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Parametric fluctuations or stochastic signals are introduced into the rectangular pulse sequence to
investigate the feasibility of random dynamical decoupling. In a large parameter region, we find that the
out-of-order control pulses work as well as the regular pulses for dynamical decoupling and dissipation
suppression. Calculations and analysis are enabled by and based on a nonperturbative dynamical decoupling
approach allowed by an exact quantum-state-diffusion equation. When the average frequency and duration
of the pulse sequence take proper values, the random control sequence is robust, fault-tolerant, and
insensitive to pulse strength deviations and interpulse temporal separation in the quasi-periodic sequence.
This relaxes the operational requirements placed on quantum control devices to a great deal.

Q
uantum technology allows one to organize and control the components of a complex system governed by
the laws of quantum physics1. Control lies at the heart of virtually every aspect of quantum science, and
in general it is very difficult to achieve. A retrospective and representative study of control follows the

spin echo effect; inhomogeneous broadening of a spin can be removed by applying a single p inversion pulse
halfway through the evolution2. Quantum control theory has matured over the last two decades, from single spin
nuclear magnetic resonance experiments to large-scale manipulation during a quantum computation3. As long as
quantum technology has room to grow, quantum control will remain an active area of research. It has already
covered a lot of subjects, such as the Lie-algebraic conditions required for strong analytic controllability4–6,
quantum feedback control on state preparation, stabilization or entanglement improvement7–10, time-dependent
Hamiltonian designation for adiabatic passage11–13, and exact state transmission14–17. Every protocol mentioned
before needs elaborate design.

After the investigations based on the control of closed quantum system18,19 were gradually extended into the
open system regime20, active control sequences have been established to defeat the environmental dephasing and
dissipation effects21–25. In light of the quantum Zeno effect or similar effects, decoherence of an open quantum
system could be universally slowed down with ultra-fast modulation26–28 and concatenated pulses29. Many of these
existing works are extremely relying on dynamical decoupling (DD) by subjecting the target system to a series of
open-loop, high-frequency, control transformations30–35. DD and its varieties turn out to be a universal and
efficient class of control method in both theory and experiments.

The control efficiency of DD, more precisely, the robustness of state fidelity under DD control against
environment, is mainly determined by the ratio of the characteristic timescale of the environmental correlation
function and the period or quasi-period of the pulses. In the Markov environment, we are faced with a vanishing
correlation time. System control is almost impossible since any information contained within a quantum state will
undertake irreversible loss due to the environment induced error before any external control comes into effect.
Whereas in a non-Markovian environment, it is possible to drive a quantum state against the environmental
influence with a properly configured control pulse sequence. A common approximation for DD and its varieties,
such as UDD (Uhrig DD) and CDD (concatenated DD)31,32, invokes an ideal delta-function describing a zero-
width pulse train with unbounded strength. It is essentially a perturbative approach to the effective Hamiltonian.
In practice, realistic experiments can not be ideal: pulse strength is bounded, duration is finite, and parametric
fluctuations are inevitable. One can never completely eliminate stochastic quantum fluctuation and envir-
onmental noise from the laboratory. In other words, the DD mechanisms used in quantum control are generally
not under total control themselves. In light of this consideration, we are prompted to answer the following
question: to what extent can a pulse sequence with randomness be effective?

Traditional DD approaches break down when one discusses the errors randomly occurring in the pulse
sequence. It is actually the zero-order approximation to a nonperburbative DD pulse sequence36. We will instead
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use a more realistic pulse description in the effective Hamiltonian
consisting of all of the parameters, such as width, strength, pseudo-
period and their fluctuations, which is based on the exact quantum-
state-diffusion (QSD) equation [See Method].

