
E�cient Electronic Implementations of Adaptive

Systems for Ambient Intelligence Environments

DISSERTATION

to obtain the degree of doctor at the University of the

Basque Country, by

Raúl Finker de la Iglesia

Thesis advisors:

Javier Echanobe Arias

Inés del Campo Hagelström

Leioa, June 2015

llzitbel
Texto escrito a máquina
(cc) 2015 RAUL FINKER DE LA IGLESIA (cc by-nc-sa 4.0)

Creative Commons, 2015, Raúl Finker de la Iglesia.
Share under the same license. Licensees may distribute derivative works

only under a license identical to the license that governs the original work.
Attribution. Licensees may copy, distribute, display and perform the work

and make derivative works based on it only if they give the author or licensor
the credits in the manner speci�ed by these.

Agradecimientos

El haber llegado a ser capaz de realizar esta tesis ha sido posible gracias
a la ayuda directa e indirecta de un gran número de personas. Mencionarlas a
todas es imposible y aunque no sean citadas en las siguientes líneas han de saber
que no me he olvidado de ellos.

En primer lugar, quiero agradecer a mis directores, Javier Echanobe e
Inés del Campo por haberme sabido guiar por este tortuoso camino que empecé
con ellos aquel ya lejano Septiembre del 2011.

También quiero dar las gracias a los compañeros del Grupo de Diseño en
Electrónica Digital: José Tarela, Mariví Martinez, Koldo Basterretxea, Guiller-
mo Bosque, Estibaliz Asua, Unai Martinez y Sandra Seijo por haberme ayudado
con las dudas surgidas tanto de la tesis como en otros asuntos surgidos durante
mi etapa como investigador. También quiero agradecer a nuestro antiguo com-
pañero Pablo Echevarria la ayuda que me ha dado pese a estar en Berlín.

Tengo que agradecer también a los profesores del Master en Sistemas
Electronicos Avanzados de la Escuela Superior de Ingeniería de la Universidad
del País Vasco/Euskal Herriko Unibertsitatea por haberme introducido en el
campo de los dispositivos de Logica Recon�gurable, que fue la primera piedra
en la se cimentó esta tesis. En particular gracias a Josu Jugo por presentarme,
cuando era su alumno en el máster, a los que ahora son mis directores de tesis.

Un saludo especial a la gente que componen el Departamento de Elec-
tricidad y Electrónica por la paciencia que muchas veces han tenido que tener
conmigo, sobre todo a la gente del Becadromo por ayudarme con las duda que les
he presentado con respecto al papeleo relacionado con la mención internacional.

Also, I want to thank the people I met during my internship in the Uni-
versity of Coventry, in particular to my advisor there, Faiyaz Doctor. Thanks to
all of you my �rst experience studying in a foreign country was really delightful.

Aunque no me ha ayudado directamente con este proyecto, mis más sin-
ceros agradecimientos a Pedro Luis Arias Ergueta. Amigo de mi familia, siempre
ha sido un referente y modelo que he intentado seguir desde mi infancia y que sin
él no creo que me hubiera decantado por el campo de la investigación cientí�ca.

Fuera del ámbito académico, también agradecer la ayuda de Fernando
García, pues sus conocimientos del campo de la informática me ayudaron a
completar parte de esta tesis. También mencionar a las asociaciones culturales
Motsukora y Tarasu. Gracias a los eventos y actividades realizados por ellos
he conseguido liberar mi mente por un tiempo, y así he conseguido solucionar

xiii

problemas en los que estaba completamente obcecado sin poder ver la salida.
Por último, naturalmente agradecer a mi familia el esfuerzo realizado

durante toda mi vida para que yo pudiera estudiar y llegar hasta este punto. A
todos, ½gracias!

xiv

Nire amamari eskainia.
Mila esker egin duzunagatik.

xv

xvi

Introduction

In recent years much e�ort has been devoted to research in the �eld of
Ambient Intelligence (AmI). This recent paradigm, proposes environments (e.g.
public or private halls, rooms or spaces), also known as Intelligent Environ-
ments, endowed with a set of electronic systems, which are able to adapt to
the preferences and necessities of the people existing in them in order to make
their daily activities more easy and comfortable. To cope with these special
skills, these systems can take advantage of intelligent paradigms such as Soft
Computing (SC) techniques.

One of the requirements for achieving this goal in its broadest sense, is
certainly, the availability of small-size, low-cost and low-power electronic devices
with also high processing speed as they act in a scenario that requires real-
time response. However, such features are hardly compatible with the high
computational requirements of the above-mentioned intelligent paradigms. As
a result, most existing solutions are basically Personal Computer (PC) based,
because they focus more on the feasibility of the models, rather than on their
physical implementations.

The aim of this thesis is to develop a Soft Computing-based intelligent
system for AmI environments. In particular Arti�cial Neural Networks (ANN)
are used in this project. To solve the problem of computational, size, cost and
power requirements, the system is implemented using a Field Programmable
Gate Array (FPGA) which is an integrated circuit designed to be con�gured
by the user or the designer after manufacturing. These devices have another
advantage, the possibility of implementing customized microprocessors within
them, thus, allowing the inclusion of software programs to obtain simpler de-
signs. As a result, a hybrid hardware/software (HW/SW) architecture can be
implemented in a single FPGA (i.e. a System on Programmable Chip: SoPC).

Modern FPGAs provides also another property that can be very useful to
save power and size, the Dynamical Partial Recon�guration (DPR) technology.
This feature allows modifying dynamically a part of the logic of an FPGA while
the rest continues operating without interruption, dramatically enhancing the
�exibility that FPGAs o�er. In this work DPR is applied in the proposed
architecture to obtain more e�cient designs.

To validate the feasibility of the proposed solution, two applications in
real-world environments are presented: the �rst one intended for an intelligent
inhabited environment (the iDorm dormitory developed by the University of

xvii

Essex), and the second one intended for a smart car scenario.
This thesis is divided in the following chapters.
Chapter 1 provides an introduction to AmI and the SC techniques, with

a main focus on ANNs. Finally, the chapter also makes an introduction to
Programmable Logic Devices, explaining their evolution from the initial devices
to the last generation FPGAs and their di�erent types.

In Chapter 2 the HW/SW architecture implemented in the FPGA is
presented. Firstly, the architecture from a global perspective is described. Next,
the kernel of this thesis (i.e. the hardware implementation of the Arti�cial
Neural Network) is carefully analyzed. Finally, an alternative methodology
to implement the activation function of the neurons of the ANN is proposed,
followed by its integration in the ANN.

Chapter 3 is devoted to explain how DPR technology can be applied to
the system designed in Chapter 2, with the aim of adding new features to the
system and of achieving a size and power consumption reduction.

In Chapter 4 two real-world applications are presented to demonstrate
the viability of the architecture presented in Chapter 2 and to show how some
of the new features described in Chapter 3 can be also applied.

Finally, in Chapter 5 the main conclusions of this thesis and the future
work are presented. Also, the di�erent publications written during the realiza-
tion of this project are listed.

The platforms used in this thesis for the implementations are the last
generation of FPGAs of Xilinx manufacturer. Also, Matlab numerical comput-
ing environment has been used to perform simulations of the system before its
implementation in hardware. The Matlab, VHDL and C source code devel-
oped by the author is available in the CD attached to this thesis. The source
code has been commented with Doxygen documentation generator available at
www.doxygen.org.

xviii

http://www.doxygen.org

Nomenclature

ACC Accuracy

AI Arti�cial Intelligence

ALU Arithmetic Logic Unit

AmI Ambient Intelligence

ANN Arti�cial Neural Networks

ART Adaptive Resonance Theory

ASIC Application-speci�c Integrated Circuit

AXI-Stream Advanced eXtensible Interface v4 - Stream

BP Gradient Descend Backpropagation

CAN Controller Area Network

CPLD Complex Programmable Logic Devices

CPU Central Processing Unit

CRI Centred Recursive Interpolation

CS Computer Science

DEV Standard Deviation

DPR Dynamic Partial Recon�guration

ELM Extreme Learning Machine

EMC External Memory Controller

ET Electronic Technologies

FFD Type D Flip-Flop

FIFO First-Input First-Output

xix

FIS Fuzzy Inference System

FPGA Field-Programmable Gate Array

FPU Floating Point Unit

FSL Fast Simplex Link

FSM Finite State Machine

GPGPU General-purpose Computing on Graphics Processing Units

HMI Human-Machine Interface

HW Hardware

IC Integrated Circuit

ICAP Internal Con�guration Access Port

ICT Information and Communications Technologies

IE Intelligent Environment

IMU Inertial Measurement Unit

IP Intellectual Property

ISTAG European Community's Information Society Technology

JTAG Joint Test Action Group

LAPU Live-At-Power-Up

LMB Local Memory Bus

LUT Look-up Table

MAC Multiply-Accumulator

MLP Multilayer Perceptron Neural Network

MSB Most Signi�cant Bit

OTP One-Time Programmable

PAL Programmable Array Logic

PC Personal Computer

PCA Principal Component Analysis

PLA Programmable Logic Array

PLC Power-Line Communication

xx

PLD Programmable Logic Device

PR Partial Recon�guration

PWL Piecewise Linear approximation

RALUT Range Addressable Look-up Table

RAM Random Access Memory

RFID Radio Frequency IDenti�cation

ROM Read Only Memory

SC Soft Computing

SEU Single Event Upset

SLFN Single-hidden-layer Feedforward Neural Networks

SoPC System on Programmable Chip

SPLD Simple Programmable Logic Device

SVD Singular Value Decomposition

SVM Support Vector Machine

SW Software

UART Universal Asynchronous Receiver/Transmitter

VHDL Very-High-Speed Integrated Circuits Hardware Description Language

xxi

xxii

Contents

Agradecimientos xiii

Introduction xvii

Nomenclature xix

Contents xxiii

List of Figures xxvii

List of Tables xxxi

Resumen xxxiii

1 State of the Art 45
1.1 Ambient Intelligence . 45

1.1.1 Introduction to Ambient Intelligence 45
1.1.2 Description of an Ambient Intelligence Environment . . . 46
1.1.3 Algorithms . 49
1.1.4 Implementations of the Algorithms 50
1.1.5 Example of Ambient Intelligence Environments 51

1.2 Soft Computing: Arti�cial Neural Networks 54
1.2.1 Introduction to Soft Computing 55
1.2.2 Neural Networks . 56
1.2.3 Learning Algorithms . 60

1.3 Arti�cial Neural Network Implementation 66
1.3.1 Software Arti�cial Neural Networks 66
1.3.2 Hardware Arti�cial Neural Networks 67
1.3.3 Hardware/Software Arti�cial Neural Networks 68

1.4 Programmable Logic Devices . 69
1.4.1 FPGA Con�guration Technology 73
1.4.2 Dynamic Partial Recon�guration 75
1.4.3 Field Programmable Gate Array Manufacturers 77

xxiii

2 A Hardware/Software Architecture for an Arti�cial Neural Net-
work 81
2.1 Global Hardware/Software Architecture 81

2.1.1 General Scheme . 82
2.1.2 Communication Systems 82
2.1.3 Software Partition . 83
2.1.4 Hardware Partition . 83

2.2 Hardware Partition: Architecture of the Arti�cial Neural Net-
work Core . 83
2.2.1 Data Representation and Arithmentic 83
2.2.2 Arti�cial Neural Network Core Scheme 84
2.2.3 Arti�cial Neuron Architecture 85
2.2.4 Weight and O�set Storage 87
2.2.5 Activation Function Implementation 88
2.2.6 Arti�cial Neural Network Core Control: Finite State Ma-

chine . 89
2.2.7 Arti�cial Neural Network Core Implementation 94

2.3 Software Partition . 97
2.3.1 Components of the Software Partition 98
2.3.2 Implementation Issues . 99
2.3.3 Learning Algorithm Acceleration Using the Hardware Par-

tition . 99
2.4 Controlled Accuracy Activation Function Implementation 100

2.4.1 Function Approximation Scheme Using Taylor Series . . . 101
2.4.2 Selection of the Word Length 103
2.4.3 Hardware Implementation of the Taylor Module 104
2.4.4 Simulations of the Proposed Scheme 106
2.4.5 Field Programmable Gate Array Implementation of the

Taylor Module . 107
2.5 An Arti�cial Neural Network Architecture Using the Taylor Mod-

ule to Implement the Activation Fucntion 109
2.5.1 An Arti�cial Neural Network Core with One Taylor Mod-

ule per Layer . 110
2.6 Conclusions . 112

3 Dynamic Partial Recon�guration 115
3.1 Dynamic Partial Recon�guration in Intelligent Environments . . 115
3.2 Restrictions Introduced by the Design Tool 116
3.3 Recon�guring the Entire Hardware Partition 117

3.3.1 Changing the Arti�cial Neural Network Topology 117
3.3.2 Changing the Accuracy of the Activation Function 119

3.4 Recon�guring the Internal Modules of the Arti�cial Neural Network121
3.4.1 Changing the Activation Functions 121
3.4.2 Removing and Adding the Neurons of the Hidden Layer . 122

3.5 Power Reduction by Means of Gated Clocks 124
3.6 Conclusions . 125

xxiv

4 Applications of the Hardware/Software Arti�cial Neural Net-
work Architecture to Real-world Intelligent Environments 127
4.1 Development of an Embedded Agent for an Intelligent Inhabited

Environment . 127
4.1.1 iDorm Intelligent Environment 128
4.1.2 Topology and Parameters of the Intelligent Agent 129
4.1.3 Simulation Results . 132
4.1.4 Hardware/Software Architecture of the Intelligent Agent . 134
4.1.5 Implementation Considerations and Results 137

4.2 Development of a Real-time Driver Identi�cation Embedded Sys-
tem for Ambient Intelligence Applied to the Car Environment . . 140
4.2.1 Uyanik Instrumented Car 140
4.2.2 Driver Identi�cation Based on Extreme Learning Machines

and Statistical Analysis 141
4.2.3 Hardware/Software Architecture 143
4.2.4 Simulation and Experimental Results 145
4.2.5 Timing Considerations and Resource Utilization 147

4.3 Conclusions . 148

5 Final Conclusions and Future Work 151
5.1 Conclusions . 151
5.2 Future Work . 152
5.3 Publications . 153

Bibliography 155

xxv

xxvi

List of Figures

1.1 Image of an AmI environment with sensors, actuators, processing
units and communication systems 47

1.2 Biological neuron morphology 57
1.3 Arti�cial neuron morphology . 57
1.4 Arti�cial Neural Network scheme with one hidden layer 58
1.5 Feed-forward single layer perceptron neural network scheme . . . 60
1.6 Recurrent neural network scheme 61
1.7 Di�erence between a CPU with four processing units and a GPU

with 240 �oating point processing units 69
1.8 Programmable Logic Array AND and OR planes with their in-

terconnection points . 70
1.9 22V10 PAL Macrocell, showing its register and the inverter of

the output . 71
1.10 Virtex II Slice . 72
1.11 Xilinx DSP48E diagram. The core can be con�gured to perform

addition, subtraction or logic operations 73
1.12 SRAM FPGA interconnection detail 74
1.13 Flash FPGA interconnection detail 74
1.14 Anti-Fuse interconnection detail 75
1.15 Dynamic Partial Recon�guration working process using an exter-

nal Flash memory to store the partial bitstreams 76
1.16 Recon�guration of 2 internal modules of an FPGA using new

partial bitstreams . 77

2.1 Block diagram of the HW/SW architecture of the system. The
software partition is based on the MicroBlaze processor, while
the ANN core represents the hardware partition. 82

2.2 ANN core architecture diagram 84
2.3 Serial Processing neuron scheme 86
2.4 Parallel Processing neuron scheme 86
2.5 Partial Parallel Processing neuron scheme 86
2.6 Proposed serial processing neuron design, where Ni is the length

of the integer part and Nf is the length of the fractional part . . 87
2.7 Waveforms of the sigmoid (Left) and hyperbolic tangent (Right)

functions . 89

xxvii

2.8 A ROM memory implemented using a LUT architecture 89
2.9 A ROM memory implemented using a RALUT architecture . . . 90
2.10 ANN core Finite State Machine for a ROM-based core 91
2.11 ANN core Finite State Machine with the new states to write the

RAM memories . 93
2.12 An ANN core Finite State Machine with the new states to update

the number of active hidden layer neurons 94
2.13 Chipscope capture of the �rst hidden layer neuron working pro-

cess for a ROM-based ANN with 7 inputs 96
2.14 Chipscope capture of the FSL bus signals, FSM and the control

counters of a ROM-based ANN core 96
2.15 Chipscope capture of the FSL bus signals, FSM and memories

write enable signals during a memory writting process of a RAM-
based core . 97

2.16 Block diagram of the system showing the SW partition, including
its peripherals and the HW partition connected by means of a pair
of FSL buses . 98

2.17 Approximation scheme input regions, sigmoid function and its
�rst three derivative extreme values 101

2.18 Address of the ROM memories for a (0,8) range and 32 intervals 104
2.19 Address of the ROM memories for a (0,4) range and 32 intervals 104
2.20 Taylor module architecture (positive semi-axis) 105
2.21 Taylor module Finite State Machine 106
2.22 Absolute error of a simulated sigmoid function using the Taylor

module . 108
2.23 Chipscope capture of the Taylor module with a negative input . 109
2.24 Chipscope capture of the Taylor module with a positive input . . 110
2.25 FSM of the ANN with one function approximation module per

layer . 111

3.1 Erroneous selection of the recon�gurable regions due to the re-
strictions of the designing tool. The two regions share a column,
i.e. they are placed in the same clock region. 118

3.2 Block diagram of the HW/SW architecture with a recon�gurable
HW partition to implement ANN cores prepared to be used in
di�erent period of the day, or periods of the year 119

3.3 Block diagram of the HW/SW architecture with a recon�gurable
HW partition to implement di�erent Soft Computing cores . . . 120

3.4 Block diagram of the ANN core with recon�gurable hidden-layer
neurons . 123

3.5 Internal architecture of a Virtex 5 XC5VLX110T-1. The DSPs,
the light blue rectangles, are located in only one column in the
clock regions of the left side . 124

4.1 Pictures of the iDorm dormitory at the University of Essex . . . 129
4.2 Flowchart of the of the agent operation in the o�-line mode . . . 130

xxviii

4.3 Flowchart of the of the agent operation in the on-line mode . . . 132
4.4 a) Evolution of the RMSE, and (b) the corresponding number

of hidden neurons during the o�-line stage of Experiment 1. (c)
Evolution of the RMSE during the on-line stage of Experiment 1 133

4.5 Outputs of the Experiment 1 after the o�-line stage (blue) and
their target values (green) for a 3 day period between 9am and
11pm . 135

4.6 (a) Evolution of the RMSE, and (b) the corresponding number
of hidden neurons during the o�-line stage of Experiment 2. (c)
Evolution of the RMSE, and (d) the corresponding number of
hidden neurons during the on-line stage of Experiment 2 136

4.7 Block diagram of the HW/SW architecture of the adaptive intel-
ligent agent. The software partition is developed on the Micro-
Blaze processor, while the recon�gurable ANN core is implemen-
ted in the hardware partition . 137

4.8 Time required performing a single training iteration with the Mi-
croBlaze processor as a function of the neural network size 139

4.9 Picture of the instrumented car Uyanik and the signals captured
through the CAN-bus (in orange), video and audio recorders . . 141

4.10 Block scheme of the HW/SW architecture for embedded ELM.
The synthesis of the resources in green is optional. The data
cache and the External Memory Controller (EMC) are included
only if external memory is used, while the maximum module is
used to identify a single class when the individual classi�cation
rates are not required . 143

4.11 Flow chart of the main tasks performed by the microprocessor . 144
4.12 Scheme of an 8-input maximum circuit implemented by means

of two-input single-cycle maximum modules. The maximum is
structured into a binary tree of 3 layers. In the general case, an
m-input multiplier consists of log2m layers 145

4.13 Average testing accuracy as a function of the number of neurons
in the hidden layer (Equation 1.13) of an SLFN ELM core for
AmI-driver . 146

xxix

xxx

List of Tables

1 Descripción de las entradas y las salidas del entorno idorm xli
2 Rendimiento del algoritmo ELM. Dispositivo: Kintex 7 XC7K325T-

2 . xlii
3 Rendimiento temporal del coprocesador ELM. Dispositivo: Kin-

tex 7 XC7K325T-2 . xlii

2.1 Resources needed by an ANN with ROM memories to store the
weights with 7 inputs, 14 hidden neurons and 1 output imple-
mented in Virtex 5 XC5VLX110T-1, Virtex 6 XC6VLX240T-1
and Kintex 7 XC7K325T-2 FPGAs 95

2.2 Resources needed by an ANN with RAM memories to store the
weights with for 7 inputs, 14 hidden neurons and 1 output imple-
mented in Virtex 5 XC5VLX110T-1, Virtex 6 XC6VLX240T-1
and Kintex 7 XC7K325T-2 FPGAs 95

2.3 Design parameters (minimum values) as a function of allowed
error for a sigmoid function . 102

2.4 Maximum error vs. fractional bits (Nj) for 16 and 32 intervals in
the case of a sigmoid function . 107

2.5 Taylor module occupation for Virtex 5 XC5VLX110T, Virtex 6
XC6VLX240T-1 and Kintex 7 XC7K325T-2 devices 108

3.1 Resource and dynamic power comparison between an ANN with
7 inputs, 32 hidden neurons and 4 outputs and an ANN with 7
inputs, 8 hidden neurons and 1 output implemented in a Virtex
6 XC6VLX240T-1 device . 119

3.2 Resources and response time of an ANN core with one 32-interval
Taylor module per layer, 7 inputs, 14 hidden neurons, 4 outputs
and 14 fractional bits . 121

3.3 Resources and response time of an ANN core with parallel ROM
activation function, 7 inputs, 14 hidden neurons, 4 outputs and
8 fractional bits . 121

4.1 Description of the inputs and outputs of the iDorm environment 129
4.2 Resources report for the 7-input 4-output agent for a Virtex 6

XC6VLX240T-1 device . 138

xxxi

4.3 Timing considerations of the agent performance 139
4.4 Performance of the ELM algorithm 147
4.5 Timing performance of the SLFN coprocessor. Device: Kintex 7

XC7K325T-2 . 148
4.6 Hardware resources of the ANN coprocessor. Device: Kintex 7

XC7K325T-2 . 148

xxxii

Resumen

En los últimos años se ha dedicado mucho esfuerzo a la investigación en el
campo de la Inteligencia Ambiental (AmI en sus siglas en inglés). Este reciente
paradigma propone ambientes (e.g. salas públicas o privadas, habitaciones o
espacios), también conocidos como Entornos Inteligentes, dotados con una serie
de sistemas electrónicos, que hacen que el entorno se adapte a las necesidades y
preferencias de las personas que viven en él, de forma que sus actividades diarias
sean más fáciles y confortables.

Uno de los requisitos para conseguir este objetivo es que los dispositivos
electrónicos sean de pequeño tamaño, bajo coste y bajo consumo, pero al mismo
tiempo que tengan una gran velocidad de procesamiento debido a que deben ser
capaces de dar una respuesta en tiempo real. No obstante, estas características
son poco compatibles con los requisitos de capacidad de computación mencio-
nados anteriormente. Como resultado, las soluciones que se plantean para estos
entornos están basadas en ordenadores personales (PC), dado que se centran en
la veri�cación de los modelos, más que en su implementación física.

El objetivo de esta tesis es desarrollar sistemas inteligentes para entornos
AmI basados en el uso de Redes Neuronales Arti�ciales. El sistema se imple-
mentará en un dispositivo tipo Field Programmable Gate Array (FPGA). Las
FPGAs, son circuitos integrados que puede ser recon�gurados por el usuario o
el diseñador tras su producción. Estos dispositivos tienen otra ventaja, la po-
sibilidad de implementar en ellos microprocesadores a medida, permitiendo así
la inclusión de programas software para obtener diseños más sencillos. Como
resultado, una arquitectura híbrida hardware/software puede ser implementada
en una única FPGA.

Las FPGAs modernas ofrecen otra propiedad que puede ser muy útil para
la reducción de consumo y tamaño, la tecnología denominada Recon�guración
Dinámica Parcial (DPR en sus siglas en inglés). Esta tecnología permite modi�-
car dinámicamente una parte de la lógica de la FPGA mientras el resto continúa
operando sin interrupción. En este trabajo, se introduce DPR en la arquitectura
propuesta para obtener mejores diseños.

Para validar la viabilidad de los diseños, se presentan dos aplicaciones del
mundo real: la primera es una propuesta para un entorno inteligente habitado
(el entorno iDorm de la Universidad de Essex), y en la segunda el escenario es
un automóvil inteligente.

xxxiii

Estado del Arte

Inteligencia Ambiental

En primer lugar hay que presentar el concepto de AmI. Este concepto fue
introducido por primera vez por la Comisión Europea en 2001 cuando la Eu-
ropean Community's Information Society Technology (ISTAG) lanzó el desafío
AmI. Pese a que inicialmente AmI fue un concepto surgido en Europa, rápi-
damente se extendió por el resto del mundo y surgieron un gran número de
proyectos y programas de investigación.

El concepto de AmI puede ser descrito como un modelo interacción donde
las personas están rodeadas por un entorno digital y éste es consciente de su pre-
sencia, es sensible al contexto y es capaz de responder en una forma adaptativa
y transparente a las necesidades y/o hábitos de los usuarios para hacerles la vida
más fácil [1]. Para hacer esto, el sistema debe ser capaz de obtener información
en tiempo real y procesarla usando el conocimiento adquirido y cierto grado de
inteligencia. En este caso, el término Inteligencia hace referencia a la habilidad
del entorno para analizar y entender el contexto, identi�car los usuarios y las ta-
reas que están haciendo para aprender sus hábitos y preferencia, para adaptarse
a cambios y, eventualmente, para ser capaces de reconocer emociones [2].

Ejemplos de Entornos de Inteligencia Ambiental

Para comprender mejor el concepto de AmI, a continuación se muestran
una serie de ejemplos de entornos inteligentes:

1. Casas inteligentes: Una casa inteligente es un buen ejemplo para compren-
der la idea de AmI, dado que es un entorno donde la gente pasa bastante
tiempo en él y donde se pueden incluir fácilmente sensores y actuadores.
En la actualidad hay muchos proyectos de casas inteligentes, entre los
cuales podemos mencionar los siguientes:

(a) MavHome [3]: En este proyecto se busca automatizar las actividades
que el usuario hace manualmente.

(b) Proyecto Gator Tech [4]: Este proyecto busca crear un entorno capaz
de asistir a personas de avanzada edad o con discapacidades.

(c) iSpace [5]: Se trata de un piso de 2 habitaciones desarrollado por la
Universidad de Essex. Es una evolución del proyecto iDorm, el cual
era inicialmente una habitación de un dormitorio.

2. Entornos sanitarios: Estos entornos tienen un gran potencial para la im-
plementación de AmI en ellos. Una forma de aplicar AmI es en el campo
de la monitorización de pacientes en el hogar [6], [7]; reduciendo así el
estrés de los pacientes y de sus cuidadores. La segunda opción consiste
en la creación de hospitales inteligentes. En este caso se podría usar AmI
para ayudar a los trabajadores sanitarios, por ejemplo, avisándoles que

xxxiv

los resultados que esperaban ya están disponibles y mostrándoselos en la
terminal más próxima, ahorrando tiempo al facultativo [8].

3. Industria del transporte: En la industria automovilística se puede apli-
car AmI de diferentes formas. Por ejemplo, en el campo del confort del
conductor y de los pasajeros, no obstante, hay otras posibilidades:

(a) Proyecto NEDO [9]: Su objetivo es la identi�cación del conductor, así
como la detección de distracciones y el reconocimiento de maniobras.

(b) Detección de fatiga: Los principales fabricantes de automóviles es-
tán incluyendo estos detectores en sus modelos. Algunos ejemplos
son Mercedes-Benz (Attention Assist) [10], Ford (Driver Alert) [11],
Volkswagen (Fatigue detection system) [12] or Volvo (Driver Alert
Control) [13] entre otros.

(c) Detección de infartos: Ford junto con la Universidad Técnica de
Aquisgrán están desarrollando un asiento con una serie de sensores
capaz de detectar si el conductor está sufriendo un infarto de mio-
cardio [14]. En ese caso el coche se detendrá y avisará a los servicios
de emergencia indicando su localización [15].

Redes Neuronales Arti�ciales

Para dotar de inteligencia a un entorno existen diferentes técnicas que
se pueden usar, entre ellas las Redes Neuronales Arti�ciales (ANN en sus si-
glas en inglés). Las ANN son técnicas pertenecientes al campo denominado Soft
Computing (SC) que, de acuerdo con el profesor Lofti Zadeh, �de�nen la compu-
tación que emula la habilidad de la mente humana para razonar y aprender en
un entorno de incertidumbre e imprecisión� [16]. Esta de�nición hace dos decla-
raciones, la primera es que la información del entorno es imprecisa, y la segunda
es que las técnicas de SC surgen de los procesos naturales.

Las ANNs están basadas, al igual que las redes biológicas, en neuronas y
sus conexione. Las neuronas arti�ciales, cuyo modelo matemático fue propues-
to por McCulloch y Pitts en 1943 [17], están basadas en la morfología de las
neuronas biológicas:

� Dendritas (xi): Son las entradas de la neurona proceden del exterior de la
red o de la salida de otras neuronas.

� Pesos (wi): Valores asociados a las entradas, responsables de darle
mayor o menor fuerza a éstas.

� Soma: cuerpo de la neurona donde se suman todos los valores ponderados
de las entradas. A continuación se aplica una función de transferencia
conocida como función de activación.

� O�set (θ): Este valor es el responsable de añadir un umbral a la suma
de entradas ponderadas.

xxxv

� Axon: Es la salida de la neurona. Su única función es la de dar un camino
para los datos de salida.

La salida de la neurona está dada por la siguiente ecuación:

y = f(

n∑
i=1

xiwi + θ)

Cuando un cierto número de neuronas se interconectan, se forma una
estructura capaz de realizar ciertas funciones. Normalmente la red, se suele
organizar en capas:

� Capa de entrada: Actúa como bu�er de la red, es decir, solo tiene una
dendrita sin pesos y la salida tiene el mismo valor de la entrada.

� Capas ocultas: Puede haber una, varias o ninguna. Se caracterizan porque
las dendritas de las neuronas están conectadas a los axones de todas las
neuronas de la capa anterior, a su vez los axones se conectan a las dendritas
de todas las neuronas de la capa siguiente.

� Capa de salida: Es la salida de la red. Las dendritas de las neuronas están
conectadas a todos los axones de la capa anterior. Los axones de la capa
de salida no se rami�can dado que sólo están conectados a la salida de la
red.

Las redes pueden aprender y adaptarse mediante algoritmos de aprendizaje.
Estos algoritmos pueden ser de dos tipos: aprendizaje de parámetros, donde se
modi�can los pesos y los o�sets de la red; y aprendizaje de estructura, donde se
modi�ca el número de neuronas, el número de capas o las funciones de activación.
Estos algoritmos se pueden usar por separado o conjuntamente.

En la presente tesis, se han considerado ambos tipos de algoritmos. En el
caso del aprendizaje de parámetros, se han usado dos algoritmos diferentes. En
primer lugar, el algoritmo de Backpropagation (BP) desarrollado por Parker en
1982 [18] y Rumelhart et al. en 1986 [19], uno de los más usados y que se basa
en variar el valor de los pesos proporcionalmente al gradiente del error. Por otro
lado se han usado la llamadas Extreme Learning Machines (ELM) desarrolladas
por Huang [20] en 2006. Estas redes tienen la peculiaridad de que los pesos de
la capa oculta son aleatorios y las neuronas de la capa de salida no tienen ni
o�sets ni función de activación lo que permite que se puedan entrenar usando un
sólo ciclo de aprendizaje. En el caso del aprendizaje de estructura, se ha usado
un algoritmo de crecimiento/poda que varía el número de neuronas en la capa
oculta [21]. Este algoritmo se usa junto con el algoritmo de BP.

En relación con la implementación de la red neuronal existen varias po-
sibilidades:

� Redes software: Se ejecutan en microprocesadores o microcontroladores
con el problema de que no existe ningún paralelismo en la ejecución salvo
en el caso de procesadores multinúcleo. Esta implementación se usa cuando
no hay muchas restricciones en cuanto a tamaño o potencia consumida.

xxxvi

� Redes hardware: Éstas pueden ser digitales o analógicas. Tienen la ventaja
de poder implementar diversos tipos de paralelismo y tener menor con-
sumo. La principal desventaja de las redes analógicas es su sensibilidad a
los cambios de temperatura y voltaje, mientras que en el caso de las redes
digitales su principal desventaja es el gran número de recursos necesarios
para la implementación de los algoritmos de aprendizaje.

� Redes hardware/software: en este caso se realiza una partición de los algo-
ritmos computacionales en dos bloques, uno hardware y otro software, de
forma que se optimice el rendimiento del sistema. Esta es la mejor solución
cuando es necesario un término medio entre versatilidad y rendimiento.

En el presente proyecto se ha optado por el diseño de una arquitectura hard-
ware/software, en donde la red es implementada en la partición hardware y los
algoritmos de aprendizaje están implementados en la partición software.

La arquitectura hardware/software (HW/SW) es implementada en una
FPGA, dado que es posible implementar en dichos dispositivos procesadores,
ya sea haciendo uso de los propios recursos de la FPGA, como los procesado-
res NIOS de Altera [22] o el MicroBlaze de Xilinx [23], o bien porque vienen
integrados en el silicio del dispositivo. Otra ventaja es que también se pueden
implementar dentro del propio dispositivo los buses de comunicación y periféri-
cos necesarios por el sistema sin necesidad de usar ningún dispositivo externo,
creando así los llamados System on Programmable Chip (SoPC).

Arquitectura Hardware/Software para una Red Neu-
ronal Arti�cial

Para la implementación de la Red Neuronal Arti�cial, se ha diseñado una
arquitectura HW/SW en la cual todo el sistema está integrada en una única
FPGA.

En la partición hardware se ha desarrollado una red multicapa completa-
mente escalable mediante el uso de Very-High-Speed Integrated Circuits Hard-
ware Description Language (VHDL) estándar, de forma que la red puede ser
implementada en diferentes dispositivos independientemente del fabricante. Las
neuronas de la red se han implementado de forma que hacen uso de los Pro-
cesadores Digitales de Señales (DSP en sus siglas en inglés) incluidos en las
FPGAs, obteniendo así un ahorro de recursos y un aumento del rendimiento,
dado que estos recursos son más rápidos que el uso de la lógica interna para
realizar operaciones de multiplicación/acumulación. A su vez, las neuronas de
las diferentes capas se han implementado en paralelo para así obtener un diseño
más rápido. En caso de que la red se quiera implementar en FPGAs sin DSPs o
multiplicadores dedicados, las neuronas se pueden implementar usando la lógica
de la FPGA.

Se han diseñado dos arquitecturas de redes distintas dependiendo del
método usado para el almacenamiento de los pesos: una usando memorias de

xxxvii

sólo lectura (ROMs) y otra usando memorias de acceso aleatorio (RAMs). En el
caso de la implementación de la función de activación, ésta se ha implementado
mediante ROMs. Pese a que el diseño inicial de la red es para una sola capa
oculta, el esquema de diseño usado es generalizable a redes de varias capas
ocultas.

La partición software se ha realizado usando un procesador MicroBlaze
y la memoria interna de la FPGA para hacer que la ejecución del software sea
lo más rápida posible, evitando así el uso de elementos externos. El procesador
es responsable de realizar el control del sistema y la ejecución de los diferentes
algoritmos de aprendizaje (i.e. Backpropagation, Extreme Learning Machines y
crecimiento/poda). El código de estos algoritmos se ha implementado en len-
guaje C estándar independiente de la plataforma en lo máximo posible, por lo
tanto, puede ser usado en diferentes dispositivos realizando sólo cambios míni-
mos. En relación con el rendimiento de estos algoritmos, ELM tiene un tiempo
de ejecución muy bajo mientras que Backpropagation puede ser excesivamente
alto, dependiendo de la estructura de la red y el número de ciclos de aprendizaje
que se realicen. Para acelerarlo, se ha modi�cado la ANN de forma que pueda
ser usada como coprocesador del algoritmo consiguiendo aceleraciones de hasta
un 61%.

Junto a lo anterior, se ha obtenido un nuevo método para la obtención de
la función de activación basado en el teorema de Taylor. Usando un polinomio de
Taylor de 2º orden y el término complementario de Lagrange, es posible aproxi-
mar las funciones sigmoide y tangente hiperbólica con una precisión controlada
[24].

En suma, se ha diseñado una arquitectura HW/SW �exible que puede ser
adaptada a un gran número de situaciones. Es capaz de cubrir un gran rango de
especi�caciones relacionadas con el tamaño, velocidad y precisión. El sistema se
ha implementado correctamente en una gran variedad de dispositivos; FPGAs
de bajo, medio y alto rendimiento, demostrando que sus requisitos de tamaño
no son muy exigentes. Por lo tanto, el sistema es apto para ser implementado
en los entornos AmI donde el tamaño y/o el rendimiento son una de las más
importantes restricciones del diseño.

Recon�guración Dinámica Parcial

Para la aplicación de la tecnología Recon�guración Dinámica Parcial en
la arquitectura diseñada se han propuesto diferentes estrategias.

Recon�guración de una red neuronal completa

En situaciones donde se usan redes con los pesos en memorias ROM,
se puede recon�gurar la red para diferentes contextos (periodo del día o la
estación del año), en vez de implementar todos los módulos en el dispositivo.
Un ejemplo sería utilizar en una casa inteligente una red para controlar el sistema

xxxviii

de aire acondicionado y las persianas por el día, mientras que por la noche, se
recon�gura la red con otra preparada para controlar la iluminación.

También se puede aplicar la recon�guración de la red en situaciones en
donde se necesitan altas precisiones en las funciones de activación durante el
periodo de aprendizaje. La solución propuesta consiste en utilizar durante el
aprendizaje una red que usa para la función de activación el módulo de Taylor,
que usa menos recursos pero que es mucho más lento, mientras que durante el
periodo de funcionamiento en tiempo real se recon�guraría la red implementan-
do memorias ROM con una precisión menor, pero una por neurona haciendo
que la red sea más rápida.

Recon�guración de los módulos internos de la red

Esta estrategia consiste en recon�gurar los módulos de la función de acti-
vación y las neuronas de la capa oculta. Debido a limitaciones de la herramienta
usada para realizar la recon�guración (la herramienta PlanAhead [25] de Xilinx)
los módulos internos de la red deben ser implementados como módulos indepen-
dientes para poder ser recon�gurados:

� Recon�guración de la función de activación: Permite que en el proceso de
aprendizaje se usen diferentes funciones de forma que se pueda seleccionar
la mejor combinación, para obtener el menor error en el aprendizaje, sin
necesidad de tener que implementar simultáneamente todas las funciones
en el dispositivo. Este método es muy útil cuando el sistema dispone de
un mecanismo de adaptación on-line que decide cambiar las funciones de
activación cuando se producen cambios en el entorno.

� Recon�guración de las neuronas de la capa oculta: Esta estrategia se basa
en deshabilitar las neuronas que no son usadas tras el proceso de aprendiza-
je de estructura, de forma que éstas dejen de consumir potencia. Aunque la
metodología propuesta permite recon�gurar las neuronas individualmen-
te, las limitaciones de los dispositivos (especialmente los más pequeños)
y las herramientas de diseño, complican en exceso las implementaciones.
En vez de eso, las neuronas se han tenido que recon�gurar por pares o
en módulos más grandes, especialmente cuando el número de neuronas a
recon�gurar es muy alto y la estación de trabajo con la que se lleva a cabo
el diseño no es lo su�cientemente potente [26].

Como conclusión �nal se puede comentar que DPR dota a la red con nuevas
capacidades y funcionalidades, sin la necesidad de tener que implementar simul-
táneamente todas las redes o módulos, y obteniendo así un ahorro de espacio, y
por lo tanto de consumo de potencia. No obstante, se tiene que tener en cuenta
que la inclusión de los dispositivos para el almacenaje de los archivos de recon-
�guración y el resto de elementos necesarios para la llevar a cabo ésta pueden,
en algunas situaciones, hacer que el consumo de potencia sea mayor que el que
se pueda ahorrar o que dicho ahorro sea insigni�cante. Por tanto, el uso de
la alternativa basada en las señales de habilitación de los relojes, presentes en

xxxix

las nuevas FPGAs, y el uso de nuevas técnicas de diseño (e.g. la Estrategia de
Divide y Vencerás presentada en [27]) pueden ser una mejor solución que DPR
para reducir el consumo de potencia, consiguiendo además que el diseño sea más
simple.

Aplicaciones de la Arquitectura Hardware/Software
en Entornos Inteligentes

Para demostrar que la arquitectura HW/SW propuesta puede ser usada
en los entornos AmI para los cuales se ha diseñado, se han desarrollado dos
aplicaciones en entornos inteligentes.

Desarrollo de un Agente Inteligente para un Entorno Inte-
ligente Habitado

Como aplicación del sistema, se presenta el desarrollo de un agente inte-
ligente para su implementación para el control en tiempo real de en un entorno
inteligente habitado. El agente es implementado en el entorno iDorm, un dormi-
torio de una habitación, el cual ha sido desarrollado por el Grupo de Entornos
Inteligentes de la Universidad de Essex [28], [29], [30].

Los investigadores han recogido cientos de datos de varios usuarios del
entorno interaccionando con él durante varias estaciones del año. Aunque es-
te entorno no es computacionalmente exigente, sí lo es en el caso del tamaño y
consumo del sistema, lo que lo hace perfecto para la implementación de la arqui-
tectura desarrollada en este proyecto. El entorno contiene 7 entradas obtenidas
de diferentes sensores y 8 salidas correspondientes a diferentes actuadores. Las
entradas y las salidas están en la Tabla 1.

Se usa una Red Neuronal Arti�cial adaptativa, implementada en una
FPGA con capacidad de DPR. En el caso del SW, se han implementado los
algoritmos de Backpropagation y de crecimiento/poda para obtener una red
neuronal con un tamaño de la capa oculta óptimo. Gracias a DPR, es posible
eliminar las neuronas que no vamos a usar consiguiendo así un ahorro en el
consumo de potencia.

El agente adaptativo se comporta de forma optima para un máximo error
permitido, mediante el uso de los algoritmos de BP y crecimiento/poda. Estos
algoritmos permiten al agente adaptarse a cambios en el comportamiento del
usuario del entorno, no sólo adaptando los parámetros de la red sino también
adaptando la arquitectura de la misma. Para realizar el modelado del compor-
tamiento del usuario, se necesitan varios segundos para completar 100 ciclos
de aprendizaje, por tanto, el aprendizaje/adaptación se puede llevar a cabo en
periodos de inactividad.

