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Abstract

In the last decades, the experimental and theoretical study of light-matter interac-

tions in confined quantum systems has allowed to considerably widen and deepen our

understanding of the quantum world. The simplest fully-quantized light-matter interac-

tion is the quantum Rabi model (QRM), where a two-level system is coupled to a single

bosonic mode. The implementation of quantum-optical systems in which the interaction

strength overcomes losses brought a revolution to this research area. Under this condi-

tion, dubbed strong coupling (SC) regime, quantum processes can be observed at the

single-photon level, and even exploited to perform Quantum Information tasks. Recent

developments in solid-state Quantum Technologies have made possible to push the line

further, achieving the ultrastrong coupling (USC) regime of the QRM, in which the

interaction strength is comparable with the bare frequencies of the interacting systems.

In the USC regime of the QRM, light and matter degrees of freedom merge into

collective bound states called polaritons, the system ground state is not the vacuum

and excitations are not conserved. The growing interest in USC-related phenomena

is mainly motivated by the fundamental counterintuitive modifications to light-matter

interactions entailed by this regime. At the same time, the USC regime is also expected

to provide computational benefits in terms of operational speed, coherence time, and

noise protection.

In this Thesis, we theoretically analyze novel quantum phenomena emerging in the

USC regime, which can be observed using nowadays technology and can motivate fore-

seeable improvements. The results here presented have been derived using two concep-

tually different approaches. On one side, we have analyzed interesting models that can

be implemented in superconducting circuits, a quantum platform where the USC regime

can be naturally achieved. In particular, we focused on excitation transfer across USC

impurities, entanglement generation via modulation of electrical boundary conditions

and quantum state engineering in ultrastrongly-coupled systems. On the other hand,

we have developed methods to reproduce the physics of light-matter interactions in the

USC regime, by tailoring the Hamiltonian of atomic systems, like trapped ions and cold

atoms. These proposals take profit of the specific features of such quantum platforms,

in order to implement regimes and measurements that are not directly accessible.

We believe that this Thesis will contribute to develop a thorough understanding of

quantum phenomena related to the USC regime of light-matter interaction, and that it

will foster the dialog between experimental and theoretical research in this area.
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Chapter 1

Introduction

1.1 Light-matter interaction

The interaction between the electromagnetic field and matter, be in solid state or atomic

systems, is one of the most fundamental and ubiquitous physical processes. As trans-

parent or reflective media can be used as tools to generate non-trivial states of light,

the latter can be used, in turn, as probes to improve the analysis of materials. As a

result of this interplay, the study of light-matter interaction has yielded an amazing

variety of technological applications and novel scientific methodologies, from the earliest

refracting telescopes to atomic clocks. Indeed, with the advent of quantum mechanics,

it has played a key role in the scientific and technological revolution that led to current

quantum technologies.

The theory of quantum mechanics itself was born out of the necessity of explaining

the spectral distribution of the electromagnetic radiation produced by a thermal source.

After Planck’s postulation of energy quantization [1], Einstein introduced [2] first the

hypothesis of corpuscularity of light as a possible explanation for the photoelectric effect

and, in 1916, he proposed [3] a phenomenological theory for the atomic absorption and

emission of light. A formal quantization of the electromagnetic field was derived [4] by

Dirac in 1927, opening the way that led to the derivation of the full-fledged quantum elec-

trodynamics (QED) [5]. Nevertheless, despite notable efforts [6–8], all quantum-optical

experiments performed in the first half of the twentieth century could be explained with

classical or semiclassical theories. Finally, with the invention of the laser [9] in 1960,

the development of a full quantum theory both for the atoms and for the field became

unavoidable. In the same years, the first contributions [10, 11] by Glauber on quantum

theories of optical coherence gave birth to the modern research field of quantum optics.
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Since then, our ability to implement controllable quantum systems has been steadily

growing, until reaching the accuracy needed to engineer light-matter interactions at the

single-photon level. This milestone achievement was made possible by the confinement

of atoms and light modes into reflective cavities, a research area know as cavity QED.

Notice that the behavior of a quantum system depends more on its fundamental statisti-

cal and spectral features than on the physical origins of the degrees of freedom involved.

Accordingly, the concept of light-matter interaction has adopted a more comprehensive

meaning, that is, the interaction between bosonic fields (light) and anharmonic systems

(matter), whose dynamics effectively involves few energy levels. The possibility of con-

trolling such interactions was demonstrated in the seminal works of Haroche [12], in

which a stream of atoms controls the field in a microwave cavity, and Wineland [13],

in which the interaction between vibrations and electronic excitations of atoms in a

magnetic trap is controlled by means of optical drivings.

Nowadays, an impressive variety of quantum technologies have been developed [14].

Trapped ions, microwave or optical cavities, ultra cold atoms, photonic systems, semi-

conductor nanocrystals, superconducting circuits and nanomechanical devices form an

incomplete list of the most promising platforms. As this Thesis is being redacted, quan-

tum systems are on the brink of becoming applicable in commercial information tech-

nologies, where they are expected to provide an exponential gain in computational power,

the ability of efficiently simulating complex quantum systems and classically-unbreakable

encryption protocols. Beyond practical applications, the growing complexity of exper-

iments in the quantum regime is still deepening and broadening our understanding of

quantum phenomena. As notable examples, novel theoretical tools are needed in order

to understand quantum many-body physics, the role of causality, the principles of quan-

tum correlations, quantum thermodynamics, and the physics of novel quantum regimes,

as the ultrastrong coupling regime, subject of the present work.

1.1.1 Ultrastrong coupling regime of the quantum Rabi model

In the framework of cavity QED, the most fundamental model of light-matter interaction

is given by an atomic dipole coupled to a single mode of the electromagnetic field. The

first semiclassical version of this system has been proposed by Rabi [15] in 1937. The

full quantum version of this model, dubbed quantum Rabi model (QRM), is given by

the following Hamiltonian

HR = ωa†a+
ωq
2
σz + gσx

(
a† + a

)
, (1.1)
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where a†, a are creation and annihilation operators of the bosonic field, while σi are

Pauli matrices describing the Hilbert space of a two-level quantum system, or qubit.

We define the field and qubit energy spacing ω and ωq, respectively, and the coupling

strength g. We will use γi to denote the dissipation and decoherence rates of the non-

unitary processes due to unavoidable couplings with the environment. In order to observe

a complete Rabi cycle, i.e., a coherent exchange of excitation between the bosonic field

and the qubit, the interaction strength g must overcome all dissipation rates γi. When

this is the case, the system is said to be in the strong coupling regime. This challenging

condition has been reached [16] for the first time in 1987 using single atoms interacting

with microwave cavities.

More recently, and in this Thesis, the term strong coupling (SC) is used to define the

parameter regime such that the light-matter coupling strength is larger than dissipations,

g � γi, but also smaller than the system characteristic frequencies, i.e., g � ω and

g � ωq. In the SC regime, a rotating-wave approximation can be performed, replacing

the quantum Rabi Hamiltonian with

HR = ωa†a+
ωq
2
σz + g

(
σ−a† + σ+a

)
, (1.2)

where σ± = (σx ± iσy). This Hamiltonian, known as Jaynes-Cummings (JC) model,

has been introduced [17] in 1963 in order to study the relation between the semiclassical

approach and a full quantum theory. The JC model is analytically solvable and it has

been used for decades to describe a plethora of experiments in the quantum regime [18].

The system enters the ultrastrong coupling (USC) regime when the coupling strength

becomes comparable with the bosonic mode frequency g/ω & 0.1. In this case, the

rotating wave approximation cannot be applied and the full quantum Rabi model must

be taken into account. The bosonic field and the qubit merge into bound states called

polaritons, and the system ground state is not the vacuum, as in the SC regime. In fact,

it contains a number of photons proportional to the ratio (g/ω)2. In the USC regime,

excitations are not conserved and the simple pattern of excitation transfer typical of the

JC dynamics disappears. Despite its seeming simplicity, the QRM is not integrable, and

formal solutions for the eigenspectrum have been found only recently [19, 20].

The ratio between the coupling strength and field frequency of the first atom-cavity

systems was of the order of [21] g/ω ≈ 10−3. Requiring an improvement of three orders

of magnitude, the USC regime has long been considered unphysical. In fact, recent

development in quantum technologies have shown that achieving the USC regime of

light-matter interaction is possible, using semiconducting quantum wells [22–24], su-

perconducting circuits [25–28], arrays of electronic split-ring resonators [29, 30] and,
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possibly, nano mechanical devices [31]. Besides purely technological advances, the fun-

damental improvement that makes the USC regime achievable in those systems is the

confinement of the bosonic mode to one- or two-dimensional media and, in some cases,

the use of synthetic matter.

In the last decade, the USC regime has been gathering growing theoretical and ex-

perimental interest. The most outstanding features of the USC regime are the highly

non-trivial properties of the ground state [32–34], counter-intuitive dissipation pro-

cesses [35, 36], the possibility of generating non-classical states [37–39], and novel trans-

port and scattering properties [40, 41]. The model is also expected to have a qualitatively

different behavior when the coupling strength becomes larger than the bosonic mode

frequency, a condition that has been called deep strong coupling regime [42]. Further-

more, besides the interest in these fundamental quantum phenomena, the USC regime

is expected to entail computational benefits, in terms of robustness against external

noise [43, 44] and operational speed [45].

1.2 Quantum technologies

Before introducing the original contribution discussed in the present Thesis, let us briefly

review the quantum technologies that are going to be considered. Circuit cavity QED

stands out as the most appropriate platform in which the USC regime can be achieved in

a natural way. On the other hand, trapped ions and ultracold atoms are good examples

of extremely controllable quantum systems, where engineering the Hamiltonian allows

to implement models of light-matter interaction in the USC regime.

1.2.1 Circuit quantum electrodynamics

Cavity quantum electrodynamics studies the coupling of atoms with discrete photon

modes, in cavities with high quality factor. Circuit QED consists in reproducing such

fundamental interactions using superconducting circuits. The key ingredients are trans-

mission line resonators (TLR), which support discrete bosonic modes, and artificial

atoms, i.e., quantum circuits with an anharmonic spectrum. The required anhar-

monicity is obtained exploiting the non-linear inductance of Josephson junctions [46].

TLRs are around 1cm long, and they support microwaves modes at frequencies ω =

2π× (3− 10)GHz. Artificial atoms, also called superconducting qubits, are of the order

of 1µm, hence their spatial extension is generally negligible with respect to TLR modes

wavelengths.



Chapter 1. Introduction 5

Proposed [47] and experimentally implemented [48, 49] for the first time in 2004,

circuit QED has swiftly become one of the most promising platform for the realization of

controllable quantum systems and for the implementation of quantum computing tasks.

With respect to other quantum technologies, circuit QED benefit of a high degree of

tunability and scalability, and of the capability of achieving extremely large light-matter

couplings. Single-qubit gates can be performed in 5ns, and two-qubit gates in less than

50ns, resulting in an amazing number of operations that can be performed within the

coherence time of superconducting qubits, that can be as high [50] as 90µs. For now, the

main drawbacks of this platform are the finite fabrication precision, which introduces

inhomogeneities in artificial atoms, and the lack of single photon detectors for microwave

frequencies.

A variety of different designs have been developed for superconducting qubits, ex-

ploiting the charge [51, 52], flux [53] or superconducting phase [54] degrees of freedom.

In this thesis, we will consider two specific qubit designs. The first one is the transmon

qubit, consisting in a charge qubit shunted by a large capacitance [55]. The transmon

qubit boasts protection from dephasing noise induced by charge fluctuations, thanks to

its nearly-flat charge dispersion relation. The second one is the flux qubit, that can be

galvanically connected to TLR. This specific design allows to reach extreme values of the

inductive coupling strength, breaching into the USC regime [26]. In circuit QED setups,

artificial atoms can be controlled and measured [56] by means of microwave drivings sent

through the cavity they are embedded in. Quantum nondemolition measurement can

also be performed[57], via dispersive coupling of a superconducting qubit with a TLR.

In quantum computing tasks, circuit QED currently boasts the most advanced im-

plementation of digital simulations [58, 59]. The long awaited demonstration of the

dynamical Casimir effect has been finally achieved [60], exploiting the tunability of su-

perconducting devices. Confinement in the one-dimensional media provided by TLR

allows to radically increase the cross section in scattering experiments [61]. The scal-

ability of lithographically printed circuits will soon allow the manufacturing of large

bidimensional arrays of resonators [62]. Concluding, the possibility of implementing

novel regimes of light-matter interaction, like multimode strong coupling [63] or tunable

diamagnetic term [64], shows that the revolution introduced by circuit QED has only

just begun.

1.2.2 Trapped ions

Discrete bosonic modes interacting with two-level quantum systems can also be imple-

mented using ions trapped in time-dependent magnetic potentials [13]. In this case, the
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bosonic mode is given by the oscillations of the ion inside the trap, while the qubit is

provided by internal optical or hyperfine transitions of the ion itself. The motional mode

can be cooled down to its ground state via sideband cooling [65]. Effective interaction

between internal electronic states and the ion motion can be induced by laser drivings,

whose tunable intensities establish the coupling strengths. Measurement of the elec-

tronic state can be done via fluorescence techniques [66], while other observables can be

obtained in an indirect way, mapping the expected value on internal transitions [67].

Trapped ions are well known for the impressive precision achieved in state prepara-

tion, read-out and control [68], made possible by the developing of laser technology and

optical detection techniques. Thanks to the weak interaction of the ion electronic transi-

tions with the environment, trapped ion qubits have long coherence times, ranging from

milliseconds up to seconds [69]. Single-qubit gates can be implemented by addressing

electronic transitions with laser drivings, while two-photon gates are realized [70] using

the motional degrees of freedom as a quantum bus to mediate interactions between dis-

tant ions. Also a version of this method robust to thermal noise has been developed [71].

These features make trapped ions a promising platform for the implementation of digital

quantum simulations [72, 73].

Of specific interest for the present Thesis is the possibility of using trapped ions to

implement chains of interacting spin systems. The use of collective motional modes [74]

of ion chains made possible to experimentally study spin-spin interaction, including

few [75] or hundreds [76] of ions. Disparate complex quantum phenomena have been

explored using trapped-ion setups, like Ising spin frustration [77], quantum phase transi-

tions [78, 79] and the inhomogeneous Kibble-Zurek mechanism [80]. The controllability

of interactions between spins and bosonic modes allowed also for the quantum simulation

of relativistic effects [81–83].

Concluding, with the advent of superconducting qubits, trapped ions do not rep-

resent the prime candidate for the implementation of a universal quantum computer.

Nevertheless, controllable experiments in trapped ions are close to overcome the max-

imum complexity of models approachable with classical numerical techniques. Hence,

this platform may soon serve as a specific task quantum computer. Besides practical

applications, trapped ions will undoubtedly represent a compelling scientific tool for

many years to come.

1.2.3 Ultracold atoms

The field of ultracold atoms consists in the manipulation of atomic clouds, typically at

temperatures of the order of tenths of µK, where quantum mechanical effects become
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dominant. Such low temperatures are achieved by means of magneto-optical trapping,

laser cooling and evaporative cooling. The achievement of Bose-Einstein condensation

(BEC) [84–86] and Fermi degeneracy [87–89] brought a revolution to atomic physics,

shifting the focus from single atom dynamics to particle statistics and many-body in-

teractions. At the beginning, experimental efforts were aimed at the study of coherent

matter waves in an interacting macroscopic system. Interesting example of phenom-

ena associated with the existence of a macroscopic matter waves are the interference of

overlapping BECs [90], long-range coherence [91] and quantized vortices [92].

Dilute quantum gases can effectively be described by a single-particle description [93,

94]. In this picture, weak interactions will introduce a potential proportional to the local

density of atoms in the cloud. Allowing small fluctuations around this zeroth-order

approximation results in a model of a weakly interacting Bose gas. In this framework,

a number of basic many-body models have been implemented, and their characteristic

properties have be quantitatively verified [95]. Two novel methods have significantly

extended the range of physical phenomena accessible to ultracold atoms. The first one

is the possibility of tuning the atom scattering lenght by Feshbach resonances [96]. This

technique allows to tune the coupling strength of the effective many-body system, making

use of magnetic fields or collective optical drivings. The second one consists in the use

of strong harmonic or periodic optical potentials, in order to confine the atomic cloud to

lower dimensionalities or to load it on periodic lattices [97]. These developments allowed

ultracold atoms to break the regime dominated by non-interacting quasi particles, paving

the way for the study of strongly correlated quantum systems [98].

The high versatility of cold atoms allows for the implementation of a broad vari-

ety of models [99]. For example, in one-dimensional systems, microscopic properties

of Luttinger liquids [100] or the spin-boson model [101] can be studied. Many impor-

tant many-body systems, like spin models, can be realized as a limit of the Hubbard

model in specific regimes [102]. Spin systems with high momentum [103], strong dipo-

lar interactions [104] and many-body entanglement [105] can also be implemented. In

disordered systems, the interplay of localization and repulsive interactions can be an-

alyzed [106, 107], as well as the origin of ordering in spin glasses [108]. Fundamental

theories for high-energy and condensed-matter physics can also be studied by means

of synthetic gauge lattices [109]. Of specific interest for the preset Thesis, relativis-

tic effects have also been implemented in atomic systems [110]. Concluding, ultracold

atoms represent the most interesting platform for the direct implementation of complex

many-body system.



Chapter 1. Introduction 8

1.3 In this Thesis

In this Thesis, we theoretically analyze a variety of phenomena related to light-matter

interaction in the ultrastrong coupling regime. In particular, we focus on models that

can be implemented with current technology, or that can inspire the development of

existing quantum platforms. As the USC regime has been finally observed only recently,

we believe that this standpoint is very timely. Our work aims at stimulating the close

interplay between experimental and theoretical research that characterized the rapid

development of quantum information and quantum technologies research areas.

This thesis is composed of two parts, each one containing three chapters, and various

appendices. The first part is devoted to the study of USC-related phenomena in circuit

QED, which is the most promising platform where the USC regime can be naturally

achieved. In the second part, we consider atomic systems, namely trapped ions and

ultracold atoms, where the physics of light-matter interaction in the USC regime can

emerge as the result of Hamiltonian engineering.

I Ultrastrong coupling regime in circuit quantum electrodynamics

In this part, we analyze the modifications that the USC regime induces on fun-

damental quantum dynamical processes, like excitation transport or entanglement

generation. We consider specific systems that can be implemented in circuit QED,

namely, arrays of resonators interacting with superconducting qubits. We take into

account technical and intrinsic issues of controlling devices working in the USC

regime, and we design circuit architectures that exploit the specific advantages of

this quantum platform, like the high tunability of system parameters.

In chapter 2, we consider excitation transfer in a linear array of three quantum

cavities interrupted by an impurity, namely, a qubit interacting with the central

resonator. In particular, we analyze how the probability of observing transfer

is modified in the crossover between the SC and the USC regime. Indeed, our

approach enables us to derive an operational definition of the SC-USC transition.

In chapter 3, we show first that the fast modulation of electrical boundary con-

ditions can be used as a tool to generate entanglement among superconducting

qubits, in complex arrays of quantum resonators. Then, we generalize this anal-

ysis to include the USC regime, where the mode structure of the electromagnetic

field is strongly modified by the interaction with the qubit. In this case, we show

that the anharmonicity of the spectrum enables us to restrict the dynamics to a

low-energy subspace, where maximally entangled states of USC polaritons can be

generated. However, the lack of techniques for measuring qubit-cavity system in
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the USC regime would limit our capability of experimentally verifying the prepa-

ration of such entangled states.

In order to solve this issue, in chapter 4, we propose a feasible method to perform

state engineering and tomography of a cavity-qubit system in the USC regime.

Usually, measurements on superconducting qubits are implemented by decoupling

the relevant qubit from the rest of the system in order to allow for dispersive

read-out. However, in the USC regime decoupling is extremely challenging. Our

proposal consists in a protocol to measure and control polaritonic excitations using

an auxiliary qubit, requiring minimal resources and circumventing the decoupling

issue.

II Ultrastrong coupling regime in atomic systems

In this part, we show how the physics of light-matter interactions in the USC

regime can be effectively reproduced and observed in atomic systems, even if the

natural coupling strengths are way too small to enter such a regime. This en-

deavor is interesting from different perspectives. From one side, the reproduction

of complex phenomena in controllable quantum systems represents a resource for

quantum simulations, where experiments in the quantum regime are engineered to

retrieve information about quantum mechanical models which are intractable with

classical numerical simulations. Then, the application of fundamental models, de-

rived from first principles to describe specific interactions, as phenomenological

descriptions for different systems, creates links between different research areas,

facilitating the transfer of ideas and techniques. Finally, the implementation of

models in unusual physical systems allows to explore different regimes and, in

general, to exploit the specific features of the chosen platform.

In chapter 5, we propose a feasible scheme for simulating the quantum Rabi model

in trapped ions, using current technology. Our method makes use of laser drivings

to tailor effective interactions which resemble the quantum Rabi model in a specific

interaction picture. The possibility of modifying the detuning between the laser

drivings results in the complete tunability of physical parameters, in such a way

that the QRM can be implemented in all relevant regimes.

Using similar techniques, in chapter 6, we show that two-photon interactions of a

N−qubit chain coupled to a single bosonic mode can also be feasibly implemented

in trapped ions, for all parameter regimes. The resulting models are dubbed two-

photon Rabi for N = 1 and two-photon Dicke for N > 1. The interest in these

models is motivated by novel, counterintuitive spectral features that are expected

to appear only in the USC regime which, so far, has never been observed for this

kind of models.
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Finally, in chapter 7, we propose a method to reproduce the physics of the quantum

Rabi model using a cloud of ultracold atoms. In this implementation, the bosonic

mode is given by harmonic oscillations of the atoms in a quadratic trap, whereas

the qubit is effectively introduced by a periodic potential that induces coupling

between different bands. The proposed scheme allows to explore the USC and DSC

regimes, and to generalize the quantum Rabi model to a periodic phase space. The

predicted collapse and revivals of the initial state could be experimentally observed,

in a platform that allows to efficiently track the time evolution of the momentum

distribution.

III Appendix

In Appendix A, we provide further details about state transfer in three-cavity

arrays. In Appendix B, we report the circuit quantization for the model discussed

in chapter 3. In Appendix C, we provide details about two-step processes for state

engineering in the USC regime. In Appendix D, we discuss some mathematical

properties of the two-photon quantum Rabi model, and we describe a method to

measure parity in the proposed trapped-ion implementation of the model.



Part I

Ultrastrong coupling regime in

circuit quantum electrodynamics
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Chapter 2

Photon transfer in ultrastrongly

coupled three-cavity arrays

2.1 Introduction

The high level of control achieved on quantum optical systems [18, 69, 111, 112] moti-

vated an increasing interest in the study of strongly correlated systems and collective

phenomena. Particularly promising are arrays of coupled resonators, where cavities can

interact with single two-level systems. These platforms are the best candidates to im-

plement highly non-trivial photon lattice models, like the Jaynes-Cummings-Hubbard

model [113–115], among others. The possibility of designing different geometries enables

one to engineer quantum networks for distributed quantum information processing [116].

These lattice models have also proved useful to describe the scattering of a single-photon

interacting with a qubit in a one-dimensional waveguide [117, 118].

A similar approach has been used to consider homogeneously coupled cavity ar-

rays [119], where the central cavity-qubit interaction is in the strong coupling regime.

However, reaching the ultrastrong coupling regime of light-matter interaction has impor-

tant consequences in the collective properties of strongly correlated systems. Photon-

scattering properties have been studied [120] only recently for the case in which the

rotating-wave approximation (RWA) ceases to be valid. Circuit QED technologies [47–

49] represent the most natural platform both to implement photon lattice models [62,

121, 122] and to reach the USC regime [25, 26, 28]. Networks of microwave resonators

offer a high degree of tunability and scalability, but they also include disorder in the

cavity coupling distribution due to fabrication imperfections.

13
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In this chapter, we consider the problem of photon transfer in a linear array of three

coupled cavities, where a two-level system interacts at the central site in the SC and USC

regimes (see Fig. 2.1). This configuration can be thought as a microwave analogue [123]

of the superconducting Josephson interferometer. We also include disorder in the cavity-

cavity coupling, thus mimicking experimental imperfections. Under these conditions,

we are able to unveil the following features: (i) in the SC regime, and for finite values

of the hopping amplitudes and of the cavity-qubit coupling, a single excitation initially

localized in the leftmost cavity is strictly forbidden to fully populate the rightmost cavity,

similar to the delocalization-localization phenomenon [124]; (ii) in the USC regime, the

above restriction does not hold any more, and a single excitation can fully populate

the rightmost cavity for almost arbitrary Hamiltonian parameters. Furthermore, the

tunneling rate of the single excitation becomes negligible for a critical value of the

cavity-qubit coupling strength, and it also allows an operational way of defining the

SC/USC crossover. Our scheme represents a feasible building block [62, 121, 122, 125]

to study photon excitation and state transfer towards scalable cavity arrays.

