Intelligent N\ Y
Systems
Group informatika facultad de Universidad Euskal Herriko
fakultatea informatica del Pais Vasco Unibertsitatea

Konputagailuen Arkitektura eta Teknologia Saila

Departamento de Arquitectura y Tecnologia de Computadores

Contributions to High-Throughput Computing
Based on the Peer-to-Peer Paradigm

by

Carlos Pérez Miguel

Supervised by José Miguel-Alonso and Alexander Mendiburu

Dissertation submitted to the Department of Computer Architecture and
Technology of the University of the Basque Country (UPV/EHU) as partial
fulfilment of the requirements for the PhD degree in Computer Science

Donostia-San Sebastian, 2015

(c) 2015 CARLOS PEREZ MIGUEL

llzitbel
Texto escrito a máquina
(c) 2015 CARLOS PEREZ MIGUEL

Why do you go away? So that you can come back. So that you can see the

place you came from with new eyes and extra colors. And the people there

see you differently, too. Coming back to where you started is not the same as
never leaving.

Terry Pratchett.

A mi familia y amigos
POT SU APOYO Y PACLencia.

VII

Acknowledgements

There are so many people I would like to thank for helping me and supporting
me along these years. I will try to keep this list as brief as possible.

To my two advisors Jose and Alex for their guidance and patience. To
the members of the Intelligent Systems Group and the PhD candidates in the
San Sebastian School of Computer Science for their support. In particular,
I would like to thank the Computer Architecture section of the ISG for the
useful discussions and support. To Prof. Ke Tang and Thomas Weise from the
University of Science and Technology of China. Thanks for hosting me in my
research visit.

This work has been supported by the Spanish Ministry of Science and In-
novation [projects TIN2007-68023-C02-02, TIN2008-06815-C02-01, TIN2010-
14931 and Consolider Ingenio 2010 CSD2007- 00018], the Basque Government
[Saiotek, Research Groups 2007-2012, I'T-242-07] and the Carlos ITT Health In-
stitute [COMBIOMED Network]. This work was partially carried out when
the author was visiting the University of Science and Technology of China
(USTC) under the grant NICaiA (Nature Inspired Computation and its Appli-
cations, PIRSES-GA-2009-247619). The author was supported by a doctoral
grant of the Basque Government. The author is an affiliated PhD student
member of the European Network of Excellence on High Performance and
Embedded Architecture and Compilation (HIPEAC).

Quisiera agradecer a mis padres Clemente y Carolina, por su apoyo, ast
como por la educacion que me han dado y por ensennarme curiosidad y pacien-
cia; a mi hermana Susana, por que siempre estd ahi, gracias por su apoyo y
consejo. Sois una parte importante de esta aventura. Sin vosotros esta tesis
no hubiera sido posible.

Quisiera también agradecer a una serie de personas que han hecho posible
esta tesis: César, Xabi, Antonio, Rubén, David, Inaki, Fran, Pablo y Alez,
gracias por todas las conversaciones, las comidas, los partidos de frontenis y
las cervezas. Gracias también a los Bucléicos y demds parisinos y ex-parisinos
por las suaradas, las buclas infinitas, las paellas y los pique-niques en cualquier
esquina que se preste a ello; aunque ya no esté alli os tengo presentes. Y por
ultimo gracias también a los integrantes de la pena Ideales, por todas las risas y
los duros. Sin vosotros todo esto no tendria sentido. Sois una parte importante
de este trabajo.

Abstract

This dissertation focuses on High Throughput Computing (HTC) systems and
how to build a working HTC system using Peer-to-Peer (P2P) technologies.
The traditional HT'C systems, designed to process the largest possible number
of tasks per unit of time, revolve around a central node that implements a
queue used to store and manage submitted tasks. This central node limits the
scalability and fault tolerance of the HTC system. A usual solution involves
the utilization of replicas of the master node that can replace it. This solution
is, however, limited by the number of replicas used.

In this thesis, we propose an alternative solution that follows the P2P
philosophy: a completely distributed system in which all worker nodes par-
ticipate in the scheduling tasks, and with a physically distributed task queue
implemented on top of a P2P storage system. The fault tolerance and scal-
ability of this proposal is, therefore, limited only by the number of nodes in
the system. The proper operation and scalability of our proposal have been
validated through experimentation with a real system.

The data availability provided by Cassandra, the P2P data management
framework used in our proposal, is analysed by means of several stochastic
models. These models can be used to make predictions about the availability
of any Cassandra deployment, as well as to select the best possible config-
uration of any Cassandra system. In order to validate the proposed models,
an experimentation with real Cassandra clusters is made, showing that our
models are good descriptors of Cassandra’s availability.

Finally, we propose a set of scheduling policies that try to solve a common
problem of HTC systems: re-execution of tasks due to a failure in the node
where the task was running, without additional resource misspending. In or-
der to reduce the number of re-executions, our proposals try to find good fits
between the reliability of nodes and the estimated length of each task. An ex-
tensive simulation-based experimentation shows that our policies are capable
of reducing the number of re-executions, improving system performance and
utilization of nodes.

Table of Contents

Acknowledgements VII
Abstract IX
Table of contents i XII
1 Introduction......... 1
1.1 High Throughput Computing Systems 1
1.2 Peer-to-Peer Networks, 3
1.3 Organization of this dissertation........................... 7
2 HTCover P2P 9
2.1 P2P Computingc.vvriini i 9
2.2 P2P storage systemsl 11
2.3 Cassandra 12
2.4 Design of the HTC-P2P system over Cassandra 14
2.5 Evaluation......... 21
2.6 Related Work on P2P Computing 27
2.7 ConcCluSIONS . . .ottt 28
3 Modeling the availability of Cassandra..................... 29
3.1 An overview of the architecture of Cassandra 30
3.2 Stochastic failure models for Cassandra 34
3.3 Validating the models 45
3.4 Usingthemodels......... i i 52
3.5 Related work 58
3.6 Conclusions and future work 59
4 Failure-aware scheduling in HTC systems.................. 61

4.1 A proposal for failure-aware scheduling in an HTC-P2P system 63
4.2 Score functions............. i 66

XII

A

Table of Contents

4.3 Other failure-aware scheduling algorithms 69
4.4 Experimental environment 72
4.5 Analysis of results with exponentially distributed failures 76
4.6 Experimentation with non-exponentially distributed failures .. 83
4.7 Related work 91
4.8 ConcClusionSoovtit i e 93
Conclusions and future work............................... 97
5.1 ConcluSionsv it 97
5.2 Future work 98
5.3 Publicationsiii 99
Configuration of the ColumnFamilies required by the

proposed HTC-P2P 103

References e 107

1

Introduction

This introductory chapter is devoted to setting up the general background
about the aspects addressed in this work: HTC systems and P2P networks.
Further details about any topic related with the aforementioned elements, but
not used directly in this dissertation, can be consulted in the included bibli-
ography. This chapter is organized as follows: Sections 1.1 and 1.2 are devoted
to presenting some background information about HTC systems and P2P net-
works respectively. Finally, Section 1.3 presents the main contributions and
the structure of this dissertation.

1.1 High Throughput Computing Systems

A distributed system is composed of a collection of interconnected computers
working together in order to achieve a common goal. We can find different
types of distributed systems, depending on the level of coupling of the appli-
cations executed by the nodes. A High Throughput Computing (HTC) system
is a loosely coupled form of distributed computing platform whose objective
is to execute as many independent computational tasks per unit of time as
possible. In contrast, a High Performance Computing (HPC) system runs
tightly coupled tasks that belong to the same application, with the objective
of completing the application in the shortest possible time. It must be noticed
that it is usual to find combinations of both paradigms. In fact, most super-
computing centers combine HTC and HPC features, scheduling resources to
efficiently run many parallel applications. In this dissertation we focus only
on HTC systems, with loosely coupled nodes that execute independent tasks.

HTC systems are composed of a large number of computational resources
tied together by some sort of interconnection network. These resources are
used to execute applications submitted to the system by different users.
Tasks can be executed in any order, although most HT'C systems offer several
scheduling policies, such as arrival order, the length of the task, fairness and
priority.

2 1 Introduction

As previously commented, in this dissertation we suppose that all submit-
ted tasks are independent. However, on top of a basic HT'C service scheduling
independent tasks, it is possible to implement other kinds of tasks, such as
work-flows, tasks that are composed of a set of interdependent subtasks that
have to be executed in a given order, or bag-of-tasks, kinds of tasks composed
of a set of subtasks that operate over the same data but without interdepen-
dencies among them, so they can be executed in any order.

Users access an HTC system by using a queueing system that can be
formed by one or multiple queues. This queueing system is usually imple-
mented in a master node in charge of the scheduling process. Without loss of
generality, in this work we are going to consider systems of only one queue.
This queue is used by the users to submit tasks, which wait until the resources
required to run them are available. These resources are specified by the user
when the task is submitted to the system, and may include many requirements
such as specific processor architectures, minimum size of memory, operating
systems, libraries, etc.

The aforementioned master node is in charge of distributing tasks in the
queue to the available worker nodes, controlling them and notifying the owner
of the different tasks about their completion. Through the interface provided
by this node, users can submit their tasks, control them and fetch the results
when they are completed. In Figure 1.1 we show this general architecture: a
set of workers, that only execute tasks, connected to a master node which is
in charge of accepting and scheduling tasks to idle nodes.

Master Scheduler

Workers

Fig. 1.1: Architecture of an HTC system.

1.2 Peer-to-Peer Networks 3

This centralized architecture is usually the main point of failure of HTC
systems. If the master fails, the system becomes unreachable and no new
tasks can be submitted to the queue. Usual solutions to this problem consist
of mirroring the master node in such a way that the failure of the master can
be fixed instantly by swapping the failed node with its backup node. However,
this solution, while extending the fault-tolerance of the system, is limited by
the fault-tolerance of the set of replicas used. Also, centralism presents another
problem: scalability in terms of number of worker nodes and enqueued tasks,
which are limited by the local resources of the master.

In this dissertation we tackle the fault-tolerance problem of HTC systems
using a different approach: we embrace the P2P philosophy. Using as a foun-
dation a P2P storage system, all working nodes participate in holding the
information related to submitted tasks, that is, the task queue. Then, every
node in the system can access this queue to select an appropriate task to
execute. With this approach, the fault tolerance and scalability of the HTC
system is limited only by the number of nodes in the system. In Figure 1.2 we
have a depiction of this architecture. P2P storage systems scatter and repli-
cate information along the system nodes, in such a way that the HTC-P2P
system can operate as long as there is a node alive. The fault-tolerance of the
HTC system is, therefore, extended from the capabilities of a master node (or
a group of masters) to the fault-tolerance of the entire set of nodes.

Among the HTC systems that can be found in the literature, we can
cite systems to control dedicated clusters, such as TORQUE [1], Oracle Grid
Engine [2] or HTCondor [3], and volunteer grid computing systems. The vol-
unteer grid computing paradigm consists of a set of compute nodes belonging
to different users and organizations that, altruistically, donate their idle re-
sources to execute computational tasks for one or more research projects. Vol-
unteer computing systems evolved from project-specific solutions (for exam-
ple, Seti@Home [4]) to generic platforms that can be used by several projects
(for example, Boinc [5]). They use a per-project central management node
that controls a pool of distributed resources, and include mechanisms to deal
with node failures. The central node, thus, may become an issue.

After this brief presentation of the HTC paradigm, we now provide some
background information about peer-to-peer networks.

1.2 Peer-to-Peer Networks

Peer-to-Peer systems are distributed systems in which there is neither a cen-
tral control point, nor a hierarchical structure among its members. In a P2P
system, all nodes in the system have the same role, and are interconnected us-
ing some kind of network (usually, the Internet), defining an application-level
virtual network, also called overlay. Nodes communicate using this overlay, in
order to find information, share resources or allow human users to communi-
cate.

4 1 Introduction

e

Fig. 1.2: Architecture of a distributed HTC system.

Unlike Grid systems, P2P systems do not interconnect well-defined groups
using highly reliable networks. They are based on a large number of unreliable
resources using unreliable network connections. Even under these limitations,
they manage to provide some interesting services and features such as scala-
bility, fault tolerance, efficient information search, highly redundant storage,
persistence or anonymity.

According to Lua et al. [6], we can classify P2P systems into two basic
types of owerlays: structured or non-structured. Those of the later type are
formed by randomly connected nodes. Since there is no structure, flooding
routing protocols are used to communicate peers. This way any network node
can be reached from any other point in the system, but at the expense of an
important efficiency penalty.

In Figure 1.3 we can see an example of a flooding algorithm, Breadth-F'irst
Search, in which each node forwards the search request to all of its neighbours
until a hop limit value is reached. In the example we can see that node 1 wants
some information stored in node 5 but does not know its exact location, so at
to it contacts its neighbour nodes 2, 3 and 4. These nodes do not possess the
requested information, so they forward the request to their respective neigh-
bours, flooding the network with repeated messages. This process continues
until the request reaches its destination or until the maximum hop count value

1.2 Peer-to-Peer Networks 5

is reached. If this happens, the request never reaches its destination and the
search is unsuccessful. In the example, the request arrives after only 1 hop to
the destination, node 5. At this moment node 5 knows that node 1 wants to
exchange some information, so it establishes a direct communication channel
with node 1.

Fig. 1.3: Searching for information in a non-structured P2P network.

We can find several examples of this type of P2P networks in the literature,
including Gnutella [7] and FreeNet [8], both file sharing systems based on this
P2P topology.

When we talk about structured overlays, we refer to systems in which
there is a well defined virtual topology, and each piece of the network content
(whatever it means, depending on the application) is stored in a well-defined
network node. If we focus on data storage, we say that this type of P2P
systems implement Distributed Hash Tables (DHT) [9, 10], in which objects
are located in a node (or nodes) chosen in a deterministic way.

Let us consider an overlay network with /N nodes, each one with a different
ID, and a (much larger) key space. A hash function provides a map of a key
onto a node ID — there is a single map, in such a way that the node that takes
care of a key is perfectly identified. This mapping defines a DHT, and is the
basis of highly-scalable, distributed storage networks. In a DHT, information is
stored in the form of {key, value} pairs accessible by a hash-like API, providing
functions to insert and modify key-value pairs (put(key, value)) and to access
them (value=get(key)).

In Figure 1.4 we can see a possible mapping of a key space in a 16-node
DHT. There are 64 possible keys and each node is responsible for 4 of them.
Each stored object is identified by one of these keys.

Implicitly, a routing protocol is used in order to deliver these requests
(read or write operations) to the key owner node. Different routing protocols

6 1 Introduction

”””””” @ En
®

| Keys:

e ®

|17
IKeys: [17, 21)

O)
@) @)

Fig. 1.4: Key space [1-64] mapped over a 16-node DHT.

have been proposed in the literature but all of them share one characteristic:
the routing is done in a progressive manner, as a function of the distance to
the destination node. Therefore, when a given node wants to communicate
with the node that takes care of a certain key, it sends the message through
the neighbour which is closer (in terms of assigned keys) to the destination.
The specific definition of proximity of keys-nodes depends on the particular
structure of the DHT, and varies from system to system. Most DHT systems
guarantee that any object can be reached in a number of jumps in order
O(log N), being N the number of network nodes.

In Figure 1.5 we show an example of routing in Chord [10], a structured
P2P network that implements a DHT, for the 16-node network of the previous
example. As previously mentioned, there are 64 possible keys in this DHT
and each node is responsible for 4 consecutive keys. In order to increase speed
in the routing process, each node is connected to other 4 nodes at different
distances. In the example, the node with ID 1 wants to send a message to
node 45. From its possible connections, the nearest to 45 is node 33. Node 33
forwards the message to the nearest of its neighbours, 41, which is directly
connected to 45.

The weakest point in DHT systems is their behaviour in the case of fast
changes in system configuration, a term also known as churning. Informally,
this refers to nodes that join or leave the overlay, forcing a network reorgani-
zation and a modification in the key mappings. Latency can increase in this
case, and several proposals exist that try to reduce this problem. In [11] an

1.3 Organization of this dissertation 7

O [e

Fig. 1.5: Routing in a 16-node DHT, from node with ID 1 to node with ID
45.

algorithm is proposed that tries to reach the optimum latency in P2P net-
works, without losing the scalability of DHTSs; also, authors of [12] propose
an algorithm to maintain load balance in adverse conditions. Among the ex-
amples of this kind of P2P systems, we can find Chord [10], Tapestry [13],
CAN [14], Kademlia [15], Dynamo [16] or Cassandra [17].

1.3 Organization of this dissertation

The work presented in this dissertation revolves around High Throughput
Computing systems, their requirements and how to address them using Peer-
to-Peer technologies. It tries to provide answers to these motivating questions:
Can we build an HTC system totally decentralized with the support of a Peer-
to-Peer network, with the same characteristics of a centralized system but
without its drawbacks? Can we solve other typical fault-tolerance issues of
HTC systems, mainly the problem of avoiding unfinished executions because
of failures in the worker nodes, in a way compatible with the P2P philosophy?
Which levels of availability will be provided by this HTC-P2P system?

The main contributions of this work, which try to provide answers to these
questions, are:

8 1 Introduction

e the design and development of a functional HT'C system totally distribu-
ted, with the support of the Cassandra P2P storage system, without any
main point of failure.

e theoretical models of Cassandra’s fault-tolerance when facing two different
types of node failures: transient and memory-less failures. These models
can be used to analyse any system built over Cassandra or to make pre-
dictions about Cassandra’s availability.

e a collection of scheduling policies that can be used within this HTC-P2P
system as well as with other HT'C systems, including a FCFS policy and
several failure-aware scheduling policies.

The remainder of this dissertation is organized as follows. In Chapter 2
we present the design and development of our HTC system distributed over
a P2P network. We describe the architecture of the system and its main
characteristics. We validate the system by performing several functionality
and scalability tests.

In Chapter 3 we analyse the fault tolerance of the P2P storage in which our
HTC-P2P proposal is based: Cassandra. We propose two stochastic models of
Cassandra in two different failure situations: transient failures and memory-
less failures. By using these two models, a system administrator could select
the best possible configuration in order to maximize the availability of the
information stored in Cassandra, taking into account the use given to the
system and the fault-tolerance characteristics of the different nodes forming
the system.

In Chapter 4 we focus on the scheduling process of the proposed HTC-P2P
system in the presence of failures, and present several scheduling policies that
improve system utilization and job throughput. We address the problem of re-
execution of failed tasks due to failed executions by carefully choosing the best
possible worker node in terms of future availability. Experimentation shows
that failure-aware scheduling policies improve the productivity obtained from
the HTC system.

Finally, Chapter 5 closes this dissertation with several conclusions that
summarize the contributions of our work, and with an outlook of future re-
search lines.

2

HTC over P2P

As discussed in Chapter 1, existing HTC systems have one important charac-
teristic that make them potentially weak: they require a central administration
point. This central point imposes limitations in system scalability and fault
tolerance. In this chapter we present a High Throughput Computing System
totally based upon the Peer-to-Peer (P2P) paradigm in order to overcome
these limitations. In the pure peer-to-peer philosophy, all the members of the
proposed system are capable of carrying out administrative tasks to maintain
the system operational, in addition to executing jobs. Ideally, this HTC-P2P
system should perform like a non-P2P one in the absence of failures, and
should scale to large networks while showing these expected characteristics:
totally decentralized, not requiring permanent connection, and able to im-
plement different scheduling policies such as running tasks in a (non-strict)
FCFS order.

This chapter is structured as follows: in Section 2.1 we discuss the general
caracteristics that a P2P computing system should have. Section 2.2 is devoted
to presenting several P2P storage systems that could be valid for building our
HTC-P2P system. We present the characteristics of the selected P2P storage
system, Cassandra, in Section 2.3. Section 2.4 shows the characteristics of the
proposed HTC-P2P system and how we have implemented them in Cassan-
dra. In Section 2.5 we carry out some experiments designed to verify that it
works as expected. Related work on P2P computing systems is discussed in
Section 2.6. The chapter ends in Section 2.7 with some conclusions and future
work on this subject.

2.1 P2P Computing

A distributed computing system can be defined as a collection of computers
interconnected by a communication network. These computers join their re-
sources in order to collectively do computational tasks. Each computer in the
system has its own, independent resources; however, from the user’s point of

10 2 HTC over P2P

view, the system should be seen as a single resource pool. An interface is given
to the users in order to access the system without taking care of its com-
plexity. Actual HT'C systems revolve around central points of administration.
This central resource, in case of failure, can make the whole system unusable.

A true Peer-to-Peer Computing system overcomes this disadvantage by
distributing management capabilities among all the system nodes. An HTC
system based on the P2P model system should have these desirable characte-
ristics:

1. Fully distributed, without centralized administration point or points: ev-
ery node in the system must have the same role and every administrative
task must be performed without the intervention of any central authority.

2. Users should be able to submit tasks from their machines and then discon-
nect from the system: users can be part of the system, executing tasks, or
only submitting them. In this last situation, the rest of the system must
store all the required information to execute each task and also the results
of each computation for a posterior retrieval.

3. Different scheduling policies should be supported. In particular FCFS, as
it is considered a “fair” execution order, is expected.

In conventional, non-P2P HTC systems, a central task queue implemented
in a master node takes care of global scheduling policies and execution order.
We propose emulating this data structure, but using a decentralized version
of it. In this chapter we present a distributed scheduler that implements a
FCFS scheduling policy. However, our proposal is flexible enough to permit the
implementation of other scheduling policies. In fact, in Chapter 4 we present
several failure-aware scheduling policies that try to maximize the throughput
of the system by selecting, in terms of stability, the most appropriate node
for each task.

This distributed queue can be implemented using the storage characte-
ristics of a DHT, so all the information required to schedule tasks would be
distributed along, and available to, all the nodes in the HTC system. However,
in order to achieve the expected goals, additional features are necessary for
the DHT, including persistence, resilience and consistency. In the literature
we can find diverse proposals [18, 19, 20, 21, 22, 23, 24] to build a distributed
and highly scalable storage system from a P2P overlay, using replication and
coherence algorithms.

On top of a reliable DHT-based storage system, we can create a distributed
queue object, so all nodes in the system would know which tasks are waiting
and in which order they have to be run. All nodes implement a local scheduler
that will check the queue object to find the next awaiting task, and execute
it when the node is idle. Besides, the DHT storage system can be used as a
blackboard to store all the data needed by the tasks (programs, parameters,
input data, output data). This would allow nodes to launch tasks and then
disconnect from the system, if necessary. Whenever they rejoin it, if the task
has finished, results will be readily available in the system. The utilization

2.2 P2P storage systems 11

of a DHT permits every node in the system to make decisions about how to
run tasks, execute them in a certain order defined by a scheduling policy, and
make this without any central authority or any user intervention.

In the next section we review a collection of DHT systems that could be
valid for our purposes, and justify the choice of a particular one: Cassandra.

2.2 P2P storage systems

We propose to use a DHT system to store the information about the tasks
in our HTC system. But what are the characteristics required from a DHT
in order to consider it adequate for our purpose? We have stated that, in
order to build a distributed queue for our tasks, we have to include in the
design of the DHT some fault tolerance features, which are usually achieved
via replication. Consequently, we also need coherence protocols to maintain
the replicas synchronized, and failure detectors to detect which replicas are
off-line.

One of the first production systems integrating all these techniques was
Amazon’s Dynamo [16]. Dynamo is a key-value storage system based on Dis-
tributed Hash Tables which assures lookups in constant time and, due to
its replication and quorum techniques, provides high levels of scalability and
availability, with eventual consistency [25]. Brewer’s CAP theorem [26] (for
Consistency, Availability and Partition tolerance) states that, in distributed
systems, consistency, availability and partition-tolerance cannot be achieved
at the same time. So Dynamo designers decided to limit the consistency of the
system providing eventual consistency and gaining in system stability. Note
that the “eventual consistency” term means that all updates in the system
reach all replicas after some (undefined) time.

Dynamo has been the origin of a collection of systems based on it. Some of
them are key-value stores, such as Riak [27] or Scalaris [28]. Others are docu-
ment oriented, such as CouchDB [29], and others are wide columns stores such
as Hadoop File System [30] or Cassandra [17]. In all of these systems it is pos-
sible to implement our target distributed queue. We have chosen Cassandra
to build our prototype for several reasons. According to different benchmarks
from Yahoo [31], Cassandra has smaller read/write latency than other stor-
age systems designed for cloud computing. We can also highlight its tunable
consistency level and the richness of its data model, which enables several
implementations of a queue. Other systems provide strong consistency, but
at the cost of serializing writes, or under the assumption of reliable environ-
ments. With Cassandra we will have to deal with eventual consistency, but
we will have a robust, scalable storage system.

12 2 HTC over P2P

2.3 Cassandra

Cassandra was developed in 2008 by Facebook to improve its Inbox Search
tool. It was released to the Apache Foundation in 2009. It provides consis-
tent hashing/order preserving partitioning, a gossip-based algorithm to con-
trol membership, replication, anti-entropy algorithms to maintain consistency
between replicas and failure detection. These features give us a totally distri-
buted, fault tolerant and symmetric storage system with eventual consistency.
In this section we explain the general characteristics of this storage system,
just focusing on its data-model; however, in the next chapter, a deeper study
of Cassandra’s replication model will be made introducing stochastic models
for predicting availability.

Cassandra is a partitioned row store, where rows are organized into ta-
bles, named ColumnFamilies. Each row is composed of several columns and is
indexed by one or more of these columns, composing the primary key of the
table. This primary key is divided into two parts: the partition key and the
clustering key. The first part is called partition key because it determines in
which node (partition) a row is going to be stored, and can be formed by one
or multiple columns. The partition key is used in combination with a hash
function, the partitioner, to determine the node in which the row is going to
be stored and to define an order among rows in each table. Cassandra permits
to define customized partitioners, but several built-in functions are available:

e Random Partitioner: it uniformly distributes data across the system by
using MDb5 hashes of the keys. The possible range of hash values is from
0 to 2127 — 1.

e Murmur3 Partitioner: uniformly distributes data across the cluster based
on MurmurHash hashes. This hash function is known to be faster than
MD5. The possible range of hash values is from —263 to 4263

e ByteOrdered Partitioner: keeps an ordered distribution of data lexically by
key bytes. This partitioner is not recommended by Cassandra’s designers
because it may yield an unbalanced distribution of data and can cause
hot spots when performing sequential writes.

e OrderPreserving Partitioner: keeps a lexically ordered distribution of data
assuming that keys are UTF8 values. As the ByteOrdered Partitioner,
this partitioner can yield an unbalanced distribution of data so it is not
an recommended.

The clustering key, formed by zero or more columuns, is in charge of group-
ing and ordering the different rows (stored in the same partition) with the
same partition key. These rows will be stored on disk respecting the order
defined by the clustering key. When querying for rows in different partitions,
Cassandra can use the clustering order to retrieve the results in order. In the
first part of the query, already sorted rows from each partition are gathered
by the node performing the query. In the last part of the query, a final sorting
is made before returning the results to the client. This sorting is performed

2.3 Cassandra 13

by using the Mergesort algorithm [32]. Note that if the client wants to order
results by clustering key, Cassandra requires to specify in the query which
partition keys are requested. We could make a more general query, without
specifying the partition keys, but Cassandra would not be able to order the
results by the clustering key.