Otro punto importante es el uso de DPR para la implementación de
sólo las neuronas necesarias en la red neuronal. En el peor de los casos, la
recon�guración de las 32 neuronas de la capa oculta, necesitaría 83.6 ms, a

xl

Entrada Variable Slida Actuator

In1 Nivel de luz interna Out1 Luz de intesidad variable 1
In2 Nivel de luz externa Out2 Luz de intesidad variable 2
In3 Temperatura ambiental interna Out3 Luz de intesidad variable 3
In4 Temperatura ambiental externa Out4 Luz de intesidad variable 4
In5 Presión en la silla (binario) Out5 Estado de la persiana
In6 Presión en la cama (binario) Out6 Luz de la cama
In7 Hora Out7 Luz del escritorio

Out8 Estado de la calefacción

Tabla 1: Descripción de las entradas y las salidas del entorno idorm

una frecuencia de reloj de 83.3 MHz. Este tiempo es más que su�ciente para el
entorno iDorm en el cual el tiempo de operación, de�nido por la interacción de
usuario y la máquina, es del orden de segundos.

Desarrollo de un Identi�cador de Conductores en Tiempo
Real para Inteligencia Ambiental Aplicada al Entorno de
un Automóvil

La segunda aplicación propuesta es un identi�cador de conductores basa-
do en el uso de Extreme Learning Machines y variables estadísticas (i.e. media,
desviación típica, máximo valor absoluto y suma de valores absolutos) obtenidos
de una Unidad de Medidas Inerciales (IMU en sus siglas en inglés) e implemen-
tado en una FPGA. Este trabajo contribuye al desarrollo de Sistemas Avanzados
de Asistencia al Conductor con una perspectiva centrada en el conductor con el
objetivo de mejorar su comportamiento en la conducción de forma personaliza-
da.

Los datos usados han sido suministrados por el �Drive-Safe Consortium�,
el cual ha usado un coche tipo sedan equipado con diferentes sensores [31], [32].
La base de datos completa (84 hombres y 17 mujeres) incluye grabaciones de
audio y vídeo, señales del bus CAN, registros de la presión en los pedales, un
goniómetro laser de 180º y registros de acelerómetros en los ejes XYZ (i.e. IMU).

El sistema se ha implementado en una FPGA modelo Kintex 7 para varios
tamaños de la capa oculta, para la identi�cación de 3 conductores usando 16
entradas (4 variables estadísticas de 4 entradas). Como se puede ver en la Tabla
2, el sistema es capaz de realizar la computación del algoritmo de aprendizaje en
muy poco tiempo, casi 40 segundos para 100 neuronas en la capa oculta, y con
tasas de reconocimiento superiores al 90% a partir de 25 neuronas. En la Tabla
3, se puede observar que salvo para un caso de 500 neuronas en la capa oculta,
en el resto de los casos la red es capaz de trabajar a frecuencias superiores a 200
MHz.

En [33] se propuso un identi�cador de conductores usando una red con 2
capas ocultas y entrenándola con BP. Si los resultados se comparan, se puede

xli

Neuronas en Tiempo de Tiempo compu- Tasa de reco-
la capa aprendizaje (s) tacion de la ANN nocimiento

oculta (L) (MB a 100MHz) (µs) a 100 MHz medio (%)

10 1.22 0.33 68.7
25 4.16 0.48 93.0
50 12.10 0.73 95.3
100 39.44 1.20 96.8

Tabla 2: Rendimiento del algoritmo ELM. Dispositivo: Kintex 7 XC7K325T-2

Neuronas en la Frecuencia Tiempo de compu-
capa oculta (L) máxima (MHz) tación (µs)

10 221 0.15
25 220 0.22
50 219 0.33
100 213 0.58
500 119 4.39

Tabla 3: Rendimiento temporal del coprocesador ELM. Dispositivo: Kintex 7
XC7K325T-2

observar que con sólo 25 neuronas ocultas, ELM supera ampliamente al clasi-
�cador multicapa. En cuanto a los recursos necesarios, ELM también es mejor
dado que se necesitan menos neuronas que usando la red multicapa.

Conclusiones Finales y Trabajos Futuros

Conclusiones

En el presente trabajo de tesis se ha propuesto una solución al problema
del diseño de un sistema embebido para entornos de Inteligencia Ambiental. Es-
tos sistemas deben ser de pequeño tamaño, bajo coste y bajo consumo, pero al
mismo tiempo deben tener su�ciente velocidad de procesamiento para ejecutar
los algoritmos inteligentes en tiempo real. En la presente tesis se ha imple-
mentado una arquitectura híbrida hardware/software para cumplir con dichos
requisitos. En los siguientes párrafos se presentan las principales conclusiones y
contribuciones de esta tesis.

Para afrontar el objetivo mencionado, se ha desarrollado una Red Neu-
ronal Arti�cial HW/SW para Entornos Inteligentes basada en un dispositivo
FPGA. Las particiones hardware y software han sido implementadas en el mis-
mo chip, por tanto, no se necesitan otros dispositivos externos.

La Red Neuronal Arti�cial (la partición HW) ha sido diseñada usando
lenguaje VHDL estándar, independiente del dispositivo en el que se implemente.
Otra ventaja es su escalabilidad, es decir, el código ha sido diseñado de forma

xlii

que se adapte a los cambios en el número de entradas, número de salidas, número
de neuronas en la capa oculta o longitud de palabra. La mayor ventaja de la
red HW es su paralelismo que incrementa el rendimiento computacional.

Diferentes tipos de algoritmos de aprendizaje han sido implementados en
la partición software. El sistema es capaz de aprender durante la etapa o�-line y
adaptarse a cambios durante la etapa on-line. Por un lado, se han implementado
dos algoritmos de aprendizaje de parámetros (i.e. Backpropagation y Extreme
Learning Machines), y por otro lado, se ha implementado un algoritmo de apren-
dizaje de estructura (i.e. crecimiento/poda) para obtener el mejor tamaño de la
capa oculta. Estos algoritmos se han implementado usando lenguaje C estándar
de forma que son en alto grado independientes de la plataforma. Dado que el
tiempo de ejecución del algoritmo de Backpropagation puede ser muy elevado,
dependiendo de la estructura de la red y el número de ciclos de aprendizaje que
se realicen, la red se ha modi�cado para que se pueda usar como coprocesador
del algoritmo acelerándolo hasta un 61.83%.

El uso de la tecnología de Recon�guración Dinámica Parcial ha sido tam-
bién estudiado con el objetivo de conseguir una reducción en el tamaño y/o
consumo de potencia. En lo referente a la reducción de tamaño, DPR permite
implementar sólo los módulos que son necesarios en cada momento, obteniendo
así una reducción en el tamaño del dispositivo. Por otro lado, en lo referente a
la reducción del consumo de potencia, DPR presenta de pocos bene�cios, espe-
cialmente en las FPGAs de última generación como la Familia 7 de Xilinx. En
estos dispositivos, la reducción de potencia se puede obtener también mediante
el uso de otras técnicas o recursos (e.g. las señales de habilitación/inhabilitación
de los relojes).

Para demostrar la idoneidad del sistema en entornos de Inteligencia Am-
biental en el mundo real, se han desarrollado dos aplicaciones diferentes. La
primera es un agente adaptativo para un entorno inteligente habitado. Este
agente es capaz de modelar el comportamiento del usuario del entorno seleccio-
nando los mejores parámetros de la red, y el mejor tamaño de la capa oculta
mediante los algoritmos de Backpropagation y crecimiento/poda. A su vez tam-
bién es capaz de adaptarse a los cambios durante la etapa on-line. La segunda
aplicación desarrollada es un identi�cador de conductores basado en Extreme
Learning Machines. Este sistema contribuye al desarrollo de Sistemas Avanza-
dos de Asistencia al Conductor centrados en el conductor, los cuales se están
haciendo cada vez más importantes en la industria de la automoción como una
forma de reducir el número de accidentes. El sistema está diseñado para usar las
señales ya disponibles en el propio coche de forma que no es necesario instalar
nuevos equipos en los coches.

Finalmente, cabe mencionar que durante la realización de esta tesis se
han establecido relaciones con instituciones nacionales, como el Automotive In-
telligence Center, e internacionales como la Universidad de Coventry en el Reino
Unido y el Drive-Safe Consortium en Estambul, Turquía.

xliii

Trabajo futuro

Este proyecto ha abierto nuevos temas de investigación que serán desa-
rrollados en el futuro. En primer lugar se comentarán los temas relacionados con
la Inteligencia Ambiental seguidos por los temas relacionados con la tecnología
de las FPGAs:

1. La percepción de emociones y la inteligencia emocional son cada vez más
importantes [2]. Se investigará su implementación tanto en entornos habi-
tados como en coches inteligentes.

2. Se han estudiado las capacidades del algoritmo Extreme Learning Machine
para clasi�cación. En el futuro el estudio de sus propiedades de regresión
serán también investigadas.

3. Este proyecto se ha centrado en Redes Neuronales Multicapa. Se estudiará
el interés de rediseñar la red HW para implementar otro tipo de redes como
las redes recurrentes.

4. Una gran parte de los algoritmos de aprendizaje se han implementado
en SW, lo que resulta lento para algunas aplicaciones. En el futuro se
estudiará el impacto de realizar el aprendizaje en un coprocesador HW,
ya sea usando la propia red u otro módulo.

5. En respuesta a este trabajo sólo se ha tenido en cuenta DPR para reducir
el consumo de potencia. En el futuro se estudiarán las nuevas señales de
habilitación de relojes como técnica de reducción de consumo de potencia.

6. Durante la última parte de este proyecto, los Dispositivos de Lógica Pro-
gramable que incluyen procesadores ARM han ganado mucha notoriedad.
Con el �n de adaptar los diseños realizados a las nuevas familias de dis-
positivos, se realizará una migración del bus de comunicaciones de la red
a AXI-Stream (parte del estándar abierto AMBA de ARM).

7. Finalmente, en los últimos años nuevas generaciones de FPGAs han apare-
cido en el mercado. Será importante mantenerse informado de las nuevas
capacidades de dichas FPGAs, así como de las nuevas herramientas de
diseño desarrolladas por los fabricantes.

xliv

Chapter 1

State of the Art

This chapter focuses on the description of the di�erent methods avail-
able to develop Ambient Intelligence (AmI) systems and their implementation
in di�erent environments, such as homes, cars or hospitals. The development of
AmI environments involves a series of multidisciplinary techniques that includes
Information and Communications Technologies (ICT), and Electronic Techno-
logies (ET).

First of all, the concept of AmI is presented, including the algorithms and
the di�erent implementation devices that can be used to create the intelligent
environment. Following that description, Soft Computing (SC) is presented as
the �eld of Computer Science (CS) for working with uncertainty and imprecision,
focusing on the techniques with the capability to learn and adapt, and therefore,
with the ability to react to changes in the environment. In particular, Arti�cial
Neural Networks (ANN) are introduced.

Finally the implementation of the techniques and algorithms are de-
scribed. Due to the nature of systems that demand small embedded devices,
able to be hidden from sight, this �nal part of the chapter describes a suitable
implementation technology: Programmable Logic Devices (PLD), or more pre-
cisely, their most recent evolution, Field Programmable Gate Arrays (FPGA).

1.1 Ambient Intelligence

1.1.1 Introduction to Ambient Intelligence

The AmI concept was introduced for the �rst time by the European Com-
mission in 2001 when the European Community's Information Society Techno-
logy (ISTAG) group launched the AmI challenge. Initially its source was in
Europe but it spread fast through the rest of the world and as result, a large
number of projects and research programs appeared [34], [35], [36].

The AmI concept [37], [38], [28] can be de�ned as an interaction model
where people are surrounded by a digital environment aware of their presence,
sensitive to the context, and that answers in an adaptive and transparent way

45

to the needs and/or habits of the users to make their daily lives easier. En-
vironments with these characteristics can be houses, cars, work places or even
public spaces. The main idea behind AmI is that by adding to an environment
some embedded electronic devices (i.e. sensors, microprocessors or actuators,
among others [39]), all of them interconnected by using a network [40], a system
can be obtained which can help, assist and/or take decisions to the bene�t of
the people present in that environment [1]. To do that, the system obtains the
information in real-time and processes it using the knowledge acquired and a
certain grade of intelligence. Intelligence in this situation refers to the ability
of the environment to analyze and understand the context, to identify the users
and the duties they are doing, to know and learn the habits and preferences of
the users, to adapt to changes and, eventually, to be able to recognize emotions
[2].

From a more practical or feasible point of view, the AmI concept can be
de�ned as a way to answer the 5 Ws (Who, Where, When, What and Why)
[41].

� Who: the system must identify the user or the users in the environment
and also the role they represent in it and with other users.

� Where: the system must be able to know its geographical location (think
about a car as a possible scenario) and record its previous locations. Using
this information the system can assist the user/s with more information
and even anticipate their needs.

� When: if a more realistic knowledge of the dynamic of the system is
required, the knowledge of the duration of the activities and the precise
hour of the day they are done are necessary.

� What: the activities the user does must be known by the system so it can
provide him/her help in those concrete tasks.

� Why: the ability of the system to infer and understand the intentions
and objectives of the user is one of the most important objectives in these
environments. It will allow the system to anticipate and serve the user in
a more sensitive way.

1.1.2 Description of an Ambient Intelligence Environment

An AmI or Intelligent Environment (IE) is a space similar to that shown
in Figure 1.1, [42]. It is a place which contains the following elements [1]:

1. Sensors: thanks to these, the environment is sensitive to the changes
within it. These changes can be produced by the inhabitants or any kind
of environmental variations. The sensors can be organized in two types:

� Environmental: these sensors are located in the environment.

(a) Ambient sensors: temperature, humidity or pressure sensors.

46

Figure 1.1: Image of an AmI environment with sensors, actuators, processing
units and communication systems

(b) Presence sensors

(c) Sound sensors

(d) Image sensors

� Wearable: these sensors are worn by the inhabitant of the environ-
ment.

(a) Radio Frequency IDenti�cation (RFID) tags

(b) Magnetic tags

(c) Physiological sensors: pulse, blood pressure, etc.

The main characteristic of the sensors of an AmI environment is that they
must be as small and invisible as possible to the user. These characteristics
are much more important if we are talking about wearable sensors like
RFID tags or the iButtons [43].

2. Actuators: these elements are responsible for acting on the devices present
in the environment, making it responsive to the user. Some examples of
actuators are:

� Controlled switches

� Relays

� Dimmers

47

� Motorised valves

Like the sensors, the actuators must be small and with low power con-
sumption so they can be attached to the devices they must control in the
easiest way. The elements they act on can be devices already present in
the environment such as TVs, the air conditioning of a house, the radio,
the power window lifts in a car, or the lights of an elevator in a smart
building.

3. Communications: this is a key point in the implementation of an IE. There
are two kinds of technologies able to perform the communications between
the devices:

� Wired technology: cheap and robust, but the installation of the wires
can be complicated.

� Wireless technology: the installation is very easy, but they are more
expensive and not so robust.

Wireless communications technologies allow for the placing of sensors and
actuators without the need of large-scale remodelling. Depending on the
transfer rate, there are di�erent technologies available such as Zigbee [44]
for low data rate, Bluetooth [45] for higher data rates or WiFi [46] for
very high data rates but with higher power consumption.
Also there are some technologies, such as Power-Line Communications
(PLC) that allow the use of the existing infrastructure, power line cables,
to send and receive data.
The use of one technology does not exclude the other, so a combination
of both of them can be used in the same environment. In fact, there are
gateways in the market [47] to connect PLC devices to Zigbee sensors.

4. Processing: the actuators act on the environment, but this can be only
achieved if processing is done with the data obtained from the sensors by
applying algorithms to them. The outputs of the algorithms can be actions
the actuators must perform, or information for the environment that, in
some cases, can even be used by other algorithms. Typical algorithms ap-
plied in an IE are, among others, modelling [48], recognition/classi�cation
[49] and control and/or decision making [50].
The processing can be centralized or distributed. In the case of distribute
systems, instabilities can happened, for example, due to delays in the com-
munication network [51] or their information-processing speed [52]. Hence,
these systems must include algorithms, apart from the above mentioned,
to avoid those instabilities [53].

5. Interfaces: the communication between the environment and the user must
be done in the easiest and simplest way. As can be seen in Figure 1.1,
the environment can be controlled by a remote control or even using a
Smartphone or a tablet. However, there are people unable to use those

48

elements, such as elderly people or persons with a disability. Bearing this
in mind, alternative Human-Machine Interfaces (HMI) can be used so the
inhabitant can communicate with the environment using, for example, 1)
voice commands, e.g. the Maior-Vocce system [54] designed by Fagor to
control its Maior-Domo home automation system [55]; 2) motion tracking,
3) gesture recognition [56], 4) facial expression recognition [57], emotion
recognition [58], [59], or even whistle processing [60].

1.1.3 Algorithms

An IE must be able to respond adequately to the data received from the
sensors. The data must be intelligently processed to give a suitable answer. The
most widely used algorithms are described below:

1. Modelling algorithms:

� These algorithms model the behaviour of the users to give an ad-
equate answer and must also be able to adapt correctly if there are
changes in that behaviour. In AmI, user modelling approaches can
be based on three characteristics: the data used to build the model,
the type of model that is built and the nature of the algorithm (su-
pervised, unsupervised) [61].

� Modelling technique examples:

� Soft Computing: Fuzzy Logic [28], Neural Networks [26] or Neuro-
Fuzzy Systems [48].

� Machine Learning: Support Vector Machines [62] and Extreme
Learning Machines [20].

2. Recognition and prediction:

� The environment becomes more e�ective and can improve the exper-
ience of the residents living in it, if it is able to recognize the users,
their activities, or even, predict those activities.

� Some of the techniques used for recognition and prediction are listed
below:

� Naive Bayesian classi�ers [63], [64].
� Markov models [65], [66].
� Decision trees [67].
� Dynamic Bayesian networks [68], [69].
� Conditional Random Fields [70].

3. Decision making:

� The main idea of this type of algorithm is to make the environment
able to select the best suited action from di�erent possible options.
An example could be an environment that detects hazardous situ-
ations and chooses the best measures to return to a safe state.

49

� Examples of some decision making algorithms are:

� Soft Computing: Fuzzy Logic [48] or Neural Networks [71] among
others.

� Hierarchical Task Networks [50].
� Reinforced Learner techniques [3].

4. Spatial and temporal reasoning:

� The previously mentioned algorithms are focused on the user and
his/her activities, but they do not take into account his/her location
and the time context in which the activities are done. The spatial and
temporal reasoning does take into consideration these two factors,
separately or together [72].
An example is a cook who leaves the kitchen with the heater on; the
environment recognizes that the user has left the kitchen and if he
spends too much time in another room, it will warn the user that the
activity he started is not �nished and/or it will take actions to avoid
damage [61].

� Examples of this reasoning are:

� Allen's temporal logic [73] and its generalizations [74].
� The Point Algebra [75].

The algorithms listed above can be used separately or in combination. For
example, a combination of decision making and spatial-temporal reasoning al-
gorithms can be used to detect anomalies in the daily activities of a user and
then take the proper actions to react to them, if necessary.

It could be also possible that the amount of data given by the sensors
could be too large. In that case, in combination with the algorithm, a series of
feature selection techniques should be used to select the most relevant inputs
or use feature extraction techniques (e.g. Principal Component Analysis) to
obtain new input variables [76], [77], [78].

Finally, in order to choose an algorithm, not only does it purpose have
to be taken into account, but also its computational load. Depending on the
computational load of the algorithm, a certain device might not be powerful
enough (e.g. a 16-bit microcontroller), therefore a more powerful device should
be used instead.

1.1.4 Implementations of the Algorithms

The implementation of the algorithms can be done using di�erent solu-
tions; for example, one powerful unit can be used, such as a Personal Computer
(PC); or instead a distributed system can be used with smaller but less powerful
units. Both solutions have their advantages and disadvantages. In the �rst case,
the unit is powerful as already mentioned, but the power consumption and the
space needed are big, and in AmI environments the system must be as small as

50

possible. In the case of a distributed system, the size is smaller and the power
consumption lower. However, if the systems must be interconnected, the design
becomes more complicated.

To implement the processing unit the following devices can be used:

1. Microprocessors: these devices are Integrated Circuits (IC) that include a
Central Processing Unit (CPU) and execute the instructions implemented
in software (SW). Their main advantage is the great variety of devices
present in the market, but, their main disadvantage is that other elements
must be connected to the CPU for it to work properly. These devices are
Random Access Memories (RAM), storage devices and the input/output
peripherals, among others.

2. Microcontrollers: these devices include the CPU, the memories and in-
put/output peripherals in the same IC or chip. Hence, no further ele-
ments are needed to implement the system, saving space and power, but
their main disadvantage is that they are normally less powerful than the
microprocessors. However, nowadays that di�erence in performance is
decreasing.

3. Application-speci�c Integrated Circuits (ASIC): these ICs are specially de-
signed to contain only the hardware (HW) that is needed for the processing
of the environment, e.g. a special purpose core such as a Neural Network
or a Markov Model, communication devices such as Universal Asynchron-
ous Receiver/Transmitter (UART), Ethernet MACs or Controller Area
Network (CAN) transceivers; and/or Analog to Digital converters. Their
main advantage is their size and their performance. However, their main
disadvantage is that their production is too expensive unless they are mass
produced.

4. Programmable Logic Devices (PLD): these devices are ICs in which cus-
tomized digital circuits can be implemented, with Field-Programmable
Gate Arrays (FPGA) being the most recent devices. Compared with the
ASICs, their main advantage is that they are cheaper with lower produc-
tion numbers and that most current FPGA technologies are recon�gur-
able. However, their main disadvantage is that they have higher power
consumption.

1.1.5 Example of Ambient Intelligence Environments

In the present section, some examples of IEs will be listed in order to un-
derstand better what an IE is. Three representative case examples are provided:
smart houses, health environments, and the transport industry. There are, how-
ever, many more areas where AmI can be implemented.

51

Smart houses

A smart house is a good example for understanding the idea of an IE, after
all, people spend a lot of time in houses and these are places where numerous
sensors and actuators can be placed to make them smart. Today there are many
projects involving smart houses; among them we can mention the following:

1. Ambient Lighting Assistance for an Ageing Population (ALADIN) [79]:
this European project is focused on trying to understand how the intensity
of the lighting of a house a�ects the wellbeing of the elderly people living
there, for example the e�ects on sleep. The system consists in an open-
loop control that reacts to the psycho-physiological data received from the
user.

2. MavHome [3]: this system uses hierarchical Markov models of the user and
the environment. It can automate the activities the user normally does
manually, due to the capability of the system to predict those activities.

3. Gator Tech project [4]: this project was designed with the idea of creating
an assistive environment for elderly or disabled people who aim to live
independently. It also allows the users to be monitored remotely, giving
the caregivers the opportunity of intervene remotely.

4. iSpace [5]: this project is a two-bedroom �at designed by the University of
Essex. It emerged from the research obtained from the iDorm environment
[80], a one-room dormitory. To control the devices in the apartment,
learned Fuzzy rules were applied. The rules were developed using the
observed activities of the inhabitant [30].

5. DOMUS [81]: this project was designed by the Computer Science De-
partment of the University of Sherbrooke in Quebec, Canada. The main
objective for the team responsible of this project is the creation of an en-
vironment based on pervasive assistants that can provide mobile orthosis.

Up to now, only projects from universities have been mentioned, but the private
industry has also spent considerable resources on research to create e�cient IEs.
One example is the Synco living system [82] designed by Siemens, which has
invested in the development of systems to improve entertaining, security and
energy saving, for example by turning o� all the lights and reducing the room
temperature when all the inhabitants have left the house. Another example is
the research done by Philips in its installations located in Eindhoven. There,
the enterprise has developed a laboratory called HomeLab [83], an environment
as close as possible to a real home. In the case of Microsoft, it has created a
laboratory focused on how the Arti�cial Intelligence (AI) is capable of helping
the users of the environment in their daily lives [84].

Health environments

There are many potential uses for AmI in health environments, but in
this section two situations are mentioned: health monitoring at home, or trans-

52

forming hospitals into intelligent environments (the entire building or only a
pavilion of it).

1. Health monitoring at home: the idea is to help elderly or disabled people
to lead independent lives in their own homes [6], [7]. This helps reduce
their stress, because they do not need to rely on other people to perform
daily activities. Also, it reduces the stress and workload of the caregivers
[85].

2. Intelligent Hospitals: an example of an intelligent hospital is given by
Kofod et al. [86] who describe the use of AmI to support health workers
cooperating in the diagnosis of a patient and his/her treatment using
context information. In [87], the idea is to create an intelligent hospital to
help the doctors and nurses to manage their tasks better. Another example
is described in [8], where the hospital is able to locate the doctors, warn
them if a result they are waiting for has arrived and show it on the nearest
terminal, saving time and e�ort.

Transportation

In the transportation industry AmI can be used in very di�erent ways.
One of these is to increase the comfort of the driver or the passengers. There
are however, other di�erent ways how AmI can be used in a vehicle.

One example of an AmI car is the AwareCar initiative which is being
developed at the MIT AgeLab [88]. The AwareCar considers the driver as
an active component in a state detection feedback system. It would detect
driver state (fatigue or stress), display that information to the driver to im-
prove the driver's situational awareness in relation to road conditions and their
own `normal' driving behaviours; and o�er in-vehicle systems to refresh the
driver, thereby improving performance and safety. The AwareCar is an in-
strumented vehicle built for evaluating new models and methods of monitoring
driver state though physiology, visual attention, and driving performance in the
�eld. The vehicle is used in di�erent studies to assess the following: hands free
cellular phone usage, surrogate measures of visual and cognitive distraction,
driver health and wellness, as well as functional methods of assessing changes
in workload, arousal and age-related stress [89].

Another important initiative is a recent NEDO [9] project that involves
the international collaboration between universities in Japan (Nagoya Univ.),
Italy (Univ. of Torino), Singapore (Nanyang Univ.), Turkey (Sabanc� Univ.),
and the USA (UT-Dallas). The main aim of the project is to understand driving
behaviour using multi-channel sensor data from CAN-bus, GPS, video, audio
and additional gas/brake pedal pressure signals. They apply state-of art signal
processing methods to extract information and to build systems for driver iden-
ti�cation, driver distraction detection and driver manoeuvre recognition. As a
consequence of these e�orts, future in-vehicle technologies will be designed to
reduce the mental load of driving and decrease driver distraction via speech-
prompted driver assist systems or semi-autonomous controller structures [31].

53

Talking about projects concerning the safety and wellness of the driver,
in Europe between a 20-35% of accidents are due to driver fatigue [90], and that
is the reason why the automotive industry has focused their goals in increasing
the safety of the cars by monitoring the fatigue or the drowsiness of the driver.
Companies like Mercedes-Benz (Attention Assist) [10], Ford (Driver Alert) [11],
Volkswagen (Fatigue detection system) [12] or Volvo (Driver Alert Control) [13]
among others, already have fatigue detectors in their cars to advise the driver
that he/she should stop and rest.

Another factor in safety is helping people with heart problems. If, while
driving they su�er a heart problem, for example a cardiac arrest, their chances
of survival decrease with time [91]. To solve this problem, Ford in collaboration
with the Rheinisch-Westfälische Technische Hochschule Aachen University [14]
is developing a new system to detect wether the driver is su�ering from a cardiac
arrest. This system monitors the heart rate using sensors embedded in the seat
that detects the electrical impulses of the heart through clothing. In the case
of a heart attack, the car will stop safely and call the emergency services [15].
This system is still under development and the company has not published a
roll-out date [92].

Other environments

There are other places where AmI can be used to create an IE. For ex-
ample an intelligent classroom can use voice [93], gestures, or motion recognition
techniques [94] to open the �les of a presentation and/or to control lighting set-
tings. Also it could be possible to use voice recognition to have the transcription
of a lecture available minutes after it has been given [95], to help people with
disabilities or problems taking notes. Benavides et al. propose in [96] an intel-
ligent network called iNet to be used as a personal assistant in an intelligent
university campus.

In the case of industry, an IE can be implemented in a factory so that
the system is able to know if an accident has happened and take the needed
measures, for example warning the factory supervisor [97]. Also a context aware
factory, using a series of algorithms, can organize production depending on
the demand for a product [61], [98], or based on the state of the factory, e.g.
equipment malfunction [99].

1.2 Soft Computing: Arti�cial Neural Networks

In Section 1.1 an introduction to intelligent environments and the al-
gorithms used to implement them has been made. This section begins with an
introduction to Soft Computing (SC) techniques followed by an in-depth de-
scription of the Arti�cial Neural Networks (ANN). ANNs are very useful for
modelling nonlinear systems, in particular, human behaviour.

54

1.2.1 Introduction to Soft Computing

SC is a series of techniques, according to Professor Lofti Zadeh, �to de�ne
the computation that emulates the human mind's ability to reason and learn in
an environment of uncertainty and imprecision� [16]. This delimitation makes
two statements, the �rst is that the data of the environment is imprecise, and
the second that SC techniques are inspired by natural processes.

Due to the uncertainty present in the environment, classic or hard com-
puting techniques cannot be used in this case, because their inputs and outputs
must be clearly de�ned, so the presence of the lowest uncertainty in the data
can cause the system to fail. Soft computing, on the other hand, o�ers a series
of di�erent techniques to compute this information in a simpler way, obtaining
good results and also the capability to �learn from experience, and adapt to
changes in the operation conditions� [100].

Some of the most important SC techniques are listed below:

� Fuzzy logic: fuzzy sets theory was established by Zadeh [101] in the 60s
and it was the base for the development of fuzzy reasoning. Fuzzy logic's
main feature is its capability to work with imprecise information and as a
universal function approximator [102], [103], [104]. In recent years, Fuzzy
Inference Systems (FIS) have been used in a wide area of applications,
especially in control mechanisms [105]. A FIS is formed by an inference
mechanism, a set of IF-THEN type linguistic rules and information con-
verters: a fuzzi�er [106] and a defuzi�er [107], [108], [109], [110]. These
converters are needed between the environment, which uses crisp informa-
tion, and the fuzzy system in which the information is presented by fuzzy
sets.

� Arti�cial Neural Networks: these are networks formed by processing ele-
ments (i.e. neurons) as proposed by McCulloch and Pitts in 1943. They
are interconnected to emulate living beings' brains [17]. Their main ad-
vantage is their capability to learn and adapt from data samples [111].
Neural Networks are e�cient in pattern recognition and classi�cation
[112], [113], function approximations [114], data clustering [115] and vector
quantization [116].

� Genetic Algorithms: these are searching or learning algorithms based on
the mechanics of natural selection, genetics and evolution. Their prin-
ciples were �rst published by Holland in 1962 [117] and the mathematical
framework was presented in 1975 [118]. In Genetic Algorithms, every chro-
mosome is shown as a string of binary numbers. The learning is based on
the process of Selection and Reproduction (where the chromosomes are re-
combined simulating sexual reproduction) and Mutation, in which a gene
of the chromosome is altered randomly. They are used in parameter learn-
ing (e.g. the parameters of a neural network [119]), path planning [120],
[121] or system control [122], [123].

55

These techniques can be combined to take advantage of each technique and
overcome their disadvantages. An example is Neuro-Fuzzy systems [124], [48].
They have the advantage of showing information in a linguistic way, which is
easily understandable as fuzzy systems and the learning capabilities of neural
networks. Another way of using di�erent SC techniques together is presented
in [125]. Instead of combining both techniques in one core, a FIS is used to pre-
processes the data, the contrast of �ngerprint images, to increase the recognition
rate of an ANN classi�er.

1.2.2 Neural Networks

Biological Neurons

Neurons are the basis for any Neural Network, either biological or arti�-
cial. In the case of the biological neurons, they make the nervous system and
their function is very di�erent in comparison with the rest of the cells of the
body. Basically, their function is to receive the signal from one or more neurons
and to generate only one output. For that, the neuron has three di�erent parts
as can be seen in Figure 1.2, [126]:

� Dendrites: these are the inputs of the neuron, responsible for receiving the
electric stimulus from other neurons. A neuron can have one or thousands
of dendrites depending on the number of neurons which are connected to
it.

� Soma: this is the body of the neuron where the nucleus and the rest of
the organelles are located.

� Axon: this is the output of the neuron. As there is only one output per
neuron, the axon will ramify to be able to connect to other neurons of the
net it belongs to.

One important aspect about neurons is that a single neuron does not
have intelligence; it is the combination of neurons, the neural network, which
allows intelligence to surface.

Arti�cal Neurons

The mathematical model of an arti�cial neuron proposed by McCulloch
and Pitts in 1943 [17], see Figure 1.3, is based on the morphology of a natural
neuron.

� Dendrites (xi): these are the inputs of the neuron. They receive the inputs
of a system or the outputs of other neurons.

� Weights (wi): each input has associated to it a value, called weight,
which is responsible for giving more or less strength to this input over
the others [127]. If the value of the weight is 0, it means the dendrite
is not connected to any other neuron.

56

Figure 1.2: Biological neuron morphology

ω1

x3

xn

ω2

ωn

ω3 ��∑ �� �� � 	

x1

x2

.

.

.

.

Figure 1.3: Arti�cial neuron morphology

� Soma: this is the body of the neuron. In the case of an arti�cial neuron,
it is responsible for doing the sum of all the weighted inputs and an o�set.
After that, a transference function, also known as activation function, is
applied to that value. The activation function can be of various types, but
the most common are: lineal, step, unipolar sigmoid and bipolar sigmoid
[127].

� O�set (θ): this value is responsible for adding a threshold to the
input/weight value set of the dendrites.

� Axon: this is the output of the neuron. It has no function except for being
the path of the output data.

The output of the neuron is given by the following equation:

y = f(

n∑
i=1

xiwi + θ) (1.1)

57

 x1 y1 z1

 x2 y2 z2

 xn yn zn

n1

11

21

22

n2

1n

2n

nn nn

21

n1

12

22

1n

2n

n2

11

Input

Layer

Hidden

Layer

Output

Layer

xi: Input neurons

yi: Hidden neurons

zi: Output neurons

ij: Hidden layer weights

ij: Output layer weights

Figure 1.4: Arti�cial Neural Network scheme with one hidden layer

As with biological neurons, a single arti�cial neuron has limited cap-
abilities. For example, a neuron with a step activation function, called basic
perceptron, cannot solve an XOR function because perceptrons can only solve
problems that are lineally separable [128].

Arti�cial Neural Network Structure

An ANN is just a number of neurons interconnected together, forming
a structure capable of performing certain functions. In the case of a biological
neural network, this function can be something so simple as a re�ex reaction,
like an anemone closing its tentacles when it is touched; or a more complex
function like the human brain, where the number of neurons can be as many as
1011 organized in di�erent scales and levels [129]. Nevertheless, the number of
neurons of an ANN is closely related to the number of inputs and outputs of the
network. This can be seen in Figure 1.4 in which an ANN is shown. A common
way to represent ANNs is using graphs, where each node is a neuron and the
arrows are connections between neurons. Neurons are commonly organized in
layers. Each layer is independent, and this means that each of them can have
neurons with di�erent activation functions; for example, the neurons of one layer
can have a lineal activation function, while the neurons of the following layer
can have step activation functions.

The most common ways of organizing the layers are listed below:

� Input layer: the neurons of this layer receive the input of the system.
They only have one dendrite, connected to the input, and their axons are
connected to the inputs of all the neurons of the next layer.
This layer acts as a bu�er of the network, that is to say, there are no

58

weights or o�set and the input does not change; it only connects the input
to the internal layer.

� Hidden layers: there can be one, several or no hidden layers. These layers
are the ones next to the input layer. The dendrites of its neurons come
from all the axons of the neurons of the previous layers and in this case, the
dendrites are weighted. Depending on the number of neurons present in
this layer/s the performance of the neural network can vary signi�cantly.

� Output layer: this layer is connected to the output of the system. The
dendrites of the neurons of this layer come from all the axons of the neuron
of the previous layer. In this case the axons of the output neurons do not
ramify because they are connected to only one element, the outputs of the
system.

ANNs Classi�cation

Depending on the number of layers and the connections between them,
ANNs can be grouped in three generic architectures:

� Single layer feed-forward networks

� Multi layer feed-forward networks

� Recurrent networks

1. Single layer feed-forward networks: these networks have only two
layers, an input and an output layer. In this case, it is called single
layer because the input layer acts as a bu�er and only the output layer
is responsible for performing the computations (see Figure 1.5). The data
�ow goes only in one way, from the input to the output, which is why this
network is called feed-forward.
Within this type of network architecture, the following networks can be
cited: Perceptron [130], Adaline [131], Hop�eld [132], [133] and Associative
Memory [134], [111].

2. Multi layer feed-forward networks: in this architecture, presented in
Figure 1.4, one or more hidden layers appear. In this case, both, hidden
layers and output layers, perform computations. Multilayer Perceptron
Neural Networks (MLP) are networks which consists of multiple layers of
computational units, perceptrons, usually interconnected in a feed-forward
way. These types of networks are described in-depth in the following
sections.

3. Recurrent networks: in the previous architectures, the data �ow goes
from the input to the output, but if at least one feedback loop is added
connecting the output with the input, then the architecture is known as
Recurrent Network. An example is shown in Figure 1.6.

59

 x1 z1

 x2 z2

 xn zn

11

nn

21

n1

12

22

1n

2n

n2

Input

Layer

Output

Layer

xi: Input neurons

zi: Output neurons

ij: Weights

Figure 1.5: Feed-forward single layer perceptron neural network scheme

Adaptive Resonance Theory (ART) structures are one of the most import-
ant architectures of the recurrent neural network type. These networks
respond to arbitrary input patrons, recognizing and self-organizing codes
in real-time. Related to these architectures ART [135], ART2 [136] and
ART3 [137] can be cited. The mentioned networks are used in pattern
classi�cation and also in forecasting. For example, to forecast the price or
demand of electricity [138], [139] and [140], or the price of the stocks in
the market [141], [142].

1.2.3 Learning Algorithms

There are two di�erent types of learning strategies: parameter learning
and structure learning. The most widely used is parameter learning, in which
the values of the weights of the dendrites are modi�ed. In the case of structure
learning, the structure of the network is modi�ed, that is to say, the number of
neurons, the connections or the activation function are learned [143], [144], [26].
These learning methods can be used separately or together.

In the case of the parameter learning, three di�erent categories can be
distinguished:

1. Supervised learning: in this learning method, the system must provide
the network with a set of desired input/output sample set, and then, a
supervision mechanism determines the error between the output given by
the network and the desired output (target), and adjusts the parameters
of the network (weights and o�sets), in order to reduce that error. This
process is done with all pattern vectors and if the parameters are not cor-
rectly adjusted, another learning cycle starts. This can be done repeatedly
until a maximum allowable error is reached or until a certain number of
learning cycles is reached.

60

 x1 y1 z1

 x2 y2 z2

 xn yn zn

n1

11

21

22

n1

1n

2n

nn nn

21

n1

12

22

1n

2n

n2

11

Input

Layer

Hidden

Layer

Output

Layer

xi: Input neurons

yi: Hidden neurons

zi: Output neurons

ij: Hidden layer weights

ij: Output layer weights

Figure 1.6: Recurrent neural network scheme

2. Unsupervised learning: in the case of unsupervised learning, the network
does not receive any desired target, so the network must discover it by it-
self. To achieve that, a series of algorithms is available so the network can
adapt the weights by characteristic search, correlations or categories in
input data responding to the pattern that appears more frequently. This
latter case is known as probabilistic estimator. Among the algorithms,
Hebbian's [111] stands out, with several contributions over a number of
years [145], [146], [147] and [148].
Another unsupervised learning algorithm is the one applied in self-organizing
systems. They modify their connection strengths based only on the char-
acteristics of the input patterns. Kohonen's self-organized map is the
simplest of the organizing systems [149]. It is a single layer network (called
Kohonen layer) whose neurons are highly interconnected (lateral connec-
tions) within that layer and to the outside world using an input bu�er
layer that is fully connected to the Kohonen layer neurons using adjustable
weights [150].

3. Reinforced learning: this method does not give an exact error between the
given and desired output. Instead, it gives information similar to output
higher/lower than the desired one or a percentage of the outputs are cor-
rect and in more critical cases, the indicator only informs if the output
is correct or not with only one bit. The signal which transmits that in-
formation is known as reinforcement signal. Using the information given
by the reinforcement signal, the system varies the weights to obtain the
desired output using probabilistic criteria [151].
This method is called sometimes learning with a critic, while the super-
vised learning is called learning with a teacher. In [152], [153] some pro-

61

posed learning architectures can be seen.

Backpropagation Algorithm

One of the main learning algorithms used in MLP supervised learning
is the Backpropagation (BP) algorithm. This algorithm was initially presen-
ted by Werbos in 1974 [154] and afterwards was developed by Parker in 1982
[18] and Rumelhart et al. in 1986 [19]. It is based on the variation of the
weights proportionally to the gradient of the error. This learning algorithm is
called Backpropagation because the error spreads across the network but in the
opposite way to the data �ow, that is to say, from the outputs to the inputs.

The algorithm is based on the minimization of the existing error between
the desired output and the real output of the net. Given a set of K learning
samples, the error for a sample, Ek, can be expressed in its quadratic form:

Ek =
1

2
(yk − tk)2 (1.2)

where yk is the output of the network for a xk input, and tk is the desired
or target output. The variation of each weight of the network, 4wij , is obtained
through the derivative of the error with respect to the weights. That is why this
method is known as Gradient Descent.

4wij = −ηi
∂Ek

∂wij
. (1.3)

The parameter ηi represents the learning rate of the network associated
to variable xj that in some cases can be variable [155], [156], and ∂Ek

∂wij
is the

gradient of the error with respect to the weight wij of the network. A very low
value of ηi makes the error convergence better, but very slow and high values
make the convergence faster but oscillations around local minima can appear.
Also, to simplify the algorithm, the same learning rate value is used for the
entire network η.

Taking into account Equations 1.2 and 1.3, and applying the Chain Rule,
the following equation is obtained:

∂Ek

∂wij
=
∂Ek

∂yk

∂yk
∂wij

= (yk − tk)
∂yk
∂wij

, (1.4)

in which yk depends on wij , so, it is mandatory that fuction yk would be de-
rivable respect to the parameter wij . Some functions with points where the
derivative is unde�ned (e.g. ramp or triangular functions) can be used if the
algorithm avoids the derivative in those points [157]. Hence, using Equation 1.3
with the same learning rate for the entire network, the variation of the weights
is given by the expression

w
′

ij = wij − η(yk − tk)
∂yk
∂wij

, (1.5)

62

where the superscript indicates the update of the parameter. With the new
parameters obtained, the learning cycle can be repeated until a suitable error is
reached.