The present chapter is organized as follows. In section 2.2, we introduce the model

and we provide a description of the dynamical processes we consider. In section 2.3,

we analyze the single-photon transfer in the SC regime. In section 2.4, we begin with a

discussion on the system dynamics in the case in which the RWA breaks down, before

moving on to a comparison of the photon transfer behavior between the SC and USC

regimes. Further details on the transfer of a more general state (such as a qubit and a

coherent state) are provided in Appendix A. In section 2.5, we report on a particular

regime in which the qubit frequency vanishes. Finally, in section 2.6, we summarize and

discuss our results.

Figure 2.1: Linear chain of three microwave cavities. The central cavity is coupled
to a two-level quantum system in the strong coupling or ultrastrong coupling regime.
The side cavities are linked to the central one through hopping interaction that can
also be strong enough to invalidate the RWA.
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2.2 The model

Our model consists of an array of three single-mode cavities, where the central site inter-

acts with a two-level system in the SC or in the USC regime. A schematic representation

is shown in Fig. 2.1 where each cavity is linked with its neighbor through a hopping in-

teraction that, in general, is not weak enough to consider the RWA. The corresponding

Hamiltonian reads

H =

3∑

`=1

ω`a
†
`a` +

ωq
2
σz + gσx(a†2 + a2)

−
2∑

`=1

J`(a
†
`a`+1 + a†`a

†
`+1 + H.c.),

(2.1)

where a`(a
†
`) is the annihilation (creation) operator for photons on the `-th cavity

(` = 1, 2, 3), ω` being the characteristic frequencies and J` are nearest-neighbor hop-

ping amplitudes. The qubit of frequency ωq is located inside the central cavity and is

described by the Pauli matrices σα (α = x, y, z), while g denotes the cavity-qubit cou-

pling strength. The complexity of the Hamiltonian in Eq. (2.1) is associated with the

appearance of counter-rotating terms in the cavity-qubit and cavity-cavity interaction.

Hereafter, we consider identical cavities (ω`=ω) and resonant qubit (ωq=ω). We stress

that in all simulations we set the energy scales in units of the resonator frequency ω.

The system is initialized in the state |ψ0〉= |100〉 ⊗ |g〉, corresponding to having

a single photon in the leftmost cavity, zero in the others, and the qubit in its ground

state. We address the dynamics dictated by the Hamiltonian (2.1), and study the single-

excitation transfer along our three-cavity array. Depending on the ratio g/ω, two regimes

can be identified: the SC regime for g/ω.0.1, and the USC regime for 0.1 .g/ω .1.

2.3 Single-photon transfer in strong coupling regime

When g/ω�1, the RWA provides a faithful description of the cavity-qubit dynamics, so

that we can neglect the counter-rotating terms in Eq. (2.1): σx(a†2+a2)→(σ+a2+σ−a
†
2).

In the regime where hoppings Jl/ω�1, the cavity-cavity RWA also holds, and the U(1)

symmetry provides the conservation of the total number of excitations. In this case, the

time-evolution of the system will necessarily lead to a state of the form |ψ(t)〉=α |000〉⊗
|e〉 +

(
β |100〉 + γ |010〉 + δ |001〉

)
⊗ |g〉. A full analytical solution can be found in the

interaction picture and directly solving the Schrödinger equation. At resonance, where

qubit and resonator frequencies coincide (ωq=ω), we can derive explicitly the probability

amplitude for finding a photon in the rightmost cavity: δ(t)= T [cos (λt)− 1] /2, where
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Figure 2.2: Oscillation amplitude T defined in Eq. (2.2) as function of the hopping
parameter J2, and for different sets of Hamiltonian parameters. In panel (a), for a fixed
value of the cavity-qubit coupling g = 0, we display data for J1 = 0.001 (continuous
blue line), J1 = 0.005 (dashed black line), and J1 = 0.01 (dot-dashed red line). In
panel (b), for a fixed value of J1 = 0.001, we consider g = 0 (continuous blue line),
g = 0.002 (dashed black line), and g = 0.01 (dot-dashed red line). Here and in the
following figures, we express all the couplings/hoppings in units of ω, while times are
denoted in units of ω−1 . We also set ~ = 1.

λ=
√
g2 + J2

1 + J2
2 and the amplitude reads

T =
2J1J2

g2 + J2
1 + J2

2

. (2.2)

The above result unveils a competition between cavity-cavity and cavity-qubit in-

teractions. Equation (2.2) indeed shows that, introducing disorder in the cavity-cavity

couplings (J1 6=J2), the single-photon transfer has a counter-intuitive dependence on the

hopping terms. In particular, for given parameters g, ω, and J1, the excitation transfer

to the rightmost cavity exhibits a non-monotonic behavior with increasing J2 and is

maximum for J1 = J2 (see Fig. 2.2a). Note that only in the homogeneous case (J1 = J2)

and for a negligible cavity-qubit coupling g, it is possible to have photon transfer with

unit probability. On the other hand, for any finite value of g, the latter is strictly for-

bidden. We also notice that, in Eq. (2.2) and for fixed J1, increasing g decreases the

amplitude T (see Fig. 2.2b). This behavior has a simple explanation: when a single

excitation tries to move from the left to the central cavity, it is scattered back by the

cavity-qubit system without being fully absorbed. In fact, the probability for exciting

the qubit |α|2 is inversely proportional to the square of the coupling strength.



Chapter 2. Photon transfer in ultrastrongly coupled three-cavity arrays 17

2.4 Single-photon transfer in the USC regime

If the coupling strength g and the resonator frequency ω satisfy 0.1 .g/ω .1, the sys-

tem enters the USC regime. In this case, photons are spontaneously generated from the

vacuum such that the total number of excitations grows with the ratio g/ω, enlarging

unavoidably the associated Hilbert space1. To observe an appreciable excitation trans-

fer, the photon hopping strength must be of the same order of g, thus we consider values

up to J` ∼ 0.1. In this regime, for the sake of consistency, the counter-rotating terms of

the cavity-cavity interaction have been taken into account, although they do not change

qualitatively the system dynamics. In order to provide a reliable system real-time dy-

namics, we performed a fourth order-Trotter expansion2 of the evolution operator [126].

To extend this kind of analysis to a higher number of cavities, one should rely on more

sophisticated numerical techniques, such as the time-evolving block-decimation scheme

for a one-dimensional array of cavities.

2.4.1 System dynamics

Figure 2.3 shows the time-evolution of the average photon number in each cavity,

N
(i)
ph (t) = 〈ψ(t)|a†iai|ψ(t)〉, starting from the state |ψ0〉= |100〉 ⊗ |g〉 that evolves ac-

cording to Hamiltonian (2.1). At first glance, one recognizes a highly irregular behavior

of N
(i)
ph (t), which arises from the counter-rotating terms in the cavity-qubit interaction.

Remarkably, this is developed by the unitary evolution of the system itself, and it is not

due to the limited time-resolution of our simulations. In order to quantify this behavior,

we analyse the fractal dimension of N
(1)
ph (t) by using the modified box counting algo-

rithm [127]. This consists in dividing the total time interval in segments of size τ , and

then covering the data with a set of rectangular boxes of size τ ×∆i (∆i is the largest

excursion of the curve in the i-th region τ). One then computes the average excursion

M(τ) =
∑

i ∆i/τ . The dimension D of the curve is defined by D = − logτ M(τ). One

finds D = 1 for a straight line, and D = 2 for a periodic curve. Indeed, for times much

larger than the period, a periodic curve uniformly covers a rectangular region. Any

value of D between these integer values entails the fractality of the curve (see caption of

Fig. 2.3). In the case of Fig. 2.3a, we obtained D ≈ 1.66 (inset to the figure). Further-

more, increasing g, we found a fractal dimension which rapidly decreases from D ∼ 2

1The counter-rotating terms in the cavity-cavity coupling also induce photon generation from the
vacuum. However, for the cases we consider (J` . g) most of the non-conserving excitation effects come
from the cavity-qubit USC regime.

2In order to keep the Hilbert space dimension manageable in our simulations, we cut the maximum
number of allowed photons per cavity to a finite amount Nmax = 18. We checked that such cutoff value
induces an error that is negligible on the scale of our results, for g/ω . 1. All Trotter time evolutions
have been performed up to a time t = 5000.
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Figure 2.3: Average photon number in each cavity N
(i)
ph (t) at resonance condition

(ωq=ω), and for homogeneous cavity-cavity couplings (J1=J2=0.1). The red line stands
for the leftmost cavity, the blue line for the rightmost cavity, while the green line for
the central cavity. The main panels refer to different cavity-qubit couplings: g = 0.9

(a), g = 0.85 (b). The inset shows the box counting analysis for N
(1)
ph (t) (g = 0.9),

and displays M as a function of τ . For any curve, there exists a region of box lengths
τmin < τ < τmax where M ∝ τD. Outside this region, one either finds D = 1 or
D = 2. The first equality holds for τ < τmin, and it is due to the coarse grain artificially
introduced by numerical simulations. The second one is obtained for τ > τmax and it
is due to the finite length of the analyzed time series. The boundaries τmin, τmax have
to be chosen properly for any time series. A power-law fit of the intermediate region
gives a fractal dimension D ≈ 1.66. Time is expressed in units of ω−1.

(quasi-periodic curve) down to non integer values close to D ∼ 1.5 for large cavity-qubit

couplings.

The fractal time-dependence emerging in the system is clearly due to the presence

of counter-rotating terms. Here we point out that a similar analysis, performed after

removing the two side-cavities from the model, systematically produced integer values

of D. This means that the Rabi model alone is not sufficient to generate a fractal signal.

In order to have a sufficient number of incommensurate frequencies generating a fractal

behavior, the Rabi model has to be combined with some non trivial interaction with

other bosonic modes.

2.4.2 Photon transfer

Before discussing the transfer properties, it is appropriate to observe that, even though

in the USC regime photons are spontaneously generated in the central site, for the
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coupling values considered here and if the system is initialized in the vacuum state, the

average photon number in the side-cavities keeps being way smaller than 0.1 during the

whole evolution. This guarantees that the signal tunneled through the central site can

be clearly distinguished from excitations generated by the presence of counter-rotating

terms. Furthermore, in the case of homogeneous cavity-cavity couplings, given the

symmetry of the system Hamiltonian (2.1), the two side-cavities have identical behavior

and differences between them can arise only from asymmetrical initial states.

Two fundamental differences with respect to the SC regime can be found in the

excitation transfer analysis. First, in the USC regime a single photon excitation can be

completely transferred from the leftmost to the rightmost cavity, also for a finite value

of the coupling strength g [see, e.g., Fig. 2.3a]. This is the typical situation for almost

arbitrary Hamiltonian parameters in the USC regime, a disparity that can be explained

as follows. The initial state |ψ0〉 has a finite overlap with the state |E〉 = (g |100〉 ⊗
|g〉+ J |000〉 ⊗ |e〉)/

√
g2 + J2. In the SC regime, |E〉 is an Hamiltonian eigenstate, and

its overlap with the evolved system state |ψ(t)〉 is conserved during the time-evolution.

Consequently, the state |001〉⊗|g〉 is not accessible (as far as g 6= 0). On the other hand,

in the USC regime the state |E〉 is no longer an eigenstate of the Hamiltonian. Hence,

the previous limitation does not hold anymore, and complete transfer to the rightmost

cavity is generally allowed. In the USC regime, the qubit and the field in the central

cavity cannot be considered as separated entities, and the Jaynes-Cummings doublets

are not the correct eigenstates to describe the system dynamics. In fact, the system

eigenstates are defined in two infinite-dimensional Hilbert spaces that have a defined

parity p = ±1, according to the Z2 symmetry [19].

The second feature to be highlighted is that the photon transfer is strongly inhibited

for a specific value of the cavity-qubit coupling strength, as displayed in Fig. 2.3b. In

particular, in Fig. 2.4 we analyzed the population inversion time Tinv, defined as the time

in which the average photon number becomes bigger in the rightmost cavity than in the

leftmost cavity, as a function of the coupling strength g, and for different values of the

cavity-cavity coupling strength. We found that there exists a critical value gc, dependent

on the system parameters, for which the time needed to observe single-photon transfer

dramatically increases. For the considered parameter ranges, we find a critical coupling

0.78 . gc . 0.88 (in units of ω). Fixing J1 = 0.1, we found gc ≈ 0.94 − 0.97 × J2,

while the population inversion time T
(max)
inv in correspondence to such value exhibits a

quite irregular pattern of oscillations with J2 (inset to Fig. 2.4). To our knowledge,

this is the first observation of this behavior in the excitation transfer properties of a

cavity QED system. This phenomenon is specific to the USC dynamics and occurs in

the higher-coupling region of the Rabi model (g/ω&0.4) [128], a zone where the photon
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Figure 2.4: Population inversion time Tinv as a function of the cavity-qubit coupling

constant, for J1 = 0.1, defined as the time in which N
(3)
ph (t) becomes bigger than

N
(1)
ph (t). We note the SC-USC transition for g ≈ 0.14, and the inhibition of state

transfer around a critical value gc which depends on the hopping term J2 according to:
gc ≈ 0.94 − 0.97 × J2. The couplings g and J1,2 are expressed in units of ω, as well
as Tinv is in units of ω−1. The inset displays the maximum value of the population

inversion time T
(max)
inv that is reached at gc, as a function of J2.

production exceeds the RWA predictions, and an analytical treatment becomes difficult

despite the integrability of the model [19].

We highlight the sudden increase of Tinv occurring in the lower-coupling region of the

Rabi model, which is zoomed-in in Fig. 2.5. This abrupt behavior is due to the SC/USC

regime crossover. If the RWA holds, the population inversion time is given by: Tinv =

arccos(1−λ2/(J2
1 +J2

2 ))/λ, where λ has been defined previously. For g>
√
J2

1 + J2
2 , the

population inversion never occurs. Contrariwise, when the counter-rotating terms are

taken into account, we observe population inversion at finite time also for larger value

of the coupling g. Notice that the location of the discontinuities appearing in Fig. 5

is related to our definition for the inversion time Tinv. For example, a redefinition of

Tinv as the time in which N
(3)
ph /3 becomes bigger than 2N

(1)
ph /3, would quantitatively

change the value of g for which the inversion time experiences a discontinuity. However

the emerging physics would not qualitatively change. Here we use the most natural

definition of Tinv, in analogy with the concept of population inversion in statistical

mechanics. The sudden increase of the population inversion time is due to the fact that,

in the USC regime, the accessible part of the Hilbert space is unbounded, because of

the U(1) symmetry breaking down to a Z2 symmetry. Hence, the system can explore
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solution when the RWA holds for cavity-cavity and cavity-qubit interaction. The black,
red and green lines are obtained through numerical simulations of the full model ruled
by the Hamiltonian (2.1).

a much bigger number of states: complete transfer is allowed, but the probability of

its occurrence is smaller. For our three-cavity array, the parameter gt = g/
√
J2

1 + J2
2

provides us with an operational definition for the SC/USC transition of the cavity-qubit

interaction. For small values of gt, the RWA describes correctly the transfer dynamics.

When gt > 1, the full model behavior differs quantitatively and qualitatively from the

JC model predictions. We observe also that varying J2 with respect to J1 results in a

longer population inversion time: in both regimes, inhomogeneity in the hopping terms

hinders the excitation transfer.

We have also analyzed the transfer of coherent states, |φ0〉=|α〉, and of arbitrary

linear superposition states |φ0〉 = p |0〉+eiθ
√

1− p2 |1〉, with p randomly chosen in the in-

terval [0,1]. We numerically simulated the system evolution, setting |ψ0〉 = |φ0〉 |0〉 |0〉 |g〉
as initial state, and we recorded the behavior of the transfer fidelity, defined as: F =

Tr[ρ0ρ(t)], where ρ0 = |φ0〉 〈φ0| and ρ(t) is the state of the rightmost cavity at time t.

The results we found are consistent with those relative to the case of single-excitation

transfer. The interplay between the hopping constant J and the cavity-qubit coupling

strength g, rules the state transfer dynamics: with increasing J the transfer is more

likely to happen, while increasing g results in smaller values of the transfer fidelity.

Specifically, in the SC regime, as far as g 6= 0, it is impossible to observe complete state

transfer, i.e. F < 1 at any time. This is not the case in the USC regime, where the

transfer fidelity, be in a linear superposition or a coherent state, can be close to unity,
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also when g and J are of the same order. These results show the peculiar features of

state transfer physics beyond the RWA, and may pave the way for developing a general

theory in presence of USC regimes. Further details on state transfer features can be

found in appendix A.

2.5 Degenerate qubit case

In the case in which the qubit frequency vanishes, a closed analytical solution of the

system dynamics is available if we consider the RWA in the cavity-cavity interaction.

This model can be simulated with current technology by means of a coupled cavity-

qubit system in the SC regime, and the application of a strong classical driving to the

qubit [129, 130]. It can be shown that the dynamics of such system will be ruled by the

effective Hamiltonian

Heff = ω

3∑

`=1

a†`a` +
g

2
σx(a†2 + a2)−

2∑

`=1

J`(a
†
`a`+1 + H.c.) . (2.3)

which can be obtained setting ωq = 0 in Eq. (2.1), and performing the RWA on the

cavity-cavity interaction. In this case, the excitation transfer exhibits a smooth periodic

behavior in time, which is independent of the cavity-qubit coupling strength, and allows a

complete transfer at regular times. In fact, the time evolution of the difference between

the average photon number in the leftmost and rightmost cavities, starting from the

initial state |ψ0〉=|100〉 ⊗ |g〉 in the homogeneous case, reads

∆Nph(t) = N
(1)
ph (t)−N (3)

ph (t) = cos (
√

2Jt). (2.4)

This result holds both in the SC and in the USC regime, hence the counter-rotating

terms do not modify the excitation transfer properties of the system. We point out

that, when g/ω&0.1, spontaneous photon generation occurs: 〈a†1a1〉 and 〈a†3a3〉 keep a

chaotic time dependence, despite their difference follows a smooth and regular behavior.

2.6 Conclusions

In this chapter, we have studied excitation transfer in an array of three coupled cavities,

where a two-level system interacts with the central one, focusing on the comparison

between strong and ultrastrong coupling regimes of light-matter interaction. In the SC

regime, the cavity-qubit interaction g and the cavity-cavity inhomogeneities J1 6= J2

constrain the excitation transfer, thus inhibiting complete population tunneling. On
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the contrary, in the USC regime a much richer scenario appears. A complete photon

transfer is generally allowed, even for finite values of the cavity-qubit coupling strength

and for inhomogeneous hoppings, although there exists a specific regime for which the

tunneling rate becomes negligible. The complexity of the USC dynamics, generated

by counter-rotating terms, manifests itself in the highly irregular time pattern of the

observables, exhibiting a fractal behavior. Nonetheless, the physics beyond the RWA

plays an important role for the enhancement of quantum state transfer. Finally, in the

degenerate qubit case, the excitation transfer is regular and its period does not depend

on the cavity-qubit coupling strength.

The proposed scheme can be implemented with state-of-the-art superconducting

circuit technology. Such a controllable system could be used as building block for re-

alizing controllable quantum simulation of large lattices involving the quantum Rabi

model in all coupling regimes. We also remark that, studying the photon transport

mechanism in coupled cavities, as for example our three-cavity setup, in the presence of

losses could be also relevant for the understanding of noise-assisted transport in quantum

networks [131, 132].





Chapter 3

Dynamical Casimir effect

entangles artificial atoms

3.1 Introduction

In this chapter, we investigate how to generate multipartite entangled states of two-level

systems, also referred to as quantum bits (qubits), by means of varying boundary con-

ditions. We also propose a scheme that could be feasibly implemented in the framework

of superconducting circuits with nowadays technology. For pedagogical reasons, we il-

lustrate our model with a hypothetical quantum-optical system, shown in Fig. 3.1. It

is composed of two cavities, independently coupled to single qubits, sharing a partially

reflecting mirror. Fast modulation of the mirror properties generates squeezed light, a

phenomenon known as dynamical Casimir effect (DCE).

We consider the cavity-qubit coupling strength in the strong and ultrastrong cou-

pling regimes. In the SC case, we introduce the key concepts allowing the generation of

highly-entangled two-qubit states, also known as Bell states [133], in circuit QED [47–

49]. Furthermore, we consider the generation of tripartite entanglement [134] and the

scalability aspects of our proposal to multipartite systems. In the USC regime, we show

that the strong anharmonicity allows to restrict the system dynamics to a low-energy

subspace, so that Bell-states of USC polaritons can be generated.

Before going on, we provide a brief introduction to the dynamical Casimir effect, in

particular related to recent implementations in circuit quantum electrodynamics.

25



Chapter 3. Dynamical Casimir effect entangles artificial atoms 26

Figure 3.1: Quantum optical implementation of the model of Eq. (3.1): two cavities
with a common partially-reflecting mirror, each one containing a two-level artificial
atom in the strong-coupling regime. If the position and/or transmission coefficient
of the central mirror is time-modulated, correlated photon pairs are generated and
entanglement is transferred to qubits via the Jaynes-Cummings interaction.

3.1.1 The dynamical Casimir effect in superconducting circuits

The phenomenon of quantum fluctuations, consisting in virtual particles emerging from

vacuum, is central to understanding important effects in nature—for instance, the Lamb

shift of atomic spectra [135] and the anomalous magnetic moment of the electron [136].

The appearance of a vacuum-mediated force between two perfectly conducting plates,

known as the Casimir effect, is caused by a reduction of the density of electromagnetic

modes imposed by the boundary conditions [137–139]. This leads to a vacuum radiation

pressure between the mirrors that is lower than the pressure outside. It was also sug-

gested [140] that a mirror undergoing relativistic motion could convert virtual into real

photons. This phenomenon, denominated dynamical Casimir effect (DCE), has been

observed in recent experiments with superconducting circuits [60, 141]. In the same

manner that the Casimir effect can be understood as a mismatch of vacuum modes in

space, the kinetic counterpart can be explained as a mismatch of vacuum modes in time.

A moving mirror modifies the mode structure of the electromagnetic vacuum. If

the mirror velocity, v , is much smaller than the speed of light, c, then the electromag-

netic modes adiabatically adapt to the changes and no excitations occur. Otherwise,

if the mirror experiences relativistic motion, changes occur nonadiabatically and the

field can be excited out of the vacuum, generating real photons. Beyond its fundamen-

tal interest, it has been pointed out that the DCE provides a mechanism to generate

quantum correlations [142–148]. In this sense, we may consider the study of the DCE

as a resource for quantum networks and quantum simulations, in the frame of quan-

tum technologies. In circuit quantum electrodynamics, DCE photons have been created
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by modifying the boundary conditions of the electromagnetic field [60] confined in a

one-dimensional medium. In a similar experiment photons have also been created by

modulating the effective speed of light [141] in a Josephson metamaterial.

This chapter is organized as follows. In section 3.2, we introduce the model with a

quantum-optical analogy. In section 3.3, we show how such a model can be implemented

using superconducting circuit technology. In section 3.4, we theoretically demonstrate

that, using the proposed protocol, it is possible to generate bipartite Bell states. In

section 3.5, we show that our framework can be generalized to the multipartite case. In

section 3.6, we extend the model to the USC regime. Finally, in section 3.7, we provide

some comments over the scope and over possible promising extensions of our research

work.

3.2 The model: a quantum-optical analogy

The Hamiltonian describing the system of Fig. 3.1 is composed of the sum of two Jaynes-

Cummings (JC) interactions and a time-dependent coupling between the field quadra-

tures,

H = ~
2∑

`=1

[
ω`a
†
`a` +

ωq`
2
σz` + g`

(
σ+
` a` + σ−` a

†
`

)]
(3.1)

+ ~α(t)
(
a†1 + a1

)(
a†2 + a2

)
.

Here, a†`, a` are the creation and annihilation operators of the bosonic modes representing

the cavity fields, while σz` , σ
±
` are the Pauli operators of qubits. The characteristic

frequencies of the two cavities are denoted by ω`, while the qubit energies are ωq` . The

parameters g` and α(t) denote the cavity-qubit and cavity-cavity interaction strength,

respectively.

In Eq. (3.1), the coupling between different cavity modes, due to the overlap of their

spatial distribution, is written in its full form without performing the rotating wave ap-

proximation. While in optical cavities this overlap can be obtained with a partially

reflecting mirror [149], in circuit QED it is commonly implemented using capacitors or

inductances shared by two or more resonators. The boundary condition at the edge

shared by the cavities is ruled by the central mirror position and by its reflection coef-

ficient. Modulating these physical quantities results in a time dependence of the cavity

frequencies ωi and of the coupling parameter α. When the effective cavity length is

oscillating with small deviations from its average value, we can still consider the system

as a single-mode resonator. In particular, if the cavity-cavity coupling parameter is a
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time-dependent function, α(t) = α0 cos (ωdt) with ωd = ω1 + ω2 and α0/ωi � 1, the

interaction effectively turns into a two-mode squeezing term (see below),

α(t)X1X2 →
α0

2

(
a†1a
†
2 + a1a2

)
, (3.2)

which generates pairs of entangled photons shared by the cavities. By means of the

Jaynes-Cummings interaction, entanglement generated between cavities may be trans-

ferred to resonant qubits. In fact, we will prove below that, under suitably designed

conditions, maximal entanglement (Bell state) between the two qubits may be attained.

