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Biofisica (CSIC-UPV/EHU) and Departamento de Bioquı́mica, Universidad del Pais Vasco, Bilbao, Spain, 3 Institute of Microbiology, University Hospital Center and University

of Lausanne, Lausanne, Switzerland, 4 Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany, 5 Universitat de Vic–Universitat
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Abstract: Dendritic cells (DCs) are essential in order to
combat invading viruses and trigger antiviral responses.
Paradoxically, in the case of HIV-1, DCs might contribute
to viral pathogenesis through trans-infection, a mecha-
nism that promotes viral capture and transmission to
target cells, especially after DC maturation. In this review,
we highlight recent evidence identifying sialyllactose-
containing gangliosides in the viral membrane and the
cellular lectin Siglec-1 as critical determinants for HIV-1
capture and storage by mature DCs and for DC-mediated
trans-infection of T cells. In contrast, DC-SIGN, long
considered to be the main receptor for DC capture of
HIV-1, plays a minor role in mature DC-mediated HIV-1
capture and trans-infection.

Introduction

Dendritic cells (DCs) are derived from bone marrow precursors

and have a major role in antigen presentation and induction of

host immune responses. DCs express a plethora of pathogen

recognition receptors, such as toll-like receptors, scavenger

receptors, and lectin receptors, which recognize evolutionarily

conserved pathogen-associated molecular patterns and contribute

to antimicrobial defense. Upon infection, pathogen sensing by

immature DCs (iDCs) in mucosal tissues elicits the secretion of

cytokines and chemokines. This early innate response creates an

inflammatory microenvironment that prompts DC maturation

and migration to secondary lymphoid tissues. Concurrently, co-

stimulatory molecules are expressed on the cell membrane,

preparing DCs for competent T cell priming. In the T cell areas

of the lymph node, fully mature DCs (mDCs) present pathogen-

derived antigens to T lymphocytes. By these means, DCs

coordinate innate and adaptive immune responses against

invading pathogens and thus have a critical role in limiting viral

infections [1–3]. In the course of the HIV-1 infection, however,

the contribution of DCs to the antiviral state could be confounded

by their ability to facilitate HIV-1 transmission to bystander CD4+

T cells and promote viral spread.

Since DCs express the HIV receptor CD4 and viral coreceptors

on their surface [4,5], they are expected to be infected by HIV-1.

In cell culture, however, the percentage of HIV-1-infected DCs is

always much lower than for activated CD4+ T cells [6–9] or

macrophages. Moreover, large amounts of HIV-1 are required to

successfully infect DCs. DC maturation further limits infection:

mDCs are 10-fold to 100-fold less susceptible to HIV-1 than iDCs

[6,10,11]. Thus, although the most important DC subsets are

susceptible to HIV-1 infection [12–15], this seems to be a rare

event. HIV-1 infection of DCs also appears to be uncommon in

vivo, although it has been reported for both cutaneous and

mucosal DCs [9,16]. The identification of the host restriction

factor SAMHD1 (sterile alpha motif domain– and HD domain–

containing protein 1) helped to explain the limited HIV-1 infection

of DCs [17,18]. SAMHD1 restricts infection by reducing the

nucleotide pool available for reverse transcription, thereby limiting

replication of the viral genome [19].

In contrast to HIV-1, HIV-2 naturally infects DCs [20], and this

function depends on counteraction of SAMHD1 by Vpx, a viral

protein not present in HIV-1 [17,18]. Vpx is incorporated into

HIV-2 particles and is released after viral fusion, inducing

degradation of host cell SAMHD1. However, efficient DC

infection is not required for disease progression, since HIV-1 is

much more pathogenic than HIV-2. This discrepancy might be

explained by differences in innate sensing. HIV-2 genome

replication in infected DCs is detected by the innate sensor cGAS,

a cyclic guanosine or adenosine monophosphate synthase that

recognizes viral DNA and triggers immune responses [20,21],

while SAMHD1-mediated restriction of HIV-1 prevents cytoplas-

mic cDNA synthesis and consequently precludes induction of

antiviral type I interferon responses [20].