Results
Random Control Model. An illustration of a regularly spaced
rectangular wave train is shown in Fig. 1(a). This configuration
allows us to parameterize experimental inaccuracies associated
with the period t, temporal duration D, and strength W/D. A
typical example of an imperfect or out-of-order rectangular pulse
sequence is shown in Fig. 1(b). Notice the time-dependent
strength, temporal duration, and quasi-period in this case. We will
use these parameters to measure the fault-tolerance of a system to
pulse sequence inaccuracies. The regularly spaced sequence
appearing in Fig. 1(a) should protect the quantum system from
decoherence and relaxation. The robustness of our scheme can be
portrayed by its fault-tolerance to fluctuations of three parameters.
The quasi-period is defined as the time interval between the starting
point of any pulse and that of its following pulse. The quasi-period
will generally possess a random distribution. We can express these
three fluctuating parameters as

X’~XzDX Rand {1, 1ð Þ, ð1Þ

where X 5 t, D, W, respectively, DX’s are their individual deviation
scales and Rand(21, 1) denotes a random number uniformly
distributed between 21 and 1. This is a realistic noise model –
stochastic fluctuations naturally occur within the quantum
measurement devices and during the pulse creation process. In the
limit of a large sample number, M[X9] 5 X, where M[?] denotes the
statistical ensemble mean. Each random series is instantaneously
generated and mutually independent. Furthermore, the random
values are not shared between t, D, and W simultaneously. More
importantly, they are unknown during our random control
scheme. Without loss of generality, we require D 1 DD , t 2 Dt

for each rectangular pulse to avoid unnecessary confusion.

Fault-tolerant Control of Fidelity. Through the derivation by QSD
equation [See Method]37–39, a qubit open system with Zeeman split-
ting v embedded in a dissipative environment follows an exact
stochastic Schrödinger equation driven by an effective Hamiltonian:

Hef f tð Þ~ vzc tð Þ
2

szziz�t s{{iQ tð Þszs{: ð2Þ

Here c(t) 5 W9/D9 during the ‘‘on’’ time of random pulse sequence
which lasts D9 and subsequently c(t) 5 0 during the ‘‘off’’ time of
duration t9 2 D9 during an interval of instantaneous quasi-period
t9. Q(t) satisfies an ordinary differential equation LtQ tð Þ~
Cc
2 z {czivzic tð Þ½ �Q tð ÞzQ2 tð Þ, and the boundary condition is

Q(0) 5 0. C and c are parameters appearing in the correction func-

tion of environment G t,sð Þ~Cc

2
e{c t{sj j. C is the system-envir-

onment coupling strength and 1/c is proportional to the
environmental memory time. When c R ‘, the non-Markovian
process is reduced to the Markov limit asymptotically.

For arbitrary initialization of the system jy0æ 5 mj1æ 1 nj0æ, jmj2 1

jnj2 5 1, the fidelity that measures the survival probability can be
expressed by:

F tð Þ: y0 rtj jy0h i~1{ mj j2{ mj j2{2 mj j4
� �

e{2
Ð t

0
dsR Q sð Þ½ �

z

2 mj j2 1{ mj j2
� �

R e{
Ð t

0
dsQ sð Þ

� �
,

ð3Þ

where R :½ � takes the real part of the following function. One can
obtain the average of the fidelity over all possible pure state config-
urations and find

Fm tð Þ~ 1
2
z

e{2
Ð t

0
dsR Q sð Þ½ �

6
z

R e{
Ð t

0
dsQ sð Þ

� �
3

: ð4Þ

Below we will numerically examine the effects of random control on
fidelity during time evolution.

The efficiency of regular and random control is defined in terms of
the time interval associated with a fidelity drop from unity to 0.95.
The fidelity is functionally dependent on the bath memory coef-
ficient c. We illustrate the relationship between the memory function
and the randomized DD parameters W, t, and D separately in Figs. 2,
3, and 4. Each calculation determines the randomization effects
inherent to a specific control parameter while the remaining para-
meters remained fixed in a dummy state. The efficiency was then
evaluated with respect to the ensemble average of these dummy
states.

The horizontal axes appearing in Figs. 2, 3, and 4 represent the
ratio of the stochastic fluctuation scale DX to the mean value of
the corresponding parameter X; X 5 W, t, and D, respectively. The
fluctuations vanish at the origin of each of these coordinate systems.
This is the condition for regular DD, hence, for a fixed c, the relative
efficiency of random and regular DD appears in reference to the

Figure 1 | The diagrams of (a) perfect pulse sequence with constant
distance, duration, and strength, and (b) irregular pulse sequence with
random paramters.