3.3 Circuit QED implementation

Nowadays, quantum technologies [150] offer several platforms to study fundamentals and

applications of quantum theory. In particular, superconducting circuit technology [151,

152] is a prime candidate to implement the model of Eq. (3.1). In this framework, the

cavities are constituted by coplanar waveguides, working at cryogenic temperatures, that

are described by an equivalent LC circuit, as shown in Fig. 3.2a,b. The characteristic

frequency of such devices is in the 2 − 10 GHz microwave regime. Each cavity can

be coupled to a superconducting qubit built from Josephson junctions (JJs) to access

charge [51], flux [53], or phase [153] degrees of freedom. Specifically, we propose the use

of transmon qubits which have low sensitivity to charge noise and coherence times well

above ten µs [55, 154, 155]. The moving mirror [156, 157] that couples both cavities

(see Fig. 3.1) can be implemented by means of a superconducting quantum interference

device (SQUID) [158], which behaves as a tunable inductance. A SQUID is composed of

a superconducting loop interrupted by two JJs (see Fig. 3.2a), threaded by an external

flux φext. The latter allows a fast modulation of the electrical boundary condition of

cavities and their interaction. Notice that a modulation of the magnetic flux threading

the SQUID induces a proportional variation of the effective resonator lengths, while in

the system of Fig. 3.1, moving the central mirror results in an opposite change of cavity

lengths.

By using off-the-shelf electronics, it is possible to produce magnetic fluxes that oscil-

late at the cavity characteristic frequencies. The upper limit to the speed of modulation

is imposed by the SQUID plasma frequency, defined as ωp = 1
~
√

8ECEJ , where EC is the

charging energy, EJ the Josephson energy, both associated with a single JJ belonging

to the superconducting loop. Beyond this frequency, the internal degrees of freedom of

the device are activated and a more complex behavior appears. To overcome this prob-

lem, the external flux φext(t) injected into the device, which also determines EJ , will be

composed of the sum of a signal oscillating at the driving frequency ωd and a constant
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Figure 3.2: (a) The model of Fig. 3.1 can be implemented by means of two coplanar
waveguides, grounded through a SQUID, containing two superconducting qubits. The
blue lines represent two parallel strip lines of isolating material, where the supercon-
ducting region between them constitutes the coplanar waveguide. Each cavity interacts
with a transmon qubit that is denoted by a red dot. Different resonator lengths result in
distinct resonator frequencies. (b) Circuit diagram for the previous scheme, where the
cavities are effectively represented by LC resonators. We assume two identical Joseph-
son junctions of the SQUID, while transmon qubits are constituted by two Josephson
junctions shunted by a large capacitance.

offset φ0, φext(t) = φ0 + ∆φ cos (ωdt). We consider nondegenerate resonators to avoid

uncorrelated photon generation at the cavity resonance frequencies, an assumption that

has been confirmed by a detailed quantum mechanical analysis (see appendix B) of the

effective lumped circuit element in Fig. 3.2b.

If the instantaneous resonant frequency of a given resonator follows the time-dependence

ω(t) = ω0+δω cos (ωdt), cavity modes are well defined only under the condition δω � ω0.

In our proposal, the frequencies of the cavity modes are obtained by solving the tran-

scendental equation kd tan (kd) = L/Ls − Cs/C(kd)2 for the wave number k, where d

is the length of the resonator. We called Cs, Ls and C, L the effective capacitance and

inductance of the SQUID and of the resonator, respectively. Parameters used in our

simulations assure that δω/ω0 < 10−3.

In the interaction picture, the parametric processes induced by the SQUID lead to

the Hamiltonian

HId(t) = ~ cos(φext/ϕ0)
[ 2∑

`=1

α`(a`e
−iω`t + a†`e

iω`t)2

− ~α̃(a1e
−iω1t + a†1e

iω1t)(a2e
−iω2t + a†2e

iω2t)
]
, (3.3)
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where ϕ0 = ~/2e is the reduced flux quantum, and the coefficients α` and α̃ are functions

of the Josephson energy (EJ), the junction capacitance (CJ), the cavity parameters

such as capacitance (C`) and inductance (L`). If the parameters α` and α̃ are much

smaller than cavity frequencies ω`, we can perform the rotating wave approximation

(RWA), and so neglect fast-oscillating terms in Eq. (3.3). In this case, if we consider

φext = φ0 + ∆φ cos (ωdt) with ∆φ a small flux amplitude, the controlling the driving

frequency ωd allows to selectively activate interaction terms in the system dynamics.

When the cavity is off-resonant and ωd = ω1 + ω2, the interaction Hamiltonian reads as

Eq. (3.2). Interactions among different cavity modes, called mode mixing, are activated

under the frequency-matching condition ωd = ωa − ωb. Cavity and driving frequencies

can be chosen in order to make the relevant mode interact only with off-resonance,

overdamped modes. Circuit design allows each qubit to be resonantly coupled with a

single cavity mode, in which activation of higher modes due to the DCE mechanism can

be neglected.

3.4 Bipartite entanglement generation

Our protocol for generating entanglement requires neither direct [159] nor single cavity-

bus mediated [160] qubit-qubit interaction. Instead, it consists in cooling down the

system to its ground state, turning on the external driving flux φext and switching it

off at time tSO, when the maximal qubit entanglement is reached. The concurrence C
is an entanglement monotone of a given bipartite mixed state ρ, namely, the minimum

average entanglement of an ensemble of pure states that represents ρ. For an arbitrary

two-qubit state the concurrence reads [161] C(ρ) = max {0, λ1 − λ2 − λ3 − λ4}, where λi

are the eigenvalues, in decreasing order, of the Hermitian matrix R =
√√

ρρ̃
√
ρ, with

ρ̃ = σy ⊗ σyρ∗σy ⊗ σy.

The numerical results are shown in Fig. 3.3a. An almost maximally entangled

state (C = 0.97) can be reached within tSO ≈ 10−500 ns, that is, for a wide range of

realistic system parameters (see appendix B). Such protocol allows generation of the

Bell state |ψ〉 = (|ee〉 + i|gg〉)/
√

2 with fidelity F = |〈ψ|ρ|ψ〉| = 0.99, with current

superconducting circuits technology. The density matrix of the produced Bell state

is shown in Fig. 3.3b. We have also proven that entanglement generation is robust

against small imperfections due to limited fabrication precision and imperfect ground

state preparation. Our protocol can be implemented in an on-chip architecture and it

does not require any external source of squeezed signals [162].
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Figure 3.3: (a) Concurrence and mean photon number as a function of time in
units of the cavity frequency !1. Here, the chosen parameters are: !1/2⇡ = 4 GHz,
!2/2⇡ = 5 GHz, the impedance for both cavities is Z0 = 50⌦, and the critical current of
the SQUID junctions is IC = 1.1 µA. Such parameters result in a squeezing parameter
↵0 = !1 ⇥ 10�3. Each qubit is resonant with its corresponding cavity and they are
coupled with the same interaction strength g = 0.04 !2. (b) Real and imaginary parts
of the density matrix ⇢ associated with the two-qubit system.

generalize the concept of dynamical Casimir e↵ect to the multipartite case. Let us con-

sider three resonators connected to the ground via a SQUID, as shown in Fig. 3.4. By

injecting a fast-oscillating magnetic flux through the SQUID results in varying bound-

ary conditions, which generate correlated photons pairs distributed in the three cavity

modes. Such a configuration has no direct analogy with optical cavities, as opposed to

the bipartite case. The Hamiltonian that describes the circuit of Fig. 3.4 is composed

of three JC interactions and three time-dependent direct couplings between the field

quadratures of each resonator pair

H = ~
3X

`=1


!`a

†
`a` +

!q
`

2
�z
` + g`

⇣
�+
` a` + ��` a†

`

⌘�
(3.4)

+ ~
X

h`,mi
↵`m(t)

⇣
a†
` + a`

⌘⇣
a†

m + am

⌘
.

If the external flux threading the SQUID is composed of three signals oscillating at the

frequencies !d
`m = !`+!m, we can isolate the two-mode squeezing terms as in Eq. (3.2).

Figure 3.3: (a) Concurrence and mean photon number as a function of time in
units of the cavity frequency ω1. Here, the chosen parameters are: ω1/2π = 4 GHz,
ω2/2π = 5 GHz, the impedance for both cavities is Z0 = 50Ω, and the critical current of
the SQUID junctions is IC = 1.1 µA. Such parameters result in a squeezing parameter
α0 = ω1 × 10−3. Each qubit is resonant with its corresponding cavity and they are
coupled with the same interaction strength g = 0.04 ω2. (b) Real and imaginary parts
of the density matrix ρ associated with the two-qubit system.

3.5 Generalization to multipartite systems

In the framework of superconducting circuits, resonators can be linked together in uni-

dimensional and bidimensional arrays to build networks of quantum cavities and su-

perconducting devices. This enables us to envision more complex configurations which

generalize the concept of dynamical Casimir effect to the multipartite case. Let us con-

sider three resonators connected to the ground via a SQUID, as shown in Fig. 3.4. By

injecting a fast-oscillating magnetic flux through the SQUID results in varying bound-

ary conditions, which generate correlated photons pairs distributed in the three cavity

modes. Such a configuration has no direct analogy with optical cavities, as opposed to

the bipartite case. The Hamiltonian that describes the circuit of Fig. 3.4 is composed

of three JC interactions and three time-dependent direct couplings between the field
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Figure 3.4: Three coplanar waveguide resonators are connected to the ground through
a SQUID. Each resonator is coupled with a resonant transmon qubit. This scheme al-
lows generation of GHZ-like entangled states, through a first-order process. By using
this circuit design as a building-block, it is possible to explore more complex configu-
rations and to build scalable cavity networks (see Appendix B).

quadratures of each resonator pair

H = ~
3∑

`=1

[
ω`a
†
`a` +

ωq`
2
σz` + g`

(
σ+
` a` + σ−` a

†
`

)]
(3.4)

+ ~
∑

〈`,m〉
α`m(t)

(
a†` + a`

)(
a†m + am

)
.

If the external flux threading the SQUID is composed of three signals oscillating at the

frequencies ωd`m = ω`+ωm, we can isolate the two-mode squeezing terms as in Eq. (3.2).

Generating multipartite entanglement is a challenging task, since it requires multi-

qubit gates whose operation fidelity is considerably lower than the single- or two-qubit

gates.Here we show that our protocol allows generation of genuine multipartite entangle-

ment (GME). With GME, we refer to quantum correlations which cannot be described

using mixtures of bipartite entangled states alone.The negativity [163] is an entangle-

ment monotone that estimates the bipartite entanglement shared between two subsys-

tems of any possible bipartition, it ranges from zero for separable to 1/2 for maximally

entangled states. It is defined as N (ρ) = ||ρTA ||1−1
2 where ||ρTA ||1 is the trace-norm of

the partial transpose of the bipartite mixed state ρ. Numerical results on the nega-

tivity, shown in Fig. 3.5a, indicate the generation of highly entangled states of three

qubits. Figure 3.5b shows the average photon number in each cavity. In order to prove

that such state is not biseparable, we evaluate an entanglement monotone that de-

tects only multipartite quantum correlations, called genuine multipartite entanglement
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(GME) concurrence CGME . It is obtained after an optimization process over all decom-

posable witnesses W = P+QTA , where P and Q are positive semidefinite [164, 165]. Our

results, max (CGME) ≈ 0.3, confirm the existence of genuine multipartite entanglement.
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Figure 3.3: (a) Concurrence and mean photon number as a function of time in
units of the cavity frequency !1. Here, the chosen parameters are: !1/2⇡ = 4 GHz,
!2/2⇡ = 5 GHz, the impedance for both cavities is Z0 = 50⌦, and the critical current of
the SQUID junctions is IC = 1.1 µA. Such parameters result in a squeezing parameter
↵0 = !1 ⇥ 10�3. Each qubit is resonant with its corresponding cavity and they are
coupled with the same interaction strength g = 0.04 !2. (b) Real and imaginary parts
of the density matrix ⇢ associated with the two-qubit system.

generalize the concept of dynamical Casimir e↵ect to the multipartite case. Let us con-

sider three resonators connected to the ground via a SQUID, as shown in Fig. 3.4. By

injecting a fast-oscillating magnetic flux through the SQUID results in varying bound-

ary conditions, which generate correlated photons pairs distributed in the three cavity

modes. Such a configuration has no direct analogy with optical cavities, as opposed to

the bipartite case. The Hamiltonian that describes the circuit of Fig. 3.4 is composed

of three JC interactions and three time-dependent direct couplings between the field

quadratures of each resonator pair

H = ~
3X

`=1


!`a

†
`a` +

!q
`

2
�z
` + g`

⇣
�+
` a` + ��` a†

`

⌘�
(3.4)

+ ~
X

h`,mi
↵`m(t)

⇣
a†
` + a`

⌘⇣
a†

m + am

⌘
.

If the external flux threading the SQUID is composed of three signals oscillating at the

frequencies !d
`m = !`+!m, we can isolate the two-mode squeezing terms as in Eq. (3.2).
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Figure 3.3: (a) Concurrence and mean photon number as a function of time in
units of the cavity frequency !1. Here, the chosen parameters are: !1/2⇡ = 4 GHz,
!2/2⇡ = 5 GHz, the impedance for both cavities is Z0 = 50⌦, and the critical current of
the SQUID junctions is IC = 1.1 µA. Such parameters result in a squeezing parameter
↵0 = !1 ⇥ 10�3. Each qubit is resonant with its corresponding cavity and they are
coupled with the same interaction strength g = 0.04 !2. (b) Real and imaginary parts
of the density matrix ⇢ associated with the two-qubit system.

generalize the concept of dynamical Casimir e↵ect to the multipartite case. Let us con-

sider three resonators connected to the ground via a SQUID, as shown in Fig. 3.4. By

injecting a fast-oscillating magnetic flux through the SQUID results in varying bound-

ary conditions, which generate correlated photons pairs distributed in the three cavity

modes. Such a configuration has no direct analogy with optical cavities, as opposed to

the bipartite case. The Hamiltonian that describes the circuit of Fig. 3.4 is composed

of three JC interactions and three time-dependent direct couplings between the field

quadratures of each resonator pair

H = ~
3X

`=1


!`a

†
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`

2
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+ ~
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h`,mi
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⇣
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` + a`

⌘⇣
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.

If the external flux threading the SQUID is composed of three signals oscillating at the

frequencies !d
`m = !`+!m, we can isolate the two-mode squeezing terms as in Eq. (3.2).

Figure 3.5: (a) Negativity of the bipartite system obtained isolating one qubit from
the set of the other two, as a function of time. Here, we considered resonator frequen-
cies of ω1/2π = 3.8 GHz, ω2/2π = 5.1 GHz and ω3/2π = 7.5 GHz. The SQUID is
identical to the bipartite case and we use resonant qubits. The coupling parameters are
homogeneous and their bare value is given by α0 = 5 ω1 × 10−3. (b) Average photon
number in each cavity as a function of time. Due to the symmetric configuration the
photon distribution is the same for the three cavities.

Finally, to identify the entanglement class of three-qubit states, we make use of

the entanglement witness [166] WGHZ = 3/4 I − PGHZ, where PGHZ = |GHZ〉〈GHZ|.
Negative values for Tr [ρWGHZ] imply that for any decomposition ρ =

∑
j pjρj at least

one ρj is a GHZ state, and so ρ belongs to the GHZ class. Local operations do not

change the entanglement class, it means the witness can be optimized by minimizing

Tr
[
FρF †WGHZ

]
, where F = F1 ⊗ F2 ⊗ F3, and Fi are arbitrary single-qubit SLOCC

operations. We obtainedWGHZ = −0.06, proving generation of (mixed) GHZ-like states,

which belong to the most general entanglement class [134].

3.6 Ultrastrong coupling regime

So far, we have considered values of the coupling strength g small enough to perform

the rotating wave approximation, and so to use the Jaynes-Cummings model to describe

the qubit-field interaction. In this section, we analyze how the proposed circuit imple-

mentation can be used to generate maximally entangled states of polaritons, in the case

in which the coupling g is comparable with the cavities bare frequencies.

We consider the Hamiltonian of Eq. (3.1), in the bipartite case, considering the full

quantum Rabi model for the qubit-field coupling. For the sake of clarity, we label the

two qubit-cavity systems with the letters a and b, as well as the corresponding ladder
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operators a, a† and b, b†. The system Hamiltonian can be then written as

H = Ha
R +Hb

R + α(t)
(
a+ a†

)(
b+ b†

)
+
α(t)

2

[(
a+ a†

)2
+
(
b+ b†

)2
]
, (3.5)

where Ha
R and Hb

R are quantum Rabi Hamiltonians,

Ha
R = ωaa

†a+
ωa
2
σaz + gσax

(
a+ a†

)
, (3.6)

and similarly for system b. As in section 3.2, we define α(t) = α0 cos (ωdt). We anticipate

that, in this case, we will tune ωd to be resonant with polaritonic transitions, while in

the SC regime the optimal frequency-matching condition corresponds to resonance with

the bare cavities.

We will rewrite now the system Hamiltonian in the polariton basis, i.e. in the basis

of the eigenvectors of the uncoupled Rabi models, H
a/b
R

∣∣∣ψa/bi

〉
= E

a/b
i

∣∣∣ψa/bi

〉
. Let us

consider the interaction terms individually. The field quadratures can be rewritten as

(
a+ a†

)
=
∑

i,j

(
Ai,j +A∗j,i

)
|ψai 〉

〈
ψaj
∣∣ , where Ai,j = 〈ψai | a

∣∣ψaj
〉
. (3.7)

In the same way, we define Bi,j =
〈
ψbi
∣∣ b
∣∣∣ψbj
〉

. Let us show that the single-mode squeez-

ing terms
(
a+ a†

)
= a2 + a†

2
+ 2a†a + 1 have no effect for the specific dynamics here

considered. We are interested in transitions between the ground and the first excited

states, which have always opposite parity Π = −σzeiπa†a (which corresponds to a dis-

crete Z2 symmetry of the system). Given that a2 leaves the parity Π of a given state

untouched1, we know that 〈ψi| a2 |ψj〉 = 0 for any pair of states with different parity.

Clearly, the same holds for a†. This means that, as opposite to the SC case [167],

discussed in previous chapters of the present chapter, we do not need to consider off-

resonant resonators in order to remove the single-mode squeezing terms. The terms

a†a and b†b are diagonal in the basis of Rabi eigenvectors, hence they will carry no

time-dependency in the interaction picture and they can be neglected via rotating wave

approximation (RWA), given that they have a fast-oscillating prefactor α(t).

The Hamiltonian of Eq. (3.5) can be then rewritten as

H =
∑

i

Eai |ψai 〉 〈ψai |+
∑

i

Ebi

∣∣∣ψbi
〉〈

ψbi

∣∣∣ (3.8)

+ α(t)
∑

i,j

∑

µ,ν

(
Ai,j +A∗j,i

) (
Bµ,ν +B∗ν,µ

)
|ψai 〉

〈
ψaj
∣∣⊗
∣∣∣ψbi
〉〈

ψbj

∣∣∣ , (3.9)

1For an extended discussion on parity conservation in the USC regime, see chapter 4 and Ap-
pendix B.1.
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Figure 3.6: (On the left) Projection of the system state over the first three eigenvectors
of Ha

R, over evolution time. Only the ground and the first excited states are appreciably
involved in the system dynamics. (On the right) Concurrence and purity of the e↵ective
two-qubit state obtained by restricting us to consider the ground and the first excited
states of each local Rabi model. The system parameters of the individual systems are
!a = 1, !b = 2, g = 0.9 (homogeneous coupling). The interaction strength is given by
↵0 = 0.01, and the driving frequency is chosen in order to make the interaction term

resonant !d = �a + �b, where �a/b = E
a/b
2 � E

a/b
1 .

the SC regime the optimal frequency-matching condition corresponds to resonance with

the bare cavities.

We want now to rewrite the system Hamiltonian in the polariton basis, i.e. in the

basis of the eigenvectors of the uncoupled Rabi models, H
a/b
R

��� a/b
i

E
= E

a/b
i

��� a/b
i

E
. Let

us consider the interaction terms individually. The field quadratures can be rewritten

as

⇣
a + a†

⌘
=
X

i,j

�
Ai,j + A⇤

j,i

�
| a

i i
⌦
 a

j

�� , where Ai,j = h a
i | a

�� a
j

↵
. (3.7)

In the same way, we define Bi,j =
⌦
 b

i

�� b
��� b

j

E
. Let us show that the single-mode squeez-

ing terms
�
a + a†� = a2 + a†2

+ 2a†a + 1 have no e↵ect for the specific dynamics here

considered. We are interested in transitions between the ground and the first excited

states, which have always opposite parity ⇧ = ��ze
i⇡a†a (which corresponds to a dis-

crete Z2 symmetry of the system). Given that a2 leaves the parity ⇧ of a given state

untouched1, we know that h i| a2 | ji = 0 for any pair of states with di↵erent parity.

Clearly, the same holds for a†. This means that, as opposite to the SC case [167],

discussed in previous Sections of the present Chapter, we do not need to consider o↵-

resonant resonators in order to remove the single-mode squeezing terms. The terms

a†a and b†b are diagonal in the basis of Rabi eigenvectors, hence they will carry no

time-dependency in the interaction picture and they can be neglected via rotating wave

approximation (RWA), given that they have a fast-oscillating prefactor ↵(t).

1For an extended discussion on parity conservation in the USC regime, see Chapter 4 and Ap-
pendix B.1.
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Figure 3.5: (a) Negativity of the bipartite system obtained isolating one qubit from
the set of the other two, as a function of time. Here, we considered resonator frequen-
cies of !1/2⇡ = 3.8 GHz, !2/2⇡ = 5.1 GHz and !3/2⇡ = 7.5 GHz. The SQUID is
identical to the bipartite case and we use resonant qubits. The coupling parameters are
homogeneous and their bare value is given by ↵0 = 5 !1 ⇥ 10�3. (b) Average photon
number in each cavity as a function of time. Due to the symmetric configuration the
photon distribution is the same for the three cavities.

operations. We obtained WGHZ = �0.06, proving generation of (mixed) GHZ-like states,

which belong to the most general entanglement class [134].

3.6 Ultrastrong coupling

So far we have considered values of the coupling strength g small enough to perform the

rotating wave approximation, and so to use the Jaynes-Cummings model to describe the

qubit-field interaction. In this Section, we analyze how the proposed circuit implemen-

tation can be used to generate maximally entangled states of polaritons, in the case in

which the coupling g is comparable with the cavities bare frequencies.

We consider the Hamiltonian of Eq. (3.1), in the bipartite-case, considering the full

quantum Rabi model for the qubit-field coupling. For the sake of clarity, we label the

two qubit-cavity systems with the letters a and b, as well as the corresponding ladder

operators a, a† and b, b†. The system Hamiltonian can be then written as,

H = Ha
R + Hb

R + ↵(t)
⇣
a + a†

⌘⇣
b + b†

⌘
+
↵(t)

2

⇣
a + a†

⌘2
+
⇣
b + b†

⌘2
�

, (3.5)

where Ha
R and Hb

R are quantum Rabi Hamiltonians:

Ha
R = !aa

†a +
!a

2
�a

z + g�a
x

⇣
a + a†

⌘
, (3.6)

and similarly for system b. As in Section 3.2, we define ↵(t) = ↵0 cos (!dt). We anticipate

that, in this case, we will tune !d to be resonant with polaritonic transitions, while in

Figure 3.6: (On the left) Projection of the system state over the first three eigenvectors
of Ha

R, over evolution time. Only the ground and the first excited states are appreciably
involved in the system dynamics. (On the right) Concurrence and purity of the effective
two-qubit state obtained by restricting us to consider the ground and the first excited
states of each local Rabi model. The system parameters of the individual systems are
ωa = 1, ωb = 2, g = 0.9 (homogeneous coupling). The interaction strength is given by
α0 = 0.01, and the driving frequency is chosen in order to make the interaction term

resonant ωd = ∆a + ∆b, where ∆a/b = E
a/b
2 − Ea/b1 .

or, switching to the interaction picture,

HI = α(t)
∑

i,j

∑

µ,ν

(
Ai,j +A∗j,i

) (
Bµ,ν +B∗ν,µ

)
|ψai 〉

〈
ψaj
∣∣⊗
∣∣∣ψbi
〉〈

ψbj

∣∣∣ ei∆a
i,jt ei∆

b
µ,ν , (3.10)

where ∆
a/b
i,j = E

a/b
i − E

a/b
j are the polariton energy splittings. Given that α(t) =

α0 cos (ωdt), where α0 � ∆i,j , choosing ωd to be resonant with a given transition allows

us to neglect the other ones via RWA. In particular, if we set ωd = ∆a
01 + ∆b

01, we obtain

HI =
α0

2

(
A0,1 +A∗1,0

) (
B0,1 +B∗1,0

)
|ψa0〉 〈ψa1 | ⊗

∣∣∣ψb0
〉〈

ψb1

∣∣∣ + H. c. (3.11)

The simple form of the resulting Hamiltonian is due to the opposite parity of the ground

and first-excited state, and to the strong anharmonicity of the USC regime. Assuming

that the system can be initialized in its ground state |ψa0〉
∣∣ψb0
〉
, the evolution described

by the interaction of Eq. (3.11) leads to the Bell state
(
|ψa0〉

∣∣ψb0
〉

+ |ψa1〉
∣∣ψb1
〉)
/
√

2. The

validity of the approximations made has been checked performing numerical simulations

of the full model of Eq. (3.5). The results, displayed in Fig 3.6, show that unwanted

transitions are safely off-resonant, and that a maximally entangled states between USC

polaritons can be feasibly generated. However, the measurement of such a state is

hindered by the lack of decoupling mechanisms in the USC regime. In order to solve

this problem, in the following chapter 4, we will introduce a method that would allow

to experimentally demonstrate that a USC polariton Bell state has been generated in a

feasible experiment.
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3.7 Conclusions and outlook

The theoretical analysis presented in this chapter shows that fast-oscillating boundary

conditions can generate a maximum entangled state of two qubits, in a non trivial way.

