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The aim of this paper is to present fixed point result of mappings satisfying a generalized rational contractive condition in the setup
of multiplicative metric spaces. As an application, we obtain a common fixed point of a pair of weakly compatible mappings. Some
common fixed point results of pair of rational contractive types mappings involved in cocyclic representation of a nonempty subset
of a multiplicative metric space are also obtained. Some examples are presented to support the results proved herein. Our results
generalize and extend various results in the existing literature.

1. Introduction and Preliminaries

Fixed point theory provides the most important and tradi-
tional tools for proving the existence of solutions of many
problems in both pure and applied mathematics. In metric
fixed point theory, the interplay between contractive con-
dition and the existence and uniqueness of a fixed point
has been very strong and fruitful. The study of fixed points
of mappings which satisfy certain contractive conditions
has primary applications in the solution of differential and
integral equations (see, e.g., [1–5]). Theorems dealing with
fixed point of certain mappings inspired and motivated the
development of many other important kinds of points like
coincidence points, intersection points, sectional points, and
so forth.

One of the basic and most widely applied fixed point
theorems in mathematical analysis is “Banach Contraction
Mapping Principle” (or Banach’s Fixed Point Theorem). Kirk
et al. [4] obtained some fixed point results for mappings
satisfying cyclical contractive conditions. The Banach con-
traction mappings are continuous mappings, while cyclic
contraction mappings need not be continuous. Păcurar and
Rus [6] studied some fixed point results for cyclic weak

contractions. Piątek [7] obtained some results on cyclicMeir-
Keeler contractions in metric spaces. Using fixed point result
of weakly contractive map, Karapinar [3] established some
interesting fixed point results for cyclic 𝜙-weak contraction
mappings. Recently, Derafshpour et al. [8] obtained results on
the existence of best proximity points of cyclic contractions.
For more results in this direction, we refer to [9–15].

Banach contraction principle has been generalized either
by extending the domain of the mapping or by considering a
more general contractive condition on themappings.Ozavsar
and Cevikel [16] proved an analogous result to Banach
contraction principle in the framework of multiplicative
metric spaces. They also studied some topological proper-
ties of the relevant multiplicative metric space. Bashirov et
al. [17] studied the concept of multiplicative calculus and
proved a fundamental theorem of multiplicative calculus.
They also illustrated the usefulness of multiplicative calculus
with some interesting applications. Multiplicative calculus
provides natural and straightforward way to compute the
derivative of product and quotient of two functions [18].
It was shown that the multiplicative differential equations
are more suitable than the ordinary differential equations
in investigating some problems in economics and finance.
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Due to its operational simplicity and support to Newtonian
calculus, it has attracted the attention of several researchers
in the recent years. Furthermore, based on the definition of
multiplicative absolute value function, they defined the mul-
tiplicative distance between two nonnegative real numbers
and between two positive square matrices. This provided the
basis for multiplicative metric spaces. Florack and van Assen
[19] gave applications of multiplicative calculus in biomedical
image analysis. He et al. [20] studied common fixed points
for weak commutative mappings on a multiplicative metric
space (see also [21]). Recently, Yamaod and Sintunavarat [22]
obtained some fixed point results for generalized contraction
mappings with cyclic (𝛼, 𝛽)-admissible mapping in multi-
plicative metric spaces.

In this paper, we obtain fixed point result of a generalized
rational contractive mapping in the framework of multiplica-
tive metric spaces. Employing this result, a common fixed
point of a pair of weakly compatiblemappings is obtained.We
study the sufficient conditions for the existence of common
fixed points of pair of rational contractive types mappings
involved in cocyclic representation of a nonempty subset of a
multiplicativemetric space. Our results generalize and extend
comparable results in [3].

ByR,R+,R+
𝑛
, andNwe denote the set of all real numbers,

the set of all nonnegative real numbers, the set of all 𝑛-tuples
of positive real numbers, and the set of all natural numbers,
respectively.

Consistent with [16, 17], the following definitions and
results will be needed in the sequel.

Definition 1 (see [17]). Let 𝑋 be a nonempty set. A mapping
𝑑 : 𝑋 × 𝑋 → R+ is said to be a multiplicative metric on𝑋 if
for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following conditions hold:

(i) 𝑑(𝑥, 𝑦) ≥ 1 and 𝑑(𝑥, 𝑦) = 1 if and only if 𝑥 = 𝑦.
(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).
(iii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) ⋅ 𝑑(𝑧, 𝑦).

The pair (𝑋, 𝑑) is called a multiplicative metric space.

We define absolute valued function that includes the
negative real numbers in its domain.

Definition 2. A multiplicative absolute value function | ⋅ | :
R → R+ is defined as

|𝑥| =

{{{{{{{{{{{
{{{{{{{{{{{
{

𝑥 if 𝑥 ≥ 1,
1
𝑥

if 𝑥 ∈ (0, 1) ,

1 if 𝑥 = 0,

−
1
𝑥

if 𝑥 ∈ (−1, 0) ,

−𝑥 if 𝑥 ≤ −1.

(1)

Using the definition of multiplicative absolute value
function, we can prove the following proposition.

Proposition 3. For arbitrary 𝑥, 𝑦 ∈ R+, the multiplicative
absolute value function | ⋅ | : R+ → R+ satisfies the following:

(1) |𝑥| ≥ 1.
(2) 𝑥 ≤ |𝑥|.
(3) 1/|𝑥| ≤ 𝑥 if 𝑥 > 0 and 𝑥 ≤ 1/|𝑥| if 𝑥 ≤ 0.
(4) |𝑥 ⋅ 𝑦| ≤ |𝑥||𝑦|.

Example 4 (see [16]). Let𝑋 = R+
𝑛
. Then

𝑑1 (𝑥, 𝑦) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥1
𝑦1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥2
𝑦2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅ ⋅ ⋅ ⋅ ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑛

𝑦
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑑2 (𝑥, 𝑦) = max{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥1
𝑦1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥2
𝑦2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, . . . ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑛

𝑦
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

(2)

define multiplicative metrices on 𝑋, where 𝑥 = (𝑥1, 𝑥2, . . .,
𝑥
𝑛
) and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ R+

𝑛
.

Definition 5 (see [16]). Let (𝑋, 𝑑) be a multiplicative metric
space, 𝑥0 an arbitrary point in 𝑋, and 𝜀 > 1. A multiplicative
open ball 𝐵(𝑥0, 𝜀) of radius 𝜀 centered at 𝑥0 is the set {𝑧 ∈ 𝑋 :
𝑑(𝑧, 𝑥0) < 𝜀}.

A sequence {𝑥
𝑛
} in a multiplicative metric space (𝑋, 𝑑) is

said to be multiplicative convergent to some point 𝑥 ∈ 𝑋 if,
for any given 𝜀 > 1, there exists 𝑛0 ∈ N such that 𝑥

𝑛
∈ 𝐵(𝑥, 𝜀)

for all 𝑛 ≥ 𝑛0. If {𝑥𝑛} converges to 𝑥, we write 𝑥𝑛 → 𝑥 as
𝑛 → ∞.

Definition 6 (see [16]). A sequence {𝑥
𝑛
} in a multiplicative

metric space (𝑋, 𝑑) is multiplicative convergent to 𝑥 in 𝑋 if
and only if 𝑑(𝑥

𝑛
, 𝑥) → 1 as 𝑛 → ∞.

Definition 7. Let (𝑋, 𝑑
𝑋
) and (𝑌, 𝑑

𝑌
) be two multiplicative

metric spaces and 𝑥0 an arbitrary but fixed element of 𝑋. A
mapping 𝑓 : 𝑋 → 𝑌 is said to be multiplicative continuous
at 𝑥0 if and only if 𝑥𝑛 → 𝑥0 in (𝑋, 𝑑𝑋) implies that 𝑓(𝑥

𝑛
) →

𝑓(𝑥0) in (𝑌, 𝑑𝑌). That is, given arbitrary 𝜀 > 1, there exists
𝛿 > 1 which depends on 𝑥0 and 𝜀 such that 𝑑

𝑌
(𝑓𝑥, 𝑓𝑥0) < 𝜀

for all those 𝑥 in𝑋 for which 𝑑
𝑋
(𝑥, 𝑥0) < 𝛿.

Definition 8 (see [16]). A sequence {𝑥
𝑛
} in a multiplicative

metric space (𝑋, 𝑑) is said to be multiplicative Cauchy
sequence if, for any 𝜀 > 1, there exists 𝑛0 ∈ N such that
𝑑(𝑥
𝑛
, 𝑥
𝑚
) < 𝜀 for all𝑚, 𝑛 ≥ 𝑛0.

Amultiplicativemetric space (𝑋, 𝑑) is said to be complete
if every multiplicative Cauchy sequence {𝑥

𝑛
} in 𝑋 is multi-

plicative convergent in𝑋.

Theorem 9 (see [16]). A sequence {𝑥
𝑛
} in a multiplicative

metric space (𝑋, 𝑑) is multiplicative Cauchy if and only if
𝑑(𝑥
𝑛
, 𝑥
𝑚
) → 1 as 𝑛,𝑚 → ∞.