In Tables 2.1 and 2.2 we can see two examples of tables with different
numbers of columns acting as primary key (columns in bold represent those
columns included in the primary key). In these examples we have not defined
clustering keys, so the entire primary key is used as the partition key (in bold
and italics in the examples). In the first example, with only one column acting
as the primary key, we represent a table containing information about several
songs in a music service. Each song has a unique identifier that is used as
the primary key for the table. In the second one we can see an example of a
table with a composed partition key. The reason for choosing this kind of key
is in situations in which the data is not identified uniquely by a column and
we want a complete distribution of the rows (each row in a different node).
In the second example we show a table storing information about albums in
which we use the combination of “Name” and “Artist” to identify uniquely
each album.

Songs
ID |Title Album Artist Data
song; |Bohemian Rhapsody|A night at the opera|Queen
song. |Palabras para Julia |En el Olympia Paco Ibafez|. ..
songs|Where is my mind? |Surfer Rosa Pixies

Table 2.1: Example of ColumnFamily representing a list of songs.

Albums
Name Artist Songs|Year
A night at the opera Queen 12 1975
Master of Puppets Metallica 8 1986

The Man Who Sold the World|David Bowie|9 1970

Table 2.2: Example of a ColumnFamily representing a list of albums.

As an example of the use of clustering keys, we can imagine a table to
store multiple playlists in a music service. Each row represents one song of a
certain playlist; however, we would like to maintain some order among songs

14 2 HTC over P2P

so, when a playlist is requested, each song is retrieved in order. Therefore, we
have to include an extra column identifying the order of songs in the playlist.
The partition key of the playlist is an unique identifier per playlist while
the clustering key is the order of songs per playlist. In Table 2.3 we can see
a representation of this playlist table. The column in bold and italics is the
partition key while the column just in bold is the clustering key. Both columns
form the primary key. Note that if we used the “order” column as part of the
partition key instead of the clustering key, we would not be able to request
the different elements of a certain playlists in order (in this case the order
would be imposed by the partitioner function used).

Playlists
Playlist ID|Order|Song ID|Owner
playlist, 1 song: |userp
playlist, 1 song usery
playlist, 2 songs useri
playlist, 2 songs |userp

Table 2.3: Example of a ColumnFamily representing several playlists.

As can be seen, the main criteria used in Cassandra to access data is the
primary key defined per table. However, we can also define secondary indexes
over any non-primary column, which leads to a fast and efficient lookup of
data matching a certain condition. These indexes are stored in a distributed
way as each node is in charge of locally indexing the rows it stores. Cassandra
updates them automatically but they must be created manually by the user.
These indexes permit us to make queries on tables searching for specific rows
that match one or more criteria. For example, if we define a secondary index
for the “Artist” column of the table “Songs” (see Table 2.1) we could use it
to search for all the songs published by a certain artist with a single request.
Moreover, in order to fix conditions on a particular column, a secondary index
must exist for that column.

After presenting the main characteristics of Cassandra and its data model,
we now describe how our proposal of HTC-P2P system has been implemented
over Cassandra using these characteristics.

2.4 Design of the HTC-P2P system over Cassandra

We introduce first the expected functionalities of our proposal of HTC-P2P
and, secondly, how they are implemented on top of Cassandra.

2.4 Design of the HTC-P2P system over Cassandra 15
2.4.1 Functionalities of the proposed HTC-P2P system

The proposed HTC-P2P system is composed of workers that execute both
Cassandra and the local task scheduler. These workers are in charge of main-
taining the structure of Cassandra and executing tasks in a certain order. In
this chapter we use a non-strict FCFS order, but others are possible. Partic-
ularly, we will describe additional scheduling policies in Chapter 4.

To execute a task, the worker accesses the files associated to that task
stored in Cassandra. Once these files are available, the node executes the
task, storing the results again in Cassandra.

Users can connect to any worker in order to insert tasks and manage several
aspects of the HTC-P2P system, such as their workers (each user may add one
or several workers to the system), files and a list of their banned users (users
whose tasks will not be executed by the banner’s workers). This is possible
thanks to the utilization of a set of commands available in each worker.

These are the main features of the proposed HTC-P2P system:

e The default scheduling policy is a non-strict FCFS order. Task execution
order depends on the availability of appropriate workers.

e FEach user can upload files that are stored in a file system implemented on
top of Cassandra. These files are used by the user’s tasks as executables
and/or input files. The outputs of Tasks are also stored in the HTC-P2P
system as files.

e There is a blacklist system permitting users to ban other users.

e Workers survey other workers executing tasks, in order to detect failed
nodes and relaunch failed executions. This surveillance is made through a
heartbeat system.

e Any worker can be used as the entry point to the HTC system.

e Users can:

— Insert tasks from any worker.

— Manage the state of their tasks.
— Retrieve the results of tasks.

— Manage their files.

— Manage their black lists.

The operation of our system is as follows: when a user wants to submit a
new task from a worker node, it inserts the task’s relevant data into Cassandra
with state “Waiting” with a unique identifier. Additional files needed by each
task are stored into a distributed file system implemented on top of Cassandra.
Finally, it enqueues the task into the queue. After that, the user is free to
disconnect from the system: no additional information is required from the
submitting node. The results of executing a task are again stored in Cassandra,
ready for downloading when the user decides to rejoin the HTC system.

As previously mentioned, at each node there is a scheduling process in
charge of selecting tasks to run. When a node is idle and wants to execute
a task from the queue, the scheduler looks up the queue until it finds an

16 2 HTC over P2P

appropriate task, changing its state to Running and dequeuing it. After that,
it executes the task locally and, when finished, stores in Cassandra all the
results obtained from the execution. Finally, the task’s state is changed to
“Finished”.

During the execution of a task, the worker stores heartbeats periodically in
Cassandra. This allows other workers to survey the busy workers in order to
detect the failed ones. If one failed worker is detected, the tasks being executed
in that node are reinserted into the queue for re-execution. This process of
surveying other nodes is performed periodically by every alive node in the
system. In Figure 2.1 we can see the different states in which a task can be.

Insertion by user

Cancelation by user

Canceled Waiting

Reinsertion by user 4

Failure detection

Scheduling by surveilling node

Y

Running

Execution

Cancelation by user

A
Finished

Fig. 2.1: Workflow of states of tasks .

Note that the attributes of a task must match the ones from the worker
that wants to execute it. This process is called matchmaking and is in charge
of searching for good fits between tasks and workers. In other HTC systems,
for example HTCondor, this process is carried out by using an advertising
system where workers and tasks publish their characteristics. The manager of
this advertising system compares the different ads in order to pair tasks with
suitable workers. In our proposal each worker performs matchmaking during
the scheduling of tasks. Each task has some attributes that are indexed using
secondary indexes. These indexes are used by the workers to quickly search

2.4 Design of the HTC-P2P system over Cassandra 17

for suitable tasks. This way, workers can make a simple request to retrieve all
the waiting tasks that match their characteristics. We will talk later about
how we have implemented matchmaking over Cassandra. We now present how
Cassandra supports the necessary data structures for this HTC-P2P system.

2.4.2 Implementation

This proposal has been implemented using Cassandra version 1.2, with the
Cequel Cassandra Ruby client library version 1.2 [33]. Here are the different
tables required to implement the aforementioned features. The implementa-
tion of these tables in CQL, the Cassandra Query Language [34], can be found
at the end of this dissertation as an annex.

e Tasks: This table performs as the main store of tasks of the system. It
stores the different attributes of each task together with the state of the
task (See Figure 2.1). When a new task is inserted into the system, it is
stored in this table with the state “Waiting”. After that its attributes, for
matchmaking purposes, are inserted into the Queue table. The primary
key of this table is the unique identifier of each task!. In addition to the
attributes and the state already mentioned, this table includes a column
to store error messages and information about insertion, execution and
finalization times.

e Queue: This table acts as the main queue of the system. Each row stores
information needed by a task in order to be successfully executed, such as
its attributes together with the task owner’s identifier. The row primary
key is composed by a number obtained from the insertion time of the
task, which we call “bucket”, used as the partition key and the ID of
each task as the clustering key. The combination of both columns, the
bucket number and the ID, permits us to distribute the queue along all
the nodes of the system and to maintain a certain order among tasks. We
will explain how we maintain an ordered queue using these attributes and
how we obtain this “bucket” number later in this section. This table has
the following attributes, some of them indexed via secondary indexes to
perform the matchmaking between tasks and workers:

bucket, used as partition key.

— task_id: the ID of the task.

— user-id: the ID of the owner.

— proc: the type of processor needed.

— mem: maximum amount of memory needed by the task.

— so: operating system required by the task.

— disc: required disk space.

— libs: required libraries.

— tins: insertion time.

! a Universally Unique Identifier version 1 [35], or UUID, which is a 128-bit value
formed from a timestamp and the MAC address of the node generating it.

18

2 HTC over P2P

Users: This table stores information about each user in the system. The
attributes of each user are its ID, user name, complete name, email ad-
dress, and a password digest required for authentication purposes. The
primary key of this table is the user ID.

Workers: This table stores information about each worker in the system:
its owner, hostname, processor, memory, operating system, disc space and
installed libraries. It also includes a heartbeat attribute used by other
workers in the system to detect failed nodes in order to restart any work
being executed by them. The primary key of this table is the worker ID.
Files: This table is used to store the metadata of files in Cassandra. Each
row represents a file and its attributes, such as the file’s owner, the name
of the file, the path of the file, the size and the number of chunks in which
the file is distributed. The primary key of the table is the file ID.
Chunks: Each file stored in Cassandra is split into several chunks, each
one stored individually. Each chunk has a chunk ID, the ID of the file to
which it belongs, the size of the chunk, a SHA1 checksum and the data
stored in the chunk. Its primary key is the chunk ID.

File_chunks: This table stores a record of the chunks belonging to a file.
In this table, the file ID is used as the partition key while the chunk ID
is used for clustering purposes.

Task_files: This table stores a list of the files belonging to a specific task.
Each row contains the task and file IDs, and the file type (input file, binary
file or output file). The task ID is used as the partition key and the file
ID as the clustering key.

Blacklist: This table implements the blacklist system. Each user may
define which users are banned. If a certain user is banned by another
user, her/his tasks will not be executed in nodes belonging to the banner.
The primary key of the table is a combination of a user ID and the blocked
user ID.

Task_workers: This table’s purpose is two-fold: first, it permits the sys-
tem to know which worker has executed a task and, secondly, it permits
workers to compete in order to decide which worker will execute the task.
Each row has an attribute, score, which is a timestamp in order to give
priority to the first worker interested in the task; however, it could be re-
placed by any score permitting the system to implement different schedul-
ing policies (this issue will be contemplated in Chapter 4). The primary
key of the table is formed by the task ID, the score and the worker ID.

With respect to how we have implemented a distributed queue in Cas-

sandra, there are several ways to use its data model to store a queue. The
approach we have chosen assures the complete distribution of the elements
stored in the queue while allowing their in-order retrieval. There are two
main methods to query for rows in a table and retrieve them in order. The
first option is to use an order-preserving partitioner. However, this solution
may lead to an unbalanced distribution of data and to the creation of hot

2.4 Design of the HTC-P2P system over Cassandra 19

spots. However, using a non-ordered partitioner, although guaranteeing the
randomization of the data placement across the system, impedes the retrieving
of rows in a certain order.

Another solution consists of using a non-ordered partitioner with a clus-
tering key for ordering purposes. If we specify the partition keys required in
each query, Cassandra can use the clustering key to obtain the rows from dif-
ferent partitions in order. Therefore, we decided to implement our distributed
queue using a non-ordered partitioner, particularly the Random Partitioner,
and make groups of tasks, which we call “buckets”, that are W seconds close
in time. Each task in the queue is identified by two values: its “bucket” num-
ber, built from the insertion time, as the partition key and a UUID (built
also from the insertion time), as the clustering key. The partition key leads
to a complete distribution of task groups, buckets, across the system. Each
bucket is placed in a different point of the system because of the non-ordered
partitioner. The clustering key permits us to order the tasks in the queue by
timestamp. In the case that several tasks are inserted in the same instant of
time, and thus with the same timestamp and bucket number, the UUID can
be used to distinguish from each row as is generated from the MAC address
of the node and a random sequence.

To calculate the number of bucket, b, for a certain task, the time of inser-
tion, t;,s, is used together with the size of the bucket, W, and the number of
buckets N which is a parameter known by every node in the system. Equa-
tion 2.1 summarizes how b is obtained from the insertion time.

b= V;{;J modN (2.1)

The distribution of the different rows in the system depends on the number
of buckets, N, and the number of nodes of the system. Therefore, if there are
more buckets than nodes in the system, the queue will be totally distributed
and this query requires accessing every single node in the system, where each
access has constant cost. This implementation of the queue implies that, if
some of these nodes have failed and do not respond to the query, only the
buckets stored in those nodes will be affected and the system will still return
an answer to the query. With respect to the W parameter, it could be adjusted
according to the frequency tasks which are submitted to the system.

So, if we have a queue using the implementation described above, with N
buckets of size W, the CQL query in Listing 2.1 can be used to obtain the
first n elements from the queue. Note that, even if we are requesting all the
elements of the queue, the “WHERE IN” clause is required by Cassandra in
order to use the “ORDER BY” modifier, which is what Cassandra uses to
order results by means of the clustering key.

20 2 HTC over P2P

SELECT * FROM Queue

WHERE bucket IN (0, 1,...,N-1)
ORDER BY task_id
LIMIT n

Listing 2.1: Example of CQL query to obtain the first n elements from
the queue.

As we have already mentioned, each row in the queue has several at-
tributes. These attributes characterize each task and can be indexed via sec-
ondary indexes, permitting us to query the system searching for specific tasks
that match some attributes (matchmaking). For example, a worker node with
a “power64” CPU, 2 GB of RAM, “Linux” as operating system and 20 GB
of free disk would execute the following query in CQL to obtain the first 100
tasks that fit its attributes in a system with 5 buckets:

SELECT * FROM queue

WHERE bucket IN (0, 1, 2, 3, 4)
AND so = ’Linux’

AND proc = ’power64’

AND mem <= ’2°

AND disc <= 20’

ORDER BY task_id

LIMIT 100

Listing 2.2: Example of CQL query to obtain the first 100 elements
from the queue matching several attributes.

While developing our system, we found that the eventual consistency pro-
vided by Cassandra caused some problems. As previously mentioned, Cassan-
dra uses replication in order to increase fault-tolerance. As Cassandra does
not provide total consistency for each operation, depending on the consistency
level used (the number of replicas required to answer correctly to a certain
operation) the write operation takes some time to reach all the replicas and,
thus, subsequent reads could obtain stale data. Also, there are no atomic
transactions in Cassandra: the process performed by each worker to claim a
task requires several write and read operations. This, in combination with the
eventual consistency, can lead to several workers executing the same task. We
call this situation a collision between workers.

As a preliminary solution, we decided to use the Task_workers table as
an extra queue to order the different nodes interested in a task. To obtain all
the possible workers interested in a particular task ordered by its score, the
following query is used:

SELECT x FROM task_workers
WHERE task_id = ’task_1"’
ORDER BY score

2.5 Evaluation 21

However, this approach only reduces the probability of a collision, be-
cause the same consistency problem occurs when writing in this table. A
possible solution could be the use of an external locking mechanism, such as
Zookeeper [36], a Yahoo project that implements consensus. The original Cas-
sandra used Zookeeper as the locking mechanism, but this functionality was
removed when it was released to the Apache Foundation. Zookeeper could be
used to lock (serialize) the dequeuing of tasks avoiding more than one node
to execute the task. However, this solution would reduce Cassandra’s fault
tolerance because the entire system’s fault tolerance would depend on the
Zookeeper server or servers.

‘We measured that our preliminary solution is able to reduce collisions from
30% t0 0.5% (in a 30-node system). At the moment, we find this an acceptable
overhead. However, if a collision happens, as each worker executing a certain
task uses different rows to store the output from the execution, we can just
use one of the results and discard the remaining ones.

2.5 Evaluation

Although the design that we present in this chapter is based on Cassandra
1.2, our first prototype of the scheduler was developed with Cassandra 0.6.
Using this prototype, we performed several experiments to check the validity
of the system and measure its scalability.

Cassandra 0.6 has several differences and limitations, compared to Cas-
sandra 1.2: (1) limited implementation of clustering keys, (2) limited capacity
to order rows by clustering key, (3) lack of secondary indexes and (4) the
use of a different client protocol. Due to the limited capacity to order rows
in Cassandra 0.6, the ordering of the different rows between buckets must be
done in the client or using an ordered partitioner, which is not recommended.
Therefore, the implementation of the distributed queue in this prototype was
made using only one bucket. As each bucket is placed by the partitioner in
one node and replicated in n— 1 additional nodes, this prototype has a smaller
fault tolerance than one using N (> 1) buckets. Finally, this prototype did
not implement matchmaking (every node could execute any task). However,
we still think that the results obtained can be valuable.

In our experiments we have used a workload generator [37] that gener-
ates synthetic workloads for HT'C clusters, based on probability distributions.
Briefly, this generator produces a sequence of tasks with different execution
and arriving times. Varying these two parameters, the duration of tasks and
the frequency of the insertion of tasks, we can test our system under different
utilization scenarios.

During the experiments we have measured these performance figures:

e Bounded Slowdown: this is the waiting time of a task plus the running
time, normalized by the latter, and eliminating the emphasis on very short

22 2 HTC over P2P

tasks by means of putting in the denominator a commonly used thresh-
old of 10 seconds. In Equation 2.2 we can see the definition of bounded
slowdown, being w the waiting time of a task and r its running time. Re-
garding this value, note that in persistent saturation scenarios (those in
which the needs of the arriving tasks exceeds the capacity of the system),
it grows limitlessly.

w+r
= 1, — 2.2
bounded slowdown = max < maz (10, 7")) (2.2)

e Node utilization: the proportion of time devoted by nodes to execute tasks.
Expressed as a value between 0 and 1, or as a percentage.

e Scheduling Time: the time needed by an idle node to schedule a waiting
task.

e Collisions: the number of tasks in each workload that have been executed
by more than one worker.

We have tested our HTC-P2P system in two real setups. The first one uses
a cluster with 20 nodes, running on each of them Cassandra version 0.6 and
Ubuntu Server 8.10. Each node features an Intel Pentium 4 3.20 GHz with
1.5 GB of RAM and 80 GB of hard drive. The workload generator has been
adjusted to generate 20 tasks per node globally. Experiments last the time
required to consume all the generated tasks, and have been designed mainly
to assess the behaviour of our system under different workloads. Each test has
been repeated 10 times.

The second set of experiments has been carried out using different clusters
of sizes 10, 20, 40 and 80 nodes. These clusters were built using Amazon’s
Elastic Cloud Computing platform [38]. Each node has one core, 1.7 GB of
RAM and 160 GB of hard drive, running the same software described for
the first scenario. These tests have been designed to measure the scalability
of our proposal. In this case each test has been executed a minimum of 2
and a maximum of 5 times due to cost restrictions and after confirming that
measured figures from different runs show small variability.

Figures 2.2 to 2.4 summarize the results of the first set of experiments. In
these experiments the maximum task length goes from 2 to 150 seconds, and
load varies from 0.2 to 2.0 tasks/second per node. Figure 2.2 shows the mea-
sured system’s bounded slowdown for these load scenarios. Figure 2.3 shows
system’s usage. In order to analyse system performance both figures should
be studied together. The bounded slowdown is very small in almost all the si-
tuations. In the top-right corner it becomes the highest; this area corresponds
to a heavily loaded system, in which arriving tasks have to wait for nodes
to become available after processing those tasks already in the system. The
higher the load, the longer is the waiting time. The increase in the bounded
slowdown is, therefore, a consequence of the system’s load, but not an effect
of a bad scheduling.

2.5 Evaluation 23

2 —— — . 9

)
o
o c
< 2
@ b
0
Ty . &
= e
F 45 0
T 4L 4 b
] °
- c
: g
2 08 9 @
@ 3
0.6 -
04 4r 12
0.2 n | n | n 1 n 1 n 1

2.7182 7.38861 20.0837 54.5916 148.391
Task Max Duration (s)

Fig. 2.2: Bounded Slowdown (average of 10 runs). 20-node cluster. System
load: 0.2 - 2.0 tasks/second/node. Task maximum duration: 2 - 150 seconds

100
90
80

70

60

- 4 50

System Occupancy

- 4 40

System Load (jobs/s/node)

- - 30

0.4 -4 20

0.2 L L 1 I [
2.7182 7.38861 20.0837 54.5916 148.391
Task Max Duration (s)

Fig. 2.3: Node utilization (average of 10 runs). 20-node cluster. System load:
0.2 - 2.0 tasks/second/node. Task maximum duration: 2 - 150 seconds

Figure 2.4 illustrates the collision problem explained in Section 2.4. We
have measured how often a task is selected to be run by two or more workers.
For loads higher than 1.0 tasks/second per node this chance is lower that 1%,
independently of the execution time per task. The number of collisions rises
to more than 5% for low values of load. Obviously, the more idle nodes there
are in the system, the more likely it is that two nodes try to execute the same
task. As previously mentioned, this percentage is higher than 30% when our
partial solution is not used. This indicates that our proposal to tackle the
eventual consistency problem works well.

Scalability tests have been carried out using the following parameters of
the workload generator. The maximum task size was fixed to 150 seconds.

24 2 HTC over P2P

2 —— — — — : 6

System Load (jobs/s/node)
T
1
w
Collisions %

2.7182 7.38861 20.0837 54.5916 148.391
Task Max Duration (s)

Fig. 2.4: Percentage of Collisions (average of 10 runs). 20-node cluster. System
load: 0.2 - 2.0 tasks/second/node. Task maximum duration: 2 - 150 seconds

Load varies from 0.2 to 2.0 tasks/second per node. Experiments were run for
cluster sizes 10, 20, 40 and 80.

In Figure 2.5 we can see the node utilization for the four different sizes.
Notice how at load 1.0 tasks/second per node, utilization is near 85%, for all
sizes. In Table 2.4 we can see a summary of node utilization together with the
(per-node) deviation of this figure. At low loads deviation is higher than 7%
(meaning that it is highly probable that some nodes are idle while others are
busy), but when load increases, deviation decreases to less than 4% for any
system size. Therefore, for all cluster sizes tested, the system is able to accept
a high load level and to balance it evenly among participating nodes.

In Figures 2.6 and 2.7 we can see scheduling times and percentages of
collisions for different system sizes. If we focus on the scheduling time, we
can see that it is kept below 0.04 seconds for small systems (10, 20 nodes),
and below 0.06 for larger sizes (40, 80 nodes) — but in this case only for
highly loaded systems. The scheduling time is related to the cost of accessing
Cassandra. The fact that the scheduling process takes small times, smaller as
the system load rises, proves that our HTC-P2P system scales well with the
system size thanks to the scalability of Cassandra.

The percentage of collisions shows a similar trend: it is higher at low loads
(as expected), and decreases substantially at higher loads, stabilizing around
0.5%. We can state, therefore, that our way of dealing with the eventual
consistency problem scales well with system size as well as load.

2.5 Evaluation 25

100

T
10 nodes
20 nodes —e—
90 40 nodes ——-

80 nodes --—+---

80

70

A4
1/

20

System Occupancy %

10 I I I I I
0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2

Load (task/s/node)

Fig. 2.5: Average node utilization (in percentage). Variable size EC2 cluster.
System load: 0.2 - 2.0 tasks/second /node

Node Utilization

System size

10 20 40 80
Mean| o|Mean| o|Mean| o|Mean| o
0.2] 20.1/6.93| 19.8|7.65| 20.0| 8.5| 26.7|10.4
0.4] 39.2|5.89| 38.1({11.9| 38.6[12.2| 47.5|15.8
0.6| 57.73.97| 55.5|8.48| 56.4|9.57| 65.5|15.4
0.8 74.7|5.69| 71.0/6.69| 73.2(6.63| 77.8|7.76
1.0] 83.1|3.99| 85.8|3.49| 87.8|3.48| 84.4|9.28
1.2] 86.6|3.49| 87.5|3.92| 87.7|3.71| 89.1|9.24
1.4 88.8|3.03| 88.7|4.05| 87.7|3.49| 89.0|3.79
1.6] 89.9|3.75| 89.4|3.32| 87.9(3.45| 89.1|3.65
1.8| 90.8|3.51| 89.1|3.58| 87.6|3.71| 88.8|3.60
2.0l 91.5]3.56| 90.2|3.66| 87.8(3.33| 88.4|3.98

Load

Table 2.4: Node utilization in percentage. Node average and deviation, for
different system sizes and values of applied load

26 2 HTC over P2P

0.18 T T
10 nodes ——
5 20 nodes —e—
40 nodes ——%-
0.16 - 80 nodes ---+---
0.14 by
@ 012
[} \
£
= \
2 0.1 Frmes
c ==z
E] N =
3 A AN
° N p N
3 008 Sl S
* .
*_ N *\
0.06 >
R i S Ko o
B —ommmoeo S
0.04
W —
0.02 I I I I I I I I
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Load (task/s/node)

Fig. 2.6: Scheduling time for different system sizes. EC2 clusters. System load:
0.2 - 2.0 tasks/second/node

5.5 T T
10 nodes
20 nodes —e—
5 40 nodes ——*—
80 nodes ---+---
4.5
4 \
3.5 %
@ 3 g >N
2 N N
o * S
2 ~
S 25 *
o

N
\ \
\ \
1.5
\, \,

1 * ¥
05 \\+—»,..,,\,/’ R ===

0 I I I I I I I I

0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2

Load (task/s/node)

Fig. 2.7: Percentage of collisions for different system sizes. EC2 clusters. Sys-
tem load: 0.2 - 2.0 tasks/second/node

2.6 Related Work on P2P Computing 27

2.6 Related Work on P2P Computing

In the literature we can find several proposals of P2P computing systems. Next
we briefly describe some of them, paying attention to the way they fulfill or
fail to fulfill the desirable properties described in Section 2.1.

Some proposals fail to meet the first property: they use some centralized
mechanism for task scheduling. CompuP2P [39] is based on a DHT which
divides the nodes set between resource sellers and buyers. A leader node is
chosen, which takes care of the resource market. In [40] Chmaj et al. present
a system based on a structured overlay in which one of the nodes has the
master role, the tracker. This tracker, similar to the concept of tracker in the
BitTorrent protocol [41], is needed in order to schedule computing tasks and
distribute the files needed by the nodes.

A common model used for P2P computing systems is the super-peer model,
in which a group of nodes, the super-peers, form a P2P overlay. Workers
are connected to super-peers, which are in charge of scheduling tasks. When
a user wants to run any task, he asks nodes in the super-peer overlay to
search for idle workers. Examples of this model are JACEP2P-V2 [42] and
Mining@home [43]. A similar idea is implemented in CoDiP2P [44], which is
based on a tree-structured P2P network. It is built with the JXTA Java library,
used to construct non-structured P2P networks. In the tree structure, nodes
are differentiated between masters and slaves, and grouped in tree regions. In
each region, there is a master node in charge of the scheduling procedure. The
middleware is written in Java, and it can only execute Java programs linked
to a library developed by the CoDiP2P team. All these P2P systems have
several manager nodes, which could pose advantages in terms of scalability.
Still, they are not fully distributed: failures in a master node would negatively
affect, if not the whole system, parts of it.

WaveGrid [45] consists of a DHT overlay in which nodes are divided by
time-zones, so that, at a particular time, only the nodes in the night zone are
used. When the sun rises, tasks migrate to another time-zone still at night. In
this system the launcher node is the one in charge of choosing the execution
node; therefore, it should be permanently connected.