In the USC regime, effective two-level quantum systems are represented by USC polari-

tons, i.e., hybrid qubit-field excitations. This results demonstrate that the dynamical

Casimir effect (DCE) represents a valuable, so far overlooked resource for quantum in-

formation science. The implementation of quantum resonators ruled by fast-oscillating

boundary conditions in superconducting circuits discloses the possibility of generalizing

the dynamical Casimir physics to multipartite systems. Accordingly, we have theoreti-

cally proven that the DCE allows generation of three-qubit entangled states belonging

to the GHZ class, i.e., to the most general class of genuine multipartite entanglement in

the three-partite case.

Our proposal can be used as a building block to realize more complex circuit configu-

rations, which exploit the dynamical Casimir physics in order to generate and distribute

quantum correlations. Figure 3.7 shows two possible configurations of three-cavity se-

tups: a linear array, box (a), and a triangular configuration, box (b). While in the mul-

tipartite configuration presented in Fig. 3.4, two-body interactions links all resonators

pairwise, the schemes of figure 3.7 lead to first-neighbour couplings. The linear array is

interesting since it can be easily scaled to higher number of resonators. The triangular

configuration allows real-time control of the inhomogeneities in the couplings, due to the

presence of three SQUIDs. Figure 3.8a shows a direct generalization of the three-partite

scheme previously discussed, in which four cavities are involved. Such configuration is

the most natural candidate to generate symmetric genuine multipartite entangled states

of more artificial atoms. Finally, in figure 3.8b it can be found an example of a complex

Casimir network, which shows the flexibility of the present proposal.
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(a)

(b)

(a) (b)
Figure 3.7: Tripartite setups. a Linear array of three resonators with near-
neighbour couplings. b Three SQUIDs in a triangular configuration. In this case, it is
possible to independently control pairwise interactions.

(a)

(b)

(a) (b)

Figure 3.8: Multipartite case. Complex cavity configurations which apply the
dynamical Casimir physics in order to implement highly-correlated quantum networks.





Chapter 4

Parity-dependent state

engineering in the USC regime

4.1 Introduction

The fast-growing interest in the USC regime is motivated by theoretical predictions

of novel fundamental properties [32, 33, 37–41, 167], and by potential applications in

quantum computing tasks. Indeed, in previous chapters, we have shown how entering the

USC regime can modify the excitation transfer and entanglement generation in arrays of

quantum resonators. However, in order to experimentally analize fundamental processes,

or to use USC systems as tools for QI processing, it is needed the same controllability

that is available for SC systems.

Unfortunately, state reconstruction in the USC regime, as well as many quantum

information applications, are hindered by the lack of in situ switchability and control of

the cavity-qubit coupling strength. This difficulty is a consequence of the fact that, in

the USC regime, the field and the two-level system merge into collective bound states

called polaritons. Consequently, usual decoupling mechanisms applied in circuit and

cavity QED to address individual subsystem do not work in the USC regime, as the

coupling is so large that it provides a preferential interaction channel regardless of the

induced frequency detuning.

The experimental certification of the achievement of the USC regime is also an open

issue. Nowadays, quantum technologies featuring the USC regime have been able to

characterize this coupling regime only by detecting deviations in transmission or reflec-

tion spectroscopy in measurements of optical/microwave signals [26, 28]. For the sake of

completeness, we can say that direct Wigner function reconstruction of an anharmonic

39
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oscillator has been realized [168], but only for a small anharmonicity. In the case of

harmonic oscillators, microwave cavity field states have been measured using streaming

Rydberg atoms as probes [169, 170].

In this chapter, we propose a method which makes use of an ancillary qubit as a

tool for state generation, spectroscopy, and quantum state tomography of USC polariton

states. We analyze a system composed of a single-mode quantum resonator coupled to

two two-level systems, or qubits, as shown in Fig. 4.1. One of them, the system qubit,

interacts with the cavity mode in the USC regime, forming polariton states, while the

coupling strength of the ancillary qubit with the cavity is in the SC regime. Our analysis

enables us to design a spectroscopy protocol able to identify the parity of each USC

energy level, allowing us to check distinctive features of the USC spectrum in a realistic

experiment.

Moreover, we show how the ancillary qubit allows for state engineering of the USC

qubit-cavity system. From our analysis, it emerges that USC polaritons populating the

system substantially modify the light-matter interaction of the ancillary qubit, leading

to a counter-intuitive breaking of the Jaynes-Cummings model [17] even for small in-

teraction strengths. Finally, the validity of our method has been checked by means of

numerical simulations, performed considering realistic parameters of current implemen-

tations of circuit QED in the USC regime, where the present model may be implemented

with state-of-the-art technology.

This chapter is organized as follows. In section 4.2, we introduce our model and we

describe specific features of the spectrum and parity conservation of the quantum Rabi

model, which are of particular interest for our method. In section 4.3, we analyze the

dynamics of the proposed system. In section 4.4, we show how the proposed architecture

can be used to perform quantum state tomography and state preparation. Finally, in

section 4.5, we summarize the results discussed in this chapter.

4.2 The quantum Rabi model and an ancillary qubit.

The quantum Rabi model (QRM) [19, 171] describes the dipolar coupling of a two-level

system and a single-mode cavity field, as described by the Hamiltonian

HS = ~ωra†a+
~ω
2
σz + ~gσx

(
a† + a

)
, (4.1)

where a†(a) represents the creation(annihilation) operator of the cavity field, while σx

and σz are Pauli operators defined in the qubit Hilbert space. We denote, in Eq. (4.1),

the cavity mode frequency, ωr, the qubit frequency spacing, ω, and the interaction
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ω a ω

g a g

Figure 4.1: A single-mode quantum optical cavity interacts with a qubit (red, solid
color) of frequency ω in the ultrastrong coupling regime. The coupling g is of the same
order of the qubit and resonator frequencies. Another qubit (blue, shaded color) can be
used as an ancillary system in order to measure and manipulate USC polariton states.

strength, g. If we restrict ourselves to near resonant interactions, ω ≈ ωr, depending

on the parameter g/ωr, two regimes can be identified: the SC regime for g/ωr � 1

and the USC regime for 0.1 . g/ωr . 1. In the former, the Hamiltonian of Eq. (4.1)

reduces to the celebrated Jaynes-Cummings model [17], where the conservation of the

excitation number N̂ = a†a+σz turns the model analytically solvable. On the contrary,

in the USC regime, the field and the qubit merge into polariton states that feature

a discrete symmetry Z2, see Fig. 4.2. This symmetry is characterized by the parity

operator Π̂S = −σz eiπa†a, such that Π̂S |ψj〉 = ±|ψj〉 with j = 0, . . . ,∞. Here, we

denote |ψj〉 as polariton eigenstates of energy ~ωj . Furthermore, this parity symmetry

turns the model solvable [19], and approximations exist in limiting cases, as is the case of

the perturbative USC regime [172] and the deep strong coupling (DSC) regime [42, 173].

Here, we consider the QRM in the USC regime plus an ancillary qubit interacting

with the cavity field,

H = HS +HA , HA =
~ωa

2
σaz + ~gaσax

(
a† + a

)
. (4.2)

Later, we will assume that the frequency ωa can be tuned in real time, a requirement that

is fulfilled in most implementations with superconducting circuits [55, 174]. We set the

ancilla-cavity field interaction ga to be in the SC regime. However, counterintuitively,

we will show that the presence of the USC system activates the counter-rotating terms

of the ancilla ga
(
σa−a+ σa+a

†), even for small ga/ωr. Indeed, the relevance of the ancilla

counter-rotating terms depends on the polariton eigenstate more than on the ratio ga/ωr,

as long as the interaction between the ancillary qubit and the USC system is in the SC

regime. Here, σa± =
(
σax ± i σay)

/
2 is the raising(lowering) operator of the ancilla.
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Figure 4.2: Energy levels of the quantum Rabi model as a function of the dimension-
less parameter g/ωr. We assume ~ = 1. Parameter values are expressed in units of ωr
and we consider a detuned system qubit ω/ωr = 0.8. Energies are rescaled in order to
set the ground level to zero. The parity of the corresponding eigenstates is identified,
blue continuous line for odd and red dashed lines for even states.

4.2.1 Full model spectrum

The spectrum of the full Hamiltonian (4.2) is shown in Fig. 4.3a (Fig. 4.3b) as a function

of the ancilla frequency for g/ωr = 0.3 (g/ωr = 0.6), corresponding to the vertical lines

displayed in Fig. 4.2. The total ancilla-system spectrum, associated to Hamiltonian

H in Eq. (4.2), presents three main features. First, the system still preserves the Z2

symmetry with the global parity operator Π̂ = σaz ⊗ σz e
iπa†a = Π̂A ⊗ Π̂S . Notice

that eigenstates with global parity +1(−1) are represented by dashed-red(continuous-

blue) lines in Figs. 4.3a and 4.3b. Second, introducing the ancillary qubit results in

the splitting of the energy levels of polaritons. There are regions where the energy

differences behave linearly with ωa/ωr, so the main contribution of the ancilla comes

from its self-energy. This behavior can be explained if we consider the average value

of the quadrature X̂ = a + a† appearing in the cavity-ancilla interaction of Eq. (4.2).

It vanishes for diagonal projections in the polariton basis, that is, 〈ψj |X̂|ψj〉 = 0 for

j = 0, . . . ,∞ (see Appendix C.1). Third, intersections between levels of different global

parity subspaces show that those eigenstates are not coupled. On the contrary, avoided

crossings between eigenenergies sharing the same global parity confirm that such states

experience a direct coupling. In the following, we will show how this feature allows for

selective state engineering of the USC polaritons.

In order to use the ancillary qubit as a tool to characterize and to measure polaritons

in the USC regime, the ground state of the ancilla plus USC system must be separable.

This condition is fulfilled as seen in Fig. 4.3c, where we show the purity P = Tr
{
ρ2
a

}
for



Chapter 4. Parity-dependent state engineering in the USC regime 43

0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ωa/ωr

En
er
gy
/ω
r

0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ωa/ωr

0 0.5 1 1.5 2

0.6

0.8

1

ωa/ωr

Pu
rit

y

 

 

ψ1

ψ2

ψ3

ψ4

(a) (b)

(c)

Figure 4.3: (a), (b) Energy levels of the full model of Eq. (4.2) as a function of the
ancilla frequency ωa. We assume ~ = 1. For both (a) and (b), the USC qubit frequency
is ω/ωr = 0.8 and the ancilla-field cavity interaction strength is ga/ωr = 0.02. The USC
qubit coupling is g/ωr = 0.3 for (a) and g/ωr = 0.6 for (b). Energies are rescaled in
order to set the ground level to zero. The global parity of the corresponding eigenstates
is identified, blue continuous line for odd and red dashed lines for even states. (c)
Purity P of the reduced density matrix of the ancillary qubit for different global system
eigenstate, as a function of the ancilla frequency. For the ground state |ψ0〉, P is always
unity.

the ground and first excited states. We define the ancilla reduced density matrix as ρa =

Trpolariton {ρ}, where the partial trace runs over the USC system degrees of freedom. If

P = 1, the ancilla and the polariton are in a separable state. Contrariwise, in coincidence

with avoided crossings in the spectrum, see Fig. 4.3a,b, the purity presents some dips

for excited states revealing ancilla-system entanglement, with P = 1/2 corresponding to

a maximally entangled state.
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4.3 Real-time dynamics and spectroscopic protocol.

Let us now analyze the total system real-time dynamics. From the previous consider-

ations on the spectrum, it emerges that it is appropriate to describe the global system

using a separable basis for the Hilbert space Hancilla of the ancilla and of the USC qubit-

cavity system Hpolariton. Accordingly, we formally rewrite the Hamiltonian of Eq. (4.2)

as

H = ~
∑

j

ωj |ψj〉 〈ψj |+
~ωa

2
σaz +HI

HI = ~gaσax
∑

ij

[
kij |ψi〉 〈ψj |+ k∗ji |ψi〉 〈ψj |

]
, (4.3)

where we denote |ψj〉 as polariton states of energy ~ωj , i.e. eigenstates of HS (4.1). We

defined the transition matrix elements kij = 〈ψi| a |ψj〉.

Because of the strong anharmonicity of the QRM, when the ancilla frequency matches

a given polariton transition ωa = ωα − ωβ, we can perform a RWA and rewrite the in-

teraction Hamiltonian HI as (see Appendix C.2)

HI = ~ga
(
kαβ + k∗βα

)
σa− |ψα〉 〈ψβ|+ H.c., (4.4)

where we fixed ωα > ωβ. Such a Hamiltonian induces coherent excitation transfer be-

tween the ancilla qubit and the polariton system. Notice that the matrix element kij is

non-vanishing only for transitions that link states of opposite parity in the polaritonic

system. To check the validity of our analytical treatment, we simulate the real-time dy-

namics of the full model. We take into account decoherence effects by means of second-

order time-convolutionless projection operator method [36], which correctly describes

the dissipative dynamics in the USC regime. In this simulation we have considered

zero-temperature thermal baths and noises acting on the X̂ quadrature and transversal

noise (σx) for both two-level systems. Realistic parameters for superconducting circuits

have been considered. Fig. 4.4c shows an example of Rabi oscillations (green contin-

uous line) between the states |e〉 |ψ0〉 and |g〉 |ψ1〉, where we denoted with |g〉(|e〉) the

ground(excited) state of the ancillary qubit.

We stress that counter-rotating terms ga
(
σa+a

† + σa−a
)

of the ancilla-cavity cou-

pling, see Eq.(4.2), play an important role in the total system dynamics. Those terms

contribute to Eq. (4.4) with the coefficients kαβ and k∗βα, given that we fixed ωα > ωβ.

Their effect is highlighted in Fig. 4.4c by reproducing the same dynamics in the case in

which such contributions are artificially neglected (black dashed line). Notice that, if

the system qubit were removed, or if it were interacting in the SC regime, the effect of
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Figure 4.4: (a), (b) Numerical simulation of the spectroscopy protocol. Visibility of
the ancilla population oscillations as a function of frequency ωa. Physical parameters
correspond to the vertical cuts in Fig. 4.2. For both (a) and (b), the system qubit
frequency is ω/ωr = 0.8 and the ancilla-field cavity coupling is ga/ωr = 0.02. The
USC system coupling is g/ωr = 0.3 for (a) and g/ωr = 0.6 for (b). The parity of each
energy level is identified, blue continuous line for odd and red-dashed lines for even
states. (c) Comparison of full model (green continuous line) to the dynamics obtained
when removing counter-rotating terms from the ancilla-cavity interaction (black dashed
line). System parameters are the same that in box (b). In all cases, decay rates are
γ/ωr = 10−3 for the system qubit, γr/ωr = 10−4 for the cavity and γa/ωr = 10−4 for
the ancilla.

counter-rotating terms of the ancilla-cavity interaction would be negligible for such small

values of the ratio ga/ω. In fact, the presence of a qubit in the USC regime modifies

the mode structure of the cavity field in such a way that the coefficients kij can be non-

vanishing also for ωi > ωj (see Appendix C.2). In simple words, this condition implies

that removing a photon results in an increase of the system energy, in striking contrast

with Jaynes-Cummings-like energy spectrum. Indeed, the counterintuitive breaking of



Chapter 4. Parity-dependent state engineering in the USC regime 46

the RWA, explained here for an ancilla interacting with a ultrastrongly coupled system,

unveils a general feature of the USC regime.

The expectation value of σaz can be measured by detuning ωa out of resonance, with

respect to the USC system, and in resonance with an idle cavity for readout [57, 175].

This enables us to design a spectroscopy protocol for the USC system, which identifies the

parity of each energy level. Such a protocol consists in keeping track of the expectation

value 〈σaz 〉 during the time-evolution, after initializing the USC system in its ground

level and the ancilla in its excited state |φe
0〉 = |ψ0〉 |e〉. Notice that the ground and first-

excited states of the QRM Hamiltonian have even and odd parity, respectively. The

initialization can be realized when the ancilla is far off-resonance, then its frequency can

be suddenly switched [174] to be within the relevant frequency range. As the ancilla

frequency becomes closer to a given transition of the USC system, the amplitude of the

excitation transfer increases, granted that the process preserves the global parity. Thus,

sampling the ancilla dynamics for different values of ωa, we can deduce the USC system

eigenvalues belonging to a specific parity subspace (blue continuous line in Fig. 4.4a and

Fig. 4.4b). We define the visibility as half the difference between the maximum and

the minimum values reached by 〈σaz 〉 during its time-evolution. Considering realistic

parameters of superconducting circuit technology, taking ωr = 2π × 5 GHz, the first

three resonance peaks can be obtained within a time of approximatively 10 µs (see

AppendixC.3).

In the same way, we can obtain the level structure of the even subspace (red dashed

line in Fig. 4.4a and Fig. 4.4b) by repeating the protocol with the odd initial state

|φo
0〉 = |ψ1〉 |e〉, i.e., both the ancilla and the USC system in their first-excited state. The

total system can be initialized in such a state via state-transfer process (see below) plus

a spin-flip operation on the ancilla qubit. The proposed spectroscopic protocol allows us

to obtain the parity structure of the USC system in a direct way. Hence, one could check

the eigenstate-parity inversion (see Fig. 4.2), which is specific to the QRM and represents

a distinctive signature of the USC regime. Higher energy levels can be obtained in a

similar way with a multi-step procedure. Notice that the widths of the resonance peaks

in Fig. 4.4 are proportional to the matrix elements kij , hence they contain information

about the eigenstates of the USC system.

4.4 Tomography and state engineering.

So far we have considered the ancillary qubit dynamics as a tool to investigate the

spectral structure of the USC system. Let us now focus on how this ancilla can be

used as a tool to fully measure and control the USC, granted that a limited number
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of its eigenstates can be excited. First, we show how the tomography of the ancillary

qubit [176] enables us to recover all the coefficients of the USC density matrix. The

protocol to be followed consists in initializing the ancilla in a proper state, implement-

ing a selective state transfer between the USC system and the ancilla, and performing

tomography of the latter. After the initialization of the ancilla, the global density ma-

trix reads ρ =
∑

i,j ρij |ψi〉 〈ψj | ⊗ |g〉 〈g|. For opposite parity eigenstates |ψn〉 and |ψm〉,
implementing the state transfer process |ψn〉 |g〉 ↔ |ψm〉 |e〉, and tracing over the USC

system degrees of freedom, we obtain the ancillary qubit density matrix

ρa = ρ0 |g〉 〈g|+ ρnn |e〉 〈e|+ ρnm |e〉 〈g|+ ρmn |g〉 〈e| , (4.5)

where ρ0 =
∑

i 6=n ρii. Hence, performing tomography over the ancilla yields the value of

the population in state |ψn〉 and the coherence coefficients with |ψm〉. In order to infer the

coherences between USC system states of identical parity, a slightly different procedure

must be used. In this case, a two-step state transfer process can be implemented,

making use of a third level of opposite parity to mediate the interaction, as shown in

Appendix C.4. Then, iterating the protocol for all couples of relevant eigenstates, the

complete density matrix of the USC system state can be reconstructed.

Notice that the selective state-transfer processes introduced for the tomography

protocol can be performed in a reverse way to engineer the state of the USC system itself.

Assuming that any single-qubit gate can be performed on the ancilla, the components

of the USC system state in the energy eigenbasis can be individually addressed by

means of the selective interactions of Eq. (4.4). Again, parity-forbidden transitions can

be circumvented by means of a two-step protocol (see Appendix C.4). For instance,

the USC system can be prepared in any superposition of its eigenstates by iteratively

initializing the ancilla qubit in the desired state, tuning its energy spacing to match a

given transition, and performing a selective state-transfer. This feature can be exploited

in order to connect ultrastrongly-coupled systems with standard quantum information

processing devices. For instance a logical qubit can be encoded in the ancilla state and

then transferred to the polariton, where the computational benefits of the USC coupling

can be exploited [43–45].

4.5 Conclusions

In conclusion, we have analyzed the interaction between an ancillary qubit and an ultra-

strongly coupled qubit-cavity system. We find that the presence of a USC qubit-cavity

system modifies the interaction of the cavity with the ancillary qubit in a nontrivial

manner. We have designed a spectroscopy protocol able to detect parity-inversion of
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eigenstates, a signature of the USC regime in the QRM, requiring control over a single

ancillary qubit and tunability of its effective frequency. The present method can be

applied in order to certify that a device is operating in the USC regime of the quantum

Rabi model. Moreover, we show that the same ancilla may be used as a tool to engineer

the dynamics of arbitrary USC system states. The proposed method overcomes the lack

of decoupling mechanisms in the USC regime, requiring minimal external resources. For

example, the present technique could be applied to measure and process the polariton

Bell state produced with the proposal described in chapter 3. Our results pave the

way to novel applications of the USC regime of the QRM in quantum technologies and

quantum information processing.



Part II

Ultrastrong coupling regime

in atomic systems
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Chapter 5

Quantum Rabi Model with

Trapped Ions

5.1 Introduction

As detailed in the introduction of the present Thesis, several systems have recently been

able to experimentally reach the USC regime of the quantum Rabi model (QRM). To

extend the list of quantum platforms where it has been possible to observe signatures

of the breaking of the rotating wave approximation, we can mention the case of circuit

QED [26, 28], semiconductor systems coupled to metallic microcavities [177–179], split-

ring resonators connected to cyclotron transitions [180], or magnetoplasmons coupled

to photons in coplanar waveguides [181]. These first achievements, together with re-

cent theoretical advances, have put the QRM back in the scientific spotlight. However

impressive it looks, these experimental results have been limited to explore the lower

coupling region of the QRM, where the system spectrum and real-time dynamics can

still be described with perturbative corrections of the Jaynes-Cummings model. Yet the

most interesting features of the QRM appear in the nonperturbative USC regime, or in

the DSC regime, where the system dynamics is well described by the slow-qubit approx-

imation [38, 42, 128, 167, 173, 182, 183]. As these regimes of light-matter interactions

are extremely challenging to achieve, analog quantum simulations represent a valuable

alternative to implement USC models in any regime. To this respect, of particular in-

terest are scalable quantum systems, which have the potential to provide answers on

physical models that cannot be obtained with analytical or numerical methods.

Trapped ions are considered as one of the prominent platforms for building quantum

simulators [69]. In fact, the realization and thorough study of the JC model in ion traps,

a model originally associated with CQED, is considered a cornerstone in physics [184,
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185]. This is done by applying a red-sideband interaction with laser fields to a single

ion [65, 66, 186] and may be arguably presented as the first quantum simulation ever

implemented. In this sense, the quantum simulation of all coupling regimes of the QRM

in trapped ions would be a historically meaningful step forward in the study of dipolar

light-matter interactions.

In this chapter, we discuss a method that allows the access to the full-fledged QRM

with trapped-ion technologies by means of a suitable interaction picture associated with

inhomogeneously detuned red and blue sideband excitations. Note that, in the last

years, bichromatic laser fields have been successfully used for different purposes [187–

190]. In addition, we propose an adiabatic protocol to generate the highly-correlated

ground states of the USC and DSC regimes.