Example 10. Let 𝑋 = 𝐶∗[𝑎, 𝑏] be the collection of all real-
valued multiplicative continuous functions over [𝑎, 𝑏] ⊆ R+

with the multiplicative metric 𝑑 defined by

𝑑 (𝑓, 𝑔) = sup
𝑥∈[𝑎,𝑏]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑥)

𝑔 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
for arbitrary 𝑓, 𝑔 ∈ 𝑋, (3)

where | ⋅ | : R+ → R+ is a multiplicative absolute value
function. Then (𝐶∗[𝑎, 𝑏], 𝑑) is complete.
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Recall that if 𝑓 and 𝑔 are two self-maps on a set 𝑋 and
𝑢 = 𝑓𝑥 = 𝑔𝑥 for some 𝑥 in 𝑋, then 𝑥 is called a coincidence
point of𝑓 and 𝑔, and 𝑢 is called a point of coincidence of𝑓 and
𝑔.

Definition 11 (see [23]). Two self-maps 𝑓 and 𝑔 on a
nonempty set 𝑋 are called weakly compatible if they com-
mute at their coincidence point.

We will also need the following proposition from [23].

Proposition 12. Let 𝑓 and 𝑔 be weakly compatible self-maps
on a set 𝑋. If 𝑓 and 𝑔 have a unique point of coincidence 𝑤 =
𝑓𝑥 = 𝑔𝑥, then𝑤 is the unique common fixed point of 𝑓 and 𝑔.

Definition 13 (see [12]). Let {𝑋
𝑖
: 𝑖 = 1, 2, . . . , 𝑝} be a finite

collection of nonempty subsets of a set 𝑋, where 𝑝 is some
positive integer and 𝑓, 𝑔 : 𝑋 → 𝑋. The set 𝑋 is said to have
a cocyclic representation with respect to the collection {𝑋

𝑖
:

𝑖 = 1, 2, . . . , 𝑝} and a pair (𝑓, 𝑔) if

(1) 𝑋 = ∪
𝑝

𝑖=1𝑋𝑖;
(2) 𝑓(𝑋1) ⊆ 𝑔(𝑋2), . . . , 𝑓(𝑋𝑝−1) ⊆ 𝑔(𝑋

𝑝
), 𝑓(𝑋

𝑝
) ⊆

𝑔(𝑋1).

Definition 14. The control functions 𝜓 and 𝜑 are defined as
follows:

(i) 𝜓 : [1,∞) → [1,∞) is a continuous nondecreasing
function with 𝜓(𝑡) = 1 if and only if 𝑡 = 1.

(ii) 𝜑 : [1,∞) → [1,∞) is a lower semicontinuous func-
tion with 𝜑(𝑡) = 1 if and only if 𝑡 = 1.

2. Main Results

In this section, we obtain several fixed and common fixed
point results of self-maps satisfying certain generalized con-
tractive conditions in the framework of multiplicative metric
space.

We start with the following result.

Theorem 15. Let (𝑋, 𝑑) be a complete multiplicative metric
space and 𝑓 : 𝑋 → 𝑋. Suppose that there exist control
functions 𝜓 and 𝜑 such that

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤
𝜓 (𝑀
𝑓
(𝑥, 𝑦))

𝜑 (𝑀
𝑓
(𝑥, 𝑦))

, (4)

for any 𝑥, 𝑦 ∈ 𝑋, where

𝑀
𝑓
(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑓𝑥, 𝑥) , 𝑑 (𝑓𝑦, 𝑦) ,

(𝑑 (𝑓𝑥, 𝑦) ⋅ 𝑑 (𝑓𝑦, 𝑥))
1/2
} .

(5)

Then 𝑓 has a unique fixed point.

Proof. Let 𝑥0 be a given point in𝑋. Define a sequence {𝑥𝑛} in
𝑋 as 𝑥

𝑛
= 𝑓𝑛𝑥0 or equivalently as 𝑥𝑛+1 = 𝑓𝑥𝑛 for 𝑛 ∈ N. If

𝑥
𝑘
= 𝑥
𝑘+1 for some 𝑘, then we have 𝑓𝑥

𝑘
= 𝑥
𝑘+1 = 𝑥𝑘 and the

result follows. Assume that 𝑥
𝑛+1 ̸= 𝑥

𝑛
, for all 𝑛 ∈ N; that is,

𝑀
𝑓
(𝑥
𝑛+1, 𝑥𝑛) > 1 for all 𝑛 ∈ N. From (4), we have

𝜓 (𝑑 (𝑥
𝑛+2, 𝑥𝑛+1)) = 𝜓 (𝑑 (𝑓𝑥𝑛+1, 𝑓𝑥𝑛))

≤
𝜓 (𝑀
𝑓
(𝑥
𝑛+1, 𝑥𝑛))

𝜑 (𝑀
𝑓
(𝑥
𝑛+1, 𝑥𝑛))

,
(6)

where

𝑀
𝑓
(𝑥
𝑛+1, 𝑥𝑛) = max {𝑑 (𝑥

𝑛+1, 𝑥𝑛) , 𝑑 (𝑓𝑥𝑛+1, 𝑥𝑛+1) ,

𝑑 (𝑓𝑥
𝑛
, 𝑥
𝑛
) , (𝑑 (𝑓𝑥

𝑛+1, 𝑥𝑛) ⋅ 𝑑 (𝑓𝑥𝑛, 𝑥𝑛+1))
1/2
}

= max {𝑑 (𝑥
𝑛+1, 𝑥𝑛) , 𝑑 (𝑥𝑛+2, 𝑥𝑛+1) , 𝑑 (𝑥𝑛+1, 𝑥𝑛) ,

(𝑑 (𝑥
𝑛+2, 𝑥𝑛) ⋅ 𝑑 (𝑥𝑛+1, 𝑥𝑛+1))

1/2
}

= max {𝑑 (𝑥
𝑛+1, 𝑥𝑛) , 𝑑 (𝑥𝑛+2, 𝑥𝑛+1) , 𝑑 (𝑥𝑛+2, 𝑥𝑛)

1/2
}

≤ max {𝑑 (𝑥
𝑛+1, 𝑥𝑛) , 𝑑 (𝑥𝑛+2, 𝑥𝑛+1) ,

(𝑑 (𝑥
𝑛+2, 𝑥𝑛+1) ⋅ 𝑑 (𝑥𝑛+1, 𝑥𝑛))

1/2
}

≤ max{𝑑 (𝑥
𝑛+1, 𝑥𝑛) , 𝑑 (𝑥𝑛+2, 𝑥𝑛+1) ,

(
𝑑 (𝑥
𝑛+2, 𝑥𝑛+1) + 𝑑 (𝑥𝑛+1, 𝑥𝑛)

2
)}

= max {𝑑 (𝑥
𝑛+1, 𝑥𝑛) , 𝑑 (𝑥𝑛+2, 𝑥𝑛+1)} .

(7)

If 𝑀
𝑓
(𝑥
𝑘+1, 𝑥𝑘) ≤ 𝑑(𝑥

𝑘+2, 𝑥𝑘+1) for some 𝑘 ∈ N, then
𝜓(𝑑(𝑥

𝑘+2, 𝑥𝑘+1)) ≤ 𝜓(𝑑(𝑥𝑘+2, 𝑥𝑘+1))/𝜑(𝑀𝑓(𝑥𝑘+1, 𝑥𝑘)) implies
𝜑(𝑀
𝑓
(𝑥
𝑘+1, 𝑥𝑘)) ≤ 1, a contradiction. Hence𝑀

𝑓
(𝑥
𝑛+1, 𝑥𝑛) ≤

𝑑(𝑥
𝑛+1, 𝑥𝑛) for all 𝑛 ∈ N. Also, 𝑑(𝑥

𝑛+1, 𝑥𝑛) ≤ 𝑀𝑓(𝑥𝑛+1, 𝑥𝑛) for
all 𝑛 ∈ N and hence𝑀

𝑓
(𝑥
𝑛+1, 𝑥𝑛) = 𝑑(𝑥𝑛+1, 𝑥𝑛) for all 𝑛 ∈ N.

Thus, we have

𝜓 (𝑑 (𝑥
𝑛+2, 𝑥𝑛+1)) ≤

𝜓 (𝑑 (𝑥
𝑛+1, 𝑥𝑛))

𝜑 (𝑑 (𝑥
𝑛+1, 𝑥𝑛))

< 𝜓 (𝑑 (𝑥
𝑛+1, 𝑥𝑛))

(8)

which implies that
𝑑 (𝑥
𝑛+2, 𝑥𝑛+1) ≤ 𝑑 (𝑥𝑛+1, 𝑥𝑛) (9)

for all 𝑛 ∈ N. Thus {𝑑(𝑥
𝑛+1, 𝑥𝑛)} is (strictly) decreasing of

positive real numbers. Consequently, there exists 𝑐 ≥ 1 such
that {𝑑(𝑥

𝑛+1, 𝑥𝑛)} converges to 𝑐. Suppose that 𝑐 > 1. Now

𝜓 (𝑑 (𝑥
𝑛+2, 𝑥𝑛+1)) ≤

𝜓 (𝑀
𝑓
(𝑥
𝑛+1, 𝑥𝑛))

𝜑 (𝑀
𝑓
(𝑥
𝑛+1, 𝑥𝑛))

, (10)

and lower semicontinuity of 𝜑 gives that
lim sup
𝑛→∞

𝜓 (𝑑 (𝑥
𝑛+2, 𝑥𝑛+1))

≤
lim sup

𝑛→∞
𝜓 (𝑀
𝑓
(𝑥
𝑛+1, 𝑥𝑛))

lim inf
𝑛→∞

𝜑 (𝑀
𝑓
(𝑥
𝑛+1, 𝑥𝑛))

,

(11)
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which implies that 𝜓(𝑐) ≤ 𝜓(𝑐)/𝜑(𝑐) < 𝜓(𝑐), a contradiction
as 𝜑(𝑐) > 1. Therefore, 𝑐 = 1; that is, lim

𝑛→∞
𝑑(𝑥
𝑛+1, 𝑥𝑛) = 1.