Despite low rates of infection by HIV-1, DCs can efficiently

capture HIV-1 and mediate potent viral transmission, thus

promoting a vigorous infection of CD4+ T cells [11] in the

absence of productive DC infection [22] or innate immune

detection. This so-called trans-infection is particularly robust for

mDCs [6,23,24] and takes place at viral concentrations that do not

allow for efficient infection of CD4+ T cells by cell-free virus [25].
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HIV-1 trans-infection involves capture and internalization of intact

virions by DCs, trafficking of trapped viruses without membrane

fusion, and finally release of infectious virions towards contacting

CD4+ T cells [25,26].

Based on their ability to retain virions and travel to lymphoid

tissues, it was initially proposed that iDCs act as ‘‘Trojan horses,’’

capturing HIV-1 in the mucosa and then migrating to secondary

lymphoid tissues, where stored HIV-1 could be transmitted to

CD4+ T cells and contribute to the spread of infection [25,27].

However, the capacity of iDCs to function as ‘‘Trojan horses’’ is

limited: iDCs quickly degrade most of the incoming virions, and

trans-infection by iDCs is thus only possible in the hours that follow

a viral encounter [28]. By contrast, viral capture is potently

enhanced in mDCs [29,30], and infectious HIV-1 is stored in an

apparently intracellular compartment in these cells. Storage has

been reported to occur in a nonclassical endosomal compartment

enriched in tetraspanins [31] or at an invagination of the plasma

membrane that is distinct from endocytic vesicles [32]. In this

compartment, HIV-1 is expected to be protected from endosomal

or cytosolic degradation pathways [26]. The precise nature and

origin of the capture and storage compartment is currently

unknown, and it is also not clear whether it is constitutive or virus

induced. An interesting parallel exists with the budding compart-

ment in HIV-infected macrophages, which constitutes an invag-

ination of the plasma membrane that can be rapidly shifted to a T

cell contact zone, thus facilitating cell-to-cell transfer of HIV-1

[33,34]. Kinetic analysis suggests that the HIV-1 capture and

storage compartment in mDCs gradually connects with the

extracellular milieu and is constantly remodeled [35], which may

favor both viral accumulation and subsequent transfer.

HIV-1 transmission has been suggested to occur primarily at a

zone of cell-to-cell contact—the infectious synapse—that resem-

bles the immunological synapse, a spatially segregated supramo-

lecular structure formed by T cells to recognize antigens presented

by DCs [36]. Upon contact with mDCs, the HIV entry receptors

CD4, CCR5, and CXCR4 on CD4+ T cells are concentrated in

the contact zone [24], thus providing optimal conditions for viral

entry. The virus storage compartment in DCs is shifted towards this

contact zone, facilitating rapid and efficient infection of the

neighboring T cell [24,31,37,38]. Although trans-infection via

mDCs does not involve new virus production from DCs, this

transfer mode appears to be highly related to the virological synapse

established between HIV-1 infected cells and target cells [38].

Trans-infection of CD4+ T cells by HIV-1 captured on mDCs

appears to be a particularly potent mechanism of viral transmis-

sion and is thus thought to play a major role in HIV-1 spread in

lymphoid tissues in vivo. Thus, the capacity of mDCs to capture

HIV-1 for trans-infection while being largely resistant to HIV-1

infection may be an important aspect of HIV-1 pathogenesis. In

this review, we will focus on the role of recently identified viral and

cellular factors involved in HIV-1 capture by mDCs and discuss

how they might contribute to HIV-1 immune escape and

pathogenesis.