If all input-output patterns are taken into account to compute the error,
Equation 1.2 has the following expression

E =
1

2K

K∑
k=1

(yk − tk)2. (1.6)

The learning can be done in two di�erent ways. In the �rst one, only some
training vectors are used and the process is carried out during the working state
of the network using Equation 1.2. This algorithm is called on-line learning.
However, when the entire number of learning vectors is available, the process
can be carried out before the network enters in working state. In this case,
Equation 1.6 is used and is called o�-line learning.

As was said, the variation of the value of the parameter η makes the
learning process to be faster or slower. However, there are other ways to ac-
celerate it. One method consists in including a momentum in the variation of
the weights, that is to say, adding in Equation 1.3 the value of 4wij in the
previous learning cycle, multiplied by a so-called Momentum Factor, α, as can
be seen in Equation 1.7. There is no rule about selecting the value of α, but
it is recommended not to use values above 0.9, which is also the recommended
value to obtain the best results [150], [127].

w
′

ij = wij +4w
′

ij + α4wij (1.7)

Another method to speed up the convergence is to initialize the weights
before the learning with random numbers. An evolution of this method is the
Nguyen-Widrow algorithm [158]. It not only uses random numbers to initialize
the weights of the network, but also takes into account the architecture of the
network, that is to say, the number of inputs, hidden neurons and outputs of
the network. The evolution of the error using this algorithm and compared with
an initialization of the weights using constant and random numbers can be seen
in [159].

First a random matrix weight is computed,

A = (rand(L,M)− 0.5)2, (1.8)

where L is the number of nodes in the layer andM is the number of nodes
in the previous layer. Then, the sum of all values of the matrix are computed

p =

i=L,j=M∑
i=0,j=0

aij . (1.9)

After that, a d value is obtained as

63

d = 0.7(M (1/N)). (1.10)

Finally, the weight matrix, ω, is obtained as

ω = ((dA)/
√
p). (1.11)

In the case of the o�sets, they are computed as

θ = (rand(L)− 0.5)2d. (1.12)

Extreme Learning Machines

Extreme Learning Machine (ELM) is a novel supervised learning al-
gorithm developed by Huang [20] in 2006 for Single-hidden-layer Feedforward
Neural Networks (SLFN), with the peculiarity that the neurons of the output
layer have no activation function nor o�sets, and only one learning cycle is
needed to obtain the value of the weights of the output layer, while the weights
of the hidden layer are random numbers that do not change, making it faster
than the BP algorithm.

Let us consider a generalized SLFN with n inputs, m outputs, and L
nodes in the hidden layer. The network output for generalized ELM is

y(x) =

L∑
i=1

bihi (x) = h(x)β. (1.13)

Without loss of generalization, a single output node (m = 1) is taken in
Equation 1.13. The vector of weights β = [β1, · · · , βL]T links the hidden nodes
(i.e. random nodes) with the output node, and h(x) = [h1(x), · · · , hL(x)] is the
output vector of the hidden layer for a given input x ∈ Rn .

The output of the ith hidden node is

hi(x) = S(ai, bi,x),ai ∈ Rn, ci ∈ R (1.14)

with s(ai, bi,x) being the sigmoid activation function, ai the random
weight vector connecting the inputs with the ith hidden node, and bi the random
o�set of the ith hidden node. It is worth noting that any piecewise continuous
function satisfying ELM universal approximation capability could be used as
activation function.

Given a set of K training samples, (xj , tj), 1 ≤ j ≤ K where xj ∈ Rn

is the j th input vector, and tj ∈ Rm is the corresponding output vector (i.e.
the target output), learning is performed by solving Equation 1.13 for the set
of training samples

T = H(x)B (1.15)

where H is the hidden layer output matrix, as can be seen in Equation
1.16.

64

H =


h(x1)
.
.
.

h(xK)

 =


h1(x1) . . hL(x1)
. . . .
. . . .
. . . .

h1(xK) . . hL(xK)


KxL

(1.16)

B = [β1 · · ·βm]Lxm (1.17)

and

T =


t1
t2
...
tK


Kxm

. (1.18)

Then, the matrix of output weights is

B = H−1T, (1.19)

where H−1is the Moore-Penrose generalized inverse of matrix H.
This algorithm demonstrates its utility for very large ANNs because only

one learning cycle is needed to compute the output layer weights, whereas in
the case of the BP algorithm thousands of cycles may be required. Also ELM
does not present local minima problems and over�tting. As a result, even if the
computation of the Moore-Penrose generalized inverse is very computationally
demanding, it will be faster than BP because it is only computed once and the
weights and o�sets of the hidden layer nodes are not changed by the learning
process.

Structure Learning

It is common practice to select the size of the hidden layer by taking
into account user experience or empirical experiment. This approach, however,
is unsuitable for developing autonomous adaptive systems. Di�erent solutions
have been proposed in the literature to select e�cient MLP topologies:

1. Incremental, constructive or growing algorithms. These approaches start
with a small number of hidden neurons and increase their number iterat-
ively to satisfy the required modeling performance [160], [143]. The most
commonly used performance criteria are the training error and the valida-
tion error. The former is less demanding from the computation viewpoint,
while the latter provides better generalization capability.

2. Decremental or pruning algorithms. In contrast with the previous one,
these methods start with a large hidden layer. Then, the less signi�cant
hidden neurons and their corresponding connection weights are iteratively

65

pruned. A simple prune method consists in evaluating the e�ect of each
weight on the neural network performance. This brute-force or exhaustive
method [161], is very time-consuming because it requires a systematic
evaluation of each one of the connection weights of the network.

3. A combination of growing and pruning. This approach proposes a com-
bination of the previous one [21]. It is suitable for the development of
neural networks with adaptive topology; the neural network size can be
adapted to e�ciently �t changing conditions.

In addition, several topology selection algorithms, based on evolutionary al-
gorithms, and sensitivity measure methods have also been proposed in the lit-
erature (see [162], and references therein), but they are outside the scope of this
work since they are too complex for an adaptive FPGA-based implementation.

1.3 Arti�cial Neural Network Implementation

Neural networks can be implemented by software (SW), hardware (HW)
or by a combination of both (HW/SW). In the present section, di�erent ap-
proaches to the implementation of ANN will be analyzed.

1.3.1 Software Arti�cial Neural Networks

The main characteristic of software neural networks is that they are ex-
ecuted on microprocessors or in microcontrollers. As is said, in Section 1.1.4,
these devices execute the software programs sequentially, instruction by instruc-
tion, without parallelism. One advantage is that the ANN can be de�ned using
di�erent notations, with the matrix notation being one of the most common
[163], [164], [165]. Therefore, is very easy to develop a software application in-
dependent of the platform, making it portable, or with very small developing
times if changes have to be made. Also, in the case of any change in the net-
work, only the SW code has to be changed, making the SW implementation
easier and more �exible. A SW approach is the best solution for applications
with mild restrictions concerning size, power consumption and speed.

However their main disadvantage is their lack of real parallelism if high
speed is required. In the case of using a processor with a Harvard architecture,
the only possible parallelism is the simultaneous access to data and instruction
memories at the same time, but in the case of a von Neumann architecture
this is not possible. Another way to obtain a degree of parallelism is the use
of multiple cores. Using this technique it is possible to have di�erent cores
doing di�erent parts of the calculations obtaining some parallelism. In the case
of PC based platforms, this is possible because there are many processors on
the market with multiple cores, for example Intel's i7 cores [166]. However, in
the case of the embedded platforms this is not very common. Today the most
widely used embedded multiple core devices are the ARM devices with 2 or 4
processing cores [167], [168].

66

Another problem in a software solution is that the microprocessor ex-
ecuting the code must have a very powerful Arithmetic Logic Unit (ALU) to be
able to compute the operations in a given time, otherwise to perform the calcu-
lations, the system must compute them using software functions using simpler
operations, which is much slower. One example are Freescale's ColdFire 32 bit
family processors: according to Freescale's webpage, only V4 generation micro-
processors have a Floating Point Unit (FPU) (i.e. an ALU to perform �oating
point operations) integrated in the silicon [169]. This means their performance
computing neural network equations will require a lot of processing. In some
cases, the neural network has been implemented using Digital Signal Processor
(DSP). These devices are equipped with �xed-point or �oating point arithmetic
units that perform the calculations faster than an embedded microprocessor
[170], [171].

One last aspect is the length of the variables used to de�ne the fractional
numbers. For example, in C programming language, fractional numbers are
de�ned in 32, 64 or, 128-bit variables in its standard library. It is therefore
not possible to de�ne fractional numbers with shorter word lengths and, in the
case of numbers with low precision, using 32 bit variables is a waste of memory
resources and execution time.

1.3.2 Hardware Arti�cial Neural Networks

HW implementations are used when low silicon area occupation, low
power consumption and high speed are decisive factors [172] to cope with the
system speci�cations.

There are two implementation possibilities, one using digital hardware,
and the second one using analog hardware. Analog ANNs have the advantage
that the devices have a non-linear behaviour, therefore, the activation functions
can be implented more easily. Also, in the case of the size, analog devices are
generally smaller than their digital conunterparts [173]. Unfortunately, ana-
log ANN are very sensitive to temperature and voltage changes; some analog
implementations are not easily programmable, and they have certain problems
related to noise immunity [174]. On the other hand digital ANN, are robust
against those changes.

The main advantage of using a hardware solution is the di�erent types of
parallelism:

� Node parallelism: this parallelism corresponds to the neurons and it is the
most important level of parallelism. The neurons of each layer work in
parallel computing their values simultaneously [173].

� Weight product parallelism: in this case, the input weight products in
Equation 1.1 are computed in parallel.

� Bit-level parallelism: this parallelism is related to the communication used
in the I/O data transfer of the network. This can be serial, serial-parallel,
word-parallel, etc.

67

In the case of an analog ANN, the weights are stored using resistors [175],
charge-coupled devices [176], capacitors [177] or �oating gate EEPROMs [178].
Using variable analog devices it is possible to change the values of the weights
allowing the implementation of a training algorithm.

In the case of digital ANNs, the main advantage is the number of devices
present on the market to implement them, the well-known fabrication tech-
niques, the storage of the weights in RAMs and the �exibility in the design of
the ANN.

However, the main disadvantage of the digital solutions is the numbers
of resources needed to perform the computations of the network and the learn-
ing algorithm. As can be seen in Equation 1.3, by using a Backpropagation
learning algorithm, the derivative of the error must be computed, so increasing
the complexity of the design. In [179], the learning algorithm is performed in
hardware, and as a result of that, for a neural network of 8 inputs, two hidden
layers with 6 neurons each and only one output, 92 18x18 bit multipliers are
needed, when, normally, one multiplier per neuron is used. Other examples are
also [180], [181], [182], [183].

To implement a HW neural network, one option is to use an ASIC [184],
[185]. These devices have a �xed design and cannot be changed. Normally they
are faster, they have lower unit costs for very high volume designs and a smaller
form factor [186]. Another option to implement ANNs in HW is the use of
PLDs, because there are recon�gurable devices on the market allowing for the
possibility of changing the design.

Finally, there is another solution to try to overcome the problems of both
designs: a hybrid analog/digital ANN, for example using a fast analog processing
unit and storing the weights and the o�sets digitally [187].

1.3.3 Hardware/Software Arti�cial Neural Networks

As has been said in the previous sections, the main problem of the SW
neural networks is the way the code is executed, sequentially, making a paral-
lelism nearly impossible. In the case of HW neural networks, the main problem
is the number of resources needed to implement the networks and their learning
algorithms, making them not suited for small device implementations.

When high speeds are required and the system must be small, the HW/SW
co-design arises [188]. HW/SW co-design proposes the partition of the compu-
tation algorithms into HW and SW blocks by searching for the partition that
optimizes the performance parameters of the whole system. This approach
provides an optimal solution for many systems where a trade-o� between ver-
satility and performance is required.

An example of the HW/SW solution consists in using General-purpose
Computing on Graphics Processing Units (GPGPU), e.g. Nvidia's CUDA plat-
form [189]. These processing units were designed to compute computer graph-
ics, �oating point operations, freeing the CPU from that task using hundreds
of cores that can handle thousands of threads simultaneously, see Figure 1.7
[190]. The SW partition, (i.e. executed in the CPU) deals with the high preci-

68

Figure 1.7: Di�erence between a CPU with four processing units and a GPU
with 240 �oating point processing units

sion operations (e.g., training algorithms) while the recursive and parallelizable
computations are executed in the GPGPU. This solution is used for very large
ANNs, very large learning sets or for networks with very complex architectures,
e.g. convolutional neural networks [191]. Therefore it is possible to have a sys-
tem having node and/or weight parallelism and specially designed to perform
�oating point operations.

As a result, the timing performance can be dramatically improved [192],
[193], [194]. Unfortunately, in this case the GPGPUs are not integrated in the
motherboard of the PC and must be connected to the processor using expansion
slots.

In the case of using a single-chip solution, one of the newest options
is the use of a System on Programmable Chip (SoPC), explained in Section
1.4. Using microprocessors, the software part can be implemented within the
SoPC, for example, to perform the learning algorithm, and then, using the logic
capabilities of the device, to design a custom hardware coprocessor to accelerate
the computations. It could be also possible to perform weight parallelism, but
in this case the number of resources needed by the HW part would be very
big and the design, depending on the architecture of the network, could be too
complex. Another advantage of the SoPCs is that all the HW is within the very
same chip; no other elements are needed [195], [48], saving space and energy
consumption.

1.4 Programmable Logic Devices

Programmable Logic Devices (PLD) can be de�ned as �Standard, o�-the-
shelf parts that o�er customers a wide range of logic capacity, features, speed,
and voltage characteristics - and these devices can be changed at any time to
perform any number of functions� [196]. In the beginning, these devices were
very simple allowing only the implementation of small designs, but over time,
the devices became more complex, faster and easier to use.

The �rst PLDs were very simple, thus, they were known as Simple Pro-

69

Figure 1.8: Programmable Logic Array AND and OR planes with their inter-
connection points

grammable Logic Devices (SPLD). Two examples of these devices are Program-
mable Logic Arrays (PLA) [197] and Programmable Array Logic (PAL) [198].
These devices had a set of AND gate planes followed by a plane of OR gates.
In the case of the PALs, only the AND plane was programmable, whereas with
PLAs both planes were programmable, see Figure 1.8 [199]. Later, macrocells
were added to the PAL architecture. Using a 22V10 PAL as an example, the
macrocell can be programmed to provide a registered or non-registered inverting
or non-inverting output, Figure 1.9, [200].

The next evolution in PLDs came with the so-called Complex Program-
mable Logic Devices (CPLD). CPLDs are more complex and are formed by
SPLDs interconnected by an internal net [201]. These devices are capable of
performing more complex functions and, because of the �xed and prede�ned
length of the interconnection net, the propagation time of the signals is pre-
dictable. CPLDs also have input/output blocks with memory registers (Type
D Flip-Flops, FFD) and tri-state bu�ers.

The most recent evolution of the PLDs are the Field Programmable Gate
Arrays (FPGAs). FPGAs do not implement the logic functions using logic
planes as the SPLDs or the CPLDs; they use logic elements based on Look-up
Tables (LUT) and multiplexers instead, as can be seen in Figure 1.10, [202].
This allows the implementation of complex designs, but unlike CPLDs, in this
case the propagation time cannot be predicted. The logic elements (Slices in
Xilinx's nomenclature and Adaptive Logic Module in Altera's nomenclature, the

70

PALCE22V10

3

Maximum Ratings

(Above which the useful life may be impaired. For user guide-
lines, not tested.)

Storage Temperature–65°C to +150°C

Ambient Temperature with
Power Applied...–55°C to +125°C

Supply Voltage to Ground Potential
(Pin 24 to Pin 12) ... –0.5V to +7.0V

DC Voltage Applied to Outputs
in High Z State ... –0.5V to +7.0V

DC Input Voltage.. –0.5V to +7.0V

Output Current into Outputs (LOW)16 mA

DC Programming Voltage... 12.5V

Latch-Up Current ... >200 mA

Static Discharge Voltage
(per MIL-STD-883, Method 3015) >2001V

Note:
1. TA is the “instant on” case temperature.

Macrocell

OUTPUT
SELECT

MUX

AR

S S1 0Q

QD

CP

SP

INPUT/
FEEDBACK

MUX

1S

MACROCELL

1C

0

AA AA

AAAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA
AA

AA

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

C
CE22V10–4

Operating Range

Range
Ambient

Temperature VCC

Commercial 0°C to +75°C 5V ±5%

Industrial –40°C to +85°C 5V ±10%

Military[1] –55°C to +125°C 5V ±10%

Figure 1.9: 22V10 PAL Macrocell, showing its register and the inverter of the
output

principal FPGA manufacturers), are typically formed by a LUT that performs
the combinational logic functions, bistable elements (i.e. FFDs) and the logic
to perform the internal routing of the signals. Apart from these elements, the
manufacturers began adding embedded cores in the silicon of the devices. In the
beginning, hardware (HW) multipliers and RAM memory blocks were added.
Later the multipliers were replaced by Digital Signal Processor (DSP) blocks,
that implement high performance sum of products (see Figure 1.11, [203]). The
use of these DSPs allowed the creation of more complex designs using fewer
resources, achieving a decrease in size, resources and power consumption.

In some FPGA models such as Xilinx's Virtex 4 and Virtex 5, or Altera's
Cyclone, a PowerPC or an ARM microprocessor was embedded respectively in
the silicon. The evolution in the FPGAs also meant that it was possible to
implement the communication buses within the FPGA and internal peripherals
in the same chip, thus creating the so-called System on Programmable Chip
(SoPC). However, the use of hard microprocessor cores embedded in the silicon
has been discarded in favour of another evolution, the implementation of the
microprocessors using the resources of the FPGA. These microprocessors are
known as soft microprocessors, e.g. Altera's NIOS [22] or Xilinx's MicroBlaze
[23]. These microprocessors are not as powerful as their hard counterparts, but,
it is possible to create a system whose performance can be good enough to ful�l
the requirements of a real-time environment using resources in a more e�cient
way. This opens up new possibilities: being able to include software partitions
in the FPGAs, being able to take advantage of the SW applications, and of

71

G4

SOPIN

A4

G3 A3

G2 A2

G1 A1

WG4 WG4

WG3 WG3

WG2 WG2

WG1

BY

WG1

Dual-Port

LUT

FF
LATCH

RAM
ROM

Shift-Reg

D

0

MC15

WS

SR

SR

REV

DI

G

Y

G2

G1
BY

1
0

PROD

D Q

CECE
CKCLK

MUXCY
YB

DIG

DY

Y

0 1

MUXCY
0 1

1

SOPOUT

DYMUX

GYMUX

YBMUX

ORCY

WSG
WE[2:0]

SHIFTOUT

CYOG

XORG

WE

CLK

WSF

ALTDIG

CE

SR

CLK

SLICEWE[2:0]

MULTAND

Shared between
x & y Registers

SHIFTIN COUT

CIN DS031_01_112502

Q

Figure 1.10: Virtex II Slice

being able to create custom HW.
Today FPGAs o�ered by Xilinx do not include a hard microprocessor in

the Spartan 6 [204] and 7 Series FPGAs [205]. Recently, a new product has
been o�ered, the so-called All Programmable SoC [206]. These devices have an
ARM A9 [167] dual core processing unit with peripheral and memory interfaces
embedded in the silicon, and attached to it, a small recon�gurable logic region
based on the 7 Series architecture.

In the case of Altera, the approach is di�erent. Their so-called Altera SoC
products also have an ARM A9 dual-core attached, but, instead of implementing
a small logic part, the processor is included within the FPGA of their Cyclone,
Arria and Stratix families [207].

72

X

17-Bit Shift

17-Bit Shift

0

Y

Z

1

0

0

48

48

18

4

3

48

25
30

BCOUT*

BCIN* ACIN*

OPMODE

PCIN*

MULTSIGNIN*

PCOUT*

CARRYCASCOUT*

MULTSIGNOUT*

CREG/C Bypass/Mask

CARRYCASCIN*

CARRYIN

CARRYINSEL

ACOUT* A:B

ALUMODE

B

B

A

C

B

M

P

P
P

C

25 X 18

A A

PATTERNDETECT

PATTERNBDETECT

CARRYOUT

4

7

48

48

30
18

30

18

P

P

Figure 1.11: Xilinx DSP48E diagram. The core can be con�gured to perform
addition, subtraction or logic operations

1.4.1 FPGA Con�guration Technology

One way to classify FPGAs is according to the technology used to in-
terconnect the logic elements. This is important because some methods are
permanent, that is to say, after con�guring the FPGA, the con�guration can-
not be changed. Other methods allow for changing the con�guration, but they
can be based on volatile or non-volatile technologies. The technologies are the
following:

� SRAM: this method uses static (SRAM) memories to create the connec-
tions of the FPGA (see Figure 1.12, [208]), this means the con�guration
is erased when the system is shut down, so, it is mandatory to download
the con�guration bitstream every time the system is powered-up. Most
of the SRAM FPGAs can be booted using an external or internal ROM
memory [209], in which the bitstream is stored. This technology has been
selected by the two main FPGA manufacturing companies (Xilinx [210]
and Altera [210]).

� Anti-Fuse: this technology is One-Time Programmable (OTP), which
means that after con�guring the FPGA, its con�guration is maintained
permanently and cannot be altered again. This technology instead of melt-
ing the not needed connections, like the fuse technology used in SPLDs
devices, creates the connections needed during the programming (see Fig-
ure 1.14, [208]). Their main advantage is that the device is Live-At-Power-
Up (LAPU); it is operational at the precise moment the voltage supply
reaches the minimum working value, because there is no need to load a

73

Figure 1.12: SRAM FPGA interconnection detail

Figure 1.13: Flash FPGA interconnection detail

con�guration bitstream every time the system is started-up. This techno-
logy is the one with the lowest power consumption, with the highest clock
frequencies and also has the highest immunity to Single Event Upsets
(SEU) [211], [212].

� Flash: this method uses Flash memories instead of anti-fuse connections.
Using these memories it is possible to have a non-volatile but reprogram-
mable system (see Figure 1.13, [213]). The advantage of the Flash FPGAs
is that the designer has a LAPU device but whose con�guration can be
changed whenever the designer wants. This technology has been selected
by Microsemi and Lattice.

74

Figure 1.14: Anti-Fuse interconnection detail

1.4.2 Dynamic Partial Recon�guration

Partial recon�guration (PR) is the ability to change the con�guration
of one or several regions of the FPGA [214], [215]. There are two ways of
doing this recon�guration, the static one and the dynamic one. In the static
recon�guration, the system is stopped to proceed with the changes within the
FPGA, even if only a part of the FPGA is recon�gured. After downloading
the new con�guration, the FPGA is reactivated again. In the case of Dynamic
Partial Recon�guration (DPR), the region that is not recon�gured, the 'static
part', continues working while the recon�gurable region is being reprogrammed,
Figure 1.15 depicts this process. The recon�guration can be done externally or
the static part can be responsible for performing it; this second case is called
dynamic partial self-recon�guration.

DPR is a capability of SRAM FPGAs. This is possible due to the nature
of the memories used to control the connections of the di�erent elements within
the device such as, LUTs, DSP blocks, RAM blocks, etc. If a change in those
memories is done, the connections are automatically changed. These memories
can be rewritten on-the-�y, that is to say, the device must not be stopped or
switched o� to rewrite the memories. Firstly a full bitstream, with both static
and recon�gurable partitions, is downloaded in the FPGA. Then, to perform the
recon�guration, a bitstream with the new con�guration of a recon�gurable par-
tition is downloaded in the device, as Figure 1.16 shows [215]; this bitstream is
called 'partial bitstream'. Flash FPGAs can be in theory recon�gured, but main
�ash manufacturers do not design tools to perform dynamic recon�guration in
their devices.

There are di�erent ways of downloading the partial bitstreams. The
�rst one is using some external con�guration ports used to download full bit-
streams. These are: IEEE 1149.1 standard, also known as Joint Test Action
Group (JTAG), SelectMap interface [216] or any other external interface such
as Ethernet or PCI Express [215]. A second option is to perform the recon�g-
uration within the device using internal recon�guration ports and/or internal

75

FPGA

Static Partition

Reconfigurable
Partition

Flash Memory

Partial
Bitstream A

Partial
Bitstream B

Partial
Bitstream C

Figure 1.15: Dynamic Partial Recon�guration working process using an external
Flash memory to store the partial bitstreams

recon�guration controllers. In Xilinx's case, its Virtex 4, Virtex 5, Virtex 6
and 7 Series FPGAs are provided with the Internal Con�guration Access Port
(ICAP). This port permits access to the internal con�guration SRAM memories.
A recon�guration controller is also provided, the Hardware ICAP (HWICAP).
This controller can be connected to the buses implemented in the system [217],
[218] so soft and hard microprocessors can perform internally the recon�gura-
tion of the system. Altera has a similar controller called Partial recon�guration
control block [219] that can be connected to a Nios soft microprocessor or to a
core created by the user.

The advantages of using DPR in the designs are the following:

� Reduction in size: instead of implementing all the modules needed in the
system, only those needed at each moment are implemented (i.e. time-
multiplexing).

� Power consumption: because of sharing resources, the size of the FPGA
can be reduced and so also the power consumption of the device. Also,
non-used partition can be 'erased' to save power. The saved power is the
dynamic power, the power the device consumes due to transitions on cir-
cuit signals and is de�ned by the equation

P =
1

2
CV 2f, (1.20)

where f is the working frequency, C is the capacitance of the node switch-
ing and V is the supply voltage [220].

� Uninterrupted operation even when a dynamic partition is recon�gured.

76

Figure 1.16: Recon�guration of 2 internal modules of an FPGA using new
partial bitstreams

Sadly this technology also has some drawbacks:

� The creation of the partial bitstreams can be very di�cult if the manu-
facturer's tools have not been developed.

� If the recon�guration is done using a microprocessor, the software partition
can slow down signi�cantly the recon�guration process.

� Some Intellectual Properties (IP) cores cannot be recon�gured due to the
restrictions imposed by the manufacturer [219].

� If the partial bitstream is not correctly read by the module responsible for
performing the recon�guration, the static part can be also altered.

� A memory to store the partial bistreams is needed. If the FPGA does not
have an internal non-volatile memory, an external one must be added to
the design.

1.4.3 Field Programmable Gate Array Manufacturers

FPGAs have become very useful to implement hardware and are widely
used in the industry. But, even though the number of manufacturers is high,

77

two companies comprise approximately 90% market share: Xilinx with 47%
and Altera, 41%, both using SRAM technology. Due to this, other companies
have focused their products on developing FPGAs using other technologies or
focusing their products for speci�c areas.

Xilinx

It is the leader of the market with nearly a 50% share and it produces
only SRAM FPGAs [221]. Xilinx has also developed a wide range of tools
to implement hardware designs in their FPGAs and a wide range of IPs to
implement in their products. Regarding Dynamic Partial Recon�guration, it is
one of the pioneers in this area and nearly all their new families support it [222],
including the new 7 Series.

For low power applications, the Artix 7 devices can be used. Compared
with the Spartan 6 family, these devices have, even in the smaller device, a huge
number of DSPs. For applications where the performance is higher, Virtex 7
devices are the solution. Halfway between the Artix 7 and Virtex 7 devices
Kintex 7 devices are present: they o�er a good alternative when Artix 7 devices
are not su�ciently powerful [223].

Altera

This is the second largest FPGA manufacturer in the world and Xilinx's
main competitor. It also produces SRAM-based FPGAs and provides the de-
signers with a wide variety of tools and IPs. Recently it has announced an
agreement with Intel to use their factories to produce devices using Intel's 14
nm Tri-Gate transistor technology [224].

Microsemi

This manufacturer has focused its production on Flash technology-based
FPGAs and low power applications. It has also radiation tolerant families certi-
�ed for space applications, the RTAX and RTSX-SU families, based on anti-fuse
technology, and the RT ProASIC3 Flash based FPGA family [225]. DPR is not
supported in FPGAs using these con�guration technologies.

Lattice

Lattice has focused its production on small size and low power SRAM
and Flash FPGAs. Its biggest FPGA is 35 x 35 mm [226] and the smallest
FPGA is 1.40 x 1.48 mm [227]. Due to the size and limited number of resources
of these devices, they will not be taken into consideration in this thesis.

Atmel

Atmel had previously produced two di�erent SRAM FPGAs, but today
it only produces one FPGA model from 5K to 40K logic gates and 3V or 5V

78

[228]. Due to the small number of resources of this model, the implementation
of the desired system is not possible even though it supports DPR.

Other manufacturers

Previously mentioned companies are the ones which dominate the market
share. Nevertheless, there are other manufacturers, such as Acro�ex, Quicklogic,
SiliconBlue Technologies or Archronix. These companies have focused their
products on very particular speci�cations, such as low power, small size or very
high speed. Due to the objectives of this thesis, these manufacturers' products
have not been taken into consideration during the project.

79

80

Chapter 2

A Hardware/Software
Architecture for an Arti�cial
Neural Network

In the present chapter, an FPGA-based HW/SW architecture for an Ar-
ti�cial Neural Network is presented. The system consists in a MicroBlaze soft
microprocessor (i.e. the SW partition) and connected to it an Arti�cial Neural
Network (ANN) hardware coprocessor (i.e. the HW partition) that has been de-
signed using standard Very-High-Speed Integrated Circuits Hardware Descrip-
tion Language (VHDL) [229]. The system is suitable for the development of
Ambient Intelligence (AmI) environments.

In the �rst part of the chapter, the global architecture of the system
is presented. Then, the designed ANN coprocessor is described, including the
scheme weights storage, activation function implementation and the global con-
trol by means of a Finite State Machine (FSM). The di�erent elements of the
SW partition are next described; the physical components, the algorithms im-
plemented and also a proposal to accelerate by HW the most time-consuming
computations. The �nal part of the chapter refers to a new method for im-
plementing the activation function using a controlled accuracy method and its
integration within the ANN core.

2.1 Global Hardware/Software Architecture

In this section, the scheme of the global system is presented. From the
possible three ANN implementations presented in Section 1.3 (i.e. SW, HW or
HW/SW), a HW/SW architecture has been selected to be implemented in an
FPGA-based System on Programmable Chip (SoPC). Hence, the entire design,
even the communication peripherals and memories, are integrated in the very
same chip.

81

Neural Network

Core

MicroBlaze

Processor

FSM
controller

UART

Local Memory

- Error monitoring
- I/O processing

- Parameter Learning

- Structure Learning

JTAG Full Bit
File

PLB

FSL

Hardware Partition

Software Partition

Figure 2.1: Block diagram of the HW/SW architecture of the system. The
software partition is based on the MicroBlaze processor, while the ANN core
represents the hardware partition.

2.1.1 General Scheme

The proposed HW/SW architecture is shown in Figure 2.1. The SW
partition is based on a MicroBlaze soft microprocessor. It is responsible for the
implementation of the learning algorithms and the control of the entire system.
In contrast, the HW partition implements the ANN core and it is responsible
for computing the outputs of the network after receiving the inputs from the
processor. By using this method, it is possible to speed up the processing speed
of the ANN, freeing the microprocessor from this task and hence, making the
SW application smaller and simpler.

2.1.2 Communication Systems

To perform the communication between the core and the processor us-
ing Xilinx devices, (used in this project), there are two available options: Fast
Simplex Link (FSL) [230] and Advanced eXtensible Interface v4 - Stream (AXI-
Stream) [231] buses. They are point-to-point simplex communication buses with
a word length of 32 bits, speci�cally designed for uni-directional data bursting.
In the design of the ANN core, the FSL bus has been selected because it is sup-
ported almost entirely by Xilinx devices, while the AXI-Stream is only suppor-
ted by the last families. FSL also has the following advantage: the First-Input

82

First-Output (FIFO) used to store the data can operate synchronously or asyn-
chronously. This means that, by using the asynchronous mode, it is possible
to have di�erent clock rates in the processor and the ANN core. Finally, both
buses are simplex; this means that the core must have two bus interfaces, as
can be seen in Figure 2.2: one to receive data from the processor and another
to send data to the processor.

2.1.3 Software Partition

The SW partition is built around a MicroBlaze soft processor core and
is responsible for the ANN learning algorithms. These algorithms are better
suited to being implemented in the SW partition due to their irregularity, high
computational demands and high precision requirements. The SW partition is
also in charge of the whole system control, the management of peripherals and
co-processors, and the computation of non-recurrent tasks.

2.1.4 Hardware Partition

The hardware partition (i.e. special purpose hardware) is designed to
perform the calculations of the feed forward neural network. Due to the par-
allel and regular nature of neural networks, they are better suited to being
implemented in the HW partition, which allows the implementation of highly
parallel architectures, optimized for real-time operation. Also, the rich variety
of FPGA resources for digital signal processing greatly eases the development
of high-performance low-power applications. In particular, most FPGA families
sold on the market are equipped with DSP cores (e.g. Xilinx's Extreme DSP
[203]). These hard cores perform mathematical operations such as products
and/or sums faster than using logic elements.

2.2 Hardware Partition: Architecture of the Ar-
ti�cial Neural Network Core

2.2.1 Data Representation and Arithmentic

Before starting with the design of the network architecture, it is necessary
to decide on the format to be used to represent the value of the numbers: �xed
point or �oating point representation.

Floating point representation is always more problematic, due to the com-
plexity of the HW required in its arithmetic. In contrast, �xed point arithmetic
is easier to handle and the designs are simpler, as can be seen in [232], where the
design of �oating and �xed point pipelined adders and multipliers are shown.
Hence, except for some exceptions, �xed point representation is used to imple-
ment ANNs in PLDs [233], [234], [235], [236]. Floating point numbers can be
used previously (for example in a PC) to train the parameters of the network
or to test an algorithm before being implemented in the FPGA [237], [238],

83

Neural Network Core

Hidden
Act.

Func.

Module

Output

Layer

Core

Controller

(FSM)

CLK

Hidden

Layer

Hidden
Layer

Weights

Memory

Output
Layer

Weights

Memory

Output
Act.

Func.
Module

To

P

From

P

From

P

WR

Figure 2.2: ANN core architecture diagram

[239]. For all these reasons, �xed point representation will be used in the HW
partition.

2.2.2 Arti�cial Neural Network Core Scheme

The ANN core (HW partition) consists of a three-layer MLP, which com-
municates with the main processor by means a pair of FSLs. Figure 2.2 depicts
an internal block diagram of the ANN core. The main modules of the core
are the Hidden Layer, the Output Layer, the Activation Function Modules, the
Weights Memories, and the Core Controller. In real-time mode operation, the
core receives sequentially the inputs from the FSL FIFOs and the Hidden Layer
performs the computation of all the hidden neurons in parallel. After that, the
outputs of this layer are passed through the activation function �lter (normally
a sigmoid or a hyperbolic tangent function), implemented using a ROM memory
per neuron. Finally, the Output Layer receives the values of the hidden layer
sequentially and computes them in parallel. It includes as many neurons as core
outputs, another activation function �lter, and also a multiplexer (MUX) that
sequences the transfer of the core outputs to the MicroBlaze. Finally, the Core
Controller is a simple FSM responsible for the data pipelining through the data
path.

The core is a standard VHDL module that can be sized in several dimen-
sions by means of GENERIC parameters (i.e. word-length, number of inputs,
number of outputs, and number of hidden layer of neurons). All these paramet-
ers are de�ned in a constant PACKAGE where the de�nitions of the internal
connection parameters (i.e. connection buses) are also included.

84

2.2.3 Arti�cial Neuron Architecture

All neurons of the proposed architecture are based on the small functional
module that is described in this section. First of all, let us take a look at the
most common ways to implement a neuron [240]:

1. Serial Processing: In this model, a single Multiply-Accumulator (MAC) is
used as the core of the neuron. In each cycle, the corresponding product of
input and its weight is computed and the result added to the accumulator
(see Figure 2.3).

2. Parallel Processing: In this case, all the inputs and their weights are
connected to an array of multipliers, shown in Figure 2.4, so all input-
by-weight products are done in only one clock cycle. Then, a full parallel
adder is connected to the output of the multiplier array, so the outputs of
the products are added in another clock cycle.

3. Partial Parallel Processing: This processing architecture uses an adder
tree as can be seen in Figure 2.5.

For real-time environments, time is a key factor of the design, which is
why the Partial Parallel Processing seems to be a good solution. However, in
the case of using a coprocessor attached to a main microprocessor, there is one
more factor to be taken into account: the communication buses between both
devices.

The ANN core designed here uses a pair of FSL buses to perform the
communication; this means that the inputs are sent one by one in a data burst
to the ANN. As a consequence, an architecture where all inputs are available
at the same time is not possible to implement. Therefore, only one of the three
architectures presented above can be implemented in this project: the Serial
Processing architecture, shown in Figure 2.3.

To implement the Serial Processing neuron, the DSP cores embedded in
the silicon of FPGAs have been used [203], [241], as many neurons as DSPs
available in the FPGA can be implemented. These cores allow MAC operations
to be performed faster than using the logic of the FPGA.

In the design of the neuron, a word-length limiter in the output of the
accumulator has been added so as not to exceed the number of bits after the
MAC operations, see Figure 2.6.

After the startup or after the reset signal is disabled, the accumulator
is initialized with the value of the o�set (θ). After that, and while the enable
signal is active, in each clock cycle the value of the input (xk) is multiplied by
the value of the weight ($k) and the obtained result is added to the value to the
accumulator (yk). The inputs of the neurons can be received from the input of
the ANN or from another layer, whereas the weights and the o�sets are received
from memories connected to the neuron.

In this architecture, the number of cycles needed by the neuron to obtain
the output is, in a best-case scenario, the number of nodes in the previous layer.
For example, in a network with n inputs, L hidden neurons and m outputs, the

85

Neuron Module (MAC)

Weights

X

 +

O
u

tp
u

t

In
p

u
ts

Figure 2.3: Serial Processing neuron scheme

Neuron Module

Weights

X

X

X

X

 +

O
u

tp
u

t

In
p

u
ts

Figure 2.4: Parallel Processing neuron scheme

Neuron Module

Weights

X

X

X

X

 +

 +

 +

O
u

tp
u

t

In
p

u
ts

Figure 2.5: Partial Parallel Processing neuron scheme

86

To Act.

Func.

Module

+

L
im

it
e

r Input

Data
Nf

x

CLK

E

Ni+Nf

Ni+Nf

RST

Weight Offset

Ni+2Nf

Ni+2Nf+i

Ni+2Nf+i

Figure 2.6: Proposed serial processing neuron design, where Ni is the length of
the integer part and Nf is the length of the fractional part

hidden layer neurons need n clock cycles to perform the sum of products, while
the output neuron requires L clock cycles.

2.2.4 Weight and O�set Storage

To store the weights and o�sets of the ANN two options can be adopted:
the use of Read Only Memories (ROM), implemented using the LUTs of the
FPGA, or the use of Random Access Memories (RAM) using the registers or
memory blocks of the FPGA.

The �rst method has the advantage of being very easy to implement
and provides a very fast reading process. It has, however, a very important
drawback: the memories cannot be modi�ed dynamically. This aspect avoids
changing dynamically the weights, hence, restricting the ANN capability to
adapt to changes, which is a key aspect in neural network based systems.

In the case of RAM memories, the values of the memories can be modi�ed
dynamically, so, the ANN core gains the capability to adapt to changes. To
implement the RAMs, the FPGAs provide two di�erent ways. The �rst uses
the distributed memory of the logic cells of the FPGAs, whereas the second uses
the RAM blocks [242], [243] embedded in the silicon. Both methods have their
advantages and disadvantages:

� Resources: In the case of the distributed memory, a large amount of logic
cells can be needed, while in the case of embedded RAM blocks, depending
on the size, only one block might be needed.

� Speed: The maximum frequency of the RAM implemented using distrib-
uted memory is much higher than the maximum frequency of a RAM
block.

87

Taking into consideration the size of the memories needed to store the value of
the weights, and that the key factor in the design is speed, it is the distributed
memory implementation that has �nally been selected. Moreover, due to the
small size of the memories of the network, there could be problems implementing
them in RAM blocks for some architectures and/or data word length.

To send the weights and o�sets to be stored in the RAMs, two options
were taken into consideration:

� Use the existing FSL bus: in this case, the same FSL bus used to send the
inputs to the core is shared. To inform to the core that the data received
are weights (and not inputs), a 1-bit port is added to the core.

� Add a new FSL bus: in this case a dedicated FSL bus from the processor
to the core is implemented. Hence, the ANN core would implement three
communication buses instead of the previous two.

Considering the above two options, the best solution is the use of the same data
bus to send the values of the weights from the processing unit to the ANN core,
a write enable signal, implemented in the core as a port independent of the
communication bus.

2.2.5 Activation Function Implementation

To implement the activation function, di�erent methods can be adopted.
However, the most widely used is the LUT method, shown in Figure 2.8. In this
case, the memory implemented contains the values of the activation function.
The output of the neuron is used as address of the memory to obtain the correct
function value. However, there is a problem with the amount of required LUTs
if the precision of the data is very high. To overcome this problem, a new
characteristic is added to the word-length limiter of the neuron, shown in Figure
2.6. As can be seen in Figure 2.7, some functions vary their values very slowly
after a certain point (Xs), therefore, the output of the neuron is limited as
follows: {

x, if |x| < |Xs|
Xs, if |x| ≥ |Xs|

(2.1)

For example, for an hyperbolic tangent function with Xs = ±4, an initial
word length of 14 bits (5 integer bits, 8 fractional bits and a sign bit), is reduced
to 11 bits (2 integer bits, 8 fractional bits and a sign bit). Therefore, the ROM
memory is reduced from 214 to 211 positions.

Another solution for avoiding the problem of the size of the memories is
the so-called Range Addressable Look-up Table (RALUT), proposed originally
in [244]. In this case, for every data value, there is a range of possible ad-
dresses instead of only one as can be seen in Figure 2.9. With this technique,
the range of the values codi�ed is wider, while the number of positions in the
memory is smaller. Unfortunately, the main drawback of this technique is the

88

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

Sigmoid function

-Xs Xs

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Hyperbolic tangent function

x

f(
x)

-Xs Xs

Figure 2.7: Waveforms of the sigmoid (Left) and hyperbolic tangent (Right)
functions

ROM memory

Address 0
Address 1
Address 2

…
Address n-1
Address n

Data 0
Data 1
Data 2

…
Data n-1
Data n

 A

Do

Figure 2.8: A ROM memory implemented using a LUT architecture

loss of accuracy. In this project, RALUT architecture was discarded. In the
case of having very big and non-synthesizable LUT-based memories, the lim-
iter operation could be changed to give an output with a smaller length, and
hence, reduce the size of the ROM memories. This last option is better than
the RALUT method.