Now, we claim that lim
𝑛,𝑚→∞

𝑑(𝑥
𝑛
, 𝑥
𝑚
) = 1. If not,

then there exist 𝜀 > 1 and sequences {𝑛
𝑘
}, {𝑚
𝑘
} in N,

with 𝑛
𝑘
> 𝑚
𝑘
≥ 𝑘, such that 𝑑(𝑥

𝑛𝑘
, 𝑥
𝑚𝑘
) ≥ 𝜀 for all

𝑘 ∈ N. Without any loss of generality, we can assume that
𝑑(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1) < 𝜀. Since {𝑑(𝑥

𝑚𝑘−1, 𝑥𝑚𝑘)} is a subsequence of
convergent sequence {𝑑(𝑥

𝑛−1, 𝑥𝑛)} → 1 as 𝑛 → ∞, then
{𝑑(𝑥
𝑚𝑘−1, 𝑥𝑚𝑘)} → 1 as 𝑘 → ∞. Now

𝜀 ≤ 𝑑 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) ≤ 𝑑 (𝑥

𝑛𝑘
, 𝑥
𝑚𝑘−1) ⋅ 𝑑 (𝑥𝑚𝑘−1, 𝑥𝑚𝑘) (12)

implies that

lim
𝑘→∞

𝑑 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) = 𝜀. (13)

From (13) and inequality 𝑑(𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) ≤ 𝑑(𝑥

𝑚𝑘
, 𝑥
𝑚𝑘−1) ⋅

𝑑(𝑥
𝑚𝑘−1, 𝑥𝑛𝑘), it follows that 𝜀 ≤ lim

𝑘→∞
𝑑(𝑥
𝑚𝑘−1, 𝑥𝑛𝑘). Also,

the inequality 𝑑(𝑥
𝑚𝑘−1, 𝑥𝑛𝑘) ≤ 𝑑(𝑥𝑚𝑘−1, 𝑥𝑚𝑘) ⋅ 𝑑(𝑥𝑚𝑘 , 𝑥𝑛𝑘) and

(13) give that lim
𝑘→∞

𝑑(𝑥
𝑚𝑘−1, 𝑥𝑛𝑘) ≤ 𝜀, and hence we have

lim
𝑘→∞

𝑑 (𝑥
𝑚𝑘−1, 𝑥𝑛𝑘) = 𝜀. (14)

Equation (14) and inequality 𝑑(𝑥
𝑚𝑘−1, 𝑥𝑛𝑘) ≤ 𝑑(𝑥𝑚𝑘−1, 𝑥𝑛𝑘+1) ⋅

𝑑(𝑥
𝑛𝑘+1, 𝑥𝑛𝑘) imply that 𝜀 ≤ lim

𝑘→∞
𝑑(𝑥
𝑚𝑘−1, 𝑥𝑛𝑘+1), while

inequality 𝑑(𝑥
𝑚𝑘−1, 𝑥𝑛𝑘+1) ≤ 𝑑(𝑥𝑚𝑘−1, 𝑥𝑛𝑘) ⋅ 𝑑(𝑥𝑛𝑘 , 𝑥𝑛𝑘+1) and

(14) imply that lim
𝑘→∞

𝑑(𝑥
𝑚𝑘−1, 𝑥𝑛𝑘+1) ≤ 𝜀, and hence we

have

lim
𝑘→∞

𝑑 (𝑥
𝑚𝑘−1, 𝑥𝑛𝑘+1) = 𝜀. (15)

From (13) and 𝑑(𝑥
𝑚𝑘
, 𝑥
𝑛𝑘
) ≤ 𝑑(𝑥

𝑚𝑘
, 𝑥
𝑛𝑘+1) ⋅ 𝑑(𝑥𝑛𝑘+1, 𝑥𝑛𝑘),

we have 𝜀 ≤ lim
𝑘→∞

𝑑(𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1), and the inequality

𝑑(𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1) ≤ 𝑑(𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
) ⋅ 𝑑(𝑥

𝑛𝑘
, 𝑥
𝑛𝑘+1) and (13) give that

lim
𝑘→∞

𝑑(𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1) ≤ 𝜀. So

lim
𝑘→∞

𝑑 (𝑥
𝑚𝑘
, 𝑥
𝑛𝑘+1) = 𝜀. (16)

As

𝑀
𝑓
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1) = max {𝑑 (𝑥

𝑛𝑘
, 𝑥
𝑚𝑘−1) ,

𝑑 (𝑓𝑥
𝑛𝑘
, 𝑥
𝑛𝑘
) , 𝑑 (𝑓𝑥

𝑚𝑘−1, 𝑥𝑚𝑘−1) ,

(𝑑 (𝑥
𝑛𝑘
, 𝑓𝑥
𝑚𝑘−1) ⋅ 𝑑 (𝑥𝑚𝑘−1, 𝑓𝑥𝑛𝑘))

1/2
}

= max {𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1) , 𝑑 (𝑥𝑛𝑘+1, 𝑥𝑛𝑘) ,

𝑑 (𝑥
𝑚𝑘
, 𝑥
𝑚𝑘−1) , (𝑑 (𝑥𝑛𝑘 , 𝑥𝑚𝑘) ⋅ (𝑥𝑚𝑘−1, 𝑥𝑛𝑘+1))

1/2
} ,

(17)

we have lim
𝑘→∞

𝑀
𝑓
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1) = max{𝜀, 1, 1, 𝜀} = 𝜀. From

(4), it follows that

𝜓 (𝑑 (𝑥
𝑛𝑘+1, 𝑥𝑚𝑘)) = 𝜓 (𝑑 (𝑓𝑥𝑛𝑘 , 𝑓𝑥𝑚𝑘−1))

≤
𝜓 (𝑀
𝑓
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1))

𝜑 (𝑀
𝑓
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1))

.
(18)

Taking upper limit as 𝑘 → ∞ implies that 𝜓(𝜀) ≤
𝜓(𝜀)/𝜑(𝜀) < 𝜓(𝜀), a contradiction as 𝜀 > 1. Thus, we obtain
that lim

𝑛,𝑚→∞
𝑑(𝑥
𝑛
, 𝑥
𝑚
) = 1, and hence {𝑥

𝑛
} is a multiplica-

tive Cauchy sequence in (𝑋, 𝑑). Next, we assume there exists
a point 𝑢 ∈ 𝑋 such that lim

𝑛→∞
𝑑(𝑢, 𝑥

𝑛
) = 1; equivalently,

lim
𝑛,𝑚→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) = lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑢) = 1. (19)

Note that

𝑑 (𝑓𝑢, 𝑢) ≤ 𝑀
𝑓
(𝑢, 𝑥
𝑛
) = max {𝑑 (𝑢, 𝑥

𝑛
) , 𝑑 (𝑓𝑢, 𝑢) ,

𝑑 (𝑓𝑥
𝑛
, 𝑥
𝑛
) , (𝑑 (𝑢, 𝑓𝑥

𝑛
) ⋅ 𝑑 (𝑥

𝑛
, 𝑓𝑢))

1/2
}

= max {𝑑 (𝑢, 𝑥
𝑛
) , 𝑑 (𝑓𝑢, 𝑢) , 𝑑 (𝑥

𝑛+1, 𝑥𝑛) ,

(𝑑 (𝑢, 𝑥
𝑛+1) ⋅ 𝑑 (𝑥𝑛, 𝑓𝑢))

1/2
} ≤ max {𝑑 (𝑢, 𝑥

𝑛
) ,

𝑑 (𝑓𝑢, 𝑢) , 𝑑 (𝑥
𝑛+1, 𝑥𝑛) ,

(𝑑 (𝑢, 𝑥
𝑛+1) ⋅ 𝑑 (𝑥𝑛, 𝑢) ⋅ 𝑑 (𝑢, 𝑓𝑢))

1/2
} .