In [46, 47, 48, 49, 50] DHTs are used to store information about idle
nodes and resource claims in order to improve Grid systems. In these systems,
tasks are assigned to nodes in the overlay network using the DHT routing
capabilities. These nodes will be in charge of scheduling the tasks using the
information stored in the DHT to search for idle nodes, using a matchmaking
algorithm that performs range queries on the DHT over several criteria. This
has been widely studied in the literature [51, 52, 53, 54, 55, 56]. These systems
can be considered as fully distributed P2P computing systems, but they fail
to meet the third criterion: they lack any mechanism to ensure that tasks
are being executed in a particular order, or even that they will be eventually
executed.

28 2 HTC over P2P

2.7 Conclusions

In this chapter we have described an HTC system based on P2P networks.
Our goal was to build a totally decentralized HTC system based on highly
scalable and reliable P2P storage, maintaining these target characteristics: (1)
lack of central management points, (2) disconnected operation (3) and flexible
scheduling with support for (non-strict) FCFS execution order of tasks. For
this purpose, we have implemented a distributed queue system that manages
the execution of tasks over a group of nodes in a totally decentralized way.
We have explained the main characteristics of our design, and how it has been
implemented based on the Cassandra P2P storage system. We have carried
out some experiment sets to assess system behaviour, confirming that it works
as expected.

Some issues remain related to the eventual consistency provided by the
DHT storage. A mechanism to reduce it to manageable levels has already been
proposed and tested: the chance of collision is around 0.5 — 6% depending on
the system load. Cassandra is still evolving quickly. In more recent versions of
Cassandra, 2.0 and above, a version of the Paxos consensus algorithm [57] has
been implemented, permitting limited per-row transactions. Using this type
of transactions, the problem of collisions could be solved, but at the expense
of higher latency and lower fault-tolerance to perform the claiming operation.
For the moment we have not tested this possible solution, but we plan to do
so in future releases of our HTC-P2P system.

The actual behaviour of our system under failure scenarios has not been
tested exhaustively. In Chapter 3, we have modelled the availability of Cassan-
dra. These models could be used to predict the availability of our HTC-P2P
system under several failure scenarios, however we have yet to carry out ex-
tensive experiments measuring how the failures affect our HTC-P2P system.

We plan to enhance the HTC-P2P system by adding tools to simplify its
utilization, allowing users to submit not only individual tasks but also more
sophisticated workflows, such as those based on acyclic data flows (applica-
tions that consists of a series of distinct jobs, where each task reads data from
stable storage and writes it back to stable storage) or multi-pass applications,
those that include iterative algorithms or streaming applications. Finally we
have plans to include mechanisms to allow task checkpointing in order to allow
higher degrees of fault-tolerance and load balance via task migration.

3

Modeling the availability of Cassandra

Recent works on Distributed Hash Tables (DHT) [10], have attracted atten-
tion because of the possibilities that this type of systems offers in terms of
availability, scalability and fault tolerance. One of these proposals is Cassan-
dra [17], a non-relational database system, proposed by Facebook and based
on the replication model of Amazon’s Dynamo [16]. This replication model
is considered to be highly scalable, providing a high availability. However, we
could ask ourselves how reliable these systems are. If we consider actual sys-
tems serving thousands of requests per unit of time, even small gaps of data
unavailability could correspond to large amounts of lost revenue.

In this chapter we study the capability of Cassandra, the P2P storage
system in which we base the HTC-P2P system described in Chapter 2, to
deal with node failures. To this extent, we have developed analytical models
of the availability of Cassandra when confronting two different types of failures
that resemble typical malfunction situations:

e Transient failures: those which imply the recovery of a failed node after
some time, without any loss of the already stored information. However,
note that these nodes will lose updates during their off-line period. This
type of failures can be caused by network or power outages and also by
node disconnections caused by users (churning).

e Memory-less failures: these would include a total crash of a node, losing
the stored information. The node has to be totally or parcially replaced
(for example, substituting a broken hard disk) and the data that should
be stored in that node must be recovered.

The models we propose are based on the stochastic modeling of replica
groups using Markov chains [58]. Markov chains are stochastic processes that
obey the Markov property, which establishes that future states of a system de-
pend only on the current state but not on the previous ones. More information
about these mathematical models can be found in [59].

As Cassandra’s replication model is based on Dynamo, these models could
also be applicable, with some effort, to the latter one as well as to other sys-

30 3 Modeling the availability of Cassandra

tems based on it, such as LinkedIn Project Voldemort [60] or Basho Riak [27].
The first model we present depends only on the replication strategy of Cassan-
dra, so it is directly applicable to these systems. The second model comprises
the reparation processes implemented in Cassandra, which could be differ-
ent in each of these systems so, in order to adapt the model to them, their
reparation processes should be modelled properly.

In order to validate the proposed models, we have run different experi-
ments on a real Cassandra cluster simulating failures and measuring system
availability while performing sets of I/O operations. We define the system
as available when it successfully replies when an operation is requested. We
compare the availability predicted by our models with that measured on the
real system, and conclude that our model accurately describes the availability
of Cassandra.

The remainder of the chapter is structured as follows. Section 3.1 presents
an overview of Cassandra and its main characteristics. Section 3.2 explains
the models that approximate Cassandra’s behavior. In Section 3.3 we carry
out a set of experiments on a real system with the aim of comparing the
results obtained with the availability provided by the theoretical models. In
Section 3.4 we can find several use cases showing how the models can be
used to analyze a variety of applications based on Cassandra. Section 3.5 is
devoted to provide a summary of the related work about failure models in
P2P networks. In Section 3.6 we present some conclusions and a discussion of
future lines of work.

3.1 An overview of the architecture of Cassandra

Cassandra is a distributed storage system based on the concept of Distributed
Hash Table (DHT) [10] that uses data replication in order to improve availa-
bility. As said in Chapter 1, a DHT is a structured peer-to-peer system which
stores {key, value} pairs. Most of the existing DHTs use a look-up algorithm
which permits the system to reach any piece of data with a complexity of
O(logm) hops, where m is the number of nodes in the system. This is due
to the use of routing tables with partial information, usually with O(logm)
entries, obtaining a good trade-off between time and space costs. However, in
Cassandra, nodes are able to reach any point of the system in constant time
(O(1) complexity) at the expense of having routing tables of size O(m) at
each node.

In Cassandra, the data model is slightly different from a typical DHT.
Instead of storing single values, each value is an structured tuple named Col-
umn Family. Each column of the tuple has a name, a value and a timestamp.
This data model, proposed in [61] for Google’s BigTable, is becoming a popu-
lar alternative to the relational model in contexts where scalability and fault
tolerance are critical.

3.1 An overview of the architecture of Cassandra 31

All the nodes in Cassandra are peers; all have the same roles and respon-
sibilities. Nodes are virtually interconnected in a one-directional ring fashion.
In this ring, each node is identified by a token, which is used to calculate its
position in the ring. The token may have different lengths depending on the
partitioner used (see Section 2.3 in Chapter 2), but usually it is a 128-bit
string, which allows a maximum of 2!28 keys.

Values are stored as follows: each value is identified by a key; this key
is transformed into a 128-bit string using a strong hash function, MD5 if
the system uses the Random Order Partitioner. This string is then used to
select the node that stores the value, usually the one whose token is the
nearest counterclockwise in the key space. As Cassandra uses replication, there
are n replicas for each object stored in different nodes. Therefore, for each
stored object, Cassandra selects a group of n — 1 additional nodes, usually
those following the first replica node along the ring. Cassandra can also be
configured to carry out a different distribution of replicas. In Figure 3.1 we
can see an example of a Cassandra system composed of 4 nodes, where 4
objects have been stored in the system with a replica factor of 3. Observe how
the first replica of each object is stored in each of the nodes and how the two
subsequent replicas are distributed in the following nodes of the ring making
up four replica groups, one per object, being a replica group the group of
nodes that hold all the replicas of one or more objects.

Fig. 3.1: Example of replica distribution in a system of 4 nodes with replica
size of 3.

In order to provide a high availability and partition tolerance, Cassandra
provides eventual consistency, which means that updates in any object takes
some time to reach every replica in the system. As the data is replicated, the
latest version of some object is stored on some node in the cluster, however
older versions are still on other nodes and can be sometimes obtained until the
latest version reaches all the nodes. This eventual consistency is tunable per
operation by selecting the number of replicas, denoted by k, required to com-

32 3 Modeling the availability of Cassandra

plete an operation satisfactorily. When performing read and write operations
over Cassandra, a consistency level in Cassandra’s terminology is chosen. In
the list below, we define the consistency levels most widely used:

e ONE: only one node is required to reply correctly.
e QUORUM: | %] + 1 nodes must reply.
e ALL: all the n nodes participating in the replica group must reply.

The combination of these consistency levels for read and write operations
will determine the time required by the system to reach a consistent state.
According to [62], when the number of replicas queried for reads (r) plus the
number of replicas queried for write operations (w) is larger than the total
number of replicas (n), or r + w > n, we say that Cassandra has strong
consistency, because the read operations always obtain the latest version of
the requested data. However, higher consistency levels will result in higher
latencies, so we could be interested in weaker consistencies to reduce latency.
We have to take this effect into account when selecting the best replica size
and consistency level used per operation.

In [62], Bailis et al. propose a model to quantify eventual consistency. Using
their model we can obtain the probability of retrieving stale data A seconds
after performing a write operation, depending on the consistency level used
and the replica size selected. This model shows that the higher the consistency
level selected, the smaller is the probability of obtaining stale data. They also
prove that higher replica sizes imply higher latencies to obtain the latest
possible version of a data element.

In order to handle failures, Cassandra has several built-in repairing pro-
cesses. The first method is Read Repair. This mechanism is in charge of
updating outdated replicas of an object when performing a read operation.
During read operations, the system checks if the k replicas providing an an-
swer are up-to-date. If not, after returning the reply to the client, obsolete
replicas are updated in the background. A configurable parameter read repair
chance determines the probability of Read Repair to be executed over the out-
dated replicas. However, this parameter only affects Read Repair behavior for
consistency level ONE. When other consistencies are in use, outdated replicas
are always repaired using this procedure.

The second method is called Anti-Entropy Repair. This method has to
be triggered by a system administrator. When executed in a node, the node
exchanges information with its replica group companions about the Column
Families stored by them in order to search for the most up-to-date data. As a
result, all the replicas are updated with the latest values. This procedure can
be executed only when there are no failed nodes in the replica group.

Finally, there is a repairing process for writes, called Hinted Handoff.
This process is in charge of replaying writes over missing replicas. When a
write is performed and some of the replicas are off-line, a hint can be written
in another alive node until the off-line replica goes back on-line. Note that

3.1 An overview of the architecture of Cassandra 33

any hint stored for replay does not count to achieve the requirements of the
consistency level used, in terms of nodes reached by the write operation.

For the purpose of maintaining the system operational, Cassandra imple-
ments a membership protocol and a failure detector. Membership is based on
Scuttlebutt [63], a very efficient gossip-based mechanism. Proposed in [64],
gossip can be seen as an epidemic, where information plays the role of a
virus, and learning about the information can be seen as the infection pro-
cess. Each participant periodically communicates with a randomly selected
node to exchange information. This way, the updates in the shared data are
spread through the system with a logarithmic effort, O(logm).

Cassandra implements a push-pull gossip variation in each node to build
a global view of the nodes belonging to the system. Once a second, every
alive node selects another alive node at random in order to exchange infor-
mation about the rest of nodes in the system. According to [65], the com-
plexity of this gossip mode to spread some information to the entire system
is O (logs m + In (Inm)) rounds of gossip for m — oo, using O (mIn (Inm))
messages to infect the entire system. In Cassandra each round is completed
within one second but, as rounds are not synchronized between nodes, this
time span can only be seen as an upper bound of the delay induced by gossip
when spreading information.

Each time that a gossip message with information about an alive node is
received, Cassandra stores the arrival time for each alive node in a heartbeat
window. This information is used after the gossip round by the failure detector
to estimate which nodes are still alive and which ones are considered dead.
Cassandra uses the ¢ accrual failure detector [66] in order to estimate if a
node is alive or not, avoiding communicating with it in the latter case. The
basic idea of this failure detector is to estimate a suspicion level ¢ for each
node. This value is computed dynamically, based on the values stored in the
heartbeat window. This way current network and node status are properly
reflected. This value is compared to a threshold @, which is used to decide if
the node is dead. The value of this threshold determines the time required by
the failure detector to identify a problem, as well as the achieved accuracy.
The higher the value of @, the longer it takes to detect a dead node, but also
the lower the risk of making a mistake.

Now that we have introduced the structure of the system, let us study its
behavior from the point of view of the user. A write or read request submitted
by a client application can be served by any node in the system. When a
client connects to a Cassandra node to perform an operation, that node acts
as the coordinator. The task of the coordinator of the operation is to behave
as a proxy between the client and the nodes that store the requested data.
Additionally, the coordinator determines which nodes in the ring are accessed,
based on the system configuration and the replica placement strategy.

With regard to writes, the coordinator node sends the write request to all
the replicas. When the required number of nodes, as determined by the consis-
tency level, responds affirmatively as regards the completion of the operation,

34 3 Modeling the availability of Cassandra

the answer is sent to the client. In Figure 3.2 we can observe a write operation
in a Cassandra system with replica size of 3 and using consistency level ONE.
Node 6 performs as a proxy for client A and forwards the operation to each
replica (1, 2, and 3). Because of the consistency level, the coordinator only
waits for one of the answers before notifying the client about the result. The
remaining nodes in the replica set perform the update asynchronously.

In the case of read operations, the coordinator sends the read request
to k replicas and waits until the nodes respond. The coordinator compares
all the timestamps of the replies and returns the data corresponding to the
most recent timestamp, executing Read Repair if needed over the remaining
n—k nodes. In Figure 3.3 we show a read operation in a 3-replica system using
QUORUM consistency level. In this case, nodes 1 and 3 answer simultaneously.
Let us suppose that node 2 has out-of-date data. As the consistency level is
QUORUM, the data is sent to the client because there are L%J + 1 answers
(from 1 and 3). In addition, a Read Repair process is executed in parallel in
order to update the data stored in node 2.

Fig. 3.2: Example of a write operation with £ = 3 and consistency level ONE.
Client is node A, replicas are nodes 1, 2 and 3. Gray circles represent replicas
containing up-to-date data.

Having described the architecture of Cassandra and its functionalities, let
us see our proposals to model it.

3.2 Stochastic failure models for Cassandra

A Cassandra system with m nodes can be seen as an aggregation of m replica
groups, where each group stores several objects. Assuming that workloads

3.2 Stochastic failure models for Cassandra 35

Fig. 3.3: Example of a read operation with £ = 3 and consistency level QUO-
RUM. Client is node A, replicas are nodes 1, 2 and 3. Gray circles represent
replicas containing up-to-date data.

are evenly distributed along the entire set of stored objects, we can model
the whole system only focusing on one particular replica group. In the case
workloads are note evenly distributed, the whole system could be modelled
by a mixture of models (one for each replica group).

Each replica group consists of n nodes that hold copies of the same data.
The replica group is considered to be working if at least k nodes in the group
are working, where k depends on the consistency level chosen. If level ONE
is selected then k = 1, because only one of the replicas needs to be present
in order to successfully complete an operation. For QUORUM consistency
level, k = | 5] + 1. Finally, consistency level ALL means that k& = n. An
n-component system that works if and only if at least k& of the n components
work is called a k-out-of-n:G system [67].

In this Section we propose two different models, one for each type of fail-
ure: transient and memory-less. These models will be helpful to analyse the
theoretical behavior of Cassandra. Their common characteristics are the fol-
lowing:

1. The replica group is a k-out-of-n:G structure.

2. A repaired node is as good as a no-failed one.

3. Each node is responsible for its own recovery. There is no master node in
charge of the recovery process.

4. Each node is independent from the others.

5. Uptime and downtime of each node follow exponential distributions with
parameters A and p respectively, the same for all nodes.

36 3 Modeling the availability of Cassandra
3.2.1 Modelling transient failures

Kuo et al. [67] propose a general repairable k-out-of-n:G system model with
multiple repair facilities, which is based on Markov models of replica groups
widely used in the literature. For example, in [68, 69] these Markov models
were used to analyze the reliability of computer networks. Focusing on P2P
networks, data persistence [70] and optimal data placement [71] have also been
studied by means of Markov models. Chun et al. used in [20] a similar model
to propose an efficient replica maintenance algorithm for Carbonite, another
DHT storage system.

Kuo et al. assumed that, once the system has more than n — k failed
components, its life cycle is complete and no more degradation is possible.
In the case of Cassandra, even when there are not enough nodes to perform
operations correctly with a certain consistency level, the system continues
working so that more degradation is possible. Moreover, the failed nodes could
also recover by themselves, so that the replica group could eventually return
to a working state.

The failure model we propose can be described as follows:

1. We only consider transient failures.

2. The replica group is considered failed when the number of failed nodes is
larger than n — k.

3. Even in a failed state, more units can fail and recover.

Notation:

e N(t): state of the replica group at time t. It denotes the number of failed

nodes, and can take values {0,1,...,n—k+1,...,n}.

¢: number of failed nodes in the replica group, ¢ € {0,1,...,n}.

A;: failure rate of the replica group when there are ¢ failed nodes.

1;: recuperation rate of the replica group when there are ¢ failed nodes.

P;(t): probability that there are ¢ failed nodes in the replica group at time

t.

e A(t): point availability at time ¢. The probability of the replica group
being operational at time ¢.

o A: steady-state availability of the replica group.

If we assume that on-line time and off-line time of a given node are ex-
ponentially distributed, then {N(¢),t > 0} forms a continuous-time homoge-
neous Markov process [72] with state space 2 = {0,1,...,n —k+1,...,n}.
The set of working states is W = {0,1,...,n — k} and the set of failed states
isF={n-k+1,...,n}.

Figure 3.4 is a graphical representation of the proposed model. When the
group is in state i, there are 7 failed nodes and n—i working nodes. The failure
rate at state ¢ is \; = (n — i)\. If we assume that there are n recuperation
facilities, then p; = ip.

3.2 Stochastic failure models for Cassandra 37

k)\n-k+1

-1
Mnk+1 Miok42 Hn

Fig. 3.4: General repairable Markov model describing a k-out-of-n:G system
with transient failures. The gray states are non-working states.

3A 2\ A

H 2u 3u

Fig. 3.5: An example of a Markov model of a 3-replica group with consistency
level ONE.

In Figure 3.5 we can see an example with three nodes and consistency level
ONE, that is, £ = 1. In this case only the third state is considered as failed.
The point availability can be computed as:

n

A)y=1- > PRt (3.1)

i=n—k+1

Equation 3.1 shows that the availability of a k-out-of-n:G system is the
probability of having k or more nodes working at any time. To calculate the
steady-state availability, that is, the availability of the replica group when it
is in a steady state, the following equation is used:

A= lim A(t) (3.2)

t—o00

There is a closed form solution [72] for this equation (3.2):

e B OG0 e

When considering transient failures, we expect no data loss along the life-
time of the system, but the number of failures affects the availability of the
stored objects; so we consider the steady-state availability a good metric to
measure the fault tolerance of the system.

We define a stable system as one in which p is several orders of magnitude
larger than A (> A). An unstable system is one in which g ~ A. Examples

38 3 Modeling the availability of Cassandra

of stable systems are storage clusters such as those considered by Ford et al.
in [73]. A volunteer computing system such as BOINC [5] could be an example
of an unstable scenario.

Using this model, we have computed the theoretical steady-state availabi-
lity for a replica group with three different replica sizes, n = {3,9,27} using
three consistency levels: ONE, QUORUM and ALL. In order to analyze the be-
havior of Cassandra in different stability scenarios, we have tested these ranges
for A and p: A = {107%,1075,...,1078} and p = {107%,107°,...,1078}. In
Figure 3.6 we can see the availabilities for each configuration.

Cons: ONE Cons: QUORUM Cons: ALL

Availability
1.00

075

© 050

Fig. 3.6: Predicted steady-state availability for different replica sizes (3, 9
and 27) and different consistency levels (ONE, QUORUM and ALL), under
different stability scenarios for transient failures.

As can be expected, the availability predicted by the model grows with the
recuperation rate u. Regarding the behavior of Cassandra with different con-
sistency levels and replica sizes, when using consistency level ONE, Cassandra
is able to work in rather unstable scenarios. This behavior is improved if Cas-
sandra uses larger replica sizes. Using consistency level QUORUM permits the
system to work in the scenarios where 1 ~ A. In this case, even the utilization
of this consistency level in addition with larger replica sizes does not change
the availability of the system but, the larger the replica sizes, the faster is
the transition of the system from total unavailability to total availability. In

3.2 Stochastic failure models for Cassandra 39

the case of using consistency level ALL, the availability of the system deteri-
orates as the replica size grows. In this case, a system using consistency level
ALL can be usable only in fairly stable environments. This behavior is derived
from the number of operational states in the model (see Figure 3.4), which
increases with the replica size — but not for consistency level ALL, a case in
which only a single state is operational. Therefore, for ALL, large replica sizes
are counter-productive in terms of availability. We should not ignore that, in
addition to availability, getting up-to-date data is also desirable, and higher
consistency levels would be recommendable for this purpose.

The model, therefore, shows that Cassandra can operate with excellent
availability in stable systems. However, when this property is not met, ac-
tual availability strongly depends on system properties (failure and reparation
rates) and Cassandra configuration parameters (replica size and consistency
level). In this case, the model we propose can be of great help for the system
administrator in order to choose the best parameters for the service wanted
to be offered.

3.2.2 Modeling memory-less failures

In order to use Markov models to describe memory-less failures, we need
to introduce the concept of fault coverage. It is defined as the probability
of a system to recover given that faults occur [74]. When a failure is not
perfectly covered, the system falls into a situation where no more reparation
is possible. In [75], Akhtar proposes the utilization of Markov models with
absorbing states to describe this situation: an absorbing state is one in which
all the nodes have failed and, thus, there is no possible recuperation. Akhtar
considers a certain parameter p, that controls the probability of a failure being
repaired correctly. If a failure is not perfectly recovered, the model considers
that the system has failed catastrophically and falls into the absorbing state.

In the case of Cassandra, we have three different repairing methods that
can affect the coverage of the failure. Hinted Handoff does not repair a replica
if the node has lost all the information it stored before a failure; it is only useful
to finish write operations in the presence of failures, so we are not going to
consider it. Anti-Entropy Repair can be executed by an administrator after
a node returns from a memory-less failure if there are no more failed nodes
in that group. As a consequence of this repairing method all the nodes from
a replica group are repaired. Read Repair can also be useful, as it can repair
any object if a read operation is performed over it. If these repairing processes
do not succeed before more alive nodes fail, we say that the failures have not
been perfectly covered and, therefore, the replica group eventually falls into
an absorbing state, where the system is considered as failed. The model can
be described as follows:

1. We only take into account memory-less failures.
2. Nodes can be: alive, failed, or alive but not repaired.

40 3 Modeling the availability of Cassandra

©w

Each node executes Anti-Entropy Repair when going back on-line.

4. Read Repair is executed for all read operations depending on the consis-
tency level:

o With consistency level ONE, the execution of Read Repair will depend
on the parameter read repair chance which determines the probability
of Read Repair to be executed over the outdated replicas.

e With higher consistencies Read Repair is executed in each read ope-
ration, the same effect as if read repair chance = 1.

5. Read operations follow an exponential distribution of parameter A;,, the
same for all nodes.

6. Each object has a probability P,.c.ss of being accessed. This probability
depends on the access pattern. An access pattern where there are some ob-
jects more accessed than others will result in different per-object P,ccess-

7. The replica group is considered failed when there is no data stored in the
alive nodes, or when there are no alive nodes.

8. Once the replica group has failed, it is not repairable.

Notation:

e n: number of nodes of the replica group.

e k: consistency level used.

e i: number of alive but not repaired nodes in the replica group, i €
{0,1,...,n}.

e j: number of failed nodes in the replica group, j € {0,1,...,n}.

e); ;: failure rate of the replica group when there are i alive but not repaired
nodes and j failed nodes.

e 1i;: recuperation rate of the replica group when there are j failed nodes.

A\;: failure rate of the replica group when there are i alive but not repaired

nodes.

«: rate of Read Repair of the system over one object.

B: rate of Anti-Entropy Repair of a node.

Nio: read rate of each reader.

P,ccess: probability of accessing the modeled object.

rr: read repair chance. For consistency level ONE, 0 < rr < 1. For other

consistencies the system considers rr = 1.

Each state of the Markov model represents the situation of all nodes in
the replica group: they can be alive, failed or alive but not repaired. A state
has the form X; ;, where i represents the number of alive but not repaired
nodes and j is the number of failed nodes. The absorbing state is called X,,,
representing all the states X; ; where i + j = n and thus, the system is not
recoverable.

Alive nodes fail with a failure rate of A; ; = (n — (i + j))A. Failed nodes
come back alive with a rate of j1; = ju. Alive but not repaired nodes fail with
a failure rate of \; = iA.

3.2 Stochastic failure models for Cassandra 41

Regarding the Read Repair process, the rate o depends on the probability
of reading the object stored in that replica group, which depends on the
number of possible readers, m, the read rate of each reader, \;,, and the
probability of reading a specific object from the total number of objects,
P,ccess- Therefore:

o = Pyccess - M Aio (34)

It should be noted that Equation 3.4 depends on the modeled data access
pattern. In a real scenario, it is usual to access some objects more often than
others, so, the probability of finding those “popular” objects updated is higher
than for other, less accessed, objects. Therefore, these “popular” objects will
be repaired more frequently.

Finally, the Anti-Entropy Repair rate § depends on the duration of an
Anti-Entropy Repair process. We describe in Section 3.3.2 how we have de-
termined the (3 rate.

Reparations cannot start until other nodes have noticed that the repairing
node is alive. This process is done using the gossip protocol explained before.
This process will condition the reparation time required by each reparation
process. If we consider that the time required by each reparation process is the
inverse of each rate, a and 3, we can modify these times to include the time
required by gossip to detect the node as alive. As said, the gossip complexity
is O (logs m + In (Inm)). We will use this expression as an upper bound of the
time required by gossip to spread the information about the node.

tgossip = logz m + In (Inm) (3.5)

Taking into account this expression, we could modify the reparation times
required by each repairing method to include #goss4p:

1
trr = o + tgossip (3.6)

1
tAg = B + tgossip (3.7)

Being tgr the ReadRepair reparation time and ¢ 45 the Anti-Entropy repara-
tion time. The inverse of each of the reparation times will be the rate of each
repairing method, taking into account gossip.

The model also needs to take into account that, after a node recovers from
a failure and goes back to the on-line state, some time is required to set up
again the Cassandra process. From the point of view of availability, this boot
time tpoo¢ is off-line time. Therefore, the offline time of the node must be
computed as:

1
toffline = ; + Lhoot (38)

The inverse of this time will be the reparation rate parameter of each node.

42 3 Modeling the availability of Cassandra

In Figure 3.7 we show this failure model with imperfect failure coverage.
The model has w + 1 states. In Figure 3.8 we can see an example of this
model for a 3-replica group.

Mo,n-1

Fig. 3.7: A repairable Markov model describing a k-out-of-n:G system with
memory-less failures. The gray state is the absorbing one.

We have used this model to compute the availability of the system and
the Mean Time To Failure, or MTTF, which is the time required by a replica
group to arrive to state X,,.

