
tact food systems, Chem. Rev. 106 (2006) 1979–1994.

[33] R. Bro, H.A.L. Kiers, A new efficient method for determining the number of compo-
nents in PARAFAC models, J. Chemom. 17 (2003) 274–286.

[34] R. Tauler, M. Maeder, A. de Juan, Chapter 2.24. Multiset data analysis: extendedmul-
tivariate curve resolution, in: S.D. Brown, R. Tauler, B. Walczak (Eds.), Comprehen-
sive Chemometrics. Chemical and Biochemical Data Analysis, vol. 2, Elsevier, The
Netherlands, 2009, pp. 473–505.

[35] D.M. Haaland, E.V. Thomas, Partial least-squares methods for spectral analyses. 1.
Relation to other quantitative calibration methods and the extraction of qualitative
information, Anal. Chem. 60 (1988) 1193–1202.

[36] C.A. Andersson, R. Bro, The N-way toolbox for MATLAB, Chemom.Intell.Lab.Syst. 52
(2000) 1–4.

[37] A.C. Olivieri, H.L. Wu, R.Q. Yu, MVC2: a MATLAB graphical interface toolbox for
second-order multivariate calibration, Chemom. Intell. Lab. Syst. 96 (2009)
246–251.

[38] J.N. Miller, J.C. Miller, Statistics and chemometrics for analytical chemistry, 5th ed.
Pearson Education Limited, Edinburg Gate Harlow, England, 2010.

[39] J.W.B. Braga, R.L. Carneiro, R.J. Poppi, Evaluation of the number of factors needed for
residual bilinearization in BLLS and UPLS models to achieve the second-order ad-
vantage, Chemom. Intell. Lab. Syst. 100 (2010) 99–109.

74 S. Elcoroaristizabal et al. / Chemometrics and Intelligent Laboratory Systems 132 (2014) 63–74

http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0005
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0005
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0010
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0010
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0015
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0015
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0210
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0210
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0210
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0210
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0175
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0175
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0180
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0180
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0180
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0185
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0185
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0185
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0020
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0020
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0020
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0025
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0025
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0025
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0030
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0030
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0030
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0035
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0035
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0040
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0040
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0040
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0045
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0045
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0050
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0050
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0050
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0055
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0055
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0055
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0055
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0190
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0190
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0060
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0065
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0065
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0065
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0070
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0070
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0070
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0075
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0075
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0075
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0080
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0080
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0080
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0080
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0085
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0085
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0090
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0090
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0195
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0195
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0195
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0195
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0100
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0100
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0105
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0105
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0105
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0110
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0110
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0115
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0115
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0115
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0115
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0115
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0120
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0120
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0120
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0120
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0120
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0125
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0125
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0125
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0130
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0130
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0135
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0135
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0140
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0140
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0145
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0145
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0145
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0145
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0150
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0150
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0150
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0200
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0200
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0160
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0160
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0160
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0205
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0205
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0165
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0165
http://refhub.elsevier.com/S0169-7439(14)00006-9/rf0165


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAPER 03 
 

Chemometric determination of PAHs in 

aerosol samples by fluorescence 

spectroscopy and second-order data analysis 

algorithms 

Saioa Elcoroaristizabal, Anna de Juan, Jose Antonio García, 

Iñaki Elorduy, Nieves Durana, Lucio Alonso 

Journal of Chemometrics 28:4 (2014) 260-271 



 



Chemometric determination of PAHs in aerosol
samples by fluorescence spectroscopy and
second-order data analysis algorithms
Saioa Elcoroaristizabala*, Anna de Juanb, Jose Antonio Garcíaa,
Iñaki Elorduya, Nieves Duranaa and Lucio Alonsoa

The development of a method based on the combination of excitation–emission fluorescence matrices (EEMs) and
second-order algorithms is proposed to identify and quantify 10 polycyclic aromatic hydrocarbons (PAHs) in extracts
of aerosol samples, a particularly complex sample matrix because of the low amount of PAHs and the numerous
fluorescent interferences. Parallel factor analysis, unfolded partial least squares coupled to residual bilinearization
(RBL) and multivariate curve resolution – alternating least squares offered satisfactory results for their identification
and quantification andwere also helpful for the optimization of the extraction procedure for these substances bymeans
of analysis of a standard reference material.
Multivariate curve resolution – alternating least squares and parallel factor analysis combined with EEM proved to be

fast and cheap analysis methods that are able to do semiquantitative monitoring of PAHs patterns in the inhalable and
respirable fractions of atmospheric aerosols, important features for routine environmental monitoring. Accurate quan-
tifications could also be achieved when the strategy of standard addition method was used.
Unfolded partial least squares/RBL achieved slightly better quantitative results when sample matrices were moder-

ately complex; in aerosol sample analysis, the selection of number of RBL contributions turned particularly difficult—
because of the lack of information on the sample composition—and the time-consuming application of the method
did not suggest its use for routine environmental monitoring.
Finally, results of EEM with second-order methods in agreement with gas chromatography-mass spectrometry

analysis of ambient air samples proved the suitability of the methodology proposed because of the sensitivity of
fluorescence measurements and the lower analytical cost and fast computation time comparedwith standard analytical
procedures. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: particle-bound PAHs; fluorescence excitation–emission matrices; PARAFAC; MCR-ALS; U-PLS/RBL

1. INTRODUCTION

Polycyclic (or polynuclear) aromatic hydrocarbons (PAHs) are
complex organic compounds that are primarily released to the
atmosphere during incomplete combustion processes of organic
material. Major sources of PAHs are energy generation processes
[1], including industrial combustion [2], traffic emissions, and
domestic heating systems [3]. Forest fires and volcanic eruptions
are also natural sources of PAHs [4]. PAHs are of environmental
concern because of their persistence and toxicity, related to
carcinogenic and/or mutagenic properties [5]. After emission to
the atmosphere, PAHs are ubiquitously distributed and parti-
tioned between the gaseous and the particulate phase [6], with
the most toxic PAHs linked to the respirable fraction of particu-
late matter (aerodynamic diameter ≤2.5μm) [7]. Specifically, in
urban and suburban areas, PAHs are present in the fine particulate
fraction (PM2.5), and their emissions aremainly attributed to vehicle
exhausts [8]. As a consequence, these compounds have been listed
as priority pollutants. The United States Environmental Protec-
tion Agency (US-EPA) regulates a series of 16 unsubstituted PAHs
(16 US-EPA PAHs) [9], and the World Health Organization adds 17
additional PAHs to make a total of 33 PAHs [10]. The European
Union Directive 2004/107/EC [11] on ambient air quality sets a
target value for benzo[a]pyrene (BaP) (1 ngm�3 in the PM10