2.2.6 Arti�cial Neural Network Core Control: Finite State
Machine

Two di�erent architectures are presented (i.e. RAM-based and ROM-
based), therefore, two di�erent Finite State Machines (FSM) were also designed.

89

RALUT ROM memory

Address 0 ≤ A < Address 1
Address 0 ≤ A < Address 1
Address 0 ≤ A < Address 1

…
Address n-1 ≤ A< Address n

Address n ≤ A

Data 0
Data 1
Data 2

…
Data n-1
Data n

 A

Do

Figure 2.9: A ROM memory implemented using a RALUT architecture

Finite State Machine for a Read Only Memory-based Core

In this architecture, the Finite State Machine is responsible for enabling
the neurons of the layers of the ANN and controlling the communications sig-
nals of the buses to receive correctly the inputs from the processor or to send
the outputs of the ANN to the processor. This �ow control must be carefully
implemented, because in some moments the inputs can be received one per clock
cycle, while in other cases the inputs can be received having pauses of several
clock cycles between them.

To perform this, the FSM has the following states (see Figure 2.10):

� Idle: This is the initial state of the FSM; it is entered after a reset. This
state waits until a correct input is received from the microprocessor.

� Hidden_Layer : This is the state that is activated when in Idle, an input
is received. In this state all hidden neurons are enabled so the input can
be processed. Also, every time an input is received, a counter, initialized
with the number of inputs, is decremented. When the counter reaches 0,
the FSM jumps to the next state.

� Hidden_act_function: In this state, the activation function is applied to
the outputs of the neurons of the hidden layer. It only lasts one clock
cycle and jumps automatically to the next state.

� Output_layer : This state is similar to Hidden_Layer but in this case the
neurons of the output layer are enabled. In this state, the values obtained
in the hidden layer are sequentially multiplexed to the neurons of the
output layer. A counter will be responsible for addressing the data and
the weights. It has an initial value of '0 ', and when the counter reaches
the number of hidden layer neurons �−1�, the FSM jumps to the next
state.

90

Idle

Hidden_Layer

Hidden_act_function

Output_Layer

Input received

Count input – 1

Input received

Count input – 1

Input counter = 0

Count hidden =

hidden_neuron -1

Count hidden <

hidden_neuron -1

Out_send
Output sent correctly

Count output > 0

Figure 2.10: ANN core Finite State Machine for a ROM-based core

� Out_send : In this state, the activation function is applied to the output
layer neuron values and the results are stored in the FSL bus queue to
be sent to the microprocessor. The change of state is not performed until
all outputs have been sent. For that purpose, a counter is used, which is
decremented every time the bus sends an acknowledgement signal indic-
ating that the operation has been done correctly.

Finite State Machine for a Random Access Memory-based Core

For the RAM-based architecture, the FSM has been modi�ed as is ex-
plained below.

First, to write new values in the RAM, two strategies can be adopted:

� To send the weights of all the neurons sequentially from the processor.
In this case the RAMs have no addresses, and internal counters are used
within the ANN core so the weights are written in the corresponding
memory. The main advantage of this method is that it is simple to design,
but its main disadvantage is that all the weights and o�sets must be sent
even when only one value need to be changed.

� To implement RAMs with addresses: In this case, together with the values
of the weights and the o�set, the address of the memory must be also

91

sent. The main advantage is that, when the weights of only one neuron
need to be changed, the rest are not involved in the process. The main
disadvantage is that the managing of the address makes the process a little
more di�cult to design.

Taking into consideration the advantages and disadvantages of both options,
the second one is selected due to its performance. Hence, the writing process
for a neuron is as follows:

� The microprocessor enables the WR signal.

� The address of the neuron is sent.

� The values of the weights of the neuron are sent one by one in order.

� The o�set is sent.

� The WR signal is disabled.

This new writing process requires new states to be added to the FSM, as can
be seen in Figure2.11. These are the new states:

� Get_Addr : To enter in this state the WR signal must be enabled (i.e. from
the microprocessor) and new data must be received from the FSL bus. The
�rst piece of data received is a memory address. This state determines
whether the memory address belongs to a neuron of the hidden layer or
of the output layer, and enables the WR signal of only that neuron.

� Hidden_Memory_Write: If the address received in Get_Addr corres-
ponds to an address of a hidden layer neuron, the FSM enters in this
state. Here, every piece of new data received from the bus will be stored
in the correct memory and when all data have been received, the FSM
will jump to the Idle state. A counter is used to check data reception. It
works here as it works in the Hidden_Layer state but, with one exception,
it counts one data more, the o�set of the neuron.

� Output_Memory_Write: This state is the one after Get_Addr if the ad-
dress received corresponds to an output layer neuron. The working process
is similar to Hidden_Memory_Write, except that the jump condition to
the Idle state is asserted when the number of values received equals the
number of hidden layer neurons plus one.

Finally, when the system was implemented a problem arose: the working
frequency was too low, below 100 MHz, in some devices such as the Virtex 5
XC5VLX110T. The reason was that the path between the RAM memories and
the input of the neurons was too long; therefore, more modi�cations had to be
made in the system. The best solution was to implement the memories inside
the neuron. Hence, when the design was synthesized, the path between the two
elements was shortened. By using this method the maximum working frequency
was increased. However, it was still a little lower than 100 MHz.

92

Idle

Hidden_Layer

Hidden_act_function

Ouptut_Layer

Data received

Count input – 1
WR = 0

Input received
Count input – 1

Count input = 0

Count hidden =
hidden_neuron -1

Out_send
Output sent correctly

Count output > 0

Get
Addr

Hidden
Memory

Write

Data received

WR = 1

Count input > 0

Output
Memory

Write

Count hidden > 0

Addr < Hidden

Number

Addr > Hidden

Number
Delay_H

Delay_O

Count hidden <
hidden _neuron -1

Figure 2.11: ANN core Finite State Machine with the new states to write the
RAM memories

Another analysis of the path revealed a new source of delay in the path
connecting the input FSL bus and the inputs of the neurons. The solution to
this problem was to introduce a register in all neurons between the input of
the neural network (the FSL bus) and the input of the neuron. In addition,
to avoid control problems, the neuron enabling signals were also registered to
delay them 1 clock cycle. As a result, two new states, Delay_H and Delay_O
were introduced in the FSM to adjust the data �ow to the new modi�cations
(Figure 2.11). Hence, 2 clock cycles were added to the time needed by the ANN
core to obtain an output.

Finite State Machine for a Random Access Memory-based Core with
Structure Learning

Due to the possibility of using structure learning algorithms that change
the number of hidden layer neurons, explained in more detail in Section 2.3,
the system has to be able to warn the ANN core about how many neurons of

93

 Get
Addr

Hidden
Memory

Write

Data received

WR = 1

Count input > 0

Output
Memory

Write

Count hidden > 0

Addr < Hidden

Number

Addr > Hidden

Number

Hidden
Number

Save

Addr > Hidden
Number + Output

Number
Hidden_Layer

Hidden_act_function

Output_Layer

Out_send

Delay_H

Delay_O

Idle

Data received

Count input – 1
WR = 0

Input received
Count input – 1

Count input = 0

Count hidden <
hidden _neuron -1

Count hidden =

hidden_neuron -1

Count output > 0

Output sent correctly

Figure 2.12: An ANN core Finite State Machine with the new states to update
the number of active hidden layer neurons

the hidden layer are active to avoid problems during the real time operation
mode. This is done by updating the value of a register that stores the number
of active hidden neurons, which works as a limiter of the counters involved with
the operation of the hidden layer, e.g. the control of the jump condition from
state Output_layer to Delay_O. It also controls the enabling signals of the
hidden neurons, thus, only the active neurons are actived.

To update this register, the same procedure applied to writing the weight
RAMs is used, however, in this case its address is equal to hidden neuron number
+ output number and only one value is sent after the address. Hence, the FSM
must be modi�ed to perform this function and the result can be seen in Figure
2.12.

2.2.7 Arti�cial Neural Network Core Implementation

In Table 2.1 and Table 2.2, a comparison in the numbers of resources
needed to implement an ANN with ROM and RAM memories is shown. In
particular, a 7-input, 14-hidden neurons and 1-ouput topology has been selec-
ted for the implementation. This topology corresponds to an AmI experiment
explained in detail in Chapter 4. Also, the data format has been set to 16-bit

94

Device LUT Registers DSPs
Maximum
Freq (MHz)

XC5VLX110T-1 1769 (2.56%) 604 (0.87%) 15 (24%) 120
XC6VLX240T-1 1080 (0.36%) 605 (0.4%) 15 (2%) 133
XC7K325T-2 1080 (0.26%) 604 (0.3%) 15 (1.8%) 176

Table 2.1: Resources needed by an ANN with ROM memories to store the
weights with 7 inputs, 14 hidden neurons and 1 output implemented in Virtex 5
XC5VLX110T-1, Virtex 6 XC6VLX240T-1 and Kintex 7 XC7K325T-2 FPGAs

Device LUT Registers DSPs
Maximum
Freq (MHz)

XC5VLX110T-1 2360 (3.41%) 878 (1.27%) 15 (24%) 113
XC6VLX240T-1 1534 (0.51%) 881 (0.6%) 15 (2%) 129
XC7K325T-2 1534 (0.37%) 880 (0.43%) 15 (1.8%) 168

Table 2.2: Resources needed by an ANN with RAM memories to store the
weights with for 7 inputs, 14 hidden neurons and 1 output implemented in
Virtex 5 XC5VLX110T-1, Virtex 6 XC6VLX240T-1 and Kintex 7 XC7K325T-2
FPGAs

signed numbers, with an 8-bit fractional part. The devices selected for the im-
plementation belong to the three most widely used families of Xilinx: Virtex 5
XC5VLX110T-1, Virtex 6 XC6VLX240T-1 and Kintex 7 XC7K325T-2 FPGAs.

As was expected, the number of resources is higher and the maximum
frequency lower when using the RAMmemories. However, to have the capability
of changing the weights, and thus the capability of implementing the learning
algorithm within the system, is an important issue. The number of resources
needed in the case of the ANN with RAM memories is between a 33% and a
45% higher, compared with the ANN with ROMs, depending on the device, but
this number is still low enough to be implemented in small FPGAs.

After verifying that the HW can be implemented correctly in the devices,
the ANN core must be tested. First, the test has been carried out with the
ROM-based core. The process has been done with the Xilinx Chipscope tool.
This tool has the ability to show the behaviour of every internal signal during
run-time operation. In particular, the test has been done with an ANN with 7
inputs, 14 hidden neurons, one output and a word length of 15 bits (8 fractional
bits, 6 integer bits and a sign bit). First, the neuron is checked to know if it
works correctly. To make the visualization easier, the input values go from 1 to
7 and di�erent values are used in the weights of the �rst neuron. To check the
accumulator initialization, the o�set has been set to '4'. Finally, the limiter has
been set to give a range of ±8.

As can be seen in Figure 2.13, the value of the accumulator (i.e. signal
result) is '0' until the �rst input arrives, then the startup signal is deactivated
and the value of the output of the accumulator is the value of the o�set plus the

95

Figure 2.13: Chipscope capture of the �rst hidden layer neuron working process
for a ROM-based ANN with 7 inputs

Figure 2.14: Chipscope capture of the FSL bus signals, FSM and the control
counters of a ROM-based ANN core

input by the weight. Every time a new input is received, the neuron enable signal
(i.e. en) is enabled and the input-weight product is added to the accumulator.
As can be seen, the limiter also works correctly because the output is the value
4 codi�ed with 8 bits in the fractional part.

Once it has been veri�ed that the neuron works correctly, the ANN control
has to be checked. To do this, we examine the FSM signals and the control
counters.

Figure 2.14 shows that when the �rst input is received, the FSM changes
from Idle state to Hidden_Layer and the control counter of the state starts
decreasing. When it reaches '0', the FSM changes to the Hidden_act_function
state for only one cycle and then changes to the Output_layer state. When all
the outputs of the hidden layer have been processed, the FSM changes to the
state Out_send and, if the FSL bus is ready, the output of the ANN is sent
back to the processor.

96

Figure 2.15: Chipscope capture of the FSL bus signals, FSM and memories
write enable signals during a memory writting process of a RAM-based core

Finally, the required clock cycles are checked. With this ANN architec-
ture the ideal time to process the ANN is 23 clock cycles, although in reality,
the ANN needs 29 clock cycles. As Figure 2.14 shows, the reason is in the
FSL bus. This bus does not send always the inputs one per cycle (sometimes a
delay is added); despite this, the HW coprocessor is capable of performing the
computations extremely fast.

Finally, the writing process for the ANN core with RAM memories is
checked. The result of writing the weights in the memory of the third hidden
layer neuron can be seen in Figure 2.15. This �gure shows how the �rst data
received from the FSL bus, with the port WR enabled, is checked by the FSM
and is understood as the address of the memory, (in this case the third neuron
of the hidden layer). Subsequently, every piece of data received is written in
the correct memory. This can be seen because only the �rst bit of the hid-
den_ram_wr_en signal is enabled every time an input is correctly received.
After the weights are written, the o�set is received and stored. This can be
seen in the �gure because the third bit of the signal hidden_o�set_wr_en is
enabled. After the process has ended, the FSM returns to the state Idle. The
writing process would theorically require 11 clock cycles; however, the �gure
shows that more cycles are needed due to the extra cycles in the FSL bus, as
happened in the input-sending process.

2.3 Software Partition

The SW partition is responsible for performing several tasks: system con-
trol, the management of peripherals and co-processors and the computation of
the learning algorithms. Two di�erent types of learning strategies are imple-
mented: parameter and structure learning. For the parameter learning, two al-
gorithms have been selected, Backpropagation and Extreme Learning Machine.
In the case of the structure learning, the selected algorithm is a combination of

97

Figure 2.16: Block diagram of the system showing the SW partition, including
its peripherals and the HW partition connected by means of a pair of FSL buses

growing and pruning methods [21]. The application of each learning algorithm
is presented in Chapter 4.

In the next section, several aspects concerning the SW partition are dis-
cussed.

2.3.1 Components of the Software Partition

The SW partition is based on a 32-bit MicroBlaze processor (see Fig-
ure 2.1). The processor is equipped with a Floating Point Unit (FPU) to
meet the performance and the precision requirements of learning algorithms.
Its main functions are: system control, resource management, input/output
(I/O) handling, data pre and post-processing (scaling and �xed-point codi�ca-
tion), HW/SW communication, and training of the ANN. The program to be
executed in the microprocessor has been developed using C programming lan-

98

guage, written to be independent of the platform and the operating system as
much as possible. The only hardware-dependable functions are those needed to
communicate with the HW partition, and the I/O send/receive functions.

The Microblaze processor has, attached to it, a dual-port memory for
data and instructions. The access to this memory is carried out with 2 Local
Memory Buses (LMB). The size of this memory is up to 64 kB in the case of
the Spartan devices, up to 128 kB in Virtex 4 devices and up to 256 kB in
the case of the Virtex 5, Virtex 6 and 7 Series devices. Also, connected to the
peripheral bus (i.e. AXI or PLB bus) it is possible to include on-chip RAM
blocks (BRAM), which are also limited to those sizes.

In Figure 2.16 the block diagram of the system, generated with the syn-
thesis tool, is shown. Here, the Microblaze connected to the memory, the peri-
pherals and the ANN core using the above-mentioned communication buses can
be seen.

2.3.2 Implementation Issues

The memory map of the Microblaze is divided as follows: a code section,
an initialized data section and an uninitialized data section (this latter includes
the heap and the stack of the processor). It is possible to include each section in
di�erent memories. However, if one of the sections is bigger than the maximum
size of the memory, it must be stored in an external memory, such as a DDR
memory, which requires a memory controller. Hence, the timing performance
will decrease due to the accesses to the external memory, making mandatory
the use of cache memories to improve the execution time.

One element that enables a reduction in memory consumption is a proper
selection of the variable types of the SW. In this sense, C language provides a
wide range of variables with di�erent word lengths. To limit the size of the
program, short memory variables have been selected whenever this has been
possible.

Regarding the FPU of the Microblaze, it can be enabled or disabled
during the design process. If there is an FPU, this can be a basic or an extended
one. Furthermore, there is the possibility of implementing 32 or 64-bit integer
multipliers and dividers, and a barrel shifter.

2.3.3 Learning Algorithm Acceleration Using the Hard-
ware Partition

Even with a Microblaze fully equipped to perform mathematical opera-
tions and with the program stored in internal memory, considerable time is re-
quired for the learning algorithms to be executed. In the case of a BP algorithm
for a training set using 408 training samples, (e.g. the �rst AmI application
that will be explained in Chapter 4) each learning cycle requires 1.27 × 106

clock cycles for only 1 neuron in the hidden layer, and 7.33 × 106 clock cycles
for 14 neurons.

99

Up to now, the ANN core has only been used after the learning has
�nished. However, the ANN core can also be used during the learning process
to accelerate the algorithm. To do this, the ANN core is slightly modi�ed to
be able to send the outputs of the hidden layer neurons to the SW partition,
whose values are needed by both BP and ELM. This avoids the SW algorithms
computing those values.

After performing the above mentioned changes in the HW and SW par-
titions, the BP algorithm is run again to measure the time needed by each
learning cycle. The result shows that 0.49 × 106 and 3.08 × 106 clock cycles
are now required for 1 and 14 hidden neurons respectively. Hence, the use of
the ANN core as a learning coprocessor speeds up the BP algorithm between a
57.87% and a 61.83%, which means that it is possible to perform more than the
double of learning cycles in the same time. Therefore, the execution time of the
SW partition is drastically decreased. For ELM, however, the e�ects of the HW
acceleration are negligible because the main part of the algorithm, Equation
1.19, requires most of the computing time and it cannot be accelerated using
our ANN core. In this case, another solution should be implemented [245].

2.4 Controlled Accuracy Activation Function Im-
plementation

The sigmoid and hyperbolic tangent functions are two of the most widely
used activation functions, mainly due to their di�erentiable nature which makes
them suitable for on-line training. However, these functions are costly to im-
plement in digital hardware because they require the calculation of an expo-
nentiation and a division. To avoid this problem, a number of approximation
techniques have been proposed over the years. The most commonly used are
look-up tables (LUTs), explained in Section 2.2.5, bit-level mapping, Piecewise
Linear (PWL) methods [246], lattice algebra-based Centred Recursive Interpol-
ation (CRI) algorithm [247], Taylor series expansion [248], and hybrid methods
[249].

The selection of the approximation method and its hardware implement-
ation are the aspects that constrain the accuracy of the activation function, and
consequently, the learning and generalization capabilities of the whole ANN
[250]. Moreover, too low accuracy leads to poor performance, whereas an excess
of it unnecessarily increases the hardware resources and reduces the processing
speed. Despite the importance of proper speci�cation of the accuracy of the
activation function, very few works incorporate it as a design parameter [248].
To tackle this problem, a novel approximation scheme is proposed. The scheme
is based on Taylor's theorem and the Lagrange form of the remainder or the
error. A systematic design methodology which guarantees the accuracy of the
approximation is provided. The proposed methodology is independent of the
function it is going to be approximated.

100

Controlled accuracy approximation of
sigmoid function for efficient FPGA-based
implementation of artificial neurons

I. del Campo, R. Finker, J. Echanobe and K. Basterretxea

A controlled accuracy approximation scheme of the sigmoid function
for artificial neuron implementation based on Taylor’s theorem and
the Lagrange form of the error is proposed. The main advantages of
the proposed solution are two: it provides a systematic way to guaran-
tee the required accuracy and it reuses the circuitry of the linear part of
the neuron to compute the sigmoid function. The sigmoid derivative is
also available for artificial neural networks with online learning
capabilities.

Introduction: The number and variety of engineering applications of
artificial neural networks (ANNs) have been increasing, ranging from
consumer products to industrial process control. Efficient hardware
implementations have been developed for numerous applications
demanding high-performance real-time processing [1]. Hardware
implementations of many ANNs involve the computation of a nonlinear
activation function. The sigmoid function is one of the most widely
used, mainly due to its differentiable nature which makes it suitable
for online training. However, this function is costly to implement in
digital hardware because it requires the calculation of an exponentiation
and a division. To avoid this problem, a number of approximation tech-
niques have been proposed over the years. The most commonly used are
look-up tables (LUTs), bit-level mapping, piecewise linear methods,
Taylor series expansion and hybrid methods [2].

The selection of the approximation method and its hardware
implementation are the key aspects that constrain the accuracy of the
activation function, and consequently, the learning and generalisation
capabilities of the whole ANN [3]. Moreover, too low accuracy leads
to poor performance, whereas an excess of it unnecessarily increases
the hardware resources and reduces the processing speed. Despite the
importance of proper specification of the accuracy of the activation func-
tion, very few works incorporate it as a design parameter [4]. To tackle
this problem, a novel approximation scheme of the sigmoid function is
proposed. The scheme is based on Taylor’s theorem and the Lagrange
form of the remainder or the error. A systematic design methodology
which guarantees the accuracy of the approximation is provided.

Concerning digital hardware implementation of the approximation
scheme, an original solution is proposed that reuses the circuitry of
the linear part of the neuron. The circuit architecture is especially
suited for field programmable gate array (FPGA)-based implemen-
tations because it makes use of primitives and embedded resources
that can be found in typical FPGA families such as LUTs, and high-
performance low-power digital signal processing (DSP) blocks. The
main computation module of our solution is a single embedded DSP
core. First, the core is dedicated to perform the computation of the
linear part of the neuron, and then the same core is reused, with
minor additional resources, to compute the sigmoid and obtain the
output of the neuron.

f¢¢¢(x) = –0.125

f¢¢(x) = –0.096

f¢(x) = 0.25

unit saturation

region

zero saturation

region

Taylor (+)

region

Taylor (–)

region

10 5 5 10

0.4

0.2

0.2

0.4

0.6

0.8

1.0

f x

Fig. 1 Sigmoid and extreme values of its first three derivatives

Approximation scheme: The approximation scheme divides the input
range into two kinds of regions, the so-called saturation regions and
Taylor regions (see Fig. 1). The Taylor regions, in turn, are split into
a number of intervals where a local approximation of the function is

computed. The sigmoid function is given by

f (x) = 1

1+ e−x
(1)

It can be approximated in any interval I containing a, I = (a− r, a + r),
with an nth degree Taylor polynomial

f (x) ≃ f (a)+ f ′(a)(x− a)+ f ′′(a)
2!

(x− a)2 + · · · + f (n)(a)

n!
(x− a)n

(2)

where the approximation error (i.e. remainder) in I can be bounded by
using the Lagrange form of the remainder or the error:

Rn(x)
∣∣ ∣∣ ≤ |x− a|n+1

(n+ 1)!
Mn, where f (n+1)(x)

∣∣ ∣∣ ≤ Mn (3)

Equation (3) is very useful in practice because it provides a means of
dealing with the maximum allowable approximation error ε as a design
parameter. It is worth mentioning that the output of the sigmoid function
lies in the range (0,1), and verifies that f (−x) = 1− f (x); thus, in the
following only the positive semi-axis will be considered.

The saturation region is that region where the first derivative of the
sigmoid function is close to zero (see Fig. 1). The starting point of the
saturation region depends on the required precision. To determine
where it starts, we have to find the value of x where the gap between
‘1’ and the sigmoid function equals the maximum allowable error:

1− f (x) = 1

1+ ex
= 1, with 0.5 ≤ f (x) , 1 (4)

Solving (4) results in x = t = ln(1/ε− 1), where t≥ 0, the boundary
between the Taylor region and the saturation region.

The positive Taylor region [0,t] is split into ni intervals of width 2r, then
r = t/2ni. By substituting in (3) and taking into account that |x− a|≤ r ∀x∈ I,
the minimum number of intervals for a given error results:

ni ≥ 1

2

Mn

1(n+ 1)!

()1/(n+1)

t, with t = ln
1

1
− 1

()
and Rn(x)

∣∣ ∣∣ = 1

(5)

Table 1 provides the boundary of the Taylor region and the minimum
number of intervals for different errors using a first- and a second-order
Taylor approximation scheme, according to (5). As can be seen, the
larger the order of the polynomial, the lower the required number of
intervals in the Taylor region. In other words, the accuracy of the
approximation scheme can be enhanced by using more terms in (2) or
by refining the Taylor region segmentation.

Table 1: Design parameters (minimum values) as a function of
allowed error

Allowed
errors (ε)

Taylor region
widths (t)

Intervals
first-order series

Intervals
second-order series

Ni Nf No

0.1 2.19 2 1 2 2 4

0.01 4.59 6 3 3 5 7

0.001 6.91 24 10 3 8 10

10−4 9.21 102 28 4 12 14

Selection of word-length: The proposed scheme has been implemented
using a fixed-point fractional data format. The integer part of the input is
represented by means of Ni bits, whereas the fractional part requires Nf

bits xNi−1 . . . x0 x−1 . . . x−Nf

()
. The integer part depends on the width of

the Taylor region: 2Ni ≥ t, which can be written as

Ni ≥ ln t

ln 2
, Ni [Z (6)

The fractional part of the input should be enough to represent the
changes in the inputs Δx that produce changes in the sigmoid function
Δf equal to the maximum allowable error:

Df

Dx
= 1

2−Nf
, for small increments

Df

Dx
� f ′(x) (7)

By taking into account that the first derivative reaches its maximum

ELECTRONICS LETTERS 5th December 2013 Vol. 49 No. 25 pp. 1598–1600

Figure 2.17: Approximation scheme input regions, sigmoid function and its �rst
three derivative extreme values

2.4.1 Function Approximation Scheme Using Taylor Series

This scheme is going to be used in S-shaped functions (e.g. sigmoid and
hyperbolic tangent). Hence, this approximation scheme divides the input range
into two region types, saturation regions, and Taylor regions, as is shown in
Figure 2.17. The saturation region gives the same value for any input, whereas
Taylor regions approximate the function using an nth degree Taylor polynomial
given by the expression

f(x) w f(xo)+f
′(xo)(x−xo)+f ′′(xo)

(x− xo)2

2!
+. . .+f (n)(xo)

(x− xo)n

n!
, (2.2)

in any interval I containing xo, where I = (xo − r, xo + r), being f(x) n times
di�erentiable at the point.

The error of the approximation of the function in I can be bounded by
using the Lagrange form of the remainder or the error:

|Rn(x)| ≤
|x− xo|n+1

(n+ 1)!
Mn, (2.3)

where

|f (n+1)(x)| ≤Mn. (2.4)

Equation 2.3 is very useful because it gives a means for dealing with the
approximation error ε as a design parameter.

Another point that must be taken into account is the properties of the
sigmoid and hyperbolic tangent functions, where

fsigmoid(−x) = 1− fsigmoid(x) (2.5)

and

101

Allowed Taylor region Intervals Intervals
error (ε) width (t) �rst-order series second-order series

0.1 2.19 2 1
0.01 4.59 6 3
0.001 6.91 24 10
0.0001 9.21 102 28

Table 2.3: Design parameters (minimum values) as a function of allowed error
for a sigmoid function

ftansig(−x) = −ftansig(x). (2.6)

Using these properties, the functions are only computed for the positive semi-
axis of the inputs, and for a negative input, Equations 2.5 or 2.6 are applied,
therefore simplifying the design of the approximator.

The selection of the positive saturation region depends on the required
accuracy. To determine where it starts, it is necessary to �nd the value where the
gap between the value of the function and the maximum value of the function,
'1' for the sigmoid and tangential functions, equals the maximum error:

1− f(t) = ε. (2.7)

Solving Equation 2.7, and using as example a maximum error of 10−3, the
saturation region for a sigmoid function starts for values t > 6.91, and t > 3.8
for a hyperbolic tangent function.

The positive Taylor region, with a [0, t] range, is split into ni intervals
of width 2r, then r = t/2ni. By substituting in Equation 2.3 and taking into
account that |x− xo| ≤ r, ∀x ∈ I, the minimum number of intervals for a given
error results:

ni ≥ 1

2

(
Mn

ε(n+ 1)!

)1/(n+1)

t (2.8)

with

|Rn(x)| = ε. (2.9)

Table 2.3 provides the boundary between the Taylor region and the sat-
uration region according to 2.7, and the number of intervals in the Taylor region
for a �rst- and second-order polynomial for a sigmoid function. As can be seen,
the larger the polynomial, the lower the number of intervals in the Taylor region.
Hence, to increase the accuracy of the approximation, a larger polynomial can
be used or the number of intervals can be increased.

The results shown in Table 2.3 are for a sigmoid function, but applying
the correct values in Equations 2.7, 2.8 and 2.9 for any other S-shaped function,
e.g. a hyperbolic tangent function, the values of t and ni for it can be also
obtained.

102

2.4.2 Selection of the Word Length

The proposed scheme has been implemented using a �xed-point signed
fractional data format. The length of the integer part (Ni) depends on the
width of the Taylor region: 2Ni ≥ t, which can be rewritten as:

Ni ≥ ln t

ln 2
, (2.10)

where Ni ∈ Z.
The fractional part of the input (Nj) should be enough to represent the

changes in the inputs 4x that produce the changes in the function 4f equal to
the maximum allowable error:

4f
4x

=
ε

2−Nj
(2.11)

and for small increments the derivative f ′(x) is

4f
4x
∼= f ′(x). (2.12)

Taking the maximum value of the �rst derivative

2−Nj ≤ ε

f ′(x)max
(2.13)

then

Nj ≥ − ln f ′(x)max

ln 2
+
| ln ε|
ln 2

(2.14)

where Nj ∈ Z.
To obtain the length of the fractional part of the output (No), assuming

that the signal quantisation is performed by truncation, the maximum quant-
isation error is εt = 2−No. Therefore:

No ≥ | ln εt|
ln 2

(2.15)

Using Equations 2.10, 2.14 and 2.15 it is possible to select the word length
of the module that implements the scheme.

This module will be integrated in the ANN core. The word lengths of
the function approximation module and the ANN core must, therefore, be com-
patible. To select the correct values of the integer part, the value of the integer
part of the weights and Ni are checked and the highest one is selected, other-
wise it would not be possible to codify the weights correctly. In the case of the
fractional part, the same is done; the biggest value is selected between Nj, No
and the length of the fractional part used in the ANN core (Nf).

103

2.4.3 Hardware Implementation of the Taylor Module

A 2nd order approximation of the activation function was implemented.
The hardware implementation was done following the same ideas used in the
implementation of the ANN core: standard VHDL, use of the DSPs to reduce
the size of the core and a working frequency higher than the maximum frequency
of the microprocessor.

To implement the scheme using the lowest number of resources, Equation
2.2 is decomposed in equation

f(x) = y1(x− xo) + f(xo) (2.16)

where

y1 =
f ′′(xo)

2!
(x− xo) + f ′(xo). (2.17)

Hence, following this decomposition, the 2nd order Taylor polynomial
can be implemented in an easy way using only one DSP. Also, this scheme to
decompose Equation 2.2 allows the implementation of a Taylor polynomial of
any order.

Storage of the Taylor Coe�cients

To store the coe�cients of each interval (i.e. xo, f(xo), f ′(xo) and f ′′(xo))
ROM memories are used, one for each variable, as shown in Figure 2.20. In this
case, a RALUT method is implemented (see Figure 2.9), and the memory words
are addressed by means of the Most Signi�cant Bits (MSB) of the absolute value
of the input data, plus an o�set depending on the value where the saturation
region starts, as is shown in Figures 2.18 and 2.19.

Figure 2.18: Address of the ROM memories for a (0,8) range and 32 intervals

Figure 2.19: Address of the ROM memories for a (0,4) range and 32 intervals

Module Input/Output Ports

To design the Taylor module, a Handshake protocol is used to ensure a
correct communication. Hence, the module not only includes the input and the
output, it also includes the control signals of the protocol:

104

� stb_i : Strobe signal that warns the module that a new input is available.

� ready : Strobe signal used by the module to warn that the output is avail-
able. It also works as acknowledgement of the stb_i signal.

� out_read : Acknowledgement signal used to tell the module that the out-
put has been successfully read.

The �nal architecture of the core, including the reset and clock signals, can be
seen in Figure 2.20.

DSP Core A

C

 ROM 1
- ½·f´´(xo)

 ROM 2

- xo

MSB(X)

ROM 3
- f(xo)

ROM 4
- f’(xo)

B

X

Core
Controller

(FSM)

ready

input output

rst

out_read

stb_i

clk

Figure 2.20: Taylor module architecture (positive semi-axis)

Finite State Machine of the Taylor Module

To control the module, a Finite State Machine has been designed (shown
in Figure 2.21) that in 5 clock cycles is capable of obtaining the output of the
approximation. It has the following states:

� Idle: In this state the module waits until an input is received. This is
known when the port stb_i is active.

� Is_minus: Here the sign bit is checked. If the sign bit is '1', then a �ag
is set and, as working value, the absolute value of the input is taken.

� Load_val : Using the value given in the previous state, the values of the
memories are loaded and the value of (|x| − xo) is obtained.

� y1_compute: In this state, Equation 2.17 is computed.

� y_compute: In this state, Equation 2.16 is computed.

� Output_ready : Here Equations 2.5 or 2.6 are applied if the input is negat-
ive and the output is trimmed to adapt it to the same data representation

105

stb_i = 1

out_read = 1

Idle

Is_minus

y1_compute

Output_ready

Load_val

y_compute

Figure 2.21: Taylor module Finite State Machine

of the input. At the same time the module indicates that the output is
ready. The change to the Idle state is not completed until out_read signal
is '1'.

2.4.4 Simulations of the Proposed Scheme

Before implementing the design, the module has been simulated with
Matlab tool using its Fixed-Point Toolbox [251]. To perform the simulation
a Matlab script has been written to simulate the Taylor Module. The Taylor
module is implemented in a digital HW platform, therefore, the number of in-
tervals (ni) and the Taylor region width (t) should be powers of 2. For example,
to obtain an error lower that 10−3, Table 2.3 shows that t should be 6.91 and
ni 24, however in the HW implementation the value of t is 8 and 32 intervals
are selected. Also, the result of Equation 2.17 is trimmed to be used as input
parameter in Equation 2.16. The idea is to check if it is possible to reach an
error of 10-3 with values similar to the ones obtained in Table 2.3, selecting
as the fractional part the highest value between Equation 2.14 and Equation
2.15. Hence, the simulation is done with a Taylor region of 16 and 32 intervals.
According to Equations 2.14 and 2.15, the fractional part of the number must
have 12 bits. If the error is not reached, the number of bits in the fractional
part will be increased until the targeted error is reached. If more bits have to
be added, it is checked if the new length of the fractional part is acceptable or

106

Number of Maximum absolute error ε
intervals (0,8) Nj = 10 Nj = 11 Nj = 12

16 1.2× 10−3 6.1× 10−4 4.86× 10−4

32 9.69× 10−4 5.20× 10−4 2.70× 10−4

Table 2.4: Maximum error vs. fractional bits (Nj) for 16 and 32 intervals in the
case of a sigmoid function

not.
As can be seen in Table 2.4, to obtain the same error that was obtained

in Table 2.3, the fractional part must be at least 11 bits long. The only reason
why having even less bits than the ones needed (the error is lower than 10-3)
is because the number of intervals is much higher than the required minimum,
and therefore, the e�ect of having fewer bits is counteracted by having more
intervals.

The simulations demonstrate that the system, even with a trimming in
the approximation process, is capable of approximating the sigmoid function
with the required accuracy.

2.4.5 Field Programmable Gate Array Implementation of
the Taylor Module

After simulating the proposed scheme, the module is implemented in an
FPGA using standard VHDL language. Using this implementation method it
is possible to create a system that can be implemented in any FPGA, making
the module independent of the platform.

To test the module, an implementation has been done using 16 intervals
(ni = 16) and 12 fractional bits (Nj = 12). Then an extra module has been im-
plemented, an FSL bus wrapper, so the function approximator can communicate
with the microprocessor directly by using a pair of FSL buses.

First of all, the approximator has been simulated using Modelsim simula-
tion tool [252], and using the very same code of the implementation. The inputs
of the approximator are the codi�ed numbers in the range [0,9], therefore, it is
also necessary to check if the approximator saturates the output as it should
do. During the simulations, the FSL wrapper has not been used.

The absolute value of the absolute error between the value of the sigmoid
function and the value of the HW approximator captured using the simulation
tool can be seen in Figure 2.22. The maximum error between the two signals is
4.76× 10−4, a value less than the one present in Table 2.4 for 16 intervals and
12 bits in the fractional part of the number.

After checking that the module works correctly on a simulation, the hard-
ware is implemented using Xilinx's ISE Design Suite 14.6. The number of
resources of the implemented hardware module can be seen in Table 2.5 for
Virtex 5 XC5VLX110T-1, Virtex 6 XC6VLX240T-1 and Kintex 7 XC7K325T-2
devices.

107

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

VHDL Simulation sigmoid function approximation

1000 x Error

Sigmoid approximated
function

Saturation
Region

Taylor Region

Figure 2.22: Absolute error of a simulated sigmoid function using the Taylor
module

Device Registers LUTs DSPs Fmax
XC5VLX110T-1 96 (0.13%) 201 (0.29%) 1 (1.56%) 117 MHz
XC6VLX240T-1 96 (0.032%) 190 (0.13%) 1 (0.13%) 120 MHz
XC7K325T-2 96 (0.023%) 191 (0.94%) 1 (0.12%) 166 MHz

Table 2.5: Taylor module occupation for Virtex 5 XC5VLX110T, Virtex 6
XC6VLX240T-1 and Kintex 7 XC7K325T-2 devices

After synthesizing the module integrated in the FSL wrapper, it is con-
nected to a Microblaze microprocessor and implemented in an FPGA with a
simple SW partition. The SW partition sends to the module the same inputs
used in the simulation, receives the output value and sends both of them to a
PC connected to the board using a serial link.

Firstly the system was debugged using Xilinx ChipScope tool. This tool
allows viewing of the signals of the modules implemented in the FPGA during
the runtime. In Figure 2.23, it is possible to see how, after receiving an input,
the number −4.07, the system detects that it is a negative number, takes the
absolute value (i.e. signal input_aux), and with it does the calculations. Then,
in the �nal state, Equation 2.5 is applied to the result to obtain the correct
output value. It is also checked that in only 5 clock cycles the output is ready
to be sent to the microprocessor.

In Figure 2.24, the same input is introduced in the function approximation
module, but in this case with a positive sign. The module does not enable signal
minus_en, so, in the �nal part of the process, Equation 2.5 is not applied to

108

Figure 2.23: Chipscope capture of the Taylor module with a negative input

the result.
To compare the results, the same procedure used in the simulation was

carried out. In this case, the maximum error is also 4.76×10−4, the same value
as the simulation, so there are no discrepancies between the simulation and the
real implementation of the HW in the FPGA.

To sum up, it is possible to approximate a sigmoid function with high
accuracy using a 2nd order Taylor polynomial. Also, our module requires less
than a 2% of the available resources present in the smallest FPGA used in the
implementation, a Virtex 5 XC5VLX110T, which is the medium size device
within its family. Hence, our system can be implemented as part of a system,
or as a stand-alone implementation in any device, even in the smallest ones.

2.5 An Arti�cial Neural Network Architecture
Using the Taylor Module to Implement the
Activation Fucntion

The ANN architecture presented in Section 2.2 has been enhanced using
the Taylor module to implement the sigmoid activation function instead of using
a LUT approach based on ROM memories.

When using ROM memories to implement the activation function, it was
possible to use one sigmoid function approximator per neuron. However, de-
pending on the number of DSPs present in the FPGA, it might be recommended
to use one Taylor module per layer, with the neuron outputs multiplexed, to
avoid the use of bigger FPGAs. As consequence, 5 clock cycles per neuron have
to be added to the execution time.

109

Figure 2.24: Chipscope capture of the Taylor module with a positive input

The option of using one module per neuron has the main advantage of
using the same FSM but with minimum changes. It is just necessary to wait until
all out_ready signals are enabled, and the activation functions of all neurons are
computed in only 5 clock cycles. However, to use only one function approximator
per layer requires making changes in the control of the ANN core to control the
multiplexing of the inputs of the function approximator in both the hidden and
output layers.

2.5.1 An Arti�cial Neural Network Core with One Taylor
Module per Layer

To implement this solution, several changes have to be made in the ANN
core. Now the inputs of the function approximator are not connected to the
outputs of the neurons directly, but to a multiplexer to receive those outputs
one by one. Regarding the output of the Taylor module, in the case of the one
located in the hidden layer, its output is connected to the inputs of the output
layer neurons. In contrast, with the output of the Taylor module located in the
output layer, its output is connected to the FSL bus.

Due to the changes in the architecture of the ANN core, the FSM has to
be changed too. The new FSM, shown in Figure 2.25, has the following changes:

� Hidden_act_function: The FSM does not jump to the next state until the
signal ready of the function approximation module is active. This state
will also enable the stb_i signal of the hidden layer function approximation
module.

� Ouptut_Layer : instead of continuing in this state until the counter of
hidden layer neurons reaches '0', the FSM will jump to the state Hid-

110

Idle

Hidden_Layer

Hidden_act_function

Output_Layer

Data received

Count input – 1
WR = 0

Input received
Count input – 1

Count input = 0

Count hidden =
hidden_neuron -1

Out_send
Output sent correctly

Count output > 0

Get
Addr

Hidden
Memory

Write

Data received

WR = 1

Count input > 0

Output
Memory

Write

Count hidden > 0

Addr < Hidden

Number

Addr > Hidden

Number

Count hidden <

hidden _neuron -1

Sigmoid funtion ready

Delay_H

Delay_O

Figure 2.25: FSM of the ANN with one function approximation module per
layer

den_act_function in the next clock cycle if the counter is not '0'. Other-
wise, it jumps to the state Delay_O. Also, the enable signal of the output
layer neurons is connected to the signal out_read of the hidden layer func-
tion approximation module.

� Out_send : The jump condition in the previous design was for the counter
of output layer neurons to be '0' and the queue of the FSL bus not full.
Now another condition is added to the decrement of the counter and to
the jump to the next state of the FSM: the signal ready of the Taylor
module of the output layer to be '1'.

The ANN endowed with the Taylor module is capable of performing the
computations but with an increment in the computational time. Now, for each
neuron in the core, 5 clock cycles must be added to computational time. For
example, an ANN with parallel ROMs with n inputs, L hidden neurons and m
outputs needs n + L + m + 3 cycles to compute the outputs of the network.
However, the core with shared function approximation modules requires n +
6L+ 5m+ 2 clock cycles.