Figure 2 | The moment T when the average fidelity of a single qubit
reduces to 0.95 from unity as a function of the fluctuation scale for pulse
strength under different c. We chooseW5 0.2v, t 5 0.02vt, D5 0.4t and

C 5 v.
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intersection of the curve and the vertical axis. These results should
also be compared to those which naturally emerge in the absence of
control: T Fm~0:95ð Þ~1:42vt, 0.87vt, and 0.65vt when c 5 0.2,
0.5 and 0.9, respectively. Thus it is evident that both random and
regular control greatly enhance the survival time of the target state as
it evolves under open system dynamics; order-of-magnitude
improvements are found even in the worst situations considered.

The efficiency has a varying sensitivity to deviations in the DD
parameters. This behavior is illustrated in Figs. 2, 3, and 4. For
example, deviations in the pulse strength hardly effect the value of
T Fm~0:95ð Þ. Deviations in the period of the pulse sequence have a
small impact on the efficiency as well, though a modest decline in
T Fm~0:95ð Þ tends to occur with increasing Dt/t. However, the
performance of the pulse sequence of DD becomes sensitive to devia-
tions in D as the bath approaches the strong non-Markovian regime.
This sensitivity is exemplified in Fig. 4 by the 40% reduction of T over
the evaluation scale 5D/4 , t9 , 15D/4 with c 5 0.2, a typical strong
non-Markovian condition. These results indicate the effectiveness of
noisy quantum DD. The relative performance of regular and random
control depends on the environmental coefficient c, improving as the
environment becomes more Markovian. For near-Markovian pro-
cesses, little distinction can be made between completely regular and
completely random control.

The common thread among these three figures is the memory
effect of the environment. In terms of the fidelity expression in Eq.
(4), strong suppression of dissipation requires the exponential func-

tion �Q tð Þ:exp {

ðt

0
dsQ sð Þ

� �
to approach unity in the presence of

c(t). In absence of control pulse,

�Q tð Þ~e{~ct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

~c2

2Cc

s
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cc{~c2

p
2

t{arctan
~cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Cc{~c2
p

 !" #
ð5Þ

where ~c~c{iv. A straightforward derivation shows that when c is
dominant in Eq (5), the absolute value of �Q tð Þ approximately decays
in an exponential way with time. Thus the control pulse is not able to
dynamically decouple the open system for dominantly large c, i.e.
within the near-Markovian environment. On the contrary, smaller c
implies a longer memory and a slower characteristic decay of the
quantum state. Coherence can be preserved in this case with a control
pulse of proper frequency. Appropriate pulse sequences could
roughly wash out the dissipation influence. In summary, we have
found that standard quantum DD can be quite effective when fluc-
tuations occur in the pulse sequence. The performance is largely
insensitive to fluctuations in pulse strength and sequence period. It
is, however, quite sensitive to several other factors. The greatest

influence, to no surprise, comes from the structure of the envir-
onmental noise process itself. A non-Markovian environment is
required for effective DD in both cases, regular and random.
Secondly, the control pulse sequence requires a sufficiently fast pulse
series, i.e. a sufficiently small average value of t. Dissipation effects
from the system-environment interaction create disordered system
dynamics, these effects can be neutralized if a sufficiently large num-
ber of control photons interact with the system during the character-
istic correlation time of the environment. Hence, the required pulse
rate depends on the fixed bath correlation time, a time that is inver-
sely proportional to c.