5.2 The model

Single atomic ions can be confined using radio-frequency Paul traps and their motional

quantum state cooled down to its ground state by means of sideband cooling tech-

niques [69]. In this respect, two internal metastable electronic levels of the ion can play

the role of a quantum bit (qubit). Driving a monochromatic laser field in the resolved-

sideband limit allows for the coupling of the internal qubit and the motional mode,

whose associated Hamiltonian reads (~ = 1)

H =
ω0

2
σz + νa†a+ Ω(σ+ + σ−)

(
exp{i[η(a+ a†)− ωlt+ φl]}

+ exp{−i[η(a+ a†)− ωlt+ φl]}
)
. (5.1)

Here, a† and a are the creation and annihilation operators of the motional mode, σ+

and σ− are the raising and lowering Pauli operators, ν is the trap frequency, ω0 is the

qubit transition frequency, Ω is the Rabi coupling strength, and η is the Lamb-Dicke

parameter, while ωl and φl are the corresponding frequency and phase of the laser

field. For the case of a bichromatic laser driving, changing to an interaction picture

with respect to the free-energy Hamiltonian, H0 = ω0
2 σz + νa†a and applying an optical

RWA, the dynamics of a single ion reads [66]

HI =
∑

n=r,b

Ωn

2

[
eiη[a(t)+a†(t)]ei(ω0−ωn)tσ+ + H.c.

]
, (5.2)

with a(t) = ae−iνt and a†(t) = a†eiνt. We will consider the case where both fields are off-

resonant, first red-sideband (r) and first blue-sideband (b) excitations, with detunings
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δr and δb, respectively,

ωr = ω0 + ν + δr, ωb = ω0 − ν + δb.

In such a scenario, one may neglect fast oscillating terms in Eq. (5.2) with two different

vibrational RWAs. We will restrict ourselves to the Lamb-Dicke regime, that is, we

require that η
√
〈a†a〉 � 1. This allows us to select terms that oscillate with minimum

frequency, assuming that weak drivings do not excite higher-order sidebands, δn,Ωn � ν

for n = r, b. These approximations lead to the simplified time-dependent Hamiltonian

H̄I =
iηΩ

2
σ+
(
ae−iδrt + a†e−iδbt

)
+ H.c., (5.3)

where we consider equal coupling strengths for both sidebands, Ω = Ωr = Ωb. By

switching to a further interaction picture, defined by H0 = 1
4(δb + δr)σz + 1

2(δb− δr)a†a,

we get rid of the time dependence and the full Rabi Hamiltonian arises,

HQRM =
ωR0
2
σz + ωRa†a+ ig(σ+ − σ−)(a+ a†), (5.4)

where the effective qubit and mode frequencies,

ωR0 = −1

2
(δr + δb), ω

R =
1

2
(δr − δb), g =

ηΩ

2
, (5.5)

are represented by the sum and difference of both detunings, respectively. The tunability

of these parameters permits the study of all coupling regimes of the QRM via the

suitable choice of the ratio g/ωR. It is important to note that all realized interaction-

picture transformations, so far, are of the form αa†a+ βσz. This expression commutes

with the observables of interest, {σz, |n〉〈n|, a†a}, warranting that their experimental

measurement will not be affected by the transformations.

5.3 Accessible regimes

The quantum Rabi model in Eq. (5.4) will show distinct dynamics for different regimes,

which are defined by the relation among the three Hamiltonian parameters: the mode

frequency ωR, the qubit frequency ωR0 , and the coupling strength g.

We first explore the regimes that arise when the coupling strength is much weaker

than the mode frequency g � |ωR|. Under such a condition, if the qubit is close to

resonance, |ωR| ∼ |ωR0 |, and |ωR + ωR0 | � |ωR − ωR0 | holds, the RWA can be applied.

This implies neglecting terms that in the interaction picture rotate at frequency ωR+ωR0 ,

leading to the JC model. This is represented in Fig. 5.1 by the region 1 in the diagonal.
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Figure 5.1: Configuration space: (1) JC regime: g � {|ωR|, |ωR0 |} and |ωR − ωR0 | �
|ωR + ωR0 |. (2) AJC regime: g � {|ωR|, |ωR0 |} and |ωR − ωR0 | � |ωR + ωR0 |. (3)
Two-fold dispersive regime: g < {|ωR|, |ωR0 |, |ωR − ωR0 |, |ωR + ωR0 |}. (4) USC regime:
|ωR| < 10g, (5) DSC regime: |ωR| < g, (6) Decoupling regime: |ωR0 | � g � |ωR|. (7)
This intermediate regime (|ωR0 | ∼ g � |ωR|) is still open to study. The (red) central
vertical line corresponds to the Dirac equation regime.

Notice that these conditions are only possible if both the qubit and the mode frequency

have the same sign. However, in a quantum simulation one can go beyond conventional

regimes and even reach unphysical situations, as when the qubit and the mode have

frequencies of opposite sign. In this case, |ωR − ωR0 | � |ωR + ωR0 | holds, see region

2, and we will be allowed to neglect terms that rotate at frequencies |ωR − ωR0 |. This

possibility will give rise to the anti-Jaynes Cummings (AJC) Hamiltonian, HAJC =
ωR0
2 σz + ωRa†a + ig(σ+a† − σ−a). It is noteworthy to mention that, although both JC

and AJC dynamics can be directly simulated with a single tuned red or blue sideband

interaction, respectively, the approach taken here is fundamentally different. Indeed,

we are simulating the QRM in a regime that corresponds to such dynamics, instead of

directly implementing the effective model, namely the JC or AJC model.

If we depart from the resonance condition and have all terms rotating at high fre-

quencies {|ωR|, |ωR0 |, |ωR + ωR0 |, |ωR − ωR0 |} � g, see region 3, for any combination of

frequency signs, the system experiences dispersive interactions governed by a second-

order effective Hamiltonian. In the interaction picture, this Hamiltonian reads

Heff = g2

[ |e〉〈e|
ωR − ωR0

− |g〉〈g|
ωR + ωR0

+
2ωR

(ωR0 + ωR)(ωR − ωR0 )
a†aσz

]
, (5.6)



Chapter 5. Quantum Rabi Model with Trapped Ions 55

inducing AC-Stark shifts of the qubit energy levels conditioned to the number of exci-

tations in the bosonic mode.

The USC regime is defined as 0.1 . g/ωR . 1, with perturbative and nonperturba-

tive intervals, and is represented in Fig. 5.1 by region 4. In this regime, the RWA does

not hold any more, even if the qubit is in resonance with the mode. In this case, the

description of the dynamics has to be given in terms of the full quantum Rabi Hamil-

tonian. For g/ωR & 1, we enter into the DSC regime, see region 5 in Fig. 5.1, where

the dynamics can be explained in terms of phonon number wave packets that propagate

back and forth along well defined parity chains [42].

In the limit where ωR = 0, represented by a vertical centered red line in Fig. 5.1, the

quantum dynamics is given by the relativistic Dirac Hamiltonian in 1+1 dimensions,

HD = mc2σz + cpσx, (5.7)

which has been successfully implemented in trapped ions [81, 82], as well as in other

platforms [191, 192].

Moreover, an interesting regime appears when the qubit is completely out of reso-

nance and the coupling strength is small when compared to the mode frequency, ωR0 ∼ 0

and g � |ωR|. In this case, the system undergoes a particular dispersive dynamics,

where the effective Hamiltonian becomes a constant. Consequently, the system does

not evolve in this region that we name as decoupling regime, see region 6 in Fig. 5.1.

The remaining regimes correspond to region 7 in Fig. 5.1, associated with the parameter

condition |ωR0 | ∼ g � |ωR|.

The access to different regimes is limited by the maximal detunings allowed for the

driving fields, which are given by the condition δr,b � ν, ensuring that higher-order

sidebands are not excited. The simulations of the JC and AJC regimes, which demand

detunings |δr,b| ≤ |ωR|+ |ωR0 |, are the ones that may threaten such a condition. We have

numerically simulated the full Hamiltonian in Eq. (5.2) with typical ion-trap parameters:

ν = 2π × 3MHz, Ω = 2π × 68kHz and η = 0.06 [82], while the laser detunings were

δb = −2π × 102kHz and δr = 0, corresponding to a simulation of the JC regime with

g/ωR = 0.01. The numerical simulations show that second-order sideband transitions

are not excited and that the state evolution follows the analytical JC solution with a

fidelity larger than 99% for several Rabi oscillations. This confirms that the quantum

simulation of these regimes is also accessible in the lab. We should also pay attention

to the Lamb-Dicke condition η
√
〈a†a〉 � 1, as evolutions with an increasing number

of phonons may jeopardize it. However, typical values like η = 0.06 may admit up to
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Figure 5.2: State population of the QRM ground state for g/ωR = 2, parity p = +1,
and corresponding parity basis {|g, 0〉, |e, 1〉, |g, 2〉, |e, 3〉, . . .}. Here, p is the expectation

value of the parity operator P = σze
−iπa†a [42], and only states with even number of

excitations are populated. We consider a resonant red-sideband excitation (δr = 0), a
dispersive blue-sideband excitation (δb/2π = −11.31kHz), and g = −δb, leading to the
values ωR = ωR0 = −δb/2 and g/ωR = 2.

some tens of phonons, allowing for an accurate simulation of the QRM in all considered

regimes.

Regarding coherence times, the characteristic timescale of the simulation will be

given by tchar = 2π
g . In our simulator, g = ηΩ

2 , such that tchar = 4π
ηΩ . For typical values

of η = 0.06 − 0.25 and of Ω/2π = 0 − 500 kHz, the dynamical timescale of the system

is of milliseconds, well below coherence times of qubits and motional degrees of freedom

in trapped-ion setups [69].

5.4 State preparation

The ground state |G〉 of the QRM in the JC regime (g � ωR) is given by the state

|g, 0〉, that is, the qubit ground state, |g〉, and the vacuum of the bosonic mode, |0〉. It is

known that |g, 0〉 will not be the ground state of the interacting system for larger coupling

regimes, where the contribution of the counter-rotating terms becomes important [193].

As seen in Fig. 5.2, the ground state of the USC/DSC Hamiltonian is far from trivial [19],

essentially because it contains qubit and mode excitations, 〈G|a†a|G〉 > 0.

Hence, preparing the qubit-mode system in its actual ground state is a rather difficult

state-engineering task in most parameter regimes, except for the JC limit. We propose

here to generate the ground state of the USC/DSC regimes of the QRM via adiabatic

evolution. Figure 5.3 shows the fidelity of the state prepared following a linear law of

variation for the coupling strength at different evolution rates. When our system is

initialized in the JC region, achieved with detunings δr = 0 and |δb| � g, it is described

by a JC Hamiltonian with the ground state given by |G〉 = |g, 0〉. Notice that the g/ωR

ratio can be slowly turned up, taking the system adiabatically through a straight line in
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Figure 5.3: Let us assume that the system is initially prepared in the JC ground state
|g, 0〉, that is, when g � ωR. Then, the coupling is linearly chirped during an interval
∆t up to a final value gf , i. e., g(t) = gf t/∆t. For slow changes of the laser intensity,
the ground state is adiabatically followed, whereas for non-adiabatic processes, the
ground state is abandoned. The instantaneous ground state |G(t)〉 is computed by
diagonalizing the full Hamiltonian at each time step, while the real state of the system
|ψ(t)〉 is calculated by numerically integrating the time dependent Schrödinger equation
for a time-varying coupling strength g(t). For the simulation, a 40Ca+ ion has been
considered with parameters: ν = 2π × 3MHz, δr = 0, δb = −6 × 10−4ν, η = 0.06 and
Ωf = 2π × 68kHz [82].

the configuration space to regions 4-5 [44]. This can be done either increasing the value

of g by raising the intensity of the driving, or decreasing the value of ωR by reducing

the detuning |δb|. The adiabatic theorem ensures that if this process is slow enough,

transitions to excited states will not occur and the system will remain in its ground

state. As expected, lower rates ensure a better fidelity.

5.5 Conclusions

In this chapter, we have presented a method for implementing a quantum simulation

of the QRM in ion traps with nowadays technology. Its main advantage consists in

the accessibility to the USC/DSC regimes and the required switchability to realize full

tomography, outperforming other systems where the QRM should appear more naturally,

such as cQED [194, 195]. In addition, we have shown how to prepare the qubit-mode

system in its entangled ground state through adiabatic evolution from the known JC

limit into the USC/DSC regimes. This would allow for the complete reconstruction

of the QRM ground state, never realized in the lab, in a highly controllable quantum

platform as trapped ions. The present ideas are straightforwardly generalizable to many

ions, opening the possibility of going from the more natural Tavis-Cummings model to

the Dicke model.





Chapter 6

Spectral Collapse via Two-phonon

Interactions in Trapped Ions

6.1 Introduction

In the last decades, the quantum Rabi model has been considered in regimes where the

rotating-wave approximation holds, giving rise to the Jaynes-Cummings model [17] and

describing a plethora of experiments, mostly related to cavity quantum electrodynam-

ics. On the other hand, from a mathematical point of view, an analytical solution for

the spectrum of the quantum Rabi model in all regimes has been only recently devel-

oped [19]. Such a result has prompted a number of theoretical efforts aimed at applying

similar techniques to generalizations of the quantum Rabi model, including anisotropic

couplings [196–198], two-photon interactions [199–202] and multi-qubit extensions [203],

as is the case of the Dicke model.

In particular, the two-photon quantum Rabi model enjoys a spectrum with highly

counterintuitive features [204, 205], which appear when the coupling strength becomes

comparable with the bosonic mode frequency. In this sense, it is instructive to compare

these features with the ultrastrong [25, 26, 28] and deep strong [42] coupling regimes

of the quantum Rabi model [206]. The two-photon quantum Rabi model has been

applied as an effective model to describe second-order processes in different physical

setups, like Rydberg atoms in microwave superconducting cavities [207] and quantum

dots [208, 209]. However, the considered small second-order coupling strengths takes us

to the RWA domains and restrict the observation of the richer dynamics of the model.

In this chapter, we design a trapped-ion scheme in which the two-photon quan-

tum Rabi and two-photon Dicke models can be realistically implemented in all relevant

59



Chapter 6. Spectral Collapse via Two-phonon Interactions in Trapped Ions 60

regimes. We theoretically show that the dynamics of the proposed system is character-

ized by harmonic two-phonon oscillations or by spontaneous generation of excitations,

depending on the effective coupling parameter. In particular, we consider cases where

complete spectral collapse—namely, the fusion of discrete energy levels into a continuous

band—can be observed.

In trapped-ion systems [210, 211], it is possible to control the coherent interaction

between the vibrations of an ion crystal and internal electronic states, which form ef-

fective spin degrees of freedom. This quantum technology has emerged as one of the

most promising platforms for the implementation of quantum spin models, including

few [75] or hundreds [76] of ions. A variety of complex quantum phenomena has been

explored using trapped-ion setups, like Ising spin frustration [77], quantum phase transi-

tions [78, 79] and the inhomogeneous Kibble-Zurek mechanism [80]. Furthermore, second

sidebands have been considered for laser cooling [212] and for generating nonclassical

motional states [213–215].

6.2 The model

We consider a chain of N qubits interacting with a single bosonic mode via two-photon

interactions

H = ωa†a+
∑

n

ωnq
2
σnz +

1

N

∑

n

gnσ
n
x

(
a2 + a†

2
)
, (6.1)

where ~ = 1, a and a† are bosonic ladder operators; σnx and σnz are qubit Pauli operators;

parameters ω, ωnq , and gn, represent the mode frequency, the n-th qubit energy spacing

and the relative coupling strength, respectively. We will explain below how to implement

this model using current trapped-ion technology, considering in detail the case N = 1

and discussing the scalability issues for N > 1.

We consider a setup where the qubit energy spacing, ωint, represents an optical or

hyperfine/Zeeman internal transition in a single trapped ion. The vibrational motion

of the ion is described by bosonic modes a, a†, with trap frequency ν. Turning on

a bichromatic driving, with frequencies ωr and ωb, an effective coupling between the

internal and motional degrees of freedom is activated. In the interaction picture, the

standard Hamiltonian [210] describing this model reads

HI =
∑

j=r,b

Ωj

2

{
eiηj[a(t)+a†(t)]ei(ωint−ωj)teiφjσ+ + H.c.

}
, (6.2)

where a(t) = a e−iνt. Here, Ωr and Ωb are coupling parameters directly proportional

to the driving laser amplitude, and φj represents the phase of each laser with respect
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to the atom dipole. The Lamb-Dicke parameter ηj = kjz

√
~

2mν is defined by the the

projection kjz of the j-th laser field wavevector in the z direction and by the ion mass

m. We consider the system to be in the Lamb-Dicke regime, η2(2〈n̂〉 + 1) � 1, where

n̂ = a†a is the phonon number operator.

We set the frequencies of the bichromatic driving to be detuned from the second

sidebands, ωr = ωint − 2ν + δr, ωb = ωint + 2ν + δb. The frequency shifts δr and δb

will introduce tunable effective energies for the qubit and field. We choose homogeneous

Lamb-Dicke parameters ηj = η, phases φj = 0, and coupling strengths Ωj = Ω for both

sideband excitations. Expanding the exponential operator in Eq. (6.2) to the second

order in η, and performing a RWA with δj ,Ωj � ν, we can rewrite the interaction

picture Hamiltonian

HI = −η
2Ω

4

[
a2 e−iδrt + a†

2
e−iδbt

]
σ+ + H.c. (6.3)

The first-order correction to approximations made in deriving Eq. (6.3) is given by
Ω
2 e±i2νtσ+ + H.c., which produce spurious excitations with negligible probability Pe =
(

Ω
4ν

)2
. Further corrections are proportional to ηΩ or η2 and oscillate at frequency ν,

yielding Pe =
(
ηΩ
4ν

)2
. Hence, they are negligible in standard trapped-ion implementa-

tions. The explicit time dependence in Eq. (6.3) can be removed by going to another

interaction picture with H0 = 1
4 (δb − δr) a†a + 1

4 (δb + δr)σz, which we dub simulation

picture. Then, the system Hamiltonian resembles the two-phonon quantum Rabi Hamil-

tonian

Heff = ω a†a+
ωq
2
σz − g σx

(
a2 + a†

2
)
, (6.4)

where the effective model parameters are linked to physical variables through ω =
1
4 (δr − δb), ωq = −1

2 (δr + δb), and g = η2Ω
4 . Remarkably, by tuning δr and δb, the

two-phonon quantum Rabi model of Eq. (6.4) can be implemented in all regimes. More-

over, the N-qubit two-phonon Dicke model of Eq. (6.1) can be implemented using a

chain of N ions by applying a similar method. In this case, the single bosonic mode is

represented by a collective motional mode [74], see section 6.3 for further details.

The validity of the approximations made in deriving Eq. (6.4) has been checked

comparing the simulated two-photon quantum Rabi dynamics with numerical evalua-

tion of the simulating trapped-ion model of Eq. (6.2), as shown in Fig. 6.1. Standard

parameters and dissipation channels of current setups have been considered. In all

plots of Fig. 6.1, the vibrational frequency is ν/2π = 1 MHz and the coupling coeffi-

cient is Ω/2π = 100 KHz. The Lamb-Dicke parameter is η = 0.04 for Fig. 6.1a and

Fig. 6.1b, while η = 0.02 for Fig. 6.1c. Notice that larger coupling strengths imply a
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more favourable ratio between dynamics and dissipation rates. Hence, the implementa-

tion accuracy improves for large values of g/ω, which correspond to the most interesting

coupling regimes.
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Figure 6.1: Real-time dynamics for N = 1, resonant qubit ωq = 2ω, and effective
couplings: (a) g = 0.01ω, (b) g = 0.2ω, and (c) g = 0.4ω. The initial state is given
by |g, 2〉, i.e., the two-phonon Fock state and the qubit ground state. In all plots, the
red continuous line corresponds to numerical simulation of the exact Hamiltonian of
Eq. (6.1), while the blue dashed line is obtained simulating the full model of Eq. (6.2),
including qubit decay t1 = 1s, pure dephasing t2 = 30ms and vibrational heating of one
phonon per second. In each plot, the lower abscissa shows the time in units of ω, while
the upper one shows the evolution time of a realistic trapped-ion implementation. In
panel (c), the full model simulation could not be performed for a longer time due to
the fast growth of the Hilbert-space.
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6.3 Implementation of the two-photon Dicke model

In the previous section, we showed how a two-photon Rabi model can be implemented

using the vibrational degree of freedom of a single ion, coupled to one of its internal

electronic transitions by means of laser-induced interactions. Let us now show how the

N-qubit two-photon Dicke model

H = ωa†a+
∑

n

ωnq
2
σnz +

1

N

∑

n

gnσ
n
x

(
a2 + a†

2
)
, (6.5)

can be implemented in a chain of N ions, generalizing such a method. The N qubits

are represented by an internal electronic transition of each ion, while the bosonic mode

is given by a collective motional mode of the ion chain. The two-phonon interactions

are induced by a bichromatic laser driving with the same frequency-matching conditions

used for the single-qubit case. The drivings can be implemented by shining two longi-

tudinal lasers coupled to the whole chain, or by addressing the ions individually with

transversal beams. The former solution is much less demanding, but it may introduce

inhomogeneities in the coupling for very large ion chains; the latter allows complete

control over individual coupling strengths.

In order to guarantee that the model of Eq. (6.5) is faithfully implemented, the

bichromatic driving must not excite unwanted motional modes. In our proposal, the

frequency of the red/blue drivings ωr/b satisfy the relation |ωr/b−ωint| = 2ν+δr/b, where

δr/b are small detunings that can be neglected for the present discussion. We recall that

ν is the bosonic mode frequency and ωint the qubit energy spacing. To be definite, we

take the motion of the center of mass of the ion chain as the relevant bosonic mode.

Then, the closest collective motional mode is the breathing mode [74], with frequency

ν2 =
√

3ν. An undesired interaction between the internal electronic transitions and

the breathing mode could appear if |ωr/b − ωint| is close to ν2 or 2ν2, corresponding to

the first and second sidebands, respectively. In our case, the drivings are detuned by

∆1 = |ωr/b − ωint| − ν2 ≈ 0.27ν from the first and ∆2 = |ωr/b − ωint| − 2ν2 ≈ 1.46ν

from the second sideband. Given that the frequency ν is much larger than the coupling

strength Ω, such detunings make those unwanted processes safely negligible.

6.4 Real-time dynamics

Depending on the ratio between the normalized coupling strength g and the mode fre-

quency ω, the model of Eq. (6.1) exhibits qualitatively different behaviors. Two param-

eter regimes can be identified accordingly. For the sake of simplicity, we will consider
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the homogeneous coupling case gn = g, ωnq = ωq, for every n, and we will focus in the

resonant or near-resonant case ωq ≈ 2ω.

In accordance with the quantum Rabi model, we define the strong coupling (SC)

regime by the condition g/ω � 1. Under this restriction, the RWA can be applied to the

coupling terms, replacing each direct interaction g
∑

n σ
n
x

(
a2 + a†

2
)

with g
∑

n

(
σn+a

2 + σn−a
†2
)

,

where we defined the raising/lowering single-qubit operators σn± =
(
σnx ± iσny

)
/2.

When the RWA is valid, the system satisfies a continuous symmetry identified by

the operator ζ = a†a+ 2
∑

n σ
n
+σ

n
−, corresponding to a weighed conservation of the total

number of excitations, such that a spin flip is balanced by the creation or annihilation

of two bosonic excitations. The presence of a continuous symmetry makes the model

superintegrable [19]. In the SC regime, the interaction leads to two-photon excitation

transfers between the bosonic field and the qubits, as shown in Fig. 6.1a. When the

bosonic field is initially in a coherent state, Jaynes-Cummings-like collapses and revivals

of population inversion are expected to appear [216, 217].

As the ratio g/ω increases, the intuitive dynamics of the SC regime disappears.

Excitations are not conserved and the average value of observables like the boson number

or the qubit occupation do not follow the pattern of coherent excitation transfer (see

Fig. 6.1b and Fig. 6.1c). When the normalized coupling approaches the value g ∼ 0.1ω,

the RWA cannot be performed, and the full quantum Rabi model must be taken into

account. We define the ultrastrong coupling (USC) regime as the parameter region for

which 0.1 . g/ω < 0.5. Even if analytical solutions for the system eigenstates have been

derived [199–201], they hold only for N = 1, they are not in a closed form, and they do

not entail computational benefits with respect to numerical simulations. Indeed, due to

the large number of excitations involved in the dynamics, the two-photon Dicke model

is demanding for classical numerical techniques.

In the SC/USC transition, the continuous symmetry ζ breaks down to a Z4 discrete

symmetry identified by the parity operator

Π = (−1)N
N⊗

n=1

σnz exp
(
i
π

2
a†a
)
. (6.6)

Four invariant Hilbert subspaces are identified by the four eigenvalues λ = {1,−1, i,−i}
of Π. Hence, for any coupling strength, the symmetry Π restricts the dynamics to parity

chains, shown in Fig. 6.2a, for N = 1, 2. Notice that in the SC regime, the RWA confines

the system to a very small number of states. On the contrary, when g is large enough to

make counter-rotating terms relevant (USC regime), the system evolution spans a much

larger Hilbert space.
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Figure 6.2: (a) Parity chains for N = 1, 2. For simplicity, for N = 2, only one parity
subspace is shown. (b) Quantum state fidelity between the system state |φ(t)〉 and the
target eigenstates |ψgn〉 during adiabatic evolution. The Hamiltonian at t = 0 is given
by Eq. (6.1) with N = 1, ωq/ω = 1.9 and g = 0. During the adiabatic process, the
coupling strength is linearly increased until reaching the value g/ω = 0.49. For the blue

circles, the initial state is given by the ground state |φ(t = 0)〉 =
∣∣∣ψg=0

0

〉
. For black

crosses, |φ(t = 0)〉 =
∣∣∣ψg=0

1

〉
, while for the red continuous line, |φ(t = 0)〉 =

∣∣∣ψg=0
4

〉
.