To compute both metrics we have used the Queueing Toolbox for Oc-
tave [76] and SHARPE [77]. Both are general hierarchical modelling tools that
analyse stochastic models of reliability, availability and performance. These
packages take into account the related Markov reward model [78]. The Markov
reward model is built by considering the original Markov model, where each
state has an associated reward rate r; ;. From this reward model, we can cal-
culate the mean time spent in each state, 7; ;. The sum of all these times
is the MTTF. By considering the fraction of time from the MTTF spent
in each state and the associated reward rate of the state, we can obtain the
availability A of the model for a specific configuration during this period:

3.2 Stochastic failure models for Cassandra 43

a*rr+p

Fig. 3.8: A Markov model of a 3-replica group with memory-less failures. The
gray state is the absorbing one.

n—1ln—i—1

MTTF =71, + Z Z Ti,j (3.9)

i=0 j=0

n—1ln—i—1

T Tij
A=p .— 2 P R 3.10
" MTTF +; Jz::o "Ll MTTF (3.10)

where 7, and r,, are the time spent and reward rate of the state X,,.

To calculate these equations, we need the values for r; ; and 7; ;. The last
one is given by 7; ; = fOOC P, j(x)dx, where P; ;(x) is the probability of being
in state X;; at time x. With respect to the reward rate, it depends on the
consistency level used and can be computed as:

Q%%@,n—jzkAk<n

Tig =\ 1 j=0Ak=n (3.11)

0 otherwise

The reward rates r; ; are the fraction of requests received by the system
that will be answered correctly, which depends on the number of nodes alive
and repaired. For example in Equation 3.11, when n —j > kA k < n each
request will access k nodes, so the reward rate is the number of combinations

44 3 Modeling the availability of Cassandra

of k nodes taken from the n—j alive nodes, minus the number of combinations
in which only alive but unrepaired nodes are accessed, divided by the number
of combinations of k nodes taken from the total n nodes in the replica group.

We have computed the MTTF and availability of a system with replica size
3, 300 data objects, all of them with the same probability of access, \;, = 0.1,
different values of A = {0.01,0.02,...,0.1}, and p = 10A. The choice of these
parameters was done to study availability in relatively unstable systems. From
Equation 3.4 we compute o« = 0.01. Finally, we have tested different values of 3
to study the impact of this repairing method in Cassandra (3 = {0.01,0.1,1}).
Figure 3.9 shows the results obtained. We can see that the more unstable the
system is, the shorter the MTTF is and the smaller the availability is. For
the selected parameters, larger values of 8 (which means shorter execution
times of the Anti-Entropy Repair) result in higher MTTFs. However, our
model states that, for more stable systems, 8 has almost no influence on the
MTTF. This is because in these systems the impact of repairing a node is
not significant compared to the long duration of on-line times of the nodes.
However, it should be noted that this parameter depends also on the amount
of data stored in each node. Large datasets will take longer to be transfered
when repairing a failed node, negatively affecting system availability.

0.9 p
2
= — 0.01
Z08
S| e T e] e 0.1
o7 :
< ---|1

0.6

0.5

' 0 ' 0 ' 0 0 0 ' 0
001 002 003 004 005 006 007 008 009 0.10
A

2500 -

2000 - p
@ 4500 — 001
=

----- 0.1

=1 -
£ 1000

Fig. 3.9: Availability and MTTF for a system with memory-less failures for dif-
ferent values of 8, n =3, k=1, a =0.01, \;, = 0.1, A = {0.01,0.02,...,0.1}
and p = 10\

The frequent activation of ReadRepair (in scenarios with consistency ONE,
because ReadRepair is always executed for higher consistency levels) improves
significantly the values of MTTF and availability. We show this in Figure 3.10,

3.3 Validating the models 45

which summarizes the availability and MTTF computed for a system with
replica size 3, 300 data objects, A = {0.01,0.02,...,0.1}, and p = 10\, with
consistency ONE. S has been fixed to 0.01, « = 1, and ReadRepair chance
rr = {0.01,0.1,1}. Clearly, MTTF and availability grow with rr.

‘We must take into consideration that the ReadRepair reparation process
is executed only as a side-effect of a read operation over an object that is
not up-to-date. Therefore, it will rarely run for infrequently-accessed objects,
while being executed more frequently for popular objects. The administrator
may select, in a per-table basis, the value of rr.

o =
© o
PR

®
L

Availability
o o
3
)

o
>

o
o

2500
2000 \\ "
E 1500
E 1000

500

Fig. 3.10: Availability and MTTF for a system with memory-less failures for
different values of ReadRepair chance rr, n = 3, k =1, 8 = 0.01, a = 1,
A={0.01,0.02,...,0.1} and p = 10A.

3.3 Validating the models

In order to validate our models, we have made an analysis of the behavior
of a real Cassandra system, comparing the obtained availability with that
predicted by the models.

The experimentation platform consists of a cluster of 30 nodes. Each node
has an Intel(R) Core(TM)2 6320 @1.86GHz processor, 2 GB of RAM, a 150
GB hard-drive and a Gigabit Ethernet card. All nodes are configured with
Ubuntu Server 12.04.1, Apache Cassandra 1.2.1 and Ruby Cassandra 0.12.2.
In addition, each node is configured with a token which guarantees that the
key space is evenly distributed along the nodes.

Our purpose is to measure the availability of the system when perform-
ing I/O operations over multiple objects. For this purpose, we have created

46 3 Modeling the availability of Cassandra

a Column Family to store the different objects to be accessed during the ex-
periments. In total, we have 10 objects per node on average, each one filled
with L random bytes, where L is sampled from a uniform distribution with
parameters 2'° and 22°. Therefore, the length of the data chunks varies from
1KiB to 1MiB.

With respect to the operations, they are performed from each alive node
in the system. I/O operations follow an exponential distribution with param-
eter \;,. For each I/O operation, we measure the time spent to perform the
operation and whether it succeeded or not.

The remainder of this section is devoted to describing the experimental
study, focusing first on transient failures, and secondly on memory-less fail-
ures.

3.3.1 Validating the model for transient failures

To emulate transient failures in a node, we have simply paused the Cassandra
process running on it. The process can be easily resumed later, maintaining
the previous data, but missing the possible updates during the off-line period.

In this experiment, we monitor a Cassandra cluster after a warm-up period,
during which the ratio of nodes leaving / returning to the system stabilizes.
The information shown in this Section is obtained averaging data from 20
measurement intervals. In each of these intervals we measure the availability
of an object as the number of correct I/O operations performed over it. The
steady-state system availability is computed as the average of the availabilities
of all the objects.

In order to validate our model, we will first perform an experiment with a
system that keeps the assumptions of our model: uptime and downtime of each
node follow exponential distributions with parameters A and p respectively,
and all data elements are accessed uniformly.

The choice of parameters A and p will make our Cassandra work in rela-
tively unstable situations. This has been chosen on purpose for two reasons.
The first one is to complete the set of experiments in reasonable time. The
second is to compare the experiments with the model in the most interesting
cases, trying to avoid extreme situations of full or null availability.

The failure rate has been fixed to A = 0.01, while the repair rate p takes
values {0.01, 0.02, ..., 0.1}. The I/O rate has been fixed to \;, = 0.1, that
is, on average each alive node requests one operation every ten seconds. As
in [31], we have tested different proportions of reads and writes; however,
we have not observed any difference in the availability of the system with
different proportions of I/O operations; therefore, we decided to maintain
the same proportion between read and write operations. Finally, we have
tested the system with three replica sizes, 3, 5, and 7, and three levels of
consistency, ONE, QUORUM and ALL. Results can be seen in Figure 3.11.
Boxplots represent average (minimum, maximum, lower, median and upper

3.3 Validating the models 47

quartile) availability of data in the cluster. We have also plotted the expected
availability obtained from our theoretical model as a solid line.

ONE QUORUM ALL
1.00
0.75+

0.50

0.25+

0.00

LR

g

u

Availabilit
o o
n (4
($] o
1 1

0.00 -

R

0.75+

u

0.50

0.25+

0.00
L O S U N N ey e A S S B S B B B B

NG OI>TOL O O A NG OITOL O O A NG OI>L O @O A
SFELFEEFLLELY SFLIEELLEL? S FE T EEL S
n

Fig. 3.11: Average availability for a replica group with transient failures com-
pared to the theoretical model. A\;, = 0.1, A = 0.01, x = {0.01,0.02,...,0.1}.
Three replica sizes, 3, 5, and 7, and three levels of consistency, ONE, QUO-
RUM and ALL. Boxplots show the measured availability. Model predictions
are plotted as a solid line.

The figure shows that there is a good fit between measured availability
values and those predicted by the model. As expected, availability is better
when g increases with respect to A and, consequently, the off-line periods
become smaller. The experiments also show the impact of different replica
sizes and consistency levels on availability.

The behavior observed in these experiments validates our model as a good
descriptor of Cassandra when dealing with transient failures if the reality keeps
the assumptions of our model; however, we could ask ourselves if the model
is still valid when these assumptions are not fulfilled by the real system. In
order to prove this, we have performed additional experiments changing some
conditions: using non-uniform data accesses and non-exponentially distributed
failures.

As the access pattern we have chosen the Zipfian distribution. Using this
distribution, some objects have higher probability of being accessed than oth-
ers (Pyecess increase with the object’s identifier), so that more I/O operations
will be performed over these objects. The Zipfian distribution has two pa-

48 3 Modeling the availability of Cassandra

rameters: the number of objects and a certain parameter s that controls the
distribution of the probability among the different elements. In our experi-
ments, the number of elements is 300 and s = 1.

In order to simulate non-exponential failures, we have chosen another com-
mon distribution when approximating the behavior of nodes, the Weibull dis-
tribution. This distribution has two parameters: a rate and a shape. We will
use two Weibull distributions, one to model node failures, and the other to
model reparations. The failure rate has been fixed to A = 0.01, while the repair
rate u takes values {0.01,0.02,...,0.1}. As to the shape parameters, in [79]
Javadi et al. analyzed several failure traces from real systems. They concluded
that the shape parameter of Weibull-distributed failures takes values in the
range (0.33 — 0.85), which means that the expected survival time of nodes
grows with time. Following these recommendations, we have chosen to fix the
failure shape parameter to ky = 0.7. With respect to the shape of the repair
distribution, in the same study the authors conclude that it takes values in
the range (0.35 — 0.65), so we have fixed this parameter to k, = 0.5.

In Figure 3.12 we show the four possible combinations of distributions
(uniform and zipfian) and failure distribution (exponential and Weibull) for
the case of a system using replica size 3, QUORUM consistency level and
Aio = 1. This parameter has been increased to 1 with respect to the previous
experiment in order to reduce the variability among measurements and show
the effects of the different distributions. In each plot we show also the predic-
tions of our model as a solid line. The parameters A and p of the model have
been estimated from the actual failure trace captured from each experiment.

Observing the Figure 3.12, changing the access distribution slightly in-
creases the variance among measurement intervals but does not change the
availability of the system when compared to a uniform access. With regard
to the distributions of failures and reparations, we can see that using Weibull
instead of exponential results in an increase in the measurement variance. We
can also see that, apparently, a system whose nodes fail and recover following
a Weibull distribution will have a smaller availability in the most extreme
conditions, those where A and p are similar, than the same system follow-
ing exponential distributions. This could be because the reparation rate of
the Weibull distribution decreases over the time because of the shape param-
eter. The combination of a non-uniform data-access and a different failure
distribution gives us a system with lower availability and more variance in its
behavior. However, our model is still capable of reflecting the behavior of Cas-
sandra and gives quite accurate predictions of the system. This is the case for
each condition showed in the plot but, also, for each replica size, consistency
level and workload we have tested.

3.3.2 Validating the model for memory-less failures

In this case, a node failure has been simulated by killing the Cassandra process
and erasing the data stored in the node. This way, when it recovers from the

3.3 Validating the models 49

Uniform Zipfian

1.00

0.754

0.50 4

[enusuodx3

0.25+

ity

.00
.00

- o

Availabil

0.754

0.50

JLLCIENY

0.25

0.00

RS I A N R W S M PRSI A R A W S M
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
n

Fig. 3.12: Average availability for a replica group with transient failures com-
pared to the theoretical model. \;, =1, A = 0.01, p = {0.01,0.02,...,0.1} for
two different data access distribution, Uniform and Zipfian, and two different
failure distributions, Exponential and Weibull, for a replica 3 system with 30
nodes using QUORUM consistency level.

failure, it knows where to put itself in the token ring, but has to obtain all
the lost data from its replica companions.

The model for this type of failures is used to study the ability of Cassan-
dra to maintain data after a write operation in the presence of catastrophic
failures. In real systems there will be backup policies that will permit system
recovery, but in this case, the system will inevitably go towards an irrecov-
erable situation. The longer the expected time between catastrophic failures,
the smaller the effort required by system administrators to recover from data
losses.

We execute our experiment until no object is available in the system. We
compute the Time To Failure (TTF) for each object in the cluster as the time
elapsed from the beginning of the experiment until no more correct reads are
possible because no data is available for that object. Using this value we obtain
the availability of the object as the number of correct operations over it from
the beginning of the experiment until the TTF of the object. The availability
of the system is the average of the availability of all objects.

Regarding the parameter values, we have used: \;, = 1, A = {0.02, 0.025,
0.03, 0.035, 0.04}, u = 10X and replica groups of size three, five and seven.
Due to the design of our experiment, it is not possible to measure the TTF of
the objects using consistency levels higher than ONE. Read operations using
higher consistency levels will fail more frequently and, therefore, measurement

50 3 Modeling the availability of Cassandra

of the TTF would not be accurate. Therefore, we have only tested this kind
of failures with consistency level ONE. With respect to the time required to
boot each node, after it comes back on-line, it has been estimated to be 5
seconds, independently of the replica size used in the system. The use of the
thoor time in the model has been already discussed in Section 3.2.2.

With respect to the reparation processes, we set the ReadRepair chance
rr = 1 in order to execute ReadRepair at each read operation. Anti-Entropy
Repair has been configured to be executed after the Cassandra process has
finished booting.

In order to compute the availability of the modeled system, we have to
determine the values of model parameters o and 5. With regard to the Read
Repair rate, «, of the proposed model (see Equation 3.4), we have to consider
the popularity of each object. In this experiment we have considered that each
object has the same probability of being accessed, so a@ = ﬁ *30x1=0.1
repairs/second.

Regarding the Anti-Entropy Repair rate, 5, we have performed some em-
pirical measurements of the time required by this repairing process in the Cas-
sandra cluster with different numbers of objects and replication factors. More
specifically, we have measured the time required to perform Anti-Entropy re-
pair in a cluster of 30 nodes with replica sizes n = {2,...,11} and a number
of stored objects that varies from 300 to 3000. The size of each object was
sampled uniformly from the range (1KiB,...,1MiB). Based on the obtained
values, we have fitted the following regression function, f(n,nobj), which de-
scribes the duration of the Anti-Entropy repairing process (Equation 3.12).
The coefficient of determination of this fit is R? = 0.9443.

£(n, nobj) = 0-3465n-+0.002448n0bj+0.3851 (3.12)

Using Equation 3.12, we determined the mean duration of the anti-entropy
repair process for the three replica sizes. This mean duration will be the inverse
of the 8 parameter.

Figure 3.13 summarizes the measured availability for this experiment (box-
plots) together with the predicted value by the Markov model (solid line). It
is to be highlighted that the experiment focuses on unstable situations and,
therefore, the predicted and measured values are short and inadequate for
production-grade systems. However, they are useful to check the accuracy of
the proposed model.

Clearly, availability decreases when the replica size increases. This can be
explained if we consider that higher replica sizes results in a larger number of
invalid states: those in which only non-repaired nodes reply to a read request.

The most important insight from this figure is that measured availability
follows the same trends predicted by the model. In terms of actual values,
measured and predicted availability values are not identical, with differences
ranging from 1.27% to 13.19%. Therefore, we can take our model as a good
approximation to the real behavior of a real Cassandra cluster.

3.3 Validating the models 51

1.00 -

1 &Eﬁb}\?

y

=
I::l —;‘—\Eﬂ
—

0.50 -

Availabilit

0.25 -

0.00 -

T T T T T T T T T T T T T T T
0.02 0025 0.03 0.085 0.04 0.02 0.025 0.03 0.035 0.04 0.02 0.025 0.03 0035 0.04
A

Fig. 3.13: Average availability for a 30-nodes system with n = {3,5,7}, k = 1,
Aio = 1, A =0.02,...,0.04 and g = 10\ compared to the theoretical model
with o = 0.1. Boxplots show the measured availability. Model predictions are
plotted as a solid line.

We have also validated the model against scenarios in which nodes fail
and recover using non-exponential distributions, and the access pattern to
objects is not uniform. We have repeated our experiments with a real cluster
making the nodes fail following Weibull distributions with the same rates
(A=10.02,...,0.04, p = 10\), with shapes ks = 0.7 for failures and k, = 0.5
for reparations. Additionally, tests with I/O operations following a Zipfian
distribution have been conducted. In the model, parameters A and p have
been estimated from the actual failure trace captured from each experiment.
The results of the comparison are summarized in Figure 3.14. As can be seen,
in the case of uniform data access, the measured availability follows closely
that predicted by the model. However, when the access pattern is not uniform,
predicted availability is worse than the measured one, although both follow
the same trend. In summary, this additional set of results confirms the overall
capacity of the model to describe the availability of Cassandra.

We presume that the differences between model-predicted values and ac-
tual measurements are mostly caused by the time required to perform certain
operations in Cassandra, that the model do not consider adequately. An exam-
ple could be the duration of the ReadRepair process, which is instantaneous
in the model but, in practice, depends on the size of the object being repaired,
the characteristics of the underlying communications network, and the replica
size. Also, our estimation of the duration of the Anti-Entropy repairing process
requires additional tuning. Currently, we only consider the number of objects

52 3 Modeling the availability of Cassandra

Uniform Zipfian

0754 ——Cm———a e

0.254

3
1

Avallaglww
33
:

o
8
linqrem

T T T T T T T T T T
0.02 0.025 0.03 0.035 0.04 0.02 0.025 0.03 0.035 0.04
A

Fig. 3.14: Average availability for a 30-nodes system with n = 3, k = 1,
Aio =1, A =0.02,...,0.04 and g = 10\ compared to the theoretical model
with @ = 0.1 and 8 = 0.11544 for different combinations of Exponential and
Weibull failure distributions with different access patterns (uniform and zipf).
Boxplots show the measured availability. Model predictions are plotted as a
solid line.

in the system, but not their sizes. Finally, in our model we have considered
that the number of readers is constant, m, which is the number of system
nodes. However, in a real set-up, as nodes fail and recover, very often the
number of active nodes is lower than m, reducing the probability of reading
objects and, therefore, the probability of executing ReadRepair operations.

Even with these limitations, we consider that the proposed model provide
a good approximation to the behavior of real Cassandra systems, sufficient to
study their availability characteristics, and to make “what if” questions that
could help an administrator to identify adequate configurations, for example
in terms of consistency level, replica size and frequency of execution of the
repairing processes. In the next Section we will discuss possible scenarios for
which the model could be a valuable tool. As future work, we plan to analyze
and include in the model the aforementioned delays and the changing 1/0
rate.

3.4 Using the models

The models proposed and validated in the previous sections can be used to
select the best configuration for a Cassandra cluster given the characteristics
of the data it will store and the parameters of the system in which it will run.
In this Section we present several examples of the possible utilization of the
models.

3.4 Using the models 53
3.4.1 Availability in the event of network failures

Consider a web application using a Cassandra system to store its data. This
web application accesses Cassandra following a “read-heavy” pattern: 95%
of the operations are read-only, and the remaining 5% require updates. This
behavior may resemble a newspaper web site or an online store. In this type
of web applications, most of the clients are only viewing pages published by
a minority of power users (the news writers or the site administrators). In
a situation of network outages, a system like this could be evaluated using
the transient failures model, which informs about the theoretical availability
provided by Cassandra. Then, the administrator could use this prediction to
select the best possible configuration.

In our example, we are going to work with a Cassandra system composed
of 30 nodes. Each node will suffer from network failures with a rate of 1075.
Each network outage will be repaired with a rate of 10™2, which means that
we can have a failure per node every 10 days and that the off-line time can be
15 minutes on average. Note that these failures do not imply the loss of any
data item already stored.

As failures are transient, we can analyze this problem using our transient
failures model to estimate the availability that will show the application. This
model has the following parameters: number of replicas per object, consistency
level used per operation, the failure rate and the reparation rate.

In Table 3.1 we show the availability obtained for each combination of
consistency level for different replica sizes. The question to be answered is:
Which is the best combination of replica size and consistency level in terms
of availability? As an additional restriction, we have to consider that higher
replica sizes imply higher costs in terms of network traffic, management of the
consistency between replicas and higher read latencies, so lower replica size is
desired.

According to the results, the best solution is to use ONE or QUORUM
consistency levels for both read and write operations, having an almost perfect
availability. Using ALL in one type of operation decreases the availability of
the system and eliminates the positive effects of increasing the replica saize.
However, we have to consider consistency. If we use a combination where
r+w < n, read operations could obtain stale data for some time after the last
write operation. We have to take this effect into account when selecting the
best replica size and consistency level used per operation. In combination with
our model, we could use the eventual consistency model proposed by Bailis
et al. in [62] to select the best possible configuration in terms of consistency
and availability.

Therefore, if stale data is not an issue for our application, the best possible
configuration in terms of availability is to use always consistency level ONE.
However, if we care about stale data, the best solution is to use QUORUM
consistency level in both write and read operations instead of ALL. By doing
this, we will have a totally consistent system with the highest possible avai-

54 3 Modeling the availability of Cassandra

Availability for a “read-heavy” access pattern

Read Consistency|Write Consistency 3 Repl;ca Slz;
ONE ONE|99.999(99.999 100

ONE QUORUM|99.999(99.999(99.999

ONE ALL|99.985(99.975/99.965
QUORUM ONE[99.999(99.999|99.999
QUORUM QUORUM|99.999(99.999(99.999
QUORUM ALL|99.984(99.975|99.965
ALL ONE|99.715(99.526(99.337

ALL QUORUM|99.715(99.526(99.337

ALL ALL|99.700{99.501{99.303

Table 3.1: Availability (in %) for several combinations of consistency levels
for an application with 95% of reads and 5% of writes for a system of 30
nodes with A = 1076 and p = 1073, Note that an availability of 99.999% may
correspond to 315.36 failed seconds in a year, while an availability level of
99.303% corresponds to 60 hours of unavailability in a year.

lability. Finally, with respect to the replica size, the smallest possible replica
factor will imply lower I/O latencies.

Note that in this example we have selected a “read-heavy” access pattern
(95% reads, 5% writes), which is representative of most web applications.
However, the models could be used with any possible access pattern. In fact,
we have applied our model to “frequent update” (50% reads, 50% writes)
and “write-heavy” (5% reads, 95% writes) patterns. Availability values differ
depending on the access pattern but, as the conclusions in terms of what is
the best combination of consistency and replica size are still valid, we have
not included these results.

3.4.2 Availability and MTTF of an application in the event of disk
failures

Apart from network failures, systems suffer from disk failures. We could ana-
lyze the same application described in Section 3.4.1 under this type of failures
in order to know the time that the system will be capable of maintaining
data without any backup. We are also interested in knowing which levels
of availability will show this application under disk failures. We can use the
memory-less failures model to estimate these two metrics. Remember that the
studied system has 30 nodes. In this case we are not considering network fail-
ures. Instead we consider disk-failures. For illustrative purposes let us suppose
that the failure and reparation rates of this type of failures are A = 10~ and
p = 1073, The application that will access Cassandra has 95% of reads and
5% of writes.

3.4 Using the models 55

‘We have noted down in Table 3.2 the different availabilities for each combi-
nation of consistency level for different replica sizes together with the MTTF
of the system. As can be seen, the predicted MTTF for this stable system
with the smallest replica factor is higher than 10,000 years, which proves the
high resilience of Cassandra. The included repairing processes in Cassandra
seem to be enough to repair any dead node.

With respect to the availability of the system, using ONE or QUORUM are
again the best possible options, while using consistency level ALL decreases
the availability, and implies higher I/O latencies. In the case of applications
with an interest in consistency, QUORUM could be used for both read and
write operations. If that is not the case, ONE is the best possible option.
However, note that increasing the replica size when using QUORUM results
in a decrease of data availability. In this case, this behavior can be explained if
we consider that QUORUM will increase the number of invalid states because
there will be states where only not repaired nodes will answer to a read request.

Availability and MTTF for a “read-heavy” access pattern

Read Consistency|Write Consistency 3 Repl;’ca sm;
ONE ONE 99.899 99.899(99.899

ONE QUORUM 99.894 99.889(99.883

ONE ALL 99.889 99.879(99.869

QUORUM ONE 99.804 99.709(99.615
QUORUM QUORUM 99.799 99.699(99.599
QUORUM ALL 99.794 99.689(99.584

ALL ONE 99.709 99.519(99.331

ALL QUORUM 99.704 99.509(99.316

ALL ALL 99.699 99.499(99.301

MTTF (s) 3.25 x 10™1]1.90 x 107 o0

Table 3.2: Availability (in %) and MTTF (in seconds) for several combina-
tions of consistency levels for an application with 95% of reads and 5% of
writes. Analyzed system has 30 nodes, A = 1076 and x = 1072. In a year, an
availability of 99.301% corresponds to 61.23 hours of unavailability.

3.4.3 Analyzing Cassandra when dealing with churning

Cassandra has been designed to run in stable conditions such as controlled
data-centers. However, we would like to analyze it in other environments. The
HTC-P2P system presented in Chapter 2 has been designed to operate in a
wide range of situations: from very stable environments such as data-centers to
less stable situations such as desktop grid computing systems, where churning
is the most important cause of a node not being available. We could consider
churning as a cause of transient failures. Therefore, the question that we can

56 3 Modeling the availability of Cassandra

make to our model is, what levels of churning permit the use of Cassandra
with some guarantees of availability?

In Figure 3.15 we can see different configurations of Cassandra for differ-
ent ratios of A\ and p. The higher the ratio between these two values (p > A),
the more stable the system in which Cassandra is working. As can be seen,
using consistency levels ONE and QUORUM permits the system to work with
a high availability in quite unstable situations, where p is very similar to A.
However, to use Cassandra with consistency level ALL, the off-line periods
of the nodes need to be at least 1000 times smaller than the on-line peri-
ods. Nodes with these requirements do not fit into the definition of a usual
volunteer computing node. We can also observe the effect of increasing the
replica size. As previously mentioned, while increasing the number of replicas
implies a higher availability using ONE and QUORUM, this is not the case

with consistency level ALL.

3 5 7
e ’ P ’
o 1 1
’l " Consistency
. 3 ' — ONE
' ! ' :
! H i : - -+ QUORUM
1 : | {
i . 1 R A AP ALL
1 1
1 I
1 1
. 1 . 1 .
U T U T T U T T o U T
100 1000 100001 10 100 1000 100001 10 100 1000 10000

Ratio between A and p

Fig. 3.15: Availability of Cassandra for different consistency levels and replica
sizes for different ratios between A\ and p. Note the logarithmic scale in the

X-axis.

In conclusion, we could say that, even if Cassandra is designed for very
stable environments, its robustness permits utilizing it with a high availability
in very unstable situations using consistencies ONE and QUORUM.