(20)

Taking limit as 𝑛 → ∞, we conclude that lim
𝑛→∞

𝑀
𝑓
(𝑢, 𝑥
𝑛
)

= 𝑑(𝑓𝑢, 𝑢). Hence

𝜓 (𝑑 (𝑓𝑢, 𝑓𝑥
𝑛+1)) ≤

𝜓 (𝑀
𝑓
(𝑢, 𝑥
𝑛
))

𝜑 (𝑀
𝑓
(𝑢, 𝑥
𝑛
))

(21)

on taking upper limit as 𝑛 → ∞ implies that

𝜓 (𝑑 (𝑓𝑢, 𝑢)) ≤
𝜓 (𝑑 (𝑓𝑢, 𝑢))

𝜑 (𝑑 (𝑓𝑢, 𝑢))
(22)

which further implies that 𝑓𝑢 = 𝑢.
To prove the uniqueness of fixed point of 𝑓, assume on

the contrary that 𝑓V = V and 𝑓𝑤 = 𝑤 with V ̸= 𝑤. Note that

𝜓 (𝑑 (V, 𝑤)) = 𝜓 (𝑑 (𝑓V, 𝑓𝑤)) ≤
𝜓 (𝑀
𝑓
(V, 𝑤))

𝜑 (𝑀
𝑓
(V, 𝑤))

, (23)

where

𝑀
𝑓
(V, 𝑤) = max {𝑑 (V, 𝑤) , 𝑑 (𝑓V, V) , 𝑑 (𝑓𝑤,𝑤) ,

(𝑑 (𝑓V, 𝑤) ⋅ 𝑑 (𝑓𝑤, V))1/2} = max {𝑑 (V, 𝑤) ,

𝑑 (V, V) , 𝑑 (𝑤, 𝑤) , (𝑑 (V, 𝑤) ⋅ 𝑑 (𝑤, V))1/2} = 𝑑 (V, 𝑤) .

(24)

From (23) it follows that

𝜓 (𝑑 (V, 𝑤)) = 𝜓 (𝑑 (𝑓V, 𝑓𝑤)) ≤
𝜓 (𝑑 (V, 𝑤))
𝜑 (𝑑 (V, 𝑤))

< 𝜓 (𝑑 (V, 𝑤)) ,
(25)

a contradiction as 𝑑(V, 𝑤) > 1. Hence V = 𝑤.
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Corollary 16. Let (𝑋, 𝑑) be a complete multiplicative metric
space and 𝑓 : 𝑋 → 𝑋. Suppose that there exist control
functions 𝜓 and 𝜑 such that

𝜓 (𝑑 (𝑓
𝑛

𝑥, 𝑓
𝑛

𝑦)) ≤
𝜓 (𝑀
𝑓
𝑛 (𝑥, 𝑦))

𝜑 (𝑀
𝑓
𝑛 (𝑥, 𝑦))

, (26)

for any 𝑥, 𝑦 ∈ 𝑋 and 𝑛 ∈ N where

𝑀
𝑓
𝑛 (𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑓𝑛𝑥, 𝑥) , 𝑑 (𝑓𝑛𝑦, 𝑦) ,

(𝑑 (𝑓
𝑛

𝑥, 𝑦) ⋅ 𝑑 (𝑓
𝑛

𝑦, 𝑥))
1/2
} .

(27)

Then 𝑓 has a unique fixed point 𝑢 and 𝑓𝑛𝑢 = 𝑓𝑢.

Proof. Set 𝑇 = 𝑓𝑛. From Theorem 15, 𝑇 has a unique fixed
point 𝑢. Now 𝑓(𝑢) = 𝑓(𝑇𝑢) = 𝑓𝑛+1(𝑢) = 𝑓𝑛(𝑓𝑢) = 𝑇(𝑓𝑢)
which implies that 𝑓𝑢 is also a fixed point of 𝑇. By the
uniqueness of fixed point of 𝑇, we have 𝑓𝑢 = 𝑢.

Now, we recall the following lemma from [24].

Lemma 17. Let 𝑋 be a nonempty set and 𝑓 : 𝑋 → 𝑋. Then
there exists a subset 𝐸 ⊆ 𝑋 such that 𝑓(𝐸) = 𝑓(𝑋) and 𝑓 :
𝐸 → 𝑋 is one-to-one.

Theorem 18. Let (𝑋, 𝑑) be a multiplicative metric space and
𝑓, 𝑔 : 𝑋 → 𝑋. Suppose that there exist control functions 𝜓
and 𝜑 such that

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤
𝜓 (𝑀(𝑔𝑥, 𝑔𝑦))

𝜑 (𝑀 (𝑔𝑥, 𝑔𝑦))
(28)

holds for any 𝑥, 𝑦 ∈ 𝑋, where

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑓𝑥, 𝑔𝑥) , 𝑑 (𝑓𝑦, 𝑔𝑦) ,

(𝑑 (𝑓𝑥, 𝑔𝑦) ⋅ 𝑑 (𝑓𝑦, 𝑔𝑥))
1/2
} .

(29)

If 𝑔(𝑋) is a complete subspace of 𝑋, then 𝑓 and 𝑔 have a
unique coincidence point in𝑋. Moreover, if𝑓 and 𝑔 are weakly
compatible, then𝑓 and𝑔 have atmost one commonfixed point.

Proof. By Lemma 17, there exists 𝐸 ⊆ 𝑋 such that 𝑔(𝐸) =
𝑔(𝑋) and𝑔 : 𝐸 → 𝑋 is one-to-one.Define amap ℎ : 𝑔(𝐸) →
𝑔(𝐸) by ℎ(𝑔𝑥) = 𝑓𝑥. Since 𝑔 is one-to-one on 𝐸, ℎ is well
defined. Note that

𝜓 (𝑑 (ℎ (𝑔𝑥) , ℎ (𝑔𝑦))) ≤
𝜓 (𝑀(𝑔𝑥, 𝑔𝑦))

𝜑 (𝑀 (𝑔𝑥, 𝑔𝑦))
, (30)

for all 𝑔𝑥, 𝑔𝑦 ∈ 𝑔(𝐸) where

𝑀(𝑔𝑥, 𝑔𝑦) = max {𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (ℎ (𝑔𝑥) , 𝑔𝑥) ,

𝑑 (ℎ (𝑔𝑦) , 𝑔𝑦) , (𝑑 (ℎ (𝑔𝑥) , 𝑔𝑦) ⋅ 𝑑 (ℎ (𝑔𝑦) , 𝑔𝑥))} .
(31)

Since 𝑔(𝐸) = 𝑔(𝑋) is complete, by Theorem 15, there exists
𝑥0 ∈ 𝑋 such that ℎ(𝑔𝑥0) = 𝑔𝑥0 = 𝑓𝑥0. Hence, 𝑓 and 𝑔 have
a unique point of coincidence. From Proposition 12, 𝑓 and 𝑔
have a unique common fixed point.

3. Cocyclic Contractions

Now we obtain common fixed point results for self-maps
satisfying certain cocyclic contractions defined on a multi-
plicative metric space. We start with the following.

Theorem 19. Let (𝑋, 𝑑) be a multiplicative metric space,
𝐴1, 𝐴2, . . . , 𝐴𝑝 nonempty closed subsets of𝑋, and𝑌 = ∪𝑝

𝑖=1𝐴 𝑖.
Suppose that 𝑓, 𝑔 : 𝑌 → 𝑌 are such that

(a) 𝑌 has a cocyclic representation with respect to pair
(𝑓, 𝑔) and the collection {𝐴

𝑖
: 𝑖 = 1, 2, . . . , 𝑝};

(b) there exists control functions𝜓 and 𝜑 such that, for any
(𝑥, 𝑦) ∈ 𝐴

𝑖
× 𝐴
𝑖+1, 𝑖 = 1, 2, . . . , 𝑝, the following,

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤
𝜓 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

, (32)

holds where

𝑀
𝑓,𝑔
(𝑥, 𝑦) = max {𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑓𝑥, 𝑔𝑥) ,

𝑑 (𝑓𝑦, 𝑔𝑦) , (𝑑 (𝑓𝑥, 𝑔𝑦) ⋅ 𝑑 (𝑓𝑦, 𝑔𝑥))
1/2
}

(33)

with 𝐴
𝑝+1 = 𝐴1.

If 𝑔(𝐴
𝑖
) is complete subspace of𝑋 for each 𝑖 ∈ {1, 2, . . . , 𝑝},

then 𝑓 and 𝑔 have a unique coincidence point 𝑧 ∈ ∩𝑝
𝑖=1𝑔(𝐴 𝑖) =

𝑍 provided that 𝑓(𝑍) ⊆ 𝑔(𝑍) ⊆ 𝑍 and 𝑔(𝑍) is closed.
Moreover, if 𝑓 and 𝑔 are weakly compatible, then 𝑓 and 𝑔 have
at most one common fixed point.