A third condition, which has not been discussed thus far, concerns
the ratio between the pulse width and pulse periodicity. This depend-
ence is clearly illustrated in Fig. 5 where comparisons in the fidelity
evolution are made between regular and stochastic control for vari-
ous D/t. Perhaps the most striking comparison results when D/t 5

0.3 – random control can actually outperform regular control in
some occasions. To be fair, we concede that regular DD is more
favorable towards the beginning of this example evolution. As the
interpulse separation diminishes, e.g. D 5 0.75t, it becomes difficult
to discriminate the curves and the fidelity remains roughly the same
in either case. Moreover, in Fig. 6, similar patterns emerge when we
examine inter-parameter dependencies between D and t. Both of
these figures correspond to the same average D and t. Again, we find
examples where random control permits longer survival times than

Figure 3 | The moment T when the average fidelity of a single qubit
reduces to 0.95 from unity as a function of the period fluctuation scale
under different c. We choose W 5 0.2v, t 5 0.02vt, D 5 0.4t and C 5 v.

Figure 4 | The moment T when the average fidelity of a single qubit
reduces to 0.95 from unity as a function of the temporal duration
fluctuation scale under different c. We choose W 5 0.2v, t 5 0.02vt, D 5

0.4t and C 5 v.

Figure 5 | The time evolution of the average fidelity of a single qubit
under regular control (blue lines) and under random control (red lines)
with different D. We choose c 5 0.3, W 5 0.2v, t 5 0.02vt and C 5 v.
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the regular case for long evolutionary periods. However, in this case
random control outperforms regular DD control in early evolution-
ary intervals as well. Over the entire evaluation interval, random
control yields a fidelity greater than 0.9 when the ratio between
the average values of D and t is optimized (D/t $ 0.4). Although
the optimized random controls yield slightly lower fidelities than the
regular controls for these average values, they could adequately
approximate the ideal regular sequence if the performance require-
ments are not prohibitively restrictive.

Discussion
The effectiveness of the random DD pulse sequence is fairly state-
independent. The similarity in performance for several initial qubit
configurations is illustrated in Fig. 7. These configurations are
defined in terms of the initial population jmj2 of the upper level of
the open qubit system. We plot the fidelity as a function of jmj2 rather
than m in light of Eq. (3). Curves associated with a particular jmj2
represent the common result of a group of quantum states with the
same upper level population. We find a slight decrease in fidelity
control efficiency with increasing jmj2. Nevertheless, random control

provides robust and reliable stabilization against damping effects for
all possible initializations. In the short time regime, the efficiency of
random control is nearly the same for every possible initial pure state.

We have introduced a general unknown stochastic disturbance
into the nonperturbative quantum DD model to account for imper-
fect laboratory control. An error-free control sequence consists of a
sequence of identical, equally spaced pulses. In our nonperturbative
method, this sequence has already far beyond the traditional DD
pulse: the bang-bang (BB) control sequence. With high precision,
we can control the average values of the parameters which character-
ize the sequence, but we cannot control the errors which occur on
them or predict any occurrence in advance. Using the quantum-
state-diffusion equation, we have analyzed the performance of a
realistic quantum DD sequence prepared with random laboratory
parametric fluctuations, and find it to be effective in controlling the
dynamics of an open quantum system over a wide range of non-
Markovian processes.

The control efficiency, which is measured by the average fidelity
over initial pure states, is found to be dependent on the average
frequency of the control pulse, the environmental memory, and
the ratio of the average pulse duration time D to the period t.
When the mean values of D and t are optimized into a very loose
condition, random dynamical decoupling sequences can adequately
approximate the ideal regular sequence if the performance require-
ments are not prohibitively restrictive. This will alleviate the experi-
mental requirements placed on pulse sequence generation in
quantum control to a great extent.

The survival time, which is measured by the time moment T when the
system fidelity reduces to a given valueF from unity, is associated with
the quantum speed limit (QSL) of open quantum systems40–42. The lower

bound of the required time of evolution is t~2 cos{1F
� �2

.
p2�S
� �

,

where �S~t{1
Ð t

0 dt
P

a Ka t, 0ð Þ y0j i y0h j _K
{
a t, 0ð Þ

��� ���41. Kas’ are the

Kraus operators characterizing the time evolution of the open
system, and jjAjj is the Hilbert-Schmidt norm of A. For our dis-
sipation model, the summation in the expression of �S is

mj j2 �Q tð Þj j Re Q tð Þ½ �j j �Q tð Þj jz Q tð Þj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�

mj j2{1z �Q tð Þj j2
q	 


, where

the larger the population of the upper state is, the shorter the evolu-
tion time t is. It can also be expected that if a system under a certain
control yields nearly vanishing Q(t) during the evolution, t could be

Figure 6 | The time evolution of the average fidelity of a single qubit under regular control (blue lines) and under random control (red and gray lines)
with different D, DD and Dt. We choose c 5 0.3, W 5 0.2v, t 5 0.02vt and C 5 v.