HIV-1 Trans-Infection by mDCs: No Sign of DC-
SIGN

The dendritic cell-specific intercellular adhesion molecule-3

(ICAM)–grabbing non-integrin (DC-SIGN) has previously been

suggested to be the main capture receptor for HIV-1 on DCs

[25,27]. DC-SIGN is a C-type lectin receptor expressed

abundantly on the surface of iDCs that interacts with the HIV

surface glycoprotein gp120 [25,39] and thus acts as a capture

receptor for HIV-1 on iDCs (Figure 1A). The affinity of gp120 for

DC-SIGN is five times greater than for its cognate receptor CD4

[39], suggesting that DC-SIGN on iDCs could be of particular

importance when only few HIV-1 particles are present, such as in

early infection [25]. This observation led to the ‘‘Trojan horse’’

hypothesis, which argues that DC-SIGN captures HIV-1 in the

mucosa and facilitates its transport to secondary lymphoid organs

rich in CD4+ T cells that can be efficiently trans-infected [25].

However, the restricted capacity of iDCs to sustain trans-infection

[28,40] and the limited contribution of DC-SIGN to viral

transmission reported in several independent studies [29,30,41–

47] argued against the original ‘‘Trojan horse’’ hypothesis.

In contrast to iDCs, mDCs located in lymphoid tissues can

effectively transfer HIV-1 to T cells. Cell-associated transfer via

the virological synapse is believed to constitute the major mode of

transmission in the densely populated lymphoid tissue. The

continuous interaction between mDCs and CD4+ T cells [48]

could be particularly relevant to this tissue, allowing for infectious

synapse formation. However, DC-SIGN expression is reduced

upon DC maturation [25,49,50], while HIV-1 capture and trans-

infection are potently enhanced [23,24,29,30]. DC-SIGN blocking

agents such as mannan or anti-DC-SIGN antibodies have minimal

effects on capture and transfer of HIV-1 by mDCs, while they

completely abrogate viral capture and transfer in DC-SIGN-

transfected cell lines [29,30]. Furthermore, DC-SIGN is not

expressed on the surface of blood myeloid DCs and Langerhans

cells [5,51], while these cells efficiently capture and trans-infect

HIV-1, especially after maturation [29,52].

These observations indicate that DC-SIGN is dispensable for

HIV-1 capture by mDCs and suggest that this process is

mediated by other cell-surface molecules. This hypothesis is

strongly supported by the finding that HIV-1 capture by mDCs

does not require the viral envelope glycoproteins [29,53], while

DC-SIGN interaction with HIV-1 occurs via gp120 [25].

Mature DCs and blood myeloid DCs capture HIV-1 particles

lacking viral envelope glycoproteins as efficiently as wild-type

virus, thus excluding gp120-interacting molecules as essential

binding receptors [29]. Other HIV-1 receptors described on

DCs, including CD4, several C-type lectins (e.g., mannose-

binding receptor, dendritic cell immunoreceptor (DCIR), and

trypsin-sensitive receptors), and glycosphingolipids (e.g., galac-

tosyl-ceramide) also bind to the envelope glycoproteins [29,41–

47] and are therefore also excluded as receptors for capture of

particles lacking viral envelope proteins. These combined results

indicate that another surface receptor must be responsible for

HIV-1 capture and transmission by mDCs and that this

receptor should recognize viral membrane constituents other

than the HIV-1 envelope glycoprotein.

Bitter-Sweet Attraction between HIV-1 and mDCs

Since the viral envelope glycoproteins are dispensable for mDC

capture, other constituents of the viral membrane should be

responsible. These molecules could be proteins, lipids, or sugars

but should be widely distributed, because HIV-1 capture by mDCs

is independent of the producer cell type [29,53]. Recognition

molecules should also be present in the membrane of cellular

microvesicles (e.g., exosomes), which undergo capture by mDCs

similar to HIV-1 [54]. Both exosomes and HIV-1 appear to bud

from cholesterol-enriched microdomains in the T cell plasma

membrane [55–57] and share glycosphingolipids and various

membrane proteins that reside in lipid rafts. Capture and transfer

of HIV-1 by mDCs converges with the exosome trafficking

pathway and HIV-1 and exosomes compete for mDC capture,

indicating that they utilize the same pathway [54].
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Internalization of HIV-1 or exosomes is not abrogated by

pretreatment of these particles with proteases; therefore, capture

appears to be independent of membrane proteins. In contrast,

modifying the lipid composition by specific lipid biosynthesis

inhibitors in producer cells affects particle capture by mDCs

without altering particle release [53,54]. Specifically, treatment

of HIV-1- or exosome-producing cells with inhibitors of

glycosphingolipid biosynthesis yielded particles with reduced

glycosphingolipid content, which exhibited reduced capture by

mDCs [53,54]. These findings suggested a critical role of

glycosphingolipids for mDC capture and storage of HIV-1 and

exosomes [54].