3.4.4 Analyzing the frequency of execution of Anti-Entropy repair

We could use the memory-less model to find the best frequency to execute
Anti-Entropy repair in the system. This process implies computing checksums
of each data stored in a replica group and comparing them to find the latest
version of each and every object in the replica group. This process is expensive
and should be executed occasionally. In our experimentation we have config-
ured our platform to execute Anti-Entropy always after a node returns from
a failure; however, we could add a parameter to control the probability of

3.4 Using the models 57

this process. We have analyzed the availability and MTTF of a system with
30 nodes, A = 10~° (one failure per day and node), u = 1072 (each failure
lasts 100 seconds) and replica size 2 when varying a parameter 6 which deter-
mines the probability of Anti-Entropy repair (§ = 1 always, 6 = 0 never). In
Figure 3.16 we show the predicted MTTF in days and the availability of this
system. As can be seen, if we execute Anti-Entropy only half of the times a
node has failed, we can add 20 days of MTTF while halving the cost of the
reparations, maintaining availability above 99.887%.

)
o
8
°
3
&
o

99.8850 -

Availability (%,

99.8825 -

= 495
[‘} 0‘.1 D.‘Z 0‘.3 D.‘A O‘éﬁ D.‘G 0‘.7 D.‘B 0‘.9 ;

Fig. 3.16: MTTF for a system with 30 nodes, A = 107 and g = 10~2 when
variating the probability of executing Anti-Entropy repair (0 in the plot).

3.4.5 Analyzing the point availability with disk failures

In order to better understand the behavior of Cassandra in the event of catas-
trophic failures, we have analyzed how point availability decreases with time
in a system with memory-less failures. We have studied a system with 30
nodes, failure rate of A = 10™* and repair rate of 1 = 1072, with several
replica sizes (3, 5 and 7) and consistency levels. At t = 0 an object is written
in the system. In Figure 3.17 we can see how the availability of this object
changes for each configuration.

As can be seen, availability decreases below 0.999 quite fast and remains
stable for some time. The length of this period depends on the replica size.
With respect to the level of availability attained during this period, this de-
pends on the consistency level used. MTTF grows with the replica size, while
availability is better for lower consistency levels. From the point of view of
availability, and without considering other costs, large replica sizes with con-
sistency ONE is the best option.

58 3 Modeling the availability of Cassandra

ONE QUORUM ALL

oo
prers
82
88
i

0.900

0.999 4
0.990

Availability
S

0.900

0.999 4
0.990

0.900

T T T T T T T T T T T T
1e+02 1e+06 1e+10 1le+14 1e+02 1e+06 1e+10 1le+14 1e+02 1e+06 1e+10 1le+14
Time (s)

Fig. 3.17: Evolution of the availability for a system with 30 nodes, different
replica sizes (3, 5 and 7), A = 10~* and p = 1072 for different consistency
levels.

3.5 Related work

To the best of our knowledge, this is the first attempt to model of Cassandra’s
availability. However, there are a few works close to this that should be men-
tioned. In [31], Yahoo! proposes a system for benchmarking different cloud
data-storage systems, the Yahoo! Cloud Serving Benchmark (YCSB). YCSB
executes operations over cloud systems in order to measure the performance
and scalability of these systems. As future improvements to this tool, Yahoo!
will focus on reliability. At the time of writing this chapter, no progress has
been made in this area.

Authors of [80] propose a failure model of P2PMPI, a peer-to-peer imple-
mentation of the Message Passing Interface (MPI) [81], and use it to estimate
the optimal degree of replication in this P2P system.

Carra et al. [82] propose a work similar to ours over KAD [83], a DHT
based file sharing system without data replication. In KAD, each node is
responsible for the objects it stores. Each node publishes references to its
objects in other nodes to help find data. Unlike our proposal, they take into
account only memory-less failures, and consider that nodes are periodically
replaced with new ones without reparation costs. Based on the theory of
reliability, they analyse the probability of finding an object published in the
system, and study how this probability evolves over time. Finally, they use
that model to propose improvements in KAD that could reduce the cost of
maintaining the availability of the objects by reducing the amount of object
references that can be created in the system.

3.6 Conclusions and future work 59

There are several reliability analyses of different redundancy schemes in
P2P networks, on which we have based the models described in this chapter
targeting Cassandra. Houri et al. investigate in [84] the behavior of different
replication and erasure code schemes (a form of forward error correction) [85]
using a non-stochastic reliability analysis to estimate the probability of losing
data and the cost of repairing data. In [86] we can find an statistical analysis
of replication vs. erasure code schemes whose conclusion is that using era-
sure codes is less expensive in bandwidth terms, while it increases the Mean
Time To Failure by several orders of magnitude. However, in [87] an stochas-
tic analysis comparing erasure codes and replication concludes that simple
replication is better when peer availability is low.

In [88] we can find an analysis of the impact of node churn in different era-
sure code schemes when the availability periods of nodes follow three different
distributions: exponential, Pareto and Weibull.

When analyzing the behavior of networked systems, some works [20, 89,
90] assume independence between nodes. However, in [73] Ford et al. prove
that failures in a data-center where nodes share switches and power units
are not independent. Nevertheless, in this chapter we assume independence
between nodes in order to reflect a wider range of situations, from volunteer
desktop computing systems to corporate data-centers.

With respect to the distribution of failures and recoveries, the uptime
and downtime of nodes are commonly modeled as exponentially distributed
[20, 89, 91, 92, 93, 94, 71, 95|, although several works [96, 97] prove that
the time between disk failures is not exponentially distributed and exhibits
autocorrelation and long-range dependences, so authors argue that long-tail
distributions (such as Weibull) would be better approximations. Yet, in [73],
Ford et al. argue that, in large and heterogeneous environments, the aggre-
gation of large populations of disks with different ages tends to be stable,
so the failure rate should be stable as well. When the failure rate is stable,
there are no significant differences between both distributions. Therefore, in
this chapter we have considered that modeling failures and recoveries using
exponential distributions is also a reasonable approximation.

3.6 Conclusions and future work

In this chapter we have modeled the availability of Cassandra when con-
fronting two types of failures: transient failures and memory-less failures. For
this purpose, we have modeled replica groups of Cassandra as k-out-of-n:G
systems. These models have been compared against experiments in a real
Cassandra system in order to validate them.

Our model of Cassandra dealing with transient failures has demonstrated
to be an excellent descriptor of the actual availability of this storage system
when dealing with problems such as networking outages or churning.

60 3 Modeling the availability of Cassandra

The second model describes the behavior of Cassandra when dealing with
memory-less failures (such as disk breakdowns), estimating for how long a
data object is available even in the presence of these catastrophic failures.
Regarding this model, we need to improve the estimation of the Anti-Entropy
repair rate. Currently we are estimating [using the replica size and the num-
ber of objects. This estimation should also consider the size of the objects to
be repaired. The ReadRepair parameter, o, must be improved too. Currently
we assume that the ReadRepair process is instantaneous, but it requires read-
ing the target object from all the replicas, updating the staled ones. The cost
of this process depends on the replica size and should also take into account
the size of the objects stored in the system.

The proposed models can be used to study the fault tolerance of Cassandra
and to help in the selection of the best configuration for Cassandra depending
on the environment in which it is going to be used, and also on the needs of
the application that will store and retrieve data. Similarly, at run time, an
application could vary some operational parameters (such as consistency levels
and number of replicas) adapting to the running environment or the profile
(mostly read-only, frequently updated, etc.) of the different applications that
access the system. In general, the models can be of help to select the best
consistency level and number of replicas.

Currently we keep two different models for transient and memory-less fail-
ures. In a real environment, actual failures can be of any of these classes, al-
though with different probabilities. The proposed use cases reflect situations
in which a type of failure is much more frequent than the other one and, thus,
the selected model adequately reflects the behavior of Cassandra. It would be
possible, though, to enhance the second model to include transient failures in
addition to memory-less ones, by adding new states and transitions. This is a
non-trivial effort which we plan to undertake as future work.

Cassandra is highly available in stable scenarios, and can even show a
high availability when the system does not have this property, depending on
the selected configuration. Several aspects of Cassandra could be improved
in order to support a wider range of scenarios. The Anti-Entropy repairing
process should be enhanced in order to better deal with catastrophic (memory-
less) failures. Currently, it can be used only when a single node in the replica
group fails, but it could be extended to operate with more than one failure.
Another possible improvement could be a better detection of catastrophically
failed nodes in order to create extra replicas of the objects stored in those
nodes before more nodes fail, by triggering the Anti-Entropy repairing process.

Finally, note that while we have developed these models to Cassandra,
the replication model of Cassandra is based in Dynamo and, thus, they could
be applicable to this system as well as to others based on the same princi-
ples. Our transient failures model is directly applicable to these systems while
our memory-less failures model could be adapted by taking into account the
particularities in the reparation processes of each particular storage system.

4

Failure-aware scheduling in HTC systems

In this chapter we address an issue that also affects centralized HTC systems:
the waste of resources derived from worker nodes leaving the system while
executing tasks that remain unfinished, due to failures or churning. Note that,
for scheduling purposes, there is no difference; simply, a node is not available.
We will use the terms “failed node” and “failure” to simplify the discussion.
The tasks being executed in failed nodes need to be resubmitted to the system
for re-execution, causing additional (scheduling) overheads, and affecting the
responsiveness of the system from the point of view of the user. Some common
approaches to address this problem are checkpointing and task replication.

Checkpointing is a technique that permits a running task to periodically
store snapshots of its status somewhere in the system. If the node in which it
is running fails during the execution of the task, another worker can resume
the execution from the last available check-point. Checkpointing does not
eliminate the waste of resources entirely: the CPU cycles used since the last
snapshot are still thrown away. Additionally, this technique requires extra
space to store the snapshots.

Task replication consists of executing several simultaneous replicas of the
same task in different nodes. If one of them fails, the execution can hopefully
succeed in one or more of the remaining replicas. This mechanism improves
system responsiveness from the point of view of the users submitting tasks,
but the overhead to pay in terms of wasted resources is severe.

These two techniques try to minimize the impact of a failure in a node
while it is executing a task. Note that the volume of wasted resources increases
for long-lasting tasks and, therefore, the issue is not severe for short tasks.
Failure-aware scheduling tries to characterize tasks and nodes in order to find
appropriate task-to-node matches. If we know that a node is very stable, it
would be the preferred choice for long-lasting tasks. Other nodes, more prone
to fail, could be used for short tasks. The scheduler can make this kind of
decisions, although there is a price to pay in terms of scheduling overheads:
it takes longer to wait for the “right” node to run a task, instead of using
the first available one. However, the number of aborted executions should be

62 4 Failure-aware scheduling in HTC systems

lower. Note that failure-aware scheduling techniques can be combined with
checkpointing and task replication, in order to build an HTC system in which
the effects of node failures are minimized.

When scheduling tasks in an HTC system there are two main alterna-
tives for fault-tolerant scheduling algorithms: knowledge-based scheduling and
knowledge-free scheduling. Knowledge-based scheduling requires using estima-
tions of the duration of tasks to find good task-to-node matches, which are
normally provided by the submitting users. In contrast, knowledge-free algo-
rithms do not consider information about the task, and use replication in order
to avoid failure-prone (or, simply, slow) nodes. This results in severe waste of
resources because, from all the replicas executing a task, only the one finishing
first is actually useful, and the remaining ones will be canceled. This wasted
time could have been effectively used by other tasks, or the corresponding
energy could have been saved by switching off idle nodes.

In this chapter we propose and evaluate a collection of failure-aware
knowledge-based scheduling techniques. We have implemented and tested
them in the context of our HTC-P2P system, obtaining important benefits
in terms of system utilization and delays experienced by tasks. In addition,
we want to remark that our proposals are perfectly applicable to centralized
HTC systems.

In summary we propose to build, for each node, a failure model that char-
acterizes its expected lifetime. When selecting the tasks to run, the scheduler
(remember that each node has its own scheduler) will prioritize those whose
duration fit into the node’s predicted survival time. As several nodes can con-
tend for the execution of the same task, a competition among nodes, based
on a certain score, is implemented to obtain the best task-to-node match.
An optimization of this process is to schedule simultaneously groups of tasks.
With this proposal, we have been able to achieve a 20% increase in system
utilization, taking as reference the (failure-agnostic) FCFS scheduling policy,
in scenarios where there is enough diversity of nodes in terms of availability.
Our proposals are also competitive when compared against other failure-aware
scheduling algorithms proposed in the literature.

The remaining of this chapter is structured as follows. In Section 4.1,
we present our proposals of failure-aware scheduling policies. In Section 4.2
we introduce the score functions used by these policies. In Section 4.3 we
describe two failure-aware algorithms taken from the literature that will be
used for comparison purposes. In Section 4.4 we explain the environment used
in our simulation-based experiments. In Section 4.5 we show and discuss the
results of the experiments. Results from additional experiments using non-
exponentially distributed failures are presented in Section 4.6. Related work
about scheduling in the presence of failures is presented in Section 4.7. We
end with some conclusions and plans for future work in Section 4.8.

4.1 A proposal for failure-aware scheduling in an HTC-P2P system 63

4.1 A proposal for failure-aware scheduling in an
HTC-P2P system

The HTC-P2P system we have presented in Chapter 2 implements the schedul-
ing process in a completely distributed manner. Nodes collaborate to maintain
the structure of the P2P network and, thus, the data stored in the system —
including the queue where submitted tasks await. This distributed but shared
queue is implemented using Cassandra. In this data-storage system, nodes can
reach any point of the system with a complexity of O(1) hops, so the time
required to access any item stored in this queue is constant, regardless of the
number of components (nodes) of the system. Each node implements its own
scheduler, that does not take into consideration the properties of other nodes.
However, different forms of coordination between nodes can be implemented.

The HTC-P2P system can be modelled as a collection of n identical nodes
with independent schedulers. They share a task queue (), which is used by
users to submit tasks, and by nodes to choose the tasks to execute. Each task
J in @ has an user-defined expected execution time (length), I;. A per-node
adjustment of this length could be performed if nodes were not identical.

Although each scheduler is independent, they implement a heartbeat
mechanism to monitor the remaining nodes in the system, in order to de-
tect node failures and enable the re-execution of aborted tasks. When a node
detects a failed partner, the task being executed by this failed node is cancelled
and reinserted into Q.

Over this shared queue we can define several scheduling policies, whose
performance can be analysed using a collection of metrics. From the point of
view of the HTC system, the most important metric is the task throughput:
the number of tasks per unit time that the system can process. Given a fixed
number of tasks, a related metric is the make-span, or time required to process
all these tasks.

If we consider the individual behaviour of the nodes, the most important
metric is their effective utilization, that is, the portion of the node’s on-line
time that is effectively used to execute tasks. When a node fails, the time used
to process aborted tasks (those initiated but not completed) is wasted time.
Note that the time used by a long task that had to be aborted might have
been useful time for a shorter task that runs until completion.

From the point of view of the tasks submitted to the system, we are inter-
ested in measuring the waiting overheads: the time spent in the queue (this is
the waiting time), and the time wasted in incomplete executions (this is the
per-task wasted time). The waiting time includes (1) a, typically short, time
used by the scheduler to run the resource management algorithm and (2) a
time that depends on the current utilization of the system: time to execute
tasks ahead in the queue, time awaiting until free resources are available.

In the following sections we describe the scheduling algorithms proposed
for this HTC-P2P system, starting with the baseline: the distributed version of
First Come First Served (FCFS) that our proposal uses by default, which is a

64 4 Failure-aware scheduling in HTC systems

failure-agnostic and knowledge-free policy. Then we discuss two failure-aware
proposals that allow nodes to compete for a given task, taking into account the
estimated task length and the expected survival time of the nodes. We insist
in that these algorithms are implemented by all nodes: there is no central
scheduler.

4.1.1 Distributed First Come First Served scheduling

When a node is idle and willing to execute a task, it accesses) and gets the
task at the head of the queue, executing it. After completing the task, the node
stores any resulting file into the storage system and signals the completion to
the task’s owner. If Q is empty, the node sleeps for 75 seconds before retrying.
This process is detailed in Algorithm 1.

Algorithm 1: FCFS scheduling

while true do
if size(Q) > 0 then
w := dequeue(Q);
execute(w);
store_results(w);
else

L sleep(7s);

The main advantage of this policy is that the execution order follows the
insertion order. However, as it is failure-agnostic, it allows a very unstable
(failure-prone) node to choose an inadequate task (a long one). Therefore,
we can expect many execution attempts for long tasks, until they are finally
completed.

4.1.2 Competition scheduling

The re-executions of aborted tasks translate into wasted resources (that could
have been used in a more effective manner) and also into longer response
times (that generate a negative perception of the system from the user’s
viewpoint). We propose a failure-aware scheduling policy that tries to reduce
re-executions. It is implemented by means of a per-task competition between
nodes, in which a score function determines the winner node: the one that
will run the task. It is sketched in Algorithm 2. A ready node selects the task
at the head of @) and computes its score for that task. This score is used to
enroll the node into a list of candidate workers for the task. After 7. seconds,
nodes check the candidate list. The node with the best score removes the task
from the queue and runs it, while the remaining candidates abandon the com-
petition. Note that, when the set of candidates contains just one node, it will

4.1 A proposal for failure-aware scheduling in an HTC-P2P system 65

run the task, independently of its score. Thus, a bad node-to-task assignment
is still possible.

Algorithm 2: Competition scheduling

while true do

if size(Q) > 0 then

w = first(Q);

score := calculate_score(w);

inscribe_as_worker(w, score, nodeid);

sleep(7e¢);

if nodeid = best_scored_node(w) then
remove_from_queue(Q, w);
execute(w);
store_results(w);

else
L sleep(7s);

An important property of this scheduling policy is that, like FCFS, it
respects the arrival order of tasks. However, less re-executions are expected
as tasks will preferably go to the best nodes (how “good” a node is depends
on the choice of score, discussed in Section 4.2). This should translate into
increased system throughput and higher node utilization.

4.1.3 Competition scheduling in groups of tasks

Instead of considering for scheduling purposes just the task at the head of @,
this proposal is a generalization of the previous case, and analyses the group
with the first G tasks in @, for G > 1, looking for the task in the group that
better matches the characteristics of the available nodes (see Algorithm 3).

A node ready to run a task selects a maximum of G tasks from the head of
the queue and calculates its score for each of them. Then, the node competes
only for the task for which it has the best score. The use of larger values of G
increases the opportunity of finding a good match for the node, by considering
several waiting tasks. This way, the probability of successfully completing the
selected task should increase.

The main drawback of this method is that the arrival order of tasks is
not strictly respected. Additionally, some tasks may suffer from severe extra
delays when, even after reaching the head of the queue, they are not chosen
because no node finds them “adequate”. In order to limit this problem, which
could lead to starvation, we have included in our implementation a limit in
the number of times a task at the head of the queue can be skipped.

Note that these algorithms have been described for an HTC-P2P environ-
ment, but could be easily implemented in a centralized set-up. The manager

66 4 Failure-aware scheduling in HTC systems

Algorithm 3: Competition scheduling in groups

while true do
if size(Q) > 0 then
works := select_group(Q, G);
best_score := 0;
best_work := nil;
for w in works do
score := calculate_score(w);
if score > best_score then
best_score := score;
L best_work := w;

w := best_work;
score := best_score;
inscribe_as_worker(w, score, nodeid);
sleep(7¢);
if nodeid = best_scored node(w) then
remove_from_queue(Q, w);
execute(w);
store_results(w);

else
| sleep(rs);

node needs to keep availability models of all nodes, using this information
together with the centralized task queue to carry out the selection of the best
node-to-task assignments.

4.2 Score functions

The competition-based scheduling algorithms defined in the previous section
require some companion score functions. In this section we propose two dif-
ferent, although related, score functions to be applied to a (task, node) pair.
The first one is based on the probability that the node survives enough time
to complete the task. The second relates this expected survival time with the
task’s length, with the aim of obtaining a good node-to-task fit.

4.2.1 Based on the expected survival time of a node

The first score function we propose, fi, is based on the probability of the
node surviving enough time to complete the task. If we consider that X; is
a random variable that describes the lifetime of a given node %, the score for
node 4 and task j (of length [;) is computed as:

fl(i,j) = P(Xi >t 4+ lj|Xi > t) (41)

4.2 Score functions 67

where ¢ is the time since node ¢ came on-line.

As done in Chapter 3, we are going to assume that each node i fails and
recovers following exponential distributions with parameters A\; and p; respec-
tively. However, note that the proposed fi score function could be calculated
using any other distribution.

One of the most important properties of the exponential distribution is
that it is memoryless, which means that the probability that a certain node
lives for at least ¢ + [; seconds given that it has survived ¢ seconds is the
same as the initial probability that it lives for at least I; seconds. Therefore,
Equation 4.1 can be written as:

Therefore, the score function for node i and task j can be expressed as 1
minus the cumulative distribution function of the exponential distribution:

filis) = 1= (L= e7b) = b (43)

In order to compute Equation 4.3, the value of A; must be known. In a real
system, it can be estimated from a log of past failures. Given an independent
and identically distributed sample (z},--- ,z) of past alive times for node i,
the maximum likelihood estimate for parameter \; is:

~

N = (4.4)

1
T;
where T; is the mean of all the samples (alive times) for that node.

In Figure 4.1 we can see the values provided by this score for different
failure rates and task lengths. As can be seen, the node with the lowest \;
has always the highest score, so the system prioritizes the execution of tasks
in this kind of nodes (the most stable ones). In contrast, failure-prone nodes
(those with the highest values of \;) will execute tasks only when better nodes
are busy.

This score function has been designed with the aim of reducing the num-
ber of re-executions, because tasks will be executed more likely by the most
stable nodes, so that the probability of completing a task at the first attempt
should be high. However this score alone does not guarantee a perfect distri-
bution of tasks among the most suitable nodes, because the behaviour of the
system depends on its composition (number and reliability of the nodes), the
characteristics of the tasks being submitted (mainly short tasks vs. mainly
long tasks, or a balanced mixture) and even the order in which tasks are
submitted. For example, in an extremely good scenario of very stable nodes
running short tasks, no improvement can be expected from competition-based
scheduling algorithms, regardless of the selected score.

68 4 Failure-aware scheduling in HTC systems

1.00 1

0.75 4

A (fails/s)
- 0.01
==+ 0.005
== 0.002

= +0.001
0.25+

500 1000
Length of Tasks (s)

Fig. 4.1: Values of score f; based on the expected survival time of nodes
(different node failure rates).

4.2.2 Based on the fitness of the duration of a task and the
expected survival time of a node

Although the previous score function apparently fulfils our requirement of
reducing re-executions, it is not good enough. It leads to a task assignment
criterion based only on the stability of the nodes, independently of the lengths
of the tasks. Now we present a new score function that not only determines if
a node is suitable to complete a given task, but also if the task length suits the
expected survival time of the node. What we want is to favour the execution
of long tasks in stable nodes, using the unstable ones for short tasks, as a way
to increase node utilization and system throughput.

Besides the probability of a node i being alive enough time to complete
task j, we also take into account the (normalized) gap between [; (the length
of task j) and the expected lifetime of the node:

_ 1l = EXG|

D) EB[Xi]

(4.5)
where E[X;] is the expected lifetime of node ¢. The smaller D, the better the
fit of the task into the survival time of the node.

The second score we propose, fs, combines f; with D: it is directly pro-
portional to the node’s probability of completing the task and inversely pro-
portional to the normalized gap. From Equations 4.1 and 4.5 we can express
this score as:

P(XZ > lj + thi > t)
DG, J)
If the lifetime of a node is modelled using the exponential distribution, the
expected lifetime of node 7 is:

f2(iaj) = (46)

4.3 Other failure-aware scheduling algorithms 69

BIX] = (4.7)

Therefore, the normalized gap D can be expressed as:

D(i,j) = i+ 1y — 1] (4.8)
Finally, from Equation 4.6:

(4.9)

. MAX_SCORE if E[X;] =,
fQ(Zv.J) = N .
axl;—1] otherwise.

Where MAX_SCORE is a certain value considered as the maximum possible

scorel.

In Figure 4.2 we can see the scores provided by fs for different failure rates
and task lengths. As can be seen, the highest score is obtained when the length
of the task matches perfectly the expected lifetime of a node. A competition
scheduling using score f; favors the use of the most stable nodes (from the set
of available ones). Score fo helps selecting the most suitable node-task pair,
assigning short tasks to unstable nodes while leaving stable nodes available
for longer tasks. The expected result is an improved utilization of the system,

although tasks sent to unstable nodes may require a higher number of re-
executions.

A (fails/s)
1 \) — 0.01
’ \ == 0.005
== 0.002
’, AY

["d A = +0.001

~~

0 1000
Length of Tasks (s)

Fig. 4.2: Values of score fs measuring node-to-task fitness, for different node
failure rates and task lengths.

4.3 Other failure-aware scheduling algorithms

In order to assess the quality of our proposals, in the evaluation section we use
as baseline the distributed FCFS scheduling algorithm, but we will also take

13.40282347 x 10%® in our implementation

70 4 Failure-aware scheduling in HTC systems

into consideration other failure-aware algorithms. In particular, a failure-aware
modification of WorkQueue with Replication/Fault Tolerant [98], and the al-
gorithm discussed in [99] by Amoon (FR onwards). This puts our proposals at
disadvantage, because these two algorithms are implemented in a centralized
way, which means that they suffer lower overheads in terms of scheduling de-
lays and coordination efforts (they do not wait any time between scheduling
attempts or between steps of the algorithm). We have considered the option
of re-implementing the competitor algorithms in a distributed fashion, but
we estimate that our evaluation approach is fair and shows the potential of
distributed, failure-aware scheduling algorithms.

4.3.1 Failure-aware WorkQueue with Replication/Fault-Tolerant
scheduling

WorkQueue with replication (WQR) [100] is a centralized scheduling algo-
rithm for bags-of-tasks that uses replication to avoid the effects of differences
in performance among system nodes. In WQR, the scheduler sends tasks to
randomly selected idle nodes, until the queue is empty. Then, if idle nodes
are available, some tasks are replicated in these nodes. The system sets a
maximum number of replicas per task. When one of the replicas finishes, the
remaining ones are cancelled. This algorithm is depicted in Algorithm 4. @ is
the waiting queue, while R is a list with the running tasks; I is a list of idle
nodes, and MAX_REPLICAS is the maximum number of per-task replicas.
In our tests, we have used values 2 and 4 for this parameter.

Algorithm 4: WorkQueue with Replication (WQR)

while true do

if size(Q) > 0 then

w := dequeue(Q);

n := get_random node(I);
w.num_replicas = 1;
enqueue(R, w);
execute_in_node(w, n);

else
while size(Q) = 0 and size(R) > 0 and size(I) > 0 do
w := dequeue(R);
if w.num_replicas < MAX_REPLICAS then
n := get_random_node(I);
execute_in_node(w, n);
w.num_replicas++;
enqueue(R, w);

4.3 Other failure-aware scheduling algorithms 71

WQR Fault-Tolerant [101](WQR-FT onwards) adds fault tolerance to
WQR. using checkpointing and automatic restart. In [98], Anglano et al. in-
troduced a failure-aware version of WQR-FT, WQR-FA onwards, in which
the node to execute the task is not selected randomly. Instead, the scheduler
computes a score for each idle node and then the best idle node (that with
the best score) is selected; note the similarity with our competition-based pro-
posal, but in a centralized environment. The score function used in WQR-FA
is based on the predicting binomial method described in [102] that estimates
the lifetime of the nodes. For each node 7, the algorithm considers z(?), an or-
dered list storing the past n on-line times of the node, a level of confidence C'
and X, (the ¢'* quantile of the distribution of the lifetime of the node). Using
these parameters, the binomial method calculates the largest k for which the
following equation holds:

jzi:o (?) (1-¢q" ¢ <1-C (4.10)

With the computed value of & we can obtain J;,(f) and a C' lower bound for

Xy, which is the score used by WQR-FA to select the best idle node among
the available ones. The rest of the WQR-FA algorithm is similar to WQR-FT.
This algorithm requires as parameters the confidence level, C, and quantile,
q. In their paper [98], Anglano et al. use C' = 0.98 and ¢ = 0.05, so these are
the values that we will use in our tests. With respect to the maximum number
of per-task replicas, we have used 2 and 4.

