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Laburpena

Gaur egun eredu aurresaleek arlo askotan dute eragina, besteak beste: fisikan, mete-

orologian, finantzetan edo medikuntzan. Azken honetan, eredu aurresaleen garran-

tzia gora doa erabaki prozesuen euskarri gisa eta balizko aldagai aurresaleen ingu-

ruko jakintzak erabaki prozesu horietan lagungarri izaten ari da. Indibiduo baten

informazio kliniko zein ez-klinikoaren arabera, gertaera kaltegarri bat izateko ba-

nakako arriskuaren estimazioaren bitartez, eredu aurresale klinikoek partekatutako

erabakiak hartzeko beharrezkoa den informazioa eskaini dezakete.

Eredu aurresale bat garatzerakoan funtzezkoa da ereduan izango diren aldagai

aurresaleak ondo hautatzea, hala nola aldagai aurresaleen eta erantzulearen arteko

erlazioa ondo zehaztea. Aldagai jarraituen kategorizazioa ez da ontzat hartzen

estatistika-ikuspuntu hutsaletik, informazioaren eta ahalmenaren galera ekar bait

dezake. Gainera, badaude aldagai aurresale eta erantzun aldagaiaren arteko lineal-

tasunik inposatzen ez duten ereduak, hala nola, eredu gehigarri orokortuak (GAM

izenekoak). Hala ere, ikerkuntza klinikoan eta batez ere, praktika klinikoan era-

biliko diren ereduen garapenean aldagaien kategorizazioa beharrezkoa suertatzen

da. Bai medikuek zein osasun kudeaketaren arduradunek aldagai jarraituen katego-

rizazioaren beharra ikusten dute. Aldagaien kategorizazioa praktika klinikoan ohikoa

izan arren, ez dago irizpide uniformerik mozketa puntuen kokapenari dagokionez.

Aldagaien kategorizazioaren gaia iadanik aztertu da literaturan. Baina gehienek

mozketa puntu bakarra lortzea izan dute helburu. Lan honetan, eredu aurresaleen

garapenean erabiltzeko aldagai aurresaleen kategorizazioan jartzen dugu arreta, baina

betiere bi kategoria baino gehiago aintzakotzat hartuz. Horrela, informazioaren

galera murriztu eta aldagai aurresale eta erantzun aldagaiaren arteko erlazioa man-

tentzen da.

Gure helburua, erregresioan oinarritutako eredu aurresaleetan aldagaiak katego-
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rizatzeko metodologia baliagarria garatzea eta proposatzea da, batik bat erregresio

logistikoa eta arrisku proportzionaletako Cox ereduak erabiliz. Hauek baitira prak-

tikan maizen erabiltzen diren ereduak erantzun aldagaia bitarra edo gertaera arteko

denbora denean hurrenez hurren.

Birikietako butxadura kronikoaren gaixotasuna (BBKG) duten pazienteentzako

eredu aurresale bat garatzen geundela, zenbait aldagai jarraituen kategorizazioaren

beharra sortu zen. Medikuek argi ikusten zuten zenbait aldagai, hala nola PCO2

edo arnasketa-maiztasuna, eredu aurresalean modu kategorikoan sartu behar zirela.

Hala ere, ez zegoen akordiorik mozketa puntu kopuru eta beren kokapenaren ingu-

ruan. Mozketa puntuen hautua irizpide klinikoetan oinarritzen ez zirenean, maiz

pertzentilen arabera aukeratzen ziren. Hala eta guztiz ere irizpide klinikoetan oi-

narritzen zirenean ere, askotan ez zegoen akordiorik beraien artean. Ondorioz, arazo

honi konponbide bat bilatzea erabaki genuen. Horretarako, kategorizaziorik hobe-

rena eskaintzen zuen metodologia garatzea pentsatu genuen. Hura izan zen tesi

honetan lan egiteko lehen motibazioa.

Hasierako urrats batean, X aldagai jarraitua eta Y aldagai erantzule bitarraren

arteko erlazio grafikoaren arabera X kategorizatzea proposatu genuen. Bi aldagaien

arteko erlazioa erakusteko erregresio logistiko gehigarria eta P-spline leuntzaileak

erabili ziren. X aldagai jarraitua gutxienez 3 kategorietan sailkatzea proposatu

genuen, bi mozketa puntu horien kokapena batez besteko arriskuko kategoriaren

limiteak izanik. Hirugarren mozketa puntu bat beharrezkoa izanez gero, irizpide

klinikoan edo adierazpide grafikoan behatutako malda aldaketan oinarrituta au-

keratuko litzateke. Izan ere, metodologia honek muga batzuk ditu: hirugarren

mozketa puntuaren hautua subjektiboa da, ez du X aldagaiaren kategorizazioa eredu

anizkoitz batean bermatzen eta erantzun bitarrera mugatua dago.

Ondorioz, bigarren urrats batean metodologia orokor baten garapenean murgildu

gara. Metodologia orokor honek mozketa puntu optimoak eskaintzen ditu eredu sin-

ple zein anizkoitzean eta erantzun aldagaiaren banaketa ezberdinetarako. Hasteko

erregresio logistikoan X aldagaiarentzako k mozketa puntu optimo aukeratzeko me-

todologia garatu dugu. Mozketa puntuen hautua eredu sinplean edo anizkoitzean

egin daiteke, azken honetan Z = (Z1, . . . , Zp) beste aldagai aurresaleen eragina

kontuan hartuz. Y erantzun aldagaiarentzako erregresio logistikorik hoberena es-

kaintzen duen vk = (x1, . . . , xk) k mozketa puntuen bektorea aurkitzean oinarri-

tzen da gure proposamena. Izan bedi Xcatk , k + 1 kategoria dituen eta 0tik krako

balioak hartzen dituen aldagai kategorikoa. Orduan (1) ereduaren receiver oper-

ating characteristic (ROC) kurbaren azpiko azalera (AUC) maximoa egiten duen
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vk = (x1, . . . , xk), k mozketa puntu optimoen bektorea izango da.

logit(π(Z, Xcatk)) = β0 +

p∑
r=1

βrZr +

p+k∑
q=p+1

βq1{Xcatk
=q−p}. (1)

AUC hori maximoa egiten duten mozketa puntuak aurkitzeko, bi algoritmo pro-

posatzen ditugu: AddFor eta Genetic. Batetik, AddFor algoritmoak mozketa puntu

bat bilatzen du aldiro. Hau da, lehendabizi k = 1-entzako (1) ereduaren AUC maxi-

moa egiten duen x1 bilatzen du (Xren eremuan berdin tartekatutako balioen M

tamainako sare batean). Behin x1 finkatu duela, k = 2-rako (1) ereduaren AUC

maximoa egiten duen x2 bilatzen du (M tamainako sarean) (x2 6= x1). Prozesua

errepikatzen da vk = (x[1], . . . , x[k]) bektorea lortu arte, non x[o]-k ordenatutako

o-garren mozketa puntua adierazten duen. Bestalde, Genetic metodoak aldi berean

bilatzen du (1) ereduaren AUCa maximoa egiten duen k mozketa puntuen bek-

torea. Horretarako ezagunenak diren eboluzio-algoritmoak erabiltzen ditu, algo-

ritmo genetikoak hain zuzen.

Mozketa-puntuen hautaketaz gain, AUCaren gainestimazioaren arazoari heldu

diogu. Datu berdinak erabiltzen direnez erregresio logistikoaren eredua doitzeko

(mozketa puntuen hautuan nahasia) eta AUCa estimatzeko, azken honen estimazioa

alboratua egon daiteke eta zuzendu beharra dago. Testuinguru honetan bootstrap-

ean oinarritutako hurbilketa bat proposatu dugu kategorizatutako aldagaiaren AUC-

aren gainestimazioa zuzentzeko asmoz. Bestalde, mozketa puntu kopururik egokiena

aukeratzeko, X aldagai jarraituaren bi kategorizazio konparatzeko metodoa pro-

posatu dugu. Jakitun gara, teorikoki mozketa puntu kopuru optimorik ez dela exis-

titzen, ezen guztien gainetik aldagai jarraitua baitago. Hala ere, praktika klinikoan,

aldagai jarraituen bertsio kategorikoak dira erabilienak, baina jakin gabe gehienetan

zein kategoria kopuru hobesten den. Ondorioz, k = l eta k = l + 1 mozketa puntu

kopuruak konparatzeko, berauen zuzendutako AUCen diferentzietan oinarritutako

metodoa proposatu dugu.

Hainbat simulazio garatu ditugu proposatutako metodoak balioztatzeko helbu-

ruarekin. Lehenengo simulazio azterketa, baldintza teoriko ezagunetan oinarritu da.

Honen bitartez AUCaren zuzenketaren beharra aztertu da eta estimatutako mozketa

puntuak hala nola AddFor eta Genetic algoritmoen eraginkortasuna balioztatu da.

Bestalde backward validation deituriko simulazio azterketa egin da non mozketa pun-

tuak irizpide klinikoetan oinarrituta aurretiaz finkatuak daude eta hauen estimazioa

balioztatu da.
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Erantzun bitarraz gain, praktika klinikoan maiz erabiltzen den erantzun alda-

gaia da gertaeren arteko denbora. Mota honetako erantzun aldagaiak aztertzeko

biziraupeneko eredurik ezagunena da arrisku proportzionaletako Cox eredua. On-

dorioz, X aldagai aurresale jarraitua arrisku proportzionaletako Cox ereduan katego-

rizatzea kontsideratu dugu. Aurretiaz aztertu egin da mozketa puntuen estimazioa

zentsuratutako datuen presentzian, baina guztietan mozketa puntu bakarra bilatzea

izan dute helburu. Hala ere, aldagai aurresalea bi baino kategoria gehiagotan kate-

gorizatzea zen gure helburua, eredu sinple zein anizkoitza aintzakotzat hartuz. Be-

raz, erregresio logistikorako garatutako metodologia arrisku proportzionaletako Cox

eredura luzatzea proposatu dugu. Eredu honen diskriminazio-ahalmena neurtzeko

konkordantzia-probabilitate indizea kontsideratu dugu. Are gehiago, bi estima-

tzaile ezberdin aztertu dira c-index eta concordance probability estimator(CPE) hain

zuzen. Simulatutako datuetan oinarritutako balioztatze ikerketa garatu dugu, alda-

gai aurresale jarraitu baten kategorizazioan CPE eta c-index estimatzaileen errendi-

mendua aztertzeko. Simulazio ikerketa honetan hainbat egoera ezberdin aztertu

dira. Alde batetik, mozketa puntu kopuruari dagokionez, k = 1, 2 eta 3 aztertu

ditugu. k = 1erako, X aldagai aurresale jarraituaren eta T bizirik irauteko denbo-

raren arteko arrisku-harreman hazkorra eta beherakorra aztertu dira. Horretaz gain,

mozketa puntu teorikoentzako kokapen ezberdinak aztertu ditugu: a) aldagai aurre-

salearen banaketaren erdialdean; b) arrisku handiko eremura mugituta eta c) arrisku

baxuko eremura mugituta. k = 2 eta k = 3-rentzako, X aldagai aurresale jarraitu-

aren eta T bizirik irauteko denboraren arteko erlazio lineala eta ez-lineala aztertu

dira. N = 500 eta N = 1000 lagin tamainako datu baseen 500 erreplika simulatu

dira.

Proposatutako metodoak BBKG zuten gaixoen bi ikerketetara aplikatu dira.

BBKGaren gaizkiagotze bat duten gaixoen ikerketa den IRYSS-COPD Study, PCO2

aldagai aurresalea erregresio logistiko sinple eta anizkoitzean kategorizatzeko erabili

da erantzun aldagaia epe laburreko eboluzio oso txarra izanik. Eredu anizkoitzean,

PCO2 aldagaia Glasgow coma scale eta bihotz-maiztasuna aldagai aurresaleen era-

gina kontuan hartuz kategorizatu da. Antzeko emaitzak lortu ditugu AddFor edo

Genetic algoritmoak erabiliz, baita eredu sinplea edo anizkoitza erabili ditugunean

ere. Lortutako emaitzen arabera, mozketa puntu kopururik egokiena bi izan da, be-

raz PCO2 aldagaia hiru kategorietan kategorizatu da era optimo batean. Bestalde,

BBKG egonkorra zuten gaixoen ikerketa, Stable-COPD Study, FEV1% aldagaia

arrisku proportzionaletako Cox ereduan kategorizatzeko erabili da. Kasu honetan

bost urteko bizi-iraupena aztertu da. Ikerketa honetan lanean ari ziren medikuek
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bi helburu mahai-gaineratu zizkiguten. Lehenengo eta behin, FEV1% aldagaia lau

kategorietan kategorizatzeko eskatu ziguten, hau da k = 3 mozketa puntu optimoak

bilatzea eredu sinplea aintzat hartuz. Helburua, gure emaitzak eta literaturan au-

rretiaz proposatutako beste mozketa puntuak konparatzea zen. Bigarren helburua

ordea, eredu anizkoitzean mozketa puntuen kokapen eta kopuru hoberena lortzea

izan da, disnea eta adinaren eragina kontuan hartuz. Azken bi hauen hautua BBKG

egonkorra duten gaixoen eboluzioaren aurresale onak izatean oinarritu da. Eredu

sinplean lortutako emaitzak, aurreko proposamenetan lortutakoak baino hobeak izan

dira. Gainera, FEV1% aldagaia eredu anizkoitzean kategorizatu dugunean, mozketa

puntu kopuru optimoa bi dela lortu dugu, AddFor eta Genetic algoritmoekin lortu-

tako emaitzak berdinak izanik. Ikerketa bietan, proposatutako metodologia aplika-

tzerakoan lortutako emaitzak medikuengandik balioztatuak izan dira.

Azkenik, erabiltzeko erreza den pakete bat garatu dugu R softwarean, CatPredi

deiturikoa. R-ko funtzioz osoturiko paketea da hau, aldagai jarraitu baten kate-

gorizazio optimoa lortzea bermatzen duena. Kategorizazio hau bai ereduaren gara-

penaren aurretik (eredu sinplea) zein garapenean zehar (eredu anizkoitza) lor daiteke.

Aukera ezberdinak garatu egin dira pakete honetan, aukeratutako eredu aurre-

salearen arabera. Hau da, erregresio logistikoa erantzuna bitarra denerako eta

arrisku proportzionaletako Cox eredua erantzuna gertaera arteko denbora denerako.

CatPredi paketeak hainbat emaitza eskaintzen dizkio erabiltzaileari. Alde batetik,

erabiltzaileak aukeratutako kopururako, mozketa puntuen kokapena eskaintzen du.

Gainera, sortutako aldagai kategorikoarekin doitutako erregresio ereduaren emaitza

bueltatzen du. Halaber aldagai kategoriko horrentzako diskriminazio-ahalmeneko

indizearen estimazioa hala nola zuzendutako estimazioa ematen ditu. Azkenik,

mozketa puntu kopuru ezberdinentzako lortutako kategorizazio proposamenak kon-

paratzea posiblea da CatPredi paketearen bidez, mozketa puntu kopuru optimoa

lortuz intereseko aldagai aurresalearentzako.

Doktorego-tesi honetan, erantzun aldagaiaren banaketaren arabera, hurbilketa

ezberdinak proposatu ditugu aldagai jarraituen kategorizaziorik hoberena lortzeko.

Gure proposamenekin, nahi beste mozketa puntu optimo lor daitezke, bai eredu

sinplean zein eredu anizkoitzean. Aurretiaz, aldagai jarraituen kategorizazioan lan

egin da, baina gehienetan, mozketa puntu bakarra bilatzeko helburuarekin. Guk

dakigunaren arabera, aurretiaz egindako proposamenek ez zuten aldagaiaren kate-

gorizazioa eredu anizkoitzean kontsideratzen, ezta mozketa puntu optimoaren auke-

raketa ere. Garrantzitsua da hemen aipatzea guk ez dugula kategorizazioa bera mo-

delizaziorako irtenbide bezala proposatzen. Tesi honen helburua izan da medikuek
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aldagai jarraituen kategorizatzea beharrezkoa ikusten dutenean, kategorizazio hori

era egokienean egitea baimenduko duen metodologia eskaintzea.

Ondorioz, tesi honetan aldagai aurresale jarraituak kategorizatzeko baliozko me-

todologia garatu eta proposatu dugu, medikuek beharrezkoa ikusten dutenean erabili

ahal izateko.



Summary

Prediction models are currently relevant in a number of fields such as physics, mete-

orology, finance or medicine, among others. In the medical field, prediction models

are gaining importance as a support for decision-making whereby increased knowl-

edge of potential predictors helps the decision-making process. Clinical prediction

models may provide the necessary input for shared decision-making by estimating

an individual’s risk of an unfavourable event or developing a certain disease over a

specific time period on the basis of his or her clinical and non-clinical profile. A vital

factor in the development of prediction models is the selection of the predictors or

covariates (clinical variables) to be used in the model. From a statistical perspec-

tive, categorising continuous variables is not advisable, since it may entail a loss of

information and power. In addition, there are statistical modelling techniques such

as the generalised additive models (GAM) which do not require any assumption of

linearity between predictors and response variables, and so allow for the relationship

between the predictor and the outcome to be modelled more appropriately. Yet in

clinical research and, more specifically, in the development of prediction models for

use in clinical practice, both clinicians and health managers call for the categori-

sation of continuous parameters. Despite the fact that categorisation is a common

practice in clinical research, there are no unified criteria for the selection of the cut

points. Previous work has been done in the categorisation of continuous variables

but with the aim in almost all cases of dichotomising the predictor variable. In this

dissertation, we focus on the categorisation of continuous variables to be used in

the development of prediction models, considering that the use of more than two

categories may be preferable. This serves to reduce the loss of information and en-

ables the relationship between the covariate and the response variable to be retained.

Our goal is to propose a methodology to categorise continuous predictor variables

xv
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in regression-based prediction models, mainly focussing on the logistic and Cox re-

gression models which are those most widely used in the medical field for modelling

dichotomous and time-to-event outcomes respectively.

The work presented in this dissertation was initially motivated by the devel-

opment of a prediction model in the context of patients with chronic obstructive

pulmonary disease (COPD). Clinicians agreed on the use of a categorised version of

some clinical parameters such as the blood gas PCO2 or the respiratory rate in the

prediction model. However, they did not agree on the location and number of cut

points. We noticed that these were usually based on quartiles and when they were

based on clinical criteria there was no agreement between them. Several proposals

are available in the literature, but most aimed at the selection of a single cut point.

Thus, we considered developing a methodology to categorise continuous predictor

variables in prediction models.

In a first stage we considered categorising a continuous predictor variable X by

considering its graphical relationship with a binary response variable Y based on a

logistic GAM with P-spline smoothers. We proposed to categorise X in a minimum

of three categories, considering the limits of the average-risk category as the location

of the cut points. The location of the third cut point, if needed, was to be based on

clinical criteria or a change in the slope of the graphical display. Nevertheless, this

methodology had some restrictions: the location of this third cut point was subject

to subjectivity, it did not allow us to categorise X in a multivariate setting and it

was limited to a binary outcome.

Thus in a second stage, we claimed for a proposal that provided with an opti-

mal categorisation of a continuous predictor in a multivariate setting for different

distributions of the response variable. We started by developing a methodology

in which the location for any given k number of cut points for X could be opti-

mally selected in a logistic regression, in addition or not to a set of other predictor

variables, Z = (Z1, . . . , Zp). The proposal consisted of the selection of a vector

vk = (x1, . . . , xk) of k cut points in such a way that the best logistic predictive

model was obtained for the response variable Y . Specifically, given k the number

of cut points set for categorising X in k + 1 intervals, let us denote Xcatk the cor-

responding categorised variable taking values from 0 to k. Then, what we propose

is that the vector of k cut points vk = (x1, . . . , xk), which maximises the area under

the receiver operative characteristic (ROC) curve (AUC) of the logistic regression
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model shown in equation (2) is thus the vector of the optimal k cut points.

logit(π(Z, Xcatk)) = β0 +

p∑
r=1

βrZr +

p+k∑
q=p+1

βq1{Xcatk
=q−p}. (2)

To search for those cut points which maximise the AUC, we propose two alter-

native algorithms, namely AddFor and Genetic. Using the AddFor algorithm, one

cut point is searched for at a time. In other words, this algorithm first seeks x1 (in

a grid of size M of equally spaced values in the range of X), such that the AUC

of the logistic regression model shown in equation (2) for k = 1 will be maximised.

Once x1 has been selected, it is fixed and the algorithm proceeds to seek x2 (in the

grid of size M) (x2 6= x1), so as to ensure that the AUC of the model in equation

(2) for k = 2 will be maximised. The process is then repeated until the vector of

k cut points, vk = (x[1], . . . , x[k]), has been obtained, with x[o] denoting the o-th

ordered cut point. On the other hand, the Genetic method simultaneously finds the

vector of k cut points, vk = (x1, . . . , xk), which maximises the AUC of the logistic

regression model in equation (2) by using genetic algorithms.

Furthermore, we addressed the problem of overestimation of the AUC when the

same data is used to fit the logistic regression model (involved in the cut point

selection process) and estimate the AUC. In this context, we propose a bootstrap

based approach to correct the optimism of the AUC for the categorised variable. In

addition we propose a naive approach to compare two given categorisations of the

predictor variable X with the aim of selecting the best number of cut points. We

are aware that in theory the optimal number of cut points for the categorisation of a

continuous variable does not exist, since above all the possible number of cut points,

the best option would be the continuous variable. However, in clinical practice cat-

egorical versions of the continuous variables are usually preferred without it always

being clear which is the best number of categories to be used. Hence, we propose an

approach for selecting the best number of cut points based on the difference between

the bias-corrected AUCs obtained for k = l and k = l + 1 cut points.

Several simulation studies were conducted to empirically validate the proposed

methods. The first simulation study was performed under known theoretical condi-

tions. With this setting we studied the need of the bias correction of the AUC and

validated the estimated cut points and the performance of the algorithms AddFor

and Genetic. In addition, we conducted a backward validation simulation study in

which we validated the estimated cut points when the cut points were scientifically
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pre-established based on clinical knowledge.