The color code indicates parity as in Fig. 6.3a. Notice that, due to parity conservation,

the fourth excited eigenstate
∣∣∣ψg=0

4

〉
of the decoupled Hamiltonian is transformed into

the third one |ψg3〉 of the full Hamiltonian.

When the normalized coupling g approaches g = ω/2 (see Fig 6.3c), the dynamics is

dominated by the interaction term and it is characterized by photon production. Finally,

when g > ω/2, the Hamiltonian is not bounded from below. However, it still provides

a well defined dynamics when applied for a limited time, like usual displacement or

squeezing operators.

6.5 The spectrum

The eigenspectrum of the Hamiltonian of Eq. (6.1) is shown in Figs. 6.3a and 6.3c for

N = 1 and N = 3, respectively. Different markers are used to identify the parity

Π of each Hamiltonian eigenvector, see Eq. (6.6). In the SC regime, the spectrum

is characterized by the linear dependence of the energy splittings, observed for small

values of g. On the contrary, in the USC regime the spectrum is characterized by level

crossings known as Juddian points, allowing for closed-form isolated solutions [205] in

the single-qubit case.
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Figure 6.3: Spectral properties of the Hamiltonian Eq. (6.1), in units of ω, for ωq =
1.9, as a function of the coupling strength g. For g > 0.5, the spectrum is unbounded
from below. (a) Spectrum for N = 1. Different markers identify the parity of each
eigenstate: green circles for p = 1, red crosses for p = i, blue stars for p = −1, and
black dots for p = −i. (b) Average photon number for the ground and first two excited
states, for N = 1. (c) Spectrum for N = 3. For clarity, the parity of the eigenstates is
not shown.

The most interesting spectral features appear when the normalized coupling g ap-

proaches the value ω/2. In this case, the energy spacing between the system eigenergies

asymptotically vanishes and the average photon number for the first excited eigenstates

diverges (see Fig. 6.3b). When g = ω/2, the discrete spectrum collapses into a continuous

band, and its eigenfunctions are not normalizable. Beyond that value, the Hamiltonian is

unbounded from below [204, 205]. This can be shown rewriting the bosonic components

of Hamiltonian of Eq. (6.1) in terms of the effective position and momentum operators of

a particle of mass m, defined as x̂ =
√

1
2mω

(
a+ a†

)
and p̂ = i

√
mω
2

(
a− a†

)
. Therefore,
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we obtain

H =
mω

2

[
(ω − 2g Ŝx)

p̂2

m2ω2
+ (ω + 2g Ŝx)x̂2

]

+
ωq
2

∑

n

σnz , (6.7)

where Ŝx = 1
N

∑
n σ

n
x . Notice that Ŝx can take values included in the interval 〈Sx〉 ∈

[−1, 1]. Hence, the parameter (ω+2g) establishes the shape of the effective potential. For

g < ω/2, the particle experiences an always positive quadratic potential. For g = ω/2,

there are qubit states which turn the potential flat and the spectrum collapses (see

appendix D), as for a free particle. Finally, when g > ω/2, the effective quadratic

potential can be positive, for 〈Ŝx〉 < −ω/2g, or negative, for 〈Ŝx〉 > ω/2g. Therefore,

the Hamiltonian (6.7) has neither an upper nor a lower bound.

6.6 Measurement technique

A key experimental signature of the spectral collapse (see Fig. 6.3a) can be obtained by

measuring the system eigenergies [218] when g approaches 0.5ω. Such a measurement

could be done via the quantum phase estimation algorithm [219]. A more straight-

forward method consists in directly generating the system eigenstates [195] by means

of the adiabatic protocol shown in Fig. 6.2b. When g = 0, the eigenstates
∣∣∣ψg=0
n

〉
of

Hamiltonian in Eq. (6.1) have an analytical form and can be easily generated [220].

Then, adiabatically increasing g, the eigenstates |ψgn〉 of the full model can be produced.

Notice that parity conservation protects the adiabatic switching at level crossings (see

Fig. 6.2b).

Once a given eigenstate has been prepared, its energy can be inferred by measuring

the expected value of the Hamiltonian in Eq. (6.1). We consider separately the mea-

surement of each Hamiltonian term. The measurement of σnz is standard in trapped-ion

setups and is done with fluorescence techniques [210]. The measurement of the phonon

number expectation value was already proposed in Ref. [67]. Notice that operators σnz

and a†a commute with all transformations performed in the derivation of the model,

hence their expectation values in the lab and simulation picture will coincide. The ex-

pectation value of the interaction term gσnx

(
a2 + a†

2
)

can be mapped into the value of

the first time derivative of 〈σnz 〉 at measurement time t = 0, with the system evolving

under Hm = ωa†a +
ωq
2 σ

n
z − gσny

(
a2 + a†

2
)

. This Hamiltonian is composed of a part

A = ωa†a+
ωq
2 σ

n
z which conmutes with σnz , [A, σnz ] = 0, and a part B = −gσny

(
a2 + a†

2
)
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which anti-conmutes with σnz , {B, σnz } = 0, yielding

〈ei(A+B)tσnz e
−i(A+B)t〉 = 〈ei(A+B)te−i(A−B)tσnz 〉. (6.8)

The time derivative of this expression at t = 0 is given by

〈[i(A+B)− i(A−B)]σnz 〉 = 2i〈Bσnz 〉, (6.9)

which is proportional to the expectation value of the interaction term of Hamiltonian in

Eq. (6.4),

∂t〈eiHmtσnz e−iHmt〉|t=0 = 2〈gσnx
(
a2 + a†

2
)
〉. (6.10)

The evolution under Hamiltonian Hm in the simulation picture is implemented just in

the same way as with Hamiltonian of Eq. (6.4), but selecting the laser phases φj to be
π
2 . Moreover, expectation values for the parity operator Π of Eq. (6.6) can be extracted

following techniques described in appendix D.

6.7 Conclusions

We have introduced a trapped-ion scheme that allows to experimentally investigate two-

photon interactions in unexplored regimes of light-matter coupling, replacing photons

of the model by trapped-ion phonons. It provides a feasible method to observe an

interaction-induced spectral collapse in a two-phonon quantum Rabi model, approach-

ing recent mathematical and physical results with current quantum technologies. The

proposed scheme provides a scalable quantum simulator of a complex quantum system,

which is difficult to approach with classical numerical simulations even for low number of

qubits, due to the large number of phonons involved in the dynamics. Furthermore, the

two-photon Dicke model may present a very interesting phase diagram. As the standard

Dicke model, the two-photon Dicke is expected to show a superradiant phase transi-

tion, when the coupling strength reaches a critical value. However, the phase transition

could be inhibited by the spectral collapse, if the latter happens for smaller values of

the coupling strength. The interplay between these two effects is expected to have a

non-trivial dependence on the ratios between the coupling strength and the field and

qubit frequencies. These predictions show the vital aspects of the quantum Rabi model

and promise an open avenue for further interesting physics in theory and experiments.



Chapter 7

The quantum Rabi model in

periodic phase space with cold

atoms

7.1 Introduction

In previous chapters, we have introduced methods to implement the quantum Rabi

model, and generalizations of it, in trapped-ions systems. This quantum technology

has been widely adopted to reproduce the physics of light-matter interactions of small

quantum systems, using the ions internal and vibrational degrees of freedom. On the

other hand, systems of cold atoms have mostly been associated, for their own nature,

with the implementation of quantum many-body systems. Like for trapped-ions, spin-

like degrees of freedom have been implemented with cold atoms using internal electronic

transitions. Alternatively, two-level systems have been created using atomic quantum

dots [221, 222] or double-well potentials [223].

In this chapter, we propose a quantum simulation of the QRM with cold atoms

loaded onto a periodic lattice, using an unconventional definition of qubit. The effective

two-level quantum system is simulated by the occupation of different Bloch bands, and

the bosonic mode is represented by the motion of the atomic cloud into a Harmonic

optical-trap potential. The qubit energy spacing is proportional to the periodic lattice

depth, while the interaction with the bosonic mode is intrinsic in the qubit definition.

We show that our method, feasible with current technology, can access extreme pa-

rameters regimes of the QRM, allowing the experimental study of the transition between

the USC and DSC regimes. Furthermore, the proposed system provides a generalization

69
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of the QRM in periodic phase space that presents an interesting pattern of collapses and

revivals in the DSC regime. An interesting feature of this proposal is that each atom

of the non-interacting cloud simulates the QRM Hamiltonian. Thus, in any simulation

run, an ensemble of QRM evolves simultaneously. This allows to obtain the bosonic

mode quadrature distribution with a single collective measurement, and it could lead

to interesting many-body generalization of the model when inter-atom interactions are

introduced.

This chapter is organized as follows. In section 7.2, we introduce the model and we

discuss the analogy with the QRM. In section 7.3, we provide details on the proposed

implementation, discussing the parameter regimes that can be accessed with nowadays

technology and the measurement techniques. In section 7.4, we report the results of

numerical simulations that show examples of interesting dynamics that could be repro-

duced. Finally, in section 7.5 we summarize our results.

7.2 The model

The system here considered is composed of a cloud of ultracold atoms exposed to two

laser-induced potentials: a periodic lattice and a harmonic trap1. When the atom density

is sufficiently low, interactions among the atoms are negligible, and the system can be

described with a single-particle Hamiltonian, composed of the sum of a harmonic part

HP and a quadratic term

Ĥ = ĤP +
mω2

0

2
x̂2 , ĤP =

p̂2

2m
+
V

2
cos (4k0x̂) (7.1)

where, p̂ = −i~ ∂
∂x and x̂ are momentum and position of an atom of mass m, respectively.

Here, ω0 is the angular frequency of the atom motion in the harmonic trap, while

V and 4k0 are the depth and wavevector of the periodic potential, respectively. The

periodic lattice is resulting from a four-photon interaction with a driving field [224–226]

of wavevector k0 .

In the following, we will assume that the harmonic trap is slowly varying on the

length-scale of the periodic potential. Under this assumption, the most suitable basis is

given by the Bloch functions

〈x |φn(q)〉 = φn(q, x) = eiqx/~un(q, x), (7.2)

1Details on the implementation can be found in section 7.3.
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where q is the quasi-momentum and n is the band index, while un(q, x) must be a periodic

function with the same periodicity of the periodic potential. Accordingly, we define

un(q, x) = e−i2k0xei4nk0x. We have added the phase e−i2k0x to the un(q, x) functions

definition in order to obtain a convenient first Brillouin zone, q ∈ [−2~k0, 2~k0]. Notice

that the Bloch functions are identified by a discrete quantum number, the band index

n, and a continuous variable, the quasi-momentum q. Accordingly, we can define a

continuous and a discrete degrees of freedom, and rewrite the Bloch basis of Eq 7.2 as

|φn(q)〉 = |q〉 |n〉.

First, let us consider the periodic part Ĥp of the system Hamiltonian , later we will

discuss the effect of the harmonic trap. It is straightforward to see that the momentum

operator is diagonal in the Bloch basis, while the periodic potential introduces a coupling

between adjacent bands

Ĥp |q〉 |n〉 =
1

2m

[
q + (2n− 1)2~k0

]2 |q〉 |n〉 (7.3)

+
V

4

(
|q〉 |n+ 1〉+ |q〉 |n− 1〉

)
.

Assuming that the system dynamics is restricted to the two bands with lowest energy,

the periodic part HP of the Hamiltonian can be rewritten in the Bloch basis as

ĤP(q) =
1

2m

(
q2 + 4~k0 q 0

0 q2 − 4~k0 q

)
+
V

4

(
0 1

1 0

)
. (7.4)

Equivalently, using the Pauli matrices formalism to describe the two-fold Hilbert space

defined by the first two bands, we can write

ĤP(q) =
q2

2m
+

2~k0

m
σz q +

V

4
σx. (7.5)

Hence, the periodic potential introduces the free energy term of an effective two-level

quantum system.

Let us now include the quadratic term of Eq. (7.1) in our treatment. In the Bloch

basis, we can write

〈q̃, ñ|x̂2|q, n〉 =

∫ +∞

−∞
dxx2ei[4(n−ñ)k0+(q−q̃)/~]x. (7.6)

Considering diagonal elements in the qubit Hilbert space, i.e., setting ñ = n, we have

〈q̃, n|x̂2|q, n〉 =

∫ +∞

−∞
dxx2ei(q−q̃)x/~, (7.7)
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and so
mω2

0

2
〈q̃, n|x̂2|q, n〉 = −m~2ω2

0

2
〈q̃, n| ∂

2

∂q2
|q, n〉. (7.8)

Hence, we see that the harmonic potential introduces an operator, diagonal in the qubit

Hilbert space, which can be expressed as r̂ = −i~ ∂
∂q , in the Bloch basis. This allows

us to define the quasimomentum operator q̂ and the position operator r̂, which satisfy

the commutation relation [r̂, q̂] = i~. On the other hand, for ñ 6= n, the integral in

Eq. (7.6) is different from zero only if 4~k0(n − ñ) = q̃ − q. Hence, the quadratic

potential introduces a coupling between neighbouring bands, for states whose momenta

satisfy q̃ − q = 4~k0, of the kind

mω0

2
r̂2
(
|2~k0, 0〉 〈−2~k0, 1|+ |2~k0, 1〉 〈−2~k0, 0|+ H.c.

)
. (7.9)

This effective coupling is due to the periodicity of the quasimomentum, which mixes the

bands n = 0, 1 at the boundaries of the Brillouin zone. Such a coupling can be neglected

as far as the system dynamics involves only values of the quasimomentum q̂ included

within the first Brillouin zone.

7.2.1 Equivalence with the quantum Rabi model

Let us now rewrite the Hamiltonian of Eq. (7.1) as

Ĥ =
q̂2

2m
+
mω2

0

2
r̂2 +

2~k0

m
σz q̂ +

V

4
σx. (7.10)

Defining creation a and annihilation a† operators â =
√

mω0
2~

(
r̂ + i

mω0
q̂
)

, and rotating

the qubit basis with the unitary operator U = 1√
2

(
1 −1

1 1

)
, the total system Hamilto-

nian can be finally rewritten as

Ĥ = ~ω0a
†a+

~ωq
2
σz + i~gσx

(
a† − a

)
. (7.11)

which corresponds to the quantum Rabi Hamiltonian. In the following, we will refer to

this rotated basis to use a notation for the Pauli matrices consistent with the previous

chapters. We have defined the effective qubit energy spacing ωq = V
2~ and the interaction

strength g = 2k0

√
~ω0
2m . Notice that, in the standard form of the QRM, the qubit-field

coupling is usually written in terms of the position operator, while in Eq. (7.11) it

appears in terms of the momentum operator. The two definitions are equivalent up to

a global phase factor.
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The full system Hamiltonian of Eq. (7.1) resembles the QRM only when the effective

coupling of Eq. (7.9) between different bands induced by the harmonic potential can be

neglected. Such an approximation holds until the system wavefunction 〈q |ψ(t)〉 is com-

pletely included in the first Brillouin zone at any evolution time. Clearly, this constraint

limits the proposed implementation to values of the momentum q̂ smaller in modulus

than 2~k0. As in any quantum simulation, the dynamics is restricted into a validity

region. In the following, we will show that this constraint does not impede to observe

the highly non-trivial behavior of the QRM in the USC and DSC regimes. Interestingly,

some key features of the DSC regime are reproduced even when the periodicity of the

quasimomentum becomes relevant for the system dynamics.

7.3 Implementation

Before going into details of the phenomena that can be observed, let us discuss the

feasibility of the present proposal. In this section, we report which parameter regimes

can be accessed with nowadays technology, and we briefly describe state preparation and

measurement techniques. In particular, we consider previous experiments of ultracold

rubidium atoms in optical lattices [227], where Fourier-synthetized lattice potentials are

used in order to taylor the atomic dispersion relation [110, 228].

7.3.1 Accessibility of parameter regimes with cold atoms

The parameter regimes that can be accessed are established by the relative weights of the

parameters ω0, ωq = V
2~ and g = 2k0

√
~ω0
2m , defined in Eq. (7.11). We will consider as fixed

parameters the wavelength of the lattice laser λ = 783.5×10−9 m, for technical reasons,

and, obviously, the Rubidium atomic mass m = 1.44×10−25 Kg. The wavevector is given

by k0 = 2π
λ . On the other hand, the periodic lattice can be tuned over a wide intensity

range, from V = 0 (absence of lattice), to about V/~ = 2π × 18 KHz, corresponding

to V = 4.8Er, where we defined the recoil energy Er =
~2k20
2m . The frequency of the

harmonic trap can also be tuned from w0 = 2π × 0.5 KHz, to ω0 = 2π KHz.

As for the previous chapters, concerning the QRM we will set ~ = 1 and we will use

units of ω0. First, notice that the value of the effective coupling strength is intrinsically

linked to the trap frequency g ∼ √ω0, hence the ratio g/ω0 is tunable only over a narrow

range of extremely high values, from g/ω0 ≈ 7ω0 to g/ω0 ≈ 11. However, the tunability

of the ratio between the coupling strength and the effective qubit energy spacing allows

us to explore both the USC and DSC dynamics, as shown below in section 7.4. Indeed,



Chapter 7. The quantum Rabi model in periodic phase space with cold atoms 74

the value of ωa can be made large enough to make the qubit free Hamiltonian dominant,

g/ωa ≈ 0.3, or small enough to make its energy contribution negligible.

7.3.2 State preparation and measurement

Initially, the rubidium atoms are cooled to quantum degeneracy via evaporation in an

optical mid-infrared dipole trap. After the cooling process, a Bose-Einstein condensate

is generated, with about 6 × 104 atoms in the mF = 0 Zeeman sublevel of the F = 1

hyperfine ground state component [227]. After this initialization, the momentum of the

atoms must be manipulated, in order to produce relevant states of the simulated qubit

and bosonic mode as encoded in section 7.2.1.

Notice that the qubit state is encoded in the occupation of the Bloch bands |±2~k0〉,
while the bosonic mode quadratures are encoded in the position r̂ and quasimomentum

q̂ of the atoms. To prepare the atoms in the desired position of the Bloch spectrum

two techniques can be used. The first one consists in deactivating for a short time the

trapping potential, so that the atomic cloud is left in free fall [110]. In this way, it is

possible to accelerate the atoms by a small, continuously-tunable amount of quasimo-

mentum, due to the earth gravitational field. The second technique consists in applying

a Doppler-sensitive Raman pulse [224], transferring the atoms from the mF = 0 to the

mF = −1 Zeeman sublevel, thus applying a discrete momentum kick of ±2~k0. By

controlling the share of atoms that gain positive or negative momentum, the effective

qubit can be initialized in any eigenstates of σx (as defined in Eq. (7.11)).

Via standard time-of-flight measurement [229], both the momentum and, in princi-

ple, the position distribution of the atoms can be measured, as well as the occupation

state of σx. Such a technique consists in switching off abruptly both the lattice and

the trapping potential, in such a way that the atoms can freely expand according to

their momentum distribution. After a definite time of flight, the atom positions can

be detected using standard absorption imaging methods. Hence, their initial momen-

tum and position distribution can be deduced, thus obtaining both the simulated boson

wavefunction and the projection of the effective qubit state on the eigenstates of σx.

Knowing the momentum and position distribution of the simulated field quadratures q̂

and r̂, the average photon number N̂ = a†a can also be obtained (see definition of the

simulated ladder operators in section 7.2.1). However, while the reconstruction of the

momentum distribution can be performed with high precision [110], achieving the re-

quired resolution on the measurement of the atoms initial position can be experimentally

challenging.
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For completeness, we mention that the qubit operator σz can be also be directly

measured via adiabatic mapping [229, 230], but only when the system state is close to

the avoided crossing in the Bloch spectrum. This technique consists in adiabatically

ramping down the lattice potential depth, in order to preserve the quasimomentum q.

During the turn-off process, a Bloch wave in the nth energy band is mapped onto a

corresponding free-particle momentum p in the nth Brillouin zone.

7.4 Ultrastrong and deep strong coupling regime

Let us now consider the dynamics of the QRM in the specific parameter regime of interest

for the proposed quantum simulation. Given that only very high values of the ratio

between the coupling strength g and the bosonic mode frequency ω0 are accessible, the

rotating wave approximation can never be applied and the model cannot be implemented

in the Jaynes-Cummings limit. However, we will show that interesting dynamics at the

crossover between the USC and the DSC regime can be observed, for values of parameters

that are unattainable with any natural implementations of the quantum Rabi model.

By means of numerical simulations, we have compared the dynamics of the full cold

atoms model of Eq. (7.1) with the corresponding effective QRM, Eq. (7.11). Numerical

simulations of the full model have been performed in the position basis, applying a

discretization of the real space over more than 103 lattice sites. The QRM model has

been numerically simulated introducing a cut-off (N > 500) on the maximum number

of photons allowed into the system.

In Fig. 7.1, we show the results of such numerical simulations, in different parameter

regimes. The initial state |ψ0〉 = |0〉 |+〉 is given by the vacuum of the bosonic mode

and the σx eigenvector of positive eigenvalue. Such a state corresponds to the atomic

cloud at the center of the trap and at the position p = 2~k0 (or q = 0) of the Bloch

spectrum, and it can be reliably generated as detailed in section 7.3.2. In all plots,

the red continuous line shows the dynamics of the full model, while the dashed blue

line corresponds to the QRM. The very good agreement between the two simulations

suddenly breaks down when the system state hits the border of the validity region of

the quantum simulation. Different behaviors between the two regimes are more visible

in the expected value of σx which, in the DSC regime, is approximatively a conserved

quantity, as shown in the following section.
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ramping down the lattice potential depth, in order to preserve the quasimomentum q.

During the turn-o↵ process, a Bloch wave in the nth energy band is mapped onto a

corresponding free-particle momentum p in the nth Brillouin zone.

7.5 Ultrastrong and deepstrong coupling regime

Let us now analyze the dynamics of the quantum Rabi model in the specific parameter

regime of interest for the proposed quantum simulation. Due to high values of the ratio

between the coupling strength g and the field frequency !0, the rotating wave approx-

imation is never applicable and the Jaynes-Cummings model cannot be implemented.

Hence, we will focus on the dynamics at the crossover between the USC and the DSC

regime, that cannot be observed with natural implementations of the quantum Rabi

model.

7.5.1 Collapse and revival

The system enters the deepstrong coupling regime [41] when both the ration g/!0 and

g/!a are significant higher than 1. Under this condition, the system dynamics is well

described by the slow-qubit approximation, which consists in neglecting the energy split-

ting of the qubit, setting !a = 0. In our case, the Hamiltonian of Eq. (7.11) will be

cast into Ĥ = !0a
†a� ig�x(a† � a). This approximation is intuitively motivated by the

rapid growth of the number of photons, which makes the higher states of the Fock basis

the most relevant in the system evolution. Given that the norms of the creation and

annihilation operators is proportional to the Fock number, while the Hamiltonian term
!a
2 �z remains constant, the latter becomes negligible for high photon numbers.
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Figure 7.1: Comparison between the full cold atom Hamiltonian (red continuous
line) and the QRM (red dashed line). The momentum is shown in units of ~k0, while
the position in units of 1/k0. For the USC regime, the Rabi parameters are given by
g/ω0 = 7.7 and g/ωa = 0.43 while, for the DSC regime, g/ω0 = 10 and ω0 = ωa.
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7.4.1 Collapse and revival

In the previous section, we have shown that our proposal is able to reproduce the dy-

namics of the QRM at the crossover between the USC and DSC regimes. We have also

shown that the analogy is broken when the value of the simulated momentum exceeds

the borders of the first Brillouin zone. When this is the case, the model represents a

generalization of the QRM in a periodic phase space. In the following, we analyze the

properties of such a model. In particular, we focus on collapses and revivals of the initial

state, which represent the signature of the QRM in the DSC regime.

The system enters the deep strong coupling regime [42] when both the ratio g/ω0

and g/ωa are significant higher than 1. Under this condition, the system time evolution is

well described by the slow-qubit approximation, which consists in neglecting the energy

splitting of the qubit, setting ωa = 0. In our case, the Hamiltonian of Eq. (7.11) will be

reshaped into ĤDSC = ω0a
†a−igσx(a†−a). This approximation is intuitively motivated

by the rapid growth of the number of photons, which makes the higher states of the Fock

basis the most relevant in the system dynamics. Given that the norms of the creation and

annihilation operators is proportional to the Fock number, while the Hamiltonian term
ωa
2 σz remains constant, the latter becomes negligible for high photon number states.