Although WQR-FA, like WQR-FT, uses checkpointing, we have not in-
cluded this feature in the comparison tests carried out in this chapter, in
order to make a fair comparison between algorithms. Therefore, in all cases,
an aborted task restarts from the beginning. Note that checkpointing could
be easily integrated into our distributed competition-based scheduling mech-
anisms.

4.3.2 A fault tolerant scheduling system for computational grids
(FR)

In the failure-aware scheduling algorithm proposed by Amoon in [99] (FR), a
centralized scheduler uses a score to select the most suitable node to run a task.
The per-node score is based on the failure rate of the node (this explains the
acronym given to the algorithm). It is computed by considering the number
of times a node has successfully completed the assigned tasks, as well as the
total number of executions (both successful and aborted) performed by the
node. Given all the per-node scores, the scheduler selects the task at the head
of the queue and assigns it to the best node. This is like our distributed
competition-based algorithm, but with a different score. We see it sketched in
Algorithm 5. N} is the number of times a task has been aborted in node i,

72 4 Failure-aware scheduling in HTC systems

N is the number of successfully completed executions, I,, is the length of the
current task w, and R; is the speed of node 1.

Algorithm 5: FR scheduling

while true do
if size(Q) > 0 then
w := pop(Q);
best_score := o0;
best_node := 0;
foriinI do

Ni
f’f‘Z:4Ng+fN} ;

—lw .

Tezesz—i,

score:=Tege * (1 4 f7);

if score < best_score then
best_score := score;

L best_node := i;

execute_in_node(w, best_node);
else

| sleep(rs);

Note that FR uses the user-provided estimation of the task length, [,,, and
adapts it to a heterogeneous system by performing a correction based on R;,
as we suggested previously. In our tests we consider homogeneous nodes in
terms of performance (but not in terms of stability), therefore using R; = 1.
Also, note that the score used by FR is very similar to f;: the most stable
node from the free set (the one with the best availability history) will win.
Unstable nodes will lose the competition, unless they are the only options.

4.4 Experimental environment

In order to assess our scheduling policies and metrics, a custom-made event-
driven simulator of the scheduling process has been developed. It is based on
the event-driven engine used in [103], which implements a variation of the
calendar queue presented in [104].

Simulated nodes access a single scheduling queue used to store and retrieve
the tasks to be executed. While a node is alive, it executes tasks. If a node
fails during the execution of a task, the task is reinserted at the head of the
queue for a retry. The experiment finishes when all the tasks in the queue
have been executed.

Each experiment is repeated 20 times with different seeds for the random
number generator (used to generate the workloads and to cause failure and

4.4 Experimental environment 73

recovery events in nodes). The results shown in figures and tables are the
average values of these 20 repetitions.

4.4.1 Scenarios under test

These are the main characteristics of our simulations and the parameter sets
used in the experimentation:

e With respect to nodes:

— We simulate an HTC-P2P system with n = 1000 nodes.

— We consider two types of nodes, called stable and unstable. Stable
nodes fail rarely and recover quickly: the failure rate is several orders
of magnitude smaller than the recovery rate [73]. Unstable nodes fail
frequently, with a recovery rate similar to the failure rate. In the sim-
ulation, the behaviour of each node is managed by two exponential
distributions with parameters \; (failure rate) and p; (recovery rate).
In particular:

- Stable nodes: \; = 1076 fails/s and pu; = 10~* recoveries/s.
- Unstable nodes: \; = 10~% fails/s and u; = 1073 recoveries/s.

— We simulate three different system types, with different proportions
of stable and unstable nodes:

- Stable system (majority of stable nodes): a system composed of
90% of stable nodes and 10% of unstable nodes.

- Mixed system: a system composed of 50% of stable nodes and 50%
of unstable nodes.

- Unstable system (majority of unstable nodes): a system composed
of 10% of stable nodes and 90% of unstable nodes.

— Each node stores a log of its on-line periods, used to continuously up-
date the estimate of the A; of the node. \; is bootstrapped at the begin-
ning of the simulation to a very low failure rate, 108 failures/second,
for all the nodes in the system. Once the first failure happens, the
value of); is recalculated using the information gathered in the log.

— Each node has a parameter, 75, to control the time between consec-
utive scheduling attempts. This parameter has been set to 75 = 10
seconds.

— For the policies involving competition, nodes wait for 7, seconds from
the beginning to the end of the competition. This parameter has been
set to 7. = 10 seconds.

e With respect to tasks:

— In each experiment, the simulator generates an ordered collection of
tasks, constituting a workload. All the tasks in the workload are in-
serted into the queue at the beginning of the experiment in order to
test each scheduler in a situation of load saturation. Tasks are inde-
pendent.

74 4 Failure-aware scheduling in HTC systems

— Tasks are characterized by an execution time or length. This length is
sampled from different uniform distributions, yielding three types of
tasks:

- Small (S): U(1s,1500s).
- Medium (M): U(1500s,6000s).
- Large (L): U(6000s, 25000s).

— We have designed three different workload types, depending on the
mixture of tasks constituting the workload:

- Small workload: formed by 80% of tasks of type S, 10% M and
10% L.

- Medium workload: composed by 80% of tasks of type M, 10% S
and 10% L.

- Large workload: 80% of tasks of type L, 10% S and 10% M.

— All workloads have been designed to have the same total duration
(the sum of the lengths of all constituting tasks), W = 10° seconds.
Therefore, each workload has a different number of tasks Num_tasks.
For example, a small workload has many more tasks than a large one.

— When a task is aborted due to a node failure, it is reinserted for
execution at the head of the queue. A maximum number of trials (100)
has been set in order to avoid situations in which the HTC system is
unable to process the workload (yielding never-ending simulations).

We have chosen this parameter set in order to generate a variety of scenar-
ios in terms of types of tasks (that is, task lengths) and nodes (that is, node
availability behaviour) in such a way that we can test if our proposals are ca-
pable of assigning tasks to nodes in different environments, from very stable
ones (e.g., enterprise clusters) to very unstable ones (e.g. volunteer computing
networks in which churning is a frequent event). We use the term scenario to
refer to a particular combination of a system type (unstable, mixed, stable)
with a workload type (small, medium, large). Therefore, we evaluate nine
different scenarios.

Note that when modelling the behaviour of nodes we are assuming expo-
nentially distributed failure and on-line times, and the metrics we propose in
Section 4.2 are also based on this distribution. However, this does not mean
that the proposed metrics are valid only for exponentially distributed failures.
They can be used independently of the behaviour of the nodes, although if
that behaviour is known to follow a particular distribution, the score can be
tailored to better reflect the expected nodes’ lifetime. In order to check the
general validity of scores fi; and fo as defined above (using the properties
of the exponential distribution), we have carried out an additional set of ex-
periments in which node failures follow Weibull distributions. In Sections 4.5
and 4.6 we show the results from the experimentation using exponential and
Weibull distributions respectively.

4.4 Experimental environment 75

4.4.2 Scheduling algorithms and metrics under test

We have tested the following combinations of scheduling policies and metrics:

e FCFS: First Come First Served, as described in Section 4.1.1.

e WQR: WorkQueue with Replication, as described in Section 4.3.1, with a
maximum of 2 and 4 replicas per task.

o WQR-FA: the failure-aware version of WQR, as described in Section 4.3.1,
with a maximum of 2 and 4 replicas per task, C' = 0.98 and ¢ = 0.05.

e FR: the fault tolerant scheduling based on the failure rate of each node,
as described in Section 4.3.2.

e EC: Competition scheduling (see Section 4.1.2) with score f1 based on the
expected survival time of nodes (see Section 4.2.1).

e BFC: Competition scheduling (see Section 4.1.2) with score f» based on
the best node-to-task fit (see Section 4.2.2).

e EGC: Competition scheduling in groups (see Section 4.1.3) with score f;
based on the expected survival time of nodes (see Section 4.2.1) and group
size G = 10.

e BFGC: Competition scheduling in groups (see Section 4.1.3) with score
f2 based on the best node-to-task fit (see Section 4.2.2) and group size
G = 10.

Note that FCFS, EC, BFC, EGC and BFGC are tested in a P2P setting
(each node has its own scheduler), while WQR, WQR-FA and FR are imple-
mented as defined by their authors, using a central scheduler. The reason to
choose G = 10 in EGC and BFGC is explained in Section 4.4.4.

4.4.3 Gathered metrics

During the experiments we gather the following metrics:

e System metrics. Make-span: the time, in seconds, required to execute the
complete set of tasks inserted into the queue. The minimum make-span
considering zero overheads would be % Throughput: the number of tasks
completed per second. It can be computed as %

e Per-node metrics. We dissect node wutilization, extracting the idle time
(time spent doing nothing), the wasted time (time used for aborted and
cancelled executions), the useful time (time used for successful executions)
and the off-line time (time while the node is not part of the system).

e Per-task metrics. We dissect tasks overheads (the time spent in the queue
by each task), extracting the waiting time (time spent while waiting to be
scheduled) and the wasted time (time spent in aborted executions).

Regarding the waiting time, we want to remark that this time is usually
measured since the moment the task is inserted in the queue. However, in
our experiments all tasks are inserted simultaneously at the beginning of the
simulation. For this reason, we redefine this term, and use it to refer to the
time spent by a task while being at the head of the queue.

76 4 Failure-aware scheduling in HTC systems
4.4.4 Choosing the group size

In tests involving EGC and BFGC (that is, competition in groups) we need a
group size. This has been fixed to 10, but the choice has not been arbitrary.
In order to select a good value for this parameter, we ran an experiment
with different values of G (from 2 to 100) for a particular scenario: mixed
system with medium workload and BFGC scheduling. We measured system
throughput and the waiting time of tasks, and plotted the results in Figure 4.3.
It can be observed that, for values of G higher than 10, there is almost no
improvement in terms of throughput; however, we can see how the waiting
time increases with G. We have chosen G = 10 because it shows the advantages
of scheduling in groups without incurring into excessive scheduling delays. A
thorough analysis of the influence of G in the performance of EGC and BFGC
is proposed as future work.

Throughput (task/s)

0.0180 0, 5000%° 0920400, ° 0%,004 5000 009%° 05000°,
“0"000000%0”“00%0 0007%0" " ;02000°0°00%000°;0000° ooDUOOUOGUDO 00 0,,0099,20%"0%20°00 "o0
o®

&

0.0177 4
o

0.0174 4

0.0171

Waiting Time (s)

00°
000"
10000200

aoaao%ogow“ °

050000
0_ 050
85+ 000000 00
060000
0000
50000
80+ 000
000°

0000

00
0O

f
00
o0

i |
0 25 50 75 100
G

Fig. 4.3: System throughput and task waiting time, for the BFGC algorithm
using different values of G, for the mixed system executing a mixed workload.

4.5 Analysis of results with exponentially distributed
failures

In this section we analyze the results of the experiments described before with
exponentially distributed failures, considering different scenarios and schedul-
ing techniques. The baseline results will be those obtained with FCFS, but
we will also compare the results of our proposal against other failure-aware
policies.

4.5 Analysis of results with exponentially distributed failures 77

Note that we do not expect great improvements with any proposal (com-
pared against FCFS) in extreme situations, such as one with a majority of
stable nodes to which users submit small tasks: all policies will extract the
maximum potential of the system, because task abortion will be a rare event.
In the opposite extreme we can envision a very unstable system to which users
submit very long tasks. In this case, tasks will be frequently aborted and re-
quire re-execution, therefore nodes will spend most of their time performing
useless computations. However, we can still try to reduce this waste of re-
sources. In general, our policies are expected to improve system performance
by increasing the probability of a correct execution at the first attempt, al-
though some penalties could be expected in BFGC in the form of increased
per-task waiting time.

When analyzing simulation results, we focus first on system-level metrics,
then on the utilization of nodes and, finally, on the waiting times experienced
by tasks — that reflect the perception that a user would have of the HTC
system. As some proposals are knowledge-based, we include a subsection that
discusses the effects on performance of inaccurate user-provided task length
estimations.

4.5.1 System metrics

Figure 4.4 summarizes the main results from the point of view of the system:
the make-span for the nine scenarios (of stability and workload), for all the
scheduling algorithms under evaluation. As the duration of all workloads is
W = 10° seconds, and the number of nodes in the system is n = 1000, the
optimum value of make-span (for zero overheads) would be % = 10° seconds.

The first row of the figure corresponds to stable systems. In these, the
choice of scheduling policy does not have a significant influence. In fact, the
make-span obtained by FCFS is close to the minimum. However, BFGC is ca-
pable of squeezing some improvements: the differences between both policies
are 1.37%, 1.41% and 3.33% for small, medium and large workloads respec-
tively. The remaining non-trivial policies achieve similar results, although not
for all workloads.

For the scenarios where there is enough diversity of nodes and tasks, those
in which the proportion of unstable nodes is in the range 50%—90%, we can see
that failure-aware policies contribute to shorten considerably the make-span.
As expected, these policies enhance the correct distribution of tasks among the
different types of nodes, so that the number of re-executions decreases and,
thus, make-span improves. We can also see that the best policy is BFGC.
Allowing nodes to choose, from a set of tasks, those that better fit into its
expected lifetime seems to be a correct strategy from the point of view of
system-level task throughput. The improvements over FCFS obtained by the
BFGC policy are 16.88%, 16.97% and 15.92% for the mixed scenarios, while
for the unstable scenarios the improvements of BFGC are 19.13%, 20.46% and
17.79%.

4 Failure-aware scheduling in HTC systems

78

3000000 Workload: Small Workload: Medium Workload: Large
2500000 - 2
)
3
2000000 - =
@
1500000 - &
(V)
roooooo - IR e T
3000000
(2]
52500000 - o
@
q_.moooooo- 5
[0 e
s £
< 1500000 - —|8
1000000 -
3000000
&L
2500000 — — 2
3
<
2000000 - g
c
32
1500000 - 5
®
1000000 -
T T T T T T T T
9T Y3 Y3
¥y <« « N ¥ o <« Y S S |
feeiTeroggd Sesifropgge Sesiferapggs?
[a ey [ang m o o o o ey o o
L 2 2 ¢ G Waos © 22 5§ 5§ o s g ¢ gg o 5
R = = = =

Scheduling Policy

Fig. 4.4: Make-span using different scheduling policies for different scenarios (combinations of node stability and task size).
The ideal make-span is 1000000.

4.5 Analysis of results with exponentially distributed failures 79

As expected, FR and EC exhibit a very similar behaviour, because their
purposes and metrics are similar. Scheduling in groups (EGC, BFGC) is better
than scheduling for the task at the head of the queue, but only when using
the fo metric (best node-to-task fit). WQR is not competitive, due to the
overheads imposed by replication, and the failure-aware variations (WQR-FA-
2, WQR-FA-4) are even worse. This behaviour of WQR scheduling is explained
in [98], where authors tested their proposals with different number of tasks
in the workload: when the number of tasks per node in the workload is small
(under 50), WQR-FA outperforms WQR. However, when this ratio increases,
WQR is relatively better. In our experiments, the number of tasks per node
in the workloads vary from 77 to 395, which are bad settings for WQR-FA.

4.5.2 Node utilization

We have plotted in Figures 4.5 and 4.6 the results about node utilization. In
order to simplify graphs and explanations, we have removed the data points
corresponding to WQR-2 (which are worse than those of WQR~4), WQR-FA-
2 (which are worse than those of WQR-FA-4), and all of our policies except
BFGC (because the remaining three perform worse than this one).

Workload: Small Workload: Medium Workload: Large
1.007 = s e Nl
2
0.75 G
T
3
<
0.50 ®
@
025+ &
@
0.004 e —
1.004 ——F— ——
01— | @ Utilization
<
S0.75+ F—— |2 of nodes
= <
N | B Idle
= <
5050 E Wasted
3 =z Useful
2025 g [Worine
0.004 — — — — —
1.00 F—F—
1 — 2
r
0.754 T
i — 3
— <
0.50 &)
c
2
0.254 g
5
e | | | | 1 1 | | 1 1 | |
' ' ' ' ' ' ' ' ' ' ' ' ' ' '
i 3 3
i < h < hi <
i o Y i 3 4 o b i 3 2 o b o« 3
S <] < w re &) <] o w e S <] o w e
= H <] @ = 2 g @ = 2 g @
H = =

Scheduling Policy

Fig. 4.5: Utilization of nodes for different scenarios (combinations of node
stability and task size). Average for all nodes.

80 4 Failure-aware scheduling in HTC systems

\ Workload: Small Workload: Medium Workload: Large
1.00 - —= _
%)
0.75- G
@
3
0.50 - 3
@
0.25- g
5
[X R — —
1.00- — —
c © Utilization
5075~ a of nodes
= 5}
N 3 Idle
So50- 3 | Wasted
k] z Useful
So.s- 3 [Worine
0.00 - b——rd
1.00- —
0.75-
0.50 -
0.25-
0.00 - bemm—

l ' l ' l '
3 < b < b
< P < &
@ ps T o 3 @ a T « 3 @ & T «
£ g g - 85 B 2 5 85 & 2 § °
= = =
Scheduling Policy
(a) Only stable nodes
\ Workload: Small Workload: Medium Workload: Large
1.00-
0.75- i i a
53
3
0.50 -
g
0.25- -3
5
0.00- L1 1 L1 1
1.00-
c . © Utilization
5075~ a of nodes
= 5}
i 3 Idle
g 0.50 - 3 . Wasted
3 =z Useful
So.25- g W ofine
0.00- L1 | L1 1
1.00-
123
0.75- g
3
0.50 - I3
S
2
0.25- 5
5
0.00 -
v v v

' ' ' ' ' '

< < <

j j i
» hi = o » 3 = 1) » 3 £ I3}
2 o : « 3 2 o : @ 3 s o : o o}
[+ I} & o e o G & o i o G & e e
w © w o o o

= <} = g 2 g

= = =

Scheduling Policy

(b) Only unstable nodes

Fig. 4.6: Utilization of nodes for different scenarios (combinations of node
stability and task size) for stable (a) and unstable nodes (b).

4.5 Analysis of results with exponentially distributed failures 81

In Figure 4.5 we can see a dissection of how nodes spend the time, averaged
over all nodes; time is split into useful time, idle time, wasted time and off-line
time. Then, Figure 4.6(a) considers only the stable nodes in the system, and
Figure 4.6(b) focuses on the unstable nodes.

In general, the utilization of failure-aware scheduling policies results in an
increment of the node’s useful time for all the scenarios, even in the most
stable ones. BFGC is the policy achieving the highest ratios of useful time,
and the lowest of wasted time. WQR-4 and FR are respectable runner-ups.

Focusing on stable nodes, see Figure 4.6(a), we can see that FCFS does
not maximize their useful time, leaving them empty for sizable periods. All
the remaining policies do a better job, reaching a useful time close to 100%.
We do not see wasted or off-line periods because these nodes rarely fail.

If we observe Figure 4.6(b), we can see why BFGC is the best policy: its
choice of short tasks for unstable nodes results in a significant utilization of
these nodes. In the remaining policies, unstable nodes are ignored (idle time)
or process tasks that are too long for them, resulting in excessive aborts and
re-executions (wasted time). Note, however, that BFGC is a good policy only
when there is enough node and task diversity.

The reader may have noticed, when observing Figures 4.4 and 4.5, that
the make-span and the per-node useful time in the case of medium workloads
(those with a majority of medium tasks) is, for all scheduling policies, better
than that obtained with small workloads, but these metrics get worse for large
workloads. This non-linear effect requires further examination.

We must take into account the overheads derived from the scheduling
process that, although relatively small, are incurred by each scheduled tasks:
I/0O operations, time between scheduling attempts, etc. But the figures clearly
show that the main source of overhead is the wasted time (e.g. re-execution
of aborted tasks due to node failures). Notice, too, that the number of tasks
in a workload depends on the average task size, because the total duration of
all workloads is fixed.

In Table 4.1 we have summarized some metrics for each type of workload,
only for the unstable system with the FCFS policy (this has been done for
illustrative purposes, as the numbers for other scheduling policies follow the
same pattern). We can see the number of jobs per workload (fewer jobs means
less scheduling overhead), the measured number of executions per task (the
closer to one the better, because all the excess comes from re-executions) and
the global make-span for consuming the whole workload (the closer to 106 the
better). Medium workloads result in fewer tasks being scheduled, compared to
small workloads, but the number of re-executions does not increase drastically,
yielding a better overall behaviour. However, although the number of tasks in
the large workload is small, the number of re-executions increases drastically
(because many tasks are too long, given the on-line periods of the nodes,
and they are rarely completed at the first attempt). This explains why the
make-span for this workload is substantially longer.

82 4 Failure-aware scheduling in HTC systems

Small{Medium| Large

Number of tasks 395895| 216637 77797

Mean number of executions per task| 1.413 1.641| 3.633
Make-span (s) 2375664 |2018959|3036418

Table 4.1: Number of tasks, make-span and mean number of executions per
tasks for each workload, for the unstable scenario under the FCFS scheduling.

4.5.3 Task overheads

We have measured and dissected the overheads suffered by tasks when sched-
uled using different policies, plotting the results in Figure 4.7. We can see how
the waiting times are almost negligible, compared with wasted times due to
re-executions. Note that as waiting time we only measure the time spent by
tasks at the head of the queue. Also, in group-based scheduling policies (such
as BFGC) the waiting time is measured as zero for those tasks executed in
advance of their turn.

Workload: Small Workload: Medium Workload: Large

750 4
500

250

) e s e A

o|qels :adA) wajshs

4000 4 —
Overhead of Task

. Waiting Time
Wasted Time

Time (s)

2000 4

s e 1 N

15000 4

paxipy :2dA) waishs

10000

5000

s O

o|qeisun :adA) waishs

FCFS -
FR
BFGC -
FCFS -
BFGC -
FCFS -
FR
BFGC -

o«
w

WQR-4 -
WQR-FA-4 -
WQR-4 -
WQR-FA-4 -
WQR-4 -
WQR-FA-4 -

Scheduling Policy

Fig. 4.7: Overheads of tasks for different scenarios (combinations of node sta-
bility and task size). Note the different y-axis scale for each row

We can observe that replication-based techniques, namely WQR and
WQR-FA, cause increased wasted times. This is because, with these poli-

4.6 Experimentation with non-exponentially distributed failures 83

cies, tasks can be aborted not only because of node failures, but also because
when a replica finishes, the remaining ones are cancelled. FR and, especially,
BFGC waste less resources. In scenarios with enough stable nodes to execute
the large tasks (see upper and middle row of Figure 4.7), the benefits of BFGC
compared with the remaining policies are worth noticing.

Although this is not visible in the graph, BFGC can cause an increase
of waiting time in some scenarios, in particular the one with mixed nodes
and a majority of large tasks. This happens because, with this policy, the
task waiting at the head of () may be skipped in favour of other tasks better
suiting the characteristics of the available nodes. However, the reduction of
wasted time induced by this policy more than compensates this drawback.
To illustrate this issue, we have summarized in Table 4.2 the number of non-
delayed tasks (those that wait at the head of @ less than 74 seconds), together
with the average waiting time and the average wasted time, for policies FCFS
and BFGC. We also include in the table the standard deviation (o) of both
metrics. This information corresponds to the execution of a medium workload
in a mixed system. The data is averaged for all the tasks forming the workload,
and also dissected for the different types of tasks of the workload. We can
observe how the reordering of tasks performed by BFGC results in longer
waiting times, but mainly for medium and small tasks, because large tasks
are prioritized in the stable nodes. This reordering also results in higher values
of wasted time in small (20.8 seconds for FCFS vs. 34.5 seconds for BFGC)
and medium (428.3 vs. 486.5) tasks, but much lower wasted time for long
tasks (4952.2 vs. 1378.6). Averaging all tasks, the wasted time drops from
837.6 to 529.9 seconds, as reflected in Figure 4.7. The difference is useful time
in BFGC, explaining the globally better make-span.

As a summary of this and the previous subsections, we conclude that in
those non-homogeneous scenarios composed of a variety of nodes and tasks,
failure-aware scheduling policies result in improved task throughput. They try
to avoid sending tasks to nodes not capable of completing them. This is the
basis of FR, which is a good option despite its simplicity. However, BFGC
goes a step further and assigns tasks to nodes looking for the best fit between
the expected lifetime of the node and the task length, and experiments have
proven that this is a successful approach, as wasted time is drastically reduced.
Policies based on replication (WQR-based) are worse than FR and BFGC, as
they cause excessive wasted time.

4.6 Experimentation with non-exponentially distributed
failures

When modelling the on-line and off-line times of nodes in a distributed sys-
tem, two main approaches can be found in the literature. Often it is assumed
that the failure/reparation events can be represented using exponential dis-
tributions, but Weibull distributions are also commonly used. In the previous

84 4 Failure-aware scheduling in HTC systems

Small tasks (10 %)

Waiting time (s)| Wasted time (s)
Mean o| Mean o
FCFS 83.105% 6.054 7.478| 20.761| 125.656
BFGC 46.177% 11.920 11.549| 34.464| 166.042
Medium tasks (80 %)
Waiting time (s)| Wasted time (s)
Mean o| Mean o
FCFS 78.456% 7.097 8.521| 428.313(1239.137
BFGC 63.569% 10.693 17.888| 486.502|1406.110
Large tasks (10 %)
Waiting time (s)| Wasted time (s)

Policy [Non-delayed tasks

Policy [Non-delayed tasks

Policy [Non-delayed tasks

Mean o Mean o
FCFS 65.000% 10.653 11.999(4952.180(9328.210
BFGC 81.600% 6.166| 16.971|1378.569(4011.973
All tasks
. 1...| Waiting time (s)| Wasted time (s)
Policy |Non-delayed tasks Noan p Moan p
FCFS 77.584% 7.346 8.908| 837.591|3431.536

BFGC 63.617% 10.366| 17.324| 529.869(1812.231

Table 4.2: Percentage of non-delayed tasks (waiting time < 7,), waiting time
(average and o) and wasted time (average and o) for the mixed system with
medium workload. The bottom block gathers the results considering all the
tasks in the workload, while the other ones consider only a particular class of
tasks.

section we have discussed the results from a set of experiments where our
choice was to use exponential distributions. In this section we repeat those
experiments, using Weibull distributions to control the failure and repara-
tion behaviour of the (simulated) nodes. These additional experiments show
that our competition-based failure-aware scheduling proposal also performs
successfully under the Weibull distribution used to model nodes’ behaviour.

A Weibull distribution has two parameters: scale and shape. Regarding
the shape parameter, Javadi et al. analysed in [79] several failure traces from
real systems and concluded that, when describing the failure distribution of
a certain node, this parameter takes values in the range (0.33 — 0.85), which
implies that the failure rate decreases over time. Thus, we have decided to
fix this parameter to 0.7 for both, stable and unstable, types of nodes. With
respect to the shape parameter of the repair distribution, in the same study
they concluded that it takes values in the range (0.35—0.65), so we have fixed
this parameter to 0.5 for both types of nodes.