The main advantage of the present architecture compared with the imple-
mentation of the activation function using a LUT approach is the high accuracy

111

that can be obtained. In systems that require very high accuracy, for example
a fractional part Nf ≥ 14, the size of the ROM memories have 2Nf+Ni+1 posi-
tions of Nf +1 bits. Hence, the system could not be implemented in the desired
FPGA due to the number of resources. It is in these scenarios that the Taylor
module shows its advantage, because with 4 small ROMs to store the coe�cients
of the intervals and a DSP (see Table 2.5), it is capable of obtaining higher ac-
curacies than implementing the activation function in a LUT-based ROM. This
is very useful when the training needs to be accelerated using the ANN core as
a coprocessor, because the algorithm requires high accuracy. Hence, the use of
the Taylor module is a better solution than using a bigger device. This is true
even when an ANN with a single Taylor module per layer, the slowest solution,
is used.

2.6 Conclusions

In the present chapter, an FPGA-based HW/SW architecture for an Ar-
ti�cial Neural Network to be implemented in an FPGA-based System on Pro-
grammable Chip is presented.

The hardware partition is a fully scalable Multilayer Perceptron Neural
Network core implemented using standard VHDL, which means that the sys-
tem can be implemented in any FPGA independent of the manufacturer. The
neurons of the layers of the ANN are implemented using the DSP cores of the
FPGA, decreasing the number of resources needed to implement them, and they
work in parallel to obtain a faster design. In the case of not having a device
with DSPs, the neurons can be implemented using the logic resources of the
FPGA.

Two ANN core architectures have been designed, one with ROM memor-
ies and another one with RAM memories, to store the weights. The storage
of the activation function has been also designed using ROM memories. Also,
following the scheme used in the design the implementation of an ANN with
more than one hidden layer is a straightforward task.

The SW partition is built around a MicroBlaze soft microprocessor core
using the internal memory of the FPGA to make the system faster and to avoid
the use of external elements to reduce the size of the entire system. The pro-
cessor is responsible of performing the control of the system and the execution
of the di�erent learning algorithms implemented (i.e. Backpropagation Gradi-
ent Descent, Extreme Learning Machine and growing/pruning algorithm). The
code of these learning algorithms are written in C programming language as in-
dependently as possible of the HW partition, therefore, the code can be reused
in di�erent devices performing only minimum changes. Talking about the per-
formance of the algorithms, ELM is a very fast algorithm; however, BP is much
slower, hence, the algorithm is accelerated using the ANN core as coprocessor
achieving accelerations up to 61%.

In addition, a new method to obtain the activation function has been
presented based on Taylor's theorem. Using a 2nd order Taylor polynomial and

112

the Lagrange form of the remainder, it is possible to approximate the sigmoid
and hyperbolic tangent functions with controlled accuracy.

To sum up, a �exible and scalable HW/SW architecture has been designed
that can be adapted to di�erent situations. It is capable of covering a wide range
of speci�cations related to size, speed and accuracy. The system has been imple-
mented correctly in di�erent devices; low, middle and high-performance devices,
showing that its size requirement is not very demanding, therefore, making it
suitable to be implemented in environments where size and/or performance are
one of the most important constraints in the design.

113

114

Chapter 3

Dynamic Partial
Recon�guration

In Section 1.4.2 Dynamic Partial Recon�guration (DPR) technology was
described in detail. In the present chapter, di�erent applications of DPR in
the HW/SW architecture for an Arti�cial Neural Network (ANN) proposed
in Chapter 2 are presented and discussed. The main advantages of DPR are
exploited: FPGA size reduction and power consumption reduction.

In the �rst part of the chapter, a review of the use of this technology
in the Intelligent Environments and in the implementation of Soft Computing
hardware is done. Afterwards, the di�erent limitations of the designing tool
used during this project are presented. In the second part of the chapter, how
DPR can be applied to the proposed architecture is explained. As it is shown,
partial recon�guration can be applied either to the entire core or to some parts
of the core. All the details about these issues are carefully analyzed. Finally, a
description of another alternative to DPR for power reduction is provided.

3.1 Dynamic Partial Recon�guration in Intelli-
gent Environments

In the last two decades, DPR has been used in the implementation of
systems for Intelligent Environments (IE) and Soft Computing (SC) techniques.
In the present section, some examples of these implementations are shown.

In 2005 Mermoud et al. [253] applied DPR to create evolving fuzzy
systems implemented in FPGAs to provide adaptation at structural changes
and parameter tuning. In particular, DPR was used to modify Look-up-Table
functions, and hence, to change the implemented design. In 2006 Chalhoub et
al. [254] presented a multilayer ANN in an FPGA where only the modules of
one layer are implemented, and then by using time multiplexing recon�guration,
the resources are reused by all the layers successively. Its main advantage is the

115

resource saving, however, the main disadvantage is the time needed to perform
a recon�guration. This method makes the system very slow, specially if as the
authors say, up to 32 hidden layers can be implemented. Also in 2006, Starzyk et
al. proposed the use of DPR to dynamically recon�gure the neuron architecture
of a Self-Organizing Learning Array [255], based on a modi�ed Xilinx PicoBlaze
microcontroller [256]. The main disadvantage of this implementation is the use
of a PicoBlaze (i.e. a complex versatile core) for the implementation of just each
single neuron. Instead, more e�cient hardware-based methods could be used
(e.g. Multiply-Accumulator type cores).

More recently, in 2011, Harbt et al. [257] proposed the use of DPR
to change the con�guration parameters of a Multiple Target Tracking Driver
Assistant System depending on the driving conditions and the changes in the
environment. Echanobe et al. [258] proposed in 2012 the use of DPR to re-
con�gure an ANFIS-like System in an AmI scenario. In 2014 Grantner and
Nguyen [259] developed a fuzzy automaton-based decision support system for
handicapped children -to test their eye-hand coordination- in which DPR is used
to recon�gure the automaton's Hybrid-Fuzzy-Boolean Finite State Machine. In
the case of these last two examples, what they propose is something similar to
what it is proposed in this chapter to save resources, instead of implementing
all the cores. However, these solutions are limited to change the con�guration
of their systems, and therefore, the cores cannot be replaced by other ones when
they are not used.

To sum up, the use of DPR is not widely spread in the area of the IEs
and most of the research was done using devices that today are obsolete. Also,
most of the use of DPR in IEs and SC is based on changing the con�guration
of the system but maintaining their original structure with a lack of �exibility.
In this project, the main objectives of using DPR are to save resources, power
consumption and also to make the system more adaptable.

3.2 Restrictions Introduced by the Design Tool

In Section 1.4.2 DPR was described as a technology that allows changing
the con�guration of one or several regions of the FPGA while the rest are still
working. This ability provides the ANN core described in Section 2.2 new
functionality without having to con�gure again and again the entire system.

As it was mentioned in Section 1.4.3, in this project Xilinx and Altera
products have been taken into account due to the variety and resources of their
devices. Both companies o�er support and tools to recon�gure their FPGAs.
In the case of Altera, the DPR design is performed using their Quartus II tool
[219], while in the case of Xilinx, PlanAhead tool is used [25], and the Vivado
Design Suite [260] since the 2013.3 version.

Unfortunately, DPR presents some limitations when the PlanAhead tool
provided by Xilinx is used (this manufacturer's devices are the ones �nally
used in this project), which at the moment has not enough capabilities. These
limitations have implications in the design of the HW modules that are to be

116

recon�gured and therefore, they are described in �rst place:

1. Some elements of the FPGA cannot be recon�gured individually. For
example, in the case of the DSP slices they can only be selected by pairs
(even if only an odd number of DSPs slices want to be recon�gured).
This is important because this project design contains a DSP slice per
neuron, and hence, the recon�guration of a single neuron is a�ected by
this limitation.

2. It is not possible to have 2 di�erent recon�gurable partitions in the same
column of a clock region. Hence, the partitions must be placed in dif-
ferent columns or clock regions, which it normally implies a decay in the
maximum working frequency due to the length of the connections.

3. Xilinx's tools do not allow the recon�guration of internal components of
a module. That is to say, to apply DPR in a functional module (e.g.
the neurons or the activation functions), this must be implemented as an
independent module. This implies some changes in the design, because the
modules that are to be recon�gured should be treated as separate entities
from the beginning of the design.

An example of the �rst two restrictions can be seen in Figure 3.1. The partition
in the upper side of the image occupies three DSPs (a green rectangle has 2
DSPs) but only two could be recon�gured. Also, both partitions are located in
the same columns, which means that they use the same clock region. Therefore,
the synthesis will fail due to this last error.

3.3 Recon�guring the Entire Hardware Partition

This strategy is the simplest way to apply DPR in the design because
no changes have to be done neither in the system nor in the ANN core. Also,
another advantage is that the core can be replaced by any other core that im-
plements FSL communication buses as our ANN core does. Three di�erent
possibilities are discussed: to recon�gure with another ANN topology, to recon-
�gure it with another Soft Computing core, and to change the accuracy of the
core.

3.3.1 Changing the Arti�cial Neural Network Topology

The idea here is to have stored a collection of synthesized ANN cores
(i.e. bitstreams), which model di�erent situations in AmI environments. For
example, di�erent periods of the year or di�erent users of the environment.
Each core may have not only di�erent parameters (weights, o�sets) but also
di�erent topologies (layers, number of neurons, outputs). In this scenario, the
system con�gures only the ANN-core that is required in each moment. As a
result, power consumption could be saved thanks to those periods in which small
networks would be implemented.

117

Figure 3.1: Erroneous selection of the recon�gurable regions due to the restric-
tions of the designing tool. The two regions share a column, i.e. they are placed
in the same clock region.

If a smart house is taken as example, an ANN core trained to control
the window blinds and the air conditioning could be implemented during the
daylight, while during the night time the core can be recon�gured to implement
a smaller ANN (and therefore less power demanding), which has been trained
to control only the lighting of the house (see Figure 3.2).

The above idea can be extended to other Soft Computing techniques.
Using DPR it is possible to change the HW partition to replace the ANN by
another core. For example, a multi-output Fuzzy Inference System, a Genetic
Algorithm, or any other solution that could be better suited for the actual
context (see Figure 3.3). This solution gives more �exibility to the system than
the proposals made in [257] and [259].

Recon�guration Results

To test this proposal, two ANN core examples with di�erent topologies
have been implemented in a Virtex6 XC6VLX240T-1 device and with the ICAP
controller connected to an AXI-Lite bus: a 7�32�4 ANN and a smaller 7�8�1
ANN. Table 3.1 shows the results of this test. As can be seen the number of
resources saved by changing the topology of the ANN core (i.e. by recon�guring
the core) is around a third. Also the dynamic power consumption is reduced in
the same proportion. Regarding the recon�guration time, the system requires
about 9.3× 106 clock cycles; 93 ms for a working frequency of 100 MHz.

118

Day User 2

ANN

MicroBlaze

Processor

FSM
controller

UART

Local Memory

- Error monitoring
- I/O processing
- DPR control

JTAG Full Bit
File

FSL

Hardware Partition

Software Partition

EMC

ICAP

...

FLASH

Memory

Night User 1

ANN

Night User 2

ANN

Day User 1

ANN

Day User 2

ANN

…

PLB/AXI

Figure 3.2: Block diagram of the HW/SW architecture with a recon�gurable
HW partition to implement ANN cores prepared to be used in di�erent period
of the day, or periods of the year

ANN
Registers LUTs DSPs

Dynamic power
topo- consumption
logy (mW)

7�32�4 2362 (0.9%) 3792 (2.5%) 38 (5%) 39
7�8�1 868 (0.29%) 1283 (0.85%) 11 (1.43%) 13

Table 3.1: Resource and dynamic power comparison between an ANN with 7
inputs, 32 hidden neurons and 4 outputs and an ANN with 7 inputs, 8 hidden
neurons and 1 output implemented in a Virtex 6 XC6VLX240T-1 device

3.3.2 Changing the Accuracy of the Activation Function

In Chapter 2 it was explained that the size of the ROM memories that
are needed to store the activation function values with the precision required
in the learning process (i.e. when using the core as coprocessor), can be pro-
hibitive for a given device. A solution, based on the use of the Taylor module
to implement an activation function, was also proposed in the same chapter.
However, both the size of the core and the execution time are increased, which
could be a drawback to be used in on-line mode. To overcome this problem, the
recon�guration of two di�erent ANN cores is proposed: one to be used in the
learning process and another one in the on-line stage. The most suitable cores
to be used in each stage are the following:

119

ANN Core

MicroBlaze

Processor

FSM
controller

UART

Local Memory

- Error monitoring
- I/O processing
- DPR control

JTAG Full Bit
File

PLB/AXI

FSL

Hardware Partition

Software Partition

EMC

ICAP

...

FLASH

Memory

FIS System

GA Core

ELM core

Recurrent ANN

Core

ANN Core

…

Figure 3.3: Block diagram of the HW/SW architecture with a recon�gurable
HW partition to implement di�erent Soft Computing cores

� Learning stage: During this stage, the system is recon�gured to use an
ANN core with Taylor modules, one per neuron or one per layer depending
on the availability of DSPs in the FPGA. Thus, the system is capable of
performing the learning processes using the ANN core as coprocessor,
which is much faster than performing the training only by SW.

� On-line stage core: In this stage, the system is recon�gured with a core
that uses ROM memories for the activation function. The accuracy is
lower but enough for the on-line stage and the system becomes much
faster because there is one ROM per neuron.

Recon�guration Results

Table 3.2 and Table 3.3 show the di�erences in size and velocity between
the two options for a 7�14�4 ANN example and for di�erent devices. As can
be seen, a system with a Taylor module per layer and a word length with 14 bits
in the fractional part has a processing latency of 122 clock cycles. However, the
same core but with only 8 fractional bits and one ROM activation function per
neuron, has a processing latency of 30 clock cycles (more than 4 times faster).
Also, the number of registers is about 24% lower in the case of using ROM
memories and the number of LUTs is about an 8% higher in the case of the
Virtex 6 and Kintex 7 devices. In the case of the Virtex 5 device the number
of LUTs needed is about the double, however, it only represents the 6% of the
LUTs of this FPGA.

Regarding the recon�guration time, both cores have a 178.52 kB bit-
stream, therefore, the recon�gurations requires about 77 ms at 100 MHz.

120

Device Registers LUTs DSPs Processing time

XC7K325T-2 1498 2150 20 122 Clock cycles
XC5VLX110T-1 1502 2241 20 122 Clock cycles
XC6VLX240T-1 1498 2146 20 122 Clock cycles

Table 3.2: Resources and response time of an ANN core with one 32-interval
Taylor module per layer, 7 inputs, 14 hidden neurons, 4 outputs and 14 fractional
bits

Device Registers LUTs DSPs Processing time

XC7K325T-2 1102 2206 18 30 Clock cycles
XC5VLX110T-1 1106 4740 18 30 Clock cycles
XC6VLX240T-1 1102 2206 18 30 Clock cycles

Table 3.3: Resources and response time of an ANN core with parallel ROM
activation function, 7 inputs, 14 hidden neurons, 4 outputs and 8 fractional bits

3.4 Recon�guring the Internal Modules of the
Arti�cial Neural Network

In this section, we explain how DPR can be used to change some internal
elements of the ANN. However, as it was mentioned in the introduction of the
chapter, all the modules that are going to be recon�gured have to be imple-
mented from the beginning as independent modules. In particular, the ANN
elements that can be recon�gured are the activation function modules and the
neurons of the hidden layer.

3.4.1 Changing the Activation Functions

Along this thesis, di�erent methods to train and con�gure an ANN have
been explained. On the one hand, di�erent methods to set the values of the
parameters of the neurons (i.e. the weights and the o�sets) have been described
(e.g. BP and ELM). On the other hand, a method to establish a determined
structure, changing the number of neurons in the hidden layer, has been also
presented. However, there is another element in the ANN that is susceptible
to be changed during the training process, allowing the ANN to have better
results: the activation function. As it was mentioned in Section 1.2.2, ANNs can
use di�erent activation functions; therefore, to obtain a more re�ned learning,
di�erent functions should be tested. In fact, that is what has been done in the
di�erent experiments presented in this project.

However, if di�erent activation functions want to be used when the ANN
core is used to accelerate the learning process (see Section 2.3.3), all of them
must be implemented in the core. Here is where the problem arises: the imple-
mentation of all the activation functions that want to be tested require a huge

121

number of resources of the FPGA, hence, bigger devices should be used, with a
consequent increase in power consumption, price, etc. In this section a solution
to that problem is presented by using DPR. The goal is to have implemented
only one activation function module at a time.

Two di�erent designs to perform the recon�guration of the activation
function modules have been carried out in this work. The �rst one is a design
in which for each layer an activation function module is implemented, while
in the second case only one shared module is implemented for all the di�erent
layers presented in the network. In the �rst design, the main advantage is the
ability to test all possible activation function combinations, however, its main
disadvantage is the high number of recon�gurations that must be done. For
example, in case of having n activation functions available and an ANN with
one hidden layer and the output layer, the number of recon�gurations is 2n.
However, in the second design the number of recon�gurations is much lower,
only one per function, but the main disadvantage is that the same function is
used in all the layers, so, the best possible combination might not be found.

Recon�guration Results

The proposed recon�guration strategy is tested in a Virtex 6 XC6VLX240T-
1 device, and with the ICAP controller connected to an AXI-Lite bus, using a
Taylor module per layer with a word length of 19 bits, 14 bits in the fractional
part, and 16 intervals. The partial bitstreams of the Taylor module for each
function is 22 kB long and the system requires about 928000 clock cycles to
perform the recon�guration of each module, therefore, to recon�gure the two
modules about 19 ms are needed if the system works at 100 MHz.

3.4.2 Removing and Adding the Neurons of the Hidden
Layer

In Section 1.2.3 it was explained that the ANN-based system could per-
form a structure learning to select the best hidden layer size. However, in the
case of the original ANN core described in Section 2.2, it is mandatory to im-
plement the maximum number of hidden layer neurons the algorithm can reach.
The main problem of this design is the waste of power consumption of the sys-
tem, especially, when the size of the hidden layer obtained through the structure
learning is very small compared with the maximum number of neurons available.

A solution for reducing the power consumption of the ANN core (see
Equation 1.20 in Section 1.4.2), can be adopted if we remove -using DPR- the
neurons that are not being used. Also, they can be added later if the learn-
ing algorithm -after an adaptation process- decides to increase the number of
neurons in the hidden layer.

In order to make the recon�guration of individual neurons possible, they
have to be implemented now as independent modules (see Figure 3.4). Thanks
to this implementation the partial bitstreams are as small as possible, however,
the routing of the design can be quite troublesome.

122

From

P

WR

Figure 3.4: Block diagram of the ANN core with recon�gurable hidden-layer
neurons

Although the ANN core has been designed to allow the recon�guration
of individual neurons, the PlanAhead tool limitations make preferable the re-
con�guration by pairs, in order to avoid wasting resources. Hence, the ANN
core has been slightly modi�ed. As a consequence, the system has a slight loss
of e�ciency. There is also another problem due to the design restrictions: some
FPGAs have only one DSP column per clock region (see Figure 3.5). There-
fore, in those devices each recon�gurable partition must be implemented in a
di�erent clock region, so, the recon�gurable partitions are in di�erent places of
the FPGA, which means that the routing and the timing of the design can be
seriously a�ected. This happens, for example in the Virtex 5 XC5VLX110T-
1 device; it has 64 DSPs and not all the clock regions are �tted with a DSP
column. The device has only DSPs in 8 clock regions, so; only 16 neurons could
be made recon�gurable.

In sum, each partition has its bitstream to implement one or two neurons
within it, and another bitstream to remove the partition. The size of the partial
bitstreams is 20 kB and a recon�guration time of about 10 ms is needed to
recon�gure each partition in a system with the ICAP controller connected to a
PLB bus and with a working frequency of 83 MHz.

123

Reconfigurable

modules

Hidden
Activation
Function

Module

Output

Layer

Core

Controller

(FSM)

CLK

From

P

Hidden

neuron

1

Hidden

neuron

N-1

Hidden

neuron

N

Output
Activation
Function

Module

To

P

 .
 .
 .

Neural Network Core

Figure 3.5: Internal architecture of a Virtex 5 XC5VLX110T-1. The DSPs, the
light blue rectangles, are located in only one column in the clock regions of the
left side

3.5 Power Reduction by Means of Gated Clocks

Another alternative to DPR for power reduction is available in new FPGA
families. As Equation 1.20 reveals, dynamic power depends on the working fre-
quency of the system, therefore, another way to reduce that power consumption
consists in disconnecting the clocks of the elements or modules that are not used.
The main problem when working with clock signals is that they use dedicated
low-skew networks to make sure that the di�erence between two clock signals
in di�erent parts of the FPGA have a skew of few picoseconds. However, clock
networks do not naturally allocate logic gates, therefore, the place & route tools
will place the gated clock signal in the routing network resulting in a drastic
increase on the skew of the clock [261]. The glitches in the output of the logic
gate are also another problem, because they can cause non desired transitions
in the registers.

In the last few years, the FPGA manufacturers have started introducing

124

clock enable signals in their clock networks. These tri-state bu�ers have been
specially designed to be glitch-free and they are located in the clock network,
hence, the resulting gated clock signal is routed through the low-skew path.
Xilinx has implemented in most of its FPGAs di�erent tri-state clock bu�ers
[262] to control the global clocks or the clocks within a clock region. Altera
has also its IP to control the clock signals, including an Enable/Disable signal,
called Clock Control Block [263]. According to [264] up to a 30% of dynamic
power reduction can be achieved in the new Xilinx 7 series FPGAs.

Apart from the manufacturers, there has been a series of research works
to create e�cient clock gating techniques. In [265] several techniques based
on AND and NOR gates are reviewed, however, their tests demonstrate that
the glitches are still unavoidable depending on the technique used. Also, the
clock network of the FPGA is not used, hence, they can be only applied to low
frequency designs to avoid any problem with the skew of the clocks.

3.6 Conclusions

In the present chapter di�erent applications of Dynamic Partial Recon-
�guration technology have been presented to give new functionalities to the
proposed HW/SW architecture.

A recon�guration strategy has been presented for those situations where
high accuracy ANN cores are required during the training process, but low ac-
curacies are enough for on-line operation. The solution is given by recon�guring
the core with a low-accuracy ANN core and with a high-accuracy ANN respect-
ively. The high-accuracy core requires more resources and is slower, that is why
a fast, but low-accuracy, version is recon�gured in on-line mode.

It has been explained how internal components of the ANN can be re-
con�gured individually. In particular, the ANN elements that have been re-
con�gured are the activation function modules and the neurons of the hidden
layer. By recon�guring the activation function modules, the system can select
the best activation function to obtain the lowest possible error. This is useful
when the system has an on-line adaptation mechanism that decides to change
the activation functions to better cope with the environment changes.

In addition, a methodology to recon�gure the neurons of the hidden layer
using the structure learning described in Section 2.3 is presented. Although
the proposed methodology allows recon�guring the neurons individually, the
limitations of the devices (specially the small ones) and also of the designing
tools, make very di�cult to ful�l this goal completely. Instead, the neurons have
to be recon�gured by pairs or even in larger modules, specially if the number of
neurons that must be recon�gured is too high and the workstation used in this
design is not powerful enough to handle the number of recon�gurable partitions.

As a �nal conclusion it can be said that DPR provides the ANN core with
more capabilities and functionalities without needing to implement all the cores
or modules, hence saving space, and therefore, price and power consumption.
However, it must be taken into account that the inclusion of the partial bitstream

125

storage device and the rest of elements needed to perform the recon�guration
(i.e. the ICAP controller) can, sometimes, make the power consumption higher
than the one saved or the power saving negligible. Hence, the use of the clock
enable signals of the new FPGA devices and new design techniques (e.g. the
Divide-and-Conquer Strategy presented in [27]) could be in some cases a better
solution than using DPR to decrease the dynamic power consumption, making
also the design process simpler.

126

Chapter 4

Applications of the
Hardware/Software Arti�cial
Neural Network Architecture
to Real-world Intelligent
Environments

In this chapter the applications in Intelligent Environments carried out
with the architecture presented in Chapters 2 and 3 are shown. The proposed
architecture is applied in two di�erent scenarios, an intelligent inhabited envir-
onment, the iDorm dormitory developed by the University of Essex, and a smart
car, the AmI-car (see Section 1.1.5), where AmI stands for Ambient Intelligence
applied to the car environment [36].

4.1 Development of an Embedded Agent for an
Intelligent Inhabited Environment

A major challenge in Ambient Intelligence research deals with the com-
plexity of intelligent systems for human behaviour modelling in inhabited envir-
onments. To face this problem, some researchers proposed a distributed solution
based on embedded agents [266].

In a broad sense, an intelligent agent is a computer system, SW and/or
HW-based, that is able to perform autonomous actions driven by a goal [267].
An intelligent agent for AmI environments must be capable of perceiving the
environment through sensors, take decisions and act by means of actuators (see
Section 1.1.2). It is widely accepted that autonomy, reactivity and proactivity
are the main capabilities that characterize the behaviour of intelligent agents.

127

In addition, some kind of social ability might be expected, that is to say, the
capability to interact with other agents (and even humans) in order to satisfy
their design objectives.

ANNs have been shown to play a key role in agent reactivity - the ability of
the agent to perceive an environment and respond to the changes that occur in it
according to its objectives. In [268] and [269] radial basis function networks are
used for modelling the behaviour of robotic agents. A health monitor intelligent
agent based on ANNs is proposed in [270] in which the agent is able to classify
symptom patterns into medical conditions and suggest appropriate actions in a
ubiquitous healthcare environment. Other ANN-based intelligent agents can be
found in sectors such as control systems for energy and comfort management in
buildings [271].

The above research works validates the suitability of ANNs for model-
ling agent reactivity in complex decision making processes. Furthermore, they
highlight the capability of ANN-based agents to learn from the environments
and to dynamically adapt to changing situations. Most of those agents are
software-based computer systems implemented on personal computers. These
kind of approaches is unsuitable when restrictive design speci�cations such as
high performance, reduced size, or low power consumption are required. In this
sense, present Field Programmable Gate Arrays (FPGAs) provide a suitable
technology to materialize single-chip adaptive intelligent agents based on ANNs
[48]. FPGAs provide a wide variety of resources that enable the adaptation of
the agent at di�erent levels, ranging from the physical level to the software level,
including the architectural ones (see Section 1.3).

In this section, a multilevel adaptive ANN scheme for the development
of intelligent agents is proposed. The scheme has been successfully implemen-
ted in a single-chip FPGA with DPR capability. Software learning algorithms
are applied to adapt the agent behaviour (i.e. neural network parameters) at
the system level, while DPR is used to modify the agent at the physical and
architectural level (i.e. neural network topology). As a case application, we
present the development of an intelligent agent for real-time control of an AmI
environment. The FPGA-based adaptive agent was tested with experimental
data obtained in a real inhabited AmI space - the intelligent dormitory (iDorm),
a monitored living space developed by researchers of the University of Essex,
brie�y mentioned in Section 1.1.5.

4.1.1 iDorm Intelligent Environment

The iDorm AmI space is a one-room dormitory (see Figure 4.1) at the
University of Essex, which was develop by the Intelligent Environment Group
[28], [29], [30].

Researchers collected the thousands of data from the interaction with
the environment of di�erent users during periods of several days in di�erent
seasons of the year. This is not a specially demanding application in terms of
processing speed, but in any other aspect of the requirements of an embedded
intelligent agent application (i.e. small size, low-power, multiple inputs and

128

Figure 4.1: Pictures of the iDorm dormitory at the University of Essex

Input Variable Output Actuator

In1 Internal light level Out1 Dimmable spotlight 1
In2 External light level Out2 Dimmable spotlight 2
In3 Internal ambient temperature Out3 Dimmable spotlight 3
In4 External ambient temperature Out4 Dimmable spotlight 4
In5 Pressure in chair (binary) Out5 Blind state
In6 Pressure in bed (binary) Out6 Bed light state
In7 Hour Out7 Desk light state

Out8 Heat state

Table 4.1: Description of the inputs and outputs of the iDorm environment

outputs, adaptability to a changing environment and autonomy) this is a very
suitable real-world data set for the development of this research. In fact, trying
to model and predict human activity and preferences over time, even for simple
human-environment interactions, is an extremely challenging problem.

The environment uses 7 input variables obtained from the sensors distrib-
uted around the dormitory, and 8 outputs corresponding to as many actuators.
Inputs and outputs are summarized in Table 4.1.

4.1.2 Topology and Parameters of the Intelligent Agent

The kernel of the proposed intelligent agent is a Multilayer Perceptron
Neural Network (MLP) with an adaptive topology, and learning capabilities.
Concerning the ANN topology selection, a three-layer interconnected structure,
with a variable-size hidden layer, has been devised. The size of the hidden layer
(i.e. number of hidden neurons) is a critical design parameter as it has a great
impact on the modelling capability of the neural network. It is well known that
too few hidden neurons provide poor performances, while an excess of hidden
neurons could blur the generalization capability of the network.

The topology selection is based on a growing/pruning structure algorithm,

129

while the parameter training is performed using a Backpropagation Gradient
Descent (BP) algorithm (see Section 2.3). When the topology and the para-
meters of the ANN have been obtained, the non-needed neurons can be erased
by means of DPR as it was explained in Section 3.4.2. The operation of the
agent comprises two di�erent operation modes, the o�-line stage and the on-line
stage.

Configure MLP topology

and parameters

Yes

No

Initial MLPNN topology

(1 hidden neuron)

Start

Objective error
(RMSE)

Grow hidden layer (add 1
neuron, and initialize)

Offline training by BP

Prune hidden layer (prune

less significant neurons)

I/O Data
base

Offline training by BP

Objective error
(RMSE)

No

Yes

To real-time stage

Topology identification

and parameter training

Figure 4.2: Flowchart of the of the agent operation in the o�-line mode

130

O�-line Stage

In the o�-line stage (see Figure 4.2) the growing/pruning algorithm is
used to develop an initial ANN topology. This stage starts with the de�nition
of a simple ANN topology composed of an n-neuron input layer, an m-neuron
output layer, and a hidden layer with a single neuron. This ANN is trained
using the BP algorithm with a set of input-output (I/O) training data. If the
ANN is able to model the agent behaviour in a satisfactory way - with a RMSE
less than a given value, then the ANN topology is validated; the agent behaviour
is evaluated using a validation data set instead of the training data set. After
that, the agent is able to perform real-time control of the environment. On the
contrary, if the initial topology is too simple to provide the required modelling
capability, a new neuron is added to the hidden layer, and the learning algorithm
is performed again. The initialization of the new weights and bias is done using
the Nguyen-Widrow method (see Equations 1.8 to 1.12). The hidden layer is
grown, one neuron at a time, until the desired performance is reached. Finally,
the ANN topology is optimized with the aim of con�guring the agent with
the simplest topology able to ful�l the modelling requirements. This task is
performed by means of the so-called simpli�ed brute-force pruning method [21].
It evaluates the signi�cance of each hidden neuron, comparing it to the fully
grown network, and eliminates the irrelevant ones and all their corresponding
connection weights. This topology will be used to con�gure the initial intelligent
agent.

On-line Stage

In the on-line stage (see Figure 4.3) the agent performs real-time control of
the environment. The agent behaviour in this stage is continuously monitored
to guarantee that the system performs properly. Whenever a degradation of
the modelling capability of the agent is detected, the on-line BP is activated
(adaptation at the system level). In most cases this action is enough to restore
agent performance. However, in a lifelong operation mode, a deeper adaptation
of the agent a�ecting its topology could be required. In these situations, the
growing/pruning method used to develop the initial topology is activated again
but starting from the present topology (adaptation at the architectural level).

To test the proposed methodology, the agent has been �rstly implemented
in software and its behaviour has been simulated using Matlab programming
tools. The MLP and the adaptation algorithms, (i.e. topology identi�cation and
parameter training) have been simulated as a prior step to their implementa-
tion on a FPGA. The following section presents two representative experiments
which have been selected from a more comprehensive study performed with the
same datasets, but considering di�erent modelling criteria (i.e. di�erent target
RMSE).

131

From offline
stage Topology identification

and parameter training

Satisfactory
behavior

Yes

No

Environment
sensor/actuator

Real-time operation

(with error monitoring)

Online training by BP

Satisfactory
behavior

Yes

No

Online growing/pruning of
the hidden layer

Configure MLP topology

and parameters

I/O Data

I/O Data

Figure 4.3: Flowchart of the of the agent operation in the on-line mode

4.1.3 Simulation Results

The experimental data used are two di�erent iDorm datasets, Set1 and
Set2, corresponding to the same user but di�erent environmental conditions.
The agent uses the 7 inputs mentioned in Table 4.1, however, in a �rst experi-
ment only the �rst four outputs are used, the four dimmable spotlights, while
in a second experiment all outputs are used.

The procedure followed with the datasets to evaluate the adaptive-ANN
was similar in both experiments. First, the 408 input/output samples of the
dataset Set1 were randomized. Then, each random set was split into a training
set and a validation/test set comprising 50% of the samples respectively. In
both experiments the second dataset Set2, has been used to rigorously test the
agent behaviour.

132

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Offline learning iterations

R
M

S
E

0 2000 4000 6000 8000 10000 12000 14000
0

2

4

6

8

10

Offline learning iterations

H
id

d
e

n
 n

e
u

ro
n

s

10 20 30 40 50 60 70 80 90 100 110 120
0.096

0.097

0.098

0.099

0.1

0.101

0.102

0.103

Online training iterations

R
M

S
E

Hidden neurons growth

Hidden neurons pruning

 Target error (6 neurons in the Hidden Layer)

 Target error (10 neurons in the Hidden Layer)

Figure 4.4: a) Evolution of the RMSE, and (b) the corresponding number of
hidden neurons during the o�-line stage of Experiment 1. (c) Evolution of the
RMSE during the on-line stage of Experiment 1

Experiment 1

Figures 4.4 a) and 4.4 b) show the RMSE evolution during the o�-line
learning stage, and the corresponding number of neurons in the hidden layer
respectively. First, a 7�1�4 ANN topology was trained during 5000 epochs.
However, the target error, which has been set at 0.1, was not reached. Therefore,
the ANN was grown by adding a single neuron to the hidden layer. Each new
neuron entails a 1000 iteration learning cycle. As can be seen, the growth process
�nished with a 7�10�4 topology which was able to match the target error. Then,
the pruning process reduced the hidden layer to only 6 neurons, that is to say,
the o�-line stage concluded with a 7�6�4 topology.

Figure 4.4 c) presents the evolution of the RMSE during a particular on-
line situation where the agent has to cope with data of the same user but in a

133

di�erent context (i.e. a di�erent season of the year). As can be seen, due to the
changes produced in the user habits, the objective error is slightly surpassed.
The agent, who is aware of the system behaviour, activates the on-line training
procedure. This procedure performs 100 iterations of the BP algorithm with
the aim of reducing the RMSE to an acceptable level. A few iterations were
enough to return the system to the satisfactory behaviour zone; no additional
neurons were required.

In Figure 4.5 the four outputs of the system for a 3 day period can be
seen in blue and their target values in green. It can be checked that both plots
are very similar, as a result, the system can be implemented in a real scenario
like iDorm. In this experiment, a relatively high value has been set as maximum
allowable error, however, lower errors can be achieved if the number of learning
cycles is increased. This will result in higher execution times of the o�-line
stage. If Table 4.3 is checked it can be seen that the duration of the training is
not too high, and it can be performed during downtime periods.

Experiment 2

In the second round of experiments, the whole set of inputs and outputs
were considered. Figures 4.6 a) and 4.6 b) present the results obtained during
the o�-line learning stage. The initial topology, a 7�1�8 ANN, was trained and
grown until a satisfactory behaviour of the agent was obtained. Then, the hidden
layer was pruned by removing 5 irrelevant neurons. The o�-line stage �nished
with a 7�14�8 ANN topology. Please note that the number of epochs had to
be doubled in order to cope with the complexity of the experiment (i.e. eight
outputs instead of four) without degrading the agent modelling capabilities. In
the on-line stage, the same procedure as in the previous experiment was followed.
In this case, the same changes in the user habits had greater impact on the agent
behaviour (see Figures 4.6 c) and 4.6 d)). The experiment required three new
neurons in the hidden layer. In the on-line stage, the number of iterations
remains equal to 100, as in the previous experiment, to avoid una�ordable real-
time training periods.

4.1.4 Hardware/Software Architecture of the Intelligent
Agent

To achieve the requirements of the above adaptive agent system, we pro-
pose a hardware/software solution based on FPGAs with DPR capability. The
HW/SW architecture presented in Section 2.2 has been adapted to implement
the adaptive intelligent agent. Without limiting the generality of the archi-
tecture, let us consider a seven-input agent compatible with the experiments
presented in Section 4.1.3. Figure 4.7 depicts a system-level block diagram of
the intelligent agent.

134

0 50 100 150 200 250 300 350 400 450
0

0.5

1

Number of sample

S
po

t l
ig

ht
 1

Experiment 1 results

0 50 100 150 200 250 300 350 400 450
0

0.5

1

Number of sample

S
po

t l
ig

ht
 2

0 50 100 150 200 250 300 350 400 450
0

0.5

1

Number of sample

S
po

t l
ig

ht
 3

0 50 100 150 200 250 300 350 400 450
0

0.5

1

Number of sample

S
po

t l
ig

ht
 4

Figure 4.5: Outputs of the Experiment 1 after the o�-line stage (blue) and their
target values (green) for a 3 day period between 9am and 11pm

Software Partition

The HW/SW architecture shown in Figure 4.7 is based on the block dia-
gram proposed in Figures 3.2 and 3.3. The software partition also performs
the control of the whole system and several speci�c tasks: I/O processing,
signal conditioning, system monitoring, parameter training by means of BP,
growing/pruning evaluation, and multilevel system adaptation. The software
partition has been developed on a MicroBlaze microprocessor, enhanced with a
�oating point unit (FPU) to accelerate the computation of the software mod-
ules. The architecture has been customized with several internal peripherals
(I/O peripheral, UART, user switches, and a timer), 256 KB on-chip memory,
and a FLASH memory where the partial bit �les for dynamic recon�guration
of the agent are stored. The FLASH memory is interfaced with the MicroB-
laze via the external memory controller (EMC) and the PLB bus. Finally, a
key component of the proposed Microblaze system is the Internal Con�guration
Access Port (ICAP), as it has been explained in Section 1.4.2. This peripheral
enables the FPGA to be self-recon�gured. It receives from the microprocessor

135

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Offline learning iterations

R
M

S
E

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

5

10

15

20

Offline learning iterations

H
id

d
e

n
 n

e
u

ro
n

s

0 50 100 150 200 250 300 350 400
0.096

0.098

0.1

0.102

0.104

0.106

Online training iterations

R
M

S
E

0 50 100 150 200 250 300 350 400
0

5

10

15

20

Online training iterations

H
id

d
e

n
 n

e
u

ro
n

s
Target error (18 neurons in the Hidden Layer)

Target error (17 neurons in the Hidden Layer)

Online hidden neurons growth

Hidden neurons growth

Hidden neurons pruning

Figure 4.6: (a) Evolution of the RMSE, and (b) the corresponding number of
hidden neurons during the o�-line stage of Experiment 2. (c) Evolution of the
RMSE, and (d) the corresponding number of hidden neurons during the on-line
stage of Experiment 2

136

Neural Network

MicroBlaze
Processor

FSM
controller

EMC

I/O
Peripheral

GPIO

UART

Local Memory

- I/O processing
- Error monitoring
- DPR control

ICAP

...

FLASH
Memory

...

- Learning
(SW adaptation)
- Growing/pruning
(HW adaptation)

JTAG Full Bit
File

PLB

FSL
N

N

Nm

Partial Bit File
(1 per hidden

neuron)
Ni

N

N

Nh

. . .

N

N

N

N

N

Nm

. . .

Nj

.

Hidden Layer
(Reconfigurable modules)

Figure 4.7: Block diagram of the HW/SW architecture of the adaptive intelli-
gent agent. The software partition is developed on the MicroBlaze processor,
while the recon�gurable ANN core is implemented in the hardware partition

a partial bitstream, previously loaded from FLASH memory, and recon�gures
the corresponding hardware module.

Hardware Partition

The HW partition is the ANN core designed in Section 2.2 using ROM
memories for the activation function, one per neuron, and a word length of 13
bits, with 8 bits in the fractional part. To be able to recon�gure the neurons
of the hidden layer, these ones were implemented as independent modules as it
was mentioned in Section 3.4.2.

The proposed architecture was implemented using the ml605 board which
features an FPGA of Xilinx's Virtex-6 LXT family [272]. Table 4.2 summarizes
the resources required to synthesis a 7-input 4-output agent with di�erent con-
�gurations of the hidden layer. An adaptive agent with 32 hidden neurons (i.e.
the largest Hidden Layer) uses less than 30% of the resources available in the
smallest device of this family, so more complex agents could be developed.

4.1.5 Implementation Considerations and Results

The single-chip intelligent agent is intended for real-time control of the
environment and on-line multilevel adaptation. Therefore, there are three main
time-critical processes involved in the agent operation that have to be analyzed:

137

Component LUTs Registers DSPs
36-Kbit

RAM blocks

Intelligent agent 9086 (6%) 6786 (2.25%) 41 (5.34%) 65 (15.63%)
MicroBlaze 2819 (1.87%) 2463 (0.82%) 5 (0.65%) 64 (15.39%)

32 hidden neurons 2304 (1.53%) 1568 (0.52%) 32 (4.17%) -
8 hidden neurons 576 (0.38%) 392 (0.13%) 8 (1.04%) -

Table 4.2: Resources report for the 7-input 4-output agent for a Virtex 6
XC6VLX240T-1 device

1. On-line software algorithms. This category includes the BP training algo-
rithm as well as the growing/pruning algorithm. The most time-consuming
algorithm is by far the BP training. Figure 4.8 shows time required by
a MicroBlaze to perform a single training iteration, as a function of the
neural network size, for a di�erent number of output variables.

2. Real-time hardware computation of the feed-forward ANN. The computa-
tion of the three layers of an ANN core with n inputs, L hidden neurons
and a single output is performed in n+L+5 clock cycles, where the FSL
communication delay has been included. If the ANN has more than one
output, as many cycles as additional outputs have to been added in order
to account for FSL pipelining.

3. Partial recon�guration of the ANN core. The recon�guration time depends
on the size of the partial bit-stream which in turn depends on the size of
the recon�gurable block. The size of the recon�gurable regions has been
selected in order to allow the con�guration of, at most, 8 hidden neurons
per region. The corresponding bit-stream occupies 45.089 bytes, and its
recon�guration time is 20.9 ms.