In addition to the binary response variable, a common outcome in clinical prac-

tice is the time until the event occurs. The Cox proportional hazards model is

the most common survival prediction model for the analysis of time-to-event data.

Hence, we considered categorising a continuous predictor variable X in a Cox pro-

portional hazard model. Previous work on the estimation of optimal cut points with

censored data has been done but sought a unique cut point. However, our aim was

to categorise a continuous predictor variable considering more than a unique cut

point in either a univariate or a multivariate setting. Consequently, we propose to

extend the methodology developed for the logistic regression to the Cox proportional

hazards model. To measure the discriminative ability of the model, we considered

the concordance probability index, and two different estimators were studied: the

c-index and the concordance probability estimator (CPE). The algorithms used to

select the optimal cut points were the ones mentioned above, Addfor and Genetic

respectively. An empirical validation based on simulated data was performed to

evaluate the performance of both the c-index and CPE estimators when it came to

selecting the optimal cut points for the categorisation of continuous variables. Var-

ious different settings were considered for this simulation study. First of all, as far

as the number of cut points is concerned, k = 1, 2 and 3 were considered. For k = 1

we considered increasing and decreasing risk relationship between the continuous

predictor X and survival time T . Additionally, we considered different positions for

the theoretical cut points: a) centred in the predictor’s distribution; b) shifted to

high risk area and c) shifted to low risk area. For k = 2 and k = 3 we considered a

linear and a nonlinear relationship between the continuous predictor X and survival

time T . R = 500 replicates of simulated data were performed for total sample sizes

of N = 500 and N = 1000.

The proposed methods were applied to real data from two different Studies of pa-

tients with COPD. The IRYSS-COPD study with patients with exacerbated COPD

is used to categorise the predictor variable PCO2 in a univariate and multivariate

logistic regression model were the response variable is short-term very severe evolu-

tion. In the multivariate setting, the PCO2 was categorised adjusted by the effect

the predictor variables Glasgow coma scale and heart rate. Similar cut points were

obtained when the AddFor and Genetic algorithms were used, also when the univari-

ate or multivariate setting were used. The results obtained suggested that the best

number of cut points was two and hence the PCO2 was optimally categorised into

3 categories. The Stable-COPD study was used to categorise the predictor variable
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FEV1% in a Cox proportional hazards model considering 5-year survival. Clinical

researchers involved in the Stable-COPD study presented us with two goals. First,

the aim was to categorise the predictor variable FEV1% into four categories (mild,

moderate, severe and very severe), i.e., k = 3, in a univariate setting in order to com-

pare the results obtained with previous categorisation proposals. The second goal

was to look for the best categorisation (location and number of cut points) in a mul-

tivariate setting, taking into account the effect of age and dyspnoea, which are seen

as important predictors for the severity of stable COPD patients. The results ob-

tained in a univariate setting improved those obtained from previous categorisation

proposals. In addition, when we categorised the predictor variable in a multivari-

ate setting, we obtained that two was the optimal number of cut points, hence we

categorised the predictor variable FEV1% in three categories being these the same

when the AddFor or Genetic algorithms were used. The cut points obtained by the

proposed methodology were face-validated by clinicians in both studies.

Finally, we have developed an easy-to-use package in software R, called CatPredi.

This is a package of R functions that allows the user to categorise a continuous pre-

dictor variable either before (univariate setting) or during the development of a pre-

diction model (multivariate setting). Different approaches have been implemented

depending on the prediction model chosen, i.e., logistic regression (for binary re-

sponse variables) or Cox proportional hazards model (for time to event outcomes).

The CatPredi package provides the optimal location of cut points for a chosen num-

ber of cut points, fits the prediction model with the categorised predictor variable

and returns the estimated and bias-corrected discriminative ability index for this

model. Additionally, it allows to compare two categorisation proposals for different

number of cut points and select the optimal number of cut points.

In this dissertation we propose different approaches for categorising continuous

variables depending on the distribution of the response variable for any given num-

ber of cut points. Additionally, this categorisation approach can be applied in either

a univariate or multivariate setting. Previous work on categorisation has been done

but with the aim in almost all cases to dichotomise the continuous predictor variable.

To the best of our knowledge, none of the previous proposals allowed the categori-

sation during the development of the model neither considered selecting the best

number of cut points. We must note that in this dissertation we do not recommend

the categorisation as a modelling solution, but our goal is to propose a valid way to

do so whenever it is needed.

In conclusion, in this dissertation we propose a valid methodology for categorising
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a continuous predictor variable whenever it is considered necessary by a clinical

researcher.



Chapter 1
Introduction

1.1 Prediction models

Prediction models are currently relevant in a number of fields such as physics, meteo-

rology, finance and medicine, among others. In the medical field, prediction mod-

els are gaining importance as a support for decision-making, whereby the increased

knowledge of potential predictors helps the decision-making process. Decisions such

as the most appropriate treatment for a disease, or whether or not a given patient

should be discharged; or the development of effective, acceptable, and cost-efficient

prevention strategies are based on the individual patient’s risk of suffering some un-

favourable event. Additionally, “shared decision-making” is now the norm whereby

clinicians and patients are both actively involved in deciding therapeutic interven-

tions or choosing medical treatments. This shared decision-making process requires

us to be aware of the potential risks and advantages of each of the decisions to be

taken (Steyerberg 2009). Clinical prediction models provide estimates for an indi-

vidual’s risk of an unfavourable event or development of a certain disease over a

specific time period on the basis of a combination of a number of patient character-

istics which we call variables. These variables, whose information is known, can be

related to the patient, the disease or the treatment, for example. Estimation of the

individual’s risk of an unfavourable event by the prediction model may provide the

necessary input for shared decision-making. Often, clinical prediction models are

extended to include clinical prediction rules, risk scores or prognostic models.

The literature includes well-known prediction models which have been developed

to predict the development of a disease, death or poor evolution caused by a current

disease. The Framingham risk score, for example, was developed in 1998 to predict

1
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coronary heart disease (Wilson et al. 1998). Today it is still a widely-used risk

score with more than 7000 citations and appears in clinical guidelines such as those

of the National Heart, Lung and Blood Institute (National Cholesterol Education

Program 2002). Likewise, a risk score was developed to predict type II diabetes with

the aim of identifying those individuals who would benefit from intensive lifestyle

advice (Lindström and Tuomilehto 2003). In the context of patients with chronic

obstructive pulmonary disease (COPD), the development of risk scores or prediction

models is an active research area (Celli et al. 2004, Haroon et al. 2015, Make et al.

2015, Quintana et al. 2014a;b). In general, publications about clinical prediction

models have increased considerably in the last few years (see Figure 1.1).

Figure 1.1: Number of articles available in Pubmed published between 1984 and 2014 with

the terms “prediction model”, “prediction rule”,“prognostic model” or “risk score” in the

title. The searched was performed in April 2015.

Prediction is an estimation problem together with hypothesis tests approaches.

Prediction models may serve to answer estimation and hypothesis test questions

while summarising the data structure. When prediction models are developed it

may be necessary to make several assumptions regarding the structure of the data

or the relation between covariates. For example, whether predictors effects work in

an additive way or whether continuous predictors have linear effects should be tested.

In this dissertation we will focus on regression-based prediction models, particularly

the logistic (McCullagh and Nelder 1989) and Cox models (Cox and Oakes 1984)

which are those most widely used in the medical field for modelling dichotomous
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and time-to-event outcomes respectively (Steyerberg et al. 2013).

Finally, if the aim is to apply the prediction model in practice, it is important

to show that it is valuable when applied to new data, which is called validation.

Different validation strategies may be used in practice, i.e. internal or external

validation (Steyerberg 2009). Internal validation evaluates the validity of the model

when it is applied to data derived from the same sample in which they have been

developed. Conversely, external validation examines the generalisability of the model

to other samples. For example, we could assess the validity of the model when

applied to other hospitals, countries, time periods, etc. Usually, there are no data

or funding available to do external validation. Hence, when a prediction model is

developed a good internal validation should be ensured at the least.

To sum up, the research on predicting outcomes from multiple variables has three

main steps: development of the prediction model, validation of the model in new

individuals and study of its application and impact in clinical practice. The aim

of this dissertation is to propose a valid methodology for categorising continuous

predictor variables whenever a clinical researcher considers it necessary to include

a categorised version in the prediction model. This is framed mainly in the first

phase, that is to say, in the development of the model. However, in the development

of the proposed methodology we have accorded great importance to the validation

of the predictive ability as well as the interpretation and practical applicability of

the proposed categorical variable.

1.2 Categorisation of predictors

A vital factor in the development of prediction models is the selection of the pre-

dictors or covariates (clinical variables) to be used in the model. From a statistical

perspective, categorising continuous variables is not advisable, since it may entail a

loss of information and power (Altman and Lyman 1998, Cohen 1983, MacCallum

et al. 2002, Royston et al. 2006) and a loss of efficiency if the correlation between

the categorised and response variable is high (Taylor and Yu 2002). Additionally,

there are statistical modelling techniques such as generalised additive models (GAM)

(Hastie and Tibshirani 1990, Wood 2006), which do not require any assumption of

linearity between predictors and response variables, and so allow for the relation-

ship between the predictor and the outcome to be modelled more appropriately. Yet

in clinical research and, more specifically, in the development of prediction models

for use in clinical practice, both clinicians and health managers have called for the
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categorisation of continuous parameters. Indeed, in a recent survey of the epidemio-

logical literature, in 86% of the papers included in the study, the primary continuous

predictor was categorised, and 78% used three to five categories (Turner et al. 2010).

Additionally, of the seven prediction models mentioned in Section 1.1 above, in six

of them categorised continuous variables are used as predictors, being the number

of categories used between 3 and 5 (see Table 1.1) when more than two categories

are considered. None of them use continuous variables in the prediction model but

nevertheless as regards those variables studied in the univariate analysis it is not

specified whether the linearity is fulfilled.

Table 1.1: Summary of the use of categorised continuous variables in prediction models

Prediction model

Use of
categorised
predictors

Number of
categories

Selection of
cut points

Framingham risk score
(Wilson et al. 1998)

Yes 5 Clinical guidelines

Diabetes risk score
(Lindström and Tuomile-
hto 2003)

Yes 3
Based on previous

research

BODE - index
(Celli et al. 2004)

Yes 4 Clinical guidelines

COPD mortality score
(Quintana et al. 2014a)

Yes 3 Not specified

COPD prognostic severity
score
(Quintana et al. 2014b)

Yes 3 or 4
Based on previous

research

Risk of COPD in primary
care
(Haroon et al. 2015)

No - -

COPD short-term risk
(Make et al. 2015)

Yes 3
Tertiles corrected to
clinically relevant cut

points

There are several reasons for incorporating categorical variables in prediction

models. First, in clinical practice, the implementation of the results obtained from

techniques such as GAM is not always viable. It requires specific software which it

is not always possible to use in consulting rooms or emergency departments. On the

other hand, decisions in clinical practice are often taken on the basis of an individual

patient’s risk level, which is strongly related to the categorisation of that patient’s
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clinical variables. Yet, despite the fact that categorisation is a common practice in

clinical research, there are no unified criteria for categorising continuous variables.

Indeed, categorisation is very often based on percentiles, even though this is known

to have drawbacks (Bennette and Vickers 2012). Moreover, even when categorisa-

tion is based on clinical criteria, it has been shown that it can vary enormously from

one practitioner, hospital or even country to another. For instance, a meta-analysis

conducted by Lim and Kelly (2010) showed that reported cut-off values for partial

pressure of carbon dioxide in the blood (PCO2) for hypercapnia screening ranged

from 30 to 46 mnHg. In addition, an optimal categorisation may provide an under-

standable summary and simple interpretation of the results obtained with minimal

loss of information (Gelman and Park 2009), mainly when more than two categories

are considered.

Work has been done on the categorisation of continuous variables. A review of

these methods shows that these have been based first, on the graphical relationship

between the predictor and the outcome, second, on percentiles and, third, on the

minimum p-value approach (Mazumdar and Glassman 2000). For the first, scatter

plots, grouped data plots or model-based plots (Hin et al. 1999) could be used.

In the third, of all possible cut points, the cut point for dichotomisation chosen is

that for which the maximum chi-squared statistic (or minimum p-value) is obtained

(Miller and Siegmund 1982). Altman et al. (1994) showed that the minimum p-

value approach yields an increase in the false positive error rate and thus proposed

a correction for the minimum p-value formulae. Latter, Faraggi and Simon (1996)

proposed a cross-validation approach to estimate the minimum p-value. On the

other hand, O’Brien (2004) proposed a categorisation as the partition which lead

to the minimum average distance between the true and estimated expected values

of the outcome for subjects in the same category. Moreover, the aim in almost

all cases is to seek a single cut point, or, to put it another way, to dichotomise

the continuous predictor. A particular case is the dichotomisation of an estimated

probability for test markers or biomarkers for diagnostic (diseased or non-diseased)

or screening purposes. In this context, the maximisation of the Youden index (Fluss

et al. 2005, Youden 1950) and the point on the receiver operating characteristic

(ROC) curve closest to the point (0, 1) (Metz 1978, Vermont et al. 1991), have

been proposed, among others. This is a research area of interest, as evidenced by

recent publications (López-Ratón et al. 2014, Rota and Antolini 2014, Rota et al.

2015). However, this is not the aim of the work we present in this dissertation. We

focus on the categorisation of continuous variables to be used in the development



6 Chapter 1.

of prediction models, considering that the use of more than two categories may be

preferable. This serves to reduce the loss of information and enables the relationship

between the covariate and the response variable to be retained. For example, for a

variable such as blood pressure, it is not possible to classify patients into high and

low risk categories by using a unique cut point, since low and high values of blood

pressure are indicators of high risk. Thus, in this case at least two cut points, i.e.

three categories would be needed.

In the context where the outcome of interest takes only two possible values, the

search for more than one cut point has been considered, for instance, by Tsuruta

and Bax (2006). Tsuruta and Bax propose a parametric method for obtaining cut

points based on the overall discrimination c statistic (Harrell et al. 1982). The

authors showed the optimal location of cut points in a case where the distribution

of the predictor variable is known, and illustrated the proposal for application to a

normal distribution. Yet, in routine clinical practice and, by extension, in medical

research, variables of interest do not usually respond to either a normal or a known

distribution.

While developing a multivariate prediction model for COPD patients in differ-

ent studies that will be presented in detail in Chapter 2, clinical researchers and

epidemiologist encouraged us to categorise several continuous variables. We realised

there were no previously specified cut points for those variables and no methodology

to do so. That problematic discovery motivated the work presented in this disser-

tation. Without recommending categorisation as an ideal solution, the aim of this

work is to propose valid methods for categorising continuous variables whenever a

clinical researcher considers it necessary.

1.3 Organisation of subsequent chapters

The rest of this dissertation is organised as follows. In Chapter 2 the motivating

data sets are presented. More precisely, the IRYSS-COPD study of patients with

exacerbated COPD (eCOPD) is presented in the first place. In the development of

prediction models for eCOPD patients, the need to categorise several clinical vari-

ables obtained from the blood gasometry was presented. This fact motivated the

development of a valid methodology to categorise continuous variables. In addition,

the Stable-COPD study is presented. This data set of patients suffering from sta-

ble COPD (sCOPD), is used as the motivating data set for the categorisation of

continuous variables when the response variable is time to event.
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Chapter 3 is devoted to the presentation of the main statistical methods used

throughout the dissertation. What is shown in this chapter is the basis of the

proposals that are made in subsequent chapters. These include the generalised linear

model (GLM), the GAM and the Cox proportional hazards (Cox PH) regression

model. Furthermore, the most commonly used discriminative ability measures are

presented.

Our first approximation to the categorisation of continuous variables in logistic

regression models was based on a graphical display based on a GAM. This method-

ology is presented in Chapter 4, together with its validation and implementation in

the IRYSS-COPD study.

Chapter 5 is devoted to the development of a methodology for categorising con-

tinuous predictor variables in a logistic regression setting as an improvement on what

is presented in Chapter 4. In this proposal the optimal categorisation of continuous

variables is based on the maximisation of the area under the ROC curve (AUC). The

categorisation can be done for any number of cut points in addition to being able

to select the optimal number of cut points. The methodology has been validated

in theory and in practice when theoretical cut points are known. It has also been

applied in the IRYSS-COPD study.

Chapter 6 is an extension to the methodology presented in Chapter 5 where

the prediction model considered is a Cox PH regression model. In this setting,

different discrimination index estimators have been proposed and compared as the

target of maximisation. The methodology has been validated and applied in the

Stable-COPD study data set.

In our opinion, the development of an easy-to-use tool to allow the implementa-

tion of the proposed methodology in practice was an important goal of this work.

Hence, we developed the CatPredi package in software R (R Core Team 2014) which

allows the user to categorise a continuous variable either in a logistic regression or a

Cox PH model (methodologies presented in Chapter 5 and Chapter 6 respectively).

A detailed description of this package is given in Chapter 7. Additionally, an R func-

tion is given as an easy way to implement the graphical display-based methodology

presented in Chapter 4.

Chapter 8 ends this dissertation with general conclusions about the methodolo-

gies presented and the work developed so far, in addition to the objectives of future

research.

Most of the scientific results provided by this work have already been presented

to the scientific community as research articles or communications in conferences. At
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the beginning of each chapter we present the main results related to the methodology

proposed in that chapter. In addition, in Chapter 8, we enumerate all the scientific

results provided by the work presented in this dissertation.



Chapter 2
Motivating data sets

In this chapter we describe in detail the two data sets that motivated the research

presented in this dissertation, which were both studies of patients with COPD.

COPD is one of the most common chronic diseases, and its prevalence is expected

to increase over the next few decades (Buist et al. 2008). COPD is a leading cause of

death in developed countries, and patients with COPD generally suffer a substantial

deterioration in their quality of life (Esteban et al. 2009). The exacerbation of COPD

is defined as an event in the natural course of a patient’s COPD characterised by a

change in baseline dyspnoea, cough and/or sputum, that is beyond normal day-to-

day variations and that may have warranted a change in medication or treatment

(Rabe et al. 2007). In the following sections we present the two research studies

that have motivated the work presented in this dissertation. The first study, the

IRYSS-COPD study, concerns patients with exacerbated COPD (eCOPD), and the

second, the Stable-COPD study, focuses on patients with stable COPD (sCOPD).

2.1 The IRYSS-COPD study

The IRYSS-COPD study (IRYSS: Red de investigación cooperativa para la Investi-

gación en Resultados de Salud y Servicios Sanitarios - Cooperative Health Outcomes

& Health Services Research Network) was created to address gaps in identifying

eCOPD patients whose clinical situation is appropriate for admission to hospital,

and to develop and validate severity scores for eCOPD patients (Quintana et al.

2011). In this study, a sample of 2877 episodes corresponding to 2487 patients with

eCOPD attending the emergency departments (ED) of 16 participating hospitals

in Spain was collected between June 2008 and September 2010. Information was

9
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recorded as follows: at the date on which patients were evaluated at the ED; at the

date on which the decision was made to admit patients or discharge them from the

ED; and during follow-up after admission to hospital or discharge. Data collected

upon arrival in the ED included socioeconomic data, information about the patient’s

respiratory function (arterial blood gases, respiratory rate, dyspnoea, forced expi-

ratory volume in one second in percentile (FEV1%)), presence of other pathologies

recorded in the Charlson Comorbidity Index (Charlson et al. 1987) and conscious-

ness level measured by the Glasgow Coma Scale which was dichotomised as follows:

altered conciousness defined as a score of < 15 points, unaltered conciousness as a

score of 15 points (Teasdale and Jennett 1974). Additional data collected in the

ED at the time a decision was made to admit or discharge the patient included the

patient’s symptoms, signs, and respiratory status at that point. Quintana et al.

(2011) provide a detailed description of the IRYSS-COPD study. Furthermore, a

description of the main selected variables is given in Table 2.1.

Table 2.1: A description of the selected variables from the IRYSS-COPD study

Variable Available N Mean (sd) Range

Age 2876 72.84 (9.51) 36 - 96
Sexa 2874

Men 2627 (91.41%)
Female 247 (8.59%)

FEV1% 2430 44.57 (16.76) 17 - 149
Charlson Index 2877 2.25 (1.55) 1 - 13
Glasgowa 2874

Normal 2797 (97.32%)
Altered 77 (2.68%)

Respiratory Rate 2314 25.04 (6.67) 10 - 56
PCO2 2485 47.49 (14.08) 13 - 160
Heart Rate 2697 95.05 (18.90) 21 - 190

aCategorical variables are shown as absolute and relative frequencies

Currently, ED physicians must rely largely on their experience and the patient’s

personal criteria to gauge how an eCOPD will evolve. A clinical prediction rule

that could help predict eCOPD evolution would allow ED physicians to make better

informed decisions about treatment. Therefore, one of the goals of the IRYSS-COPD

study was to develop clinical prediction rules. To this end, two main outcomes were

defined, short-term poor evolution and very severe evolution (Quintana et al. 2011).

The definition of both outcomes is displayed in Table 2.2.

For the first outcome of interest, i.e. poor evolution, we first evaluated which vari-
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Table 2.2: Description of the outcomes defined for the development of clinical prediction

rules in the IRYSS-COPD study

Outcome Description

Poor evolution

Includes any of the following: death, ICU admis-
sion, the need for IMV, cardiac arrest, NIMV for
more than 2 days when mechanical ventilation
was not needed before admission, and/or admis-
sion to an IRCU for 2 or more days

Very severe evolution
Includes any of the following: death, ICU ad-
mission, need for IMV, and/or cardiac arrest

ICU: intensive care unit ; IMV: invasive mechanical ventilation; NIMV: non-
invasive mechanical ventilation; IRCU: intermediate respiratory care unit.

ables were related to the outcome in a univariate setting. We noted, among others,

that clinical variables obtained from arterial blood gases such as PCO2, PO2 or pH

or the respiratory rate (RR), were strongly related to poor evolution. However, for

some of these variables not all the data needed were available in the clinical records,

and even when they were available, they were not always in a desirable format,

appearing, for instance, as a description of patient status rather than a numerical

value, e.g. some patients’ RR was recorded as “eupneic” or “taquibneic” instead of

being cited as a number on a continuous scale. Despite the fact that clinicians failed

to agree on the cut points to apply to each code, they did, in contrast, regard the

“eupneic” and “taquibneic” patients as “normal” and “altered” respectively, which

means that, although they would be able to classify such patients on a categorical

scale, they would nevertheless leave them as missing data on a continuous scale. In

this context, clinicians encouraged us to find the best categorisation for this variable

to facilitate reconciliation of information that was partially available as a continuous

variable and partially available as an ordinal variable. In order to meet this demand,

we developed the initial approach described in Chapter 4.