As regards to the scale parameters of the Weibull distributions used, we
have followed this approach to select them. Given a target, expected on-line, or

4.6 Experimentation with non-exponentially distributed failures 85

off-line, time E[X] for a certain node, the A parameter, rate, of an exponential
with that mean is simply:

E[X] = (4.11)

1
A

However, for the Weibull distribution with parameters A (scale) and k
(shape), the expression is:

E[X] = AT (1 + ;) (4.12)

Consequently, as the shapes have been already fixed, we can compute the scale
of a Weibull distribution with the target expected mean as:

E[X]
r'(l1+4)
Using this equation, and in order to achieve the same target failure and

reparation times used in the experiments with exponential distributions, the
parameters selected to model the nodes using Weibull distributions are:

A= (4.13)

e Stable nodes:

— Failures:
- scale = 789999.5.
- shape = 0.7.

— Reparations:
- scale = 5000.
- shape = 0.5.

e Unstable nodes:

— Failures:
- scale = 7899.995.
- shape = 0.7.

— Reparations:
- scale = 500.
- shape = 0.5.

The remaining parameters used to run the experiment are those described
in Section 4.4.

The results of the experiments comparing different scheduling algorithms,
including distributed and failure-aware ones, are summarized in Figures 4.8,
4.9, 4.10 and 4.11. As can be seen, results are very similar to those pre-
sented in Section 4.5, although the differences between algorithms are now
narrower. In some cases, FR is slightly better (0.2%) than our proposals in
terms of make-span. However, note that FR is a centralized algorithm with
lower overheads than our distributed proposals. Therefore, this set of experi-
ments confirm the good behaviour of our algorithms. In particular, BFGC is
globally the best of the tested options.

4 Failure-aware scheduling in HTC systems

86

: : I 5 [L
3000000 Workload: Small Workload: Medium Workload: Large
2500000 - 2
)
3
2000000 - =
@
1500000 - &
]
roooo00 - I I R) e T
3000000
(2]
52500000 - o
@
q_,moooooo- 5
[0 e
s £
< 1500000 - g
1000000 ----.-_H—_H_D -.-.-_H—_H_D
3000000
&L
2500000 — a
3
<
2000000 - g
c
32
1500000 - 5
®
1000000 -
T T T T T T T T T
9T Y3 Y3
Y Y <« «< N ¥ o« N Y g g
Leelleogg? besiieoggd §ssifecgsgs
[a ey [ang m o o o o ey o o
Lz 2 35 & Wa T 2 2 § g a2 2 § g ¢
R = = = =

Scheduling Policy

Fig. 4.8: Make-span using different scheduling policies for different scenarios (combinations of node stability and task size).
The ideal make-span is 1000000. Failures and reparations follow Weibull distributions.

4.6 Experimentation with non-exponentially distributed failures 87

Workload: Small Workload: Medium Workload: Large
1007 == e |
£
0754 g
5
3
<
050+ 3
@
0.254 &
5
0.004 —
1.00 — ——
| & Utilization
c — —
50754 rl of nodes
2 — 5
N 3 Idle
= <
5050 3 Wasted
3 = Useful
o
So0.25+ g [P orine
0.004 — — —— —
1.00 ——
5
0754 — — g
— 3
<
3
0.50 4 &
c
5
il
025+ 5
5
0.00- NN N NN R L1 1 | | I N
' ' i ' ' ' ' i ' ' ' ' i ' '
b 3 b
» b = 1 » h = Q) b = o
o o ; 4 @ g 4 - o« o e 4 T « o]
o <] & w g o <} & w i S I<} & w i
[o o o w «©
= <] = <] S <]
2 = =

Scheduling Policy

Fig. 4.9: Utilization of nodes for different scenarios (combinations of node
stability and task size). Average for all nodes. Failures and reparations follow
Weibull distributions.

4.6.1 Dealing with inaccurate estimations of task durations

Note that the most effective policies tested in this chapter are knowledge-
based, that is, they use the user-provided estimation of the execution time
(length) of the tasks submitted to the HTC system. In our simulation, we have
used a task’s length as the exact run time, that is, the time while a worker
node is busy executing the task. We know, however, that these estimations
may not be accurate, and real run times may be completely different.

It is known that users tend to overestimates the tasks’ runtime in order
to avoid having the task killed before completion [105], a common practice
in scheduling systems for supercomputers. However, we have not considered
this option: in the experiments, all tasks run until completion — unless they
fail after 100 execution attempts, something that we consider a pathological
situation.

In BFGC, if the user’s estimate for a task exceeds its actual run time,
the effects will not be negative: the assigned resource will be released sooner
than planned. Note, thought, that if the task was assigned to a stable node,
the scheduler could have found a better match with a less stable node. In
contrast, if a task with a short predicted run time, assigned to an unstable

88 4 Failure-aware scheduling in HTC systems
\ Workload: Small Workload: Medium Workload: Large
1.00 - ——— = —
13
0.75- @
T
3
0.50 - 3
@
0.25- g
@
0.00 - bmmed —
1.00- —— — S | —
c © Utilization
5075~ a of nodes
= T
N 3 Idle
Zos0- 8 [Wasted
k] z Useful
So.s- 3 [Worine
0.00 - bl —
1.00- —— — S
0.75-
0.50 -
0.25-
0.00 - e e
' ' ' ' ' ' ' [' ' ' ' [' '
3 b b
» hi = Q » hi = Q %] 3 = Q
e o« T o« o} w 4 0 o« @ g 4 - '3 @
S <] < i prd S S < i hd S S & i e
= = s
Scheduling Policy
(a) Only stable nodes
\ Workload: Small Workload: Medium Workload: Large
1.00-
0.75- a
T
3
0.50 -
g
0.25- &
o
0.00- L1 1
1.00-
c i © Utilization
5075~ a of nodes
= 5
N 3 Idle
5050~ 3 . Wasted
3 z Useful
So.25- g W ofine
0.00- L1 1 I
1.00-
123
0.75- &
3
0.50 - 3
c
2
0.25- g
o
0.00- ||
' ' ' ' ' ' ' ' ' ' ' ' ' ' '
b 3 3
» hi s o » hi £ Q » hi = Q
i o : o o} i o« - o o] rd o<) o« o]
S <] & [i S S < [e S S) i e
= = =

Scheduling Policy

(b) Only unstable nodes

Fig. 4.10: Utilization of nodes for different scenarios for stable and unstable
. Failures and reparations follow Weibull distributions.

nodes

4.6 Experimentation with non-exponentially distributed failures 89

Workload: Small Workload: Medium Workload: Large
800 -
2
600- G
— |3
3
<
400~ 3
@
200- &
==] :
. I3 1
4000 - ——
3000 -
@ Overhead of Task
.Waiting Time

& 2000 -
E
1000 -

O e N N N

Wasted Time

paxipy :odA) waishs

9000 -

6000 -

oqeisun :adA) waishs

3000 -

.. O e

FR
BFGC -

BFGC -
FCFS -
WQR-4 -

o«
w

BFGC -
FCFS -
WQR-4 -

o«
w

FCFS -

WQR-4 -
WQR-FA-4 -
WQR-FA-4 -
WQR-FA-4 -

Scheduling Policy

Fig. 4.11: Overheads of tasks for different scenarios (combinations of node
stability and task size). Note the different y-axis scale for each row. Failures
and reparations follow Weibull distributions.

node, runs longer than expected (user underestimation), it may be aborted
and need re-execution.

We wanted to assess the effects of the inaccuracy of user-provided length
estimations in the effectiveness of the scheduling algorithms analysed in this
chapter. To do so, we introduce in our simulation-based experiments an in-
accuracy factor k. Execution times used by tasks are no longer the lengths
declared in the workload; instead, they are recomputed as follows: for each
task ¢ of length [;, the run time used in the simulation, r;, is chosen uniformly
at random from the interval [I;/k, I; xk]. In the experiments, k is varied from 1
(accurate estimation) to 3 (actual run times may be up to three times shorter
/ longer than predicted).

In Figure 4.12 we show the make-span obtained by FCFS, WQR-4, WQR-
FA-4, FR and BFGC for three representative scenarios (stable system with
a majority of short tasks, mixed system with a majority of large tasks, and
unstable system with a majority of medium tasks). As a reference, for these
three scenarios with accurate predictions (k = 1), the make-span reductions
of BFGC over FCFS are 1.37%, 15.92% and 20.46% respectively. Note that
we have included in the plots a variation of the BFGC, BFGCE, that will be
explained later. We have also included the ideal make-span %, where W is the

90 4 Failure-aware scheduling in HTC systems

sum of all tasks’ run times. This value increases with k& because, on average,
tasks will take longer run times than predicted.

2200000

Small/Stable

2000000
1800000
1600000
1400000
1000000 T T T

4000000 i
Large/Mixed
3500000

3000000

2500000
2000000
1000000

Medium/Unstable

6000000
5000000

4000000

3000000
2000000 .
1000000
1 2 3

[Ideal Make-span [l FCFS [l WQR-4 @ WQR-FA-4 O FR
[BFGC [J BFGCE

Fig. 4.12: Make-span for several scheduling algorithms for different scenarios
and inaccuracy factors (k). Time computed after all tasks in the workload
have been completed (or dropped after 100 unsuccessful trials). The ideal
make-span for £ = 1 is 1000000.

For the second and third scenarios, failure-aware policies fall somewhere
in between FCFS and the ideal make-span. However, the behaviour of BEGC
deteriorates clearly, when compared against other policies, for large values of
k. In the first scenario, BFGC can be much worse than the plain FCFS and
the remaining policies.

It is not difficult to explain this behaviour: BFGC tries to find a good
task-to-node match, but the actual task length can be very inadequate, given
the stability characteristics of the chosen node. Then, re-executions will be
a frequent event. In fact, we have observed that, for large values of k, some
long tasks are finally dropped after 100 attempts, and this happens regardless
of the scheduling policy. We have gathered in Table 4.3 the minimum value
of k at which the scheduler starts dropping tasks, together with the total
number of dropped tasks in the corresponding experiment. Note that only
the BFGCE algorithm (will be discussed later) can complete all tasks in all
scenarios, regardless of k (at least in the considered [1, 3] range).

4.7 Related work 91

Algorithms Small/Stable Large/Mixed Medium/Unstable

k| Dropped tasks| k| Dropped tasks| k| Dropped tasks
FCFS - -11.5 4/1.2 7
WQR-4 - -l - -11.7 1
WQR-FA-4(3.0 1(1.7 6(1.3 11
FR - -l - -11.6 1
BFGC - -12.5 1(2.2 1
BFGCE - - - -l - -

Table 4.3: Minimum inaccuracy factors for which the scheduler starts dropping
tasks for different workload/system scenarios, together with the number of
dropped tasks.

Dropped tasks is a symptom of a bad behaving system: very long tasks
require many execution attempts to be completed or dropped, distorting the
metrics when considering the majority of successfully executed tasks. In order
to reduce this distortion, we have plotted in Figure 4.13 the make-span of
the first 99.9% completed tasks. The remaining 0.1% includes all the dropped
ones, in all the experiments. Plots are now much more clear: BFGC and its
variation are the best options, even with severely bad inaccuracy factors.

Nevertheless, we still need to deal with that small percentage of dropped
tasks. A good scheduling policy must be able to find the right nodes to ex-
ecute them, even when the knowledge they have about the tasks’ lengths is
inaccurate. Now we introduce BFGCE, which is BFGC with a correction of
the user-provided estimation of the length of a task. BFGCE operates exactly
like BFGC but, when a task is aborted, the user-provided length is corrected
(actually, increased using a factor e.), and this corrected value is used in
further scheduling attempts. The system assumes that the length prediction
was inaccurate, and that, next time, the task should be assigned to a more
stable node. After some preliminary tests, we have set e, = 10%, although
we plan to make a deeper analysis of the effects of this parameter in future
works (maybe considering a different correction per user). The figures and
table show that BFGCE succeeds in completing all tasks and results in the
shortest make-spans for all scenarios and inaccuracy factors.

4.7 Related work

In the literature we can find several works that study the scheduling prob-
lem in HTC systems in the presence of failures, trying to maximize the fault
tolerance of the system. Authors of [106] propose several resource provision-
ing techniques for cloud environments that use checkpointing to minimize
the effects of failures in applications running in supervised clouds. In [101],
Anglano et al. propose WQR-FT, a fault tolerant variation of the WorkQueue
with Replication (WQR) scheduling algorithm for HTC systems [100] that,

92 4 Failure-aware scheduling in HTC systems

2200000
Small/Stable
2000000

1800000

1600000
1400000

4000000

Large/Mixed
3500000

3000000

2500000
2000000
sooooco LT

Medium/Unstable
6000000

5000000

4000000
3000000
1000000 T
1 2 3

[Ideal Make-span [l FCFS Il WQR-4 [WQR-FA-4 O FR
[BFGC [BFGCE

Fig. 4.13: Make-span for several scheduling algorithms for different scenarios
and inaccuracy factors (k). Time computed after 99.9% of the tasks in the
workload have been completed. None of the tasks has been dropped. The ideal
make-span for k =1 is 1000000.

using replication and checkpointing, aims to reduce the effects of failures. Also,
in [107] Bansal et al. propose a modification of WQR-FT where the number
of replicas of each task is selected depending on the ratio of tasks successfully
executed in the system: if most of the tasks are completed, less replicas are
launched per task.

Note that the proposals described in the previous paragraph are designed
to deal with the consequences of a failure, and can be classified as fault tolerant
scheduling techniques. Our focus is on failure-aware techniques that try to
minimize the number of aborted tasks derived from inadequate scheduling
decisions. These approaches can complement each other.

Supercomputers for high performance computing are large-scale systems,
managed by a central scheduler, in which worker nodes can fail. Authors of
[108] and [109] present and evaluate scheduling proposals in which the system
partition (collection of nodes) in which a parallel task will run is selected by
taking into consideration the node’s resilience, computed from failure models
of nodes. A limitation of these works is that the experiments are based on
failure logs, and future information is used to compute resilience. Additionally,
they do not consider scheduling in groups.

4.8 Conclusions 93

Several works describing HT'C systems for grids, including desktop grids,
propose failure-aware schedulers, but they differ in the way the reliability
of nodes is modeled. In [99] each node is assigned a failure rate computed by
measuring the number of tasks successfully completed. Authors of [98] propose
a modification of WQR-FT that builds a per-node failure model using the
past on-line times, together with a prediction method described in [102]. The
desktop grid system described in [110] characterizes the cyclic behaviour of
participating nodes (availability) using Markov models. Finally, several works
[111, 112, 113] model nodes’ behaviour using histograms. The information
provided by these models is used to avoid sending tasks to nodes that may
not complete them, but the possibility of scheduling in groups to find good
task-to-node matches is not part of these proposals.

There is a substantial body of literature analysing knowledge-based schedul-
ing for HTC with focus on fault tolerance, which includes some works cited
before: [99, 79, 108, 109, 110, 111, 112, 113]. With respect to knowledge-free
algorithms, examples of this kind of algorithms are WQR [100] and its varia-
tions [101, 98, 107].

The weakest point of knowledge-based techniques is precisely the need of
user-provided estimations about the resources required by submitted tasks,
namely, the expected duration (we use the term “length”). These estimations
can be very imprecise in some contexts: a user can hardly known a priory the
length of a task whose behaviour depends on the nature of the input files and
parameters, not to mention the characteristics of the particular node in which
it will run. In this chapter we have ignored the latter effect, assuming that
all nodes are homogeneous, or that it is possible to apply a sort of “adjust-
ment factor”. Although it is well known that users do not provide accurate
estimates of the length of their tasks, authors of [114] argue that there is
a strong correlation between user estimations and actual lengths. Therefore,
tasks with longer estimated duration should, as a general rule, be assigned to
the most stable nodes of the system. We have discussed in Section 4.5 to what
extent the accuracy of user-provided estimations affects the performance of
our knowledge-based, failure-aware scheduling proposals.

4.8 Conclusions

In this chapter we have presented several policies that can be used in an
HTC system in order to improve the scheduling process in the presence of
failures. These techniques have been proposed and evaluated in an HTC-
P2P environment, but could be used in other platforms, such as desktop/grid
computing systems or supercomputers. Moreover, they can be combined with
other mechanisms for fault tolerance, such as checkpointing/restarting and
replication. The utilization of the information about previous failures together
with the expected duration of tasks can be of help for nodes when selecting
a task to be executed from those waiting in the scheduling queue. Taking

94 4 Failure-aware scheduling in HTC systems

into account this information reduces the number of failures while executing
a task and, thus, reduces the number of re-executions per task, so the efficient
utilization of nodes improves and the overheads suffered by tasks are reduced.

In order to test our proposals, we have simulated the scheduling process
in an HTC system where each node executes its own scheduler so it can make
its own decisions about which task to execute. We have also implemented, for
comparison purposes, other scheduling algorithms from the literature. Exper-
imental results show that our failure-aware proposals do a good job finding
appropriate task-to-node fits, decreasing wasted time and increasing system
throughput. This is particularly true for BFGC. It is to be noted that these
distributed schedulers perform better than the competitor, centralized ap-
proaches.

As our proposals are knowledge-based, we have also tested their behaviour
when dealing with inaccurate estimations of user-provided task durations.
Results state that, even with severe inaccuracy factors (up to k = 3), a minor
modification of BFGC (namely, BFGCE, which corrects the estimation of the
duration of a task when it needs to be re-executed) performs much better
than the remaining policies tested in this work.

As future work, we aim to implement and test these techniques in a real
HTC system; in particular, in the HTC-P2P system presented in Chapter 2.
Then, we plan to dig further into these aspects:

e Competition-based scheduling must be complemented with adequate score
functions. In this chapter we propose two, based on the properties of the
exponential distribution, but others are valid. We could use different distri-
butions (such as Weibull) or, as other researchers have done, characterize
nodes using Markov models and histograms. It could be even possible to
analyse the evolution of the performance of the system, tuning dynami-
cally some parameters of the score functions in order to choose the values
that maximize performance.

e BFGC and BFGCE schedule in groups, but we must improve our study
about the impact of group size on performance. We could even consider
the possibility of varying this value dynamically, taking into consideration
the observed performance.

e Group scheduling could go a step further. Currently, a node only competes
for the task that better fits its characteristics. However, it could compete
also for the second best task in the group, or even for all the tasks in the
group.

e The way BFGCE corrects user-provided estimations must be explored
further. As hinted before, BFGCE could create a per-user accuracy model
based on his/her previous records, adapting the correction factor through
this model.

e The failure-aware policies could be complemented with a replication mech-
anism, in which the number of replicas would depend on estimations of the

4.8 Conclusions 95

average number of re-executions per task. This mechanism should improve
the response time perceived by users.

5

Conclusions and future work

In this chapter we present the main conclusions of this dissertation together
with specific directions for additional research. The end of the chapter is de-
voted to presenting the publications that have resulted from the work carried
out during the development of this thesis.

5.1 Conclusions

This dissertation has focused on one important paradigm of distributed com-
puting, High Throughput Computing, its requirements and how to address
them using Peer-to-Peer technologies. To that extent we have (1) presented
a novel HT'C architecture totally distributed based on a P2P storage system,
(2) analysed the fault-tolerance of this HTC-P2P system by modelling the
availability provided by the underlying P2P storage system and (3) worked
on different scheduling policies that could increase the efficiency of any HTC
system, including HTC-P2P, by implementing failure-aware scheduling.
Particularly, in Chapter 2 we have addressed the concept of HTC sys-
tem by distributing the responsibilities of the central manager among all the
workers of the system. This HTC-P2P system has these characteristics: (1)
lack of central management points, (2) disconnected operation and (3) flex-
ible scheduling with support for (non-strict) FCFS execution order of tasks.
The proposed system has been built on top of a P2P data-storage, Cassan-
dra, executed by all the workers on the system. Experimentation using real
clusters has been carried out in order to test the validity and scalability of
our proposal, showing that the HTC-P2P proposal works and scales properly.
The fault-tolerance of our system has been addressed in Chapter 3. The
availability of the HTC-P2P system depends on the availability provided by
Cassandra. In order to analyse it, we have proposed two models of Cassan-
dra’s availability under different failure situations: (1) transient failures, those
in which the node is off-line for some period of time without losing any infor-
mation, and (2) memory-less failures, those in which a node completely loses

98 5 Conclusions and future work

the information stored in it. The models we propose are based on the stochas-
tic modelling of replica groups using Markov chains. We have validated our
models via experimentation with real Cassandra clusters. Results show that
our models are quite accurate descriptors of the availability of Cassandra. By
using these models, we can not only predict the availability of any Cassandra
deployment, but also obtain hints to select the best possible configuration of
Cassandra in terms of availability for any situation.

In existing HTC systems, when a worker node fails while executing some
task, the failed task is usually reinserted into the system for re-execution. This
causes a waste of resources and is usually solved by using fault-tolerance tech-
niques, namely checkpointing and replication, that do not entirely solve the
problem and can be the cause of additional misuse of resources. In Chapter 4
we have addressed this problem by testing alternative solutions as failure-
aware scheduling, where each node considers a model of its reliability to-
gether with an estimation of each task’s length to search for a good matching
between tasks and nodes. Two different scheduling algorithms are proposed
(competition scheduling and competition scheduling in tasks groups) and are
used in combination with two proposed score functions. In order to test our
approaches, we have performed simulation-based experimentation in which a
comparison with state-of-the-art algorithms is made. Results show that our
proposals improve the results obtained not only by the baseline FCFS but
also by other scheduling failure-aware algorithms. System performance and
the correct utilization of nodes increases by 20% in the best case just by
making better scheduling decisions.

5.2 Future work

This thesis has opened multiple lines for further research. The HTC-P2P sys-
tem that we present in Chapter 2 can be improved in several ways. We plan to
enhance the system by allowing users to submit not only individual tasks, but
also more complex jobs, including acyclic data flows or multi-pass applications.
We want also to include fault-tolerance mechanisms such as checkpointing and
replication.

With respect to the collisions problem of the HTC-P2P system related to
the eventual consistency provided by Cassandra, we have proposed a mecha-
nism to reduce it to manageable levels (0.5—6% depending on the system). We
have plans to test other possible solutions, such as the inclusion of an external
locking mechanism (Zookeeper) or the use of a novel mechanism included in
more recent versions of Cassandra, lightweight transactions, that could serve
as a locking mechanism as it implements Paxos, a consensus algorithm. For
the moment we have not tested these possible solutions but we plan to do so
in future releases of our HTC-P2P system.

With respect to the availability models of Cassandra presented in Chap-
ter 3, while the transient failures model can be considered a good descriptor

5.3 Publications 99

of Cassandra’s behaviour, the memory-less failures model must be further im-
proved. The 8 parameter (the Anti-Entropy repair rate) is currently estimated
using the replica size and the number of objects, but it should also consider
the size of the objects to be repaired. With respect to the ReadRepair rate
(o in the model) we consider that this process is instantaneous, but it re-
quires reading the target object from all the replicas, updating the stale ones.
The cost of this process depends on the replica size and should take into ac-
count the size of the objects stored in the system. Finally, we have considered
two different failure models for Cassandra but, in a real environment, actual
failures can be of any of these types. It would be possible to build a model
combining transient and memory-less failures by adding new states and tran-
sitions to the memory-less failure model. However, the necessary effort is not
trivial as it implies a much larger set of states and transitions to describe all
the possible situations in which the nodes could be.

With respect to the failure-aware algorithms presented in Chapter 4, we
aim to implement them in the HTC-P2P system that we presented in this
dissertation. The different proposals can be still improved. We must conduct
a deeper study about the impact of the group size in the BFGC and BFGCE
policies. Group scheduling can be improved if, instead of considering only
one task for the competition, more tasks are considered for scheduling at the
same time. With the BFGCE policy we have presented a way to correct user-
provided estimations, but this proposal must be explored further. For example,
per-user accuracy models designed, or models present in the literature to
predict execution times could be incorporated.

In this dissertation we have proposed using failure-aware scheduling in
the context of an HTC-P2P system. However, this type of scheduling could
be also used in other kinds of HTC systems. The information generated and
stored by our society is growing exponentially as devices capable of gathering
data from their surroundings are rapidly becoming ubiquitous. This harsh
increase in the volume of available information, and our interest in extracting
valuable knowledge from it, have produced a new set of “big data” tools that
share many properties with HTC distributed systems, and can, therefore, take
advantage of the scheduling policies we have presented. We aim to test these
techniques in actual big data frameworks, such as Apache Hadoop [115] or
Apache Spark [116].

5.3 Publications

In this section we list all the scientific works published or submitted during the
development of this dissertation. The papers directly related with the work
presented in this dissertation are highlighted.

100

5 Conclusions and future work

5.3.1 International Journals

C. Pérez-Miguel, J. Miguel-Alonso and A. Mendiburu. High
throughput computing over peer-to-peer networks. Future Gen-
eration Computer Systems. Volume 29, Issue 1, January 2013,
Pages 352-360.

C. Pérez-Miguel, A. Mendiburu and J. Miguel-Alonso. Mod-
elling the availability of Cassandra. Submitted to Journal of
Parallel and Distributed Computing.

C. Pérez-Miguel, A. Mendiburu and J. Miguel-Alonso. Competi-
tion-based failure-aware scheduling for high-throughput com-
puting systems on peer-to-peer networks. Submitted to Journal
of Cluster Computing.

C. Pérez-Miguel, J. Miguel-Alonso and A. Mendiburu (2010) Porting Esti-
mation of Distribution Algorithms to the Cell Broadband Engine. Parallel
Computing. Volume 36, Issues 10-11, October-November 2010, Pages 618-
634, Parallel Architectures and Bioinspired Algorithms.

5.3.2 International Conferences

C. Pérez-Miguel, J. Miguel-Alonso and A. Mendiburu. Porting Estimation
of Distribution Algorithms to the Cell Broadband Engine. Workshop on
Parallel Architectures and Bioinspired Algorithms (WPABA) in conjunc-
tion with PACT 2009. Raleigh, North Carolina. September 12-16, 2009.
C. Pérez-Miguel, J. Miguel-Alonso and A. Mendiburu. Evaluating the Cell
Broadband Engine as a Platform to Run Estimation of Distribution Algo-
rithms. CIGPU-2009 (GECCO 2009 Workshop, Tutorial and Competition
on Computational Intelligence on Consumer Games and Graphics Hard-
ware). July 8-12, Montreal (Canada).

5.3.3 National Conferences

C. Pérez-Miguel, J. Miguel-Alonso y A. Mendiburu. Sistemas
HTC sobre redes P2P. XXI Jornadas de Paralelismo. CEDI
2010, Valencia, Septiembre 8-10, 2010.

C. Pérez-Miguel, J. Miguel-Alonso and A. Mendiburu. Evaluation of
the Cell Broadband Engine running Continuous Estimation of Distribu-
tion Algorithms. XX Jornadas de Paralelismo. 16-18 Septiembre, 2009,A
Coruina.

5.3.4 Technical Reports

C. Pérez-Miguel, J. Miguel-Alonso y A. Mendiburu. Informe
sobre Sistemas de Computacién en Redes P2P. Informe interno
EHU-KAT-IK-04-09.