Proof. Let 𝑥0 be a given point in ∪𝑝
𝑖=1𝐴 𝑖. Then there exists

𝑖0 ∈ {1, 2, . . . , 𝑝} such that 𝑥0 ∈ 𝐴
𝑖0
. Choose a point 𝑥1 in

𝐴
𝑖0+1 such that 𝑓(𝑥0) = 𝑔(𝑥1). This can be done because

𝑓(𝐴
𝑖0
) ⊆ 𝑔(𝐴

𝑖0+1). Continuing this process, for 𝑛 > 0, there
exists 𝑖

𝑛
∈ {1, 2, . . . , 𝑝} such that having chosen 𝑥

𝑛
in 𝐴
𝑖𝑛
, we

obtain 𝑥
𝑛+1 in 𝐴 𝑖𝑛+1 such that 𝑓(𝑥

𝑛
) = 𝑔(𝑥

𝑛+1). If, for some
𝑛0 ≥ 0, we have 𝑓(𝑥

𝑛0
) = 𝑓(𝑥

𝑛0+1), then 𝑓(𝑥𝑛0) = 𝑔(𝑥
𝑛0
)

implies that 𝑥
𝑛0
is the coincidence point of 𝑓 and 𝑔. Assume

that 𝑑(𝑓(𝑥
𝑛
), 𝑓(𝑥

𝑛+1)) > 1 for all 𝑛. From (b), we have

𝜓 (𝑑 (𝑔𝑥
𝑛+1, 𝑔𝑥𝑛+2)) = 𝜓 (𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1))

≤
𝜓 (𝑀
𝑓,𝑔
(𝑥
𝑛
, 𝑥
𝑛+1))

𝜑 (𝑀
𝑓,𝑔
(𝑥
𝑛
, 𝑥
𝑛+1))

≤ 𝜓 (𝑀
𝑓,𝑔
(𝑥
𝑛
, 𝑥
𝑛+1)) ,

(34)

where

𝑀
𝑓,𝑔
(𝑥
𝑛
, 𝑥
𝑛+1) = max {𝑑 (𝑔𝑥

𝑛
, 𝑔𝑥
𝑛+1) , 𝑑 (𝑓𝑥𝑛, 𝑔𝑥𝑛) ,

𝑑 (𝑓𝑥
𝑛+1, 𝑔𝑥𝑛+1) ,
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(𝑑 (𝑓𝑥
𝑛
, 𝑔𝑥
𝑛+1) ⋅ 𝑑 (𝑓𝑥𝑛+1, 𝑔𝑥𝑛))

1/2
}

= max {𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1) , 𝑑 (𝑔𝑥𝑛+1, 𝑔𝑥𝑛) ,

𝑑 (𝑔𝑥
𝑛+2, 𝑔𝑥𝑛+1) ,

(𝑑 (𝑔𝑥
𝑛+1, 𝑔𝑥𝑛+1) ⋅ 𝑑 (𝑔𝑥𝑛+2, 𝑔𝑥𝑛))

1/2
}

≤ max {𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1) , 𝑑 (𝑔𝑥𝑛+2, 𝑔𝑥𝑛+1) ,

(𝑑 (𝑔𝑥
𝑛+2, 𝑔𝑥𝑛+1) ⋅ 𝑑 (𝑔𝑥𝑛+1, 𝑔𝑥𝑛))

1/2
}

≤ max{𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1) , 𝑑 (𝑔𝑥𝑛+2, 𝑔𝑥𝑛+1) ,

𝑑 (𝑔𝑥
𝑛+2, 𝑔𝑥𝑛+1) + 𝑑 (𝑔𝑥𝑛+1, 𝑔𝑥𝑛)

2
}

= max {𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1) , 𝑑 (𝑔𝑥𝑛+2, 𝑔𝑥𝑛+1)} .

(35)
If, for some 𝑛, max{𝑑(𝑔𝑥

𝑛
, 𝑔𝑥
𝑛+1), 𝑑(𝑔𝑥𝑛+2, 𝑔𝑥𝑛+1)} =

𝑑(𝑔𝑥
𝑛+2, 𝑔𝑥𝑛+1), then𝑀𝑓,𝑔(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑔𝑥𝑛+2, 𝑔𝑥𝑛+1) and

𝜓 (𝑑 (𝑔𝑥
𝑛+1, 𝑔𝑥𝑛+2)) ≤

𝜓 (𝑀
𝑓,𝑔
(𝑥
𝑛
, 𝑥
𝑛+1))

𝜑 (𝑀
𝑓,𝑔
(𝑥
𝑛
, 𝑥
𝑛+1))

≤
𝜓 (𝑑 (𝑔𝑥

𝑛+2, 𝑔𝑥𝑛+1))

𝜑 (𝑑 (𝑔𝑥
𝑛+2, 𝑔𝑥𝑛+1))

(36)

imply that 𝜑(𝑑(𝑔𝑥
𝑛+2, 𝑔𝑥𝑛+1)) = 1, a contradiction as

𝑑(𝑔𝑥
𝑛+2, 𝑔𝑥𝑛+1) > 1. Hence 𝑑(𝑔𝑥

𝑛+2, 𝑔𝑥𝑛+1) ≤ 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1)
for all 𝑛. Thus 𝑀

𝑓,𝑔
(𝑥
𝑛
, 𝑥
𝑛+1) ≤ 𝑑(𝑔𝑥

𝑛
, 𝑔𝑥
𝑛+1). On the

other hand, we have𝑀
𝑓,𝑔
(𝑥
𝑛
, 𝑥
𝑛+1) ≥ 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1). Hence

𝑀
𝑓,𝑔
(𝑥
𝑛
, 𝑥
𝑛+1) = 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1).

Similarly we obtain that 𝑑(𝑔𝑥
𝑛+1, 𝑔𝑥𝑛) ≤ 𝑑(𝑔𝑥

𝑛
, 𝑔𝑥
𝑛−1).

Thus the sequence {𝑑(𝑔𝑥
𝑛+1, 𝑔𝑥𝑛)} is nonincreasing. Conse-

quently, there exists 𝛿 ≥ 1 such that lim
𝑛→∞

𝑑(𝑔𝑥
𝑛+1, 𝑔𝑥𝑛) =

𝛿. Suppose that 𝛿 > 1. Now

𝜓 (𝑑 (𝑔𝑥
𝑛+2, 𝑔𝑥𝑛+1)) ≤

𝜓 (𝑀
𝑓,𝑔
(𝑥
𝑛+1, 𝑥𝑛))

𝜑 (𝑀
𝑓,𝑔
(𝑥
𝑛+1, 𝑥𝑛))

, (37)

and lower semicontinuity of 𝜑 gives that
lim sup
𝑛→∞

𝜓 (𝑑 (𝑔𝑥
𝑛+2, 𝑔𝑥𝑛+1))

≤
lim sup

𝑛→∞
𝜓 (𝑀
𝑓,𝑔
(𝑥
𝑛+1, 𝑥2𝑛))

lim inf
𝑛→∞

𝜑 (𝑀
𝑓,𝑔
(𝑥2𝑛+1, 𝑥2𝑛))

,

(38)

which implies that 𝜓(𝛿) ≤ 𝜓(𝛿)/𝜑(𝛿), a contradiction.
Therefore 𝛿 = 1. That is,

lim
𝑛→∞

𝑑 (𝑔𝑥
𝑛+1, 𝑔𝑥𝑛) = 1. (39)

Assume that {𝑔𝑥
𝑛
} is not a multiplicative Cauchy sequence.

Then, there is 𝜀 > 1, and there are even integers 𝑛
𝑘
and 𝑚

𝑘

with𝑚
𝑘
> 𝑛
𝑘
> 𝑘 such that

𝑑 (𝑔𝑥
𝑚𝑘
, 𝑔𝑥
𝑛𝑘
) ≥ 𝜀, (40)

and 𝑑(𝑔𝑥
𝑚𝑘−1, 𝑔𝑥𝑛𝑘) < 𝜀. Note that

𝜀 ≤ 𝑑 (𝑔𝑥
𝑚𝑘
, 𝑔𝑥
𝑛𝑘
)

≤ 𝑑 (𝑔𝑥
𝑛𝑘
, 𝑔𝑥
𝑚𝑘−1) ⋅ 𝑑 (𝑔𝑥𝑚𝑘−1, 𝑔𝑥𝑚𝑘) .

(41)

From (39) and (40), it follows that

lim
𝑘→∞

𝑑 (𝑔𝑥
𝑚𝑘
, 𝑔𝑥
𝑛𝑘
) = 𝜀. (42)

By (42) and

𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘) ≤ 𝑑 (𝑔𝑥𝑛𝑘+1, 𝑔𝑥𝑛𝑘)

⋅ 𝑑 (𝑔𝑥
𝑛𝑘
, 𝑔𝑥
𝑚𝑘
) ,

(43)

we have lim
𝑘→∞

𝑑(𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘) ≤ 𝜀. Also, by (42) and

𝑑 (𝑔𝑥
𝑚𝑘
, 𝑔𝑥
𝑛𝑘
) ≤ 𝑑 (𝑔𝑥

𝑛𝑘+1, 𝑔𝑥𝑛𝑘) ⋅ 𝑑 (𝑔𝑥𝑛𝑘+1, 𝑔𝑥𝑚𝑘) (44)

we obtain that 𝜀 ≤ lim
𝑘→∞

𝑑(𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘). Hence

lim
𝑘→∞

𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘) = 𝜀. (45)

From (39) and

𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘−1) ≤ 𝑑 (𝑔𝑥𝑛𝑘+1, 𝑔𝑥𝑛𝑘)

⋅ 𝑑 (𝑔𝑥
𝑛𝑘
, 𝑔𝑥
𝑚𝑘−1) ,

(46)

we have lim
𝑘→∞

𝑑(𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘−1) ≤ 𝜀. By (45) and the

inequality

𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘) ≤ 𝑑 (𝑔𝑥𝑛𝑘+1, 𝑔𝑥𝑚𝑘−1)

⋅ 𝑑 (𝑔𝑥
𝑚𝑘−1, 𝑔𝑥𝑚𝑘) ,

(47)

we have 𝜀 ≤ lim
𝑘→∞

𝑑(𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘−1). Thus

lim
𝑘→∞

𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘−1) = 𝜀. (48)

Note that

𝑀
𝑓,𝑔
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1) = max {𝑑 (𝑓𝑥

𝑛𝑘
, 𝑓𝑥
𝑚𝑘−1) ,

𝑑 (𝑓𝑥
𝑛𝑘
, 𝑔𝑥
𝑛𝑘
) , 𝑑 (𝑓𝑥

𝑚𝑘−1, 𝑔𝑥𝑚𝑘−1) ,

(𝑑 (𝑓𝑥
𝑛𝑘
, 𝑔𝑥
𝑚𝑘−1) ⋅ 𝑑 (𝑓𝑥𝑚𝑘−1, 𝑔𝑥𝑛𝑘))

1/2
}

= max {𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘) , 𝑑 (𝑔𝑥𝑛𝑘+1, 𝑔𝑥𝑛𝑘) ,

𝑑 (𝑔𝑥
𝑚𝑘
, 𝑔𝑥
𝑚𝑘−1) ,

(𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘−1) ⋅ 𝑑 (𝑔𝑥𝑚𝑘 , 𝑔𝑥𝑛𝑘))

1/2
} .