Under this approximation, the Hamiltonian can be diagonalized using the transfor-

mation

C†D(α)HDSCCD(α) = ω0a
†a+

g2

ω2
0

− 2g2

ω0
, with α = − g

ω0
σx, (7.12)

where we defined the operator CD(α) = exp
{
αa† − α∗a

}
, which corresponds to a con-

ditional displacement dependent on the qubit state. If we consider the initial state

|ψin〉 = |0〉 |±〉, using Eq. (7.12) it is straightforward to obtain an analytic expression
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Figure 7.2: Comparison between the full cold atom Hamiltonian (red continuous line)
and the QRM (blue dashed line). The plot shows collapses and revivals of the population
of the initial state Pin = |〈ψin |ψ(t)〉 |2 and of the average photon number. The initial
state is given by |ψin〉 = |0〉 |+〉. The coupling strength is given by g ∼ 11ω0, while
the qubit energy spacing vanishes ωa = 0. In this trivial limit, collapses and revivals
corresponds to harmonic oscillations of the atoms in the trap potential.
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Figure 7.3: Comparison between the full cold atom Hamiltonian (red continuous
line) and the QRM (blue dashed line). The plot shows collapses and revivals of the
population of the initial state Pin = |〈ψin |ψ(t)〉 |2 and of the average photon number.
The initial state is given by |ψin〉 = |0〉 |+〉. The coupling strength is given by g ∼ 11ω0,
and the qubit is resonant with the simulated bosonic mode ωa = ω0. Notice that the
extension of the QRM to a periodic phase space also presents collapse and revival, in
this case with half the periodicity of the standard quantum Rabi model.

for the system evolution,

|ψ(t)〉 = e−iHDSCt |ψin〉 = e−iφ(t)D(β(t)) |0〉 |±〉 , (7.13)

where φ(t) is a global phase (independent of the qubit state), while D(β(t)) is a dis-

placement operator and β(t) = ± g
ω0

(
e−iω0t − 1

)
. Accordingly, during the system time

evolution σz is conserved, while the vacuum state is displaced into a coherent state that

rotates in the phase space and with period T = 2π/ω0 returns into the initial state.

This pattern of collapse and revival is shown in Fig. 7.2 , for the case in which the

diagonalization of Eq. (7.12) is exact (ωa = 0), and in Fig. 7.3 for the resonant DSC

regime (ωa = ω0).

Interestingly, the full model also presents a non-trivial scheme of collapses and re-

vivals of the initial state. When the term σz is absent (ωa = 0), the system matches

the collapses and revivals of the standard QRM, as shown in Fig. 7.2. This situations

corresponds to harmonic oscillations of the atoms in the trap, in the case in which the

periodic lattice is absent. When the term σz is turned on, peaks in the overlap Pin

appear also at half oscillation period. This phenomenon, shown in Fig. 7.3, is due to the

periodicity of the quasimomentum and to the specific definition of the effective qubit

(see section 7.2.1). After half oscillation period, the quasimomentum comes back to its

initial value, but the qubit experience a spin flip in the σx basis. The effect of the σz

term can rectify this flip, so that the qubit as well is projected back on the initial state.
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7.5 Conclusions

In this chapter, we have developed a method to implement a quantum simulation of

the QRM using a system of cold atoms in a periodic lattice. An effective two-level

quantum system is simulated by the Bloch-bands occupation, while a single bosonic

mode is implemented by the oscillations of the atoms in a harmonic optical trap. The

analogy with the QRM holds only within a finite region of the simulated boson phase

space. However, by means of numerical simulations, we have shown that highly non-

trivial dynamics can be feasibly implemented within the validity region of the quantum

simulation. In particular, we have shown that the crossover between the USC and

the DSC regime could be experimentally analyzed, for values of the parameters that

are unachievable with natural implementations of the QRM. Furthermore, the proposed

system represents a generalization of the QRM in a periodic phase space, which presents

interesting patterns of collapses and revivals of the initial state in the DSC regime.





Chapter 8

Conclusions

In this Thesis, we have analyzed different aspects of the ultrastrong coupling (USC)

regime of light-matter interactions. Our results can be gathered in two thematic re-

search areas. From one side, we have studied how entering the USC regime modifies

fundamental phenomena related to excitation transfer and entanglement generation.

Furthermore, we have developed a method for measuring and controlling qubit-cavity

systems, circumventing the lack of decoupling mechanisms in the USC regime. In these

works, we have considered models that can be feasibly implemented in circuit quan-

tum electrodynamics (QED) architectures, with current technology or with foreseeable

improvements. In the cases in which the circuit designs represent themselves original

contributions, we also provide derivations of the circuit quantization and details of the

proposed implementations.

On the other hand, we have focused on developing methods for reproducing funda-

mental models of light-matter interaction, in all relevant regimes, as effective models in

quantum-optical atomic systems. In particular, we propose three experimental imple-

mentations, considering systems of trapped ions and of ultracold atoms. These proposals

are tailored in order to exploit specific features of the quantum platforms taken into ac-

count. For example, we show that the record-breaking controllability of trapped ions

allows to generate arbitrary superpositions of eigenstates of the quantum Rabi model

(QRM), and to observe signatures of the spectral collapse induced by two-photon in-

teractions. Likewise, the ability of loading atomic clouds on superposition of harmonic

and periodic optical potentials allows to reach the deep strong coupling (DSC) regime,

where the interaction strength is even larger than the bosonic mode frequency.

Let us discuss our results in more details, in particular focusing on the scope and

on interesting future research directions. In chapter 2, we have considered the simplest

system that could show fundamental features of excitation transfer in the SC-USC regime

81
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crossover, namely, a three-cavity array containing a qubit in the central site. We have

shown that, while in the SC regime excitation tunnelling has a linear behavior with

respect to the qubit-cavity strength g, in the USC a much richer scenario emerges.

In particular, complete excitation transfer is possible for any coupling strength, but

there is a critical value for which transfer is inhibited and the tunnelling time diverge.

Furthermore, a discontinuity in the tunnelling time allows us to derive an operational

definition for the SC/USC transition. A natural generalization of these results would

be to consider scattering on qubits embedded in longer arrays which, in the limit of a

large number of cavities, approximate a continuum of bosonic modes. As this Thesis is

being redacted, first steps in this direction have already been undertaken [231], using

numerical techniques based on Matrix Product States.

In chapter 3, we have introduced a circuit design where the fast modulation of elec-

trical boundary conditions generates highly entangled states of superconducting qubits,

in arrays of transmission line resonators. Our main goal was to show that the dynamical

Casimir effect (DCE) could be used as a tool for quantum information protocols, and

that its circuit implementation could lead to a generalization to the multipartite case.

Indeed, we have shown that genuinely multipartite entangled states can also be gener-

ated via fast modulation of boundary conditions. In this framework, we have shown

that a qubit interacting in the USC regime with a resonator strongly modifies the mode

structure of the latter. The resulting anharmonicity limits the system to a low-energy

subspace, where the modulation of electrical boundary conditions can be used to gener-

ate maximally entangled states of collective excitations called polaritons. The proposed

scheme leads the way to two interesting research lines. On one side, it can be used as a

building block for creating networks [62] of entangled quantum resonators [232]. On the

other, it paves the way to the use of the DCE as a tool [233] in feasible implementations.

Previously, we have discussed how entanglement between USC polaritons can be

generated in an array of superconducting resonators. However, detecting such entan-

glement could be challenging, as the lack of decoupling mechanisms makes standard

measurement techniques, like dispersive read-out, challenging in the USC regime. In

order to address this issue, in chapter 4, we have developed a method to perform spec-

troscopy, quantum state tomography and state engineering on a qubit-cavity system,

for any coupling strength and using an auxiliary qubit as a probe. The probe qubit

interacts with the cavity in the SC regime, and we assume that we can tune its en-

ergy splitting and reliably implement state preparation and projective measurements.

Such requirements are well within the reach of state-of-the-art superconducting qubit

technology. The proposed method could be used to measure the parity inversion of the

system eigenstates, a clear signature of the USC regime. More generally, it widens the
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possibilities of using the advantages of the USC regime in practical implementation of

quantum information protocols.

In chapter 5 and 6, we have proposed the implementation of the quantum Rabi and

two-photon Rabi models in trapped ions. The technique we have developed consists in

engineering the system Hamiltonian, using tunable optical drivings, in such a way that

the target model is obtained in a given interaction picture. In order to make such imple-

mentations faithful, we have shown that it is indeed possible to measure all interesting

observables as they are defined in the relevant interaction picture. The proposed method

allows to reproduced the desired models in a broad spectrum of regimes, providing in-

dividual real-time tunability of all system parameters. The interest in implementing

the QRM in trapped ions is due to the possibility of generating and measuring the

model eigenstates, in a quantum platform where state preparation and detection can be

done with outstanding precision, and independent measurements of qubit and bosonic

observables can be performed.

The two-photon Rabi model is relevant due to its rich dynamics and for novel,

counterintuitive spectral features, obtained in the USC regime. When the coupling

strength approaches a critical value, all energy levels become degenerate, and the discrete

spectrum collapses in a continuous band. The implementation of our method would allow

to experimentally observe a signature of this collapse. Furthermore, we have shown that

our scheme can be generalized to include more qubits, using a chain of trapped ions.

The resulting many-body system, dubbed two-photon Dicke, is challenging to simulate

with classical resources, due to the large Hilbert space span during the system evolution.

The two-photon Dicke presents spectral collapse as well, and we want to stress out that

a study of the phase diagram of this model is still missing. In particular, it is not known

wether this model entails a superradiant phase transition, like the standard Dicke model,

or wether the spectral collapse prevents it to happen.

Finally, in chapter 7, we have shown how the QRM could be implemented using

ultracold atoms technology. In this case, a bosonic mode is implemented in the motion

of the atomic cloud in a harmonic optical potential, while an effective two-level quantum

systems is codified in the occupation of the two bands involved in the system dynamics.

This scheme allows to implement the QRM in the DSC regime for unprecedented values

of the coupling strength. Furthermore, it provides an interesting generalization of the

QRM to a periodic phase space, which presents a pattern of collapses and revivals more

complex than the standard QRM.

To conclude, we believe that the results presented in this Thesis broaden our under-

standing of a variety of physical phenomena related to the USC regime of light-matter

interaction. Furthermore, we propose compelling methods that allow to observe those
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phenomena in atomic quantum platforms. The first experimental demonstrations of

the USC regime have been implemented only recently, and we expect that the interest

and relevance of this promising field will grow as more theoretical developments and

experimental groups in the world become involved in it. The next challenges, on the

experimental side, are to improve the characterization and control of superconducting

USC systems, and to achieve this regime in different quantum technologies. In this di-

rection, solid state devices supporting surface acoustic waves [31] represent a convincing

candidate, as the coupling of these systems with superconducting qubits can be boosted

using piezoelectric materials. On the theoretical side, fundamental issues related to the

role of the diamagnetic term [64] and to the breakdown of the Purcell effect [34] are still

open, and far from being thoroughly solved.
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Appendix A

Further details on state transfer

In chapter 2, we have studied the transfer of a single field excitation along an array of

three cavities, where the central one contains a qubit interacting in the USC regime. In

this appendix, we extend our treatment to consider state transfer for a superposition

state, section A.1, and for a coherent state, section A.2.
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Figure A.1: (a) State transfer fidelity F = Tr [ρ0ρ(t)] over time for different system

parameters. We define |φ0〉 = p |0〉+ eiθ
√

1− p2 |1〉, with p = 0.2 and θ = 0.63. In the
SC regime, that is when g = J = 0.01 (black line), the state transfer fidelity is bounded:
it cannot reach 1 as far as g 6= 0. (b) When counter-rotating terms are involved in the
dynamics (J & 0.1 and/or g & 0.1), the fidelity can be close to 1 even when J < g (red
line). Time is expressed in units of ω−1.
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A.1 Linear superposition

Here, we consider the state transfer of a Fock state linear superposition |0〉 and |1〉,
containing zero and one excitations of the cavity mode, respectively. For simplicity, we

have considered homogeneous cavity-cavity couplings, J1=J2, and resonance condition,

ωq = ω. The system is initialized in state |ψ0〉 = |φ0〉 |0〉 |0〉 |g〉, where |φ0〉 = p |0〉 +

eiθ
√

1− p2 |1〉, with p randomly chosen between 0 and 1. We define the state transfer

fidelity as F = Tr [ρ0ρ(t)], that is a measure of the overlap of the rightmost cavity state

ρ(t) with the leftmost cavity initial state ρ0 = |φ0〉 〈φ0|.

The results for different system parameters are shown in Fig. A.1. On one hand, in

Fig. A.1a we have chosen a cavity-qubit coupling in the SC regime, g/ω = 0.01, and two

values for the cavity-cavity coupling J/ω= 0.01, 0.1. Firstly, when both quantities are in

the SC regime, the cavity-qubit interaction sets an upper bound for the maximum of the

state transfer fidelity (black line). Secondly, if the cavity-cavity coupling is in the USC

regime, J/ω = 0.1, then almost complete state transfer occurs (red line). On the other

hand, in Fig. A.1b, we plot the fidelity F for a cavity-qubit coupling in the USC regime,

g/ω = 0.2, and J/ω= 0.01, 0.1 for the cavity-cavity coupling. When g is one order of

magnitude larger than J (black line), the transfer is completely inhibited. Contrariwise,

there is an enhancement in the state transfer when the cavity-cavity coupling is in the

USC regime (red line).

A.2 Coherent state
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Figure A.2: Transfer of a coherent state of amplitude α = 1 along a three-cavity
array (g = 0). (a) Average photon number for the leftmost (blue), central (green)
and rightmost (red) cavities. (b) State transfer fidelity over time. In the case of qubit
absence, the coherent state is fully transferred. Observe that the fidelity at time zero
has a finite value F ≈ 0.38, which corresponds to the overlap between the vacuum state
and the considered coherent state. Time is expressed in units of ω−1.
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Let us now focus on the transfer properties of coherent states. We numerically

simulated the system dynamics starting from the initial state |ψ0〉 = |φ0〉 |0〉 |0〉 |g〉,
where |φ0〉 = |α〉 is a coherent state of amplitude |α|. For the sake of clarity, we first

show how a coherent state would transfer along a three-cavity arrays in absence of the

qubit interaction. This corresponds to setting g = 0 in our model. Such dynamics is

shown in Fig. A.2 for a coherent state with α = 1. In Fig.A.2a, we show the average

photon number for the three cavities, while Fig. A.2b contains the state transfer fidelity.

These figures show that the coherent state crosses the central cavity and it is recomposed

in the rightmost one. The fast-oscillating behavior of the fidelity is due to relative

phase rotation of different coherent state components. We observe also that the fidelity

oscillates around a value slightly smaller than F = 0.4 due to the finite overlap between

the coherent state |α〉 and the vacuum state |0〉.
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FIG. 6. (Color online) (a) State transfer fidelity F = Tr [r0r(t)]
over time for different system parameters. We define |f0i = p |0i+
eiq
p

1� p2 |1i, with p = 0.2 and q = 0.63. In the SC regime, that is
when g = J = 0.01 (black line), the state transfer fidelity is bounded:
it cannot reach 1 as far as g 6= 0. (b) When counter-rotating terms are
involved in the dynamics (J & 0.1 and/or g & 0.1), the fidelity can be
close to 1 even when J < g (red line). Time is expressed in units of
w�1.

g/w = 0.2, and J/w = 0.01,0.1 for the cavity-cavity coupling.
When g is one order of magnitude larger than J (black line),
the transfer is completely inhibited. Contrariwise, there is an
enhancement in the state transfer when the cavity-cavity cou-
pling is in the USC regime (red line).

State transfer: coherent state

In this section, we report the transfer properties of co-
herent states. We numerically simulated the system dynam-
ics starting from the initial state |y0i = |f0i |0i |0i |gi, where
|f0i = |ai is a coherent state of amplitude |a|. For the sake
of clarity, we first show how a coherent state would transfer
along a three-cavity arrays in absence of the qubit interaction.
This corresponds to setting g = 0 in our model. Such dynam-
ics is shown in Fig. 7 for a coherent state with a = 1. In
Fig.7a, we show the average photon number for the three cav-
ities, while Fig. 7b contains the state transfer fidelity. These
figures show that the coherent state crosses the central cavity
and it is recomposed in the rightmost one. The fast-oscillating
behavior of the fidelity is due to relative phase rotation of dif-
ferent coherent state components. We observe also that the
fidelity oscillates around a value slightly smaller than F = 0.4
due to the finite overlap between the coherent state |ai and
the vacuum state |0i.

Let us now consider our full model, composed of three cav-
ities and a qubit interacting with the central one. The trans-

fer of coherent states follows the same general rules reported
for the case of the linear superposition state, even if the time-
dependent fidelity has a fast-oscillating behavior. In the SC
regime, the cavity-qubit interaction limits the maximum value
that the fidelity can reach. Figure 8a shows the time evolu-
tion of the state transfer fidelity in the case in which J = 0.01
and g = 0.01, where complete transfer is not allowed. In con-
trast, in the USC regime, high values of the fidelity can be
reached also when g is larger than J. Figure 8b shows the co-
herent state transfer dynamics, for a case in which both the
cavity-cavity and the cavity-qubit interactions are in the USC
regime. The plot shows the fidelity F over evolution time for
a coherent state of amplitude |a| = 1. In this case, the fidelity
can reach F = 0.9, also if g = 2J.

The cases considered in this Appendix (linear superposi-
tions and coherent states) display the main features of the state
transfer when considering the physics beyond the RWA.
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FIG. 7. (Color online) Transfer of a coherent state of amplitude a = 1
along a three-cavity array (g = 0). (a) Average photon number for the
leftmost (blue), central (green) and rightmost (red) cavities. (b) State
transfer fidelity over time. In the case of qubit absence, the coherent
state is fully transferred. Observe that the fidelity at time zero has a
finite value F ⇡ 0.38, which corresponds to the overlap between the
vacuum state and the considered coherent state. Time is expressed in
units of w�1.
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FIG. 8. (Color online) (a) State transfer fidelity over evolution time
(in units of w), for a coherent state of amplitude a = 1. The system
parameters are given by g = 0.02 and J = 0.01 (SC regime). (b) State
transfer fidelity over evolution time, for a coherent state of amplitude
a = 1. The system parameters are given by g = 0.2 and J = 0.1
(USC regime). The maximum value that the fidelity can reach is not
directly bounded by the cavity-qubit interaction.

[1] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,
Atom-Photon Interactions: Basic Processes and Applications

(WILEY-VCH Verlag GmbH & Co. KGaA, Weinbeim, 2004).

Figure A.3: (a) State transfer fidelity over evolution time (in units of ω−1), for a
coherent state of amplitude α = 1. The system parameters are given by g = 0.02 and
J = 0.01 (SC regime). (b) State transfer fidelity over evolution time, for a coherent
state of amplitude α = 1. The system parameters are given by g = 0.2 and J = 0.1
(USC regime). The maximum value that the fidelity can reach is not directly bounded
by the cavity-qubit interaction.

Consider now our full model, composed of three cavities and a qubit interacting with

the central one. The transfer of coherent states follows the same general rules reported

for the case of the linear superposition state, even if the time-dependent fidelity has

a fast-oscillating behavior. In the SC regime, the cavity-qubit interaction limits the

maximum value that the fidelity can reach. Figure A.3a shows the time evolution of

the state transfer fidelity in the case in which J = 0.01 and g = 0.01, where complete

transfer is not allowed. In contrast, in the USC regime, high values of the fidelity can

be reached also when g is larger than J . Figure A.3b shows the coherent state transfer

dynamics, for a case in which both the cavity-cavity and the cavity-qubit interactions

are in the USC regime. The plot shows the fidelity F over evolution time for a coherent

state of amplitude |α| = 1. In this case, the fidelity can reach F = 0.9, also if g = 2J .
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The cases considered in this Appendix, linear superpositions and coherent states,

display the main features of state transfer when considering the physics beyond RWA.



Appendix B

Quantization of the circuit

Hamiltonian

In this appendix, we detail the derivation of the quantum model of the circuit design

presented in Chapter 3, and we briefly discuss possible future development of our work.

In section B.1, we derive the full quantum Hamiltonian that describes the bipartite

configuration. In section B.2, we show how to extend the model to the multipartite

case.

B.1 Quantum model

In this section, we derive the quantum model of the circuit design proposed in Fig. 3.2,

Chapter 3. We restrict to consider the bare resonators, an effective interaction with

resonant qubits can be added at the end of the derivation. Let us consider a circuit

composed of two transmission line resonators (TLS), connected to the ground through

the same superconducting quantum interference device (SQUID), as shown in figure B.1.

A SQUID is a superconducting loop interrupted by two Josephson junctions (JJ). Here

we take the two JJs that constitute the SQUID to be identical: under this assumption,

the SQUID effectively behaves as a single JJ [234], namely, as a non-linear tunable

inductance shunted by a small capacitance. We also assume that the JJs are such that

their Josephson energy is much bigger than their charge energy EJ � EC . In order to

write the system classical Lagrangian, we will use a discrete description of the TLSs:

each resonator will be represented by an infinite series of LC oscillators of infinitesimal

91
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Figure B.1: Sketch of the system. Two transmission line resonators are connected
to the same edge of a grounded SQUID. The SQUID low impedance imposes a voltage
node at x = 0. Each resonator is coupled with an external line (not considered here)
needed for reading the cavity.

length ∆x. The system Lagrangian can be then written as

L =
1

2

∑

i

{
∆xC l0

(
ψ̇li

)2
+

1

∆xLl0

(
ψli+1 − ψli

)2
}

(B.1)

+
1

2

∑

i

{
∆xCr0

(
ψ̇ri

)2
+

1

∆xLr0

(
ψri+1 − ψri

)2
}

(B.2)

+
1

2
CJ

(
ψ̇J

)2
− EJ (φext)

2ϕ2
0

ψ2
J . (B.3)

We defined the magnetic flux ψ
l/r
i in the i-th inductor of the left/right resonator as the

time integral of the instantaneous voltage vi across the element: ψ
l/r
i (t) =

t∫
0

vi(τ)dτ . The

capacitance and inductance per unit of length are denoted by C
l/r
0 and L

l/r
0 , respectively.

Variables and constants with the subscript J refer to the SQUID; notice that CJ and LJ

represent the total capacitance and inductance of the SQUID, which will be described

by means of a lumped-element model also in the continuum limit (∆x→ 0). We defined

the reduced magnetic flux as ϕ0 = φ0/2π, where φ0 is the magnetic flux quantum.

The inductance of the SQUID depends on the external flux φext threading the device:

LJ =
ϕ2
0

EJ (φext)
, where EJ(φext) = 2EJ

∣∣∣cos
(
φext
2ϕ0

)∣∣∣. The Josephson energy EJ and the

critical current Ic are directly related EJ = Icϕ0.

B.1.1 Spatial modes

In the bulk of each resonator the equation of motion is given by (for the sake of simplicity

we omit the superscript l/r)

C0ψ̈i(t) =
1

∆x

{
ψi+1(t)− ψi(t)

∆xL0
− ψi(t)− ψi−1(t)

∆xL0

}
(B.4)

which, in the continuum limit ∆x→ 0, reduces to
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ψ̈(x, t) = v
∂2

∂x2
ψ(x, t)

∣∣∣∣
x=0

where v =
1√
C0L0

. (B.5)

The differential equation (B.5) can be solved using the usual variable separation ansatz

ψ(x, t) = f(x)φ(t), with f(x) = α cos (kx) + β sin (kx), φ(t) = ae−iωt + beiωt, and

ω = k/
√
L0C0. The electrical boundary conditions at the far left and far right extrem-

ities are established by the capacitances Cf , which mediate the coupling with external

transmission lines. This capacitive coupling can be made very small and its contribution

to the resonator modes is negligible. Following a standard procedure, we will use open

boundary conditions in order to evaluate the resonator modes, the interaction with the

environment can be then described by means of a small effective coupling.

∂ψl(x)

∂x

∣∣∣∣
x=−d

= 0 and
∂ψr(x)

∂x

∣∣∣∣
x=d

= 0. (B.6)

The equation of motion for the dynamical variable ψJ corresponds to the Kirchhoff law

of current conservation at the central node (x = 0)

CJ ψ̈
2(0, t) +

EJ (φext)

ϕ2
0

ψ(0, t) =
1

Ll0

∂ψl(x)

∂x

∣∣∣∣
x=o

+
1

Lr0

∂ψr(x)

∂x

∣∣∣∣
x=0

. (B.7)

Now, given that the resonator inductances are much bigger than the SQUID inductance

LJ = ϕ2
0/EJ (φext), the terms on the right side of equation (B.7) are very small com-

pared to the inductive contribution of the SQUID. This mathematical statement has

the following physical interpretation: the SQUID is a low-impedance element, therefore

most of the current coming either from the left or from the right will flow through the

SQUID directly to the ground, without crossing the other resonator. In other words,

the presence of one resonator does not perceptibly modify the mode structure of the

other one, although a small inductive coupling between them can be introduced from

equation (B.7). This allows us to define separated modes for the two resonators, which

are constrained to satisfy the boundary condition

(k d) tan (k d) =
CJ
C

(k d)2 − L

LJ
. (B.8)

This equation holds for both resonators, we omitted the superscripts l/r and we defined

the total capacitance C = C0 d and total inductance L = L0 d. Notice that modifying

the external flux φext results in a variation of the SQUID effective inductance LJ , and so

in a modification of the boundary condition (B.8). Finally, the resonator frequencies can

be found solving the differential equations (B.5), being the boundary conditions given

by (B.6) and by the solution [156] of the transcendental equation (B.8).