The second goal for the IRYSS-COPD study researchers was to develop a pre-

diction model for very severe evolution. After a preliminary analysis, the predictors

selected for inclusion in the multivariate model for very severe evolution were the

Glasgow Coma Scale, heart rate and the arterial blood gas PCO2. However, the

covariate PCO2 did not have a linear relationship with the outcome and hence it

had to be modelled with a smooth function or in a categorised version. The clinical

researchers involved in the study opted for a categorised version of this predictor,
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but there were no previously fixed cut point criteria in the literature (Lim and

Kelly 2010). Furthermore, clinicians did not agree on the best number of categories

for this variable. Hence, we considered developing a methodology to resolve these

problems: 1) obtain the optimal cut points for any given number of cut points either

in a univariate or in a multivariate setting; and 2) select the optimal categorisation

by comparing different numbers of cut points. This methodology is presented in

Chapter 5.

2.2 The Stable-COPD study

In this study patients being treated for COPD at five outpatient respiratory clinics

affiliated with the Hospital Galdakao-Usansolo in Biscay between January 2003 and

January 2004 were recruited (Esteban et al. 2014). Patients were consecutively

included in the study if they had been diagnosed with COPD for at least six months

and had been receiving medical care at one of the hospital respiratory outpatient

facilities for at least six months. Their COPD had to be stable for six weeks before

enrolment. Patients were followed for up to five years. Details of the follow-up

are shown in Figure 2.1 and the main selected variables collected in this study are

summarised in Table 2.3.

The main goal of this study was to develop prediction models for patients with

sCOPD. Several outcomes were considered of interest. These included, among oth-

ers, short-term mortality, five-year survival, frequency of hospitalisation and health-

related quality of life.

An important predictor for COPD mortality or hospitalisation is FEV1%, which

is commonly used by clinicians to diagnose and measure the severity of the disease

(Vestbo et al. 2013). Recently, several multivariate prediction models which include

a categorised version of FEV1% among the predictor variables have shown a bet-

ter survival prediction than isolated FEV1%. Among others, the most commonly

used prediction models are the original BODE index (Celli et al. 2004), ADO index

(Puhan et al. 2009), HADO index (Esteban et al. 2006), SAFE (Azarisman et al.

2007) and DOSE (Jones et al. 2009). A description of the variables included in each

index is given in Table 2.4. Although all prediction models use a categorised version

of the predictor variable FEV1%, not all of them use the same cut points. The cri-

teria used in each index to categorise FEV1% are summarised in Table 2.5. To date,

the most widely-used cut points are the ones proposed by the Global Obstructive

Lung Disease (GOLD) guidelines (mild ≥ 80, moderate 50-79, severe 30-49 and very
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Figure 2.1: Follow-up flowchart of the Stable-COPD study. This graphic is the copyright of

Dr Cristobal Esteban, principal researcher of the project and author of the article in which

it is published (Esteban et al. 2014).

Table 2.3: A description of the selected variables from the Stable-COPD study.

Variable Available N Mean (sd) Range

Age 543 68.32 (8.32) 33 - 86
Sexa 543

Men 522 (96.13%)
Female 21 (3.87%)

FEV1% 543 55 (13.31) 18 - 105
BMI 543 28.28 (4.43) 16.38 - 44.04
Dyspnoeaa 543

1 69 (12.71)
2 264 (48.62)
3 166 (30.57)
4 23 (4.24)
5 21 (3.87)

Walking distance 543 408.89 (92.43) 46 - 644
Time until event (days) 543 1574.89 (483.43) 23 - 2045
5-year mortality 543

Yes 167 (30.76)

aCategorical variables are shown as absolute and relative frequencies
Dyspnoea was measured with the modified scale of the Medical Research Coun-
cil (mMRC) (Fletcher et al. 1959).
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severe < 30) (Rabe et al. 2007).

Recently, Almagro et al. (2014) proposed a new categorisation of FEV1% to

predict five-year survival in COPD patients. This research was framed within the

Collaborative Cohorts to Assess Multicomponent Indices of COPD in Spain (CO-

COMICS) study. For this study a number of cohort studies of COPD patients with

different stages of COPD were grouped together with the aim of assessing more

accurately the survival of COPD patients.

Hence, and taking all this into account, three factors motivated us to look for

the best categorisation of the variable FEV1% in the prediction model developed

in the Stable-COPD study. First of all, this variable is an important predictor for

predicting five-year survival for sCOPD patients. Since other prediction models and

especially clinical guidelines use a categorised version of this variable, the clinicians

involved in the study considered it was necessary to include a categorised version of

this variable in the prediction model. Second, recent research shows the importance

of seeking optimal cut points for this variable. Third, to date there are no unified

criteria on how to categorise the variable FEV1%. Consequently, we used the data

set of 543 patients with sCOPD in the Stable-COPD study and in particular the

FEV1% predictor variable for the methodology developed in Chapter 6.
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Table 2.4: Description of the existing indexes for predicting the severity of COPD patients.

Prediction
Scores

Description

BODE

• Body mass index
• Airflow obstruction measured by FEV1%
• Dyspnoea
• Walked distance in 6 minutes

ADO
• Age
• Dyspnoea
• Airflow obstruction measured by FEV1%

HADO

• Overall health status
• Level of physical activity
• Dyspnoea
• Airflow obstruction measured by FEV1%

SAFE

• Quality of life measured by Saint George’s Respiratory
Questionnaire
• Airflow obstruction measured by FEV1%
• Walked distance in 6 minutes

DOSE

• Dyspnoea
• Smoking status
• Airflow obstruction measured by FEV1%
• Prior exacerbation history

Table 2.5: Airflow obstruction level measured by FEV1% based on the different cut points

used in the literature to categorise the continuous FEV1% variable.

Criteria Mild Moderate Severe Very Severe

SAFE
≥ 80 [50− 80) [30− 50) < 30

GOLD

DOSE ≥ 50 [30− 50) < 30

BODE ≥ 65 [50− 65) (35− 50) ≤ 35

ADO ≥ 65 (35− 65) ≤ 35

HADO > 65 [50− 65] [35− 50) < 35

COCOMICS ≥ 70 (55− 70) (35− 55] ≤ 35
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Chapter 3
Methodological background and preliminaries

In this chapter we introduce the general notations used as well as the main statistical

models we use throughout the paper, i.e. GLM, GAM and the Cox PH regression

model.

Specifically, in Section 3.1 we introduce the GLM in general and the estimation

method for the logistic regression model for a binary outcome in particular. The

GLM assumes a linear relationship between the predictors and a function of the

expected outcome, which is the logit function when a binary outcome is considered.

When this linearity does not hold, an extension of the GLM appears which is known

as GAM. In Section 3.2 we introduce the GAM and present the most common al-

ternatives for the estimation of the smooth functions which are used to model the

nonlinear effects of the predictor variables. The first two sections of this chapter

focus on a binomial distribution of the response variable or the disease status. How-

ever, in many circumstances the disease status is not a fixed characteristic of the

study. Such is the case of survival studies where the status of an individual varies

with time. In such cases, the interest is then focused on the time of the occurrence of

the event of interest. The most common alternative for modelling time-to-event data

is the Cox PH model introduced in Section 3.3. Finally, in Section 3.4 we introduce

the concordance probability as the most commonly used discriminative ability mea-

sure in prediction models. In the logistic regression setting the AUC is introduced

whereas in the Cox PH model two alternative estimators for the concordance prob-

ability are presented. In addition, in this Section we discuss different approaches to

compare the AUCs of two prediction models, as well as existing proposals for the

bias correction in concordance probability estimators.

17
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3.1 Generalised linear model

Suppose we have a response variable Y with some exponential family distribution

and a set of predictor variables Z = (Z1, . . . , Zp) which can be either continuous

or categorical variables. Often one may be interested in studying how this set of

predictor variables Z is related to the response variable Y . The first attempt to do

so, may be to fit a GLM, assuming there exists a linear relationship between the

predictors and some function of the expected outcome. Then the GLM has the form

g(E(Y |Z)) = Zβ′ = β0 + β1Z1 + . . .+ βpZp, (3.1)

where β = (β0, β1, . . . , βp) is the vector of the unknown regression coefficients and

g is the link function. For ease of notation, we have included the unit term in the

vector of the predictor variables, that is, Z = (1, Z1, Z2, . . . , Zp) and represented the

model as if all the variables were continuous.

In particular, when Y is a binary response variable and the link function g is

the logit function, then the GLM is known as the logistic regression model. Let us

assume that the outcome variable has been coded as zero or one, representing the

absence or the presence of the event respectively. Thus the expected value for Y ,

E(Y ) is the probability of having the outcome of interest, i.e. P (Y = 1). To simplify

notation we use π(Z) = P (Y = 1|Z) to represent the conditional expectation of Y

given Z when Y is binary. Then, the multivariate logistic regression model for Y is

written as a linear function in the logistic transformation (logit) of the conditional

probability that the outcome is present, as shown in equation (3.2)

logit(π(Z)) = ln
π(Z)

1− π(Z)
= β0 + β1Z1 + . . .+ +βpZp, (3.2)

or equivalently,

π(Z) =
exp(Zβ′)

1 + exp(Zβ′)
. (3.3)

Let {(zi, yi)}Ni=1 be a random sample drawn from (Z, Y ), where zi represents the

observed value of the predictor variables and yi represents the observed binary re-

sponse for subject i. The regression coefficients of model (3.2) are usually estimated

by maximum likelihood. In this case, the likelihood function is given by,
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l(β) =

N∏
i=1

π(zi)
yi(1− π(zi))

1−yi . (3.4)

The principle of maximum likelihood states that the best value to assign to β is

that for which equation (3.4) is maximised. Nevertheless for ease of mathematical

calculation, the logarithm of the expression in equation (3.4) is maximised. This

results in the log likelihood which is defined as,

L(β) =

N∑
i=1

{yi ln [π(zi)] + (1− yi) ln [1− π(zi)]}. (3.5)

To find the vector β which maximises equation (3.5), L(β) is differentiated with

respect to β0, β1, . . . , βp−1 and βp, which leads to the (p + 1) likelihood equations

that may be expressed as
N∑
i=1

[yi − π(zi)] = 0 (3.6)

and
N∑
i=1

zij [yi − π(zi)] = 0 for j = 1, . . . , p. (3.7)

Frequently an iterative weighted least squares algorithm is used to solve the

likelihood equations in (3.6) and (3.7). We will denote as β̂0 and β̂1, . . . β̂p the

estimated values of β0 and β1, . . . , βp. More detail about estimation methods in

GLM can be seen in McCullagh and Nelder (1989).

3.2 Generalised additive model

The GAM is an extension of the GLM where the modelling of the effect of the covari-

ates is relaxed by not assuming linearity. Albeit the effect of some covariates may be

assumed to be linear, the nonlinear effects are modelled using smoothing methods,

such as kernel smoothers (Wand and Jones 1994), smoothing splines (Green and

Silverman 1994) or regression splines (De Boor 2001, Hastie et al. 2009). In general,

the model has the following structure

g(E(Y |Z)) = β0 +

p∑
j=1

fj(Zj). (3.8)
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Model (3.8) is an extension of model (3.1) where fj(·) are some smooth and

known functions of the covariates Zj for each j = 1, . . . , p. More specifically, if Y is

a binary response variable, then the logistic GAM is expressed as

logit(π(Z)) = β0 +

p∑
j=1

fj(Zj). (3.9)

The main drawback of GAMs lies in the estimation of the smooth functions fj(·),
and there are different ways to address this. The most recent approaches are based

on splines, which allow the GAM estimation to be reduced to the GLM context

(Currie et al. 2006).

Splines are piecewise polynomials, pieces defined by a sequence of m knots ζ1 <

ζ2 < . . . ζm, in such a way that pieces join smoothly at these knots. Splines depend on

three elements: the degree of the polynomial, the number of knots and the location

of these knots. There are two major approaches to smooth modelling with splines:

1) smoothing splines and 2) regression splines. Smoothing splines use as many knots

as observations and incorporate a penalisation on the second derivative (Green and

Silverman 1994). This implies that its implementation is not efficient when the

amount of available data is very high. Regression splines can be fitted using the

least squares method once the number of knots has been selected. However, the

selection of the knots’ location is done with complex algorithms.

An intermediate alternative for building the smooth functions, which considers

both the smoothing splines’ and the regression splines’ advantages is the use of

penalised splines also known as P-splines and introduced by Eilers and Marx (1996).

P-splines use fewer knots than smoothing splines; in fact, the number of knots used

in P-splines is no larger than 40 which makes it computationally more efficient

than smoothing splines. Additionally, P-splines introduce more general roughness

penalties which relax the importance of the knots’ location. Thus, the number of

knots ensures flexibility, and the penalty avoids over-fitting and ensures smoothness.

The methodology for constructing a P-spline has two main steps: 1) choose

a basis for the regression, and 2) modify the likelihood function by introducing a

penalty based on the differences between adjacent coefficients. The most common

alternatives for the first step are truncated polynomials, thin plate regression splines

(Wood 2003) and B-splines (De Boor 2001). In this dissertation we will focus on the

B-spline basis. In general, a B-spline basis of degree r comprises:
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Figure 3.1: (a) B-spline basis functions of degree r = 1 and m = 9 inner knots.

(b) B-spline basis functions of degree r = 3 and m = 5 inner knots.

1. (r + 1) piecewise polynomials, each of degree r

2. These (r + 1) piecewise polynomials join at r inner knots.

3. At the junction point, the derivatives up to r − 1 order are continuous.

4. The B-spline is positive in a domain covered by r+2 knots and zero otherwise.

5. Except at the frontiers, each B-spline overlaps with 2r neighbouring piecewise

polynomials.

6. For each value zij of Zj , there are r + 1 non-zero B-splines.

This means a B-spline basis is independent of the response variable. The smooth

functions fj(·) are represented in terms of B-spline basis functions depending on

the following factors: 1) the range of the independent covariate Zj ; 2) the number

and location of the knots; and 3) the degree of the B-spline. Figure 3.1 shows two

examples of B-spline basis functions with m = 9 inner knots and degree r = 1 and

m = 5 inner knots and degree r = 3 respectively.

With this smoothing approach, for each GAM component, the smooth function
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is reduced to a linear combination of dj = mj + rj − 1 B-splines,

fj(·) =

dj∑
l=1

Bjl(·)βjl, (3.10)

where βj = (βj1, . . . , βjdj ) is a vector of unknown regression coefficients and Bjl(·)
is a B-spline basis.

We have seen so far how to address the representation of each smooth function

fj(·) in equation (3.9). However, without imposing constraints this model presents

an identifiability problem, because it incorporates more than one predictor variable.

We could subtract a constant ξ of any smooth function (f1(z1) − ξ), and add it to

another one (fp(zp) − ξ), and the same regression model would be obtained. To

avoid this problem, it is necessary to impose some restrictions. The usual way to

guarantee the identification of the model is to incorporate a constant β0, and to

“centre” the smooth functions in some way, for instance by assuming:

E(fj(Zj)) = 0 for j = 1, . . . , p.

Given a sample {(zi, yi)}Ni=1, the matrix representation of model (3.9) based on

P-splines can be given in this way,

logit(π(z)) = Bβ′ (3.11)

where z denotes the sample predictor variables, β=
(
β0, β11, . . . , β1d1 , . . . , βp1, . . . , βpdp

)
is the coefficients vector, dj is the number of B-splines for the jth covariate, for each

j = 1, . . . , p and B is the N × (1 +
∑p

j=1 dj) regressor matrix defined as


1 B11(z11) · · · B1d1(z11) · · · Bp1(z1p) · · · Bpdp(z1p)
...

... · · ·
... · · ·

... · · ·
...

1 B11(zN1) · · · B1d1(zN1) · · · Bp1(zNp) · · · Bpdp(zNp)


In general, the estimation method consists of maximising the penalised version

of the log likelihood expressed as:
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L∗ = L(β)− 1

2

p∑
j=1

λjβjPjβj
′ (3.12)

where the term L(β) represents the log likelihood of the vector of the response

variable Y as presented in (3.5). For each j = 1, . . . , p the λj ≥ 0 are the smoothing

parameters and Pj is a dj×dj dimension matrix that defines the penalty for the jth

smooth function. The estimation method is explained in detail in Marx and Eilers

(1998).

3.3 Cox proportional hazards model

As we mentioned before, survival analysis is used to analyse data in which the time

until the event of interest occurs is the response variable, which is frequently called

survival time or event time. This response variable is generally continuous, but

survival analysis allows that the variable is not fully determined for some subjects.

For example, in a survival study that explores five-year mortality after surgery for

colon cancer, if a patient is still alive at five years, it is known that survival is greater

than five years, but the exact value is not known. Hence that patient’s survival time

is censored on the right. Censoring can also occur when an individual is lost to

follow-up. Different types of censorship exist, but in this dissertation we will focus

on right-censoring in which individuals’ survival time is observed only if the event

occurs before a certain time, but allow different censoring times between individuals.

Even if there is no censoring, there are several reasons to use survival analysis

to model the time until the event rather than standard linear regression models.

On the one hand, time to event is restricted to be positive, usually with a skewed

distribution, and thus it does not meet the normality assumption. On the other

hand, the probability of surviving past a certain time is often more interesting than

the expected survival time.

Let T be a non-negative random variable representing the time to the event of

interest and let us denote by C the random right-censoring variable. Instead of

defining the statistical model for the response T in terms of the expected survival

time, it is worth defining it in terms of the survival function, S(t), given by

S(t) = P (T > t) = 1− F (t), (3.13)
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where F (t) is the cumulative distribution function for T . As an example, Figure 3.2

represents the estimated survival function (using Kaplan-Meier estimator (Kaplan

and Meier 1958)) for the Stable-COPD study presented in Chapter 2. The hazard

function, h(t), also called instantaneous event rate, is defined as

h(t) = lim
ν→0

P (t < T 6 t+ ν|T > t)

ν
, (3.14)

and its integral can be based on the survival function such that∫ t

0
h(v)dv = − lnS(t). (3.15)

Thus, the hazard function at time t is related to the probability that the event

will occur in a small interval around t, given that the event has not occurred before

time t.
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Figure 3.2: Survival function for patients in the Stable-COPD study.

Let Z = (Z1, . . . , Zp) be a set of predictor variables in which we are interested in
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terms of studying the relationship with the survival time T . The most widely used

survival regression specification allows the hazard function h(t) to be multiplied by

exp(Zβ′). Thus, the hazard function for T in a time t given the covariates Z is

given by,

h(t|Z) = h(t) exp(Zβ′) (3.16)

where β is the regression coefficients vector. This expression is called the propor-

tional hazards (PH) model. If a parametric hazard function is used for h(t) then

the model is called the parametric proportional hazards model. Commonly used

parametric forms for the hazard function are based on the exponential and Weibull

distributions. For the former the hazard function takes a constant value and for

the latter the hazard function can be expressed as h(t) = λγtγ−1, where λ and γ

are usually called scale and shape parameters respectively. Conversely, the hazard

function can also be left completely unspecified in equation (3.16), yielding the Cox

semiparametric proportional hazards model (Cox 1972). This model is the most

commonly used regression model for analysing survival data.

Note that the model in equation (3.16) can be rewritten as

lnh(t|Z) = lnh(t) +Zβ′. (3.17)

This implies that the effect of the covariates Z is assumed to be the same at all

values of t since lnh(t) can be separated from Zβ′. The regression coefficient for

Zj , βj , is the increase in the logarithm of the hazard at any fixed time t if Zj is

increased by one unit and all the rest of the covariates are kept constant (assuming

Zj is continuous). Usually the effect a covariate Zj has on the response variable time

to event is measured by the hazard ratio (HR), which is estimated as the exponential

of the regression coefficient βj .

For estimating and testing the regression coefficients β0, . . . , βp, the Cox PH

model is as efficient as the proportional hazards parametric model even when all the

assumptions of the parametric model are satisfied (Efron 1977). The estimation of

the regression coefficients β0, . . . , βp is carried out by the maximization of the partial

likelihood function proposed by Cox (1972). The construction of the partial likeli-

hood is based on the observed events but does not explicitly consider the censored

individuals.

Let {zi, yi, δi}Ni=1 be a sample of size N , where zi represents the observed value

of the predictor variables for subject i, yi represents the observed follow-up time for
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subject i, being the minimum between the censoring (ci) and the event time (ti),

i.e. yi = min(ti, ci), and δi represents whether subject i is an event (δi = 1) or is

censored (δi = 0). Thus, δi = I(ti ≤ ci).
Assume for now that there are no tied event times in the sample, so the partial

likelihood is defined as,

l(β) =
∏
i:δi=1

eziβ
′∑

l:yl≥yi

ezlβ
′ (3.18)

and the log partial likelihood

L(β) =
∑
i:δi=1

ziβ′ − ln

 ∑
l:yl≥yi

ezlβ
′

 . (3.19)

When there are tied event times in the sample, the maximisation of (3.19) be-

comes very time-consuming or not feasible. In such a case, two approximations have

been proposed in the literature. The first approximation was proposed by Breslow

(1974) and is a good approximation of the partial likelihood when the number of ties

is not large. However, when the number of ties is large, the approximation proposed

by Efron (1977) is preferred since it is more accurate than Breslow’s approximation

(Harrell 2001). More details of these approximations can be seen in Harrell (2001).