fraction, annual average) taken as indicator for total particulate
carcinogenic PAHs. This Directive also mentions five more PAHs
to assess the contribution of PAH in ambient air: benzo[a]anthra-
cene (BaA), benzo[b]fluoranthene (BbF), benzo[j]fluoranthene,
benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (IcdP), and
dibenzo[a,h]anthracene (DahA). However, PAH data in urban air
are still scarce, and most of the studies show large spatial and
temporal uncertainties because of the complex sampling and
analytical procedures required. In fact, the analysis of PAHs in
aerosol samples faces many problems because of the very low
PAH concentrations in ambient air as well as the presence of other
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organic compounds that can interfere with the PAH determination
[12]. The most frequently used techniques in standard procedures
rely on chromatographic methods (gas chromatography-mass
spectroscopy [GC-MS], high-performance liquid chromatography
[HPLC]-UV/vis or HPLC-FLD) [13,14]. Nevertheless, these measure-
ments tend to be laborious, relatively expensive, and time-
consuming, because they require a great pretreatment of the
samples in order to increase the sensitivity and selectivity of the
PAH analysis. Therefore, there is still a great interest in developing
more sensitive and selective methods to analyze PAHs in aerosol
samples for routine analysis involved in environmental control
and health protection.

Fluorescence spectroscopy is an extremely sensitive analytical
technique for PAH determination, which can be detected at sub-
ppb levels because of their luminescent properties in the UV–vis
range [15]. However, the application of the traditional fluores-
cence spectroscopy has been limited by its lack of selectivity
because of the broad excitation and emission spectra of PAHs
that complicate a multi-component analysis in environmental
samples. In this regard, synchronous fluorescence spectroscopy
has been applied to optimize the spectral resolution of PAHs.
For air quality purposes, the synchronous fluorescence tech-
nique has been mainly used to identify PAHs in aerosol samples
[16] by using a specific Δλ (difference between the positions of
emission and excitation monochromators). In this sense, the
identification capacity is improved by selecting the most suitable
value of the Δλ parameter for each particular component [17].
Even so, synchronous fluorescence spectroscopy cannot always
avoid spectral overlap for certain complex multi-component
mixtures, common in environmental samples with an unknown
fluorescent background [18]. Consequently, many studies have
been made for qualitative analysis of multi-component PAH
samples by synchronic fluorescence [19], while quantitative
determination has rarely been achieved [20].

Another modern approach to improve the selectivity of
fluorescence analysis is based on the combination of fluores-
cence excitation–emission fluorescence matrices (EEMs) and
second-order multivariate methods, which provides an alterna-
tive for qualitative and quantitative PAH environmental moni-
toring [21,22]. Data analysis methods able to work with
second-order data, such as EEM, are capable to determine
analytes in the presence of interferences, even if these unknown
compounds are absent in the calibration samples, a property
known as ‘second-order advantage’ [23]. The most relevant
second-order algorithms applied to the analysis of complex mix-
tures are parallel factor analysis (PARAFAC) [24], multivariate
curve resolution – alternating least squares (MCR-ALS) [25–27],
and multidimensional (N-partial least squares [PLS]/residual
bilinearization [RBL]) and unfolded PLS (U-PLS/RBL) [28] coupled
to RBL. In the recent years, the applicability of second-order
multivariate methods has been increasingly investigated for
environmental monitoring, because of the inherent complexity
of environmental samples. For instance, Nahorniak and Booksh
[29] employed a field-portable EEM fluorometer in conjunction
with PARAFAC for sub-ppb PAH determination in the presence
of spectral interferences. Bosco and Larrechi [30] applied MCR-
ALS and PARAFAC to study the photodegradation processes of
PAHs by using three-dimensional excitation–emission fluores-
cence spectra. Beltrán et al. [31] compared different multivariate
calibration techniques such as PARAFAC, PLS1, PLS2, three-way
PLS1, and three-way PLS2 to quantify 10 PAHs from the EEM
spectra of a set of standards in samples of tap and mineral

waters. Nevertheless, to our knowledge, the use of EEMs coupled
to second-order calibration algorithms has not yet been evalu-
ated to carry out a qualitative and quantitative analysis of multi-
ple PAHs in extracts of aerosol samples, a much more complex
type of chemical sample from an analytical and a compositional
point of view.
Aerosol samples usually contain interfering species that can

exhibit significant spectral overlap and relative fluorescence
intensities higher than those of the target analytes. Additionally,
sample matrix effects should be considered in the analysis of
atmospheric particulate matter, where other organic compounds
could affect the fluorescence emission of the PAHs, by leading to
signal enhancement or signal suppression. Therefore, the
application of flexible methods that can successfully model the
different fluorescence contributions is required in order to
achieve a good qualitative and quantitative description of this
kind of samples.
In this work, the feasibility of simultaneous determination of

10 PAHs in extracts of aerosol samples is assessed using EEMs
and three second-order algorithms: PARAFAC, MCR-ALS, and
U-PLS/RBL. The target compounds are nine particle-bound
PAHs of the US-EPA priority list: fluoranthene (Flt), BaA, chrysene
(Chr), BbF, BkF, BaP, DahA, benzo[ghi]perylene (BghiP), IcdP, and
the internal standard 2-2′ binaphthyl (22B).
First, conclusions made in a previous study using the second-

order resolution methods (PARAFAC and MCR-ALS) and the
calibration method (U-PLS/RBL) for qualitative and quantitative
analysis of the target PAHs in the presence of synthetic mixtures
with different interferences are summarized to point out the
optimal application of the algorithms for this kind of problem
and the advantages and drawbacks of each of them depending
on the goal of the analysis [32]. Then, these methods were
applied to optimize the extraction procedure for aerosol sample
analysis by analyzing EEM spectra obtained from a standard
reference material (SRM) (National Institute of Standards and
Technology [NIST] SRM 1649b urban dust) subject to increasing
extraction times. In addition, because of the complexity of SRM
and aerosol samples, the use of second-order standard addition
method to avoid sample matrix effects was tested. Finally, the
possibility to identify and quantify PAHs in extracts of real
particle collection filters from EEM measurements and second-
order data analysis was assessed and compared with results
obtained from GC-MS, which showed that EEM coupled with
suitable chemometric methods satisfies conditions for a fast
detection of PAHs at ppb levels.

2. EXPERIMENTAL

2.1. Reagents and solutions

Flt, BaA, Chr, BbF, BkF, BaP, DahA, BghiP, IcdP, and 22B solutions
at 10 ngμL�1 in acetonitrile were obtained from Dr. Ehrenstorfer
GmbH (Augsburg, Germany). Two mixtures of the 16 US-EPA
PAHs were used: SV calibration mix #5/610 PAH mix solution in
methylene chloride at 2000 ngμL�1/each compound, from
RESTEK corporation, and PAH Mix 39 supplied by Dr. Ehrenstorfer
with a variable PAH concentration in the range 10–100 ngμL�1

in acetonitrile.
For validation of the extraction method, the SRM (SRM 1649b

urban dust) provided by NIST (USA) was used. The solvent used
for preparing the stock, working solutions, and extraction was
N-hexane 95% analytical HPLC grade (Lab-scan analytical
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sciences). All the solutions were stored in capped amber vials
into a refrigerator at 4°C.