(49)
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Consequently, lim
𝑘→∞

𝑀
𝑓,𝑔
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1) = max{𝜀, 1, 1, 𝜀} = 𝜀.

Since 𝑥
𝑛𝑘
and 𝑥

𝑚𝑘−1 lie in different but adjacent labelled sets
𝐴
𝑖
and 𝐴

𝑖+1 for some 1 ≤ 𝑖 ≤ 𝑝, we have

𝜓 (𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑔𝑥𝑚𝑘)) = 𝜓 (𝑑 (𝑓𝑥𝑛𝑘 , 𝑔𝑥𝑚𝑘−1))

≤
𝜓 (𝑀
𝑓,𝑔
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1))

𝜑 (𝑀
𝑓,𝑔
(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘−1))

.
(50)

Taking upper limit as 𝑘 → ∞ implies that 𝜓(𝜀) ≤ 𝜓(𝜀)/𝜑(𝜀),
a contradiction as 𝜀 > 1, and hence {𝑔𝑥

𝑛
} is a multiplicative

Cauchy sequence in ∪𝑝
𝑖=1𝑔(𝐴 𝑖). Since ∪

𝑝

𝑖=1𝑔(𝐴 𝑖) is complete,
there exists 𝑦 ∈ ∪𝑝

𝑖=1𝑔(𝐴 𝑖) such that

lim
𝑘→∞

𝑑 (𝑔𝑥
𝑛
, 𝑦) = 1. (51)

Consequently, we can find a point 𝑧 in 𝑌 such that 𝑔(𝑧) = 𝑦.
Now we show that 𝑦 ∈ ∩𝑝

𝑖=1𝑔(𝐴 𝑖) = 𝑍. From condition
(a) and 𝑥0 ∈ 𝐴 𝑖0 for some 𝑖0 ∈ {1, 2, . . . , 𝑝}, we can choose a
subsequence {𝑥

𝑛𝑘
} in𝐴

𝑖0
out of the sequence {𝑥

𝑛
}. Obviously,

{𝑔𝑥
𝑛𝑘
} ⊆ 𝑔(𝐴

𝑖0
). As 𝑔(𝐴

𝑖0
) is closed, 𝑦 ∈ 𝑔(𝐴

𝑖0
). Similarly,

we can choose a subsequence {𝑥
𝑛𝑘+1} in 𝐴

𝑖0+1 out of the
sequence {𝑥

𝑛
}. Obviously, {𝑔𝑥

𝑛𝑘+1} ⊆ 𝑔(𝐴
𝑖0+1). As 𝑔(𝐴 𝑖0+1)

is closed, 𝑦 ∈ 𝑔(𝐴
𝑖0+1). Continuing this way, we obtain that

𝑦 ∈ ∩
𝑝

𝑖=1𝑔(𝐴 𝑖) and hence ∩𝑝
𝑖=1𝑔(𝐴 𝑖) ̸= 0.

Now we show that 𝑓(𝑧) = 𝑔(𝑧). Since 𝑧 ∈ 𝑌, there exists
some 𝑖 in {1, 2, . . . , 𝑝} such that 𝑧 ∈ 𝐴

𝑖
. Choose a subsequence

{𝑥
𝑛𝑘
} of {𝑥

𝑛
} with 𝑥

𝑛𝑘
∈ 𝐴
𝑖−1. From (b), we have

𝜓 (𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑓𝑧)) = 𝜓 (𝑑 (𝑓𝑥𝑛𝑘 , 𝑓𝑧))

≤
𝜓 (𝑀
𝑓,𝑔
(𝑥
𝑛𝑘
, 𝑧))

𝜑 (𝑀
𝑓,𝑔
(𝑥
𝑛𝑘
, 𝑧))

,
(52)

where

𝑀
𝑓,𝑔
(𝑥
𝑛𝑘
, 𝑧) = max {𝑑 (𝑔𝑥

𝑛𝑘
, 𝑔𝑧) , 𝑑 (𝑓𝑥

𝑛𝑘
, 𝑔𝑥
𝑛𝑘
) ,

𝑑 (𝑓𝑧, 𝑔𝑧) , (𝑑 (𝑓𝑥
𝑛𝑘
, 𝑔𝑧) ⋅ 𝑑 (𝑓𝑧, 𝑔𝑥

𝑛𝑘
))

1/2
}

= max {𝑑 (𝑔𝑥
𝑛𝑘
, 𝑔𝑧) , 𝑑 (𝑔𝑥

𝑛𝑘+1, 𝑔𝑥𝑛𝑘) , 𝑑 (𝑓𝑧, 𝑔𝑧) ,

(𝑑 (𝑔𝑥
𝑛𝑘+1, 𝑔𝑧) ⋅ 𝑑 (𝑓𝑧, 𝑔𝑥𝑛𝑘))

1/2
} .

(53)

On taking upper limit as 𝑘 → ∞ we obtain that

𝜓 (𝑑 (𝑔𝑧, 𝑓𝑧)) ≤
𝜓 (𝑑 (𝑓𝑧, 𝑔𝑧))

𝜑 (𝑑 (𝑓𝑧, 𝑔𝑧))
, (54)

and hence 𝑓(𝑧) = 𝑔(𝑧). Thus 𝑧 is the coincidence point of 𝑓
and 𝑔.

Note that 𝑍 being a finite intersection of closed sets is
closed and hence complete. Consider the restrictions of𝑓 and
𝑔 on 𝑍; that is, 𝑓|

𝑍
, 𝑔|
𝑍
: 𝑍 → 𝑍. Obviously, 𝑓|

𝑍
(𝑍) ⊆

𝑔|
𝑍
(𝑍) ⊆ 𝑍. Also 𝑔|

𝑍
(𝑍) is closed and hence complete.

From Theorem 18, it follows that 𝑓|
𝑍
and 𝑔|

𝑍
have a unique

coincidence point in 𝑍. As 𝑓 and 𝑔 are weakly compatible,
from Proposition 12, it follows that𝑓|

𝑍
and 𝑔|

𝑍
have a unique

common fixed point.

Corollary 20. Let (𝑋, 𝑑) be a multiplicative metric space,
𝐴1, 𝐴2, . . . , 𝐴𝑝 nonempty closed subsets of𝑋, and𝑌 = ∪𝑝

𝑖=1𝐴 𝑖.
Suppose that 𝑓, 𝑔 : 𝑌 → 𝑌 are such that

(a) 𝑌 has a cocyclic representation with respect to pair
(𝑓𝑚, 𝑔𝑛) and the collection {𝐴

𝑖
: 𝑖 = 1, 2, . . . , 𝑝} for

some𝑚, 𝑛 ∈ N;

(b) there exists two control functions𝜓 and 𝜑 such that, for
any (𝑥, 𝑦) ∈ 𝐴

𝑖
× 𝐴
𝑖+1, 𝑖 = 1, 2, . . . , 𝑝,

𝜓 (𝑑 (𝑓
𝑚

𝑥, 𝑓
𝑚

𝑦)) ≤
𝜓 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

(55)

holds for some𝑚, 𝑛 ∈ N, where

𝑀
𝑓,𝑔
(𝑥, 𝑦) = max {𝑑 (𝑔𝑛𝑥, 𝑔𝑛𝑦) , 𝑑 (𝑓𝑚𝑥, 𝑔𝑛𝑥) ,

𝑑 (𝑓
𝑚

𝑦, 𝑔
𝑛

𝑦) , (𝑑 (𝑓
𝑚

𝑥, 𝑔
𝑛

𝑦) ⋅ 𝑑 (𝑓
𝑚

𝑦, 𝑔
𝑛

𝑥))
1/2

}

(56)

with 𝐴
𝑝+1 = 𝐴1.