3.4 Discriminative ability measures

3.4.1 Definition

In general, the concordance probability between the observed response variable and

the predicted outcome is a measure widely used to assess the predictive discrimina-

tive ability of a prediction regression model. Suppose one has a response variable

R (in logistic regression the response variable is represented as Y and in survival

analysis as T ) and a set of predictor variables Z. Then, in general a regression

model can be written as a linear function of Z for some function of R such that

m(R|Z) = β0 + β1Z1 + . . .+ βpZp. (3.20)

For example, if R is a binary variable and the logistic regression model is used,

then m is the logit function of the expectation of R. If R is a time-to-event variable,

then m is the logarithm of the hazard function. Given two independent copies
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(Z1, R1) and (Z2, R2) of the random vector (Z, R), the concordance probability is

defined as the probability that predictions and outcomes are concordant, that is,

C = P (m(R2|Z2) > m(R1|Z1)|R2 > R1). (3.21)

If C takes a value of 0.5 then the model provides random predictions whereas a value

of C = 1 represents a perfectly discriminative model.

For the specific logistic regression setting, the area under a receiver operating

characteristic (ROC) curve (AUC) is a measure widely used to assess the discrimi-

native ability of the model. The ROC curve is defined as

ROC(·) = {(FPR(c), TPR(c)), c ∈ (0, 1)}, (3.22)

where FPR(c) = P (π(Z) ≥ c|Y = 0) is the false positive rate and TPR(c) =

P (π(Z) ≥ c|Y = 1) is the true positive rate for a given threshold c. Equivalently,

the ROC curve can also be written as

ROC(·) = {(t, ROC(t)), t ∈ (0, 1)}, (3.23)

where the ROC function maps t to TPR(c), and c is the threshold corresponding

to FPR(c) = t. Thus, the ROC curve is a monotone increasing function mapping

(0, 1) onto (0, 1) (Pepe 2003). An example of the ROC curve is given in Figure 3.3.

A widely used measure of the ROC curve is the AUC which is defined as

AUC =

∫ 1

0
ROC(t)dt. (3.24)

A model which discriminates individuals perfectly into events and non-events will

have an AUC = 1, whereas a non-discriminative model will have an AUC = 0.5.

In this specific setting in which the outcome is a binary response variable, Bamber

(1975) and Hanley and McNeil (1982) showed that the AUC is identical to the

concordance probability. Thus, the AUC can be interpreted as the probability that

the predictions from a randomly selected pair of event and non-event subjects are

correctly ordered (Pepe 2003).

Given a sample {(zi, yi)}Ni=1, the estimation of the AUC is frequently calculated

by the Mann-Whitney statistic (Pepe 2003). Let π̂i = π̂(zi) = logit−1(β̂0 + β̂1zi1 +

. . . + β̂pzip) be the estimated probability for subject i, then the estimated AUC is

given as:
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Figure 3.3: An example of a ROC curve. Values for (FPR,TPR) are shown for three

threshold points, c1, c2, c3 as an example.

ÂUC =
1

N0N1

∑
l∈DY =0

∑
m∈DY =1

I[π̂l, π̂m], (3.25)

where DY=1 and DY=0 are the sets of subjects with Y = 1 and Y = 0, respectively,

N1 and N0 are the sizes of these sets and I[•] is the indicator function adjusted for

ties

I[π̂l, π̂m] =


1 if π̂l < π̂m

0.5 if π̂l = π̂m

0 if π̂l > π̂m .

(3.26)

In a setting where the outcome is time to event, the concordance probability is

defined as the probability that, of two randomly chosen individuals, the one with

higher predicted probability of survival will outlive the one with lower predicted

probability. In the presence of censorship, a problem arises with the comparison
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of predicted survival times for a pair of individuals for which the event has not

been observed. Harrell et al. (1982) proposed an estimator for the concordance

probability called the c-index which is defined as “the proportion of all pairs of

patients for which we could determine the ordering of survival times such that the

predictions are concordant”. More specifically, Harrell et al. classified the pairs of

individuals as usable or unusable. A pair of individuals is considered unusable if

both had the event at the same time, or if one had the event and the other not, but

was not followed long enough to determine whether would outlast the one with the

event. Thus, the c-index estimator proposed by Harrell is the proportion of usable

individual pairs in which the predictors and the outcomes are concordant and is

computed by forming all pairs of observed data where the shorter follow-up time is

an event.

Given a sample {zi, yi, δi}Ni=1, consider all pairs ((zi, yi, δi), (zl, yl, δl)) where the

shorter follow-up time is an event. Then the c-index estimator proposed by Harrell

is defined as

c =

∑∑
i<l

{I(yi < yl)I(ziβ̂
′ > zlβ̂

′)I(δi = 1) + I(yl < yi)I(zlβ̂
′ > ziβ̂

′)I(δl = 1)}∑∑
i<l

{I(yi < yl)I(δi = 1) + I(yl < yi)I(δl = 1)}
,

(3.27)

where β̂ represents the partial likelihood estimate of β.

Even though it is widely used in practice, as pointed out by Gönen and Heller

(2005), the c-index estimator proposed by Harrell et al. (1982) is biased and the

bias increases with the censoring rate. Hence, Gönen and Heller (2005) proposed an

alternative estimator called the concordance probability estimator (CPE), which un-

der the proportional hazards assumption is a consistent estimator of the concordance

probability. This estimator is defined as

CPE =
2

N(N − 1)

∑∑
i<l

{I(zliβ̂
′ < 0)

1 + ezliβ̂
′ +

I(zilβ̂
′ < 0)

1 + ezilβ̂
′ }, (3.28)

where zil represents the pairwise difference zi − zl.
Other estimators for the concordance probability have been proposed in the

literature: Begg et al. (2000), Heagerty and Zheng (2005), Song and Zhou (2008)

and Uno et al. (2011). In this dissertation we focused on the original Harrell c-index

estimator and the CPE for two main reasons. Schmid and Potapov (2012) carried out
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a comparison of different discrimination indexes and none of the estimators proved

to be stable in all scenarios. Schmid and Potapov (2012) concluded that “censoring

rates and model misspecification have non-negligible effects on the behaviour of

estimators of discrimination indexes”. In addition, work has been done on the

comparison of these two estimators in dichotomising a continuous predictor in a

Cox PH model (Sima and Gönen 2013) and we intended to extend this research to

the search for more than one cut point.

3.4.2 Comparison of the AUC

In prediction, often the interest lies in comparing the discriminative ability of two

prediction models, with the aim of selecting the best one. Several methods have

been proposed in the literature to compare correlated ROC curves, that is, ROC

curves which are estimated on the same set of individuals. Of these, the methods

proposed by Bandos et al. (2005; 2006), Braun and Alonzo (2008), DeLong et al.

(1988), Hanley and McNeil (1983) are based on the comparison of the AUC whereas

the methods proposed by Moise et al. (1988) and Venkatraman and Begg (1996) are

based on the comparison of the ROC shape.

Additionally, other measures have been proposed to compare the discriminative

ability of different prediction models or assess the incremental value of a new pre-

dictor variable (Steyerberg et al. 2010). Among others, these include reclassification

tables (Cook 2007), reclassification test (Cook 2008), net reclassification improve-

ment (NRI) and integrated discrimination improvement (IDI) (Pencina et al. 2008).

Furthermore, decision analytic measures have also been proposed, which include de-

cision curves (Vickers et al. 2008, Vickers and Elkin 2006) which plot the net benefit

attained by decisions based on model predictions.

The most widely used method for comparing AUCs in practice is the one pro-

posed by DeLong et al. (1988). Their test addresses a nonparametric comparison

of areas under correlated ROC curves based on the U-statistics theory. This test is

the one implemented in the SAS R© statistical software and it is also implemented

in several libraries of the R software (R Core Team 2014) such as the pROC package

(Robin et al. 2011).

However, several authors have criticised the use of the DeLong’s test to evaluate

the increment in discriminative ability owed to a new predictor variable by compar-

ing the AUCs derived from the prediction model with and without the new predictor

variable (Demler et al. 2012, Seshan et al. 2013, Vickers et al. 2011). Vickers et al.
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(2011) demonstrated by means of simulations that the DeLong’s test has a conser-

vative test size and lower power than the Wald test when the aim is to assess the

increase in discriminative ability of a new predictor variable. Additionally, Dem-

ler et al. (2012) concluded, based on numerical simulations, that the DeLong’s test

should not be used to compare two correlated AUCs of models which have been

developed and validated in the same data and Seshan et al. (2013) showed that the

use of the DeLong’s test to compare two nested models is invalid. Nevertheless, they

all agree that the DeLong’s test has valid statistical properties when the aim is to

compare two dependent prediction tests.

Thus, we considered the DeLong’s test as a first approximation for the compar-

ison of two categorical proposals in this dissertation. Moreover, we considered the

IDI measure for validation purposes in the application to the IRYSS-COPD study

in Chapter 5 because of the similarities with the specific objectives in this case.

3.4.3 Optimism correction of the model’s discriminative ability

Over-fitting is a major problem in regression modelling, especially if the aim is to

make predictions for new individuals. In our context, when fitting a regression model

(either logistic regression or Cox PH model) our interest recalls on the estimation of

the discriminative ability of such model. However, when the discriminative ability

is estimated on the same data that were used to fit the model, the discrimination

index obtained is overestimated.

Several approaches are used in practice to obtained unbiased estimates of the

discriminative ability index, such as data splitting, cross-validation and bootstrap

(Steyerberg 2009). Airola et al. (2011) carried out an experimental comparison

of cross-validation techniques for estimating the AUC and proposed leave-pair-out

cross-validation as the preferred method for bias-corrected estimation of the AUC.

On the other hand, Harrell (2001) stated that the bootstrap provides the most ef-

ficient estimates for discrimination indexes. Harrell (2001) and Steyerberg (2009)

proposed a bootstrap-based optimism correction of the discriminative ability of a

regression model which was based on the original proposal made by Efron and Tib-

shirani (1993). Let c represent a discrimination index estimator of any of the models

seen so far. Then the bootstrap-based optimism correction proposed by Harrell and

Steyerberg can be summarised as follows.

Step 1. Fit the regression model on the basis of the sample {(zi, yi)}Ni=1 and com-

pute the corresponding discrimination index c. Let us denote this apparent c
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as capp.

Step 2. For b = 1, . . . , B, generate the bootstrap resample {(z∗ib, y∗ib)}
N
i=1 by draw-

ing a random sample of size N with replacement from the original sample. Fit

the regression model to the bootstrap resample, obtain the estimated regres-

sion coefficients β̂b0, β̂
b
1, . . . , β̂

b
p, and compute the corresponding discrimination

index, cbboot for b = 1, . . . , B.

Step 3. Obtain the linear predictor for the original sample based on the fitted

regression model obtained in Step 2, β̂b0 + β̂b1zi1 + . . .+ β̂bzip, and compute the

discrimination index and denote it by cbo for b = 1, . . . , B.

Once the above process has been completed, the optimism O of the original discrim-

ination index is calculated as follows

O =
1

B

B∑
b=1

(cbboot − cbo) (3.29)

and the bias-corrected discrimination index is then computed as capp −O.

We have used this bootstrap-based optimism correction as the basis of our pro-

posal for the optimism correction presented in Chapter 5 and Chapter 6 below.



Chapter 4
Categorisation in logistic regression based on

GAM

The work presented in this chapter has been previously published and partially pre-

sented at an international conference.

Barrio, I., Arostegui, I., Quintana, J.M., and IRYSS-COPD Group. Use of generalised addi-

tive models to categorise continuous variables in clinical prediction. BMCMedical Research Method-

ology 2013; 13:83.

HTA in Integrated Care for a Patient Centered System. Continuous variables categorization

to apply in the development of predictive models for patients with COPD exacerbation. Barrio, I.,

Arostegui, I., Quintana, J.M., Esteban, C., and IRYSS-COPD Group. Contribution. Bilbao June

2012.

In this chapter we present a graphical-based methodology to categorise contin-

uous predictors to be used in clinical prediction models. The proposal is based on

the use of GAMs with P-spline smoothers to determine the relationship between the

continuous predictor and the outcome. This proposal is based on the work done

by Hin et al. (1999), but it considers the need for more than two categories. The

proposed method consists of creating at least one average-risk category along with

high- and low-risk categories based on the GAM smooth function. In this chapter

we present the development of this methodology along with a validation and an

implementation to the IRYSS-COPD study. The rest of the chapter is organised

as follows. In Section 4.1 we introduce the proposed methodology. Section 4.2 is

devoted to the validation and the implementation of the proposed methodology.

Finally, we point out some conclusions and limitations in Section 4.3.

33
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4.1 Proposed methodology

Our proposal consists of categorising continuous variables by using the GAM with

P-spline smoothers presented in Chapter 3, Section 3.2 above. Without loss of gen-

erality, let us assume that there is a continuous predictor variable X which we wish

to categorise and a response variable Y with some exponential family distribution.

In such a case, the GAM defined in equation (3.8) is fitted with X as the covariate

and Y as the response variable:

g(E(Y |X)) = β0 + f(X). (4.1)

Specifically, if we consider a dichotomous outcome Y , the link to be used in the

GAM regression model will be the logit. In such a case, the model described in

equation (4.1) for one continuous covariate X would be more precisely specified by

the following expression:

logit(π(X)) = β0 + f(X). (4.2)

Note that although we have represented by Z the covariates in Chapter 3, hence-

forth we will specifically represent by X the continuous predictor variable which we

want to categorise.

The aim of this method is to categorise the covariate X in terms of the influence

it has on the response variable Y . The number of categories as well as the location

of the cut points will depend on the graphical relationship obtained by using the

GAM with P-spline smoothers. On the basis of this model, the graphical display

shows the relationship between X and f(X), where X is plotted on the horizontal

axis and the smooth function f is plotted on the vertical axis. f(X) is the centred

mean function where the centring coefficient is β0, and f(X) = 0 refers to the average

value of the covariate. We therefore start by creating an average-risk category around

this average-risk point, together with as many high- and low-risk categories as are

required to capture the relationship between X and f(X), as outlined in detail

below.

We consider an average-risk category by building an interval around the point

x0 ∈ X such that f(x0) = 0. To do so, we calculate the value for x0, by computing

the inverse of f , and then the estimated value π̂0, such that:

π̂0 = logit−1(β0 + f(x0)) = logit−1(β0)
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and its 95% confidence interval
(
π̂0inf

, π̂0sup
)

given by

π̂0inf
= π̂0 − 1.96se(π̂0)

and

π̂0sup = π̂0 + 1.96se(π̂0)

where se(π̂0) is the estimated standard error of the expected response given by the

GAM evaluated at point π̂0.

Finally, we obtain the interval
(
x0inf

, x0sup
)

by reversing the process, such that

f−1(logit(π̂0inf
)− β0) = x0inf

and

f−1(logit(π̂0sup)− α0) = x0sup

That is, the points x0inf
and x0sup are thus the cut points that determine the

average-risk category.

If x0 is not unique, i.e., if the graph displayed crosses the vertical axis more than

once at point 0, then there will be more than one average-risk category, provided that

the band at x0, is not too wide (with the band being the confidence interval shown

in the graph). In other words, if x01 and x02 are two values for which the graph

crosses the vertical axis at point 0, two average-risk categories will be considered,

as long as
(
x01inf

, x01sup
)

and
(
x02inf

, x02sup
)

do not overlap. If the last happens,

we hypothesise that it may result from two situations. The first is that one of the

two intervals is based on a very small sample size which leads to a non-accurate and

hence very wide interval. The second is the overlapping of two intervals of similar

size. Under the first circumstance, we suggest to dismiss the interval based on a

very small sample. However, if the second circumstance happens, we will consider

the union of both intervals as the average-risk category.

Once the average-risk category has been defined, the following two possible sce-

narios are considered for creating high- and low-risk categories:

1. The relationship shown on the graph between the covariate and the outcome

given by the GAM is linear along the entire range of X. Under this scenario, we

propose to categorise X into a minimum of three categories, with the cut points

for the three being the limits of the average-risk category. This hypothetical

situation is depicted in Figure 4.1(a).
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Moreover, if more categories are needed to ensure that the linear relationship

between the covariate and the outcome is adequately retained, these could

be created by considering appropriate cut points, preferably based on clinical

criteria, in any of the designated high-risk or low-risk categories; or,

2. The relationship shown on the graph between the covariate and the outcome

given by the GAM is not linear, which means that there is either a jump or

a change in the slope. First, we propose to proceed as described above for

the first three categories labelled “average-risk”, “low-risk” and “high-risk”.

Second, the points at which the slope change occurs will be deemed to be

extra cut points. Consequently, this will lead to the corresponding low-risk

or high-risk categories, or both, being re-categorised as very low- and low- or

very high- and high-risk categories respectively. The selection of these extra

cut points will be made on the basis of graphical visualisation of the slope

and the clinical significance of the cut point in question. This hypothetical

situation of one extra cut point is depicted in Figure 4.1(b)

In both cases, the need for more than the proposed minimum number of cate-

gories is evaluated by comparing the results of adding more categories to the original

continuous covariate, using the validation criterion explained in detail below.

4.2 Validation and implementation

We considered the prospective cohort of patients with eCOPD presented in Chapter

2, Section 2.1 as the real data set for validation and implementation of the proposed

methodology. First, we present that part of the IRYSS-COPD study selected for

validation and implementation methods. Then the criteria for method validation

are presented and, finally, the obtained results are shown.

4.2.1 Application to the IRYSS-COPD study

By way of an illustration of the application of the proposed methodology, we selected

part of the IRYSS-COPD study: specifically, one dichotomous outcome; poor evolu-

tion in the first seven days from arrival at the ED; and two continuous predictor vari-

ables, namely, the blood gas parameter, PCO2, and the RR. Exacerbated COPD is

a severe condition quite commonly seen at EDs, where proper decision-making tools

are vitally important for performing the necessary diagnoses and implementing the

treatments that are urgently required. Among the basic diagnostic tests used for
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Figure 4.1: Graphical representation of two hypothetical shapes between the predictor

and the outcome with GAM. From left to right: a) linear relationship and b) nonlinear

relationship.
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classifying the severity of exacerbated COPD in such patients, arterial blood gases

are the main tool. PCO2 is a highly valuable item of information drawn from arterial

blood gases (Quintana et al. 2014b); similarly, another key item of information is

proper assessment of patients’ respiratory rate (RR), something that is invariably

affected in these cases. Furthermore, these two variables represent the two possible

theoretical scenarios described above.

4.2.2 Validation

The total sample was randomly divided into a derivation (60%) and a validation

(40%) sample. Cut points were obtained with the derivation sample and the valida-

tion sample was used for method evaluation purposes. As we mentioned in Chapter

1, split-sample validation is commonly used in the prediction modelling process. We

chose to do it that way in order to mimic the development of prediction models used

by clinical researchers.

The method for categorising continuous covariates was evaluated by compar-

ing the performance of the proposed categorical predictor in the model with that

of the original continuous variable modelled by a GAM as the best option in the

same model. In addition, we also compared the proposed categorisation with the

dichotomised variable suggested by Hin et al. (1999), which considers x0 such that

f(x0) = 0 is the cut point for dichotomisation.

To compare models using different approaches to represent the same covariate,

two criteria were selected: the first was the Akaike Information Criterion (AIC), a

well-known, classical method for comparing two models (Akaike 1974); the second

method of evaluation was based on the specific model defined in equation (4.2) and

the study’s designated purpose. In this particular case, we desired to evaluate the

predictive ability of the model selected. We thus proposed to use the AUC as the

parameter that quantifies a logistic model’s discriminative ability as presented in

Section 3.4. The AUCs for two ROC curves were compared with the DeLong test

(DeLong et al. 1988).

Additionally, the goodness-of-fit of the proposed categorisation was evaluated by

means of the Hosmer-Lemeshow test, which assesses the concordance between ob-

served and expected event rates in a logistic regression model (Hosmer and Lemeshow

2000). Finally, the need for additional categories, in excess of a minimum of three,

was also checked by testing for statistically significant differences in risk between

additional and adjacent categories.
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Finally, we performed a sensitivity analysis in order to assess the impact which

sample size may have on the width of the average-risk category. We recalculated

the average-risk category for PCO2 and for samples of size 200, 400, 600, 800, 1000

and 1200 obtained resampling without replacement from the original sample.

All statistical analyses were performed with the (64 bit) R 3.0.1 software package

(R Core Team 2014). The mgcv (Wood 2006), BB (Varadhan and Gilbert 2009) and

pROC (Robin et al. 2011) libraries were specifically used to compute the GAM, obtain

cut points and compare AUCs with the DeLong test respectively. The R code used

to implement the proposed methodology was developed by the authors and is shown

in Section 7.1.

4.2.3 Results

Categorisation process

RR: The relationship between the RR and poor evolution, as plotted by an additive

logistic regression model with smoothing P-splines, is depicted in Figure 4.2. It can

be seen that the relationship between the RR and poor evolution was linear and

that there was only one value for which f(x0) = 0 (x0 = 22). Application of the

proposed methodology to determine the limits of the average-risk category showed

this category to be (20-24). It was therefore decided that the RR would be classified

in three categories (Figure 4.2), with a high risk of poor evolution for values above 24

and a low risk of poor evolution for those below 20: accordingly, our final proposal

for classifying the RR into three categories was ≤ 20; (20,24]; >24. Internal limits

were open at left and close at right by convenience.

In the search for an optimal fit to the original model, the need for a fourth

category was explored. Taking the number of individuals with an RR above 24 and

the available clinical information about the disease into consideration (Quintana

et al. 2008), we selected an additional cut point of 30. The following four-category

RR version, namely, ≤ 20; (20,24]; (24,30]; >30, was thus also tested. The need for

an extra cut point below 20 was not checked because of the small sample size in this

category.

In addition, the RR variable was dichotomised as proposed by Hin et al. (1999),

whereby an RR value for which there is an average risk of poor evolution is taken as

the cut point, which in our case was 22: consequently, our dichotomous RR proposal

was ≤ 22; >22.

PCO2: the relationship between PCO2 and poor evolution, as plotted by an
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Figure 4.2: Graphical representation of the cut points obtained for the respiratory rate,

based on the relationship between the continuous predictor respiratory rate and poor evo-

lution.

additive logistic regression model with smoothing P-splines, is shown in Figure 4.3.