If capture by mDCs is mediated by the particle’s lipid

composition and independent of membrane proteins, this property

should also be observed for liposomes that have the size and lipid

composition of HIV-1 but lack any protein. This is indeed the

case: liposomes mimicking the lipid composition of HIV-1 were

efficiently recognized by mDCs and competed with HIV-1 for

mDC capture [58,59]. Gangliosides represent the predominant

group of membrane glycosphingolipids, and mDC capture showed

complete ganglioside dependence when comparing liposomes

containing or lacking gangliosides. Furthermore, ganglioside-

containing liposomes trafficked to the same compartment as

HIV-1 and exosomes, and these particles competed with each

other for mDC capture [54,58].

All gangliosides are composed of a ceramide molecule and a

variety of sialylated carbohydrate head groups (Figure 1B).

Liposomes containing only ceramide were not captured by mDCs,

suggesting that the sialylated carbohydrate head group constitutes

the molecular recognition domain. Sialic acid on cellular

membrane molecules has been identified as an attachment

receptor for several pathogens and toxins [60–64]. It therefore

appeared to be a good candidate for a potential mDC recognition

moiety. Removing sialic acid from the membrane of liposomes or

viruses by neuraminidase treatment or reconstituting liposomes

with asialo-gangliosides abolished capture by mDCs, indicating

that sialic acid is necessary for mDC recognition, though not

sufficient. No capture was observed for particles containing GM4,

the simplest ganglioside (Figure 1B), while mDC capture was

efficient when the membrane contained GM1, GM2, or GM3.

GM4 has its sialic acid moiety bound to a single galactose, while

GM3, the next ganglioside in complexity, as well as GM1 and

GM2 carries sialic acid bound to lactose as a head group. This

sialyllactose head group (Figure 1B) therefore appears to constitute

the molecular determinant for mDC recognition [58]. According-

ly, soluble sialyllactose efficiently prevented HIV-1 capture by

mDCs when added at high concentrations. However, efficient

particle capture requires membrane gangliosides, and attachment

of sialyllactose to ceramide is probably needed for a higher binding

avidity. The hydrophilic moiety of ceramide in the membrane

Figure 1. HIV-1 binding to DC receptors. A. HIV-1 can bind to DC-SIGN via recognition of the viral envelope glycoprotein. B. Several
gangliosides in the HIV-1 lipid membrane expose a sialyllactose moiety, while GM4 only carries sialic acid on galactose. C. Siglec-1 can capture HIV-1
through recognition of sialyllactose moieties of viral membrane gangliosides. Abbreviations: Cer (ceramide), Gal (galactose), GalNAc (N-
acetylgalactosamine), Glu (glucose), SiA (sialic acid).
doi:10.1371/journal.ppat.1004146.g001
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interface may be part of the recognition domain, either increasing

the binding affinity or orienting the sialyllactose group upon

hydrophobic interaction between ceramide and other membrane

constituents. Both GM1 and GM3 can serve as mDC recognition

molecules when incorporated at high concentrations, while GM3

appears to be more efficient at limiting ganglioside concentrations.

Accordingly, knockdown of GM3 (but not GM1) from HIV-1

producer cells and hence from virions strongly reduced capture by

mDCs [59].