2.2. Air sampling procedure

PM10 (n=10) and PM2.5 (n=7) aerosol samples were collected
using a low-volume sampling system (Derenda LVS3.1 sampler,
Berlin, Germany) at a flow rate of 2.3m3h�1. Particles were
captured onto 47-mm diameter quartz-fiber filters (Whatman
International Ltd., England). Filters were kept in a vacuum desicca-
tor for 24 h before and after the sampling to remove any moisture
content. The sampling site was at the School of Engineering
(longitude 2°56′56.24″W, latitude 43°15′44.86″N), located in an
urban area near the central bus station of Bilbao (Spain). From
February to March 2013, 17 samples were taken: 24 h average
samples on labor days (n=12) and 72h average samples on week-
ends (n=5). After collection, the filters were wrapped separately in
aluminum foils and stored in a fridge at 4°C until extraction.

2.3. Analytical procedures

Extractions of ambient aerosol samples and SRM were
performed using an automatic Soxhlet extractor system B-811
(BÜCHI, Switzerland), in warm mode, and the N-hexane HPLC
grade as solvent. Automatic Soxhlet extractor in warm mode
demonstrated advantages for reducing extraction time against
conventional Soxhlet extraction in previous works in our labora-
tory. To correct for the extraction efficiency, 100μL of 22B at
10 ngμL�1, used as surrogate, were added to the samples prior
to the extraction process.
Samples of ~150mg of SRM were extracted and put to 100mL

of final volume. Subsequently, an aliquot was used to record the
EEMs by fluorescence spectroscopy. Ambient aerosol samples
were analyzed by both fluorescence spectroscopy and GC-MS.
The extracts were concentrated to 10mL, and, then, an aliquot
of 5mL was taken for each analysis. For GC-MS analysis, the
extract was concentrated under a nitrogen stream until a volume
of 1mL. EEM measurements were carried out by diluting the
sample solution in order to avoid inner filter effects.
Fluorescence measurements were recorded using a modified

modular spectrofluorometer FluoroLog-3 (Horiba Jobin Yvon
Inc.), equipped with two Czerny-Turner monochromators and a
450W xenon lamp. Throughout the measurements, the slit widths
for both excitation and emission monochromators were set to
5nm. A high-performance R928 photomultiplier was employed
for collection of the EEM fluorescence spectra at an integration

time of 0.1 s. Standard quartz cells of 1 cm path length were used
to carry out the measurements at room temperature. EEMs were
recorded in the excitation range of 240–320nm (Δλ =2nm) and
in the emission range of 290–550 nm (Δλ = 2 nm). Addition-
ally, the spectral region containing no relevant information
(λem from 290 to 330nm) was removed, generatingmatrices sized
111×41 per sample. The spectra were corrected for variations with
wavelength of lamp intensity and photomultiplier sensitivity, and
the samples were analyzed in signal/reference mode.

2.4. Excitation–emission fluorescence matrice datasets

Five sets of EEMs data were analyzed with diverse conditions of
sample complexity, as described in the following text.

2.4.1. Pure component samples (dpure)

A total of 81 EEM pure PAH spectra of the 10 target PAHs, in a
concentration range from 0.01 to 25ngmL�1 (always keeping
the linear range) form this set (dpure), used to provide information
in the analysis of more complex samples. Figure 1 presents the
excitation and emission spectra in N-hexane of the selected PAHs.

2.4.2. Calibration set samples (dcal)

A set of 49 calibration solutions with the 10 PAHs was measured.
The samples containing all the PAHs at seven different concentra-
tions were prepared based on a semifactorial design in the concen-
tration range of 1–25ngmL�1 for 22B and BghiP; 0.5–20.3ngmL�1

for IcdP, BaA, Flt, DahA, and BbF; 0.3–20.1ngmL�1 for BaP and Chr;
and 0.3–18.3 ngmL�1 for BkF.

2.4.3. Validation set samples

Two different sets of validation samples were prepared. Valida-
tion set (dval). 25 test solutions of mixtures containing only
the 10 PAHs were prepared in order to test the capability of
the algorithms for qualitative and quantitative analysis. Interfer-
ence set (dinterf). Two sets of mixtures of the 16 US-EPA PAHs
were prepared as follows: Set no.1. Samples were prepared by
dilution of a stock solution containing each PAH compound in
a concentration of 2000 ngμL�1 (SV calibration mix #5/610
PAH) to achieve 12 different concentration levels ranging from
1 to 20 ngmL�1, in triplicate. The total number of samples was
12 × 3 = 36. PAHs are at the same concentration level in each
sample. Set no. 2. Samples were prepared by dilution of the stock
solution PAH mix 39, which presents a variable concentration of

Figure 1. Excitation and emission spectra of (A) benzo[ghi]perylene (BghiP), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthra-
cene (DahA), benzo[a]anthracene (BaA) and (B) indeno[1,2,3-cd]pyrene (IcdP), benzo[b]fluoranthene (BbF), 2-2′ binaphthyl (22B), chrysene (Chr),
fluoranthene (Flt).
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the PAH compounds, to achieve 10 different concentration levels
in duplicate, ranging from 0.2 to 20 ngmL�1. The total number of
samples was 10×2=20.

The concentration ranges for the different PAHs of the valida-
tion set samples were set in the same range of the calibration
samples and are comparable to those that could be expected
for the selected PAHs in an environmental scenario.

2.4.4. NIST SRM 1649b reference material samples (dextract)

Several samples of NIST SRM 1649b urban dust containing the
nine US-EPA PAHs were analyzed. These samples were used for
a double objective: (i) two samples of 150mg were analyzed at
each extraction time: 3, 5, and 8 h (total number of samples = 6),
to optimize an extraction protocol to be used for further aerosol
analysis; and (ii) from five to seven additions of increasing
amounts of known concentrations of the 10 target PAHs were
included in all extracts at the different times, in a suitable
concentration range, to evaluate the suitability of second-order
standard addition method for the quantitative analysis of PAHs
when potential sample matrix effects may occur.

2.4.5. Urban aerosol samples (dair)

Samples of PM10 (n= 10) and PM2.5 (n=7) collected for 24 h
(labor days, n=12) and 72 h periods (weekend, n=5) were
extracted for analysis by GC-MS and fluorescence spectroscopy.
EEMs were measured for each sample, and the concentration
of the nine particle-bound US-EPA PAHs was estimated using
the proposed chemometric algorithms and the standard GC-MS
reference technique [33].