In this case, the relationship did not prove linear, and showed a trend towards a less

steep slope for higher values. We started by calculating an average-risk category:

this was (43-52), meaning that there was a high risk of poor evolution for values

above 52 and a low risk of poor evolution for those below 43. The need to select more

cut points was then explored. From 40 to 43, the relationship was linear, and below

this there was no significance because the confidence interval was too wide. Above

52, however, there were several points where there was a slope change. Although all

values above 80 were dismissed, since the confidence interval was too wide and there

were very few patients with PCO2 values as high as this, graphical examination of

values below 80 nevertheless showed 65 to be a reasonable cut point for distinguishing

between the high- and very high-risk categories. Finally, we decided on the four-

category PCO2 proposal shown in Figure 4.3, namely, ≤ 43; (43-52]; (52-65]; >65.
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Figure 4.3: Graphical representation of the cut points obtained for the PCO2, based on

the relationship between the continuous predictor PCO2 and poor evolution.

As in the case of the RR above, the PCO2 variable was also dichotomised,

whereby a PCO2 value for which there was an average risk of poor evolution was

taken as the cut point. Since the value in this particular instance was 47, the di-

chotomous PCO2 proposal was therefore ≤ 47; >47.

Validation

We considered the assessment parameters AIC and AUC obtained from the continu-

ous predictor in a GAM as the best option and those obtained with the dichotomised

option as perhaps needing improvement. Detailed results of the validation process

are shown in Table 4.1.

RR: Our approach proposed that the RR be classified into a minimum of

three categories, for which the following values were obtained: AIC=314.5 and

AUC=0.638 for the three-category option versus AIC=317.1 and AUC=0.634 for



42 Chapter 4.

Table 4.1: Categorisation of the respiratory rate (RR) and PCO2 covariates from the

IRYSS-COPD study based on the proposed methodology.

Derivation Validation
Variable Cut points AIC AUC p-value*

RR Continuous† 317.10 0.634 -
RR Dichotomised ≤ 22 318.10 0.594 0.079

> 22
RR 3-category ≤ 20 314.50 0.638 0.8198

(20− 24]
> 24

RR 4-category ≤ 20 316.2 0.640 0.6833
(20− 24]
(24− 30]
> 30

PCO2 Continuous† 250.26 0.825 -
PCO2 Dichotomised ≤ 47 281.50 0.742 ≤.0001

> 47
PCO2 3-category ≤ 43 270.76 0.779 0.0002

(43− 52]
> 52

PCO2 4-category ≤ 43 258.11 0.810 0.1148
(43− 52]
(52− 65]
> 65

* Corresponding to DeLong’s test for comparing the AUC of each
model with the continuous option
†AIC and AUC were calculated from the GAM

the continuous predictor, with no statistically significant differences being found be-

tween the two AUCs (p = 0.8198). The respective values for the dichotomous predic-

tor were AIC=318.1 and AUC=0.594. Statistically significant differences in AUCs

were observed between the dichotomous and proposed three-category approaches

(p = 0.049).

Lastly, the four-category option yielded an AIC of 316.2 and an AUC of 0.64. No

statistically significant differences in AUCs were observed when the four-category

option was compared with both the continuous (p = 0.6833) and the three-category

approaches (p = 0.5968). Moreover, when the model for the four-category option

was fitted, however, non-statistical differences were found between the estimated

parameters for the (24,30] and >30 categories (p = 0.074). Detailed results of the

fitted model are shown in Table 4.2.
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Additionally, the models for the four-category and three-category options were

both well calibrated (Hosmer-Lemeshow test p-values > 0.05 in both cases).

Table 4.2: Results of the fitted logistic regression models with the four-category option

for the respiratory rate (RR) and PCO2 covariates from the IRYSS-COPD study, showing

estimates of the β coefficients, their 95% confidence intervals and the p-values of their

significance.

Category Estimate 95%CI p-value

RR ≤ 20 -1.76 (-2.37 , -1.16) < 0.0001
RR (20− 24] -1.22 (-1.86 , -0.58) 0.0002
RR (24− 30] -0.56 (-1.18 , 0.06) 0.074
RR > 30 - - -

Hosmer-Lemeshow test p-value > 0.05

PCO2 ≤ 43 -3.48 (-4.18 , -2.86) < 0.0001
PCO2 (43− 52] -2.62 (-3.27 , -2.03) < 0.0001
PCO2 (52− 65] -1.44 (-1.97 , -0.93) < 0.0001
PCO2 > 65 - - -

Hosmer-Lemeshow test p-value > 0.05

PCO2: Our approach proposed that the PCO2 variable be classified into four

categories, for which the following values were obtained: AIC=258.1 and AUC=0.81

for the four-category option versus AIC=250.26 and AUC=0.825 for the continu-

ous predictor, with no statistically significant differences between the two AUCs

(p = 0.1148). The respective values for the dichotomous predictor were AIC=281.5

and AUC=0.742. Statistically significant differences in AUCs were observed, not

only between the continuous and dichotomous approaches (p < 0.0001), but also

between the dichotomous and proposed four-category approaches (p = 0.0001). In

addition, we verified the need to create a fourth category, by comparing the four-

category against the three-category predictor (our minimum proposal). Statistically

significant differences were found between both AUCs (p = 0.0004), with the AUC

value for the three-category predictor being 0.779.

Furthermore, when the model for the four-category option was fitted, statistically

significant differences were found between the estimated parameters for the (52-65]

and > 65 categories (p < 0.0001). Lastly, the Hosmer-Lemeshow test assessed the

goodness-of-fit of both the three- and four-category options (p > 0.05). Detailed

results are shown in Table 4.2.

Additionally, we tested the performance of the two categorised variables in a
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multivariate logistic regression model. Comparison between the multivariate model

with RR and PCO2 as continuous and that with these two variables classified in

three and four categories respectively yielded no statistically significant differences

in AUCs (AUC=0.827 for the former versus AUC=0.814 for the latter; p = 0.7021).

Finally, we performed a sensitivity analysis to assess the impact which the sample

size has on the average-risk category width. We considered sub-samples of the

original sample of sizes 200, 400, 600, 800, 1000 and 1200 and calculated the average-

risk category for each of them. We realised that, although for sample sizes greater

than 400 results remained stable, the average-risk category for a 200 sample size

became much greater. In our opinion, when sample size is small (< 200), it is

hard to detect the functional relationship between the predictor and the outcome

accurately, and so there is a high variability in the selected cut points which results

in a very wide interval for the average-risk category. Results from the sensitivity

analysis for sample size variation for PCO2 are shown in Figure 4.4.

Figure 4.4: Graphical representation of the average-risk category width and location for

PCO2 based on sample size.

4.3 Conclusions and limitations

Our aim with the proposal presented in this chapter was to furnish a method of

categorisation for clinical parameters selected as predictors, taking the following

three facts into account: 1) categorisation would depend on the outcome of interest
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and, by extension, on the model selected for analysis; 2) any loss of information

would be minimal compared with the continuous predictor; and 3) the method would

provide clinicians with a convenient and easily interpretable categorical predictor.

Studying the relationship between the predictor and the outcome was absolutely

necessary in order to accommodate the first two facts. We decided to start by plot-

ting the relationship graphically. GAM functions were selected because they are

a powerful technique for estimating the relationship between continuous predictor

variables and outcomes (Hastie and Tibshirani 1990), with no need for any assump-

tions about this relationship. P-spline smoothers are suggested in the literature as

the most convenient technique for estimating smooth functions (Rice and Wu 2001).

When developing the proposed methodology, we considered the method suggested

by Hin et al. (1999) as the first approach to our designated objective: their proposal

consists of dichotomising the predictor variable by using GAMs, taking the value for

which an average risk is obtained as the cut point. We felt that a specific cut point

could be highly dependent on the sample size or even the random sample itself, and

that an interval, rather than a single point, might therefore be a wiser choice for

an average-risk category. Although sample size would also affect the length of any

interval, the latter would nevertheless provide more information to clinicians than

would a single point. On the other hand, ensuring a minimum loss of information

vis-à-vis the continuous variable was one of our stated goals, and so we hypothesised

that two categories were possibly not enough.

This proposal, motivated in part by the work of Hin et al. (1999), occupies the

middle ground between their approach and the original continuous predictor. We

have seen that the categorisation proposal presented in this chapter does not lose

critical information from the original predictor, respects the relationship between

the original predictor and the outcome, and offers validated results with better pre-

dictive ability than the dichotomous approach. Moreover, our proposal starts by

suggesting a minimum number of three categories, and offering the necessary cut

points to ensure that such a categorisation is a good approximation of the contin-

uous option. We have shown that, in general, this approach improves Hin et al.’s

proposal (1999) in terms of fitting and prediction. The proposal includes a method

for building an interval around the average-risk point using the inverse of the 95%

confidence interval for the expected response. Although more complex techniques

could provide other alternatives, in our opinion this is a simple and easily understood

method that shows the advantages and usefulness of a three-category approach. In

any given case, the need for more categories can be evaluated by researchers, de-
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pending upon the relationship between the predictor and the outcome, sample size

and clinical knowledge of the problem. Moreover, any improvement resulting from

the addition of more categories can be statistically tested. Although this is an il-

lustrative example, in the application presented here we selected four categories for

PCO2 and three categories for RR. We fitted the logistic regression models for the

categorised variables and assessed the goodness of fit of those models by means of

the Hosmer-Lemeshow test (Hosmer and Lemeshow 2000) because it is a test often

used for binary outcomes (Steyerberg 2009). However, studying the effect the num-

ber of categories have on the goodness of fit of the model was out of the scope of this

dissertation. A deeper analysis would be needed to study how categorisation affects

calibration and in this context, other tests in addition to the Hosmer-Lemeshow test

should be studied.

Nevertheless, we noticed this proposal had several limitations which should be

taken into account. The first limitation of the proposed categorisation lies in the

fact that it depends on the outcome and so its use cannot be recommended in every

situation. This means that one might obtain different categorisation proposals for

the same predictor, if one were to consider different outcomes or different modelling

approaches. Although this characteristic of the proposal could be seen as a strength

in the specific modelling situation, it must however be carefully reviewed when

different modelling situations are being considered. We have previously mentioned

that the width of the average-risk category will depend on sample size, which is

an obvious limitation. Sensitivity analysis showed that for sample sizes above 200

results were quite stable, whereas for size 200 the interval was much wider. In our

opinion, for a moderate sample size of 200 there were probably not enough data

to catch the relationship between the predictor and the response variable, and so

the average-risk category became very wide. In a simulation study with samples

of size 200, we found that in 90% of them there were no differences between our

proposal and the method suggested by Hin et al. (1999). Therefore, in this case

we would recommend checking the performance of the dichotomised option first,

merely for simplicity. Nevertheless, our proposal includes assessing the need for

that third category in each case, and it compares the two versus the three categories

approaches. The third limitation of our proposal resides in the subjectivity implied

in the selection of extra cut points, in cases where more than three categories were

necessary. We have given an outline of the way to do this in two different situations;

and indeed, the addition of extra cut points in one of the specific applications was

shown to improve the final result. However, we have also shown that improvement is
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progressive, increasing as more cut points are added, basically because comparison

is made with the continuous predictor. Cut points are selected on the basis of the

predictor/outcome relationship given by the graphical display, which means that as

more cut points are added, not only will the categorical and the continuous predictors

be more similar, but the selected categorisation will also be more data-dependent.

Apart from statistical significance, therefore, an important part of researchers’ work

will be to seek a balance between loss of information and practicality.

Considering all these limitations we thought of improving this categorisation

proposal by means of a more mathematical methodology, in which, first, the number

of cut points would not be limited to three or four. Second, the search for the cut

points would not be exclusively based on a graphical display but on the optimisation

of the discriminative ability of the prediction model, leading to an optimal number of

cut points. And finally, but no less important, an approach for selecting optimal cut

points for a continuous predictor in a multivariate setting was needed. Therefore,

we address these requirements in the methodology proposed in Chapter 5 below.
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Chapter 5
Categorisation methods in logistic regression

based on the AUC

The work in this chapter has been previously partially presented at an international

conference and is being reviewed in an international journal

Barrio, I., Arostegui, I., Rodŕıguez-Álvarez, M.X., and Quintana, J.M. A new approach to

categorising continuous variables in prediction models: proposal and validation. Statistical Methods

in Medical Research (under review)

International Workshop on Statistical Modelling. Location of optimal cut-points to categorize

continuous variables in clinical studies. Barrio, I., Arostegui, I., Rodŕıguez-Álvarez, M.X., and

Quintana, J.M. Contribution. Prague July 2012.

In the previous chapter we proposed a method to categorise continuous predictor

variables in a logistic regression model based on GAM. We showed that the proposal

started by suggesting a minimum number of three categories, and determining if a

fourth category was needed based on the graphical relationship and clinical knowl-

edge. On the other hand, the approach presented in Chapter 4 did not allow for the

categorisation of the continuous covariate in a multivariate setting.

With the aim of improving the limitations of the previous proposal, in this

chapter we present a methodology to categorise continuous predictor variables in a

logistic regression setting by maximising the AUC. The goal is to provide an optimal

location for any given number of cut points as opposed to both the subjectivity of

relying on a graphical display and being limited to two or three cut points. In

addition, this methodology allows for the categorisation of a continuous predictor

variable in a multivariate setting as suggested by Mazumdar et al. (2003). Finally,

49
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as an alternative to the DeLong’s test, we propose a new approach to select the

optimal number of categories.

The rest of this chapter is organised as follows. In Section 5.1 we introduce

the proposed methodology to categorise continuous variables by maximising the

AUC. We also present a proposal to correct the bias of the AUC together with an

approach for the selection of the optimal number of cut points. In Section 5.2 we

present an empirical validation of the proposed methodology when the optimal cut

points are known in theory or in practice. Section 5.3 is devoted to the application

of the proposed methodology to the IRYSS-COPD study. Finally, we point out some

conclusions and limitations in Section 5.4.

5.1 Proposed Methodology

Lets assume we have the simplest situation in which one has a dichotomous response

variable Y , and a continuous predictor X that one wishes to categorise. Then, our

proposal consists of categorising X such that the best logistic predictive model is

obtained for Y . Specifically, given k the number of cut points set for categorising

X in k + 1 intervals, let us denote vk = (x1, . . . , xk) the vector of k cut points

ordered from smaller to larger, and Xcatk the corresponding categorised variable

taking values from 0 to k. Then, what we propose is that the vector of k cut points

vk = (x1, . . . , xk), which maximises the AUC of the logistic regression model shown

in equation (5.1) is thus the vector of the optimal k cut points.

logit(π(Xcatk)) = β0 +
k∑
q=1

βq1{Xcatk
=q}. (5.1)

Suppose now that along with the predictor variable X we want to categorise, a

set of other p predictors, Z = (Z1, . . . , Zp), are of interest. Then, what we propose is

that the categorisation of X in a multivariate setting including the p predictors, will

be that for which the AUC of the multivariate logistic regression model in equation

(5.2) is maximised.

logit(π(Z, Xcatk)) = β0 +

p∑
r=1

βrZr +

p+k∑
q=p+1

βq1{Xcatk
=q−p}. (5.2)

Given a random sample {(xi, zi, yi)}Ni=1 drawn from (X,Z, Y ) the estimation of

the parameters in equations (5.1) and (5.2) as well as of the associated AUCs can
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be done as presented previously in Section 3.1. However, the problem now lies in

looking for the vector of the cut points that maximise the AUC. To achieve this, we

propose two alternative algorithms, respectively named AddFor and Genetic.

AddFor

Using this algorithm, one cut point is searched for at a time. In other words, this

algorithm first seeks x1 (in a grid of size M of equally spaced values in the range of

X), such that the AUC of the logistic regression model shown in equation (5.2) for

k = 1 will be maximised. Once x1 has been selected, it is fixed and the algorithm

proceeds to seek x2 (in the grid of size M) (x2 6= x1), so as to ensure that the AUC

of the model in equation (5.2) for k = 2 will be maximised. The process is then

repeated until the vector of k cut points, vk = (x[1], . . . , x[k]), has been obtained,

with x[o] denoting the o-th ordered cut point.

Genetic

Using genetic algorithms, the most widely known type of evolutionary algorithms

(Eiben and Smith 2003), this method simultaneously finds the vector of k cut points,

vk = (x1, . . . , xk), which maximises the AUC of the logistic regression model in equa-

tion (5.2). Evolutionary algorithms are inspired by the concept of natural evolution.

The underlying idea is that, given a population of individuals, environmental pres-

sure leads to survival of the fittest, leading in turn to a rise in the overall fitness of

the population. In a more mathematical context, given a function to be maximised

(fitness function), a collection of heuristic rules are used to modify a population of

possible solutions in such a way that each generation of potential solutions, tends to

be, on average, better than its predecessor. The measure of whether one potential

solution is better than another is the potential solution’s fitness value. In our case,

the AUC is the selected fitness function to be maximised, and the vector of optimal

cut points would then be the best possible solution.

5.1.1 Optimism correction

As we presented in Section 3.4.3, the obtained AUC may be biased upward when

the same data set is used to: a) fit the logistic regression model (involved in the cut

point selection process); and b) compute the AUC (Copas and Corbett 2002). In

our setting, the aim was to look for the vector of cut points vk that maximises the
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AUC of the corresponding logistic model. Once the cut points have been selected,

the AUC for the corresponding categorical variable may be biased. Hence, for a

given set of cut points, we propose to correct the AUC for the logistic model of

the corresponding categorical variable. The bias correction method is based on

the bootstrap bias correction method initially proposed by Harrell (2001) and also

recommended later in Steyerberg (2009) and described in Chapter 3, Section 3.4.3.

Specifically, our proposal for the bootstrap bias correction method can be described

as follows:

Step 1. Categorise the predictor variable on the basis of the original sample

{(xi, zi, yi)}Ni=1 (denote it as xcatki) and compute the corresponding AUC as

shown in equation (3.25). Let’s denote this apparent AUC as ÂUCapp.

Step 2. For b = 1, . . . , B, generate the bootstrap resample {(x∗ib, z∗ib, y∗ib)}
N
i=1 by

drawing a random sample of size N with replacement from the original sample,

and categorise the bootstrapped predictor {x∗ib}
N
i=1 on the basis of the optimal

cut points obtained in Step 1.

Step 3. Fit the logistic regression model to the bootstrap resample with the cate-

gorised version of the predictor. Let us denote β̂
b

as the vector of the estimated

regression coefficients based on this bootstrap resample. Compute the corre-

sponding AUC, ÂUC
b

boot for b = 1, . . . , B.

Step 4. Obtain the predicted probabilities for the original sample based on the

fitted logistic regression model obtained in Step 3, i.e.,

logit−1(β̂b0 +

p∑
r=1

β̂brzri +

p+k∑
q=p+1

β̂bq1{xcatki=q−p}),

and compute the AUC. Let’s denote this AUC as ÂUC
b

o for b = 1, . . . , B.

Once the above process has been completed, the optimism O of the original AUC is

calculated as follows:

O =
1

B

B∑
b=1

|ÂUC
b

boot − ÂUC
b

o|

and the bias-corrected AUC is then computed as ÂUCapp −O.

The difference between the original proposal for bootstrap bias correction pro-

posed by Harrell (2001) and our slight modification lies on the calculation of the
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optimism O. In our particular setting in which the AUC for a categorised predictor

is estimated, we noted that ÂUC
b

boot was not always higher than ÂUC
b

o and hence

in some circumstances the average of the difference tended to 0, so we propose to

consider the absolute value of the difference.

Finally, we would like to point out that in order to mimic the study design, it

is advisable that the resampling procedure described in Step 2 be done according

to the design of the study. For instance, for a case-control study, data should be

resampled separately within cases and controls. Moreover, if the data are clustered,

the resampling units should be the clusters.

Up to now we have presented how to correct the bias of the estimated AUC for a

given set of cut points to categorise the original predictor variable X. However, our

proposal consists of searching the cut points in such a way that the corresponding

AUC is maximised. Since this AUC may be biased and is still not corrected, we

thought that perhaps it could have an impact on the selection of the optimal cut

points. Hence, we propose to correct the AUC during the selection of the cut points,

based on an iterative procedure of the bias correction method proposed above. Thus,

the selection of the cut points would be done based on the maximisation of the bias-

corrected AUC.

5.1.2 Selection of the optimal number of cut points

We are aware that in theory the optimal number of cut points for the categorisation

of a continuous variable does not exist, since above all the possible number of cut

points, the best option would be the continuous variable. However, in clinical prac-

tice categorical versions of the continuous variables are usually preferred without

it always being clear which is the best number of categories to be used. So far,

we have talked about how to estimate the optimal cut points for a given number k

of cut points. In this section, we propose a naive approach to compare two given

categorisations of the predictor variable X.

As we mentioned earlier in Chapter 3, Section 3.4, there are different approaches

to comparing the AUC of two models, either when they are developed from the same

data or not (DeLong et al. 1988, Venkatraman 2000, Venkatraman and Begg 1996).

Nevertheless, the use of DeLong’s test has been criticised when it is used to evaluate

the incremental discriminative ability provided by the addition of a new predictor

(Demler et al. 2012). In our approach, the aim is to compare the AUCs associated

with two categorised variables, in order to decide the optimal number of cut points
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needed in each situation. Our models are dependent since both categorical variables

have been built from the same data set; however, the aim is to evaluate whether a

significant increase in the discriminative ability is obtained by adding an extra cut

point. Hence, as an alternative to what it is in the literature, we propose to compare

the performance of two categorised versions of the continuous predictor X in terms

of the bias-corrected AUC for the categorised variable.

This approach is based on the difference between the bias-corrected AUCs ob-

tained for k = l and k = l+1 cut points. To determine the need for an extra optimal

cut point, we propose to compute the confidence interval (CI) for this difference.

Once the CI has been computed, an extra cut point is considered to be needed as

long as the CI does not contain the zero. Specifically, in this work, bootstrap-based

methods (Efron and Tibshirani 1993) are proposed for computing the percentiles

and constructing the CIs. The procedure to compute the CI for the difference of the

bias-corrected AUCs can be summarised as follows:

1. For v = 1, . . . , V , generate the bootstrap resample {(x∗iv, z∗iv, y∗iv)}
N
i=1 by draw-

ing a random sample of size N with replacement from the original sample.

2. Compute the bias-corrected AUC for the categorised variables for k = l and

k = l + 1 cut points and denote it as ÂUC
∗
l,v and ÂUC

∗
l+1,v respectively. The

bias-corrected AUC is computed as explained above in Section 5.1.1, but for

Step 1, using the optimal cut points obtained for k = l and k = l + 1 on the

basis of the original sample.