Figure 7 | The time evolution of the fidelity of a single qubit under
random control with different initial states indicated by population | m | 2.
We choose c 5 0.3, W 5 0.2v, t 5 0.02vt, D 5 0.4t, DD 5 0.2t, Dt 5 0.2t

and C 5 v.
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very large such that T is greatly enhanced by the control. Although
our system is in a non-Markovian environment, which is beyond the
scope of Lindblad master equation, yet it turns out that when jmj2 5

0.5 and there is no external control applied to the system, the survival
time T corresponding toF~0:95 is around 0.13 (in the same unit as
in Fig. 7), whereas the lower bound t < 0.05 which serves as a
significant lower bound for T. In general, the QSL under non-
Markovian dynamics and external dynamical control remains an
interesting topic for future research.

The randomness considered here is entirely different from the
random decoupling schemes initiated by L. Viola et al. (see
Refs.43–45). Based on standard (ideal) p pulse, the random DD pro-
posed in these works allows the ‘‘control propagator’’ to follow a
random but known path on the group of rotating operations. Both
the past ‘‘control operations’’ and the moments at which they are
applied are known, but the future ‘‘control path’’ is random. It should
not be confused with the stochastic error considered in the phase or
rotation axis of p pulse of DD, since by which the connection
between the control efficiency and the randomly errors in shape of
pulse is still not clear. Our DD with random control assumes the
occurrence of unknown stochastic fluctuations over pulse sequence
parameters, including duration time, period, and strength. The mag-
nitude of the errors or fluctuations are so big that the previous DD
pulse sequence now has not much significance than a reference. This
investigation also differs from the control with no control procedure
proposed by some of the authors of this work, see Ref. 46. There, an
out-of-control environment consisting of disordered external white
noise was shown to suppress decoherence in a more ordered system.
Here, we demonstrate the effectiveness of quantum state stabilization
when irregular control pulses are applied.

Methods
We employ an exact stochastic Schrödinger equation, the QSD equation, to invest-
igate this stochastic special DD process. This allows one to include the function of
external pulse sequence directly into the microscopic quantum model. For an arbit-
rary model (setting �h 5 1):

Htot~Hsys tð Þz
X

k

g�k Lâ{
kzh:c:

� �
z
X

k

vkâ{
k âk ð6Þ

where â{k and âk respectively denote the creation and annihilation operators for the k-

th mode in the bosonic bath. In the interaction picture with respect to
X

k
vkâ{k âk , an

exact QSD equation generally reads37,38:

Ltyt z�ð Þ~{i Hsys tð ÞziLz�t {iL{ �O t, z�ð Þ

 �

yt z�ð Þ~{iHef f tð Þyt z�ð Þ: ð7Þ

Here Hsys(t) is the system Hamiltonian that could absorb an arbitrary DD pulse
function. We have dropped the ket notation for yt(z*) ; jyt(z*)æ. L is the coupling
operator of the system with the environment. z�t :{i

X
k

g�k z�k eivkt is the envir-

onmental Gaussion noise process satisfying M z�t

 �

~M z�t z�s

 �

~0 and
M ztz

�
s


 �
~G t, sð Þ and G(t, s) is the environmental correlation function. �O t, z�ð Þ

includes system operators and the environmental noises

�O t, z�ð Þyt z�ð Þ~
ðt

0
dsG t, sð ÞO t, s, z�ð Þyt z�ð Þ with O-operator satisfying:

LtO t, s, z�ð Þ~ {iHef f tð Þ, O t, s, z�ð Þ½ �{L{ dO t, z�ð Þ
dz�s

, ð8Þ

and O(s, s, z*) 5 L. The states yt(z*) of the system correspond to a particular
‘‘configuration’’ z*, thus the system density matrix is recovered by rt 5 M[jyt(z*)æ
Æyt(z*)j].