The above measures were performed with an 83.33 MHz clock (the maximum
frequency allowed in this design by the hardware ICAP). Table 4.3 summarizes
the above timing considerations for di�erent MLP topologies. As can be seen,
a 100 iteration training cycle could be performed in a few seconds (e.g. a 7�8�1
ANN requires 3.6 second, while a 7�32�4 ANN requires less than 20 seconds).
Concerning the feed-forward ANN, the ANN core requires only 0.22 µs to eval-
uate a 7-8-1 ANN and 0.57 µs to compute a 7�32�4 ANN, respectively. This
performance allows true real-time operation of the agent. On the contrary, an
embedded system based on a whole software implementation of the feed-forward
ANN would have increased the computation time more than three magnitude
orders.

138

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

Number of neurons in the Hidden Layer

T
im

e
pe

r
tr

ai
ni

ng
 it

er
at

io
n

(s
)

single output ANN
4 output ANN
8 output ANN

Figure 4.8: Time required performing a single training iteration with the Mi-
croBlaze processor as a function of the neural network size

Process 7�8�1 ANN 7�16�1 7�32�1 7�32�4

100 iterations BP (SW) 3.6 s 7.1 s 14 s 18 s
ANN (HW) 216 ns 390 ns 520 ns 570 ns
ANN (SW) 0.065 ms 0.128 ms 0.25 ms 0.32 ms

DPR (hidden neurons) 20.9 ms 20.9 ms 20.9 ms 20.9 ms

Table 4.3: Timing considerations of the agent performance

To summarize, concerning the adaptation of the topology, the recon�g-
uration time of the selected recon�guration regions is slightly greater than 20
ms, while the BP training algorithm requires several seconds to perform a 100
iteration cycle. These timing constraints can be assumed in most typical AmI
environments, where the adaptation of the agent can be performed on-line but
during downtime periods. This is true in practical intelligent environments (e.g.
smart homes, intelligent buildings, etc.), and even in more restrictive environ-
ments such as, for example, smart cars. It can be concluded that the adaptive

139

intelligent agent is suitable for the implementation of a wide variety of applica-
tions demanding high performance in real-time.

4.2 Development of a Real-time Driver Identi�-
cation Embedded System for Ambient Intel-
ligence Applied to the Car Environment

Ambient intelligence (AmI) concepts and technologies developed during
the last decade have great potential to improve in-vehicle comfort and safety,
mainly due to their non-intrusive nature. The car can be viewed as an intelli-
gent environment (i.e. smart car) and the ideas presented in previous chapters
concerning AmI can be applied to the car and its occupants with the aim of
improving driver performance and the overall tra�c safety. The main chal-
lenge consists in adapting AmI concepts to the vehicle, its occupants, and the
surrounding environment [273], [274].

Innovation in car safety over recent decades has undoubtedly contributed
to a reduction in tra�c accidents, even though the number of cars on the roads
in the developed countries continues to rise. As a consequence of continuous
technological advances, mainly in the areas of microelectronics and communi-
cations, new safety systems are being developed and incorporated into cars as
standard equipment [275], [276], [277]. However, the main source of insecurity
in a car is the driver himself, and many tra�c accidents are wholly or partly
caused by the driver. The availability of Advanced Driver Assistance Systems
(ADAS), for safety and well-being, is becoming increasingly important in order
to avoid tra�c accidents caused by fatigue, stress, or distractions, especially
since the driving population is getting older [89], [278]. The identi�cation of the
driver and his/her behaviour can be used in di�erent ways in an AmI-Car, for
example, in terms of comfort adapting the environment of the car to the needs
of the user; or in terms of safety and security, developing personalized ADAS.

The aim of this work is to model individual di�erences in driving be-
haviour of a group of drivers, and identify the driver in real-time by using the
developed models. Next the main characteristics of the data collection are in-
troduced and the selection of signals, from the whole set of driving behaviour
signals, is justi�ed.

4.2.1 Uyanik Instrumented Car

In the last decade there has been increasing research activity concerning
driving behaviour signals and their potential application in the development of
ADAS [274], [31], [32], [279]. These particular signals can be obtained in a non-
intrusive manner, without disturbing the driver, as opposed to video or audio
signals which are the basis of some current ADAS [280], [281].

The driving behaviour data collection was supplied by the �Drive-Safe
Consortium�. It was collected in Istanbul with an instrumented car called

140

Data collection and signal selection:

the instrumented car “Uyanik”

Brake and gas pedal

pressure sensor

IMU XYZ

accelerometer

CAN-bus signals

GPS receiver

Laser 180º distance

scanner

Video system Audio system

Driver and roadway

cameras Microphones

Figure 4.9: Picture of the instrumented car Uyanik and the signals captured
through the CAN-bus (in orange), video and audio recorders

Uyanik, which is a sedan car equipped with di�erent sensors [31], [32] (see Figure
4.9). The complete data set (84 male and 17 female) includes audio and video
recordings, CAN-bus signals, pedal-sensor recordings, 180° laser range �nder,
and XYZ accelerometer recordings.

The car route is around 25 km (about 40 minutes), and includes di�erent
kinds of sections: city, very busy city, highway, highway with less tra�c, a
university campus, etc. The route is the same for all drivers; however, the road
conditions di�er depending on tra�c and weather. Approximately half of the
driving sessions include driving while completing speci�c tasks with the aim of
disturbing the attention of the drivers: signboard and plate reading, di�erent
types of dialogs on mobile phones, and conversations with passengers. To avoid
additional noise sources, these driving periods were not considered.

4.2.2 Driver Identi�cation Based on Extreme Learning
Machines and Statistical Analysis

Although BP-based ANNs have been successfully applied to solve nu-
merous problems, as much for classi�cation as for regression applications, they
present some drawbacks that make them unsuitable for an increasing number of
cutting-edge applications. It is well known that the design of BP based ANNs
is a time-consuming task that depends on the skills of the designer to obtain ef-
fective solutions. The designer has to select the most suitable network topology,
optimize the parameters to avoid over-�tting, and be aware of local minima. As
a consequence, applications requiring autonomy (i.e. no human intervention)
and real-time adaptation are di�cult to manage using this approach. These
drawbacks are especially di�cult to overcome when a single-chip embedded sys-

141

tem is required. Other approaches in the literature are oriented to globally
optimize the structure and parameters together. However, they normally in-
clude trial-and-error steps or are based on iterative progress, which make them
not appropriate for the implementation of embedded systems [282], [283]. An-
other mature machine learning technique is Support Vector Machine (SVM)
[284]. SVM is free of local minimum, and is able to improve the generalization
performance of traditional ANNs for some important application domains (e.g.
machine vision, handwritten character recognition, medicine and bioinformatics
applications, among others) [285]. However, autonomy and real-time adapta-
tion are also di�cult to achieve with an SVM embedded solution because of the
strong dependency of this paradigm on its design parameters.

In Section 1.2.3 Extreme Learning Machines (ELM) were presented. This
new algorithm has demonstrated its value because it outperforms conventional
BP-ANNs and SVM in some aspects [20], [286].

The development of hardware for embedded ELM is still in an early stage.
In [287] the authors provide a training procedure for ELM that aims at reducing
the size of the network. This approach introduces a cost function that favours
sparse solutions, and the network neurons can therefore be pruned without
loss of accuracy. In that work, a Single-hidden-layer Feedforward Neural Net-
works (SLFN) is implemented using recon�gurable devices. Two technologies
are tested: FPGAs and Complex Programmable Logic Devices (CPLD). How-
ever, in both FPGA and CPLD approaches the learning stage is performed out
of the chip. In a recent work [288], an exhaustive analysis of three di�erent
computation architectures for the learning algorithm of ELM is presented. The
authors provide speed of operation, bit-length accuracy in �xed point arith-
metic, and logic resource operation based on an FPGA. The circuit has been
developed as a hardware IP (Intellectual Property) core for integration with
other digital modules.

In this section, a high-performance embedded system for ELM is presen-
ted. The proposed solution is a scalable HW/SW architecture based on the
system proposed in Chapter 2. It provides high speed, small size, low power
consumption, autonomy, and true capability for real-time adaptation (i.e. the
learning stage is performed on-chip). The developed system is able to deal
with a highly demanding multiclass classi�cation problem such as the driver
identi�cation system for smart car proposed in this application.

Signal Selection and Data Processing

The data used in this experiment are obtained from the database presen-
ted in Section 4.2.1. The data used are provided by an Inertial Measurement
Unit (IMU): yaw rate (deg/s), X-axis acceleration (g), Y-axis acceleration (g),
and Z-axis acceleration (g). These signals were obtained in a non-intrusive way
and provided useful information about the driving style of the drivers. The
selected signals were sampled at 32 Hz and a pre-processing step of the data
was performed before delivering them to the SLFN inputs. Firstly the samples
of the signals were windowed using a 64-sample Hamming window (i.e. a bell-

142

MicroBlaze

Processor

System
controller

CAN Bus

I/O
Peripheral

s

GPIO

UART

Local Memory

- I/O processing

- ELM learning

AXI

Neural Classifier

FSL EMC Cache

XCL

Timer

Max

Module
Output

Neurons

Sigmoid LUTs
Random

numbers

Figure 4.10: Block scheme of the HW/SW architecture for embedded ELM.
The synthesis of the resources in green is optional. The data cache and the
External Memory Controller (EMC) are included only if external memory is
used, while the maximum module is used to identify a single class when the
individual classi�cation rates are not required

shaped function) to avoid the e�ects of using a short sequence of samples; an
overlapping of 60 samples was used. Then, the computation of four statistical
variables of the windows was made: the standard deviation, the mean value,
the sum of absolute values, and the maximum absolute value.

4.2.3 Hardware/Software Architecture

Figure 4.10 depicts a block diagram of the proposed architecture for
FPGA-based embedded ELM implemented in a Kintex 7 XC7K325T-2 device.
Compared with Figure 4.7, this architecture does not implement any DPR re-
lated device and a CAN-bus module is included. In addition, an External
Memory Controller (EMC) to control a SDRAM, which is required for me-
dium/large size applications, and a timer for timing measures have been in-
cluded.

The SW partition is in charge of the system control, the management of
peripherals and coprocessors, and the computation of ELM learning algorithm.
In particular, in this application an ELM classi�er is used to identify drivers. It
has been developed using C programming language. The code has been written
to be independent of the platform and the operating system as much as possible.
The only hardware-dependable functions are those needed to communicate with

143

the HW partition, and the I/O send/receive functions.

Yes

No

Load random parameters
(L random neurons)

Start embedded

ELM

New ELM

training

Training
samples
from I/O

peripherals

Evaluate H as in (1.16)

(hidden-layer output)

Compute pseudo-inverse

1

H using SVD

Compute Β in (1.19)

(output weights)

ROM

random
numbers

Transfer output weights

to the HW partition

To RAM
modules in

the HW
coprocessor

(SLFN)

No Start SLFN
computation

Real-time I/O processing
and application monitoring

Yes
To/from HW
coprocessor

(SLFN)

Figure 4.11: Flow chart of the main tasks performed by the microprocessor

The basic real-time sequence of tasks, viewed from the SW partition,
is depicted in Figure 4.11. For simplicity, secondary tasks which depend on
particular applications have been omitted. Two main operation modes can
be distinguished: ELM learning, and computation of the neural network (i.e.
SLFN). The �rst mode involves the learning process (Equations 1.15 and 1.19),
and the transfer of the weights of the output layer to RAM modules in the HW
partition. Although di�erent methods can be applied to solve Equation 1.19, in
this work, Singular Value Decomposition (SVD) will be used.

144

8-input maximum
(binary tree)

MAX
I1
I2

I8

O
MAX

MAX

MAX

MAX

MAX

MAX

Figure 4.12: Scheme of an 8-input maximum circuit implemented by means of
two-input single-cycle maximum modules. The maximum is structured into a
binary tree of 3 layers. In the general case, an m-input multiplier consists of
log2m layers

Once the learning stage is completed, the SLFN computation is ready
to be activated. In this second operation mode, the microprocessor reads data
from the peripheral inputs, sends them to the HW coprocessor using the FSL
bus, and receives the SLFN output for further management according to the
application speci�cations. The latency of a SLFN with n inputs, L hidden
neurons, one activation function ROM per neuron and m outputs is

lclk = (n+ 1) + (L+ 1) +m+ 1 = n+m+ L+ 3 (4.1)

where lclk is the number of clock cycles required to perform the compu-
tation of the network, without the maximum module.

The maximum module is implemented as a tree of binary maximum cir-
cuits. The module is structured into a binary tree of log2m layers; if the number
of classes or outputs (m) is not a power of 2, then the next power of 2 is used
to evaluate the required layers. Figure 4.12 depicts a typical tree-like structure
that implements the maximum operation. Each layer will add an additional
clock cycle to Equation 4.1. In addition, the HW/SW communication interface
(i.e. FSL busses) introduces an extra delay of two clock cycles.

Finally, it is worth noting that the learning stage could be activated at
any time with the aim of adapting the system in real-time (i.e. on-line training).

4.2.4 Simulation and Experimental Results

The performance of ELM was �rstly evaluated using Matlab program-
ming tools, and the source code provided in ELM Web Portal [289].

145

0 50 100 150 200 250 300 350 400 450 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of neurons in the hidden layer (L)

A
ve

ra
ge

 te
st

in
g

ac
cu

ra
cy

Driver identification

Figure 4.13: Average testing accuracy as a function of the number of neurons
in the hidden layer (Equation 1.13) of an SLFN ELM core for AmI-driver

In this experiment, we considered groups of three drivers, and a dataset
composed of 800 patterns (i.e. windows) with 16 attributes (i.e. 4 statistical
variables of the 4 IMU measurements) plus the driver label. The procedure
followed with the dataset to evaluate the performance of ELM was similar to
that applied in the previous experiment. In addition, several experiments using
SVM with Gaussian kernel were performed in order to provide comparative
results. After a comprehensive exploration of SVM parameters, classi�cation
rates close to 90% were obtained. The evolution of the classi�cation accuracy
with the number of neurons of the hidden layer (L) using ELM is depicted
in Figure 4.13. It can be seen that 20 random neurons are enough to obtain
recognition rates that outperform the 90% obtained with SVM (e.g. L = 25,
ACC = 0.929, DEV = 0.011; L = 50, ACC = 0.951, DEV = 0.007; L = 100,
ACC = 0.963, DEV = 0.005; L = 500, ACC = 0.958, DEV = 0.008), where
ACC stands for Accuracy and DEV stands for Standard Deviation. Moreover,
more than 150 neurons in the hidden layer do not improve the performance of
the system. On the contrary, the driver identi�cation success rate decreases due
to over-�tting e�ects.

The experimental results provided by the FPGA-based embedded system
(see Table 4.4) agree with those obtained with Matlab.

146

Neurons in the Training time (s) ANN Computation Mean recog-
hidden layer (L) (MB at 100MHz) time (µs) nition rate (%)

at 100 MHz

10 1.22 0.33 68.7
25 4.16 0.48 93.0
50 12.10 0.73 95.3
100 39.44 1.20 96.8

Table 4.4: Performance of the ELM algorithm

4.2.5 Timing Considerations and Resource Utilization

The architecture of the embedded system depicted in Figure 4.10 was
sized to solve the driver identi�cation application. The system was implemented
using the XC7K325T Kintex7 device and an external memory was required.
The MicroBlaze processor was con�gured with a 4 KB data cache to improve
the processing speed of the learning algorithm. The code segment and the
uninitialized data segment were stored in internal memory, while the initialized
data section had to be stored in external SDRAM memory.

The timing performance of the HW partition is summarized in Table 4.5.
The coprocessor is able to compute the SLFN operating at frequencies over 200
MHz for the neural networks with 10, 25, 50 and 100 hidden neurons. However,
the largest network (L = 500) reports a maximum frequency of 119 MHz.

Table 4.4 summarizes the timing performance obtained with di�erent
sizes of ELM embedded systems for real-time driver identi�cation. As in the
previous experiment, the microprocessor and the coprocessor were con�gured
to operate at 100 MHz. The training stage is performed extremely fast, in the
worst case (i.e. L = 100) the training algorithm is computed in less than 40
seconds, and the SLFN core is evaluated in 1.2 µs. This performance allows
for on-line training of the neural network classi�er. The main advantage of
this result is that the proposed HW/SW architecture can be used to develop
an autonomous System on Programmable Chip (SoPC) suitable for in-vehicle
driver identi�cation. Real-time driver identi�cation could be used to develop
advanced driver assistance systems, and to improve both security and comfort
in smart cars [33].

Table 4.6 summarizes the resources required to synthesize the 16-input
3-class SLFN for the driver identi�cation system. The greater percentage of
resource usage corresponds to the DSP embedded cores. Moreover, although
the number of logic elements used to implement the RAM and ROM memories
is high, the system can be implemented in a low range FPGA. Even in the
worst case scenario (see Table 4.6), the coprocessor only needs 59.9% DPSs,
7.4% registers, and 41.1 % LUTs.

In [33] a driver classi�cation system is performed with a Multilayer Per-
ceptron Neural Network with two hidden layers and training the system using
BP. If its results are compared with Table 4.4, even with only 25 neurons in the

147

Neurons in the Achieved Computation time
hidden layer (L) frequency (MHz) (µs)

10 221 0.15
25 220 0.22
50 219 0.33
100 213 0.58
500 119 4.39

Table 4.5: Timing performance of the SLFN coprocessor. Device: Kintex 7
XC7K325T-2

Neurons in the
Registers LUTs DSPs

hidden layer (L)

10 932 (<1%) 1191 (<1%) 13 (1.5%)
25 1914 (<1%) 2102 (1%) 18 (3.3%)
50 3545 (<1%) 3948 (1.9%) 53 (6.3%)
100 6039 (1.5%) 7053 (3.5%) 103 (12.3%)
500 30027 (7.4%) 83719 (41.1%) 503 (59.9%)

Table 4.6: Hardware resources of the ANN coprocessor. Device: Kintex 7
XC7K325T-2

hidden layer, ELM outperforms the MLP classi�er. In terms of HW resources
and computation time ELM is also a better solution than a MLP based ANN.

4.3 Conclusions

In this chapter two real-world Arti�cial Neural Network-based applica-
tions for AmI environments have been shown.

First a multilevel adaptive Arti�cial Neural Network scheme for the de-
velopment of intelligent agents is proposed. The scheme has been successfully
implemented in a single-chip FPGA with DPR capability. Software learning
algorithms are applied to adapt the agent behaviour (i.e. neural network pa-
rameters) at the system level, while DPR is used to modify the agent at the
physical and architectural level (i.e. Neural Network topology).

The adaptive agent is able to behave in an optimum way for a given be-
haviour performance (i.e. maximum allowed error). This is achieved due to the
BP learning algorithm and a growing/pruning algorithm applied to the system
architecture. Those algorithms also allow the agent to adapt to the changes of
the behaviour of the environment user, not only adapting the parameters of the
net but also adapting the architecture of the net itself if it is needed. To perform
the modelling, the system needs a few seconds to compute 100 learning cycles,
which is why the learning/adaptation should be done in downtime periods.

Another important point is the use of DPR. Using this technology only the

148

needed neurons of the hidden layer are implemented in the hardware partition
of the system, so, a decrease in power consumption is also achieved. In the
case of the time needed to recon�gure hidden layer neurons in the worst case
scenario, the recon�guration of all 32 neurons lasts 83.6 ms. This is su�cient
for iDorm where the operation time -de�ned by the user-machine interaction-
is a matter of seconds.

The second application proposed is a driver identi�er based on the use
of Extreme Leaning Machines and statistical values of an Inertial Measure-
ment Unit implemented in FPGAs. ELM improves traditional Backpropagation
Gradient Descent learning algorithm, and is free of local minimum. In addition,
its performance depends on a single design parameter, the size of the hidden
layer. Therefore, autonomy and real-time adaptation are easier to achieve with
ELM than using other well-known machine learning techniques. This work con-
tributes to the development of ADAS with a driver-centred perspective which
aims at improving the driver's awareness and driving performance in a person-
alized way.

In future works we are going to improve the identi�cation performance
of the ELM classi�er by adding new driving behavioural signals. In addition,
the performance of the FPGA-based system will be improved in order to enable
on-line training. This new capability of the system would allow the adaptation
of the reference driving style models in the long term. Also the capabilities of
the embedded system to perform both ELM classi�cation and ELM regression
application will be enhanced. The main computational e�ort to implement ELM
is the SVD algorithm used to obtain the generalized inverse matrix. In this work,
SVD is developed in the software partition and, as a consequence, a large amount
of internal memory is required. With the aim of reducing the computational
e�ort of the MicroBlaze processor, and accelerating even more the learning stage
of ELM, an SVD hardware coprocessor will be developed. In addition, the use of
feature extraction techniques, based on Principal Component Analysis (PCA),
will be investigated in order to reduce the dimensionality of the training data.

149

150

Chapter 5

Final Conclusions and Future
Work

5.1 Conclusions

In this project a solution to the problem of the design of embedded sys-
tems for Ambient Intelligence environments has been proposed. Those systems
must be small-size, low-cost and low-power electronic devices with also high
processing speed to execute the algorithms needed to provide intelligence to
the environment. In the present thesis a system implementing a hybrid hard-
ware/software (HW/SW) architecture is presented to achieve these speci�ca-
tions. In the following paragraphs the main conclusions and the major contri-
butions of this thesis are presented.

To tackle the above objective, a HW/SWArti�cial Neural Network (ANN),
based on a Field Programmable Gate Array for Ambient Intelligence environ-
ments has been developed. Both hardware and software partitions have been
implemented in the same device, as a result no other external devices are needed.
Hence, the implementation is done on a System on Programmable Chip.

The Arti�cial Neural Network core (HW partition) has been designed
using standard VHDL language, therefore, the core is independent of the device
in which is implemented. Another advantage is its scalability: that is to say, the
code is designed to adapt easily to changes in the number of inputs, hidden layer
neurons, outputs or word-length. The main advantage of the HW ANN core is
the high degree of parallelism, which increases its computational performance.

Di�erent types of learning algorithms have been implemented (SW par-
tition), thus, the system is able to learn during the o�-line stage and adapt
to changes during the on-line stage. On the one hand, parameter learning al-
gorithms (i.e. Backpropagation and Extreme Learning Machines) have been
implemented. On the other hand, a structure learning algorithm has been also
designed (i.e. growing/pruning), to select the best hidden layer size. All these
algorithms have been implemented using standard C programming language in-

151

dependent of the platform as much as possible. The SW implementation of the
Backpropagation (BP) algorithm cannot be as fast it is desired depending on
the network architecture and the number of learning cycles. Hence, to speed
up the algorithm, the ANN core has been modi�ed so it can be used also as
hardware accelerator of BP algorithm, achieving accelerations up to a 61.83%.

In some cases, the accuracy required by the learning algorithm is very high
and, in consequence, the memories to store the activation functions need to also
be very large. To overcome this problem, a new method to obtain the activation
function has been proposed based on Taylor's theorem and the Lagrange form
of the remainder. This method allows obtaining activation functions with high
accuracies using fewer resources than the memory-based methods.

The use of Dynamic Partial Recon�guration technology has been studied
with the objective of achieving a reduction of size and/or power consumption.
Concerning size reduction, DPR allows implementing only the modules needed
in each moment, and thus, avoiding the implementation of all the cores or
internal modules required by the system. As a result, smaller devices can be
selected for the system implementation. On the other hand, regarding power
reduction, the results show that DPR provides small bene�t, especially in last
generation FPGAs (i.e. Xilinx's Family 7 devices) available in the market.
Instead, the reduction of power in these last devices can be obtained by means
of new design techniques and resources (e.g. the use of clock enable signals).

To demonstrate the suitability of the system for AmI environments two
real-world applications have been developed. The �rst application is an adap-
tive agent for real-time control of an inhabited Intelligent Environment. This
agent is capable of modelling the activity of the user of the environment not only
selecting the best parameters of the ANN using BP algorithm but also selecting
the best size of the hidden layer, using a growing/pruning algorithm. It is also
able to dynamically adapt to changing situations if needed during the on-line
stage. The second application developed is the implementation of a driver iden-
ti�er based on the use of Extreme Leaning Machines. This system contributes to
the development of a driver-centred Advanced Driver Assistance System, which
is becoming increasingly important in the automotive industry, as a way to de-
crease the number of accidents caused by fatigue, stress, or distractions. The
system is designed to use the signals provided by the car, therefore, no extra
equipment has to be included in the vehicles, in contrast with other proposed
solutions that require the use of cameras or techniques intrusive to the driver.

Finally, during the realization of these thesis, contacts have been estab-
lished with di�erent entities both national, the Automotive Intelligence Center,
and international, the University of Coventry in the United Kingdom and the
Drive-Safe Consortium in Istanbul, Turkey.

5.2 Future Work

This project has opened new research topics that will be developed in the
future. Firstly the topics related to Ambient Intelligence are mentioned followed

152

by the ones related to the FPGA technology:

1. Emotion sensing and a�ective computing is gaining more importance in
Ambient Intelligence [2]. Further research in this area should be done to
study its implementation in both inhabited environments and AmI-cars.

2. The powerful capabilities of Extreme Learning Machines for multiclass
classi�cation problems have been veri�ed; in future research its regression
properties in AmI environments will be also investigated.

3. The project has focused on Multilayer Perceptron Neural Networks. It
should be studied if the ANN core can be redesigned to implement other
ANNs such as recurrent neural networks.

4. A large part of the learning algorithms is still performed in SW. In the
future, the impact in term of processing speed of performing the learning
process in a HW coprocessor will be studied.

5. Up to now only DPR has been taken into consideration to reduce the power
consumption. In future work, the use of the new clock enable signals of
the last generation FPGAs will be studied as a power reduction technique.

6. During the last part of this project, Programmable Logic Devices including
ARM processing units (e.g. Xilinx's Zynq-7000 and Altera's SoC family)
have been gaining popularity. Hence, a migration of the communication
bus from Fast Simplex Link (Xilinx's Intellectual Property) to AXI-Stream
(part of the ARM's AMBA open-standard) will give the opportunity of
using the ANN core in those devices.

7. Finally, in recent years new generations of FPGAs have appeared in the
market. It is important to keep updated about the new capabilities of
these FPGAs, such as the clock enable signals, and the new designing
tools developed by the manufacturers and their new features.

5.3 Publications

Journals

del Campo, I.; Finker, R.; Echanobe, J.; Basterretxea, K., "Con-
trolled accuracy approximation of sigmoid function for e�cient FPGA-
based implementation of arti�cial neurons," Electronics Letters, vol.49,
no.25, pp.1598,1600, December 5 2013

Congresses

Echanobe, J.; del Campo, I.; Finker, R.; Basterretxea, K., "Dy-
namic Partial Recon�guration in Embedded Systems for Intelligent

153

Environments," 2012 8th International Conference on Intelligent En-
vironments (IE), vol., no., pp.109,113, 26-29, Guanajuato, Mexico,
June 2012

del Campo, I.; Echanobe, J.; Finker, R.; Doctor, F.; Basterretxea,
K.; Martinez, M. V.; Tarela, J., �Using Ambient-Intelligence Tech-
niques for Reducing Tra�c Accidents Caused By Driver Error�, Con-
greso internacional de Seguridad Vial, Santander, Spain. pp. 67 ,
2013.

Finker, R.; del Campo, I.; Echanobe, J.; Doctor, F., "Multilevel
adaptive neural network architecture for implementing single-chip
intelligent agents on FPGAs," The 2013 International Joint Confer-
ence on Neural Networks (IJCNN), vol., no., pp.1,9, 4-9, Dallas, TX,
USA, Aug. 2013

del Campo, I.; Finker, R.; Martinez, M.V.; Echanobe, J.; Doctor, F.,
"A real-time driver identi�cation system based on arti�cial neural
networks and cepstral analysis," 2014 International Joint Conference
on Neural Networks (IJCNN), vol., no., pp.1848,1855, 6-11, Beijing,
People's Republic of China, July 2014

Martinez-Corral, U.; Basterretxea, K.; Finker, R., "Scalable parallel
architecture for singular value decomposition of large matrices," 2014
24th International Conference on Field Programmable Logic and
Applications (FPL), vol., no., pp.1,4, 2-4, Munich, Germany, Sept.
2014

Finker, R.; del Campo, I.; Echanobe, J.; Martinez, V., "An in-
telligent embedded system for real-time adaptive extreme learning
machine," 2014 IEEE Symposium on Intelligent Embedded Systems
(IES), vol., no., pp.61,69, 9-12, Orlando, FL, USA, Dec. 2014

Echanobe, J.; Finker, R.; del Campo, I., �A Divide-and-Conquer
Strategy for FPGA Implementations of Large Neural Network-based
Classi�ers� The 2015 International Joint Conference on Neural Net-
works (IJCNN), Killarney, Ireland, Jul. 2015, Accepted

154

Bibliography

[1] J. C. Augusto, �Ambient intelligence: the con�uence of ubiquit-
ous/pervasive computing and arti�cial intelligence,� in Intelligent
Computing Everywhere (A. J. Schuster, ed.), pp. 213�234, Lon-
don: Springer, 2007. http://link.springer.com/chapter/10.1007%

2F978-1-84628-943-9_11.

[2] F. Doctor, R. Iqbal, and V. Zamudio, �Introduction to the them-
atic issue on a�ect aware ubiquitious computing,� Journal of
Ambient Intelligence and Smart Environments, vol. 7, pp. 3�
4, January 2015. http://content.iospress.com/articles/

journal-of-ambient-intelligence-and-smart-environments/

ais295.

[3] G. M. Youngblood, D. J. Cook, and L. B. Holder, �Managing adapt-
ive versatile environments,� Pervasive and Mobile Computing, vol. 1,
no. 4, pp. 373 � 403, 2005. http://www.sciencedirect.com/science/

article/pii/S1574119205000465.

[4] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen,
�The gator tech smart house: a programmable pervasive space,� Com-
puter, vol. 38, pp. 50�60, March 2005. http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=1413118&tag=1.

[5] University of Essex, iSpace webpage, Accesed 2014. http://cswww.essex.
ac.uk/iieg/idorm2/index.htm.

[6] M. E. Pollack, �Intelligent technology for an aging population: The use
of ai to assist elders with cognitive impairment,� AI Magazine, pp. 9�
24, 2005. http://www.aaai.org/ojs/index.php/aimagazine/article/
viewArticle/1810.

[7] M. Saito, �Expanding welfare concept and assistive technology,�
in Proceedings of the IEEK Annual Fall Conference, pp. 156�161,
2000. http://web.cecs.pdx.edu/~mperkows/Rehabilitation_Robots/
Saito-paper.pdf.

155

http://link.springer.com/chapter/10.1007%2F978-1-84628-943-9_11
http://link.springer.com/chapter/10.1007%2F978-1-84628-943-9_11
http://content.iospress.com/articles/journal-of-ambient-intelligence-and-smart-environments/ais295
http://content.iospress.com/articles/journal-of-ambient-intelligence-and-smart-environments/ais295
http://content.iospress.com/articles/journal-of-ambient-intelligence-and-smart-environments/ais295
http://www.sciencedirect.com/science/article/pii/S1574119205000465
http://www.sciencedirect.com/science/article/pii/S1574119205000465
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1413118&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1413118&tag=1
http://cswww.essex.ac.uk/iieg/idorm2/index.htm
http://cswww.essex.ac.uk/iieg/idorm2/index.htm
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1810
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1810
http://web.cecs.pdx.edu/~mperkows/Rehabilitation_Robots/Saito-paper.pdf
http://web.cecs.pdx.edu/~mperkows/Rehabilitation_Robots/Saito-paper.pdf

[8] M. D. Rodríguez, J. Favela, A. Preciado, and A. Vizcaíno, �Agent-based
ambient intelligence for healthcare,� AI Commun., vol. 18, pp. 201�216,
Aug. 2005. http://dl.acm.org/citation.cfm?id=1218875.1218880.

[9] New Energy and Industrial Technology Development Organization, NEDO
Webpage, Accessed 2014. http://www.nedo.go.jp/english/index.

html.

[10] Daimler, Attention Assist, Accessed 2014. Mercedes Attention Assist Web.

[11] Ford Motor Company, Driver Alert, Accessed 2014.
http://technology.fordmedia.eu/documents/newsletter/

FordTechnologyNewsletter082010.pdf.

[12] VolksWagen, Fatigue Detection, Accessed 2014. http:

//www.volkswagen.com.au/en/technology_and_service/

technical-glossary/fatigue-detection.html.

[13] Volvo Cars, Volvo Driver Alert Control, Accessed 2014.
http://www.volvocars.com/uk/top/my_volvo/videos/pages/

volvo-driveralertcontrol.aspx.

[14] Ford Motor Company, Ford Develops Heart Rate Monitoring Seat;
Adds New Element to Health and Wellness Research, Accessed 2014.
http://corporate.ford.com/news-center/press-releases-detail/

pr-ford-develops-heart-rate-34664.

[15] The Independent, Ford unveils a car seat which detects when a driver is
having heart attack, Accessed 2014. http://www.independent.co.uk.

[16] L. A. Zadeh, �Fuzzy logic, neural networks, and soft comput-
ing,� Commun. ACM, vol. 37, pp. 77�84, Mar. 1994. http:

//www.cs.berkeley.edu/~zadeh/papers/Fuzzy%20Logic,%20Neural%

20Networks,%20and%20Soft%20Computing-1994.pdf.

[17] W. S. McCulloch and W. Pitts, �A logical calculus of the ideas im-
manent in nervous activity,� Bulletin of mathematical biology, vol. 52,
no. 1, pp. 99�115, 1990. http://link.springer.com/article/10.1007%
2FBF02478259.

[18] D. B. Parker, �Learning logic,� invention report. s81-64, File O�ce of
Technology Licensing, Stanford University, Oct. 1982.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, �Parallel distrib-
uted processing: explorations in the microstructure of cognition, vol. 1,�
ch. Learning internal representations by error propagation, pp. 318�362,
Cambridge, MA, USA: MIT Press, 1986. http://mitpress.mit.edu/

books/parallel-distributed-processing.

156

http://dl.acm.org/citation.cfm?id=1218875.1218880
http://www.nedo.go.jp/english/index.html
http://www.nedo.go.jp/english/index.html
http://media.daimler.com/dcmedia/0-921-658892-1-1147698-1-0-0-1147922-0-1-11702-0-0-1-0-0-0-0-0.html?TS=1266506682902
http://technology.fordmedia.eu/documents/newsletter/FordTechnologyNewsletter082010.pdf
http://technology.fordmedia.eu/documents/newsletter/FordTechnologyNewsletter082010.pdf
http://www.volkswagen.com.au/en/technology_and_service/technical-glossary/fatigue-detection.html
http://www.volkswagen.com.au/en/technology_and_service/technical-glossary/fatigue-detection.html
http://www.volkswagen.com.au/en/technology_and_service/technical-glossary/fatigue-detection.html
http://www.volvocars.com/uk/top/my_volvo/videos/pages/volvo-driveralertcontrol.aspx
http://www.volvocars.com/uk/top/my_volvo/videos/pages/volvo-driveralertcontrol.aspx
http://corporate.ford.com/news-center/press-releases-detail/pr-ford-develops-heart-rate-34664
http://corporate.ford.com/news-center/press-releases-detail/pr-ford-develops-heart-rate-34664
http://www.independent.co.uk/news/uk/home-news/ford-unveils-a-car-seat-which-detects-when-a-driver-is-having-heart-attack-9807042.html
http://www.cs.berkeley.edu/~zadeh/papers/Fuzzy%20Logic,%20Neural%20Networks,%20and%20Soft%20Computing-1994.pdf
http://www.cs.berkeley.edu/~zadeh/papers/Fuzzy%20Logic,%20Neural%20Networks,%20and%20Soft%20Computing-1994.pdf
http://www.cs.berkeley.edu/~zadeh/papers/Fuzzy%20Logic,%20Neural%20Networks,%20and%20Soft%20Computing-1994.pdf
http://link.springer.com/article/10.1007%2FBF02478259
http://link.springer.com/article/10.1007%2FBF02478259
http://mitpress.mit.edu/books/parallel-distributed-processing
http://mitpress.mit.edu/books/parallel-distributed-processing

[20] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, �Extreme learning machine:
Theory and applications,� Neurocomputing, vol. 70, no. 1-3, pp. 489
� 501, 2006. http://www.sciencedirect.com/science/article/pii/

S0925231206000385.

[21] M. Bortman and M. Aladjem, �A Growing and Pruning Method for Ra-
dial Basis Function Networks,� IEEE Transactions on Neural Networks,
vol. 20, pp. 1039�1045, June 2009. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=4926121.

[22] Altera, Nios II Processor Reference Handbook, ver 11.0 ed., May 2011.
www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf.

[23] Xilinx, MicroBlaze Processor Reference Guide, v8.50b ed., June
2013. http://www.xilinx.com/support/documentation/sw_manuals/

xilinx14_6/mb_ref_guide.pdf.

[24] I. del Campo, R. Finker, J. Echanobe, and K. Basterretxea, �Con-
trolled accuracy approximation of sigmoid function for e�cient FPGA-
based implementation of arti�cial neurons,� Electronics Letters, vol. 49,
pp. 1598�1600, December 2013. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=6678448.

[25] Xilinx, PlanAhead Design and Analysis Tool, Accessed 2014. http://

www.xilinx.com/tools/planahead.htm.

[26] R. Finker, I. del Campo, J. Echanobe, and F. Doctor, �Multilevel ad-
aptive neural network architecture for implementing single-chip intelli-
gent agents on FPGAs,� in International Joint Conference on Neural
Networks (IJCNN), (Dallas, TX, USA), pp. 1�9, Aug 2013. http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6706760.

[27] J. Echanobe, R. Finker, and I. del Campo, �A Divide-and-Conquer
Strategy for FPGA Implementations of Large Neural Network-based Clas-
si�ers,� in International Joint Conference on Neural Networks (IJCNN),
(Killarney, Ireland), July 2015. Accepted.

[28] F. Doctor, H. Hagras, and V. Callaghan, �A fuzzy embedded agent-based
approach for realizing ambient intelligence in intelligent inhabited envir-
onments,� IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, vol. 35, pp. 55 � 65, jan. 2005. http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1369345&tag=1.

[29] F. Doctor, H. Hagras, and V. Callaghan, �A type-2 fuzzy embedded agent
to realise ambient intelligence in ubiquitous computing environments,�
Information Sciences, vol. 171, no. 4, pp. 309 � 334, 2005. http://www.

sciencedirect.com/science/article/pii/S0020025504003123.

157

http://www.sciencedirect.com/science/article/pii/S0925231206000385
http://www.sciencedirect.com/science/article/pii/S0925231206000385
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4926121
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4926121
www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/mb_ref_guide.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6678448
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6678448
http://www.xilinx.com/tools/planahead.htm
http://www.xilinx.com/tools/planahead.htm
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6706760
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6706760
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1369345&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1369345&tag=1
http://www.sciencedirect.com/science/article/pii/S0020025504003123
http://www.sciencedirect.com/science/article/pii/S0020025504003123

[30] H. Hagras, F. Doctor, V. Callaghan, and A. Lopez, �An incremental ad-
aptive life long learning approach for type-2 fuzzy embedded agents in
ambient intelligent environments,� IEEE Transactions on Fuzzy Systems,
vol. 15, pp. 41�55, Feb 2007. http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=4088986.

[31] C. Miyajima, T. Kusakawa, T. Nishino, N. Kitaoka, K. Itou, and
K. Takeda, �On-going data collection of driving behavior signals,� in In-
Vehicle Corpus and Signal Processing for Driver Behavior (K. Takeda,
H. Erdogan, J. Hansen, and H. Abut, eds.), pp. 45�54, Springer US, 2009.
http://dx.doi.org/10.1007/978-0-387-79582-9_4.

[32] P. Angkititrakul, J. Hansen, S. Choi, T. Creek, J. Hayes, J. Kim, D. Kwak,
L. Noecker, and A. Phan, �Utdrive: The smart vehicle project,� in In-
Vehicle Corpus and Signal Processing for Driver Behavior (K. Takeda,
H. Erdogan, J. Hansen, and H. Abut, eds.), pp. 55�67, Springer US, 2009.
http://dx.doi.org/10.1007/978-0-387-79582-9_5.

[33] I. del Campo, R. Finker, M. Martinez, J. Echanobe, and F. Doctor, �A
real-time driver identi�cation system based on arti�cial neural networks
and cepstral analysis,� in International Joint Conference on Neural Net-
works (IJCNN), (Beijing, People's Republic of China), pp. 1848�1855,
July 2014. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=6889772.

[34] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.-C. Burgel-
man, �Scenarios for Ambient Intelligence in 2010, Final Report,� tech.
rep., European Commission IST Advisory Group, Feb 2001. ftp://ftp.
cordis.lu/pub/ist/docs/istagscenarios2010.pdf.

[35] �Ambient Intelligence: From Vision to Reality,� tech. rep., European Com-
mission IST Advisory Group, 2003. ftp://ftp.cordis.europa.eu/pub/
ist/docs/istag-ist2003_consolidated_report.pdf.

[36] F. Sadri, �Ambient Intelligence: A Survey,� ACM Computing Surveys
(CSUR), vol. 43, p. 36, October 2011. http://doi.acm.org/10.1145/

1978802.1978815.

[37] M. Friedewald, O. Da Costa, et al., �Science and technology roadmap-
ping: Ambient intelligence in everyday life (ami@ life),� Karls-
ruhe: Fraunhofer-Institut für System-und Innovationsforschung (FhG-
ISI), June 2003. http://foresight.jrc.ec.europa.eu/documents/

SandT_roadmapping.pdf.

[38] G. Acampora and V. Loia, �A proposal of ubiquitous fuzzy computing
for ambient intelligence,� Information Sciences, vol. 178, no. 3, pp. 631
� 646, 2008. http://www.sciencedirect.com/science/article/pii/

S002002550700401X.

158

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4088986
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4088986
http://dx.doi.org/10.1007/978-0-387-79582-9_4
http://dx.doi.org/10.1007/978-0-387-79582-9_5
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6889772
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6889772
ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf
ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/istag-ist2003_consolidated_report.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/istag-ist2003_consolidated_report.pdf
http://doi.acm.org/10.1145/1978802.1978815
http://doi.acm.org/10.1145/1978802.1978815
http://foresight.jrc.ec.europa.eu/documents/SandT_roadmapping.pdf
http://foresight.jrc.ec.europa.eu/documents/SandT_roadmapping.pdf
http://www.sciencedirect.com/science/article/pii/S002002550700401X
http://www.sciencedirect.com/science/article/pii/S002002550700401X

[39] S. D. Glaser and A. Tolman, �Sense of sensing: from data to informed
decisions for the built environment,� Journal of infrastructure systems,
vol. 14, no. 1, pp. 4�14, 2008. http://ascelibrary.org/doi/abs/10.