3. DATA TREATMENT AND METHODS

3.1. Preprocessing of excitation–emission fluorescence
matrices datasets

Some preprocessing steps were adopted tominimize the influence
of scattering bands. Solvent blank subtractions were made to

mitigate the Raman scattering from each corrected EEM. Moreover,
the correction function EEMscat, available for MATLAB [34], was
used to avoid the effects of Rayleigh and Raman scattering.

3.2. Methods

An EEM of a pure compound, obtained recording the emission
spectra at various excitation wavelengths, can be described by
a bilinear model formed by the product of the vectors corre-
sponding to its excitation and emission spectra. In mixtures,
bilinearity of the data matrix means that the contribution of
several compounds in the two modes of measurements are
additive. Sets of several EEM matrices from different samples
can be reorganized in different ways (Figure 2), depending on
the second-order algorithm used for the analysis: (A) as a
three-way array (PARAFAC), (B) as a multiset or augmented
matrix (MCR-ALS), or (C) forming a matrix of I vectorized samples
(U-PLS/RBL). The data configurations explain the kind of model
decomposition associated with each of the algorithms. Thus,
PARAFAC yields a trilinear decomposition of the data, in which
matrix A accounts for pure normalized excitation spectra, matrix
B for the related normalized emission spectra, and matrix C for
the PARAFAC scores that contain relative concentration values
of the compounds in the different samples. MCR-ALS provides
a basic bilinear decomposition, in which ST contains normalized
pure emission spectra and the submatrices in C the excitation
profiles related to each of the samples. Integrating the areas
under the excitation profiles in each of the samples, relative
concentration values analogous to PARAFAC scores are obtained
(we can call them MCR-ALS scores for analogy). U-PLS/RBL is a
calibration method, and, therefore, no decomposition such as
that in PARAFAC or MCR-ALS is obtained; instead, matrices X
(containing vectorized EEM matrices) and Y (containing concen-
tration of analytes) from calibration samples are related through
a PLS model, and the model obtained is used to predict new
concentration values for unknown samples from the related
EEM matrices. Whenever unexpected interferences are found in
new samples that were not present in the calibration set, the

Figure 2. Graphical representation of the data structure employed by the second-order algorithms: (A) parallel factor analysis, (B) multivariate curve
resolution – alternating least squares, and (C) unfolded partial least squares/residual bilinearization.
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additional RBL step has to be used for accurate prediction of the
analytes. Detailed theory about PARAFAC, MCR-ALS, and U-
PLS/RBL algorithms can be found in several theoretical works
[24–27]. Only some particular considerations taken into account
to build each model are presented in the succeeding text.

3.2.1. Parallel factor analysis and multivariate curve resolution –
alternating least squares models

Parallel factor analysis and MCR-ALS algorithms were applied by
combining the EEM from different kinds of samples depending
on the problem to be solved, as shown in Figure 3. These sets of
samples were organized as three-way data or multiset structures,
depending on the algorithm used. Samples of individual PAHs
(dpure) were always used to improve the identification of com-
pounds in the results provided by these resolution methods and
were rescaled to balance the relative unit fluorescence intensities
of the related PAHs. The calibration set (dcal) was used to create
the calibration curve and to carry out the predictions of the sam-
ples analyzed (dval, dinterf, dair) except in the case of extraction
data (dextract) because standard addition method was used.
To initialize MCR-ALS models, a combination of the known

spectral profiles of the analyte standards with additional spectral
contributions when interfering species that were present, found
by an algorithm based on SIMPLISMA [35], was used. PARAFAC
initialization was made by using the best-fitting model of several
models fitted using a few iterations.
Both algorithms applied non-negative constraints in all possi-

ble modes (concentration, excitation, and emission profiles) to
obtain meaningful profiles. In addition, MCR-ALS model used
supplementary constraints, such as correspondence among
species, that is, the presence/absence of certain compounds in
samples was actively set. The trilinearity behavior was also applied
as an optional constraint by MCR-ALS model to the different
components in the system. This allows for the implementation of
total trilinearity or partial trilinearity [25,26]. In the partial trilinear
model, the trilinear behavior was always applied to the contribu-
tion of the analytes (PAHs), whereas the rest of components, which
could include combinations of interferences and residual scatter-
ing, were modeled as bilinear contributions.
The selection of the number of components in PARAFAC or

MCR-ALS models was performed by building several models with
an increasing number of factors. The core consistency test
(CORCONDIA) [36], the percentage of fit (%), the variance explained
(r2), and the recovery of spectra by emission and excitation correla-
tion coefficients (rem and rex) were used to select the most suitable
number of factors in PARAFAC models. All criteria, except
CORCONDIA, were used to select the size of MCR-ALS models.

3.2.2. Unfolded partial least squares/residual bilinearization
models

Because of the high differences between fluorescence intensities
and to the spectral overlap of the selected PAHs, U-PLS was
performed by using PLS1 models, that is, by modeling separately
each individual PAH. For U-PLS predictions, the original matrix X
—including only the calibration set samples (dcal)—is pre-
processed by mean-centering. The optimum number of factors
in the calibration model for each PAH was selected by applica-
tion of the F-ratio criterion proposed by Haaland and Thomas
[37]. This F-ratio is calculated as F(A) = PRESS(A<A *)/PRESS(A *),
where PRESS is the predicted error sum of squares, defined as
PRESS ¼ ∑I1ðynominal � ypredicatedÞ2, A is a trial number of factors,
and A* corresponds to the minimum PRESS. The number of
optimum factors was selected as that leading to a probability
of less than 75% with F> 1.

In the presence of unexpected components, U-PLS model was
combined with the post-processing RBL procedure. When using
U-PLS/RBL, in addition to the latent variables estimated to build
the calibration model, setting an additional number of factors
corresponding to the unexpected constituents is required for
the RBL step. The number of RBL factors must be calculated for
each new sample and individual PAH model, and the final pre-
diction is selected after testing different models with an increas-
ing number of RBL factors. If the RBL procedure is successfully
applied, the residual corresponding to the difference between
the test sample signal and that modeled after RBL process
should be comparable to the instrumental noise. The number
of unexpected components for the RBL step was calculated con-
sidering the methods proposed by Bortolato et al. [38] and Braga
et al. [39]. Bortolato et al. [38] estimate the number of optimum
RBL latent variables based on a ratio between the RBL residuals
(SRBL): SRBL= ‖eRBL‖/[(J�Nunx)(K�Nunx)�A]1/2 and a penalized re-
sidual error (Spen): Spen= SRBL[(JxK)/[(J�Nunx)(K�Nunx)�A]1/2].
This ratio is computed for increasing values of unexpected com-
ponents (Nunx) as follows: R= spen(Nunx)/[sRBL(Nunx� 1)]. The first
value of Nunx for which R did not exceed 1 was then selected
as the number of RBL components. In contrast, Braga et al. [39]
proposed a method based on the comparison of the residuals
of the U-PLS/RBL test samples with results of t-student confi-
dence intervals for the mean residuals of decomposition of the
calibration samples. These two methods were considered to
estimate the number of unexpected components for each PAH
U-PLS model and sample.