For didactical purpose, we observe that a good approximation to the resonator
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modes can be found assuming that at x = 0 there is a voltage node, namely ψ(0, t) = 0.

Under this assumption, the system is composed of two independent λ/4 resonators

f(x) =
√

2
∑

n

sin (kn x) where kn =
π

d

(
1

2
+ n

)
. (B.9)

B.1.2 Hamiltonian

Now, we write the system Lagrangian exploiting the stationary spatial solutions found in

section B.1.1. Integrating equations (B.1) and (B.2) over the spatial degree of freedom,

in the continuum limit, we obtain the Lagrangian of the free resonators

L0 =
∑

ν=l,r

∑

n

{
Cν

2

[
φ̇νn(t)

]2
− 1

Lν
[φνn(t)]2

}
, (B.10)

where the index ν identifies resonator, while n runs over the spatial eigenmodes (and

so, over the frequencies). We are interested in the dynamics of two level quantum

systems that are embedded in the resonators. These qubits effectively interact only

with one mode of each cavity, hence, hereafter we will restrict to consider one mode

per resonator. This treatment is valid under the condition that the oscillation of the

boundary conditions do not make resonant interaction terms between the relevant mode

and the other ones.

The effective interaction between the modes φl and φr can be found isolating the

variable φ(0, t) in equation (B.7) and replacing it in the SQUID contribution to the

system Lagrangian (equation (B.3))

Lint = − ϕ2
0

EJ (φext)

{
1

Ll0
klφl(t) +

1

Lr0
krφr(t)

}2

. (B.11)

Now we assume that the prefactor of the previous equation is oscillating with a frequency

such that only the cross-interaction term will be relevant in the Hamiltonian dynamics.

This regime is accessible when the resonators are off resonance and the difference between

their frequencies is much bigger than the coupling strength. We will show that the

considered regime of parameters allows such approximation. Defining the conjugate

momentum ql/r = ∂Ltot/∂φ̇l/r, we find the system Hamiltonian

H =
∑

ν=l,r

{
1

2Cν
q2
ν(t) +

ω2
νCν
2

φ2
ν(t)

}
− 2ϕ2

0

EJ (φext)

ωlωr
ZlZr

φlφr, (B.12)
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where we defined the impedance as Zν =
√
Lν/Cν . Now, we perform the usual quanti-

zation process and define ladder operators

[φν , qν ] = i~ , φν =

√
~

2ωνCν

(
a†ν + aν

)
, qν = i

√
~Cνων

2

(
a†ν − aν

)
.

(B.13)

Finally, we can write the system quantum Hamiltonian as

H/~ = ωla
†
l al + ωra

†
rar −

ϕ2
0

EJ (φext)

√
ωlωr
ClCr

1

ZlZr

(
a†l + al

)(
a†r + ar

)
. (B.14)

B.1.3 Two-mode squeezing

Observe that, as stated in Chapter 3, when the driving frequency is comparable to

the SQUID plasma frequency, the device can not be considered as a passive element

and a more complex behaviour emerges. The SQUID plasma frequency is defined as

ωp2 =
√

1/CJLJ , so ωp becomes smaller as the external flux get closer to φext/2ϕ0 =

π/2. To overcome this problem, we consider an external flux which is oscillating with

small variation ∆ around a fixed offset φ̄. In this way, with the physical parameters

we considered, the SQUID plasma frequency is much bigger than ωd for every value

of φext(t) during the time evolution. Such condition allows us to expand the coupling

parameter in the interaction term of equation (B.14)

φext

2ϕ0
= φ̄+ ∆ cos (ωdt) =⇒ 1

EJ (φext)
≈ 1

cos φ̄
+

sin φ̄

cos2 φ̄
∆ cos (ωdt). (B.15)

Hence, the interaction term of the system Hamiltonian can be written, in the Schrödinger

picture, as the sum of a constant and a time-dependent term

H/~ = ωla
†
l al + ωra

†
rar + η

(
a†l + al

)(
a†r + ar

)
+ α0

(
eiωdt + e−iωdt

) (
a†l + al

)(
a†r + ar

)
,(B.16)

with

η =
ϕ2

0

2EJ cos φ̄

√
ωlωr
ClCr

1

ZlZr
and α0 =

ϕ2
0

4EJ

sin φ̄

cos2 φ̄

√
ωlωr
ClCr

1

ZlZr
∆. (B.17)

When the detuning between the resonators is large compared to the coupling parameters

η, α0 � |ωl − ωr|, we can perform the rotating wave approximation and neglect all terms

that are fast-oscillating in the interaction picture. If we choose the external driving to

match the sum of the resonators frequencies ωd = ωl + ωr, the interaction Hamiltonian

will reduce to a two-mode squeezing term

H/~ = ωla
†
l al + ωra

†
rar + α0

(
e−iωdta†l a

†
r + eiωdtalar

)
. (B.18)
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B.2 Multipartite case

Consider a circuit scheme such that n resonators are connected to the ground through

the same SQUID, as shown in figure 3.4a for n = 4. Equation (B.5) still holds in the

bulk of each resonator, and the boundary conditions (B.6) are still valid. On the other

hand, the Kirchhoff’s law of current conservation (B.7) must be extended to include the

contribution of every branch of the circuit

CJ ψ̈
2(0, t) +

EJ (φext)

ϕ2
0

ψ(0, t) =
∑

ν

1

Lν0

∂ψν(x)

∂x

∣∣∣∣
x=o

. (B.19)

As far as the resonator inductances are much larger than the SQUID inductance, we

can still treat the system as composed of independent resonators, interacting through a

small current-current coupling. In this case, resonator spatial eigenmodes can be found

following the same procedure we used in the bipartite case. Neglecting a small capacitive

contribution, the term in the Lagrangian which describes the current-current coupling

can be written as

Lint = − ϕ2
0

EJ (φext)

{∑

ν

1

Lν0
kνφl(t)

}2

. (B.20)

In a quantum description of such system, these interactions result in single-mode drivings

and two-mode interactions between the field quadratures

HI =
∑

ν

αν(t)
(
a†ν + aν

)2
+
∑

ν,µ

βνµ(t)
(
a†ν + aν

)(
a†µ + aµ

)
, (B.21)

where the parameters αν(t) and βνµ(t) depend on the external flux φext(t) threading

the SQUID, and they are all small compared to the resonator characteristic frequencies.

The time-dependence of φext(t) establishes which terms of equation (B.21) will have a

non-negligible contribution to the system dynamics. When the external flux is given by

the sum of signals oscillating at different frequencies, with small variations ∆i, around

a constant off-set φ̄

φext

2ϕ0
= φ̄+ ∆1 cos (ωD1t) + ∆2 cos (ωD2t) + . . . , (B.22)

with ∆i � φ̄, we can generalize the method used in equation (B.22)

1

EJ (φext)
≈ 1

cos φ̄
+

sin φ̄

cos2 φ̄
∆1 cos (ωD1t) +

sin φ̄

cos2 φ̄
∆2 cos (ωD2t) + . . . (B.23)

Hence, controlling the external flux allows to turn on and off single- and two-mode

squeezing terms, as well as linear couplings between the resonators.



Appendix C

Further details on state

engineering

In this appendix, we gather further details on the protocol introduced in Chapter 4. In

Section C.1, we show how the creation and annihilation operators act on Rabi model

eigenstates. In Section C.2, we provide a detailed derivation of the effective Hamiltonian

used to modelize state transfer. In Section C.3, we estimate the time needed to perform

a full tomography with the present protocol, in a realistic implementation. Finally,

in Section C.4, we show how parity-forbidden transition can be implemented with a

two-step process.

C.1 Some properties of the Quantum Rabi model

We will not provide here a detailed description of the properties of the quantum Rabi

model (QRM) eigenstates (instead we refer to [19]). The main feature we will focus on

is the parity conservation of the QRM Hamiltonian. Let us define the parity operator

Π = −σzeiπa†a, which corresponds to the parity of the number of excitations in the

composite system. Once the parity operator is defined, it is straightforward to show

that it commutes with the QRM Hamiltonian. This ensures that any eigenstate of the

quantum Rabi model is also an eigenstate of the parity operator.

Let us now consider the action of the creation operator on an arbitrary eigenstate

|ψn〉. From its very definition, the creation operator creates one excitation inside the

cavity, thus bringing |ψn〉 to a vector of opposite parity. In other words, a† |ψn〉 belongs

to a subspace orthogonal to the one in which lies |ψn〉. Eventually we have shown the

97
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Figure C.1: Absolute values of the elements of the transition matrix kij = 〈ψi| a |ψj〉.
The left box corresponds to the strong coupling regime (g/ωr = 0.03), while the right
box corresponds to the USC regime (g/ωr = 0.6), i.e. the quantum Rabi model. The
diagonal term vanish, as shown in Section C.1. Notice that, in the SC regime, where
the Jaynes-Cummings model applies, the coefficients kij vanish for ωi > ωj .

following relation:

〈ψj | a† |ψn〉 = 0 (C.1)

for any j such that the parity of |ψj〉 is the same as |ψn〉, as shown in Fig.C.1. This

demonstration naturally extends to the annihilation operator a. As a corollary, we have:

〈ψn| a(†) |ψn〉 = 0 (C.2)

We show in chapter 4 text that apart from avoided crossings, the full model eigen-

states are in product states made of eigenstates of the QRM and the ancilla being in the

ground or excited state. Eq. (C.2) proves that the only contribution from the ancilla to

the eigenenergies comes from the free Hamiltonian (ωa/2)σaz . This explains the behav-

ior of the eigenenergies as a function of ωa: fully degenerate at ωa = 0, then increasing

linearly.

C.2 Derivation of the effective interaction Hamiltonian

We consider the system as being composed of the the QRM interacting via the resonator

field with the ancillary qubit. This means the total Hamiltonian reads:

H =
∑

n

ωn |ψn〉 〈ψn|+
ωa
2
σaz +HI

HI = gaσ
a
x(a+ a†) (C.3)
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where we denoted with |ψn〉 the eigenstates, of increasing energy ωn, of the QRM. Using

the completeness relation I =
∑

n |ψn〉 〈ψn|, the interaction Hamiltonian becomes:

HI = gaσ
a
x

∑

i,j

kij |ψi〉 〈ψj |+ k∗ji |ψi〉 〈ψj | (C.4)

where kij = 〈ψi| a |ψj〉. In the previous Section we recalled that for any i we have

〈ψi| a+ a† |ψi〉 = 0. Thus we can order the double sum in equation Eq. (C.4) to get:

HI = gaσ
a
x

∑

i>j

(kij + k∗ji) |ψi〉 〈ψj |+ (kji + k∗ij) |ψj〉 〈ψi| (C.5)

Since the |ψn〉’s are labeled in increasing energy, we can interpret the two operators in

the sum the following way: one raising the energy of the polariton, |ψi〉 〈ψj |, the other

one lowering the energy |ψj〉 〈ψi|. Now we will assume that the spectrum of the QRM

is non-linear enough so that we are able to isolate one particular transition frequency

ωij = ωi−ωj > 0. This anharmonic assumption is valid in the regime of g/ωr . 2, which

is the one we consider here. Thus we can perform a new Rotating Wave Approximation

(RWA) when bringing the frequency of the ancilla close to resonance with ωij . More

precisely, we move HI to the interaction picture:

H̃I(t) = ga(σ
a
+e

iωat + σa−e
−iωat)((kij + k∗ji) |ψi〉 〈ψj | eiωijt + (kji + k∗ij) |ψj〉 〈ψi| e−iωijt)

(C.6)

In this expression we identify two oscillating frequencies: ωa + ωij and ωa − ωij ≡ δ. In

this context we will perform the standard RWA, neglecting the quickly oscillating terms.

The interaction picture Hamiltonian reads:

H̃I(t) = ga((kij + k∗ji)σ
a
− |ψi〉 〈ψj | e−iδt + (kji + k∗ij)σ

a
+ |ψj〉 〈ψi| eiδt) (C.7)

thus yielding a Jaynes-Cummings-like interaction Hamiltonian.

C.3 Estimation of the time required to perform the spec-

troscopy protocol

Our protocol allows for analyzing the spectrum of the polariton, based on measurements

performed on the ancillary qubit. This means the relevant parameters for this proto-

col are well-known and the manipulations are now standard [174]. In this Section we

will provide a rough estimation of the time required to detect the peaks in Fig. 4.4 of

chapter 4.
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The right order of magnitude for the experimental ω2 spacing is given by the full

width at half maximum (FWHM) of those peaks. In our case, the FWHM is of the order

of 0.1ωr. Besides, we span with ωr an interval of approximate length 2ωr. Considering 5

points per peak, we obtain an upper bound on the number of points we want to measure

of 100. This value could be further reduced performing a more clever analysis of the

spectrum.

Every point actually corresponds to computing the visibility of Rabi oscillations at a

given ancilla frequency. This can be done by measuring the ancilla until half a period, in

other words by monitoring the ancilla for a time Thalf ≈ 50/ωr (see Fig. 4c in chapter 4).

This monitoring requires to measure σaz roughly 50 times, every measurement being of

a duration at most Thalf . For a standard cavity in circuit QED, we have ωr ≈ 2π × 5

GHz, which gives approximately 100 ns to recover the visibility at a given frequency ω2.

Going from one point to another means tuning the ancillary qubit frequency. This

can be done in a few nanoseconds [174], hence it is negligible compared to the com-

putation of a single point. In the end, summing 100 ns for 100 values of ω2, the whole

spectroscopy duration is of the order of 10 microseconds.

C.4 Multi-step process for state engineering and tomog-

raphy

In Chapter 4, we show how selective state-transfer processes allow to prepare and ma-

nipulate the USC system in a given state, and to perform quantum state tomography.

In the theoretical framework that we introduced, selective state transfer which involves

USC system states of different parity are straightforward, as the ancilla spin-flip grants

parity conservation. The goal of this Section is to show how one may address transitions

that should be forbidden because of parity conservation, by means of a feasible two-step

protocol. Let |ψa〉 and |ψb〉 two eigenstates of the QRM of same parity. We want to

distinguish the pure states made of an arbitrary superposition of |ψa〉 and |ψb〉 from the

statistical mixture with same weights. To this end, we will make use of an auxiliary

eigenstate of the QRM with opposite parity |φ〉. In the following we will consider two

different cases: first when the energy of |φ〉 lies in between the energies of |ψa〉 and |ψb〉,
then when it does not.
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C.4.1 Forbidden transition with an auxiliary one in between

We suppose here the following ordering of the Rabi eigenstates energies. Namely:

E|ψa〉 < E|φ〉 < E|ψb〉. We will consider that only those three levels are populated,

assuming that we are able to initialize the ancilla in the |+〉 ≡ (|e〉+ |g〉)/
√

2 state. The

initial state reads:

|φi〉 = (α |ψa〉+ β |ψb〉+ γ |φ〉) |+〉 (C.8)

First we perform half a Rabi oscillation between |ψa〉 and |φ〉. This transforms the global

state as follows:

|φ1〉 = α
|ψa〉 |g〉+ |φ〉 |g〉√

2
+ β |ψb〉 |+〉+ γ

|ψa〉 |e〉+ |φ〉 |e〉√
2

(C.9)

Then we repeat the protocol for the transition between |φ〉 and |ψb〉. Thus we have:

|φ2〉 = α
|ψa〉 |g〉+ |φ〉 |g〉√

2
+ β
|φ〉 |e〉+ |ψb〉 |e〉√

2
+ γ
|ψa〉 |e〉+ |ψb〉 |g〉√

2
(C.10)

which we can write in a more convenient way:

|φ2〉 =
1√
2

(|φa〉 |g〉+ |φb〉 |e〉) (C.11)

where |φa〉 and |φb〉 are two non-orthogonal states. Eventually, the reduced density

matrix of the ancillary qubit reads:

ρa =

(
|α|2 + 1

2 |γ|2 1
2(αβ∗ + αγ∗ + γβ∗)

1
2(α∗β + α∗γ + γ∗β) |β|2 + 1

2 |γ|2

)
(C.12)

Finally, assuming that we can infer the coherences between |ψa〉 and |φ〉 and between

|ψb〉 and |φ〉 separately, this protocol allows for measuring the coherence terms relative

to a forbidden transition – which correspond to the product αβ∗.

C.4.2 Forbidden transition between two consecutive eigenstates

In the case where the forbidden transition involves two consecutive eigenstates the result

is a bit different. The energies correspond to E|ψa〉 < E|ψb〉 < E|φ〉. The initial state is

again

|φi〉 = (α |ψa〉+ β |ψb〉+ γ |φ〉) |+〉 (C.13)

The first excitation transfer, associated with the transition between |ψa〉 and |φ〉 yields:

|ϕ1〉 = α
|ψa〉 |g〉+ |φ〉 |g〉√

2
+ β |ψb〉 |+〉+ γ

|ψa〉 |e〉+ |φ〉 |e〉√
2

(C.14)
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Then when it comes to the transition between |ψb〉 and |φ〉 the global state becomes:

|ϕ2〉 = α
|ψa〉 |g〉+ |ψb〉 |e〉√

2
+ β
|φ〉 |e〉+ |ψb〉 |e〉√

2
+ γ
|ψa〉 |e〉+ |φ〉 |e〉√

2
(C.15)

which we can once again write, defining two non-orthogonal states |ϕa〉 and |ϕa〉 different

than before:

|ϕ2〉 =
1√
2

(|ϕa〉 |g〉+ |ϕb〉 |e〉) (C.16)

and for the reduced density matrix of the ancilla:

ρa =

(
|β|2 + 1

2 |α|2 1
2(αγ∗ + βα∗ + βγ∗)

1
2(α∗γ + β∗α+ β∗γ) |γ|2 + 1

2 |α|2

)
(C.17)

Once again, one may access the coherence terms relative to the forbidden transition.



Appendix D

Two-photon Rabi: mathematical

properties and parity

measurement

D.1 Properties of the wavefunctions below and above the

collapse point

The presence of the collapse point at g = ω/2 can be inferred rigorously by studying

the asymptotic behavior of the formal solutions to the time-independent Schrödinger

equation Hψ = Eψ. We consider now the simplest case N = 1. Using the representation

of the model in the Bargmann space B of analytic functions [235], the Schrödinger

equation for ψ(z) in the invariant subspace with parity eigenvalue Π = +1 reads

gψ′′(z) + ωzψ′(z) + gz2ψ(z) +
ωq
2
ψ(iz) = Eψ(z), (D.1)

where the prime denotes differentiation with respect to the complex variable z. This

nonlocal linear differential equation of the second order, connecting the values of ψ at

the points z and iz, may be transformed to a local equation of the fourth order,

ψ(4)(z)+[(2−ω̄2)z2+2ω̄]ψ′′(z)+[4+2ω̄Ē−ω̄2]zψ′(z)+[z4−2ω̄z2+2−Ē2+∆2]ψ(z) = 0,

(D.2)

where we have used the abbreviations ω̄ = ω/g, ∆ = ωq/(2g), Ē = E/g. Equation

(D.2) has no singular points in the complex plane except at z =∞, where it exhibits an

unramified irregular singular point of s-rank three [236]. That means that the so-called
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normal solutions have the asymptotic expansion

ψ(z) = e
γ
2
z2+αzzρ(c0 + c1z

−1 + c2z
−2 + . . .) for z →∞. (D.3)

Functions of this type are only normalizable (and belong therefore to B) if the complex

parameter γ, a characteristic exponent of the second kind, satisfies |γ| < 1. In our case,

the possible γ’s are the solutions of the biquadratic equation

x4 + x2(2− ω̄2) + 1 = 0. (D.4)

It follows

γ1,2 =
ω̄

2
±
√
ω̄2

4
− 1, γ3,4 = − ω̄

2
±
√
ω̄2

4
− 1. (D.5)

For ω̄/2 > 1, all solutions are real. Whereas |γ1| = |γ4| > 1, we have |γ2| = |γ3| < 1.

In this case, there exist normalizable solutions if γ2 or γ3 appears in Eq. (D.3). The

condition for absence of the other characteristic exponents γ1,4 in the formal solution

of Eq. (D.2) is the spectral condition determining the parameter E in the eigenvalue

problem Hψ = Eψ. It follows that for g < ω/2, a discrete series of normalizable

solutions to Eq. (D.1) may be found and the spectrum is therefore a pure point.

On the other hand, for ω̄/2 < 1, all γj are located on the unit circle with γ1 =

γ∗2 , γ3 = γ∗4 . Because, then, no normalizable solutions of Eq. (D.2) exist, the spectrum

of the (probably self-adjoint) operator H must be continuous for g > ω/2, i.e. above

the collapse point. The exponents γ1 and γ2 (γ3 and γ4) join at 1 (-1) for g = ω/2.

The exponent γ = 1 belongs to the Bargmann representation of plane waves. Indeed,

the plane wave states φq(x) = (2π)−1/2 exp(iqx) in the rigged extension of L2(R) [237],

satisfying the othogonality relation 〈φq|φq′〉 = δ(q−q′), are mapped by the isomorphism

I between L2(R) and B onto the functions

I[φq](z) = π−1/4e−
1
2
q2+ 1

2
z2+i

√
2qz, (D.6)

they correspond therefore to γ = 1. It is yet unknown whether at the collapse point

g = ω/2, the generalized eigenfunctions of H have plane wave characteristics for ωq 6= 0

or which properties of these functions appear above this point, where the spectrum is

unbounded from below.

D.2 Measurement of the parity operator

The parity operator, defined as Π = (−1)N
⊗N

n=1 σ
n
z exp{iπ2n}, with n = a†a, is a non-

Hermitian operator that can be explicitly written as the sum of its real and imaginary
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parts,

Π = (−1)N
N⊗

n=1

σnz cos(
π

2
a†a) + i(−1)N

N⊗

n=1

σnz sin(
π

2
a†a). (D.7)

For simplicity, we will focus on the N = 1 case, but the procedure is straightforwardly

extendible to any N . We will show how to measure the expectation value of operators

of the form

exp{±in σi φ}σj , (D.8)

where σi,j are a pair of anti-commuting Pauli matrices, {σi, σj} = 0, and φ is a continuous

real parameter. One can then reconstruct the real and imaginary parts of the parity

operator, as a composition of observables in Eq. (D.8) for different signs and values of

i, j,

<(Π) = −1

2
{exp(inσx

π

2
)σz + exp(−inσx

π

2
)σz} (D.9)

=(Π) =
1

2
{exp(inσx

π

2
)σy − exp(−inσx

π

2
)σy}. (D.10)

The strategy to retrieve the expectation value of observables in Eq. (D.8) will be

based on the following property of anti-commuting matrices A and B: eABe−A =

e2AB = Be−2A. Based on this, the expectation value of the observables in Eq. (D.8)

can be mapped onto the expectation value of σj when the system has previously evolved

under Hamiltonian H = ±nσi for a time t = φ/2,

〈ψ| exp{±in σi φ}σj |ψ〉 = 〈ψ(t = φ/2)|σj |ψ(t = φ/2)〉, (D.11)

where |ψ(t)〉 = e−inσit|ψ〉. The expectation value of any Pauli matrix is accesible in

trapped-ion setups, σz by fluorescence techniques and σx,y by simple rotations. The

point then is how to generate the dynamics of Hamiltonian H = ±nσi. For that, we

propose to implement a highly detuned simultaneous red and blue sideband interaction,

H =
Ω0η

2
(a+ a†)σ+eiδteiϕ + H.c., (D.12)

where ϕ is the phase of the laser with respect to the dipole moment of the ion. This

Hamiltonian can be effectively approximated to the second-order Hamiltonian,

Heff =
1

δ

(Ω0η

2

)2
(2n+ 1)σze

iϕ, (D.13)

when δ � ηΩ0/2. The laser phase will allow us to select the sign of the Hamiltonian.

Of course, one would need to be careful and maintain δ in a regime where δ � ν, ν

being the trapping frequency, to guarantee that higher-order resonances are not excited.

Finally, in order to get rid of the undesired extra term σz in Hamiltonian Eq. (D.13),
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one needs to implement one more evolution under the Hamiltonian H = −(1/2)Ω0ησz.

This evolution can be generated by means of a highly detuned carrier transition. So far,

we have given a protocol to generate the Hamiltonian H = ±nσz. In order to generate

Hamiltonians H = ±nσy, one would need to modify the evolution with two local qubit

rotations,

ei±nσyt = eiσxπ/4e±inσzte−iσxπ/4. (D.14)

Similarly, for Hamiltonian H = ±nσx one would need to perform rotations around σy.
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