1061/%28ASCE%291076-0342%282008%2914%3A1%284%29.

[40] L. Benini, E. Farella, and C. Guiducci, �Wireless sensor networks: En-
abling technology for ambient intelligence,� Microelectronics Journal,
vol. 37, no. 12, pp. 1639 � 1649, 2006. http://www.sciencedirect.

com/science/article/pii/S0026269206001728.

[41] J. Augusto and P. McCullaugh, �Ambient Intelligence: Concepts and Ap-
plications,� Computer Science and Information Systems (ComSis), vol. 4,
pp. 1�28, 2007. http://www.doiserbia.nb.rs/img/doi/1820-0214/

2007/1820-02140701001A.pdf.

[42] Witura. http://www.witura.com/wifi-smart-home-management-system.
html.

[43] Maxin Integrated, iButtons. http://www.maximintegrated.com/en/

products/comms/ibutton.html.

[44] ZigBee Alliance, ZigBee speci�cation, 2006. http://www.zigbee.org/

Specifications.aspx.

[45] Bluetooth Special Interest Group webpage, 2014. https://www.

bluetooth.org/.

[46] Wi-Fi Alliance. http://www.wi-fi.org/.

[47] Greenvity Communications, Home Gateways, 2014. http://greenvity.
com/home-gateways.htm Accesed 2014.

[48] I. del Campo, K. Basterretxea, J. Echanobe, G. Bosque, and F. Doc-
tor, �A system-on-chip development of a neuro-fuzzy embedded agent for
ambient-intelligence environments,� IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. PP, no. 99, pp. 1 �12, 2011.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6046142.

[49] N. Sridevi and P. Subashini, �Combining Zernike moments with Re-
gional features for classi�cation of handwritten ancient Tamil scripts
using Extreme Learning Machine,� in International Conference on
Emerging Trends in Computing, Communication and Nanotechno-
logy (ICE-CCN), (Amsterdam, Netherlands), pp. 158�162, March
2013. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=652848.

[50] F. Amigoni, N. Gatti, C. Pinciroli, and M. Roveri, �What planner for am-
bient intelligence applications?,� Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, vol. 35, pp. 7�21, Jan 2005.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1369341.

159

http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0342%282008%2914%3A1%284%29
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0342%282008%2914%3A1%284%29
http://www.sciencedirect.com/science/article/pii/S0026269206001728
http://www.sciencedirect.com/science/article/pii/S0026269206001728
http://www.doiserbia.nb.rs/img/doi/1820-0214/2007/1820-02140701001A.pdf
http://www.doiserbia.nb.rs/img/doi/1820-0214/2007/1820-02140701001A.pdf
http://www.witura.com/wifi-smart-home-management-system.html
http://www.witura.com/wifi-smart-home-management-system.html
http://www.maximintegrated.com/en/products/comms/ibutton.html
http://www.maximintegrated.com/en/products/comms/ibutton.html
http://www.zigbee.org/Specifications.aspx
http://www.zigbee.org/Specifications.aspx
https://www.bluetooth.org/
https://www.bluetooth.org/
http://www.wi-fi.org/
http://greenvity.com/home-gateways.htm
http://greenvity.com/home-gateways.htm
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6046142
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=652848
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=652848
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1369341

[51] V. Zamudio and V. Callaghan, �Facilitating the ambient intelligent vis-
ion: A theorem, representation and solution for instability in rule-based
multi-agent systems,� International Transactions on Systems Science and
Applications, vol. 4, no. 1, 2008. http://cswww.essex.ac.uk/staff/

vic/papers/2008_TSSA08%28FacilitatingTheAmbient%29.pdf.

[52] V. Zamudio and V. Callaghan, �Unwanted periodic behaviour in per-
vasive computing environments,� in ACS/IEEE International Con-
ference on Pervasive Services, (Lyon, France), pp. 273�276, June
2006. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=1652240.

[53] E. Amaro, J. Lopez, V. Zamudio, R. Baltazar, M. Casillas, and
V. Callaghan, �Innovative locking in ami: E�ciently removing instabil-
ities in multi-agent systems,� in Intelligent Environments (IE), 2011 7th
International Conference on, (Nottingham, United Kingdom), pp. 135�
141, July 2011. http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=6063377.

[54] Fagor S. Coop., Maior-Vocce, Interfaz de Voz para Maior-Domo®,
2008. http://www2.fagor.com/domotica/pub/cast/catalogo/maior_

vocce.pdf.

[55] Fagor S. Coop., Maior-Domo® PRO, Accessed 2014. www2.fagor.com/

domotica/_bin/cast/maiordomo.php.

[56] S. Ge, Y. Yang, and T. Lee, �Hand gesture recognition and tracking based
on distributed locally linear embedding,� Image and Vision Computing,
vol. 26, no. 12, pp. 1607 � 1620, 2008. http://www.sciencedirect.com/
science/article/pii/S0262885608000693.

[57] M. Pantic, �Face for ambient interface,� in Ambient intelligence in every-
day life (J. Abascal and Y. Cai, eds.), vol. 3864 of Laecture Notes on com-
puter Science, pp. 32�66, Springer-Verlag Berlin Heidelberg: Springer,
2006 ed., December 2006. http://www.springer.com/computer/ai/

book/978-3-540-37785-6.

[58] E. Leon, G. Clarke, V. Callaghan, and F. Sepulveda, �A user-independent
real-time emotion recognition system for software agents in domestic en-
vironments,� Engineering Applications of Arti�cial Intelligence, vol. 20,
no. 3, pp. 337 � 345, 2007. http://www.sciencedirect.com/science/

article/pii/S0952197606001011.

[59] A. R. Aguiñaga, M. L. Ramírez, A. A. Garza, R. Baltazar, and V. Zamu-
dio, �Emotion analysis through physiological measurements.,� in Intel-
ligent Environments (Workshops) (J. A. Botía and D. Charitos, eds.),
vol. 17 of Ambient Intelligence and Smart Environments, pp. 97�106, IOS
Press, 2013. http://ebooks.iospress.nl/publication/33851.

160

http://cswww.essex.ac.uk/staff/vic/papers/2008_TSSA08%28FacilitatingTheAmbient%29.pdf
http://cswww.essex.ac.uk/staff/vic/papers/2008_TSSA08%28FacilitatingTheAmbient%29.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1652240
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1652240
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6063377
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6063377
http://www2.fagor.com/domotica/pub/cast/catalogo/maior_vocce.pdf
http://www2.fagor.com/domotica/pub/cast/catalogo/maior_vocce.pdf
www2.fagor.com/domotica/_bin/cast/maiordomo.php
www2.fagor.com/domotica/_bin/cast/maiordomo.php
http://www.sciencedirect.com/science/article/pii/S0262885608000693
http://www.sciencedirect.com/science/article/pii/S0262885608000693
http://www.springer.com/computer/ai/book/978-3-540-37785-6
http://www.springer.com/computer/ai/book/978-3-540-37785-6
http://www.sciencedirect.com/science/article/pii/S0952197606001011
http://www.sciencedirect.com/science/article/pii/S0952197606001011
http://ebooks.iospress.nl/publication/33851

[60] U. Esnaola and T. Smithers, �Whistling to machines,� in Ambient Intel-
ligence in Everyday Life (Y. Cai and J. Abascal, eds.), vol. 3864 of Lec-
ture Notes in Computer Science, pp. 198�226, Springer Berlin Heidelberg,
2006. http://dx.doi.org/10.1007/11825890_10.

[61] D. J. Cook, J. C. Augusto, and V. R. Jakkula, �Ambient intelligence: Tech-
nologies, applications, and opportunities,� Pervasive and Mobile Comput-
ing, vol. 5, no. 4, pp. 277 � 298, 2009. "http://www.sciencedirect.

com/science/article/pii/S157411920900025X".

[62] Y. Chen, G. Liang, K. K. Lee, and Y. Xu, �Abnormal Behavior De-
tection by Multi-SVM-Based Bayesian Network,� in International Con-
ference on Information Acquisition, 2007. ICIA '07, (Seogwipo, South
Korea), pp. 298�303, July 2007. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=4295746.

[63] O. Brdiczka, P. Reignier, and J. Crowley, �Detecting individual activities
from video in a smart home,� in Knowledge-Based Intelligent Information
and Engineering Systems (B. Apolloni, R. Howlett, and L. Jain, eds.),
vol. 4692 of Lecture Notes in Computer Science, pp. 363�370, Springer
Berlin Heidelberg, 2007. http://link.springer.com/content/pdf/10.
1007%2F978-3-540-74819-9_45.pdf.

[64] E. M. Tapia, S. S. Intille, and K. Larson, �Activity recognition in the home
using simple and ubiquitous sensors,� in Pervasive Computing (A. Ferscha
and F. Mattern, eds.), vol. 3001, pp. 158�175, Cambridge Center, 4FL,
Cambridge, MA 02142 USA: Springer, 2004. https://stuff.mit.edu/

afs/athena/dept/cron/group/house_n/documents/Tapia03.pdf.

[65] D. Cook and M. Schmitter-Edgecombe, �Assessing the quality of activit-
ies in a smart environment,� Methods of information in medicine, vol. 48,
p. 480, May 2009. http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC2759863/.

[66] L. Liao, D. Fox, and H. Kautz, �Location-based activity recognition
using relational markov networks,� in Proceedings of the 19th Interna-
tional Joint Conference on Arti�cial Intelligence, IJCAI'05, (San Fran-
cisco, CA, USA), pp. 773�778, Morgan Kaufmann Publishers Inc., 2005.
http://ijcai.org/papers/1572.pdf.

[67] U. Maurer, A. Smailagic, D. Siewiorek, and M. Deisher, �Activity recogni-
tion and monitoring using multiple sensors on di�erent body positions,� in
International Workshop on Wearable and Implantable Body Sensor Net-
works, (Cambridge, MA, USA), pp. 4 pp.�116, April 2006. http://

ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1612909&tag=1.

[68] N. Oliver and E. Horvitz, �A comparison of hmms and dynamic bayesian
networks for recognizing o�ce activities,� in User Modeling 2005 (L. Ar-
dissono, P. Brna, and A. Mitrovic, eds.), vol. 3538 of Lecture Notes

161

http://dx.doi.org/10.1007/11825890_10
"http://www.sciencedirect.com/science/article/pii/S157411920900025X"
"http://www.sciencedirect.com/science/article/pii/S157411920900025X"
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4295746
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4295746
http://link.springer.com/content/pdf/10.1007%2F978-3-540-74819-9_45.pdf
http://link.springer.com/content/pdf/10.1007%2F978-3-540-74819-9_45.pdf
https://stuff.mit.edu/afs/athena/dept/cron/group/house_n/documents/Tapia03.pdf
https://stuff.mit.edu/afs/athena/dept/cron/group/house_n/documents/Tapia03.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759863/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759863/
http://ijcai.org/papers/1572.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1612909&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1612909&tag=1

in Computer Science, pp. 199�209, Springer Berlin Heidelberg, 2005.
http://link.springer.com/content/pdf/10.1007%2F11527886.pdf.

[69] X. Wang and Q. Ji, �Learning dynamic bayesian network discriminat-
ively for human activity recognition,� in 21st International Conference
on Pattern Recognition (ICPR), 2012, (Tsukuba, Japan), pp. 3553�3556,
Nov 2012. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

reload=true&arnumber=6460932.

[70] E. Nazerfard, B. Das, L. B. Holder, and D. J. Cook, �Conditional ran-
dom �elds for activity recognition in smart environments,� in Proceedings
of the 1st ACM International Health Informatics Symposium, IHI '10,
(New York, NY, USA), pp. 282�286, ACM, 2010. http://dl.acm.org/

citation.cfm?id=1883032.

[71] D. Cook and S. Das, Smart environments: technology, protocols and ap-
plications, vol. 43. Wiley-Interscience, 2004.

[72] B. Gottfried, H. Guesgen, and S. Hübner, �Spatiotemporal reasoning for
smart homes,� in Designing Smart Homes (J. Augusto and C. Nugent,
eds.), vol. 4008 of Lecture Notes in Computer Science, pp. 16�34, Springer
Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11788485_2.

[73] J. Allen and G. Ferguson, �Actions and events in interval temporal lo-
gic,� in Spatial and Temporal Reasoning (O. Stock, ed.), pp. 205�245,
Springer Netherlands, 1997. link.springer.com/chapter/10.1007/

978-0-585-28322-7_7.

[74] B. Gottfried, �Reasoning about intervals in two dimensions,� in 2004
IEEE International Conference on Systems, Man and Cybernetics, vol. 6,
(The Hague, The Netherlands), pp. 5324�5332 vol.6, Oct 2004. http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1401040.

[75] M. Vilain, H. Kautz, and P. van Beek, �Readings in qualitative reas-
oning about physical systems,� ch. Constraint Propagation Algorithms
for Temporal Reasoning: A Revised Report, pp. 373�381, San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990. http://www.

sciencedirect.com/science/article/pii/B9781483214474500341.

[76] S. P. Rao and D. J. Cook, �Predicting inhabitant action using action
and task models with application to smart homes,� International Journal
on Arti�cial Intelligence Tools, vol. 13, no. 01, pp. 81�99, 2004. http:

//www.worldscientific.com/doi/abs/10.1142/S0218213004001533.

[77] K. Basterretxea, I. del Campo, M. Martinez, and J. Echanobe, �Dy-
namic signi�cant feature extraction for embedded intelligent agent im-
plementations,� in 2013 IEEE Symposium on Computational Intelli-
gence in Dynamic and Uncertain Environments (CIDUE), (Singapore),
pp. 39�46, April 2013. http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=6595770.

162

http://link.springer.com/content/pdf/10.1007%2F11527886.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6460932
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6460932
http://dl.acm.org/citation.cfm?id=1883032
http://dl.acm.org/citation.cfm?id=1883032
http://dx.doi.org/10.1007/11788485_2
link.springer.com/chapter/10.1007/978-0-585-28322-7_7
link.springer.com/chapter/10.1007/978-0-585-28322-7_7
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1401040
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1401040
http://www.sciencedirect.com/science/article/pii/B9781483214474500341
http://www.sciencedirect.com/science/article/pii/B9781483214474500341
http://www.worldscientific.com/doi/abs/10.1142/S0218213004001533
http://www.worldscientific.com/doi/abs/10.1142/S0218213004001533
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6595770
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6595770

[78] A. Krause, D. Siewiorek, A. Smailagic, and J. Farringdon, �Unsuper-
vised, dynamic identi�cation of physiological and activity context in wear-
able computing,� in Seventh IEEE International Symposium on Wear-
able Computers, 2003., (White Plains, NY, USA), pp. 88�97, Oct 2003.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1241398.

[79] �Aladin,� Accesed 2014. http://www.2020-horizon.com/

ALADIN-Ambient-lighting-assistance-for-an-ageing-population%

28ALADIN%29-s14805.html.

[80] University of Essex, iDorm project. http://cswww.essex.ac.uk/iieg/

idorm.htm.

[81] J. Bauchet, H. Pigot, S. Giroux, D. Lussier-Desrochers, Y. Lachapelle, and
M. Mokhtari, �Designing judicious interactions for cognitive assistance:
The acts of assistance approach,� in Proceedings of the 11th International
ACM SIGACCESS Conference on Computers and Accessibility, Assets
'09, (New York, NY, USA), pp. 11�18, ACM, 2009. http://doi.acm.

org/10.1145/1639642.1639647.

[82] Siemens, Accesed 2014. http://www.buildingtechnologies.

siemens.com/bt/global/en/buildingautomation-hvac/

home-automation-system-synco-living/system/pages/system.

aspx.

[83] Philips, HomeLab Webpage, Accesed 2014. http://www.research.

philips.com/technologies/projects/ami/background.html.

[84] E. Horvitz, P. Koch, and J. Apacible, �Busybody: Creating and �elding
personalized models of the cost of interruption,� in Proceedings of the 2004
ACM Conference on Computer Supported Cooperative Work, CSCW '04,
(New York, NY, USA), pp. 507�510, ACM, 2004. http://doi.acm.org/
10.1145/1031607.1031690.

[85] P. P. Vitaliano, D. Echeverria, J. Yi, P. E. Phillips, H. Young, and I. C.
Siegler, �Psychophysiological mediators of caregiver stress and di�erential
cognitive decline.,� Psychology and aging, vol. 20, pp. 402�411, September
2005. http://www.ncbi.nlm.nih.gov/pubmed/16248700.

[86] A. Kofod-Petersen and A. Aamodt, �Contextualised ambient intelligence
through case-based reasoning,� in Advances in Case-Based Reasoning
(T. Roth-Berghofer, M. Göker, and H. Güvenir, eds.), vol. 4106 of Lec-
ture Notes in Computer Science, pp. 211�225, Springer Berlin Heidelberg,
2006. http://dx.doi.org/10.1007/11805816_17.

[87] J. Corchado, J. Bajo, and A. Abraham, �Gerami: Improving health-
care delivery in geriatric residences,� IEEE Intelligent Systems, vol. 23,
pp. 19�25, March 2008. http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=4475855&tag=1.

163

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1241398
http://www.2020-horizon.com/ALADIN-Ambient-lighting-assistance-for-an-ageing-population%28ALADIN%29-s14805.html
http://www.2020-horizon.com/ALADIN-Ambient-lighting-assistance-for-an-ageing-population%28ALADIN%29-s14805.html
http://www.2020-horizon.com/ALADIN-Ambient-lighting-assistance-for-an-ageing-population%28ALADIN%29-s14805.html
http://cswww.essex.ac.uk/iieg/idorm.htm
http://cswww.essex.ac.uk/iieg/idorm.htm
http://doi.acm.org/10.1145/1639642.1639647
http://doi.acm.org/10.1145/1639642.1639647
http://www.buildingtechnologies.siemens.com/bt/global/en/buildingautomation-hvac/home-automation-system-synco-living/system/pages/system.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/buildingautomation-hvac/home-automation-system-synco-living/system/pages/system.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/buildingautomation-hvac/home-automation-system-synco-living/system/pages/system.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/buildingautomation-hvac/home-automation-system-synco-living/system/pages/system.aspx
http://www.research.philips.com/technologies/projects/ami/background.html
http://www.research.philips.com/technologies/projects/ami/background.html
http://doi.acm.org/10.1145/1031607.1031690
http://doi.acm.org/10.1145/1031607.1031690
http://www.ncbi.nlm.nih.gov/pubmed/16248700
http://dx.doi.org/10.1007/11805816_17
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4475855&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4475855&tag=1

[88] MIT AgeLab, AwareCar Webpace, Accessed 2014. http://agelab.mit.

edu/awarecar.

[89] J. Coughlin, B. Reimer, and B. Mehler, �Monitoring, managing, and mo-
tivating driver safety and well-being,� IEEE Pervasive Computing, vol. 10,
pp. 14�21, July 2011. http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=5958684.

[90] European Comission, HARKEN Report Summary. http://cordis.

europa.eu/result/rcn/58023_en.html.

[91] National Heart, Lung and Blood Institute, What Is a Heart Attack?,
Accessed 2014. http://www.nhlbi.nih.gov/health/health-topics/

topics/heartattack/.

[92] Daily Mail, The car seat that detects HEART ATTACKS: Ford
plans to monitor drivers' pulses to prevent accidents, Acessed 2014.
http://www.dailymail.co.uk.

[93] A. Othman and M. Riadh, �Speech recognition using scaly neural net-
works,� World Academy of Science, Engineering and Technology, vol. 38,
pp. 253�258, 2008. http://www.waset.org/publications/7057.

[94] D. Franklin, �Cooperating with people: the intelligent classroom,�
in Proceedings of Fifteenth National Conference on Arti�cial Intelli-
gence, (Madison, WI, USA), pp. 555�560, 1998. http://infolab.

northwestern.edu/media/papers/paper10073.pdf.

[95] R. Ranchal, T. Taber-Doughty, Y. Guo, K. Bain, H. Martin, J. Robin-
son, and B. Duerstock, �Using Speech Recognition for Real-Time Cap-
tioning and Lecture Transcription in the Classroom,� IEEE Transac-
tions on Learning Technologies, vol. 6, pp. 299�311, Oct 2013. http://

ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6529071.

[96] D. Benavides, E. Fuentes, and V. Zamudio, �inet: An intelligent network
as a personal assistant in an icampus environment.,� in Intelligent Envir-
onments (Workshops) (J. C. Augusto, H. K. Aghajan, V. Callaghan, D. J.
Cook, J. O'Donoghue, S. Egerton, M. Gardner, B. D. Johnson, Y. Koval-
chuk, R. López-Cózar, P. Mikulecký, J. W. P. Ng, R. Poppe, M. Wang,
and V. Zamudio, eds.), vol. 10 of Ambient Intelligence and Smart Envir-
onments, pp. 534�539, IOS Press, 2011. http://ebooks.iospress.nl/

publication/28078.

[97] J.-M. Yang, J.-Y. Park, and R.-D. Oh, �Context awareness acquisi-
tion for safety sensor data processing on industrial sensor network,� in
Advanced Computing, Networking and Security (P. Thilagam, A. Pais,
K. Chandrasekaran, and N. Balakrishnan, eds.), vol. 7135 of Lecture
Notes in Computer Science, pp. 38�47, Springer Berlin Heidelberg, 2012.
http://dx.doi.org/10.1007/978-3-642-29280-4_5.

164

http://agelab.mit.edu/awarecar
http://agelab.mit.edu/awarecar
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5958684
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5958684
http://cordis.europa.eu/result/rcn/58023_en.html
http://cordis.europa.eu/result/rcn/58023_en.html
http://www.nhlbi.nih.gov/health/health-topics/topics/heartattack/
http://www.nhlbi.nih.gov/health/health-topics/topics/heartattack/
http://www.dailymail.co.uk/sciencetech/article-2800101/car-seat-knows-heart-attack-ford-plans-monitor-heart-activity-cars-alert-authorities-necessary.html
http://www.waset.org/publications/7057
http://infolab.northwestern.edu/media/papers/paper10073.pdf
http://infolab.northwestern.edu/media/papers/paper10073.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6529071
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6529071
http://ebooks.iospress.nl/publication/28078
http://ebooks.iospress.nl/publication/28078
http://dx.doi.org/10.1007/978-3-642-29280-4_5

[98] D. Lucke, C. Constantinescu, and E. Westkämper, �Smart factory - a
step towards the next generation of manufacturing,� in Manufacturing
Systems and Technologies for the New Frontier (M. Mitsuishi, K. Ueda,
and F. Kimura, eds.), pp. 115�118, Springer London, 2008. http://link.
springer.com/content/pdf/10.1007%2F978-1-84800-267-8_23.pdf.

[99] A. Smirnov and N. Shilov, �Context-aware smart sustainable factories:
Technological framework,� in Sustainable Manufacturing (G. Seliger, ed.),
pp. 151�156, Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.
1007/978-3-642-27290-5_23.

[100] L. A. Zadeh, �Making Computers Think Like People,� IEEE Spectrum,
vol. 21, no. 8, pp. 26�32, 1984. http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=6370431.

[101] L. Zadeh, �Fuzzy sets,� Information and Control, vol. 8, no. 3, pp. 338
� 353, 1965. http://www.sciencedirect.com/science/article/pii/

S001999586590241X.

[102] L.-X. Wang, �Fuzzy systems are universal approximators,� in IEEE Inter-
national Conference on Fuzzy Systems, (San Diego, CA, USA), pp. 1163�
1170, Mar 1992. http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=258721.

[103] V. Kreinovich, H. T. Nguyen, and Y. Yam, �Fuzzy systems are
universal approximators for a smooth function and its derivatives,�
International Journal of Intelligent Systems, vol. 2000, pp. 565�
574, 1999. http://digitalcommons.utep.edu/cgi/viewcontent.cgi?

article=1514&context=cs_techrep.

[104] R. Rovatti, �Fuzzy Piecewise Multilinear and Piecewise Linear Systems As
Universal Approximators in Sobolev Norms,� IEEE Transactions on Fuzzy
Systems, vol. 6, pp. 235�249, May 1998. http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?arnumber=669022.

[105] S. Sanchez-Solano, A. Barriga, C. Jimenez, and J. Huertas, �Design and
application of digital fuzzy controllers,� in Fuzzy Systems, 1997., Proceed-
ings of the Sixth IEEE International Conference on, vol. 2, pp. 869�874
vol.2, Jul 1997. http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=622824.

[106] D. Dubois and H. Prade, �Unfair Coins and Necessity Measures: To-
wards a Possibilistic Interpretation of Histograms,� Fuzzy Sets Syst.,
vol. 10, pp. 15�20, January 1983. http://dx.doi.org/10.1016/

S0165-0114(83)80099-2.

[107] T. Runkler, �Selection of appropriate defuzzi�cation methods using applic-
ation speci�c properties,� IEEE Transactions on Fuzzy Systems, vol. 5,
pp. 72�79, Feb 1997. http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=554449.

165

http://link.springer.com/content/pdf/10.1007%2F978-1-84800-267-8_23.pdf
http://link.springer.com/content/pdf/10.1007%2F978-1-84800-267-8_23.pdf
http://dx.doi.org/10.1007/978-3-642-27290-5_23
http://dx.doi.org/10.1007/978-3-642-27290-5_23
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6370431
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6370431
http://www.sciencedirect.com/science/article/pii/S001999586590241X
http://www.sciencedirect.com/science/article/pii/S001999586590241X
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=258721
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=258721
http://digitalcommons.utep.edu/cgi/viewcontent.cgi?article=1514&context=cs_techrep
http://digitalcommons.utep.edu/cgi/viewcontent.cgi?article=1514&context=cs_techrep
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=669022
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=669022
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=622824
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=622824
http://dx.doi.org/10.1016/S0165-0114(83)80099-2
http://dx.doi.org/10.1016/S0165-0114(83)80099-2
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=554449
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=554449

[108] M. Braae and D. A. Rutherford, �Fuzzy relations in a control setting,�
Kybernetes, vol. 7, pp. 185�188. http://www.emeraldinsight.com/doi/
abs/10.1108/eb005482.

[109] R. Yager, �Fuzzy sets and approximate reasoning in decision and con-
trol,� in IEEE International Conference on Fuzzy Systems, (San Diego,
CA, USA), pp. 415�428, Mar 1992. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=258652.

[110] D. P. Filev and R. R. Yager, �A generalized defuzzi�cation method via
bad distributions,� International Journal of Intelligent Systems, vol. 6,
no. 7, pp. 687�697, 1991. http://onlinelibrary.wiley.com/doi/10.

1002/int.4550060702/abstract.

[111] G. Clark, �The organization of behavior: A neuropsychological theory. d.
o. hebb. john wiley and sons, inc., new york, 1949, 335 pages, 19 illus-
trations, 288 references.,� The Journal of Comparative Neurology, vol. 93,
no. 3, pp. 459�460, 1950. http://dx.doi.org/10.1002/cne.900930310.

[112] K. Mao, K. C. Tan, and W. Ser, �Probabilistic neural-network structure
determination for pattern classi�cation,� IEEE Transactions on Neural
Networks, vol. 11, pp. 1009�1016, Jul 2000. http://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=857781.

[113] J. Pradeep, E. Srinivasan, and S. Himavathi, �Neural network based
handwritten character recognition system without feature extrac-
tion,� in 2011 International Conference on Computer, Communication
and Electrical Technology (ICCCET), (Tamilnadu, India), pp. 40�44,
March 2011. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=5762513.

[114] J. Parri and S. Ratti, �Trigonometric function approximation neural
network based coprocessor,� in 2nd Microsystems and Nanoelectronics
Research Conference, (Ottawa, ON, Canada), pp. 148�151, Oct 2009.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5338938.

[115] J. Vesanto and E. Alhoniemi, �Clustering of the self-organizing map,�
IEEE Transactions on Neural Networks, vol. 11, pp. 586�600, May
2000. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=846731.

[116] N. Nasrabadi and Y. Feng, �Vector quantization of images based upon
the kohonen self-organizing feature maps,� in IEEE International Con-
ference on Neural Networks, 1988., (San Diego, CA, USA), pp. 101�108
vol.1, July 1988. http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?tp=&arnumber=23837.

[117] J. H. Holland, �Outline for a Logical Theory of Adaptive Systems,� J.
ACM, vol. 9, pp. 297�314, July 1962. http://doi.acm.org/10.1145/

321127.321128.

166

http://www.emeraldinsight.com/doi/abs/10.1108/eb005482
http://www.emeraldinsight.com/doi/abs/10.1108/eb005482
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=258652
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=258652
http://onlinelibrary.wiley.com/doi/10.1002/int.4550060702/abstract
http://onlinelibrary.wiley.com/doi/10.1002/int.4550060702/abstract
http://dx.doi.org/10.1002/cne.900930310
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=857781
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=857781
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5762513
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5762513
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5338938
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=846731
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=846731
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=23837
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=23837
http://doi.acm.org/10.1145/321127.321128
http://doi.acm.org/10.1145/321127.321128

[118] J. H. Holland, Adaptation in natural and arti�cial systems: An intro-
ductory analysis with applications to biology, control, and arti�cial in-
telligence. U Michigan Press, 1975. http://ieeeexplore.com/xpl/

bkabstractplus.jsp?bkn=6267401.

[119] F. H. F. Leung, H. Lam, S. Ling, and P.-S. Tam, �Tuning of the structure
and parameters of a neural network using an improved genetic algorithm,�
IEEE Transactions on Neural Networks, vol. 14, pp. 79�88, Jan 2003.
ieeeexplore.com/xpl/articleDetails.jsp?tp=&arnumber=1176129.

[120] C. W. Ahn and R. S. Ramakrishna, �A genetic algorithm for shortest
path routing problem and the sizing of populations,� IEEE Transactions
on Evolutionary Computation, vol. 6, pp. 566�579, Dec 2002. http://

ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1134124.

[121] C.-T. Cheng, K. Fallahi, H. Leung, and C. Tse, �An AUVs path planner
using genetic algorithms with a deterministic crossover operator,� in IEEE
International Conference on Robotics and Automation (ICRA), 2010,
(Anchorage, AK, USA), pp. 2995�3000, May 2010. http://ieeexplore.
ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5509335.

[122] M. Reformat, E. Ku�el, D. Woodford, and W. Pedrycz, �Application of
genetic algorithms for control design in power systems,� IEEE Proceedings
- Generation, Transmission and Distribution, vol. 145, pp. 345�354, Jul
1998. ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=
707075.

[123] J. Grefenstette, �Optimization of Control Parameters for Genetic Al-
gorithms,� IEEE Transactions on Systems, Man and Cybernetics, vol. 16,
pp. 122�128, Jan 1986. ieeexplore.ieee.org/xpl/articleDetails.

jsp?tp=&arnumber=4075583.

[124] I. del Campo, J. Echanobe, G. Bosque, and J. Tarela, �E�cient
hardware/software implementation of an adaptive neuro-fuzzy sys-
tem,� IEEE Transactions on Fuzzy Systems, vol. 16, pp. 761�778,
June 2008. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=4392481.

[125] M. A. Lopez, A. A. Garza, B. Y. Marquez, K. Romero, M. del Ros-
ario Baltazar-Flores, and V. Zamudio, �Optimization of a fuzzy contrast
method for a pattern recognition system,� in Intelligent Environments
(Workshops) (J. A. Botía, H. R. Schmidtke, T. Nakashima, M. R. Al-
Mulla, J. C. Augusto, A. Aztiria, M. Ball, V. Callaghan, D. J. Cook,
J. Dooley, J. O'Donoghue, S. Egerton, P. A. Haya, M. J. Hornos, E. Mor-
ales, J. C. Orozco, O. Portillo-Rodríguez, A. R. González, O. Sandoval,
P. Tripicchio, M. Wang, and V. Zamudio, eds.), vol. 13 of Ambient Intelli-
gence and Smart Environments, (Guanajuato, Mexico), pp. 142�153, IOS
Press, 2012. http://ebooks.iospress.nl/publication/28219.

167

http://ieeeexplore.com/xpl/bkabstractplus.jsp?bkn=6267401
http://ieeeexplore.com/xpl/bkabstractplus.jsp?bkn=6267401
ieeeexplore.com/xpl/articleDetails.jsp?tp=&arnumber=1176129
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1134124
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1134124
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5509335
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5509335
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=707075
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=707075
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4075583
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4075583
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4392481
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4392481
http://ebooks.iospress.nl/publication/28219

[126] C. G. D. Boeree, �The neuron,� 2009. http://webspace.ship.edu/

cgboer/theneuron.html.

[127] C.-T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Syn-
ergism to Intelligent Systems. Prentice Hall PTR, 1996.

[128] M. Minsky and S. A. Papert, Perceptrons: An Introduction to Computa-
tional Geometry. 1969.

[129] �Human brain project.� https://www.humanbrainproject.eu/.

[130] F. Rosenblatt, �The Perceptron: A probabilistic model for inform-
ation storage and organization in the brain,� Psychological Review,
vol. 65, pp. 386�408, 1958. http://psycnet.apa.org/index.cfm?fa=

buy.optionToBuy&id=1959-09865-001.

[131] B. Widrow and M. E. Ho�, �Adaptive Switching Circuits,� in 1960 IRE
WESCON Convention Record, Part 4, (New York, NY, USA), pp. 96�104,
IRE, 1960. http://www-isl.stanford.edu/people/widrow/papers/

c1960adaptiveswitching.pdf.

[132] J. J. Hop�eld, �Neurocomputing: Foundations of Research,� ch. Neural
Networks and Physical Systems with Emergent Collective Computational
Abilities, pp. 457�464, Cambridge, MA, USA: MIT Press, 1988.

[133] R. Nielsen, Neurocomputing. New Horizons in Technology Series, Addison-
Wesley, 1990.

[134] S. Rajasekaran and G. Pai, Neural Networks, Fuzzy Logic and Genetic
Algorithms. PHI Learning Private Limited, 2011.

[135] S. Grossberg, �Adaptive pattern classi�cation and universal recording II.
Feedback, expectation, olfaction, illusions,� Biological Cybernetics, vol. 23,
pp. 187�202, 1976.

[136] G. A. Carpenter and S. Grossberg, �ART 2: Self-Organization of
Stable Category Recognition Codes for Analog Input Patterns,� Ap-
plied Optics, vol. 26, pp. 4919�4930, 1987. http://cns.bu.edu/~steve/
CarGro1987AppliedOptics.pdf.

[137] G. A. Carpenter and S. Grossberg, �ART 3: Hierarchical search us-
ing chemical transmitters in self-organizing pattern recognition archi-
tectures,� Neural Networks, vol. 3, no. 2, pp. 129 � 152, 1990. http:

//link.springer.com/chapter/10.1007%2F978-94-009-0643-3_93.

[138] S. Anbazhagan and N. Kumarappan, �Day-Ahead Deregulated Electricity
Market Price Forecasting Using Recurrent Neural Network,� IEEE Sys-
tems Journal, vol. 7, pp. 866�872, Dec 2013. http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?tp=&arnumber=6397562.

168

http://webspace.ship.edu/cgboer/theneuron.html
http://webspace.ship.edu/cgboer/theneuron.html
https://www.humanbrainproject.eu/
http://psycnet.apa.org/index.cfm?fa=buy.optionToBuy&id=1959-09865-001
http://psycnet.apa.org/index.cfm?fa=buy.optionToBuy&id=1959-09865-001
http://www-isl.stanford.edu/people/widrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/people/widrow/papers/c1960adaptiveswitching.pdf
http://cns.bu.edu/~steve/CarGro1987AppliedOptics.pdf
http://cns.bu.edu/~steve/CarGro1987AppliedOptics.pdf
http://link.springer.com/chapter/10.1007%2F978-94-009-0643-3_93
http://link.springer.com/chapter/10.1007%2F978-94-009-0643-3_93
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6397562
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6397562

[139] Z. Lin, L. Gao, and D. Zhang, �Predictions of System Marginal Price of
Electricity Using Recurrent Neural Network,� in The Sixth World Congress
on Intelligent Control and Automation, vol. 2, (Dalian, People's Repub-
lic of China), pp. 7592�7595, 2006. http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?tp=&arnumber=1713442.

[140] G. Khan, A. Khattak, F. Zafari, and S. Mahmud, �Electrical load forecast-
ing using fast learning recurrent neural networks,� in The 2013 Interna-
tional Joint Conference on Neural Networks (IJCNN), (Dallas, TX, USA),
pp. 1�6, Aug 2013. http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=6706998.

[141] G. Luhasz, M. Tirea, and V. Negru, �Neural Network Predictions of Stock
Price Fluctuations,� in 14th International Symposium on Symbolic and
Numeric Algorithms for Scienti�c Computing (SYNASC), (Timisoara,
Rumania), pp. 505�512, Sept 2012. http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?tp=&arnumber=6481072.

[142] S. Pattamavorakun and S. Pattamavorakun, �Determination the Num-
ber of Hidden Nodes of Recurrent Neural Networks for River Flow and
Stock Price Forecasting,� in 5th ACIS International Conference on Soft-
ware Engineering Research, Management Applications, (Busan, South
Korea), pp. 184�194, Aug 2007. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=4296935.

[143] T.-Y. Kwok and D.-Y. Yeung, �Constructive algorithms for struc-
ture learning in feedforward neural networks for regression problems,�
IEEE Transactions on Neural Networks, vol. 8, pp. 630�645, May
1997. ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=
572102.

[144] D. Tian, Y. Liu, and J. Wang, �SLNN: A neural Network for Fuzzy Neural
Network's Structure Learning,� in Sixth International Conference on In-
telligent Systems Design and Applications, 2006. ISDA '06, vol. 1, (Jinan,
People's Republic of China), pp. 919�924, Oct 2006. ieeexplore.ieee.
org/xpl/articleDetails.jsp?tp=&arnumber=4021562.

[145] J. A. Anderson, �Cognitive and psychological computation with neural
models,� IEEE Transactions on Systems, Man, and Cybernetics,
vol. 13, pp. 799�815, 1983. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=6313074.

[146] B. Kosko, �Bidirectional associative memories,� IEEE Transactions
on Systems, Man and Cybernetics, vol. 18, pp. 49�60, Jan.
1988. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=87054.

[147] R. Linsker, �Self-Organization in a Perceptual Network,� Computer,
vol. 21, pp. 105�117, Mar. 1988. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=36.

169

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1713442
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1713442
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6706998
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6706998
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6481072
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6481072
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4296935
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4296935
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=572102
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=572102
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4021562
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4021562
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6313074
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6313074
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=87054
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=87054
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=36
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=36

[148] R. Lippmann, �An introduction to computing with neural nets,� IEEE
ASSP Magazine, vol. 4, pp. 4 �22, apr 1987. http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?tp=&arnumber=1165576.

[149] T. Kohonen, Self-organization and Associative Memory: 3rd Edition. New
York, NY, USA: Springer-Verlag New York, Inc., 1989. http://link.

springer.com/book/10.1007%2F978-3-642-88163-3.

[150] H. T. Lefteri and R. E. Uhrig, Fuzzy and Neural Approaches in Engineer-
ing. New York, NY, USA: John Wiley & Sons, Inc., 1st ed., 1996. http:
//eu.wiley.com/WileyCDA/WileyTitle/productCd-0471160032.html.

[151] A. G. Barto, Neural networks for control. Cambridge, MA, USA: MIT
Press, 1990. Chapter 1: Connectionist Learning for Control.

[152] J. Jang, C. Sun, and E. Mizutani, Neuro-fuzzy and soft computing: a
computational approach to learning and machine intelligence. MATLAB
curriculum series, Prentice Hall, 1997.

[153] R. S. Sutton, �Integrated Architectures for Learning, Planning, and React-
ing Based on Approximating Dynamic Programming,� in Proceedings of
the Seventh International Conference on Machine Learning, (San Diego,
CA, USA), pp. 216�224, Morgan Kaufmann, 1990. http://papersdb.cs.
ualberta.ca/~papersdb/uploaded_files/505/paper_sutton-90.pdf.

[154] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. PhD thesis, Harvard University, 1974.

[155] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, �Improving
the convergence of the backpropagation algorithm using learning rate
adaptation methods,� Neural Computation, vol. 11, no. 7, pp. 1769�
1796, 1999. http://www.mitpressjournals.org/doi/pdf/10.1162/

089976699300016223.

[156] M. D. Zeiler, �ADADELTA: An Adaptive Learning Rate Method,� CoRR,
vol. abs/1212.5701, 2012.

[157] R. Rojas, Neural Networks: A Systematic Introduction. No. 1, Berlin, Ger-
many: Springer-Verlag Berlin Heidelberg, 1996. http://www.springer.

com/us/book/9783540605058.

[158] D. Nguyen and B. Widrow, �Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights,� in Interna-
tional Joint Conference on Neural Networks, 1990., 1990 IJCNN, (San
Diego, CA, USA), pp. 21 �26 vol.3, jun 1990. http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?arnumber=5726777.

[159] R. Finker de la Iglesia, �Diseño e implementación de una RNA integ-
rando la tecnología de "Recon�guración Dinámica Parcial". aplicación en
entornos de Inteligencia Ambiental,� Master's thesis, University of the
Basque country, 2012.

170

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1165576
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1165576
http://link.springer.com/book/10.1007%2F978-3-642-88163-3
http://link.springer.com/book/10.1007%2F978-3-642-88163-3
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471160032.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471160032.html
http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/505/paper_sutton-90.pdf
http://papersdb.cs.ualberta.ca/~papersdb/uploaded_files/505/paper_sutton-90.pdf
http://www.mitpressjournals.org/doi/pdf/10.1162/089976699300016223
http://www.mitpressjournals.org/doi/pdf/10.1162/089976699300016223
http://www.springer.com/us/book/9783540605058
http://www.springer.com/us/book/9783540605058
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5726777
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5726777

[160] R. Setiono and L. C. K. Hui, �Use of a quasi-Newton method in a feed-
forward neural network construction algorithm,� IEEE Transactions on
Neural Networks, vol. 6, pp. 273�277, Jan 1995. http://ieeexplore.

ieee.org/xpl/articleDetails.jsp?arnumber=363426.

[161] R. Reed, �Pruning algorithms-a survey,� IEEE Transactions on Neural
Networks, vol. 4, pp. 740�747, Sep 1993. http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?arnumber=248452.

[162] J.-C. Li, W. Ng, P. Chan, and D. Yeung, �A growing architecture se-
lection for Multilayer Perceptron Neural Network by the L-GEM,� in
2010 International Conference on Machine Learning and Cybernetics
(ICMLC), vol. 3, (Qingdao, People's Republic of China), pp. 1402�1407,
July 2010. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=5580850.

[163] A. R. Omondi and J. C. Rajapakse, FPGA Implementations of Neural
Networks. New York, NY, USA: Springer, 2006. http://www.springer.
com/engineering/circuits+%26+systems/book/978-0-387-28485-9.