If 𝑔𝑛(𝐴
𝑖
) is complete subspace of 𝑋 for each 𝑖 ∈

{1, 2, . . . , 𝑝}, then 𝑓𝑚 and 𝑔𝑛 have a unique coincidence point
𝑧 ∈ ∩

𝑝

𝑖=1𝑔
𝑛(𝐴
𝑖
) = 𝑍 provided that 𝑓𝑚(𝑍) ⊆ 𝑔𝑛(𝑍) ⊆

𝑍 and 𝑔𝑛(𝑍) is closed. Moreover, if 𝑓𝑚 and 𝑔𝑛 are weakly
compatible, then 𝑓𝑚 and 𝑔𝑛 have a unique common fixed
point. Furthermore,𝑓 and𝑔 have a unique commonfixed point
provided that 𝑓 and 𝑔 are commuting.

Proof. Set 𝑆 = 𝑓𝑚 and 𝑇 = 𝑔𝑛. From Theorem 19, 𝑆 and 𝑇
have a unique common fixed point 𝑢. Now 𝑆(𝑓𝑢) = 𝑓(𝑆𝑢) =
𝑓𝑢 and 𝑇(𝑓𝑢) = 𝑓(𝑇𝑢) = 𝑓𝑢 imply that 𝑓𝑢 is the common
fixed point of 𝑆 and𝑇. Also,𝑇(𝑔𝑢) = 𝑔(𝑇𝑢) = 𝑔𝑢 and 𝑆(𝑔𝑢) =
𝑔(𝑆𝑢) = 𝑔𝑢 imply that 𝑔𝑢 is also the common fixed point of 𝑆
and 𝑇. By uniqueness of common fixed point of 𝑆 and 𝑇, we
have 𝑓𝑢 = 𝑔𝑢 = 𝑢.

Example 21. Let𝑋 = R and let 𝑑 be amultiplicativemetric on
𝑋 defined by 𝑑(𝑥, 𝑦) = 𝑎|𝑥−𝑦|, where 𝑎 > 1 is a real number.
For some 𝑐 > 1, set 𝐴1 = [−𝑐, 0], 𝐴2 = [0, 𝑐], and 𝐴3 = 𝐴1.
Define 𝑓, 𝑔 : ∪2

𝑖=1𝐴 𝑖 → ∪2
𝑖=1𝐴 𝑖 by

𝑓 (𝑥) =
𝛼𝑥

𝑐
,

𝑔 (𝑥) = −
𝛽𝑥

𝑐
,

(57)

where 𝛼, 𝛽 ≥ 1 with 6𝛼 ≤ 5𝛽 and 𝛽 ≤ 𝑐. Note that 𝑓(𝐴1) =
[−𝛼, 0] ⊆ [−𝛽, 0] = 𝑔(𝐴2) and 𝑓(𝐴2) = [0, 𝛼] ⊆ [0, 𝛽] =
𝑔(𝐴1).𝑌 = 𝐴1∪𝐴2 has a cocyclic representationwith respect
to pair (𝑓, 𝑔) and the collection {𝐴1, 𝐴2}.
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Define 𝜓, 𝜑 : [1,∞) → [1,∞) by

𝜓 (𝑡) = 𝑡
3
,

𝜑 (𝑡) =
{
{
{

𝑡1/2, if 𝑡 ∈ [1, 2𝛽] ,

𝑡2, if 𝑡 > 2𝛽.

(58)

Clearly 𝜓 is continuous and nondecreasing, 𝜑 is a lower
semicontinuous, and 𝜓(𝑡) = 𝜑(𝑡) = 1 if and only if 𝑡 = 1.

We show that condition (b) is satisfied. Now, for 𝑥 ∈ 𝐴1,
𝑦 ∈ 𝐴2 implies

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) = 𝜓(𝑑(
𝛼𝑥

𝑐
,
𝛼𝑦

𝑐
)) = 𝜓 (𝑎

(𝛼/𝑐)(𝑦−𝑥)

)

= 𝑎
(3𝛼/𝑐)(𝑦−𝑥)

≤ 𝑎
(5𝛽/2𝑐)(𝑦−𝑥)

= (𝑑(−
𝛽𝑥

𝑐
, −
𝛽𝑦

𝑐
))

5/2

= 𝑑 (𝑔𝑥, 𝑔𝑦)
5/2
≤ [𝑀
𝑓,𝑔
(𝑥, 𝑦)]

5/2

=
[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

3

[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

1/2

=
𝜓 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

.

(59)

When 𝑥 ∈ 𝐴2 and 𝑦 ∈ 𝐴1,

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) = 𝜓(𝑑(
𝛼𝑥

𝑐
,
𝛼𝑦

𝑐
)) = 𝜓 (𝑎

(𝛼/𝑐)(𝑥−𝑦)

)

= 𝑎
(3𝛼/𝑐)(𝑥−𝑦)

≤ 𝑎
(5𝛽/2𝑐)(𝑥−𝑦)

= (𝑑(−
𝛽𝑥

𝑐
, −
𝛽𝑦

𝑐
))

5/2

= 𝑑 (𝑔𝑥, 𝑔𝑦)
5/2
≤ [𝑀
𝑓,𝑔
(𝑥, 𝑦)]

5/2

=
[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

3

[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

1/2

=
𝜓 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

.

(60)

Thus, 𝑓 and 𝑔 satisfy all the conditions of Theorem 19.
Moreover, 𝑓 and 𝑔 have at most one common fixed point.

Example 22. Let 𝑋 = R and 𝑑 : 𝑋 × 𝑋 → R+ be the
multiplicative metric defined by 𝑑(𝑥, 𝑦) = 𝑒|𝑥−𝑦|. Suppose

𝐴1 = [−𝑐, 0], 𝐴2 = [−𝑐/2, 𝑐/2], and 𝐴3 = [−𝑐/4, 𝑐] and
𝐴4 = 𝐴1, where 𝑐 > 0. Define 𝑓, 𝑔 : ∪3

𝑖=1𝐴 𝑖 → ∪3
𝑖=1𝐴 𝑖 by

𝑓𝑥 =
{
{
{

−
𝑥

𝑐
if 𝑥 > 0,

0 otherwise,

𝑔𝑥 =
2𝑥
𝑐
.

(61)

Note that 𝑓(𝐴1) = {0} ⊆ [−1, 1] = 𝑔(𝐴2), 𝑓(𝐴2) =
[−1/2, 0] ⊆ [−1/2, 2] = 𝑔(𝐴3), and 𝑓(𝐴3) = [−1, 0] ⊆
[−2, 0] = 𝑔(𝐴1). Hence 𝑌 = 𝐴1 ∪ 𝐴2 is a cocyclic
representation between 𝑓 and 𝑔.

Let 𝜓, 𝜑 : [1,∞) → [1,∞) be as defined in Example 21.
To check condition (b), we consider the following cases:

(1) Let 𝑥 ∈ 𝐴1 and 𝑦 ∈ 𝐴2. If 𝑦 ∈ [−𝑐/2, 0], then
𝑑(𝑓𝑥, 𝑓𝑦) = 𝑒0 = 1 and hence (b) holds. If 𝑦 ∈
(0, 𝑐/2], then we have

𝑑 (𝑓𝑥, 𝑓𝑦) = 𝑑 (0, −
𝑦

𝑐
) = 𝑒
(1/𝑐)𝑦

≤ 𝑒
(5/𝑐)(𝑦−𝑥)

= 𝑑(
2𝑥
𝑐
,
2𝑦
𝑐
)
5/2
= 𝑑 (𝑔𝑥, 𝑔𝑦)

5/2

≤ [𝑀
𝑓,𝑔
(𝑥, 𝑦)]

5/2
=
[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

3

[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

1/2

=
𝜓 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

.

(62)

(2) Let 𝑥 ∈ 𝐴2 and 𝑦 ∈ 𝐴3. If 𝑥 ∈ [−𝑐/2, 0] and 𝑦 ∈
[−𝑐/4, 0], then 𝑑(𝑓𝑥, 𝑓𝑦) = 𝑒0 = 1 and hence (b) is
satisfied. If𝑥 ∈ [−𝑐/2, 0] and𝑦 ∈ (0, 𝑐], thenwe obtain
that

𝑑 (𝑓𝑥, 𝑓𝑦) = 𝑑 (0, −
𝑦

𝑐
) = 𝑒
(1/𝑐)𝑦

< 𝑒
(15/2𝑐)𝑦

= 𝑑(−
𝑦

𝑐
,
2𝑦
𝑐
)
5/2
= 𝑑 (𝑓𝑦, 𝑔𝑦)

5/2

≤ [𝑀
𝑓,𝑔
(𝑥, 𝑦)]

5/2
=
[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

3

[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

1/2

=
𝜓 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

.

(63)

When 𝑥 ∈ (0, 𝑐/2] and 𝑦 ∈ (−𝑐/4, 0], we have

𝑑 (𝑓𝑥, 𝑓𝑦) = 𝑑 (−
𝑥

𝑐
, 0) = 𝑒(1/𝑐)𝑥 < 𝑒(15/2𝑐)𝑥

= 𝑑(−
𝑥

𝑐
,
2𝑥
𝑐
)
5/2
= 𝑑 (𝑓𝑥, 𝑔𝑥)

5/2
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≤ [𝑀
𝑓,𝑔
(𝑥, 𝑦)]

5/2
=
[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

3

[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

1/2

=
𝜓 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

.