3.3. Software

All the routines were implemented in MATLAB version R2010
(The MathWorks, MA, USA). MCR-ALS with a graphical user-friendly
interface was downloaded from [40]. The routine used for
PARAFAC calculations is available at [41]. U-PLS/RBL algorithm
was implemented using the graphical interface of the MVC2 tool-
box downloaded from [42].

4. RESULTS AND DISCUSSION

First of all, a summary of the main conclusions of the use of the
three second-order algorithms PARAFAC, MCR-ALS, and U-PLS/
RBL on the set of synthetic validation samples with and without
interferences is presented to point out differences among
these second-order methods when applied to the analytes

Figure 3. Multisets used for PAHs calculation by parallel factor analysis
and multivariate curve resolution – alternating least squares.
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studied (Section 4.1). More detail and quantitative parameters
are found in the previous study related to these data sets
[32]. These findings are useful to understand the strategies
of analysis and the new results presented in Section 4.2,
devoted to the optimization of the extraction protocol for
aerosol samples and the testing of the standard addition
method for quantitative analysis, and Section 4.3, dedicated
to the analysis of ambient air aerosol samples and the com-
parison with GC-MS results.

4.1. Study of synthetic validation samples with and with-
out interferences

The MCR-ALS, PARAFAC, and U-PLS/RBL were firstly tested to
identify and quantify the 10 target PAHs in complex synthetic
samples of PAH mixtures of known concentration, in order to
determinate the optimal analysis features of each algorithm.
These algorithms were compared by using a validation set (dval)
containing only the 10 PAHs, and with solutions of SRMs
containing interfering species (dinterf), such as the US-EPA listed
16 PAHs, which exhibit significant spectral overlap.

4.1.1. Qualitative analysis

Parallel factor analysis and MCR-ALS algorithms belong to the
family of resolution methods and, therefore, provide meaningful
pure compound profiles, which are useful to characterize and
identify the analytes in a sample. Despite the high complexity
of the samples analyzed, with 10 analytes (dval) or 16 com-
pounds in the samples with interferences (dinterf), both
PARAFAC and MCR-ALS managed to extract meaningful excita-
tion and emission profiles (rem and rex >0.97 for almost all the
compounds) and to identify clearly the PAHs present in the
different set of validation samples.

Some relevant points to be mentioned are the following: (i)
the use of the set of samples of the pure standards (Figure 3(A)
and 3(B)), in both PARAFAC and MCR-ALS models, which were
also rescaled to balance their relative fluorescence intensities
allowed for the identification of all PAHs; in this sense, the active
use of the identity information in the constraint of correspon-
dence of species in MCR-ALS model made that this algorithm
could identify more easily the different PAHs in models with less
complexity (number of components); (ii) the introduction of a
partially trilinear model in MCR-ALS accommodated more easily
the modeling of contributions other than the analytes, formed
by linear combinations of signals of interfering minor com-
pounds overlapping with residual scattering, the behavior of
which was closer to a bilinear description than to a perfect
trilinear behavior. This effect was more noticeable in complex
samples with interferences and was confirmed by the large
decrease of the CORCONDIA parameter in PARAFAC, where a
complete trilinear model is used.

4.1.2. Quantitative analysis

When the purpose of the analysis is the quantification, PARAFAC
and MCR-ALS can also be compared with U-PLS. As has been
discussed, because of the spectral characteristics of the target
PAHs, PLS1 models were employed in the calibration samples
for modeling each compound individually. The complexity of
their simultaneous determination was reflected by the wide
number of latent variables needed to model each PAH, ranged
from 6 for 22B, a compound with high signal and least signal

overlap, to 12 for BghiP, the PAH with lowest fluorescence inten-
sity, and with a high signal overlap with other compounds.
Comparing the performance of each model to quantify

simultaneously the 10 target PAHs in validation samples without
interferences (dval), U-PLS gave slightly better quantitative
results (REP< 10%, except for the case of BghiP), because it is a
calibration-oriented method, but even so, PARAFAC and MCR-
ALS achieved only slightly worse figures of merit. However, when
unexpected compounds were present in the samples (dinterf),
the absolute quantitative predictions of PARAFAC and MCR-ALS
models were generally worse, because these algorithms are
sensitive to potential changes in signal-to-concentration ratio
because of the sample matrix and have no way to correct for this
problem when external calibration is used. However, good
relative quantitative information was always obtained among
samples, showed by the high correlation coefficients (r2> 0.95)
among predicted and nominal values achieved for almost all
PAHs. In contrast, U-PLS/RBL model provided good quantitative
results with low values of RMSEP and REP below 1.8 ngmL�1

and 20%, respectively. However, the selection of the right num-
ber of RBL factors was a difficult task, and the computational
time required to calculate each PAH concentration was ex-
tremely high (the RBL step has to be applied separately to each
sample and to each analyte) compared with PARAFAC and
MCR-ALS, which use a single model to determine all PAHs in
all samples.

4.2. NIST SRM 1649b reference material samples

4.2.1. Qualitative analysis (optimization of the extraction protocol)

Because PARAFAC and MCR-ALS are the appropriate methods for
qualitative analysis, provide always good relative quantitative
information and are computationally very fast, these were the al-
gorithms chosen to optimize the extraction protocol on samples
from an SRM of urban dust. The effect of the extraction time was
investigated with samples of 150mg of NIST SRM 1649b urban
dust in duplicate to develop an extraction protocol to be applied
in further aerosol analysis. The sample sets used for PARAFAC
and MCR-ALS analyses are shown in Figure 3(C). In this case,
the pure component samples (dpure) were used to help in the
identification of the presence of the selected PAHs in the ex-
tracts (dextract) of particulate samples. Figure 4(A) and 4(B) show
the three-dimensional plot for the EEMs of a calibration samples
(dcal) and an urban dust sample (dextract).
To identify all target PAHs, a partial trilinear 15-factor MCR-ALS

model was needed (lack of fit of 9.73% and 99.05% of variance
explained). Correlation coefficients rem,ex> 0.96 were obtained
in both excitation and emission mode, with the exceptions of
the excitation profiles of BghiP (rex = 0.806) and BbF (rex = 0.841).
It should be noted that the excitation mode was more severely
affected by spectral overlap. Because of the complexity of the
SRM samples, more components than the selected PAHs were
extracted and were present as interferences. As a consequence,
MCR-ALS model resolved five additional factors related to inter-
fering contributions. These unknown compounds were needed
to describe the variance of the total signal, but they did not
follow a trilinear behavior because they were mixtures of many
other fluorescent species (major or minor) and residual scatter-
ing. Figure 5(A) shows the excitation and emission spectra of
the five additional factors estimated by PARAFAC, where it can
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be seen that factors from 1 to 3 show spectral profiles, which are
a linear combination of many unknown species, whereas factors
4 and 5 are related to scattering residuals. Again, PARAFAC
models were affected by this lack of trilinearity, shown through
a low value of the core consistency test, even though the
variance explained was 99.78% and 4.60% of lack of fit. In this
situation, where the analyte of interest and the interfering back-
ground have similar relative intensities and not all the contribu-
tions follow a trilinear behavior, the additional implementation
of the correspondence among species in the partial trilinear
MCR-ALS model, allowed for better spectral recoveries of the
analytes of interest.
To see the effect of the extraction time on the recovery of the