3. Compute the difference between the bias-corrected AUCs obtained for k = l+1

and k = l

ÂUC
∗
Diff,v = ÂUC

∗
l+1,v − ÂUC

∗
l,v.

Once the above process has been completed, the (1− α) % limits for the CI for the

difference are given by (
ÂUC

α/2

Diff , ÂUC
1−α/2
Diff

)
where ÂUC

p

Diff represents the p-percentile of the estimated ÂUC
∗
Diff,v (v = 1, . . . , V ).

Additionally, we considered a second criterion to evaluate the need for an extra

optimal cut point. This was the integrated discrimination improvement (IDI) index,

proposed by Pencina et al. (2008). IDI is a useful measure to compare and assess the

improvement in terms of risk prediction of two predictive models. Accordingly, in

our particular setting, the IDI can be a useful measure to evaluate the improvement
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offered by adding an extra cut point. In particular, we propose the criterion that an

extra cut point is needed as long as a statistically significant IDI is obtained when

comparing the fitted logistic regression models obtained with k = l and k = l + 1

cut points.

5.2 Empirical validation

In this section we present three simulation studies that we conducted to analyse the

empirical performance of the methods described in Section 5.1 above, and report

the results obtained.

1. The first simulation study is performed under known theoretical conditions

that verify linear effects in the logistic regression model. We used this setting

with three different purposes: a) study the need for the bias correction of

the AUC and compare the correction during the selection of the cut points

(first level) and at the end of the process that is, once the optimal cut points

have been selected (second level); b) validate the estimated cut points and

the performance of the algorithms AddFor and Genetic; and c) study the

convergence of the bias-corrected AUC of the categorised variable to the AUC

of the continuous predictor.

2. We conducted a second simulation study considering nonlinear effects. We

compared the performance of the proposed algorithms in the estimation of the

optimal cut points as well as in the bias-corrected AUCs.

3. In the third simulation study, we conducted a backward validation in which the

cut points for a continuous variable were previously established. The aim was

to validate the proposed method also when the cut points were scientifically

pre-established based on clinical knowledge.

For all simulation studies, we begin by presenting the scenarios and set up and

end up summarising the results obtained. All computations were performed in (64

bit) R 3.0.1 and a workstation equipped with 24GB of RAM, an Intel Xeon E5620

processor (2.40 Ghz), and Windows 7 operating system. Specifically, the genoud

function of the rgenoud (Mebane and Sekhon 2011) package was used to compute

the genetic algorithms, and the glm function of the stats package was used for the

estimation of the logistic model.
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5.2.1 Validation under known theoretical conditions

Scenarios and Set-Up

In the first setting, the predictor variableX was simulated from a normal distribution

separately in each of the populations defined by the outcome (Y = 0 and Y = 1),

i.e., X|(Y = 0) ' N(µ0, σ0) and X|(Y = 1) ' N(µ1, σ1). It should be noted that,

when σ0 and σ1 are equal, X is linearly related to the log odds of the response (see

Appendix A).

Moreover, for a fixed number of cut points, their theoretical location is known

(Tsuruta and Bax 2006), as well as the AUC associated with the corresponding

categorical covariate. Accordingly, the aims of this simulation study were fourfold:

a) To compare the obtained cut points when the optimism correction of the AUC

is performed during or after the selection process.

b) To compare the obtained bias-corrected AUC and the theoretical one.

c) To compare the estimated optimal cut points obtained with the proposed method-

ology and the theoretical optimal cut points.

d) To study the convergence of the bias-corrected AUC of the categorised variable

to the AUC of the continuous predictor.

Specifically, we considered X|(Y = 0) ' N(0, 1) and X|(Y = 1) ' N(1.5, 1).

The simulations were done assuming the same number of individuals in Y = 0 and

Y = 1 and total sample sizes of N = 500 and N = 1000. As far as the number

of cut points is concerned, k = 1, 2 and 3 were considered. Finally, for the AddFor

algorithm grid sizes of M = 100 and M = 1000 were used. In all cases, R = 500

replicates of simulated data were performed and B = 50 was considered for the AUC

bias correction procedure.

Results

AUC bias correction at two levels: selection of cut points

Figure 5.1 shows the boxplot of the differences between the cut points obtained

when the AUC overestimation was corrected during or after the selection of the cut

points, using the AddFor algorithm for k = 1 cut points, a sample size of N = 500

and R = 500 replicates. As can be observed, the results suggest that correction

during or after the cut point selection procedure has no impact on the obtained cut
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points. For instance, when a grid of size M = 100 was used, the mean and median

of the difference between estimated cut points were −0.021 and 0.000, respectively.

When a grid of size M = 1000 was used, −0.027 and −0.003 values were obtained

for mean and median of the difference. For these simulations, only the AddFor

algorithm was used for computational reasons.
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Figure 5.1: Boxplot of the difference of the estimated optimal cut points when the AUC

overestimation was corrected at first and second levels. Results are based on 500 simulated

data and a sample size of N = 500, according to the simulation study under known theoret-

ical conditions. From left to right: (a) AddFor algorithm with a grid of M = 100 and k = 1

number of cut points; (b) AddFor algorithm with a grid of M = 1000 and k = 1 number of

cut points.



58 Chapter 5.

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Estimated first cut point

First level correction Second level correction

(a)

0.
0

0.
5

1.
0

1.
5

2.
0

Estimated second cut point

First level correction Second level correction

(b)

1.
0

1.
5

2.
0

2.
5

Estimated third cut point

First level correction Second level correction

(c)

Figure 5.2: Boxplot of the estimated optimal cut points when the AUC overestimation

was corrected at first or second level. Results are based on 500 simulated data, N = 500

and k = 3 number of cut points, according to the simulation study under known theoretical

conditions, where the theoretical optimal cut points are −0.07, 0.75 and 1.57, respectively,

when k = 3. From left to right: (a) estimated first cut point; (b) estimated second cut point

and (c) estimated third cut point with the AddFor algorithm with a grid of size M = 100.

Figure 5.2 shows the boxplot of the estimated optimal cut points when the AUC

overestimation was corrected at first or second level, using the AddFor algorithm

with a grid of size M = 100 for k = 3 cut points, a sample size of N = 500 and

R = 500 replicates. Similarly to the case of a single cut point, the results suggest

that correction during or after the cut point selection procedure has no impact on

the obtained cut points.

In Table 5.1, numerical results of the estimated cut points at first or second level

are shown. Mean, standard deviation, median, bias and the mean squared error

(MSE) are reported for the estimated cut points. Note that for k = 1, the bias

obtained is slightly smaller when the cut points have been estimated based on the

maximisation of the corrected AUC, while for k = 3 the bias for the second and

third cut point is slightly smaller when the AUC has been corrected at the end of

the process. Nevertheless, the MSE of the estimated optimal cut points at first or

second level is very similar.

AUC bias correction at two levels: estimation of the AUC

Additionally, we observed that we provided a bias-corrected AUC when the cor-

rection was performed at either the first or second level. Detailed results are shown

in Table 5.2 where the mean, standard deviation, bias and MSE are reported for the

AUC, and bias-corrected AUC at the first and second levels.
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Table 5.1: Estimated optimal cut points obtained when the AUC overestimation was cor-

rected at first or second level according to the simulation study under known theoretical

conditions. Results are based on 500 simulated data and N = 500. The AddFor algorithm

was used with a grid of size M = 100 and 1000 for k = 1 and a grid of size M = 100 for

k = 3 number of cut points. Mean (sd), median, bias and MSE of the estimated cut points

are reported.

No. of
cut points

Method
Theoretical
cut points

Mean (sd) Median Bias MSE

Estimation at a first level

k = 1
Addfor 100

0.773
0.764 (0.187) 0.771 -0.009 0.035

Addfor 1000 0.748 (0.178) 0.739 -0.025 0.032

k = 3 Addfor 100
-0.068 -0.104 (0.238) -0.099 -0.036

0.0500.750 0.779 (0.182) 0.783 0.029
1.568 1.641 (0.182) 1.628 0.073

Estimation at a second level

k = 1 Addfor 100 0.773 0.742 (0.188) 0.743 -0.031 0.036
Addfor 1000 0.722 (0.173) 0.706 -0.051 0.033

k = 3 Addfor 100
-0.068 -0.111 (0.237) -0.095 -0.043

0.0490.750 0.750 (0.193) 0.745 0.000
1.568 1.610 (0.224) 1.592 0.042

Simulation results suggest that correcting the AUC bias at a first or second

level had no impact in either the selection of cut points or the estimation of the

bias-corrected AUC. However, correcting the AUC at a first level, i.e., during the

search of the cut point, was computationally much more expensive and would not

be feasible in practice. All these results suggest correcting the AUC bias at the end

of the process. Accordingly, it is the approach followed in all simulations and real

data analysis that we present henceforth in this chapter.

Selection of cut points

Figure 5.3 depicts the boxplot of the estimated optimal cut points over 500

simulated data sets, for each of the proposed algorithms, different sample sizes and

number of cut points. As can be observed, the cut points obtained by the Genetic

or AddFor algorithms were close to the theoretical optimal cut points, with both

algorithms presenting a low bias. The corresponding detailed numerical results

are shown in Table 5.3. Under this scenario, the theoretical optimal cut points

are v1 = (0.77), v2 = (0.23, 1.27) and v3 = (−0.07, 0.75, 1.57) for k = 1, 2, 3

number of cut points, respectively. Note that the average of the estimated cut
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Table 5.2: Estimated AUC and bias-corrected AUC at first and second level according to the

simulation study under known theoretical conditions. Results are based on 500 simulated

data and N = 500. The AddFor algorithm was used with a grid of size M = 100 and

M = 1000 for k = 1 and a grid of size M = 100 for k = 3 number of cut points. Mean (sd),

median, bias and MSE of the estimated AUCs are reported.

No. of
cut points

Method
Theoretical

AUC
Mean (sd) Median Bias MSE

Estimated AUC

k = 1 Addfor 100 0.750 0.781 (0.017) 0.782 0.031 0.0012
Addfor 1000 0.784 (0.018) 0.784 0.034 0.0014

k = 3 Addfor 100 0.835 0.844 (0.016) 0.844 0.009 0.0003

First level bias-corrected AUC

k = 1 Addfor 100 0.750 0.766 (0.017) 0.767 0.016 0.0006
Addfor 1000 0.770 (0.018) 0.770 0.020 0.0007

k = 3 Addfor 100 0.835 0.831 (0.016) 0.831 -0.004 0.0003

Second level bias-corrected AUC

k = 1 Addfor 100 0.750 0.766 (0.017) 0.767 0.016 0.0005
Addfor 1000 0.768 (0.017) 0.769 0.018 0.0006

k = 3 Addfor 100 0.835 0.832 (0.016) 0.831 -0.004 0.0003

points across simulated data sets was very similar for both algorithms with these

values being very close to the theoretical optimal cut points. As expected, the

differences with respect to the theoretical optimal cut points were smaller when the

sample size increased from 500 to 1000. For example, for k = 3 cut points, the

average of the cut points obtained with the Genetic algorithm across all replicates

were ¯̂v3 = (−0.11, 0.76, 1.63) and ¯̂v3 = (−0.09, 0.75, 1.61) for sample sizes of 500

and 1000, respectively, while with the Addfor algorithm and a grid of size 1000 they

were ¯̂v3 = (−0.11, 0.73, 1.60) and ¯̂v3 = (−0.08, 0.74, 1.58). It should be noted that,

when the number of cut points desired was 2, the AddFor did not perform as well as

the Genetic algorithm. While the former closely located only one of the two optimal

cut points, the latter managed to approximate both cut points. For instance, for a

sample size of 500 and k = 2, the bias obtained for the estimated cut points were

(0.004, 0.040) using the Genetic algorithm, and (0.117,−0.010) using the AddFor

algorithm with a grid of size 1000.

In Table 5.4, the average, bias and standard deviation of the bias-corrected AUC

values over 500 simulated data sets are shown for each of the proposed algorithms,

different sample sizes and number of cut points. Note that the AUC values obtained

were almost unbiased, being the absolute value of the bias obtained for k = 1 and
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Figure 5.3: Boxplot of the estimated optimal cut points based on 500 simulated data ob-

tained according to the simulation study under known theoretical conditions and comparison

with the theoretical optimal cut point. From top to bottom: (a) for k = 1 number of cut

points; (b) for k = 2 number of cut points; and (c) for k = 3 number of cut points.
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k = 2 less or equal to 0.02, and less or equal to 0.004 for k = 3. Additionally, the

Genetic approach generally provided slightly higher AUC values than the AddFor

algorithm. However, when the AddFor grid size was increased from 100 to 1000, the

obtained results were almost the same as those obtained with the Genetic algorithm.

For instance, for a sample size of 500 and k = 3 number of cut points, the average

of bias-corrected AUCs were 0.831, 0.834 and 0.835 for the AddFor with grid sizes

of 100 and 1000 and the Genetic algorithm, respectively, being the theoretical AUC

0.835.

Sample sizes of N = 500 and N = 1000 were selected to ensure a requirement

commonly used for the specific framework of prediction models (Steyerberg 2009).

Nevertheless, the performance of the proposed methodology was also verified for

smaller sample sizes such as N = 50, 100, 200 and 300. Figures 5.4(a) to 5.4(c)

depict the boxplots of the obtained optimal cut points over R = 500 simulated data

sets, for each of the proposed algorithms (for the AddFor M = 100 and M = 1000

were considered), different sample sizes, and k = 3 number of cut points. As can be

observed, the proposed algorithms performed satisfactorily even when small sample

sizes were considered. As would be expected, the largest bias and variance were

obtained with a sample size of 50. However, it should be pointed out that in the

specific framework of the development of prediction models, small sample sizes are

not used.

Convergence to the theoretical AUC

Finally, we studied the convergence to the theoretical AUC yield by the continu-

ous predictor when the number of preselected cut points k is increased. Additionally,

we studied the computing times obtained with each algorithm and for each number

of cut points k selected. For this purpose, simulations were conducted for k = 1 to

k = 9 cut points and a sample size of N = 500.

As shown in Figures 5.5(a) to 5.5(c) and Table 5.5, the convergence to the

theoretical AUC was obtained with all the algorithms. However, as expected, the

computing time increased considerably as the number of cut points to be selected

increased, especially when the Genetic algorithm was used. For instance, the average

time required by the Genetic method to compute three cut points for a sample size

of 500 was 84.05 seconds versus 25.27 seconds required by the AddFor for a grid of

size 1000.
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Table 5.3: Validation under known theoretical conditions simulation study: average, stan-

dard deviation, median, bias and MSE of the estimated optimal cut points over 500 simulated

data sets.

No. of
cut points

Theoretical
cut points

Method
Cut point Estimation

Mean (sd) Median Bias MSE

Sample Size N = 500

k = 1 0.773

Addfor 100 0.730 (0.183) 0.735 -0.043 0.035
Addfor 1000 0.722 (0.183) 0.727 -0.051 0.036
Genetic 0.747 (0.184) 0.753 -0.026 0.035

k = 2
0.227
1.274

Addfor 100 0.332 (0.373) 0.465 0.105 0.140
1.255 (0.361) 1.307 -0.019

Addfor 1000 0.344 (0.358) 0.474 0.117
0.139

1.264 (0.369) 1.323 -0.010

Genetic 0.231 (0.220) 0.242 0.004 0.050
1.314 (0.222) 1.305 0.040

k = 3
-0.068
0.750
1.568

Addfor 100
-0.121 (0.234) -0.112 -0.053

0.0480.733 (0.187) 0.736 -0.017
1.599 (0.227) 1.584 0.031

Addfor 1000
-0.112 (0.235) -0.103 -0.044

0.0460.726 (0.184) 0.728 -0.024
1.595 (0.215) 1.595 0.027

Genetic
-0.113 (0.266) -0.103 -0.045

0.0620.758 (0.225) 0.763 0.008
1.631 (0.246) 1.625 0.063

Sample Size N = 1000

k = 1 0.773

Addfor 100 0.741 (0.146) 0.747 -0.032 0.022
Addfor 1000 0.735 (0.144) 0.737 -0.038 0.022
Genetic 0.750 (0.144) 0.753 -0.023 0.021

k = 2
0.227
1.274

Addfor 100 0.336 (0.361) 0.492 0.109 0.139
1.227 (0.365) 1.314 -0.047

Addfor 1000
0.343 (0.356) 0.507 0.116

0.135
1.227 (0.358) 1.320 -0.047

Genetic 0.221 (0.181) 0.218 -0.006 0.033
1.297 (0.179) 1.290 0.023

k = 3
-0.068
0.750
1.568

Addfor 100
-0.081 (0.170) -0.071 -0.013

0.0270.742 (0.146) 0.749 -0.008
1.589 (0.177) 1.581 0.021

Addfor 1000
-0.084 (0.162) -0.075 -0.016

0.0260.735 (0.144) 0.737 -0.015
1.582 (0.177) 1.572 0.014

Genetic
-0.090 (0.198) -0.078 -0.022

0.0410.745 (0.195) 0.735 -0.005
1.609 (0.209) 1.590 0.041
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Table 5.4: Validation under known theoretical conditions simulation study: average, bias

and standard deviation of the bias-corrected AUC values over 500 simulated data sets ob-

tained, together with the theoretical AUC associated with the corresponding categorical

covariate and the continuous predictor.

No. of
cut points

Method Theoretical
AUC

Bias-corrected AUC
Mean (sd) Median Bias MSE

Sample Size N = 500

k = 1
Addfor 100

0.750
0.766 (0.017) 0.767 0.016 0.0005

Addfor 1000 0.768 (0.017) 0.769 0.018 0.0006
Genetic 0.769 (0.017) 0.770 0.019 0.0006

k = 2
Addfor 100

0.820
0.807 (0.017) 0.807 -0.013 0.0005

Addfor 1000 0.810 (0.017) 0.810 -0.010 0.0004
Genetic 0.818 (0.016) 0.820 -0.002 0.0004

k = 3
Addfor 100

0.835
0.831 (0.016) 0.832 -0.004 0.0003

Addfor 1000 0.834 (0.016) 0.836 -0.001 0.0004
Genetic 0.835 (0.016) 0.837 0.000 0.0004

Sample Size N = 1000

k = 1
Addfor 100

0.750
0.768 (0.013) 0.768 0.018 0.0005

Addfor 1000 0.770 (0.013) 0.770 0.020 0.0006
Genetic 0.771 (0.013) 0.770 0.021 0.0006

k = 2
Addfor 100

0.820
0.807 (0.013) 0.807 -0.013 0.0003

Addfor 1000 0.809 (0.013) 0.810 -0.011 0.0003
Genetic 0.819 (0.012) 0.820 -0.001 0.0004

k = 3
Addfor 100

0.835
0.832 (0.012) 0.833 -0.003 0.0001

Addfor 1000 0.835 (0.012) 0.835 0.000 0.0004
Genetic 0.836 (0.012) 0.836 0.001 0.0004

Continuous predictor’s theoretical AUC 0.855
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Figure 5.4: Boxplot of the estimated optimal cut points based on 500 simulated data sets

obtained according to the theoretical validation study. The figure shows the results for

different sample sizes (N = 50, 100, 200, 300, 500 and 1000) and k = 3 number of cut points.

From top to bottom: (a) AddFor M = 100; (b) AddFor M = 1000; and (c) Genetic. The

theoretical cut point is represented by a dashed line.
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(c) Genetic

Figure 5.5: Convergence of the bias-corrected AUC values to the theoretical AUC. The

boxplots plotted at the bottom of each graph correspond to the left axis and denote the

AUC values obtained for each number of cut points k selected for a sample size of N = 500.

The boxplots plotted at the top of each graph correspond to the right axis and denote the

computing times (in seconds) obtained for each number of cut points k selected for a sample

size of N = 500. (a) AddFor M = 100; (b) AddFor M = 100; and (c) Genetic.
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Table 5.5: Convergence of the bias-corrected AUC values to the theoretical AUC. Averaged

bias-corrected AUC values for the Addfor (M = 100 and 1000) and Genetic algorithms

together with the theoretical AUC for each categorical variable are reported.

k Theoretical
AUC

AddFor AddFor
Genetic

M = 100 M = 1000

1 0.750 0.766 0.768 0.769
2 0.820 0.807 0.810 0.818
3 0.835 0.831 0.834 0.835
4 0.843 0.838 0.841 0.843
5 0.847 0.842 0.846 0.848
6 0.847 0.845 0.851 0.852
7 0.849 0.848 0.854 0.856
8 0.850 0.850 0.858 0.860
9 0.851 0.852 0.861 0.862

Continuous predictor’s theoretical AUC 0.855

5.2.2 Comparison under nonlinear effects

Scenarios and Set-Up

This simulation study aimed to compare the performance of the two presented algo-

rithms when the relationship between the covariate X, and the logit transformation

of the response variable Y was nonlinear. On one hand, estimated cut points, and on

the other, estimated bias-corrected AUCs were compared when algorithms AddFor

or Genetic were used.

To this end, we defined the covariate X, according to a U(0, 1), and a binary

outcome variable Y , where Y ∼ Bernoulli(π(X)) and

logit(π(X)) = X − 10(X − 0.2)3 + 110(X − 0.6)3,

for which the empirical theoretical AUC value resulted in 0.824.

Simulations were conducted for a different number of cut points to be selected

(k=1, 2 and 3), different grid sizes in which the cut points in the AddFor algorithm

were to be sought (M=100 and 1000), and different sample sizes (N=500 and 1000),

with R = 500 replicates being generated for each sample size. For each data set

so generated and both algorithms, the bias-corrected AUC value obtained by the

proposed categorisation was estimated. To evaluate the discriminative ability of

the proposed categorised variable, the bias-corrected AUCs were compared to the
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theoretical AUC value for the continuous variable, which was empirically calculated

on the basis of the defined probabilities.

Results

Figure 5.6 depicts the boxplot of the estimated optimal cut points over 500 simulated

data sets, for each of the proposed algorithms, different sample sizes and number

of cut points. Numerical results are shown in Table 5.6. Simulation results suggest

that both algorithms perform similarly for any number of cut points. Nevertheless,

note that when three cut points are sought, the standard deviation for the second

cut point is larger than for the first and third cut points, and that this is slightly

lower when the Genetic algorithm is used. This cut point is located halfway between

the other two. This can be seen in Figure 5.7 where the simulated effect and the

location of the estimated optimal cut points with the AddFor with a grid of size

M = 100 and the Genetic for k = 2 and k = 3 number of cut points are depicted.