Consider the random control over a single two-level system (qubit) which is under
the dissipative influence from the environment, so that Hsys 5 E(t)sz/2 and L 5 s2.
The non-perturbative pulse sequence indicated by a function of time c(t), regular or
random, contributes to the system energy shift E(t) 5 v 1 c(t). For this model, the
exact effective Hamiltonian in Eq. (7) is found to be Eq. (2).
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39. Yu, T., Diósi, L., Gisin, N. & Strunz, W. T. Non-Markovian quantum-state
diffusion: Perturbation approach. Phys. Rev. A 58, 91–99 (1999).

40. Taddei, M. M., Escher, B. M., Davidovich, L. & de Matos Filho, R. L. Quantum
Speed Limit for Physical Processes. Phys. Rev. Lett. 110, 050402 (2013).

41. del Campo, A., Egusquiza, I. L., Plenio, M. B. & S. F. Quantum Speed Limits in
Open System Dynamics. Phys. Rev. Lett. 110, 050403 (2013).

42. Deffner, S. & Lutz, E. Quantum Speed Limit for Non-Markovian Dynamics. Phys.
Rev. Lett. 111, 010402 (2013).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6229 | DOI: 10.1038/srep06229 5



43. Viola, L. & Knill, E. Random Decoupling Schemes for Quantum Dynamical
Control and Error Suppression. Phys. Rev. Lett. 94, 060502 (2005).

44. Kern, O. & Alber, G. Controlling Quantum Systems by Embedded Dynamical
Decoupling Schemes. Phys. Rev. Lett. 95, 250501 (2005).

45. Santos, L. F. & Viola, L. Enhanced Convergence and Robust Performance of
Randomized Dynamical Decoupling. Phys. Rev. Lett. 97, 150501 (2006).

46. Jing, J. & Wu, L.-A. Control of decoherence with no control. Sci. Rep. 3, 2746;
doi:10.1038/srep02746 (2013).

Acknowledgments
We acknowledge grant support from the National Natural Science Foundation of China
under Grant No. 11175110, the Basque Government (grant IT472-10), the Spanish
MICINN (Project No. No. FIS2012-36673-C03- 03) and the Basque Country University
UFI (Project No. 11/55-01-2013).

Author contributions
J.J. contributed to numerical and physical analysis and prepared the first version of the
manuscript and L.-A.W. to the conception and design of this work. J.J., A.B. and L.-A.W.
wrote the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Jing, J., Bishop, C.A. & Wu, L.-A. Nonperturbative dynamical
decoupling with random control. Sci. Rep. 4, 6229; DOI:10.1038/srep06229 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International License. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6229 | DOI: 10.1038/srep06229 6

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title
	Figure 1 The diagrams of (a) perfect pulse sequence with constant distance, duration, and strength, and (b) irregular pulse sequence with random paramters.
	Figure 2 The moment T when the average fidelity of a single qubit reduces to 0.95 from unity as a function of the fluctuation scale for pulse strength under different g.
	Figure 3 The moment T when the average fidelity of a single qubit reduces to 0.95 from unity as a function of the period fluctuation scale under different g.
	Figure 4 The moment T when the average fidelity of a single qubit reduces to 0.95 from unity as a function of the temporal duration fluctuation scale under different g.
	Figure 5 The time evolution of the average fidelity of a single qubit under regular control (blue lines) and under random control (red lines) with different D.
	Figure 6 The time evolution of the average fidelity of a single qubit under regular control (blue lines) and under random control (red and gray lines) with different D, DD and D&tgr;.
	Figure 7 The time evolution of the fidelity of a single qubit under random control with different initial states indicated by population &verbar;&mgr;&verbar;2.
	References