Siglec-1 (CD169) Is the Capture Receptor for HIV-1
on mDCs

The observation that the sialyllactose moiety of viral membrane

gangliosides is recognized upon HIV-1 capture by mDCs

suggested that the attachment receptor may be a sialic-acid-

binding cell-surface molecule. Obvious candidates were the family

of sialic-acid-binding immunoglobulin-like lectins (Siglecs): these

type I transmembrane proteins carry an amino-terminal V-set

domain that directly interacts with sialylated ligands, mediating

both cellular interactions and immune responses [65]. Using

transcriptome analysis, SIGLEC1 gene (coding for Siglec-1,

CD169, or Sialoadhesin) was identified as the only member of

the Siglec family that was significantly up-regulated upon DC

maturation with lipopolysaccharide (LPS) [66]. Since this treat-

ment had been shown to strongly enhance the capture capacity of

mDCs for HIV-1, Siglec-1 was considered a prime candidate for a

capture receptor. Similar results were observed upon type I

interferon treatment of mDCs, which enhanced both Siglec-1

surface expression and HIV-1 capture [67].

Several lines of evidence demonstrated that Siglec-1 expression

correlates with the HIV-1 capture and trans-infection capacity of

primary DCs [66,67]. Specific antibodies against Siglec-1 inhibited

HIV-1 capture in a dose-dependent manner. In addition, Siglec-1

knockdown by small interfering RNA (siRNA) strongly reduced

viral capture and trans-infection, while de novo expression of

Siglec-1 in cells devoid of this receptor enhanced viral capture and

trans-infection. Hence, Siglec-1 was identified as a novel DC

receptor for HIV-1 capture and trans-infection (Figure 1C), which

is highly up-regulated in blood myeloid DCs exposed to LPS or

type I interferon [66,67]. In contrast, other members of the Siglec

family (i.e., Siglec-5 or Siglec-7) had no effect in these assays

despite their capacity to bind sialic acid.

Induction of Siglec-1 expression upon LPS or interferon

treatment explains why mDCs are able to capture higher amounts

of HIV-1 than iDCs and why this process does not require the

viral surface glycoprotein but relies on viral membrane ganglio-

sides (Figure 1C). Siglec-1 recognition has been previously

Figure 2. Trans and cis recognition of Siglec-1 ligands. A. Siglec-1 has 16 C2-type domains that extend the V-set domain from the glycocalix of
the cell, allowing for recognition of sialylated molecules on different ligands and pathogens such as HIV-1. B. Other members of the Siglec family
display a lower number of C2-type domains and interact only in cis, with sialylated molecules exposed on the membrane of the same cell.
doi:10.1371/journal.ppat.1004146.g002
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suggested to play a role in enhancing macrophage infection by

HIV-1 [68], but this study reported a Siglec-1 interaction with

sialylated viral envelope proteins and not with membrane

gangliosides. This enhancing effect is likely due to increased viral

capture and thus prolonged exposure to the cell-surface receptors

CD4 and CCR5 on the macrophage surface. Future experiments

should define whether macrophage capture of HIV-1 requires

sialylated viral envelope glycoproteins or depends on recognition

of membrane gangliosides as observed for mDCs.

Although all Siglecs have the potential to interact with sialylated

gangliosides through their respective V-set domains, several

distinctive features help to explain why Siglec-1 is the only family

member that effectively mediates HIV-1 capture [66,67,69].

Siglec-1 is the largest member of the family, containing 16 Ig-

like C2-type extracellular domains [70]. These domains separate

the ligand-binding site from the cell surface, extending the V-set

domain beyond the glycocalix of the cell (Figure 2). Thus, Siglec-1

is available for interaction with external ligands, while shorter

Siglecs mainly bind cell-surface molecules in cis [65], masking their

potential HIV-1 binding capacity (Figure 2). Siglec-1 constructs

containing less than six Ig-like C2-type domains are unable to

mediate sialic-acid-dependent binding in trans unless the cells are

treated with sialidases to remove their own cell-surface sialic acids

[71].