This suggests that the cut points obtained for k = 2 correspond to changes in risk,

whereas the location of the third cut point obtained when sought for k = 3 divides

the category with a higher number of individuals. Nevertheless, the estimated values

for this cut point with both algorithms was almost the same.

In addition to the comparison of the estimated optimal cut points, the aim of

this simulation study was to compare the estimated bias-corrected AUCs obtained

with both algorithms. Figure 5.8 depicts the boxplot of the bias-corrected AUCs

for the optimal categorisation over 500 simulated data sets, for each of the proposed

algorithms, different sample sizes and number of cut points. The corresponding

numerical results are shown in Table 5.7. Note that the Genetic approach generally

provided slightly higher AUC values than the Addfor algorithm. However, when the

Addfor grid size was increased from 100 to 1000, the obtained results were almost

the same as those obtained with the Genetic algorithm. For instance, for a sample

size of 500 and a desired number of three cut points, average bias-corrected AUC

values of 0.810 and 0.809 were respectively obtained by the Genetic algorithm and

the AddFor algorithm with a grid size of 1000, while the average bias-corrected AUC

value obtained with the AddFor algorithm for a grid size of 100 was 0.805.
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Figure 5.6: Boxplot of the estimated cut points based on 500 simulated data sets obtained

according to the comparative study of the proposed algorithms. From top to bottom: a) for

k = 1 number of cut points; (b) for k = 2 number of cut points; and (c) for k = 3 number

of cut points.
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Table 5.6: Mean, standard deviation and median values of the estimated optimal cut points

over 500 simulated data sets obtained according to the comparison under a nonlinear effects

simulation study.

No. of
cut points

Method
Cut point Estimation

Mean (sd) Median Mean (sd) Median

Sample Size N = 500 Sample Size N = 1000

k=1
Addfor 100 0.394 (0.029) 0.394 0.391 (0.024) 0.394

Addfor 1000 0.394 (0.027) 0.392 0.392 (0.024) 0.391

Genetic 0.395 (0.028) 0.393 0.392 (0.024) 0.391

k=2

Addfor 100 0.394 (0.029) 0.394 0.391 (0.024) 0.394
0.866 (0.042) 0.869 0.868 (0.028) 0.869

Addfor 1000
0.394 (0.027) 0.392 0.392 (0.024) 0.391
0.865 (0.042) 0.871 0.868 (0.027) 0.871

Genetic 0.376 (0.026) 0.374 0.372 (0.021) 0.370
0.866 (0.041) 0.871 0.866 (0.028) 0.869

k=3

Addfor 100
0.373 (0.041) 0.384 0.358 (0.044) 0.374
0.597 (0.099) 0.616 0.572 (0.112) 0.616
0.869 (0.031) 0.869 0.868 (0.028) 0.869

Addfor 1000
0.373 (0.041) 0.384 0.364 (0.041) 0.375
0.598 (0.099) 0.616 0.584 (0.106) 0.623
0.869 (0.031) 0.869 0.868 (0.027) 0.871

Genetic
0.368 (0.034) 0.370 0.356 (0.036) 0.362
0.609 (0.088) 0.628 0.583 (0.101) 0.620
0.871 (0.032) 0.874 0.870 (0.028) 0.875
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Figure 5.7: Simulated effect together with the location of the estimated optimal cut points

with the AddFor (M = 100) and Genetic algorithms obtained over 500 simulated data and

N = 500 sample size according to the comparison under a nonlinear effects simulation study.

From left to right: (a) k = 2; and (b) k = 3.
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Figure 5.8: Boxplot of the bias-corrected AUCs for the optimal categorisation based on

500 simulated data sets obtained according to the comparison under a nonlinear effects

simulation study.

5.2.3 Backward validation

Scenarios and Set-Up

In the third setting, we envisaged simulating a continuous variable X starting from

a categorical variable whose cut points had been scientifically pre-established, and

assuming that they represent an underlying continuum variable. The aim was to

test whether the cut points obtained by applying the proposed methodology to the

continuous variable were similar to the original cut-points. For this purpose, we

considered the data set available at the IRYSS-COPD study (Quintana et al. 2011).

In this data set, we selected the variable forced expiratory volume in 1 second in

percentage (FEV1%) which was available both in a continuous scale and an ordinal

scale. Although, there is no consensus about the best cut points to categorise this

variable, in this study the cut points provided by the GOLD were used (Global

Initiative for Chronic Obstructive Lung Disease 2013). Hence, the FEV1% variable
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Table 5.7: Average (standard deviation) of the bias-corrected AUC values over 500 sim-

ulated data sets obtained according to the comparison under nonlinear effects simulation

study.

Method
No. of

cut points
Sample size

N = 500 N = 1000

AddFor M = 100
1 0.741 (0.015) 0.742 (0.011)
2 0.785 (0.016) 0.785 (0.012)
3 0.805 (0.016) 0.802 (0.012)

AddFor M = 1000
1 0.743 (0.015) 0.744 (0.011)
2 0.787 (0.016) 0.787 (0.012)
3 0.809 (0.016) 0.804 (0.012)

Genetic
1 0.743 (0.015) 0.744 (0.011)
2 0.790 (0.016) 0.789 (0.011)
3 0.810 (0.016) 0.805 (0.012)

Continuous predictor’s theoretical AUC 0.824

was categorised into four categories: mild ≥ 80, moderate [50− 80), severe [30− 50)

and very severe < 30. This variable was available for a total number of L = 2069

patients.

To simulate the continuous covariate FEV1% we propose a bootstrap method

starting from the original categorical and continuous versions of FEV1%. Let us

denote X the original continuous FEV1% variable and Xcat the categorised variable

taking values from 0 to 3, which correspond to mild, moderate, severe and very

severe categories, respectively. For each l = 0, . . . , 3, consider dls as the s-th decile

of X when Xcat = l. For each u = 1, . . . , U and l = 0, . . . , 3, we generated the

bootstrap sample {x∗iu}
Ll
i=1 by drawing a sample of size Ll with replacement from

the original sample {xi}Ll
i=1, where Ll denotes the number of individuals in the l-th

category (L =
∑3

l=0 Ll). We considered d∗ls as the average of the U bootstrap deciles

of each category, i.e, d∗ls = 1
U

∑U
u=1 d

u
ls. The continuous variable Xsim was simulated

assuming a uniform distribution in the interval (d∗l(s−1), d
∗
ls), enclosed by the lower

and upper limits of each category.

Additionally the dichotomous response variable Y was simulated according to

the two scenarios that are shown in Table 5.8, trying to mimic two possible real

situations. In Scenario I patients are distributed as 35%, 30%, 20% and 15% in mild,

moderate, severe and very severe categories, respectively. In contrast, in Scenario
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II, only 3% of patients belong to the mild category. Additionally, the percentage of

individuals with Y = 1 (denoted as diseased), changes from Scenario I to Scenario

II.

For each of the scenarios, R = 500 replicates were conducted for total sample sizes

of N = 500 and N = 1000, and B = 50 and U = 10, 000 bootstrap resamples were

used. Optimal cut points were sought using the Genetic and AddFor algorithms,

the latter with grid sizes of M = 100 and M = 1000.

Table 5.8: Backward validation study: total distribution of individuals in the four categories

and distribution of diseased individuals in each category, under both scenarios.

Scenario I Scenario II

FEV1% [0,100] Total Diseased Total Diseased

Mild [80,100] 35% 5% 3% 0%
Moderate [50,80) 30% 20% 30% 4.5%
Severe [30,50)] 20% 25% 47% 8.6%
Very severe [0,30) 15% 40% 20% 14.2%

Results

The backward-validation simulation study showed that whenever they were clinically

significant in the sample, both the AddFor and Genetic algorithms were able to

detect the original cut points. This can be observed in Figure 5.9 where the boxplots

of the estimated optimal cut points based on 500 simulated data sets are depicted,

for each of the proposed algorithms and different sample sizes. The corresponding

numerical results are shown in Table 5.9 were the average of the optimal cut points

together with the original cut points are shown. Note that the cut points obtained

with the Genetic algorithm were slightly closer to the original cut points than the

ones obtained with the AddFor. For instance, under Scenario I and a sample size of

N = 1000, the averages of the estimated optimal cut points obtained by the Genetic

algorithm were 32.03, 53.98 and 77.99, while the ones obtained with the AddFor

method with a grid of size M = 1000 were 32.96, 56.91 and 77.17. It is worth

remembering that the original three cut points were 30, 50 and 80. The results

shown in Table 5.9 also show that under Scenario II, only two of the original three

cut points were detected. The percentage of patients with a FEV1% of over 80 was

less than 3%, and none of them was diseased. Hence, having few individuals with



5.2. Empirical validation 75

values above 80, the method was not able to detect that cut point. In this situation,

the first two cut points were retained and the original cut points of 30 and 50 were

detected.
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Figure 5.9: Boxplot of the estimated optimal cut points based on 500 simulated data sets

obtained according to the backward validation study.
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Table 5.9: Backward validation study: average of the estimated optimal cut points over

500 simulated data sets obtained.

Sample size N = 500 Sample size N = 1000

Scenario AddFor AddFor
Genetic

AddFor AddFor
Genetic

Theoretical
cut point

M = 100 M = 1000 M = 100 M = 1000
I
1st cut point 33.72 33.99 33.93 32.67 32.96 32.03 30
2nd cut point 55.83 56.03 56.10 56.50 56.91 53.98 50
3rd cut point 75.98 75.55 79.03 77.29 77.17 77.99 80
II
1st cut point 29.23 30.16 29.89 29.35 30.23 30.05 30
2nd cut point 50.61 49.21 49.89 51.02 50.02 50.39 50

5.3 Application to the IRYSS-COPD study

We applied the methodology proposed in this chapter to the IRYSS-COPD study

presented in Chapter 2, Section 2.1. As pointed out before, preliminary analysis

during the development of a prediction model for patients with eCOPD showed that

clinical parameters related to short-term very severe evolution were the Glasgow

comma scale (0: altered, 1:normal), the heart rate and the PCO2. Moreover, this

preliminary analysis also suggested that the relationship between the heart rate and

the response variable short-term very severe evolution appeared to be linear, while

the relationship between the PCO2 and the response variable did not. This can be

seen in Figure 5.10 where the estimated effects of both heart rate and PCO2 based

on a logistic GAM (Wood 2006) are depicted. For this reason clinical researchers

decided to introduce a categorised version of the PCO2 variable into the prediction

model.

As a first step, we considered categorising the PCO2 variable into two, three

and four categories in a univariate setting. To determine the optimal cut points we

applied the two algorithms presented in Section 5.1.

Table 5.10 shows the results obtained in the categorisation of the predictor PCO2

with the AddFor and the Genetic algorithms. For each number of cut points (k =1,

2 and 3), the obtained optimal cut points together with the bias-corrected AUC are

reported. Additionally, the difference in the bias-corrected AUCs, as well as the IDI

indexes when compared models with 1 and 2 and 2 and 3 cut points are shown.

As can be observed, the cut points obtained with the Genetic and AddFor al-



5.3. Application to the IRYSS-COPD study 77

Table 5.10: Results obtained in the categorisation of the predictor variable PCO2 of the

IRYSS-COPD study in a univariate setting. Estimated optimal cut points, bias-corrected

AUC, difference of the bias-corrected AUC and confidence interval for this difference together

with the IDI and its confidence interval are reported.

Method k
Estimated
cut points

Bias-corrected
AUC

AUC difference IDI

(95%CI∗) (95%CI)

1 50.87 0.674
0.022

(0.011, 0.036)
0.016

(0.008, 0.024)Addfor
2 50.87; 62.67 0.696

M = 100 0.014
(−0.003, 0.042)

0.001
(−0.0003, 0.002)

3 47.92;50.87; 62.67 0.709

1 50.1 0.674
0.022

(0.011, 0.036)
0.016

(0.008, 0.024)Addfor
2 50.1; 62.08 0.696

M = 1000 0.016
(−0.002, 0.045)

0.001
(−0.0003, 0.002)

3 45.86; 50.1; 62.08 0.712

1 50.87 0.674
0.032

(0.010, 0.065)
0.016

(0.008, 0.025)Genetic
2 47.74; 62.64 0.706

0.006
(−0.002, 0.025)

0.0002
(−0.0003, 0.001)

3 34.06; 47.52; 62.58 0.713

* 95% bootstrap confidence interval based on the percentile method for V = 100
bootstrap replicates; k: number of cut points sought.
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Figure 5.10: From left to right: (a) Relationship of the predictor variable Heart Rate with

short-term very severe evolution adjusted by Glasgow and PCO2 covariates. (b) Relationship

of the predictor variable PCO2 with short-term very severe evolution adjusted by Glasgow

and heart rate covariates.

gorithms were quite similar, with those obtained for k = 1 being 50.10 and 50.87,

those obtained for k = 2 being (50.10, 62.08) and (47.74, 62.64) and those obtained

for k = 3 being (45.86, 50.10, 62.08) and (34.06, 47.52, 62.58), using the AddFor

with a grid of size 1000 and the Genetic algorithms respectively. Note that values

for the PCO2 in the IRYSS-COPD study are recorded as integer numbers.

In the case of the Genetic algorithm, bias-corrected AUCs of 0.674, 0.706 and

0.713 were obtained for k = 1, 2 and 3, respectively. A difference (95% bootstrap

CI) of 0.032 (0.010, 0.065) was obtained between AUCs for k = 2 and k = 1 cut

points and a difference of 0.006 (-0.002, 0.025) between AUCs for k = 3 and k = 2

cut points. The IDI obtained when passed from k = 1 to k = 2 cut points was 0.016

(p-value = 0.0002). However, when passed from k = 2 to k = 3 cut points the IDI

was 0.0002 (p-value = 0.385).

In the case of the AddFor algorithm with a grid of size 1000, bias-corrected AUCs

of 0.674, 0.696 and 0.712 were obtained for k = 1, 2 and 3 respectively. A difference

of 0.022 (0.011, 0.036) was obtained between AUCs for k = 2 and k = 1 cut points

and a difference of 0.016 (-0.002, 0.045) between AUCs for k = 3 and k = 2 cut

points. The IDI obtained when passed from k = 1 to k = 2 cut points was 0.016

(p-value = 0.0002). However, when passed from k = 2 to k = 3 cut points the IDI
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was 0.0007 (p-value = 0.147).

50 100 150

−
2

−
1

0
1

2
3

PCO2

ce
nt

er
ed

 s
m

oo
th

 e
ffe

ct

50 100 150

−
2

−
1

0
1

2
3 Univariate

Multivariate

Genetic cut points
AddFor cut points

Figure 5.11: Estimated smooth relationship of the predictor variable PCO2 with the re-

sponse variable short-term very severe evolution in a univariate setting and in a multivariate

setting adjusted by Glasgow and heart rate covariates, jointly with the cut points obtained

with the AddFor and Genetic methods.

Summarising, the results suggest that the optimal number of cut points is two,

being the vector of optimal cut points v̂2 = (47.74, 62.64) or v̂2 = (50.1, 62.08) if

the Genetic or AddFor algorithm is chosen.

In addition, we obtained a 92% agreement between the categorical variables

achieved with the AddFor and Genetic algorithms, measured by Cohen’s weighted

kappa (Cohen 1968), with a 95% CI of (0.91, 0.93). These results were face-validated

by the clinicians involved in the IRYSS-COPD study.

Finally, we considered categorising the predictor variable PCO2 in a multivariate

setting adjusted by the other predictor variables considered by clinicians, which were

Glasgow comma scale and heart rate. The cut points obtained for k = 2 were (47.03,

62.08) and (47.33, 62.54) with the AddFor and Genetic algorithms, respectively.

In this case, the effect of the other covariates in the multivariate model did not

change the optimal cut points obtained for the PCO2 covariate. This result could
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be explained by looking at the estimated effects shown in Figure 5.11, where it can

be seen that the shape of the relationship between the continuous predictor and the

response variable does not change from the univariate to the multivariate setting.

5.4 Conclusions

The main objective of the work presented in this chapter was to develop a valid

method to obtain optimal cut points to categorise continuous predictor variables

in a univariate or multivariate logistic regression model by the maximisation of the

AUC. To do so, we first proposed two algorithms, namely AddFor and Genetic, to

search for the optimal cut points. Additionally, we recommended a bias correction

for the AUC together with a proposal for the selection of the optimal number of cut

points.

The advantages that this proposal presents with respect to previously published

proposals for the selection of more than one cut point are: a) it requires no distri-

butional assumptions and can be used in any situation regardless of the distribution

of the original continuous predictor (Tsuruta and Bax 2006); and b) it provides

the objectivity afforded by an automatic method as opposed to the subjectivity of

relying on a graphical display, as happens in the methodology proposed in Chapter

4. Furthermore, our approach has been developed so that a continuous predictor

variable can be categorised both in a univariate or a multivariate context, depending

on what the underlying setting is for each data set (univariate or multivariate) as

proposed by Mazumdar et al. (2003). Although in the application to the IRYSS-

COPD study the cut points obtained for the PCO2 covariate in the univariate and

multivariate settings were almost the same, this does not always need to be so. The

cut points obtained in the multivariate setting may differ from those obtained in the

univariate model. For example, if the relationship between the continuous predic-

tor and the response variable is different in a univariate or a multivariate setting,

the optimal cut points may be different. This could happen, for example, when

confusion predictors are present in the multivariate model. Hence, in contrast to

other categorisation methods, the proposed methodology thus enables a continuous

variable to be categorised before or during the development of a prediction model,

thereby allowing for the incorporation of potential cofounders.

Although we have not mentioned it explicitly, the number of individuals in each

category is a relevant issue. In fact, if there are few individuals in one of the

categories, or too many categories are considered, the estimates may be unstable
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(O’Brien 2004). If this happens the maximum likelihood may not exist and hence

the logistic regression would not be feasible. The algorithms we developed to select

the optimal cut points control for the number of individuals in each category. If the

convergence of maximum likelihood is not obtained or if the discriminative ability

can not be estimated for a vector of cut points, that vector is not considered as

eligible.

The simulation study shows that under the theoretical hypothesis, our approach

yields the optimal location of the cut points. Additionally, the results obtained

suggest that the cut points obtained correspond to the change at risk of having the

outcome of interest. Indeed and according to clinicians’ criteria, in the application

of the method to the IRYSS-COPD study, the cut points obtained for the clinical

parameter PCO2, classified patients into low, moderate and high risk of short-term

very severe evolution. The proposed methods thus provide a classification of patients

in terms of risk, which is precisely what is desirable in the development of prediction

models to be used in clinical practice for decision-making.

Nevertheless, this proposal has some limitations that should be taken into ac-

count. Despite the fact that the results obtained with both algorithms are similar,

one must bear in mind that the AddFor algorithm seeks the second cut point once

the first has been fixed. Consequently, the selection of the first cut point has an

influence on the consecutive cut points, which at times may lead to a non-optimal

selection of cut points. This was observed in the simulation study performed under

known theoretical conditions. As we have seen, when two cut points were sought,

the cut points obtained with the AddFor algorithm had greater bias than the ones

obtained with the Genetic algorithm. However, in some circumstances the Genetic

algorithm may be not feasible due to its computational cost, especially if very large

data sets are considered or many cut points are sought. Nevertheless, in general, as

long as it is computationally feasible, we recommend the use of the Genetic algo-

rithm.
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Chapter 6
Categorisation methods in a survival model

The work in this chapter has been previously presented in an international confer-

ence and is being prepared to be sent for publication to an international journal.

Barrio, I., Rodŕıguez-Álvarez, M.X., Meira-Machado, L., Esteban, C., and Arostegui, I. Com-

parison of the c-index and CPE indexes in the polycothomisation of continuous predictors in a Cox

Proportional Hazards Model. (In preparation)

XXVII International Biometric Conference. Optimal cut points to categorize continuous pre-

dictor variables in a Cox Proportional Hazards Model. Barrio, I., Rodŕıguez-Álvarez, M.X., Meira-

Machado, L., Quintana, J.M., and Arostegui, I. Poster contribution. Florence July 2014.

In Chapters 4 and 5 we presented methodologies to categorise continuous vari-

ables in the context of logistic regression. As pointed out before, in many cir-

cumstances the interest lies in studying the time until the event of interest occurs.

Therefore, in this chapter we extend the methodology proposed in Chapter 5 for

categorisation of continuous variables in logistic regression to the Cox PH regression

model.

The rest of this chapter is organised as follows. In Section 6.1 we present the pro-

posed methodology to categorise a continuous predictor variable in a Cox PH model

by maximising the concordance probability index. Specifically, two different estima-

tors were studied: c-index and CPE. Section 6.2 is devoted to an empirical validation

of the proposed methodology where we present the scenarios of the simulation study

conducted to validate the proposed methodology together with the results obtained.

In Section 6.3 we implement the proposed methodology to the Stable-COPD study.

Finally, in Section 6.4, we end this chapter with some conclusions and limitations.

83
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6.1 Proposed Methodology

Let T be a non-negative random variable representing the time until the event of

interest, and let X denote a continuous covariate that we want to categorise. We

propose to categorise X in such a way that the best predictive survival model is

obtained, considering the maximal concordance probability achieved. The concor-

dance probability was estimated by two alternative estimators: the c-index proposed

by Harrell et al. (1982) and the CPE proposed by Gönen and Heller (2005), as we

explained in Chapter 3, Section 3.4.