5.3 Publications 101

e C. Pérez-Miguel y J. Miguel-Alonso. Programacién de sistemas basados
en el Cell. Informe Interno EHU-KAT-IK-03-09.

e C. Pérez-Miguel y J. Miguel-Alonso. Programaciéon SIMD para x86, Al-
tiVec y Cell. Informe Interno EHU-KAT-IK-02-09.

A

Configuration of the ColumnFamilies required
by the proposed HTC-P2P

CREATE KEYSPACE ks WITH strategy_class = ’SimpleStrategy’

AND strategy_options:replication_factor = ’37;
USE ks ;
CREATE TABLE users (
user_id uuid,
username text ,
name text ,
email text ,
password_digest blob ,
created_at timestamp,
updated_at timestamp,
PRIMARY KEY (user_id));
CREATE TABLE queue (
bucket int |
task_id timeuuid ,
user_id uuid,
proc text ,
mem text ,
SO text ,
disc float ,
libs text ,
tins timestamp,

PRIMARY KEY (bucket , task_id));

CREATE INDEX queue_proc ON queue (proc);
CREATE 1INDEX queue_mem ON queue (mem) ;
CREATE INDEX queue_so ON queue (s0);

104 A Configuration of the ColumnFamilies required by the proposed HTC-P2P

CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE TABLE
task_id

user_id

state

proc

mem

SO

disc

libs

errormsg

tins

texe

tend
modify_time
PRIMARY KEY
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE TABLE
worker_id
user_id
hostname

proc

mem

SO

disc

libs

heartbeat
PRIMARY KEY
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX

ON
ON
ON

queue_disc
queue_libs
queue_user

queue
queue
queue

tasks (
timeuuid ,
uuid ,
text ,
text ,
text ,
text ,
float ,
text ,
text ,
timestamp,
timestamp,
timestamp,
timestamp,
(task_id));

ON
ON
ON
ON
ON
ON
ON

tasks
tasks
tasks
tasks
tasks
tasks
tasks

tasks_proc
tasks_mem
tasks_so
tasks_disc
tasks_libs
tasks_user
tasks_state

workers (
uuid,
uuid,
text ,
text ,
float ,
text ,
float ,
text ,
timestamp,
(worker_id));

ON
ON
ON
ON
ON

workers_proc
workers_mem
workers_so
workers_disc
workers_user

workers
workers
workers
workers
workers

(disc);
(libs);
(user_id);

(proc);
(mem) ;
(s0);
(disc);
(libs);
(user_id);
(state);

A Configuration of the ColumnFamilies required by the proposed HTC-P2P

CREATE INDEX

CREATE TABLE
file_id
user_id

name
basename
parent_path
size

nchunks
PRIMARY KEY

CREATE INDEX

CREATE TABLE
chunk_id
file_id

size

shalsum

data

PRIMARY KEY

CREATE TABLE
task_id
file_id
PRIMARY KEY

CREATE TABLE
task_id
file_id
filetype
PRIMARY KEY

CREATE TABLE
task_id
score

worker_id
PRIMARY KEY

CREATE TABLE
user_id
blocked
PRIMARY KEY

workers_libs ON workers (libs);

files (

uuid,

uuid,

text ,

text ,

text ,

int ,

int |

(file_-id));
files_user ON files (user_id);

chunks (

uuid ,

uuid ,

int ,

blob,

blob,

(chunk_id));

file_chunks (

uuid ,

uuid,

(file_id , chunk_id));

task_files (
uuid ,
uuid ,
text ,
(task_id , file_id))
task_workers (

uuid ,

timeuuid ,

uuid,

(task_id , score, worker_id));

blacklist (

uuid,

uuid,

(user_id , blocked));

References

10.

11.

. C. resources. Torque. http://www.clusterresources.com/torque, December
2010.

Oracle. http://www.sun. com/sge, December 2010.

M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter of idle workstations,”
in Proceedings of the 8th International Conference of Distributed Computing
Systems, June 1988.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “Seti@
home: an experiment in public-resource computing,” Communications of the
ACM, vol. 45, no. 11, pp. 56—61, 2002.

D. P. Anderson, “BOINC: A system for public-resource computing and stor-
age,” in Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, 2004., pp. 4-10, IEEE, 2004.

E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and com-
parison of peer-to-peer overlay network schemes,” Communications Surveys &
Tutorials, IEEE, vol. 7, no. 2, pp. 72-93, 2005.

The Gnutella Protocol Specification. http://rfc-gnutella.sourceforge.
net/src/rfc-0_6-draft.html, june 2002.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A Distribu-
ted Anonymous information storage and retrieval system,” in International
Workshop on Designing Privacy Enhancing Technologies: Design Issues in
Anonymity and Unobservability, pp. 46-66, Springer-Verlag New York, Inc.,
2001.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,
“Consistent hashing and random trees: Distributed caching protocols for re-
lieving hot spots on the World Wide Web,” in Proceedings of the 29th annual
ACM symposium on Theory of computing, pp. 654—663, ACM, 1997.

I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for in-
ternet applications,” IEEE/ACM Transactions on Networking, vol. 11, no. 1,
pp. 17-32, 2003.

C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing Nearby Copies of
Replicated Objects in a Distributed Environment,” in Proceedings of the 9th
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 97,
pp. 311-320, ACM, 1997.

108

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

References

B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load
balancing in dynamic structured P2P systems,” in Proceedings of the 23rd
Annual Joint Conference of the IEEE Computer and Communications Societies
INFOCOM 2004., vol. 4, pp. 22563-2262, IEEE, 2004.

B.Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An Infrastructure
for Fault-tolerant Wide-area Location and Routing,” Tech. Rep. UCB/CSD-
01-1141, EECS Department, University of California, Berkeley, Apr 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable
content-addressable network, vol. 31. ACM, 2001.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information sys-
tem based on the xor metric,” in Peer-to-Peer Systems, pp. 53—65, Springer,
2002.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Ama-
zon’s highly available key-value store,” in ACM SIGOPS Operating Systems
Review, vol. 41, pp. 205-220, ACM, 2007.

A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage
system,” in ACM SIGOPS Operating Systems Review, vol. 44, pp. 35-40, ACM,
2010.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area
cooperative storage with CFS,)” in ACM SIGOPS Operating Systems Review,
vol. 35, pp. 202-215, ACM, 2001.

P. Knezevic, A. Wombacher, and T. Risse, “Enabling high data availability in
a DHT,” in Proceedings of the 16th International Workshop on Database and
Ezxpert Systems Applications, 2005., pp. 363-367, IEEE, 2005.

B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replica maintenance for
distributed storage systems,” in Proceedings of the 3rd conference on Networked
Systems Design € Implementation- Volume 3, pp. 4-4, USENIX Association,
2006.

K. Kyungbaek and P. Daeyeon, “Reducing replication overhead for data dura-
bility in DHT based P2P system,” IEICE transactions on information and
systems, vol. 90, no. 9, pp. 1452-1455, 2007.

J. Zhao, H. Yu, K. Zhang, W. Zheng, J. Wu, and J. Hu, “Achieving reliability
through replication in a wide-area network DHT storage system,” in Interna-
tional Conference on Parallel Processing, 2007. ICPP 2007., pp. 2929, IEEE,
2007.

S. Bessa, M. Correia, and P. Brandao, “Storage and retrieval on P2P networks:
A DHT based protocol,” in Proceedings of the 12th IEEE Symposium on Com-
puters and Communications, 2007. ISCC 2007., pp. 623-629, July 2007.

K. Kyungbaek and P. Daeyeon, “Reducing replication overhead for data dura-
bility in DHT based P2P system,” IEICE transactions on information and
systems, vol. 90, no. 9, pp. 1452-1455, 2007.

W. Vogels, “Eventually consistent,” Queue, vol. 6, no. 6, pp. 14-19, 2008.

S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services,” SIGACT News, vol. 33, no. 2,
pp. 51-59, 2002.

R. Klophaus, “Riak core: building distributed applications without shared
state,” in ACM SIGPLAN Commercial Users of Functional Programming,
p- 14, ACM, 2010.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

References 109

T. Schiitt, F. Schintke, and A. Reinefeld, “Scalaris: reliable transactional P2P
key/value store,” in Proceedings of the 7th ACM SIGPLAN workshop on ER-
LANG 2008, (New York, NY, USA), pp. 41-48, ACM, 2008.

J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: The Definitive Guide.
O’Reilly Media, Inc., 2010.

D. Borthakur, The Hadoop Distributed File System: Architecture and Design.
The Apache Software Foundation, 2007.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-
marking cloud serving systems with YCSB,” in Proceedings of the 1st ACM
symposium on Cloud computing, (New York, NY, USA), pp. 143-154, ACM,
2010.

J. Katajainen, T. Pasanen, and J. Teuhola, “Practical in-place mergesort,”
Nordic J. of Computing, vol. 3, pp. 27-40, Mar. 1996.

Cassandra Ruby client library. http://github.com/fauna/cassandra, 2011.
The Apache Software Foundation, “CQL 3.0.7
http://cassandra.apache.org/doc/cql3/CQL.html.

P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier (UUID)
URN Namespace.” http://tools.ietf.org/html/rfc4122.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: wait-free coor-
dination for internet-scale systems,” in Proceedings of the 2010 USENIX con-
ference on USENIX annual technical conference, (Berkeley, CA, USA), pp. 11—
11, USENIX Association, 2010.

U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers:
modeling the characteristics of rigid jobs,” Journal of Parallel and Distributed
Computing, vol. 63, no. 11, pp. 1105-1122, 2003.

S. Toyoshima, S. Yamaguchi, and M. Oguchi, “Storage access optimization with
virtual machine migration and basic performance analysis of Amazon EC2,”
in Proceedings of the 24th IEEE International Conference on Advanced Infor-
mation Networking and Applications Workshops, pp. 905-910, IEEE, 2010.
R. Gupta, V. Sekhri, and A. K. Somani, “CompuP2P: An architecture for in-
ternet computing using peer-to-peer networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 17, no. 11, pp. 1306-1320, 2006.

G. Chmaj and K. Walkowiak, “A P2P computing system for overlay networks,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 242-249, 2013.

A. Legout, G. Urvoy-keller, and P. Michiardi, “Understanding BitTorrent: An
Experimental Perspective,” in Proceedings of the 24th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, 2005, pp. 961-969,
ACM Press, 2005.

J.-C. Charr, R. Couturier, and D. Laiymani, “JACEP2P-V2: A fully decen-
tralized and fault tolerant environment for executing parallel iterative asyn-
chronous applications on volatile distributed architectures,” Future Generation
Computer Systems, vol. 27, no. 5, pp. 606-613, 2011.

C. Lucchese, C. Mastroianni, S. Orlando, and D. Talia, “Mining@Home: To-
ward a public-resource computing framework for distributed data mining,”
Concurrency and Computation: Practice and Ezrperience, vol. 22, pp. 658682,
Apr. 2010.

D. Castella, J. Rius, I. Barri, F. Giné, and F. Solsona, “A new reliable proposal
to manage dynamic resources in a computing P2P system,” in Proceedings
of the 17th Euromicro International Conference on Parallel, Distributed and

110

45

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59

References

Network-based Processing. 2009 (D. E. Baz, F. Spies, and T. Gross, eds.),

pp- 323-329, IEEE Computer Society, 2009.
. V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, “Cluster computing on the
fly: P2P scheduling of idle cycles in the internet,” in Peer-to-Peer Systems I11,
pp. 227-236, Springer, 2005.
J. Cao, O. M. Kwong, X. Wang, and W. Cai, “A peer-to-peer approach to
task scheduling in computation grid,” in Grid and Cooperative Computing,
pp- 316-323, Springer, 2004.
R. Ranjan, A. Harwood, and R. Buyya, “Coordinated load management in
Peer-to-Peer coupled federated grid systems,” The Journal of Supercomputing,
pp. 1-25, 2010.
D. Milano and N. Stojnié¢, “Shepherd: node monitors for fault-tolerant dis-
tributed process execution in osiris,” in Proceedings of the 5th International
Workshop on Enhanced Web Service Technologies, WEWST ’10, (New York,
NY, USA), pp. 26-35, ACM, 2010.
M. Sanchez-Artigas and P. Garcia-Lopez, “eSciGrid: A P2P-based e-science
Grid for scalable and efficient data sharing,” Future Generation Computer Sys-
tems, vol. 26, pp. 704719, May 2010.
H. Zhang, H. Jin, and Q. Zhang, “Scheduling Strategy of P2P Based High
performance computing platform base on session time prediction,” in Proceed-
ings of the 4th International Conference on Advances in Grid and Pervasive
Computing, GPC ’09, (Berlin, Heidelberg), pp. 364-375, Springer-Verlag, 2009.
J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman,
“Trade-offs in matching jobs and balancing load for distributed desktop grids,”
Future Generation Computer Systems, vol. 24, pp. 415-424, May 2008.
A. S. Cheema, M. Muhammad, and I. Gupta, “Peer-to-Peer Discovery of
Computational resources for grid applications,” in Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, GRID 05, (Wash-
ington, DC, USA), pp. 179-185, IEEE Computer Society, 2005.
M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN: A multi-attribute ad-
dressable network for grid information services,” in Proceedings of the 4th In-
ternational Workshop on Grid Computing, GRID 03, (Washington, DC, USA),
pp- 184—, IEEE Computer Society, 2003.
A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting scalable
multi-attribute range queries,” in Proceedings of the 2004 conference on Ap-
plications, technologies, architectures, and protocols for computer communica-
tions, SIGCOMM ’'04, (New York, NY, USA), pp. 353-366, ACM, 2004.
A. Andrzejak and Z. Xu, “Scalable, efficient range queries for grid information
services,” in Proceedings of the Second International Conference on Peer-to-
Peer Computing, P2P 702, (Washington, DC, USA), pp. 33-40, IEEE Computer
Society, 2002.
J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A. Patterson, “Design and im-
plementation trade-offs for wide-area resource discovery,” ACM Transactions
on Internet Technology, vol. 8, pp. 18:1-18:44, October 2008.
L. Lamport, “The Part-time Parliament,” ACM Transactions on Computer
Systems, vol. 16, pp. 133-169, May 1998.
A. A. Markov, “Investigation of a noteworthy case of dependent trials,” Izv
Akad Nauk Ser Biol, vol. 1, 1907.
. S. I. Resnick, Adventures in Stochastic Processes. Springer, 1992.

60

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

References 111

R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah, “Serving
large-scale batch computed data with Project Voldemort,” in Proceedings of
the 10th USENIX conference on File and Storage Technologies, pp. 18-18,
USENIX Association, 2012.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed stor-
age system for structured data,” in In proceedings of the 7th Conference on
USENIX Symposium on operating systems design and implementation - Vol-
ume 7, pp. 205218, 2006.

P. Bailis, S. Venkataraman, M. Franklin, J. Hellerstein, and I. Stoica, “Quan-
tifying eventual consistency with PBS,” The Very Large Data Bases Journal,
vol. 23, no. 2, pp. 279-302, 2014.

R. van Renesse, D. Dumitriu, V. Gough, and C. Thomas, “Efficient reconcil-
iation and flow control for anti-entropy protocols,” in Proceedings of the 2nd
Workshop on Large-Scale Distributed Systems and Middleware, LADIS ’08,
(New York, NY, USA), pp. 6:1-6:7, ACM, 2008.

A. D. Birrell, R. Levin, M. D. Schroeder, and R. M. Needham, “Grapevine:
an exercise in distributed computing,” Communications of the ACM, vol. 25,
pp. 260274, Apr. 1982.

R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Randomized rumor
spreading,” in Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, FOCS ’00, (Washington, DC, USA), pp. 565—, IEEE Com-
puter Society, 2000.

N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The ¢ accrual fail-
ure detector,” in Proceedings of the 23rd IEEE International Symposium on
Reliable Distributed Systems, 2004., pp. 6678, IEEE, 2004.

W. Kuo and Z. Ming, Optimal Reliability Modeling: Principles and Applica-
tions. Wiley, 2002.

A. A. Hagin, “Reliability evaluation of a repairable network with limited ca-
pacity and structural redundancy,” Microelectronics Reliability, vol. 37, no. 2,
pp. 341 — 347, 1997.

P. Pulat, “Network reliability with arc failures and repairs,” IEEE Transactions
on Reliability, vol. 37, pp. 268 —273, aug 1988.

H. Li and G. Chen, “Data persistence in structured P2P networks with redun-
dancy schemes,” in Proceedings of the 6th International Conference on Grid
and Cooperative Computing, GCC ’07, (Washington, DC, USA), pp. 542-549,
IEEE Computer Society, 2007.

J. Tian, Z. Yang, and Y. Dai, “A data placement scheme with time-related
model for p2p storages,” in Proceedings of the IEEE International Conference
on Peer-to-Peer Computing, vol. 0, (Los Alamitos, CA, USA), pp. 151-158,
IEEE Computer Society, 2007.

S. Ross, Stochastic processes. Wiley series in probability and mathematical
statistics. Probability and mathematical statistics, Wiley, 1983.

D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage sys-
tems,” in Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation, 2010.

J. B. Dugan and K. S. Trivedi, “Coverage modeling for dependability analysis
of fault-tolerant systems,” IEEE Transactions on Computers, vol. 38, pp. 775—
787, June 1989.

112

75

76

e

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

References

. S. Akhtar, “Reliability of k-out-of-n:G systems with imperfect fault-coverage,”
IEEFE Transactions on Reliability, vol. 43, pp. 101 —106, mar 1994.
. M. Marzolla, “The gnetworks toolbox: A software package for queueing net-
works analysis,” in Analytical and Stochastic Modeling Techniques and Applica-
tions, 17th International Conference, ASMTA 2010, Cardiff, UK, Proceedings
(K. Al-Begain, D. Fiems, and W. J. Knottenbelt, eds.), vol. 6148 of Lecture
Notes in Computer Science, pp. 102-116, Springer, Junel4-16 2010.
R. A. Sahner, K. S. Trivedi, and A. Puliafito, Performance and Reliability
Analysis of Computer Systems: An Example-Based Approach Using the Sharpe
Software Package. Kluwer Academic Publishers, 1996.
K. S. Trivedi, M. Malhotra, and R. M. Fricks, “Markov reward approach to
performability and reliability analysis,” in Proceedings of the Second Inter-
national Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 1994. MASCOTS 9., pp. 7-11, IEEE, 1994.
B. Javadi, J. Abawajy, and R. Buyya, “Failure-aware resource provisioning for
hybrid cloud infrastructure,” Journal of Parallel and Distributed Computing,
vol. 72, pp. 1318-1331, Oct. 2012.
S. Genaud, E. Jeannot, and C. Rattanapoka, “Fault management in P2P-
MPI,” in In proceedings of International Conference on Grid and Pervasive
Computing, GPC’07, Lecture Notes in Computer Science, Springer, 2007.
W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Program-
ming with the Message Passing Interface, vol. 1. MIT press, 1999.
D. Carra and E. W. Biersack, “Building a reliable P2P system out of unreliable
P2P clients: the case of KAD,” in Proceedings of the 3rd conference on emerging
Networking EXperiments and Technologies (CoNEXT), (New York, NY, USA),
pp. 1-12; ACM, 2007.
M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of KAD,” in
Proceedings of the Tth ACM SIGCOMM conference on Internet measurement,
IMC ’07, (New York, NY, USA), pp. 117-122, ACM, 2007.
Y. Houri, B. Amann, and T. Fuhrmann, “A quantitative analysis of redun-
dancy schemes for peer-to-peer storage systems,” in Proceedings of the 12th
International Conference on Stabilization, Safety, and Security of Distributed
Systems, SSS’10, (Berlin, Heidelberg), pp. 519-530, Springer-Verlag, 2010.
R. Rodrigues and B. Liskov, “High availability in DHTs: Erasure coding vs.
replication,” in Revised Selected Papers of Peer-to-Peer Systems IV: 4th In-
ternational Workshop, IPTPS 2005, Ithaca, NY, USA, February 24-25, 2005,
vol. 4, p. 226, Springer Science & Business Media, 2005.
H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A quan-
titative comparison,” in Revised Papers from the First International Workshop
on Peer-to-Peer Systems, pp. 328—-338.
G. Utard and A. Vernois, “Data durability in peer to peer storage systems,”
in Proceedings of the 2004 IEEE International Symposium on Cluster Com-
puting and the Grid, CCGRID 04, (Washington, DC, USA), pp. 90-97, IEEE
Computer Society, 2004.
J. Li, G. Xu, and H. Zhang, “Performance comparison of erasure codes for
different churn models in p2p storage systems,” in Advanced Intelligent Com-
puting Theories and Applications. With Aspects of Artificial Intelligence (D.-S.
Huang, X. Zhang, C. Reyes Garcia, and L. Zhang, eds.), vol. 6216 of Lecture
Notes in Computer Science, pp. 410-417, Springer Berlin / Heidelberg.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

References 113

J. Tian and Y. Dai, “Understanding the dynamic of peer-to-peer systems,”
in Proceedings of the 6th International Workshop on Peer-To-Peer Systems,
IPTPS 2007, 2007.

R. Bhagwan, S. Savage, and G. M. Voelker, “Understanding availability,” in
Peer-to-Peer Systems 11, Second International Workshop, IPTPS 2003, Berke-
ley, CA, USA, February 21-22,2003, Revised Papers, pp. 256—267, Springer,
2003.

W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer, “Feasibility of a server-
less distributed file system deployed on an existing set of desktop pcs,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 28, pp. 34—43, ACM, 2000.
S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurement study of peer-
to-peer file sharing systems,” in FElectronic Imaging 2002, pp. 156-170, Inter-
national Society for Optics and Photonics, 2001.

K. Kim and D. Park, “Reducing replication overhead for data durability in
DHT based P2P system,” IEICE transactions on information and systems,
vol. E90-D, pp. 1452—-1455, Sept. 2007.

F. M. Cuenca-Acuna, R. P. Martin, and T. D. Nguyen, “Autonomous replica-
tion for high availability in unstructured P2P systems,” in Proceedings of the
Symposium on Reliable Distributed Systems (SRDS), 2003.

Z. Yao, D. Leonard, X. Wang, and D. Loguinov, “Modeling heterogeneous
user churn and local resilience of unstructured p2p networks,” in Proceedings
of the 2006 14th IEEE International Conference on Network Protocols, 2006.
ICNP’06., pp. 32-41, IEEE, 2006.

W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky, “Are disks the dominant contrib-
utor for storage failures?: A comprehensive study of storage subsystem failure
characteristics,” Transactions on Storage, vol. 4, pp. 7:1-7:25, Nov. 2008.

B. Schroeder and G. A. Gibson, “Disk failures in the real world: What does an
MTTF of 1,000,000 hours mean to you?,” in Proceedings of the 5th USENIX
conference on File and Storage Technologies, FAST ’07, (Berkeley, CA, USA),
USENIX Association, 2007.

C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski, “Fault-aware
scheduling for Bag-of-Tasks applications on desktop grids,” in Proceedings of
the 7th IEEE/ACM International Conference on Grid Computing, pp. 56—63,
IEEE, 2006.

M. Amoon, “A fault-tolerant scheduling system for computational grids,” Com-
puters € Electrical Engineering, vol. 38, no. 2, pp. 399 — 412, 2012.

W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve,
F. A. B. Silva, C. Barros, and C. Silveira, “Running Bag-of-Tasks applications
on computational grids: the MyGrid approach,” in Proceedings of the 2003
International Conference on Parallel Processing, 2003., pp. 407-416, Oct 2003.
C. Anglano and M. Canonico, “Fault-tolerant scheduling for Bag-of-Tasks grid
applications,” in Advances in Grid Computing - EGC 2005, European Grid
Conference, Amsterdam, The Netherlands, February 14-16, 2005, Revised Se-
lected Papers (P. M. A. Sloot, A. G. Hoekstra, T. Priol, A. Reinefeld, and
M. Bubak, eds.), vol. 3470 of Lecture Notes in Computer Science, pp. 630-639,
Springer, 2005.

J. Brevik, D. Nurmi, and R. Wolski, “Automatic methods for predicting ma-
chine availability in desktop grid and peer-to-peer systems,” in Proceedings of
the IEEFE International Symposium on Cluster Computing and the Grid, 2004.
CCGrid 2004., pp. 190-199, April 2004.

114

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

References

M. M. Khan, J. Navaridas, A. Rast, X. Jin, L. Plana, M. Lujan, J. V. Woods,
J. Miguel-Alonso, and S. Furber, “Event-driven configuration of a neural net-
work cmp system over a homogeneous interconnect fabric,” in Proceedings of
the 8th International Symposium on Parallel and Distributed Computing, 2009.
ISPDC °09., pp. 5461, June 2009.

R. Brown, “Calendar queues: A fast 0(1) priority queue implementation for the
simulation event set problem,” Communications of the ACM, vol. 31, pp. 1220—
1227, Oct. 1988.

W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and adjusting user
runtime estimates to improve job scheduling on the blue gene/p,” in Proceed-
ings of the IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), 2010, pp. 1-11, IEEE, 2010.

B. Javadi, J. Abawajy, and R. Buyya, “Failure-aware resource provisioning for
hybrid cloud infrastructure,” Journal of Parallel and Distributed Computing,
vol. 72, pp. 1318-1331, Oct. 2012.

J. Bansal, S. Rani, and P. Singh, “The WorkQueue with dynamic replication-
fault tolerant scheduler in desktop grid environment,” International Journal of
Computers €& Technology, vol. 11, no. 4, pp. 2446-2451, 2013.

A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and A. Sivasubramaniam,
“Fault-aware job scheduling for bluegene/l systems,” in Parallel and Distribu-
ted Processing Symposium, 2004. Proceedings. 18th International, p. 64, IEEE,
2004.

Y. Li, Z. Lan, P. Gujrati, and X.-H. Sun, “Fault-aware runtime strategies for
high-performance computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 4, pp. 460-473, 2009.

E. Byun, S. Choi, M. Baik, J.-M. Gil, C. Y. Park, and C.-S. Hwang, “MJSA:
Markov job scheduler based on availability in desktop grid computing envi-
ronment.,” Future Generation Computer Systems, vol. 23, no. 4, pp. 616-622,
2007.

K. Ramachandran, H. Lutfiyya, and M. Perry, “Decentralized approach to
resource availability prediction using group availability in a P2P desktop grid.,”
Future Generation Computer Systems, vol. 28, no. 6, pp. 854-860, 2012.

H. Xiaoping, W. Zhijiang, W. Congming, W. yu, C. Yongshang, and S. Ling,
“Availability-based task monitoring and adaptation mechanism in desktop grid
system,” in Proceedings of the Sixth International Conference on Grid and
Cooperative Computing, 2007. GCC 2007., pp. 444-450, Aug 2007.

J.-H. Hyun, “An effective scheduling method for more reliable execution on
desktop grids,” in Proceedings of the 12th IEEE International Conference on
High Performance Computing and Communications (HPCC), 2010, pp. 172—
179, IEEE, 2010.

H. Li, D. Groep, and L. Wolters, “Workload characteristics of a multi-cluster
supercomputer,” in Job Scheduling Strategies for Parallel Processing (D. Feit-
elson, L. Rudolph, and U. Schwiegelshohn, eds.), vol. 3277 of Lecture Notes in
Computer Science, pp. 176-193, Springer Berlin Heidelberg, 2005.

T. White, Hadoop: the definitive guide: the definitive guide. ” O’Reilly Media,
Inc.”, 2009.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
cluster computing with working sets,” in Proceedings of the 2nd USENIX con-
ference on Hot topics in cloud computing, pp. 10-10, 2010.