The affinity of Siglec-1 for sialylated ligands is in the

micromolar range, but high-avidity binding can be achieved upon

receptor and ligand clustering [65]. Live-cell imaging of viral

capture by mDCs shows that viruses rapidly bind over the entire

plasma membrane but subsequently traffic towards one pole of the

cell, where they gradually accumulate and cluster [35]. Lipidomic

analysis of HIV-1 membranes estimated that there are 12,000

GM3 molecules per virion [72,73]. Other gangliosides such as

GM1 are also present in HIV-1 membranes [58] but remain to

be quantified. The presence of thousands of sialyllactose-

containing gangliosides in the viral membrane is expected to

support high-avidity interactions with the host-cell plasma

membrane. These multiple interactions should yield stable viral

attachment despite the relatively poor affinity of each individual

interaction; the binding strength may thus be superior to that

achieved by the higher affinity interaction of DC-SIGN or the

viral CD4 receptor with only 1467 envelope trimers per virion

[74].

Siglec-1 Role as a Pathogen Recognition Receptor

Siglec-1 binds promiscuously to many sialylated molecules

typically found on pathogens, with a preference for N-Acetylneur-

aminic acid (Neu5Ac) in an a2–3 linkage [70]. This observation

suggests that Siglec-1 may serve as a pathogen recognition

receptor [65]. Lipidomic analyses of viral membranes revealed

the presence of sialylated gangliosides in retroviruses, including

HIV-1 and murine leukemia virus (MLV), and in vesicular

stomatitis virus and Semliki forest virus [58,73,75]. MLV is also

efficiently captured by mDCs via Siglec-1 [58,67]. Siglec-1 may

thus function as a general recognition receptor for many

enveloped viruses, leading to viral uptake into mDCs and the

induction of specific antiviral responses. Accordingly, Siglec-1-

expressing myeloid cells efficiently capture VSV in vivo, either

facilitating antiviral B cell responses or preventing viral neuroinva-

sion via type I interferon release [76,77].

Exclusion of sialyllactose-containing gangliosides from viral

budding domains or incorporation of neuraminidases that

Figure 3. HIV-1 and exosome targeting to Siglec-1. A. HIV-1 binds to Siglec-1 through viral membrane gangliosides. Viral capture is followed
by accumulation in a storage compartment until virus is released to infect a contacting CD4+ T cell via viral envelope glycoprotein and CD4/
coreceptor interactions. B. Exosomes bearing processed antigens on MHC II molecules bind to Siglec-1 through recognition of their membrane
gangliosides. They accumulate in the same storage compartment as HIV-1 until they are released and recognized by a CD4+ T cell via the interaction
of the antigen-loaded MHC II on the exosome with an antigen-specific T-cell receptor on the target cell.
doi:10.1371/journal.ppat.1004146.g003
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desialylate viral membrane glycolipids could interfere with mDC

capture and immune recognition. Influenza virus is largely devoid

of GM3 due to the viral neuraminidase [78], and it will be

interesting to determine whether this feature is important for

escape from immune recognition. HIV-1, on the other hand,

appears to subvert this cellular recognition pathway for its own

benefit. Indeed, enhanced HIV-1 capture by mDCs does not

correlate with better viral antigen presentation ability; iDCs are

capable of inducing higher antigen-specific T cell responses than

mDCs [79].

Sialic acid is also present on the surface of several medically

relevant nonviral human pathogens such as Neisseria meningiti-

dis, Haemophilus influenzae, group B Streptococcus, Campylobacter

jejuni, and several strains of Escherichia coli, as reviewed in [65].

These pathogens carry a lipopolysaccharide on their surface

with an external moiety that is similar to the sugar moiety in

human gangliosides [80]. Conceivably, these sialylated sugars

may be recognized by mDCs and lead to pathogen capture and

subsequent immune clearance. Recently, Siglec-1 has been

shown to mediate uptake of sialylated C. jejuni in macrophages,

promoting rapid proinflammatory cytokine secretion and type

I interferon responses [81]. It will thus be interesting to

determine whether these pathogens are also captured by mDCs

via Siglec-1. Although mDCs markedly down-regulate their

capacity for macropinocytosis, they are still able to capture,

process, and present antigens internalized via endocytic

receptors, suggesting that they may continuously initiate

responses to newly encountered antigens during the course of

infection [82,83]. mDC capture of particles with ganglioside-

containing membranes via Siglec-1 may have evolved as a

mechanism for recognition of sialylated pathogens, and

HIV-1 may have subverted this pathway for efficient viral

spread.