PAHs from the urban dust sample, the MCR-ALS scores of the 10
target PAHs (normalized), representing the relative concen-
tration in the respective samples were displayed versus the
extraction time (Figure 6(A)). As can be seen, it is clear that the
concentration highly increased in the extraction time range from
3 to 5 h, but no significant differences were obtained when the
extraction time is further increased until 8 h. Only the concen-
tration of DahA increased when going until 8 h of extraction. In
contrast, the recovery of other PAHs, such as Flt (the most
volatile one), was reduced with increasing extraction times, likely
because of the losses of the analyte. As a specific case, BaP may
be affected by the interaction with other analytes present in the
background. Besides, it is interesting to note that the concentra-
tion of the 22B compound, selected as surrogate to indicate the
extraction efficiency and allow corrections in quantitative analy-
sis, behaved in the same way as the majority of PAHs. Therefore,
the 5-h procedure was selected as the extraction protocol for
aerosol sample analysis.

4.2.2. Quantitative analysis (testing standard addition method)

Because of the presence of a significant background signal
associated with the complexity of the sample matrix and the pres-
ence of interferences, second-order standard addition methods
were tested to carry out the quantitative analysis by PARAFAC
and MCR-ALS [43] models. Thus, the analyte scores related to the
different additions of analytes over the extracted samples were
employed to build a pseudo-univariate standard addition calibra-
tion model per analyte and sample, where the scores (from MCR
or PARAFAC) were regressed against the concentrations of added
analyte. As an example, Figure 6(B) shows the plot of the MCR-
ALS scores for the two extracted samples (1) and (2) at the three
different extraction times (3, 5, and 8h) for the analyte 22B.

For PARAFAC, the linearity of the regression models was good
for the PAHs of higher relative intensity, which have a major con-
tribution onto the total signal (BkF, BbF, 22B, BaP, Flt, and BaA). In
contrast, the MCR-ALS model was able to obtain models for all
the selected PAHs with a linearity r2> 0.90 in most of com-
pounds, likely because of the combined influence of the use of
correspondence of species constraints and the partial trilinear
model used. However, even using a standard addition method,
the results obtained by both PARAFAC and MCR-ALS models
overestimated the nominal concentrations, which may be due
to analyte-background interactions. For MCR-ALS model, this
excess was similar for almost all the compounds and could be
corrected taken the reference of the surrogate 22B, while
PARAFAC results were more severely affected.

Unfolded PLS/RBL predictions of analyte concentrations were
carried out directly on the sample extracts (without standard
addition) by using the calibration line calculated by the

Figure 4. Three-dimensional plots for the excitation-emission fluorescence matrices corresponding to (A) calibration sample (dcal), (B) urban dust
sample (dextract), and (C) aerosol sample (dair).

Figure 5. Parallel factor analysis excitation and emission spectra of the five additional factors calculated for (A) the NIST SRM 1649b set and (B) the
urban aerosol samples set.
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calibration set (dcal). Because of the presence of unexpected
interfering species, absent in the calibration set of samples, an ad-
ditional number of RBL factors were calculated per each PAH and
sample (NIST SRM 1649b reference material samples 1 and 2) as
shown in Table I(A). The concentrations were also corrected
according to the results obtained with the surrogate 22B.

Table II shows the predictive results obtained by MCR-ALS and
U-PLS/RBL algorithms to quantification of the nine US-EPA PAHs
in NIST SRM 1649b, after 5 h of extraction time. The accuracy was
expressed by the difference between the calculated mean and
the certified value. The recovery was expressed as the percent-
age between the calculated mean and certified value for the
duplicate measurements. MCR-ALSmodel achieved good accuracy
values for most of the PAHs, even better than U-PLS/RBL results,
which is a pure calibration method. The recovery efficiency values
were also better by combining the MCR-ALS model with the
standard addition method. This suggests that the RBL step in
U-PLS/RBL models was more difficult to be applied correctly
because of the lack of knowledge about the sample matrix and

the high influence of the interference signal in the global
measurement. As can be seen, poor recovery efficiencies obtained
for Flt, BaP, and benzo[ghi]perylene could be related to the high
volatility, a possible analyte-sample matrix interaction, and the
low relative fluorescence intensity, respectively. Therefore, these
results suggest that the combination of MCR-ALS model with
standard addition method could be a good way to lead to a
more accurate quantification in very complex matrices under
analyte-sample matrix interactions than by using only the
U-PLS/RBL algorithm.

4.3. Aerosol samples

The optimized methods were applied to the extracts of ambient
air particulate matter samples collected near the central bus
station of Bilbao (Spain), severely affected by diesel engines. A
set of 17 samples was analyzed by EEMs combined with the
selected algorithms, and the results were compared with the
mass values (ng) provided by the standard reference technique

Figure 6. Evolution of the multivariate curve resolution – alternating least squares scores as a function of the time: (A) normalized scores of the 10
target PAHs and (B) standard addition method for 2-2′ binaphthyl.