[164] K.-S. Oh and K. Jung, �GPU implementation of neural networks,� Pat-
tern Recognition, vol. 37, no. 6, pp. 1311 � 1314, 2004. http://www.

sciencedirect.com/science/article/pii/S0031320304000524.

[165] J. Hines, L. H. Tsoukalas, and R. E. Uhrig, Matlab Supplement to Fuzy
and Neural Approaches in Engineering. Wiley-Interscience Publication,
1997.

[166] Intel corporation, Intel Core Processor Family, 2013. http:

//www.intel.es/content/dam/www/public/us/en/documents/

product-briefs/4th-gen-core-desktops-brief.pdf.

[167] A. Holdings, The ARM Cortex - A9 Processors. http://www.arm.com/

files/pdf/ARMCortexA-9Processors.pdf.

[168] A. Holdings, Cortex-R Series Webpage. http://www.arm.com/products/
processors/cortex-r/index.php Accessed 2014.

[169] Freescale, Cold�re Processors Table. http://www.freescale.com/

webapp/sps/site/taxonomy.jsp?code=CFMPU.

[170] M. Mohamadian, E. Nowicki, F. Ashrafzadeh, A. Chu, R. Sach-
deva, and E. Evanik, �A novel neural network controller and its e�-
cient dsp implementation for vector-controlled induction motor drives,�
IEEE Transactions on Industry Applications, vol. 39, pp. 1622�1629,
Nov 2003. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=1248245.

171

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=363426
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=363426
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=248452
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=248452
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5580850
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5580850
http://www.springer.com/engineering/circuits+%26+systems/book/978-0-387-28485-9
http://www.springer.com/engineering/circuits+%26+systems/book/978-0-387-28485-9
http://www.sciencedirect.com/science/article/pii/S0031320304000524
http://www.sciencedirect.com/science/article/pii/S0031320304000524
http://www.intel.es/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-desktops-brief.pdf
http://www.intel.es/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-desktops-brief.pdf
http://www.intel.es/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-desktops-brief.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/products/processors/cortex-r/index.php
http://www.arm.com/products/processors/cortex-r/index.php
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=CFMPU
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=CFMPU
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1248245
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1248245

[171] N. Kim, N. Kehtarnavaz, M. Yeary, and S. Thornton, �DSP-based
hierarchical neural network modulation signal classi�cation,� IEEE
Transactions on Neural Networks, vol. 14, pp. 1065�1071, Sept
2003. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=1243710.

[172] G. Bosque, I. del Campo, and J. Echanobe, �Fuzzy systems, neural net-
works and neuro-fuzzy systems: A vision on their hardware implement-
ation and platforms over two decades,� Engineering Applications of Ar-
ti�cial Intelligence, vol. 32, no. 0, pp. 283 � 331, 2014. http://www.

sciencedirect.com/science/article/pii/S0952197614000384.

[173] J. Misra and I. Saha, �Arti�cial neural networks in hardware: A survey of
two decades of progress,� Neurocomputing, vol. 74, no. 3, pp. 239 � 255,
2010. Arti�cial Brains.

[174] S. Draghici, �Neural networks in analog hardware-Design and implement-
ation issues,� International journal of neural systems, vol. 10, no. 01,
pp. 19�42, 2000. http://www.worldscientific.com/doi/abs/10.1142/
S0129065700000041.

[175] K. Someya, H. Shinozaki, and Y. Sekine, �Pulse-type hardware chaotic
neuron model and its bifurcation phenomena,� Neural Networks, vol. 12,
no. 1, pp. 153 � 161, 1999. http://www.sciencedirect.com/science/

article/pii/S0893608098000999.

[176] A. Agranat, C. Neugebauer, and A. Yariv, �A ccd based neural network in-
tegrated circuit with 64k analog programmable synapses,� in International
Joint Conference on Neural Networks (IJCNN), (San Diego, CA, USA),
pp. 551�555 vol.2, June 1990. http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=5726583.

[177] T. Morishita, Y. Tamura, and T. Otsuki, �A bicmos analog neural network
with dynamically updated weights,� in IEEE International Solid-State
Circuits Conference, 1990. Digest of Technical Papers. 37th ISSCC, (San
Francisco, CA, USA), pp. 142�143, Feb 1990. http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=110167.

[178] M. Holler, S. Tam, H. Castro, and R. Benson, �An electrically trainable
arti�cial neural network (ETANN) with 10240 '�oating gate' synapses,�
in International Joint Conference on Neural Networks (IJCNN), (Wash-
ington, DC, USA), pp. 191�196 vol.2, 1989. http://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=118698.

[179] T. Orlowska-Kowalska and M. Kaminski, �FPGA Implementation of the
Multilayer Neural Network for the Speed Estimation of the Two-Mass
Drive System,� IEEE Transactions on Industrial Informatics, vol. 7,
pp. 436�445, Aug 2011.

172

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1243710
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1243710
http://www.sciencedirect.com/science/article/pii/S0952197614000384
http://www.sciencedirect.com/science/article/pii/S0952197614000384
http://www.worldscientific.com/doi/abs/10.1142/S0129065700000041
http://www.worldscientific.com/doi/abs/10.1142/S0129065700000041
http://www.sciencedirect.com/science/article/pii/S0893608098000999
http://www.sciencedirect.com/science/article/pii/S0893608098000999
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5726583
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5726583
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=110167
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=110167
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=118698
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=118698

[180] M. Kaminski and T. Orlowska-Kowalska, �FPGA Implementation of
ADALINE-Based Speed controller in a Two-Mass System,� IEEE
Transactions on Industrial Informatics, vol. 9, pp. 1301�1311, Aug
2013. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=6340338.

[181] P. Domingos, F. Silva, and H. Neto, �An e�cient and scalable archi-
tecture for neural networks with backpropagation learning,� in Interna-
tional Conference on Field Programmable Logic and Applications, 2005,
(Tampere, Finland), pp. 89�94, Aug 2005. ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=1515704.

[182] A. Gomperts, A. Ukil, and F. Zur�uh, �Development and Implement-
ation of Parameterized FPGA-Based General Purpose Neural Networks
for Online Applications,� IEEE Transactions on Industrial Informat-
ics, vol. 7, pp. 78 �89, feb. 2011. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=5607329.

[183] R. G. Girones, R. C. Palero, J. C. Boluda, , and A. S. Cortes, �FPGA
implementation of a Pipelined On-Line Backpropagation,� The Journal of
VLSI Signal Processing, vol. 40, pp. 189�213, 2005. http://dx.doi.org/
10.1007/s11265-005-4961-3.

[184] A. Momoi, S. Akimoto, S. Sato, and K. Nakajima, �Implementation of
a large scale hardware neural network system based on stochastic logic,�
in IEEE International Joint Conference on Neural Networks (IJCNN),
vol. 4, (Budapest, Hungary), pp. 2671�2675 vol.4, July 2004. http://

ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1381070.

[185] J. Schemmel, A. Grubl, K. Meier, and E. Mueller, �Implementing Synaptic
Plasticity in a VLSI Spiking Neural Network Model,� in International
Joint Conference on Neural Networks (IJCNN), (Honolulu, HI, USA),
pp. 1�6, 2006. http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?tp=&arnumber=171606.

[186] Xilinx, FPGA vs ASIC, 2014. http://www.xilinx.com/fpga/asic.htm
Accessed 2014.

[187] P. Masa, K. Hoen, and H. Wallinga, �A high-speed analog neural pro-
cessor,� IEEE Micro, vol. 14, no. 3, pp. 40�50, 1994. ieeexplore.ieee.
org/xpl/articleDetails.jsp?tp=&arnumber=285223.

[188] J. Teich, �Hardware/software codesign: The past, the present, and pre-
dicting the future,� Proceedings of the IEEE, vol. 100, pp. 1411�1430,
May 2012. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=6172642.

[189] Nvidia, �Compute Uni�ed Device Architecture.� http://www.nvidia.

com/object/cuda_home_new.html Accessed 2014.

173

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6340338
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6340338
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1515704
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1515704
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5607329
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5607329
http://dx.doi.org/10.1007/s11265-005-4961-3
http://dx.doi.org/10.1007/s11265-005-4961-3
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1381070
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1381070
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=171606
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=171606
http://www.xilinx.com/fpga/asic.htm
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=285223
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=285223
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6172642
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6172642
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

[190] Aberdeen Stirling, Aberdeen Stirling 464G - Xeon DP GPU-Optimized
HPC Server. http://www.aberdeeninc.com/abcatg/stirling-464g.

htm Accesed 2014.

[191] K. Fukushima, �Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition una�ected by shift in position,�
Biological Cybernetics, vol. 36, no. 4, pp. 193�202, 1980. http://dx.doi.
org/10.1007/BF00344251.

[192] H. Perez-Sanchez, G. Guerrero, J. Garcia, J. Pena, J. Cecilia, G. Cano,
S. Orts-Escolano, and J. Garcia-Rodriguez, �Improving drug discovery
using a neural networks based parallel scoring function,� in International
Joint Conference on Neural Networks (IJCNN), (Dallas, TX, USA), pp. 1�
5, Aug 2013. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
tp=&arnumber=6706909.

[193] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, �A committee of
neural networks for tra�c sign classi�cation,� in International Joint Con-
ference on Neural Networks (IJCNN), (San Jose, CA, USA), pp. 1918�
1921, July 2011. http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?tp=&arnumber=6033458.

[194] C.-F. Juang, T.-C. Chen, and W.-Y. Cheng, �Speedup of Implementing
Fuzzy Neural Networks With High-Dimensional Inputs Through Parallel
Processing on Graphic Processing Units,� IEEE Transactions on Fuzzy
Systems, vol. 19, pp. 717�728, Aug 2011. http://ieeexplore.ieee.

org/xpl/articleDetails.jsp?tp=&arnumber=5744114.

[195] K. Basterretxea, I. del Campo, and J. Echanobe, �A semi-active sus-
pension embedded controller in a FPGA,� in International Symposium
on Industrial Embedded Systems (SIES), (Trento, Italia), pp. 69 �78,
july 2010. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=5551387.

[196] Xilinx, �What is programmable logic?.� http://www.xilinx.com/

company/about/programmable.html Accessed 2014.

[197] J. Turner and G. Josephson, �Programmable logic array,� August 1988.
http://www.google.com/patents/US4766569.

[198] J. Birkner and H. Chua, �Programmable array logic circuit,� November
1978. http://www.google.com/patents/US4124899.

[199] Wikipedia, �Programmable logic array � wikipedia, the free encyclo-
pedia,� 2015. Accessed 2014 http://en.wikipedia.org/w/index.php?

title=Programmable_logic_array&oldid=657045322.

[200] Cypress, PAL CE22V10 Datasheet, September 1996. http://www.engr.
uky.edu/\simjel/misc/d481/info/PAL/ce22v10.pdf.

174

http://www.aberdeeninc.com/abcatg/stirling-464g.htm
http://www.aberdeeninc.com/abcatg/stirling-464g.htm
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1007/BF00344251
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6706909
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6706909
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6033458
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6033458
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5744114
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5744114
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5551387
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5551387
http://www.xilinx.com/company/about/programmable.html
http://www.xilinx.com/company/about/programmable.html
http://www.google.com/patents/US4766569
http://www.google.com/patents/US4124899
http://en.wikipedia.org/w/index.php?title=Programmable_logic_array&oldid=657045322
http://en.wikipedia.org/w/index.php?title=Programmable_logic_array&oldid=657045322
http://www.engr.uky.edu/$\sim $jel/misc/d481/info/PAL/ce22v10.pdf
http://www.engr.uky.edu/$\sim $jel/misc/d481/info/PAL/ce22v10.pdf

[201] Xilinx, Complex Programmable Logic Device, Accesed 2014. http://www.
xilinx.com/cpld/.

[202] Xilinx, Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Com-
plete Data Sheet, June 2011. http://www.xilinx.com/support/

documentation/data_sheets/ds083.pdf.

[203] Xilinx, XtremeDSP 48 Slice. http://www.xilinx.com/technology/dsp/
xtremedsp.htm Accessed 2014.

[204] Xilinx, Spartan 6 product brief. http://www.xilinx.com/publications/
prod_mktg/Spartan6_Product_Table.pdf Accesed 2014.

[205] Xilinx, 7 Series FPGAs Overview, v1.3 ed., July 2013. http:

//www.xilinx.com/support/documentation/data_sheets/ds180_

7Series_Overview.pdf.

[206] Xilinx, Zynq-7000 All Programmable SoC Overview, v1.6 ed., December
2013. http://www.xilinx.com/support/documentation/data_sheets/
ds190-Zynq-7000-Overview.pdf.

[207] Altera, SoC Overview. http://www.altera.com/devices/processor/

soc-fpga/overview/proc-soc-fpga.html Accesed 2014.

[208] J. K. Lew, �Low Power System Design Techniques Using FPGAs,�
EE TImes, 2004. http://www.eetimes.com/document.asp?doc_id=

1271155.

[209] Xilinx, Spartan-3AN FPGA Family Data Sheet, 2011. www.xilinx.com/
support/documentation/data_sheets/ds557.pdf.

[210] Xilinx, Xilinx Webpage. http://www.xilinx.com/.

[211] Xilinx, SEU Strategies for Virtex-5 Devices, 2010. http://www.xilinx.

com/support/documentation/application_notes/xapp864.pdf.

[212] C. Carmichael, E. Fuller, P. Blain, and M. Ca�rey, �SEU mitigation tech-
niques for Virtex FPGAs in space applications,� in Proceeding of the Milit-
ary and Aerospace Programmable Logic Devices International Conference,
(Laurel, MD, USA), p. 99, 1999. http://www.xilinx.com/appnotes/

VtxSEU.pdf.

[213] Design & Reuse, Design Security in Nonvolatile Flash and Antifuse
FPGAs, 2003. http://www.design-reuse.com/articles/6529/

design-security-in-nonvolatile-flash-and-antifuse-fpgas.

html.

[214] Xilinx, Partial Recon�guration User Guide, April 2013. http:

//www.xilinx.com/support/documentation/sw_manuals/xilinx12_

3/ug702.pdf.

175

http://www.xilinx.com/cpld/
http://www.xilinx.com/cpld/
http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
http://www.xilinx.com/technology/dsp/xtremedsp.htm
http://www.xilinx.com/technology/dsp/xtremedsp.htm
http://www.xilinx.com/publications/prod_mktg/Spartan6_Product_Table.pdf
http://www.xilinx.com/publications/prod_mktg/Spartan6_Product_Table.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html
http://www.altera.com/devices/processor/soc-fpga/overview/proc-soc-fpga.html
http://www.eetimes.com/document.asp?doc_id=1271155
http://www.eetimes.com/document.asp?doc_id=1271155
www.xilinx.com/support/documentation/data_sheets/ds557.pdf
www.xilinx.com/support/documentation/data_sheets/ds557.pdf
http://www.xilinx.com/
http://www.xilinx.com/support/documentation/application_notes/xapp864.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp864.pdf
http://www.xilinx.com/appnotes/VtxSEU.pdf
http://www.xilinx.com/appnotes/VtxSEU.pdf
http://www.design-reuse.com/articles/6529/design-security-in-nonvolatile-flash-and-antifuse-fpgas.html
http://www.design-reuse.com/articles/6529/design-security-in-nonvolatile-flash-and-antifuse-fpgas.html
http://www.design-reuse.com/articles/6529/design-security-in-nonvolatile-flash-and-antifuse-fpgas.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf

[215] Altera, Stratix V FPGAs: Ultimate Flexibility Through Partial and
Dynamic Recon�guration. http://www.altera.com/devices/fpga/

stratix-fpgas/stratix-v/overview/partial-reconfiguration/

stxv-part-reconfig.html Acessed 2014.

[216] Xilinx, Di�erence-Based Partial Recon�guration, December 2007.
http://www.xilinx.com/support/documentation/application_

notes/xapp290.pdf.

[217] Xilinx, LogiCORE IP XPS HWICAP (V5.00a), July 2010. http:

//www.xilinx.com/support/documentation/ip_documentation/xps_

hwicap.pdf.

[218] Xilinx, LogiCORE IP AXI HWICAP (V2.02a), April 2012. http:

//www.xilinx.com/support/documentation/ip_documentation/axi_

hwicap/v2_02_a/ds817_axi_hwicap.pdf.

[219] Altera, Design Planning for Partial Recon�guration, June 2014. http:

//www.altera.com/literature/hb/qts/qts_qii51026.pdf.

[220] Xilinx, Power Consumption in 65 nm FPGAs, February 2007. http://

www.xilinx.com/support/documentation/white_papers/wp246.pdf.

[221] Xilinx. http://www.xilinx.com/about/company-overview/index.htm.

[222] Xilinx. http://www.xilinx.com/tools/partial-reconfiguration.

htm Accessed 2014.

[223] Xilinx, All Programmable FPGAs, 2014. http://www.xilinx.com/

products/silicon-devices/fpga/index.htm Accessed 2014.

[224] Altera, �14 nm and 20 nm process technology.� http://www.altera.com/
technology/system-tech/next-gen/process-technologies.html Ac-
cessed 2014.

[225] M. Corporation, Space�ight FPGAs, 2012. http:

//www.microsemi.com/document-portal/doc_download/

131352-spaceflight-fpgas-catalog.

[226] L. Semiconductor, Lattice ECP3 FPGA Family Table. http://www.

latticesemi.com/Products/FPGAandCPLD/LatticeECP3.aspx Accessed
2014.

[227] L. Semiconductor, Lattice iCE40 Family Table. http://www.

latticesemi.com/Products/FPGAandCPLD/iCE40.aspx Accessed 2014.

[228] A. Corporation, �AT40KAL Series co-processor FPGAs.� http:

//www.atmel.com/products/other/field_programmable_gate_

array/default.aspx Accessed 2014.

176

http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/partial-reconfiguration/stxv-part-reconfig.html
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/partial-reconfiguration/stxv-part-reconfig.html
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/partial-reconfiguration/stxv-part-reconfig.html
http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_02_a/ds817_axi_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_02_a/ds817_axi_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_02_a/ds817_axi_hwicap.pdf
http://www.altera.com/literature/hb/qts/qts_qii51026.pdf
http://www.altera.com/literature/hb/qts/qts_qii51026.pdf
http://www.xilinx.com/support/documentation/white_papers/wp246.pdf
http://www.xilinx.com/support/documentation/white_papers/wp246.pdf
http://www.xilinx.com/about/company-overview/index.htm
http://www.xilinx.com/tools/partial-reconfiguration.htm
http://www.xilinx.com/tools/partial-reconfiguration.htm
http://www.xilinx.com/products/silicon-devices/fpga/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/index.htm
http://www.altera.com/technology/system-tech/next-gen/process-technologies.html
http://www.altera.com/technology/system-tech/next-gen/process-technologies.html
http://www.microsemi.com/document-portal/doc_download/131352-spaceflight-fpgas-catalog
http://www.microsemi.com/document-portal/doc_download/131352-spaceflight-fpgas-catalog
http://www.microsemi.com/document-portal/doc_download/131352-spaceflight-fpgas-catalog
http://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3.aspx
http://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3.aspx
http://www.latticesemi.com/Products/FPGAandCPLD/iCE40.aspx
http://www.latticesemi.com/Products/FPGAandCPLD/iCE40.aspx
http://www.atmel.com/products/other/field_programmable_gate_array/default.aspx
http://www.atmel.com/products/other/field_programmable_gate_array/default.aspx
http://www.atmel.com/products/other/field_programmable_gate_array/default.aspx

[229] VHDL Analysis and Standardization Group (VASG). http://www.eda.

org/vasg/.

[230] Xilinx, LogiCORE IP Fast Simplex Link (FSL) V2.0 Bus, April
2010. http://www.xilinx.com/support/documentation/ip_

documentation/fsl_v20.pdf.

[231] A. Holdings, AMBA AXI4-Stream Protocol Speci�cation, 2010.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.ihi0051a/index.html Accessed 2014.

[232] X. Li, M. Moussa, and S. Areibi, �Arithmetic formats for imple-
menting arti�cial neural networks on FPGAs,� Canadian Journal of
Electrical and Computer Engineering, vol. 31, pp. 31�40, Winter
2006. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=4028882.

[233] A. Damak, M. Krid, and D. Masmoudi, �Neural network based edge
detection with pulse mode operations and �oating point format pre-
cision,� in 3rd International Conference on Design and Technology
of Integrated Systems in Nanoscale Era, (Tozeur, Tunisia), pp. 1�5,
March 2008. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
tp=&arnumber=4540255.

[234] H. Hikawa, �Pulse mode multilayer neural network based on �oat-
ing point number representation,� in IEEE International Symposium
on Circuits and Systems, vol. 3, (Geneva, Switzerland), pp. 145�148
vol.3, 2000. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=856017.

[235] H. Hikawa, �Pulse mode multilayer neural network with �oating point op-
eration and on-chip learning,� in Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks, vol. 2, (Geneva,
Switzerland), pp. 71�76 vol.2, 2000. http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?tp=&arnumber=857877.

[236] H. El-Madany, F. Fahmy, N. El-Rahman, and H. Dorrah, �Design of
FPGA based neural network controller for earth station power system,�
Telkomnika, vol. 10, no. 2, pp. 281�290, 2012. http://iaesjournal.com/
online/index.php/TELKOMNIKA/article/view/681.

[237] M. Ho�man, P. Bauer, B. Hemrnelman, and A. Hasan, �Hardware syn-
thesis of arti�cial neural networks using �eld programmable gate arrays
and �xed-point numbers,� in IEEE Region 5 Conference, (San Anto-
nio, TX, USA), pp. 324�328, April 2006. ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=5507410.

177

http://www.eda.org/vasg/
http://www.eda.org/vasg/
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4028882
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4028882
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4540255
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4540255
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=856017
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=856017
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=857877
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=857877
http://iaesjournal.com/online/index.php/TELKOMNIKA/article/view/681
http://iaesjournal.com/online/index.php/TELKOMNIKA/article/view/681
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5507410
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5507410

[238] J. Vasquez, S. Perez, C. Travieso, and J. Alonso, �Meteorological Predic-
tion Implemented on Field-Programmable Gate Array,� Cognitive Com-
putation, vol. 5, no. 4, pp. 551�557, 2013. http://link.springer.com/

article/10.1007%2Fs12559-012-9158-z.

[239] H. Madokoro and K. Sato, �Hardware implementation of back-
propagation neural networks for real-time video image learning and
processing,� Journal of Computers (Finland), vol. 8, no. 3, pp. 559�
566, 2013. http://www.ojs.academypublisher.com/index.php/jcp/

article/view/jcp0803559566.

[240] A. Savich, M. Moussa, and S. Areibi, �The Impact of Arithmetic Repres-
entation on Implementing MLP-BP on FPGAs: A Study,� IEEE Trans-
actions on Neural Networks, vol. 18, pp. 240�252, Jan 2007. http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4049835.

[241] Altera, Variable Precision DSP Blocks in Arria 10 Devices, Decem-
ber 2013. http://www.altera.com/literature/hb/arria-10/a10_

dsp.pdf.

[242] Xilinx, 7 Series FPGAs Memory Resources, May 2014. http:

//www.xilinx.com/support/documentation/user_guides/ug473_

7Series_Memory_Resources.pdf.

[243] Altera, Internal Memory (RAM and ROM) User Guide, November 2013.
http://www.altera.com/literature/ug/ug_ram_rom.pdf.

[244] R. Muscedere, V. Dimitrov, G. Jullien, andW. Miller, �E�cient techniques
for binary-to-multidigit multidimensional logarithmic number system con-
version using range-addressable look-up tables,� IEEE Transactions on
Computers, vol. 54, pp. 257�271, March 2005. http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?tp=&arnumber=1388191.

[245] U. Martinez-Corral, K. Basterretxea, and R. Finker, �Scalable par-
allel architecture for singular value decomposition of large matrices,�
in Field Programmable Logic and Applications (FPL), 2014 24th
International Conference on, (Munich, Germany), pp. 1�4, Sept
2014. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=6927393.

[246] C.-W. Lin and J.-S. Wang, �A digital circuit design of hyperbolic tan-
gent sigmoid function for neural networks,� in IEEE International Sym-
posium on Circuits and Systems, (Seattle, WA, USA), pp. 856�859,
May 2008. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=4541553.

[247] K. Basterretxea, J. Tarela, and I. Del Campo, �Approximation of sigmoid
function and the derivative for hardware implementation of arti�cial neur-
ons,� IEEE Proceedings Circuits, Devices and Systems, vol. 151, pp. 18�24,

178

http://link.springer.com/article/10.1007%2Fs12559-012-9158-z
http://link.springer.com/article/10.1007%2Fs12559-012-9158-z
http://www.ojs.academypublisher.com/index.php/jcp/article/view/jcp0803559566
http://www.ojs.academypublisher.com/index.php/jcp/article/view/jcp0803559566
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4049835
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4049835
http://www.altera.com/literature/hb/arria-10/a10_dsp.pdf
http://www.altera.com/literature/hb/arria-10/a10_dsp.pdf
http://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
http://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
http://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
http://www.altera.com/literature/ug/ug_ram_rom.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1388191
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1388191
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6927393
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6927393
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4541553
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4541553

Feb 2004. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=1267679.

[248] B. Zamanlooy and M. Mirhassani, �E�cient VLSI Implementation
of Neural Networks With Hyperbolic Tangent Activation Function,�
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 22, pp. 39�48, Jan 2014. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=6409494.

[249] A. Armato, L. Fanucci, E. P. Scilingo, and D. De Rossi, �Low-error di-
gital hardware implementation of arti�cial neuron activation functions
and their derivative,� MICROPROCESSORS AND MICROSYSTEMS,
vol. 35, pp. 557�567, AUG 2011. http://www.sciencedirect.com/

science/article/pii/S0141933111000731.

[250] K. Basterretxea, J. Tarela, I. del Campo, and G. Bosque, �An experi-
mental study on nonlinear function computation for neural/fuzzy hard-
ware design,� IEEE Transactions on Neural Networks, vol. 18, pp. 266�
283, Jan 2007. ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=4049811.

[251] T. M. Inc., Fixed-Point Designer, 2014. www.mathworks.es/products/

fixed-point-designer/ Accessed 2014.

[252] Mentor Graphics, ModelSim, ASIC and FPGA design. www.mentor.com/
products/fpga/simulation/modelsim Accessed 2014.

[253] G. Mermoud, A. Upegui, C. A. Peña-Reyes, and E. Sanchez, �A
dynamically-recon�gurable fpga platform for evolving fuzzy systems,�
in IWANN (J. Cabestany, A. Prieto, and F. S. Hernández, eds.),
vol. 3512 of Lecture Notes in Computer Science, pp. 572�581, Springer,
2005. http://www.researchgate.net/publication/221581963_A_

Dynamically-Reconfigurable_FPGA_Platform_for_Evolving_Fuzzy_

Systems.

[254] N. Chalhoub, F. Muller, and M. Auguin, �FPGA-based generic
neural network architecture,� in International Symposium on Indus-
trial Embedded Systems, (Antibes Juan-Les-Pins, France), pp. 1 �4,
oct. 2006. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=4197498.

[255] J. Starzyk, Y. Guo, and Z. Zhu, �Dynamically recon�gurable neuron archi-
tecture for the implementation of self- organizing learning array,� in 18th
International Parallel and Distributed Processing Symposium, (Santa Fe,
NM, USA), pp. 143�, April 2004. http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=1303122.

[256] Xilinx Inc., PicoBlaze 8-bit Embedded Microcontroller User Guide,
June 2011. http://www.xilinx.com/support/documentation/ip_

documentation/ug129.pdf.

179

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1267679
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1267679
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6409494
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6409494
http://www.sciencedirect.com/science/article/pii/S0141933111000731
http://www.sciencedirect.com/science/article/pii/S0141933111000731
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4049811
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4049811
www.mathworks.es/products/fixed-point-designer/
www.mathworks.es/products/fixed-point-designer/
www.mentor.com/products/fpga/simulation/modelsim
www.mentor.com/products/fpga/simulation/modelsim
http://www.researchgate.net/publication/221581963_A_Dynamically-Reconfigurable_FPGA_Platform_for_Evolving_Fuzzy_Systems
http://www.researchgate.net/publication/221581963_A_Dynamically-Reconfigurable_FPGA_Platform_for_Evolving_Fuzzy_Systems
http://www.researchgate.net/publication/221581963_A_Dynamically-Reconfigurable_FPGA_Platform_for_Evolving_Fuzzy_Systems
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4197498
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4197498
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1303122
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1303122
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf

[257] N. Harb, S. Niar, M. Saghir, Y. Hillali, and R. Atitallah, �Dynamic-
ally recon�gurable architecture for a driver assistant system,� in IEEE
9th Symposium on Application Speci�c Processors (SASP), (San Diego,
CA, USA), pp. 62�65, June 2011. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=5941079.

[258] J. Echanobe, I. Del Campo, R. Finker, and K. Basterretxea, �Dy-
namic Partial Recon�guration in Embedded Systems for Intelligent
Environments,� in 8th International Conference on Intelligent En-
vironments (IE), 2012, (Guanajuato, Mexico), pp. 109�113, June
2012. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=6258510.

[259] J. Grantner and C. Nguyen, �Flexible decision support system using dy-
namic partial recon�guration technology,� in 2014 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), (Beijing, People's Repub-
lic of China), pp. 2270�2276, July 2014. http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?tp=&arnumber=6891850.

[260] Xilinx Inc., Partial Recon�guration in the Vivado Design Suite,
Accessed 2015. http://www.xilinx.com/products/design-tools/

vivado/implementation/partial-reconfiguration.html.

[261] D. Amos, A. Lesea, and R. Richter, �Getting the design ready for the
prototype,� in FPGA-based Prototyping Methodology Manual, ch. Chapter
7, Synopsys Press, 2011.

[262] Xilinx, 7 Series FPGAs Clocking Resources, November 2014.
http://www.xilinx.com/support/documentation/user_guides/

ug472_7Series_Clocking.pdf.

[263] Altera, Clock Control Block (ALTCLKCTRL) IP Core, August 2014.
http://www.altera.com/literature/ug/ug_altclock.pdf.

[264] F. Rivoallon and J. Balasubramanian, Reducing Switching Power with
Intelligent Clock Gating. Xilinx. http://www.xilinx.com/support/

documentation/white_papers/wp370_Intelligent_Clock_Gating.

pdf.

[265] J. Kathuria, M. Ayoubkhan, and A. Noor, �A review of clock gat-
ing techniques,� MIT International Journal of Electronics and Com-
munication Engineering, vol. 1, pp. 106�114, August 2011. http://

mitpublications.org/yellow_images/1315565167_logo_13.pdf.

[266] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish,
and H. Duman, �Creating an ambient-intelligence environment us-
ing embedded agents,� IEEE Intelligent Systems, vol. 19, pp. 12�20,
Nov 2004. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=1363729.

180

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5941079
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5941079
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6258510
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6258510
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6891850
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6891850
http://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.html
http://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.html
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.xilinx.com/support/documentation/white_papers/wp370_Intelligent_Clock_Gating.pdf
http://www.xilinx.com/support/documentation/white_papers/wp370_Intelligent_Clock_Gating.pdf
http://www.xilinx.com/support/documentation/white_papers/wp370_Intelligent_Clock_Gating.pdf
http://mitpublications.org/yellow_images/1315565167_logo_13.pdf
http://mitpublications.org/yellow_images/1315565167_logo_13.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1363729
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1363729

[267] M. Woolridge and M. J. Wooldridge, Introduction to Multiagent Systems.
New York, NY, USA: John Wiley & Sons, Inc., 2001.

[268] M.-J. Lee, G.-H. Hwang, W.-T. Jang, and K.-H. Cha, �Robotic agent
control based on adaptive intelligent algorithm in ubiquitous networks,�
in Agent and Multi-Agent Systems: Technologies and Applications
(N. Nguyen, A. Grzech, R. Howlett, and L. Jain, eds.), vol. 4496 of Lec-
ture Notes in Computer Science, pp. 539�548, Springer Berlin Heidelberg,
2007. http://dx.doi.org/10.1007/978-3-540-72830-6_56.

[269] P. Vidnerova, S. Slusny, and R. Neruda, �Evolutionary trained radial basis
function networks for robot control,� in 10th International Conference on
Control, Automation, Robotics and Vision, (Hanoi, Vietnam), pp. 833�
838, Dec 2008. http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=4795625.

[270] M. Salvo, R. Mateo, J. Lee, and M. Lee, �Health monitor agent based
on neural networks for ubiquitous healthcare environment,� in Agent
and Multi-Agent Systems: Technologies and Applications (A. Hakansson,
N. Nguyen, R. Hartung, R. Howlett, and L. Jain, eds.), vol. 5559 of Lec-
ture Notes in Computer Science, pp. 380�388, Springer Berlin Heidelberg,
2009. http://dx.doi.org/10.1007/978-3-642-01665-3_38.

[271] R. Yang and L. Wang, �Multi-agent based energy and comfort man-
agement in a building environment considering behaviors of occupants,�
in 2012 IEEE Power and Energy Society General Meeting, (San Diego,
CA, USA), pp. 1�7, July 2012. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=6345671.

[272] Xilinx, ML605 Hardware User Guide, October 2012. http://www.

xilinx.com/support/documentation/boards_and_kits/ug534.pdf.

[273] S. R. Garzon, �Intelligent in-car-infotainment systems: A contextual per-
sonalized approach,� in 8th International Conference on Intelligent Envir-
onments (IE), (Guanajuato, Mexico), pp. 315�318, June 2012. http://

ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6258541.

[274] J. H. L. Hansen, P. Boyraz, K. Takeda, and H. Abut, eds., Digital
Signal Processing for In-Vehicle Systems and Safety. Springer Publish-
ing Company, Incorporated, 2011. http://www.springer.com/gp/book/
9781441996060.

[275] A. Schmidt, J. Paradiso, and B. Noble, �Automotive pervasive com-
puting,� IEEE Pervasive Computing, vol. 10, no. 3, pp. 12�13, 2011.
http://doi.ieeecomputersociety.org/10.1109/MPRV.2011.45.

[276] E. Shang, J. Li, X. An, and H. He, �A real-time lane departure warning
system based on fpga,� in 14th International IEEE Conference on Intelli-
gent Transportation Systems (ITSC), (Washington, DC, USA), pp. 1243�

181

http://dx.doi.org/10.1007/978-3-540-72830-6_56
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4795625
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4795625
http://dx.doi.org/10.1007/978-3-642-01665-3_38
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6345671
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6345671
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6258541
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6258541
http://www.springer.com/gp/book/9781441996060
http://www.springer.com/gp/book/9781441996060
http://doi.ieeecomputersociety.org/10.1109/MPRV.2011.45

1248, Oct 2011. http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=6082815.

[277] Z. Stamenkovic, K. Tittelbach-Helmrich, J. Domke, C. Lorchner-Gerdaus,
J. Anders, V. Sark, M. Eric, and N. Sira, �Rear view camera system for car
driving assistance,� in 28th International Conference on Microelectronics
(MIEL), (Nis, Serbia), pp. 383�386, May 2012. ieeexplore.ieee.org/

xpl/articleDetails.jsp?tp=&arnumber=6222882.

[278] A. Eskandarian and A. Mortazavi, �Unobtrusive driver drowsiness detec-
tion system and method,� May 2010. http://www.google.com/patents/
US20100109881.

[279] H. Abut, A. Ercil, H. Erdogan, B. Çürüklü, H. C. Koman, F. Tas, A. Ö.
Argunsah, S. Cosar, B. Akan, H. Karabalkan, E. Cökelek, R. Ficici,
V. Sezer, S. Danis, M. Karaca, M. Abbak, M. G. Uzunbas, K. Erit-
men, C. Kalaycioglu, M. Imamoglu, C. Karabat, M. Peyic, and B. Arslan,
�Data collection with uyanik: Too much pain; but gains are coming,� in
Proc. of the Biennial on DSP for In-Vehicle and Mobile Systems, (Istan-
bul, Turkey), June 2007. http://www.iss.mdh.se/index.php?choice=

publications&id=1831.

[280] Q. Ji, Z. Zhu, and P. Lan, �Real-time nonintrusive monitoring and
prediction of driver fatigue,� IEEE Transactions on Vehicular Techno-
logy, vol. 53, pp. 1052�1068, July 2004. ieeexplore.ieee.org/xpl/

articleDetails.jsp?tp=&arnumber=1317209.

[281] L. Bergasa, J. Nuevo, M. Sotelo, R. Barea, and M. Lopez, �Real-
time system for monitoring driver vigilance,� IEEE Transactions
on Intelligent Transportation Systems, vol. 7, pp. 63�77, March
2006. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=

&arnumber=1603553.

[282] M. Rocha, P. Cortez, and J. Neves, �Evolutionary design of neural net-
works for classi�cation and regression,� in Adaptive and Natural Comput-
ing Algorithms (B. Ribeiro, R. Albrecht, A. Dobnikar, D. Pearson, and
N. Steele, eds.), pp. 304�307, Springer Vienna, 2005.

[283] B. Correa and A. Gonzalez, �Evolutionary algorithms for selecting the ar-
chitecture of a mlp neural network: A credit scoring case,� in IEEE 11th
International Conference on Data Mining Workshops (ICDMW), (Van-
couver, BC, Canada), pp. 725�732, Dec 2011. http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=6137452.

[284] C. Cortes and V. Vapnik, �Support-vector networks,� Machine Learning,
vol. 20, no. 3, pp. 273�297, 1995. http://link.springer.com/article/
10.1023%2FA%3A1022627411411.

182

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6082815
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6082815
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6222882
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6222882
http://www.google.com/patents/US20100109881
http://www.google.com/patents/US20100109881
http://www.iss.mdh.se/index.php?choice=publications&id=1831
http://www.iss.mdh.se/index.php?choice=publications&id=1831
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1317209
ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1317209
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1603553
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1603553
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6137452
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6137452
http://link.springer.com/article/10.1023%2FA%3A1022627411411
http://link.springer.com/article/10.1023%2FA%3A1022627411411

[285] K. P. Bennett and C. Campbell, �Support vector machines: Hype or hal-
lelujah?,� SIGKDD Explor. Newsl., vol. 2, pp. 1�13, dec 2000. http:

//doi.acm.org/10.1145/380995.380999.

[286] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, �Extreme learning ma-
chine for regression and multiclass classi�cation,� IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, pp. 513�
529, April 2012. http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?tp=&arnumber=6035797.

[287] S. Decherchi, P. Gastaldo, A. Leoncini, and R. Zunino, �E�cient digital
implementation of extreme learning machines for classi�cation,� IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 59, pp. 496�
500, Aug 2012. http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=6236105.

[288] J. Martanez-Villena, A. Rosado-Munoz, and E. Soria-Olivas, �Hardware
implementation methods in random vector functional-link networks,� Ap-
plied Intelligence, vol. 41, no. 1, pp. 184�195, 2014. http://link.

springer.com/article/10.1007%2Fs10489-013-0501-1.

[289] Nanyang Technological University, Extreme Learning Machine, Accessed
2014. Available at: http://www.ntu.edu.sg/home/egbhuang/.

183

http://doi.acm.org/10.1145/380995.380999
http://doi.acm.org/10.1145/380995.380999
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6035797
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6035797
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6236105
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6236105
http://link.springer.com/article/10.1007%2Fs10489-013-0501-1
http://link.springer.com/article/10.1007%2Fs10489-013-0501-1
http://www.ntu.edu.sg/home/egbhuang/

	Agradecimientos
	Introduction
	Nomenclature
	Contents
	List of Figures
	List of Tables
	Resumen
	State of the Art
	Ambient Intelligence
	Introduction to Ambient Intelligence
	Description of an Ambient Intelligence Environment
	Algorithms
	Implementations of the Algorithms
	Example of Ambient Intelligence Environments

	Soft Computing: Artificial Neural Networks
	Introduction to Soft Computing
	Neural Networks
	Learning Algorithms

	Artificial Neural Network Implementation
	Software Artificial Neural Networks
	Hardware Artificial Neural Networks
	Hardware/Software Artificial Neural Networks

	Programmable Logic Devices
	FPGA Configuration Technology
	Dynamic Partial Reconfiguration
	Field Programmable Gate Array Manufacturers

	A Hardware/Software Architecture for an Artificial Neural Network
	Global Hardware/Software Architecture
	General Scheme
	Communication Systems
	Software Partition
	Hardware Partition

	Hardware Partition: Architecture of the Artificial Neural Network Core
	Data Representation and Arithmentic
	Artificial Neural Network Core Scheme
	Artificial Neuron Architecture
	Weight and Offset Storage
	Activation Function Implementation
	Artificial Neural Network Core Control: Finite State Machine
	Artificial Neural Network Core Implementation

	Software Partition
	Components of the Software Partition
	Implementation Issues
	Learning Algorithm Acceleration Using the Hardware Partition

	Controlled Accuracy Activation Function Implementation
	Function Approximation Scheme Using Taylor Series
	Selection of the Word Length
	Hardware Implementation of the Taylor Module
	Simulations of the Proposed Scheme
	Field Programmable Gate Array Implementation of the Taylor Module

	An Artificial Neural Network Architecture Using the Taylor Module to Implement the Activation Fucntion
	An Artificial Neural Network Core with One Taylor Module per Layer

	Conclusions

	Dynamic Partial Reconfiguration
	Dynamic Partial Reconfiguration in Intelligent Environments
	Restrictions Introduced by the Design Tool
	Reconfiguring the Entire Hardware Partition
	Changing the Artificial Neural Network Topology
	Changing the Accuracy of the Activation Function

	Reconfiguring the Internal Modules of the Artificial Neural Network
	Changing the Activation Functions
	Removing and Adding the Neurons of the Hidden Layer

	Power Reduction by Means of Gated Clocks
	Conclusions

	Applications of the Hardware/Software Artificial Neural Network Architecture to Real-world Intelligent Environments
	Development of an Embedded Agent for an Intelligent Inhabited Environment
	iDorm Intelligent Environment
	Topology and Parameters of the Intelligent Agent
	Simulation Results
	Hardware/Software Architecture of the Intelligent Agent
	Implementation Considerations and Results

	Development of a Real-time Driver Identification Embedded System for Ambient Intelligence Applied to the Car Environment
	Uyanik Instrumented Car
	Driver Identification Based on Extreme Learning Machines and Statistical Analysis
	Hardware/Software Architecture
	Simulation and Experimental Results
	Timing Considerations and Resource Utilization

	Conclusions

	Final Conclusions and Future Work
	Conclusions
	Future Work
	Publications

	Bibliography
	5 a 12.pdf
	3333333333
	44444444
	Página en blanco
	Página en blanco
	Página en blanco
	Página en blanco

	888888888.pdf
	Página en blanco
	Página en blanco
	Página en blanco
	Página en blanco