The role of Siglec-1 in immune surveillance is further

underscored by its ability to capture secreted exosomes and other

microvesicles [66,84], which are enriched in gangliosides [85].

Although their role in vivo is still controversial, exosomes are

capable of transferring antigens to other target cells and thus could

effectively increase the number of antigen-presenting cells (APCs)

presenting a particular epitope at a given time, amplifying immune

responses [86,87]. Thus, exosome targeting to Siglec-1 on the

surface of mDCs could favor specific triggering of immune

responses by specialized APCs.

Intriguingly, captured exosomes do not need to be fully

reprocessed and can induce immunity by direct release from

mDCs, following a similar pathway as HIV-1 during trans-infection

(Figure 3A). This occurs when captured exosomes expose

previously processed functional epitope–MHC complexes on their

surface that can be recognized by antigen-specific CD4+ T cells

(Figure 3B) [88]. Hence, beyond its function as a recognition

receptor for sialylated pathogens, the ability of Siglec-1 to capture

exosomes could reflect a wider role of this molecule in amplifying

immune responses.

Siglec-1 in HIV-1 Pathogenesis

Upon HIV-1 exposure, human genital mucosal epithelial cells

produce thymic stromal lymphopoietin (TSL) (Figure 4A), a

secreted factor leading to maturation of DCs that also triggers DC-

mediated amplification of HIV-1 infection in activated CD4+ T

cells [89]. It will thus be important to address whether Siglec-1

mediates HIV-1 entry into these DCs or into vaginal Langerhans

cells, where endocytosis of intact virions occurs primarily through

a pathway independent of C-type lectin receptors [90]. Mucosal

inflammation due to prior infection with other viruses, bacteria, or

fungi can also stimulate the maturation of resident or incoming

DCs by direct interaction with the invading pathogen or by

secreted inflammatory cytokines and chemokines, favoring trans-

infection events at early stages of HIV-1 invasion. This mechanism

could partially explain why prior and concomitant sexually

transmitted infections represent one of the strongest correlates of

HIV-1 acquisition [91] and why blocking immune activation can

protect animal models from mucosal simian immunodeficiency

virus (SIV) transmission [92].

Chronic systemic immune activation is a hallmark of progressive

HIV-1 infection, and various proinflammatory factors may induce

Siglec-1 expression and contribute to HIV-1 trans-infection. This is

the case for LPS, which is significantly augmented in chronically

HIV-1-infected individuals, due to increased translocation of

bacteria from the intestinal lumen [93]. The bacterial components

may stimulate DCs systemically (Figure 4B), contributing to their

maturation and therefore enhancing viral spread, while creating

the proinflammatory milieu associated with chronic HIV-1

infection.

Interferon alpha (IFNa) is a potent antiviral cytokine produced

by plasmacytoid DCs in response to HIV-1 challenge [94] that is

also able to induce Siglec-1 expression in myeloid cells, such as

DCs or monocytes [67,69]. Thus, besides its antiviral function,

IFNa can also favor HIV-1 trans-infection in an otherwise antiviral

environment [67,69]. Siglec-1 is up-regulated early after SIV

infection in both monocytes from pathogenic and nonpathogenic

animal SIV models, but its expression is only maintained in the

pathogenic model [95]. Higher HIV-1 viral load in humans

correlates with up-regulation of the Siglec-1 gene in circulating

monocytes [96]. This could be orchestrated by plasmacytoid DCs

(Figure 4C), which produce IFNa upon HIV-1 exposure and

induce the maturation of bystander DCs [97].