Table I. Number of residual bilinearization latent variables for (A) National Institute of Standards and Technology SRM 1649b
reference material samples and (B) urban aerosol samples, after 5 h of extraction

PAH BkF BbF 22B BaP IcdP Chr Flt BaA DahA BghiP

A. NIST SRM 1649b reference material samples
1 3 3 2 3 3 3 3 6 2 7
2 3 4 2 4 3 4 3 5 2 6

B. Urban aerosol samples
1 1 2 3 2 2 3 2 2 2 2
2 4 5 4 5 5 6 7 4 3 4
3 2 4 4 2 3 5 5 5 5 3
4 5 4 4 5 4 5 5 5 4 4
5 4 4 4 3 3 4 4 5 4 4
6 6 4 5 5 6 5 5 5 5 5
7 4 4 5 4 4 4 5 4 3 4
8 5 7 5 5 6 5 7 6 5 5
9 4 6 5 5 5 4 5 5 5 5
10 4 5 4 5 4 4 4 5 5 4
11 5 5 5 5 4 5 5 5 5 5
12 5 5 5 5 5 5 5 5 5 5
13 6 6 6 6 5 6 7 7 6 5
14 3 5 5 5 4 4 5 5 3 5
15 5 4 5 2 3 4 4 4 4 3
16 3 3 4 3 3 4 4 3 3 3
17 3 4 4 3 5 4 3 4 4 4
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of GC-MS. Figure 3(D) shows the sample sets used for analysis in
MCR-ALS and PARAFAC, where the pure component samples
(dpure) were used as in previous sections to improve the identi-
fication of analytes by the global resolution algorithms, whereas
the calibration set (dcal) was used to create the calibration curve
for each PAH by all employed methods (no standard addition
method could be performed for these air samples). The air sam-
ples were diluted to avoid inner filter effects. Figure 4(C) shows
the three-dimensional plot for the EEM of an extract of aerosol
sample (dair). The EEMs of air samples show that these real sam-
ple matrices are highly complex and contain many other com-
pounds together with the PAHs, which can drastically hinder
the determination of the analytes of interest.
This complex situation was reflected through the performance

of the selected algorithms. Regarding the results of the global
decomposition methods, that is, PARAFAC and MCR-ALS,
15-factor models were built with an explained variance >99.3%
and a lack of fit <8% by both methods. Even under the presence
of interfering species, good qualitative results were obtained
because of the implementation of the correspondence among the
species (MCR-ALS) and the use of pure standard samples (dpure),
achieving high values of the correlation coefficients in the emis-
sion and excitation modes for almost all of PAHs (rem> 0.99
and rex> 0.91). However, it was not possible to identify other
chemical analytes among the five additional contributions
because there was no enough information about the samples,
and the spectral profiles were a linear combination of many
unknown species (Figure 5(B)). It is important to note that the
extracts of aerosol samples contain a large number of compounds
that contribute to a greater or lesser extent to the total fluores-
cence signal. This may lead to inaccurate predictions when the
regression of the scores is made against the calibration curve
obtained with a set of calibration samples (dcal) of different

nature/sample matrix than the samples to be analyzed (dair).
Therefore, the quantitative results obtained (Table III) were often
in excess because of a false increase of the PAHs signals because
of other interfering species present in aerosol samples, except for
PAHs with relative high intensities such as BkF or BbF, which were
in better agreement with the values obtained by GC-MS technique.
The general results obtained and the high value of the intercept in
some of these regressionmodels suggest that the samples used to
build the calibration model and those of the aerosol samples were
quite different, hence, confirming the need for a standard addition
procedure in this kind of samples. Nevertheless, the good corre-
lation coefficients (r2) between the predicted and nominal values
indicate that, even with sample matrix effects, PARAFAC and
MCR-ALS were able to provide correct relative concentrations of
each US-EPA PAH in the aerosol samples. Regarding the U-PLS/
RBL model predictions, the values obtained were closer to the
values obtained by the standard GC-MS reference technique than
those calculated by PARAFAC and MCR-ALS models but far from
ideal. Again, in this very complex situation, it was difficult to com-
pensate the very large influence of many interfering compounds
by the RBL step, and estimating the correct number of RBL contri-
butions in real environmental samples was revealed to be a highly
difficult task because the lack of reference values available and
the scarce information about the composition of the samples.
Table I(B) shows the number of RBL latent variables calculated
for the 10 target PAHs in 17 urban aerosol samples. As expected,
this value varies depending on the PAH analyzed and the
sample complexity.

Hence, PARAFAC and MCR-ALS algorithms may be recom-
mended when a faster data analysis providing qualitative and
semiquantitative information of the samples is required, which
is the perfect scenario for screening and monitoring of PAHs in
aerosol samples.

Table II. Quantification of nine United States Environmental Protection Agency polycyclic aromatic hydrocarbons in National In-
stitute of Standards and Technology standard reference material 1649b by chemometric methods

PAH Algorithm Certified (mg/kg) Calculated mean (mg/kg) Difference Recovery (%)

BkF (1.0) MCR-ALS 1.748 ± 0.083 1.74 ± 0.4 0.01 99.42
U-PLS/RBL 1.48 ± 0.1 0.27 84.42

BbF (0.40) MCR-ALS 5.99 ± 0.20 6.25 ± 2.4 �0.26 104.30
U-PLS/RBL 3.66 ± 1.2 2.33 61.10

BaP (0.21) MCR-ALS 2.47 ± 0.17 0.31 ± 0.3 2.16 12.41
U-PLS/RBL 1.49 ± 0.5 0.98 60.28

IcdP (0.14) MCR-ALS 2.96 ± 0.17 2.41 ± 1.4 0.55 81.39
U-PLS/RBL 1.45 ± 0.3 1.51 48.90

Chr (0.12) MCR-ALS 3.008 ± 0.044 3.34 ± 0.5 �0.33 111.04
U-PLS/RBL 2.99 ± 0.9 0.02 99.30

Flt (0.12) MCR-ALS 6.14 ± 0.12 2.12 ± 0.7 4.02 34.52
U-PLS/RBL 1.86 ± 0.5 4.28 30.36

BaA (0.12) MCR-ALS 2.092 ± 0.048 2.03 ± 0.9 0.06 97.11
U-PLS/RBL 2.36 ± 1.6 �0.27 112.96

DahA (0.09) MCR-ALS 0.290 ± 0.004 0.34 ± 0.3 �0.05 115.86
U-PLS/RBL 0.10 ± 0.03 �0.19 36.13

BghiP (0.05) MCR-ALS 3.937 ± 0.052 3.08 ± 0.6 0.86 78.16
U-PLS/RBL 2.93 ± 1.0 1.01 74.45

U-PLS, unfolded partial least squares; RBL, residual bilinearization; MCR-ALS, multivariate curve resolution – alternating least
squares.
Polycyclic aromatic hydrocarbons are sorted in a decreasing order according to the norm of unit polycyclic aromatic hydrocarbons
excitation–emission fluorescence matrices signal normalized with respect to benzo[k]fluoranthene (norm value in brackets).
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As an example, Figure 7(A) shows the evolution of the mass of
BkF calculated by the second-order algorithms combined with
EEMs measurements and GC-MS results (the obtained values
were normalized to avoid the difference in the scale). As it has
been discussed, because the linear relationship among results
obtained by classical quantitative methods, such as GC-MS, and

those found combining EEMs and second-order data analysis is
very good, the results provided by these multivariate methods
can be used for monitoring these pollutants over time, because
the scores (used as indicators of the relative concentrations of
each analyte in the samples) show the same variation pattern
as that followed by the quantitative results obtained by CG-MS