(64)

For 𝑥 ∈ (0, 𝑐/2] and 𝑦 ∈ (0, 𝑐], we obtain that

𝑑 (𝑓𝑥, 𝑓𝑦) = 𝑑 (−
𝑥

𝑐
, −
𝑦

𝑐
) = 𝑒
(1/𝑐)|𝑥−𝑦|

< 𝑒
(5/𝑐)|𝑥−𝑦|

= 𝑑(
2𝑥
𝑐
,
2𝑦
𝑐
)
5/2
= 𝑑 (𝑔𝑥, 𝑔𝑦)

5/2

≤ [𝑀
𝑓,𝑔
(𝑥, 𝑦)]

5/2
=
[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

3

[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

1/2

=
𝜓 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

.

(65)

(3) Let 𝑥 ∈ 𝐴3 and 𝑦 ∈ 𝐴1. If 𝑥 ∈ [−𝑐/4, 0], then
𝑑(𝑓𝑥, 𝑓𝑦) = 1 and (b) is satisfied. If 𝑥 ∈ (0, 𝑐], then
we have

𝑑 (𝑓𝑥, 𝑓𝑦) = 𝑑 (−
𝑥

𝑐
, 0) = 𝑒(1/𝑐)𝑥 < 𝑒(15/2𝑐)𝑥

= 𝑑(−
𝑥

𝑐
,
2𝑥
𝑐
)
5/2
= 𝑑 (𝑓𝑥, 𝑔𝑥)

5/2

≤ [𝑀
𝑓,𝑔
(𝑥, 𝑦)]

5/2
=
[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

3

[𝑀
𝑓,𝑔
(𝑥, 𝑦)]

1/2

=
𝜓 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦))

.

(66)

Hence 𝑓 and 𝑔 satisfy all the conditions of Theorem 19.
Moreover, 0 is a unique common fixed point of 𝑓 and 𝑔 in
∩3
𝑖=1𝐴 𝑖.

Denote Υ = {𝜙 : [1,∞) → [1,∞); 𝜙 is a Lebesgue
integrable with finite integral on each compact subset of
[1,∞) and for each 𝜀 > 1, ∫𝜀1 𝜑(𝑡)𝑑𝑡 > 1}.

As a consequence of Theorem 19, we obtain following
common fixed point result for mappings satisfying cocyclic
contractive condition of integral type in a multiplicative
metric space.

Corollary 23. Let (𝑋, 𝑑) be a multiplicative metric space,
𝐴1, 𝐴2, . . . , 𝐴𝑝, 𝑝 nonempty closed subsets of 𝑋, and 𝑌 =

∪
𝑝

𝑖=1𝐴 𝑖. Suppose that 𝑓, 𝑔 : 𝑌 → 𝑌 are mappings such that

(a) 𝑌 has a cocyclic representation with respect to pair
(𝑓, 𝑔) and the collection {𝐴

𝑖
: 𝑖 = 1, 2, . . . , 𝑝};

(b) there exists control functions𝜓 and 𝜑 such that, for any
(𝑥, 𝑦) ∈ 𝐴

𝑖
× 𝐴
𝑖+1, 𝑖 = 1, 2, . . . , 𝑝, the following,

∫
𝜓(𝑑(𝑓𝑥,𝑓𝑦))

1
𝜙 (𝑡) 𝑑𝑡 ≤

∫
𝜓(𝑀𝑓,𝑔(𝑥,𝑦))

1 𝜙 (𝑡) 𝑑𝑡

∫
𝜑(𝑀𝑓,𝑔(𝑥,𝑦))

1 𝜙 (𝑡) 𝑑𝑡
, (67)

is satisfied, where 𝜙 ∈ Υ, and

𝑀
𝑓,𝑔
(𝑥, 𝑦) = max {𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑓𝑥, 𝑔𝑥) ,

𝑑 (𝑓𝑦, 𝑔𝑦) , (𝑑 (𝑓𝑥, 𝑔𝑦) ⋅ 𝑑 (𝑓𝑦, 𝑔𝑥))
1/2
}

(68)

with 𝐴
𝑝+1 = 𝐴1.

If 𝑔(𝐴
𝑖
) is a complete subspace of 𝑋 for each 𝑖 ∈

{1, 2, . . . , 𝑝}, then 𝑓 and 𝑔 have a unique coincidence point
𝑧 ∈ ∩
𝑝

𝑖=1𝑔(𝐴 𝑖) = 𝑍 provided that 𝑓(𝑍) ⊆ 𝑔(𝑍) ⊆ 𝑍 and 𝑔(𝑍)
is closed. Moreover, if 𝑓 and 𝑔 are weakly compatible, then 𝑓
and 𝑔 have at most one common fixed point.

Proof. Define Ψ : [1,∞) → [1,∞) by Ψ(𝑥) = ∫
𝑥

1 𝜙(𝑡)𝑑𝑡.
From (67), it follows that

Ψ (𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))) ≤
Ψ (𝜓 (𝑀

𝑓,𝑔
(𝑥, 𝑦)))

Ψ (𝜑 (𝑀
𝑓,𝑔
(𝑥, 𝑦)))

, (69)

which can be written as

𝜓1 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤
𝜓1 (𝑀𝑓,𝑔 (𝑥, 𝑦))

𝜑1 (𝑀 (𝑥, 𝑦))
, (70)

where 𝜓1 = Ψ ∘ 𝜓 and 𝜑1 = Ψ ∘ 𝜑. Clearly, 𝜓1, 𝜑1 : [1,∞) →
[1,∞), 𝜓1 is continuous and nondecreasing, 𝜑1 is a lower
semicontinuous, and 𝜓1(𝑡) = 𝜑1(𝑡) = 1 if and only if 𝑡 = 1.
Hence by Theorem 19, 𝑓 and 𝑔 have at most one common
fixed point.
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Eds., vol. 98, pp. 7–22, Birkhäuser, Basel, Switzerland, 1997.



10 Discrete Dynamics in Nature and Society

[2] I. Beg andM. Abbas, “Coincidence point and invariant approx-
imation for mappings satisfying generalized weak contractive
condition,” Fixed Point Theory and Applications, vol. 2006,
Article ID 74503, 7 pages, 2006.

[3] E. Karapinar, “Fixed point theory for cyclic weak 𝜙-
contraction,” Applied Mathematics Letters, vol. 24, pp. 822–825,
2011.

[4] W. A. Kirk, P. S. Srinivasan, and P. Veeramani, “Fixed points for
mappings satisfying cyclical contractive conditions,” Fixed Point
Theory, vol. 4, no. 1, pp. 79–89, 2003.

[5] B. E. Rhoades, “Some theorems on weakly contractive maps,”
Nonlinear Analysis, vol. 47, no. 4, pp. 2683–2693, 2001.

[6] M. Păcurar and I. A. Rus, “Fixed point theory for cyclic 𝜙-
contractions,” Nonlinear Analysis: Theory, Methods & Applica-
tions, vol. 72, no. 3-4, pp. 1181–1187, 2010.

[7] B. Piątek, “On cyclicMeir-Keeler contractions inmetric spaces,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no.
1, pp. 35–40, 2011.

[8] M. Derafshpour, S. Rezapour, and N. Shahzad, “On the exis-
tence of best proximity points of cyclic contractions,” Advances
in Dynamical Systems and Applications, vol. 6, no. 1, pp. 33–40,
2011.

[9] M. Abbas, T. Nazir, and S. Romaguera, “Fixed point results
for generalized cyclic contraction mappings in partial metric
spaces,” Revista de la Real Academia de Ciencias Exactas, Fisicas
y Naturales. Serie A. Matematicas, vol. 106, no. 2, pp. 287–297,
2012.

[10] R. P. Agarwal, M. A. Alghamdi, and N. Shahzad, “Fixed point
theory for cyclic generalized contractions in partial metric
spaces,” Fixed Point Theory and Applications, vol. 2012, article
40, 2012.

[11] H. Aydi, C. Vetro, W. Sintunavarat, and P. Kumam, “Coin-
cidence and fixed points for contractions and cyclical con-
tractions in partial metric spaces,” Fixed Point Theory and
Applications, vol. 2012, article 124, 2012.

[12] P. Chaipunya, Y. J. Cho, W. Sintunavarat, and P. Kumam, “Fixed
point and common fixed point theorems for cyclic quasi-
contractions inmetric and ultrametric spaces,”Advances in Pure
Mathematics, vol. 2, pp. 401–407, 2012.

[13] H. K. Nashine, W. Sintunavarat, and P. Kumam, “Cyclic gener-
alized contractions and fixed point results with applications to
an integral equation,” Fixed Point Theory and Applications, vol.
2012, article 217, 13 pages, 2012.

[14] I. A. Rus, “Cyclic representation and fixed points,” Annals of the
Tiberiu Popoviciu Seminar of Functional Equations, Approxima-
tion and Convexity, vol. 3, pp. 171–178, 2005.

[15] W. Sintunavarat and P. Kumam, “Common fixed point theorem
for cyclic generalized multi-valued contraction mappings,”
Applied Mathematics Letters, vol. 25, no. 11, pp. 1849–1855, 2012.

[16] M. Ozavsar and A. C. Cevikel, “Fixed points of multiplica-
tive contraction mappings on multiplicative metric spaces,”
http://arxiv.org/abs/1205.5131.

[17] A. E. Bashirov, E. M. Kurpınar, and A. Özyapıcı, “Multiplicative
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