Concluding Remarks

Despite intensive research, there is uncertainty regarding the

role of DCs in the establishment of HIV-1 infection in vivo. The

field also lacks direct proof of DC participation in disease

progression. The discovery of the role of Siglec-1 in capturing

viruses with gangliosides in their membrane expands our

understanding of HIV-1 transmission mechanisms and offers a

new avenue to dissect the contribution of DCs to HIV-1

pathogenesis. In turn, this knowledge will help to design novel

therapeutic approaches aimed to prevent viral dissemination.

Figure 4. Immune activating signals can induce Siglec-1 expression and contribute to HIV-1 trans-infection. A. Human genital mucosal
epithelial cells produce TSL in response to HIV-1. This cytokine could induce maturation of Langerhans cells or dermal DCs in the mucosa. B.
Increased translocation of bacteria from the intestinal lumen after HIV-1 infection augments LPS levels that can stimulate DCs systemically. C. HIV-1-
infected plasmacytoid DCs produce interferon a in lymphoid tissues, which triggers maturation of bystander DCs and induces Siglec-1 expression.
Abbreviations: LC (Langerhans cells), pDC (plasmacytoid DC) TLR (toll-like receptor), TSL (thymic stromal lymphopoietin).
doi:10.1371/journal.ppat.1004146.g004
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72. Brügger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, et al. (2006) The
HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci U S A

103: 2641–2646.

73. Chan R, Uchil PD, Jin J, Shui G, Ott DE, et al. (2008) Retroviruses human
immunodeficiency virus and murine leukemia virus are enriched in phospho-

inositides. J Virol 82: 11228–11238.
74. Zhu P, Liu J, Bess J, Chertova E, Lifson JD, et al. (2006) Distribution and three-

dimensional structure of AIDS virus envelope spikes. Nature 441: 847–852.

75. Kalvodova L, Sampaio JL, Cordo S, Ejsing CS, Shevchenko A, et al. (2009) The
lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma

membrane analyzed by quantitative shotgun mass spectrometry. J Virol 83:
7996–8003.

76. Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, et al. (2007)

Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and

present them to antiviral B cells. Nature 450: 110–114.

77. Iannacone M, Moseman EA, Tonti E, Bosurgi L, Junt T, et al. (2010)

Subcapsular sinus macrophages prevent CNS invasion on peripheral infection

with a neurotropic virus. Nature 465: 1079–1083.

78. Gerl MJ, Sampaio JL, Urban S, Kalvodova L, Verbavatz JM, et al. (2012)

Quantitative analysis of the lipidomes of the influenza virus envelope and

MDCK cell apical membrane. J Cell Biol 196: 213–221.

79. Rodriguez-Plata MT, Urrutia A, Cardinaud S, Buzón MJ, Izquierdo-Useros N,

et al. (2012) HIV-1 Capture and Antigen Presentation by Dendritic Cells:

Enhanced Viral Capture Does Not Correlate with Better T Cell Activation.

J Immunol 188: 6036–6045.

80. Hajishengallis G, Lambris JD (2011) Microbial manipulation of receptor

crosstalk in innate immunity. Nat Rev Immunol 11: 187–200.

81. Klaas M, Oetke C, Lewis LE, Erwig LP, Heikema AP, et al. (2012) Sialoadhesin

promotes rapid proinflammatory and type I IFN responses to a sialylated

pathogen, Campylobacter jejuni. J Immunol 189: 2414–2422.

82. Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H, et al. (2010) Mature

dendritic cells use endocytic receptors to capture and present antigens. Proc Natl

Acad Sci U S A 107: 4287–4292.

83. Drutman SB, Trombetta ES (2010) Dendritic cells continue to capture and

present antigens after maturation in vivo. J Immunol 185: 2140–2146.

84. Saunderson SC, Dunn AC, Crocker PR, McLellan AD (2013) CD169 mediates

the capture of exosomes in spleen and lymph node. Blood 123: 208–216

85. Février B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping

extracellular messages. Curr Opin Cell Biol 16: 415–421.
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