Table III. Regression line and correlation coefficients of the mass (ng) calculated between chemometric methods and the values
provided by gas chromatography-mass spectroscopy

PAH GC-MS/MCR-ALS GC-MS/PARAFAC GC-MS/U-PLS/RBL

ng r2 n y= ax + b r2 n y = ax + b r2 n y = ax +b

BkF (1.0) 0.91 15 1.12x + 14.71 0.92 15 1.18x� 2.89 0.91 17 0.84x + 10.52
BbF (0.40) 0.92 14 1.76x� 51.74 0.92 14 2.22x + 37.70 0.92 15 0.45x + 19.14
BaP (0.21) 0.88 12 0.78x� 49.95 0.83 12 0.86x� 24.00 0.85 15 1.18x� 15.26
Chr (0.12) 0.92 15 4.12x + 57.39 0.91 15 3.89x + 36.02 0.83 14 0.91x + 75.02
Flt (0.12) 0.97 14 1047x + 4423 0.93 14 3.57x + 22.11 0.83 14 1.81x� 2.65
BaA (0.12) 0.94 15 10.03x� 18.12 0.93 14 12.19x� 136.47 0.93 15 2.18x + 61.68
DahA (0.09) 0.97 15 20.75x� 12.47 0.91 15 34.81x + 1.98 0.90 15 12.71x + 33.94
BghiP (0.05) 0.96 14 12.34x� 36.26 — — No correlation 0.89 15 2.28x + 113.48

GC-MS, gas chromatography-mass spectroscopy; U-PLS, unfolded partial least squares; MCR-ALS, multivariate curve resolution –
alternating least squares; PARAFAC, parallel factor analysis; PAH, polycyclic aromatic hydrocarbons.
IcdP was not compared because it was no correctly quantified by GC-MS. n=number of samples.

Figure 7. (A) Normalized mass (ng) of BkF calculated by each method. (B) Relation of scores of parallel factor analysis and multivariate curve resolution
– alternating least squares of DahA and mass (ng) calculated by GC-MS, in PM10 and PM2.5 fraction. *Indicates 72 h average samples.

Table IV. Quantitative information and limit of detection of United States Environmental Protection Agency polycyclic aromatic
hydrocarbons in aerosol samples

PAH BkF BbF BaP Chr Flt BaA DahA BghiP

LOD GC-MS (ng/mL) 31 30 35 34 30 24 56 30
LOD MCR-ALS (ng/mL) 0.75 1.64 2.06 0.55 10.32 0.44 0.94 4.21
LOD PARAFAC (ng/mL) 0.42 0.54 1.83 0.49 0.81 0.56 0.70 2.63
LOD U-PLS/RBL (ng/mL) 0.23 0.48 0.60 1.00 0.93 0.67 0.49 2.10
Mass fraction (ng/mg) PM10 31.3 ± 32.5 71.6 ± 65.2 41.5 ± 39.2 40.7 ± 41.6 26.2 ± 29.5 16.4 ± 16.2 5.1 ± 8.6 43.3 ± 48.5

PM2.5 21.7 ± 10.6 39.8 ± 41.6 26.8 ± 17.7 30.7 ± 27.7 25.1 ± 35.7 14.5 ± 11.6 1.8 ± 1.6 20.1 ± 20.4
PM10 2.1 ± 1.0

PM (mg) PM2.5 2.9 ± 2.1

LOD, limit of detection; U-PLS, unfolded partial least squares; MCR-ALS, multivariate curve resolution – alternating least squares;
PARAFAC, parallel factor analysis; GC-MS, gas chromatography-mass spectroscopy.
IcdP was not compared because it was no correctly quantified by GC-MS. For GC-MS, PARAFAC, and MCR-ALS models, the LODs
were calculated from the calibration line as the ratio between three times the standard deviation of the intercept and the slope of
the calculated line. For U-PLS/residual bilinearization, the LOD was estimated according to [38], from aerosol samples with very low
analyte concentration. Particulate matter mass and mass fractions are shown as mean± standard deviation (n=17 samples).
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(Figure 7(B)). In fact, multivariate methods performed better
when the results obtained by GC-MS were below the limit of de-
tection (LOD), as in the DahA quantification: samples 12 and 13
are below the LOD and are plotted as zero values (Figure 7(B)).
Quantitative information of the urban aerosol samples analyzed
and the LOD of each method is presented in Table IV. It can be
seen that the scores calculated by MCR-ALS and PARAFAC
models show low values, but keeping the linear range in fluores-
cence, and over the LOD of these models. This demonstrates the
high sensitivity of the fluorescence spectroscopy coupled to
chemometric methods to identify and semiquantify the target
PAHs in the PM10 and PM2.5 fractions of urban aerosols, making
them suitable for routine monitoring instead of the chromato-
graphic techniques

5. CONCLUSIONS

A novel method for the determination of polycyclic aromatic
hydrocarbons in ambient air aerosol samples, based on the
combination of EEMs and several second-order algorithms, was
evaluated through samples of increasing complexity.
Among the algorithms investigated, MCR-ALS and PARAFAC

proved to be fast methods to extract the target chemical
information of complex mixtures in presence of unknown and
complex interference contributions. The constraint of corre-
spondence of species applied by MCR-ALS was a decisive factor
to achieve a better qualitative analysis when the analyte of
interest and the interfering background have similar relative
signal intensities and high spectral overlap. Because of the
non-trilinear behavior of the unknown contributions present
in environmental samples, which are mixtures of many com-
pounds and residual scattering, the partial trilinear model
(MCR-ALS) was very well adapted to describe the behavior of
the datasets under study.
Even with very complex sample matrix effects, the analytical

performance of the second-order resolution methods,
PARAFAC and MCR-ALS, shows that they are suitable to moni-
tor PAHs patterns in the fine particulate fraction (PM2.5) of
ambient air. In addition, these methodologies could be used
when a high sensitivity is needed, as in studies of background
atmospheres, because fluorescence measurements have this
property, or when a fast analysis is required, because PARAFAC
and MCR-ALS can describe a large number of samples and
analytes with a single model. Therefore, for semiquantitative
determinations or description of evolution of environmental
patterns of variation of PAHs, these methods could be a good
alternative to the traditional methods of analysis, showing
advantages in terms of time of analysis, use of solvents, and
sensitivity.
For quantitative analysis, U-PLS/RBL demonstrated a superior

predictive capability as long as no severe matrix effects are
present. However, this algorithm is very time-consuming
because a model is required per sample and per analyte, and
the selection of the correct number of RBL factors is a difficult
task when many unexpected and unknown compounds are
present, as it happens in environmental samples. In this situa-
tion, it has been proven that it is worth exploring further the
combination of MCR-ALS with standard addition method and
correction by a surrogate, which could provide a faster quantita-
tive analysis without needing prior information about the nature
of the unknown compounds in environmental samples.
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