Specifically, given k the number of cut points set for categorising X in k +

1 intervals, we propose that the vector of k cut points vk = (x1, . . . , xk) which

maximises the discriminative ability of the Cox PH model shown in equation (6.1),

is thus the vector of the optimal k cut points:

h(t|Xcatk) = h0(t)e
β0+

∑k
q=1 βq1{Xcatk

=q} . (6.1)

Suppose now that along with the predictor variable X we want to categorise, a

set of other p predictors, Z1, . . . , Zp, are of interest. Then, what we propose is that

the categorisation of X in a multivariate Cox PH model including the p predictors,

will be that for which the concordance probability of the model (6.2) is maximised.

h(t|(Z1, . . . , Zp, Xcatk)) = h0(t)e
β0+

∑p
r=1 βrZr+

∑p+k
q=p+1 βq1{Xcatk

=q−p} . (6.2)

Let {xi, zi, yi, δi}Ni=1 be a sample of size N , where xi represents the observed

value of the predictor variable we want to categorise; zi is the observed value of

the set of other p predictors, yi represents the observed follow-up time for subject i

and δi is the censoring indicator. Estimation of the models in equations (6.1) and

(6.2) as well as of the associated concordance probability, can be done as presented

previously in Section 3.3 and Section 3.4 in Chapter 3, above. To estimate the vector

of the cut points of X that maximises the c-index and the CPE, we propose the use

of the above presented algorithms, namely AddFor and Genetic.

As happened when we searched for optimal cut points in logistic regression,

although the AddFor method searches for each cut point at a time, the Genetic

method simultaneously looks for all cut points that maximise the discriminative

ability of the Cox PH model.
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6.1.1 Optimism correction

As we presented in Chapter 3, Section 3.4.3, a discriminative ability measure es-

timator may be biased upward when the same data set is used to fit the model

and estimate the model’s discriminative ability, even more if the data is censored.

The CPE was proposed as an unbiased alternative to Harrel’s c-index by Gönen

and Heller (2005) when the aim was to estimate the concordance probability and

discriminatory power in a Cox PH regression model. Nevertheless, we proposed to

correct the bias of both indexes since both were estimated using the same data that

was previously used to estimate the vector of optimal cut points. The bootstrap

bias correction approach proposed for the concordance probability estimator in a

Cox PH model can be summarised as follows:

Let us denote ĉ the concordance probability estimator, which can be either the

c-index or the CPE.

Step 1. Categorise the predictor variable on the basis of the original sample

{(xi, zi, yi, δi)}Ni=1 and compute the corresponding concordance probability

(see equations (3.27) and (3.28) ). Let us denote this apparent concordance

probability estimator as ĉapp.

Step 2. For b = 1, . . . , B, generate the bootstrap resample {(x∗ib, z∗ib, y∗ib, δ∗ib)}
N
i=1

by drawing a random sample of size N with replacement from the original

sample, and categorise the bootstrapped predictor {x∗ib}
N
i=1 on the basis of

the optimal cut points obtained in Step 1.

Step 3. Fit the Cox PH model to the bootstrap resample with the categorised

version of the predictor. Let us denote as β̂
b

the vector of the estimated

regression coefficients based on this bootstrap resample. Compute the

corresponding concordance probability, ĉbboot for b = 1, . . . , B.

Step 4. Obtain the linear predictor for the original sample based on the fitted

Cox PH regression model obtained in Step 3, i.e,

β̂b0 +

p∑
r=1

β̂brzri +

p+k∑
q=p+1

β̂bq1{xcatki=q}

and compute the concordance probability. Let’s denote this estimator as ĉbo

for b = 1, . . . , B.
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Once the above process has been completed, the optimism O of the original concor-

dance probability estimator is calculated as follows:

O =
1

B

B∑
b=1

|̂cbboot − ĉbo|

and the bias-corrected concordance probability estimator is then computed as ĉapp−
O.

In the same way as we did for the AUC, we also considered correcting the CPE

and the c-index during the selection of the cut points. We computed several sim-

ulations similar to what we did in Section 5.2, Chapter 5, and saw that it had no

influence on the selection of the optimal cut points. Consequently, for all the simu-

lations and analysis presented in this chapter the c-index or CPE are corrected after

the selection of the optimal cut points.

6.1.2 Selection of the optimal number of cut points

Similar to what we proposed in Section 5.1.2 for the logistic regression setting, we

propose a bootstrap CI for the difference between the bias-corrected discrimination

index of the two categorisation proposals in the Cox PH model in order to determine

if an extra category is needed. This methodology is proposed when the maximisation

index considered is either the c-index or the CPE.

The procedure to compute the CI for the difference of the bias-corrected discrim-

inative ability index estimator can be summarised as follows. For ease of notation,

let us denote ĉ as the discrimination index estimator, which in our specific framework

may be either the c-index proposed by Harrell et al. (1982) or the CPE proposed by

Gönen and Heller (2005).

Step 1. For v = 1, . . . , V , generate the bootstrap resample {(x∗iv, z∗iv, y∗iv, δ∗iv)}
N
i=1

by drawing a random sample of size N with replacement from the original

sample.

Step 2. Compute the bias-corrected discrimination index for the categorised vari-

able for k = l and k = l + 1 and denote it as ĉ∗l,v and ĉ∗l+1,v respectively. The

bias-corrected discrimination index is computed as explained above in Section

6.1.1, now using for Step 1 the optimal cut points obtained for k = l and

k = l + 1 on the basis of the original sample.
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Step 3. Compute the difference between the bias-corrected discrimination indexes

obtained for k = l + 1 and k = l

ĉ∗Diff,v = ĉ∗l+1,v − ĉ∗l,v.

Once the above process has been completed, the (1− α) % limits for the CI for the

difference are given by (
ĉ
α/2
Diff , ĉ

1−α/2
Diff

)
where ĉpDiff represents the p-percentile of the estimated ĉ∗Diff,v (v = 1, . . . , V ).

We propose to determine whether an extra optimal cut point is needed if the CI

does not contain the zero.

6.2 Empirical validation

In this section we present a simulation study conducted to analyse the empirical

performance of the methodology proposed in Section 6.1, above. In this case, the

simulation study was performed in such a way that the theoretical cut points are

known. The aims of this simulation study are threefold: a) to compare which of

the concordance probability estimators, c-index or CPE, performs better in the

selection of optimal cut points; b) to compare the estimated optimal cut points with

the theoretical optimal cut points; and c) to compare the bias-corrected c-index and

CPE to the theoretical discriminative ability index.

All computations were performed in (64 bit) R 3.1.2 and a workstation equipped

with 24GB of RAM, an Intel Xeon E5620 processor (2.40 Ghz), and Windows 7

operating system. Specifically, the genoud function of the rgenoud (Mebane and

Sekhon 2011) package was used to compute the genetic algorithms, the cph function

of the rms package (Harrell 2015) was used for the estimation of the Cox PH model,

and the c-index and the phcpe2 function of the package CPE (Mo et al. 2012) was

used to estimate the CPE. Finally, the coxph function of the survival package

(Therneau 2014) together with the termplot function of the stats package were

used to plot the effects of the Cox PH model.

Scenarios and set-up

To simulate the data we assumed that X is a continuous predictor variable normally

distributed with mean µ = 0 and variance σ = 2. Considering the theoretically
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optimal cut points, c1, c2, . . . , ck, we built a categorical variable, Xcatk , such that

Xcatk = 0 if X ≤ c1, Xcatk = 1 if c1 < X ≤ c2, . . . , and Xcatk = k if X > ck.

Survival times T corresponding to each Xcatk value were generated from different

independent Weibull distributions, with shape and scale parameters given by (γi, λi)

for Xcatk = i, 0 ≤ i ≤ k. The follow-up time was subjected to right censoring, C,

according to the uniform model U(0, τ), and the event indicator δ was defined as

I(T ≤ C). Simulations were performed for total sample sizes of N = 500 and

N = 1000. As far as the number of cut points is concerned, k = 1, 2 and 3 were

considered. Finally, for the AddFor algorithm, grid sizes of M = 100 and M = 1000

were used. In all cases, R = 500 replicates of simulated data were performed and

B = 50 was used for CPE and c-index bias correction procedure.

Several settings were considered in this simulation study, which are summarised

in Table 6.1. First of all, we considered k = 1, 2 and 3 number of cut points.

For k = 1 we considered a) an increasing risk relationship between the continuous

predictor X and survival time T (Scenarios I, II and III); and b) a decreasing risk

relationship between the continuous predictor X and survival time T (Scenarios IV,

V and VI). Additionally, we considered different positions for the theoretical cut

points: a) centred in the predictor’s distribution (Scenarios I and IV); b) shifted to

high risk area (Scenarios II and VI); and c) shifted to low risk area (Scenarios III

and V). For k = 2 and k = 3 we considered a linear (Scenarios VII and IX) and

a nonlinear (Scenarios VIII and X) relationship between the continuous predictor

X and survival time T . The relationship between the continuous predictor and

the response variable in each scenario is shown in Figure 6.1 and Figure 6.2, and is

computed with a smooth function using the termplot function of the stats package.

Finally, we also considered a scenario in which the proportional hazards assump-

tion is violated. Specifically, k = 2 number of cut points (c1 = −1 and c2 = 1)

and the Weibull distribution parameters, (γ0, λ0) = (1, 0.5), (γ1, λ1) = (3, 3) and

(γ2, λ2) = (10, 1), were considered to simulate survival times in each category, in

such a way that a nonlinear relationship was simulated between the continuous pre-

dictor X and survival time T . It should be noted that since the γ parameter of the

Weibull distribution is not 1 in all the categories of Xcatk , the proportional hazards

assumption does not hold.
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Table 6.1: Description of the different scenarios considered for the simulation study. γ

and λ are the shape and scale parameters of the Weibull distribution respectively and the

censoring indicator δ is defined as I(T ≤ C) where C = U(0, τ).

Scenario
Theoretical Weibull Censorship (τ)
cut points parameters 20% 50% 70%

I 0
γ0 = 1, λ0 = 3
γ1 = 1, λ1 = 1

10 2.8 1.25

II 1.5
γ0 = 1, λ0 = 3
γ1 = 1, λ1 = 1

12 3.8 1.7

III -1.5
γ0 = 1, λ0 = 3
γ1 = 1, λ1 = 1

7 2 1

IV 0
γ0 = 1, λ0 = 1
γ1 = 1, λ1 = 3

10 2.8 1.25

V 1.5
γ0 = 1, λ0 = 1
γ1 = 1, λ1 = 3

7 2 1

VI -1.5
γ0 = 1, λ0 = 1
γ1 = 1, λ1 = 3

12 3.8 1.7

VII -1 & 1
γ0 = 1, λ0 = 0.5
γ1 = 1, λ1 = 1
γ2 = 1, λ2 = 2

6 1.5 0.7

VIII -1 & 1
γ0 = 1, λ0 = 0.5
γ1 = 1, λ1 = 3
γ2 = 1, λ2 = 1

8 2 0.8

IX -1.5 & 0 & 1.5

γ0 = 1, λ0 = 0.5
γ1 = 1, λ1 = 1
γ2 = 1, λ2 = 2
γ3 = 1, λ3 = 3

8 2 1

X -1.5 & 0 & 1.5

γ0 = 1, λ0 = 0.5
γ1 = 1, λ1 = 3
γ2 = 1, λ2 = 1
γ3 = 1, λ3 = 0.5

6 1.5 0.65
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(f) Scenario VI

Figure 6.1: Simulated data for sample size of N = 500 and censoring rate of 50%

in scenarios I to VI, where one theoretical cut point was considered. In all cases,

data from the first replicate is plotted.
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(a) Scenario VII
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(b) Scenario VIII
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(d) Scenario X

Figure 6.2: Simulated data for sample size of N = 500 and censoring rate of 50% in

scenarios VII and VIII, where two theoretical cut points were considered (Figures (a) and

(b)) and scenarios IX and X where three theoretical cut points were considered (Figures (c)

and (d)). In all cases, data from the first replicate is plotted.

Results

Given the large number of proposed scenarios and different conclusions obtained, we

begin by summarising the main findings.

The simulations results suggest that in general the CPE works better when it

comes to low censoring rates (20%), while the c-index works better when it comes

to high censoring rates (70%). Although this trend is true in general, it is not met
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in all cases, especially when the goal is to find a single cut point. The method is

successful when it comes to searching for two or three cut points. However, when the

aim is to search for a unique cut point, the method’s performance depends largely on

the location of the theoretical optimal cut point. Additionally, the results become

worse as the censoring rate increases, regardless of the discrimination index used.

However, when the algorithm used is the Genetic, the MSE is smaller than with the

AddFor, obtaining good results even for high censoring rates. Finally, smaller bias

and MSE for discrimination indexes are obtained when a sample size of 1000 is used

compared to a 500 sample size.

Figure 6.3 depicts the boxplot of the estimated optimal cut points over 500

simulated data sets, for each of the proposed algorithm, c-index and CPE estimator

and a sample size of N = 500 for Scenarios I, II and III, where a single optimal

cut point is searched for an increasing risk relationship between the continuous

predictor X and the outcome. Numerical results for these scenarios are given in

Table 6.2 (Scenario I), Table 6.3 (Scenario II) and Table 6.4 (Scenario III). The

obtained results show that when the theoretical optimal cut point is centred, i.e.,

c1 = 0, the proposed method performs satisfactorily regardless of the discrimination

index used and censorship rate. This can be observed in Figure 6.3(a) and Table

6.2. However, when the theoretical cut is offset, the method is not able to find

it, particularly when the censoring rate is high. At this point we must clarify the

fact that depending on whether the cut point is shifted to the area of high risk

(c1 = 1.5) or low risk (c1 = −1.5), differences between using the CPE or the c-index

are considerable. Differences can be observed when comparing Figures 6.3(b) and

6.3(c).

Figure 6.4 depicts the boxplot of the estimated optimal cut points over 500

simulated data sets, for each of the proposed algorithm, c-index and CPE estimator,

20% and 70% censoring rates and a sample size of N = 500 for scenarios IV, V and

VI, where a single optimal cut point is searched for a decreasing risk relationship

between the continuous predictor X and the outcome. Numerical results for these

scenarios are given in Table 6.5 (Scenario VI), Table 6.6 (Scenario V) and Table 6.7

(Scenario VI). Similar results to the ones obtained for Scenarios I to III are obtained

in Scenarios IV to VI. As can be observed in Figure 6.4(a), when the theoretical

cut point is centred, in this case c1 = 0, the method performs satisfactorily and no

differences are observed between the performance of the CPE and c-index. However,

when the theoretical cut point is c1 = 1.5, that is, it is shifted to the area of low-risk

(Scenario V), the estimation of the optimal cut points obtained with the c-index
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(c) Scenario III

Figure 6.3: Boxplot of the estimated optimal cut points based on 500 simulated
data sets, N = 500 sample size, one theoretical cut point and increasing risk rela-
tionship with the outcome. Results are shown for AddFor (M = 100) and Genetic
algorithms, censoring rates of 20% and 70% and c-index and CPE discriminative
ability estimators. From top to bottom: (a) theoretical cut points (0); (b) theoret-
ical cut points (1.5); and (c) theoretical cut points (−1.5).
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Table 6.2: Simulation results when one theoretical optimal cut point 0 was chosen with

an increasing risk relationship with the outcome (γ0, λ0) = (1, 3) and (γ1, λ1) = (1, 1) and

censorship of 20%, 50% and 70% (Scenario I). Mean, standard deviation (sd), median (Me.),

bias and mean squared error (MSE) for the estimated cut points are reported when CPE or

c-index discriminative ability estimators are used as the maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20% 0 0.002 (0.060) 0.004 0.002 0.004 -0.002 (0.077) 0.002 -0.002 0.006
50% 0 -0.025 (0.118) -0.002 -0.025 0.015 -0.002 (0.100) 0.003 -0.002 0.010
70% 0 -0.034 (0.142) -0.014 -0.034 0.021 0.033 (0.160) 0.012 0.033 0.027

Addfor
1000

20% 0 -0.011 (0.056) -0.007 -0.011 0.003 -0.009 (0.078) -0.005 -0.009 0.006
50% 0 -0.032 (0.118) -0.010 -0.032 0.015 -0.003 (0.098) -0.001 -0.003 0.010
70% 0 -0.038 (0.154) -0.011 -0.038 0.025 0.037 (0.154) 0.014 0.037 0.025

Genetic
20% 0 -0.008 (0.055) -0.003 -0.008 0.003 -0.006 (0.078) -0.001 -0.006 0.006
50% 0 -0.030 (0.116) -0.007 -0.030 0.014 -0.002 (0.096) 0.001 -0.002 0.009
70% 0 -0.032 (0.155) -0.006 -0.032 0.025 0.041 (0.152) 0.021 0.041 0.025

Sample Size N = 1000

Addfor
100

20% 0 0.009 (0.030) 0.008 0.009 0.001 -0.002 (0.043) 0.001 -0.002 0.002
50% 0 -0.005 (0.048) -0.001 -0.005 0.002 0.008 (0.062) 0.004 0.008 0.004
70% 0 -0.013 (0.070) -0.006 -0.013 0.005 0.024 (0.090) 0.008 0.024 0.009

Addfor
1000

20% 0 -0.003 (0.025) -0.002 -0.003 0.001 -0.001 (0.031) 0.000 -0.001 0.001
50% 0 -0.007 (0.042) -0.003 -0.007 0.002 0.009 (0.055) 0.002 0.009 0.003
70% 0 -0.014 (0.084) -0.002 -0.014 0.007 0.025 (0.084) 0.010 0.025 0.008

Genetic
20% 0 -0.002 (0.026) -0.001 -0.002 0.001 -0.001 (0.034) 0.000 -0.001 0.001
50% 0 -0.005 (0.043) -0.001 -0.005 0.002 0.010 (0.058) 0.003 0.010 0.003
70% 0 -0.013 (0.084) -0.001 -0.013 0.007 0.027 (0.085) 0.011 0.027 0.008
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Table 6.3: Simulation results when one theoretical optimal cut point 1.5 was chosen with

an increasing risk relationship with the outcome (γ0, λ0) = (1, 3) and (γ1, λ1) = (1, 1) and

censorship of 20%, 50% and 70% (Scenario II). Mean, standard deviation (sd), median (Me.),

bias and mean squared error (MSE) for the estimated cut points are reported when CPE or

c-index discriminative ability estimators are used as the maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20% 1.5 1.426 (0.140) 1.473 -0.074 0.025 1.364 (0.221) 1.449 -0.136 0.067
50% 1.5 1.287 (0.299) 1.398 -0.213 0.135 1.352 (0.258) 1.441 -0.148 0.088
70% 1.5 1.032 (0.485) 1.154 -0.468 0.454 1.334 (0.308) 1.439 -0.166 0.122

Addfor
1000

20% 1.5 1.411 (0.136) 1.456 -0.089 0.026 1.356 (0.211) 1.436 -0.144 0.065
50% 1.5 1.284 (0.282) 1.386 -0.216 0.126 1.349 (0.261) 1.442 -0.151 0.091
70% 1.5 1.015 (0.513) 1.162 -0.485 0.497 1.320 (0.320) 1.442 -0.180 0.135

Genetic
20% 1.5 1.414 (0.145) 1.463 -0.086 0.028 1.364 (0.212) 1.447 -0.136 0.063
50% 1.5 1.294 (0.279) 1.391 -0.206 0.120 1.355 (0.264) 1.450 -0.145 0.090
70% 1.5 1.023 (0.515) 1.166 -0.477 0.492 1.325 (0.320) 1.446 -0.175 0.133

Sample Size N = 1000

Addfor
100

20% 1.5 1.471 (0.069) 1.488 -0.029 0.006 1.425 (0.124) 1.467 -0.075 0.021
50% 1.5 1.358 (0.195) 1.446 -0.142 0.058 1.420 (0.133) 1.466 -0.080 0.024
70% 1.5 1.160 (0.323) 1.248 -0.340 0.219 1.404 (0.164) 1.460 -0.096 0.036

Addfor
1000

20% 1.5 1.460 (0.065) 1.481 -0.040 0.006 1.424 (0.120) 1.471 -0.076 0.020
50% 1.5 1.357 (0.196) 1.436 -0.143 0.059 1.427 (0.123) 1.474 -0.073 0.020
70% 1.5 1.152 (0.336) 1.258 -0.348 0.234 1.410 (0.152) 1.469 -0.090 0.031

Genetic
20% 1.5 1.463 (0.064) 1.482 -0.037 0.005 1.426 (0.120) 1.474 -0.074 0.020
50% 1.5 1.361 (0.196) 1.440 -0.139 0.058 1.427 (0.125) 1.476 -0.073 0.021
70% 1.5 1.150 (0.335) 1.207 -0.350 0.235 1.414 (0.154) 1.473 -0.086 0.031
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Table 6.4: Simulation results when one theoretical optimal cut point −1.5 was chosen with

an increasing risk relationship with the outcome (γ0, λ0) = (1, 3) and (γ1, λ1) = (1, 1) and

censorship of 20%, 50% and 70% (Scenario III). Mean, standard deviation (sd), median

(Me.), bias and mean squared error (MSE) for the estimated cut points are reported when

CPE or c-index discriminative ability estimators are used as the maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20% -1.5 -1.339 (0.201) -1.411 0.161 0.066 -1.355 (0.228) -1.435 0.145 0.073
50% -1.5 -1.375 (0.223) -1.439 0.125 0.065 -1.269 (0.354) -1.401 0.231 0.179
70% -1.5 -1.336 (0.318) -1.438 0.164 0.128 -1.128 (0.519) -1.326 0.372 0.407

Addfor
1000

20% -1.5 -1.354 (0.209) -1.418 0.146 0.065 -1.362 (0.235) -1.443 0.138 0.074
50% -1.5 -1.362 (0.243) -1.447 0.138 0.078 -1.261 (0.358) -1.403 0.239 0.185
70% -1.5 -1.339 (0.314) -1.442 0.161 0.124 -1.114 (0.539) -1.345 0.386 0.439

Genetic
20% -1.5 -1.347 (0.209) -1.408 0.153 0.067 -1.355 (0.240) -1.439 0.145 0.078
50% -1.5 -1.357 (0.242) -1.439 0.143 0.079 -1.255 (0.355) -1.383 0.245 0.186
70% -1.5 -1.333 (0.308) -1.433 0.167 0.123 -1.107 (0.530) -1.333 0.393 0.435

Sample Size N = 1000

Addfor
100

20% -1.5 -1.379 (0.161) -1.444 0.121 0.040 -1.412 (0.159) -1.465 0.088 0.033
50% -1.5 -1.422 (0.150) -1.469 0.078 0.028 -1.339 (0.258) -1.429 0.161 0.092
70% -1.5 -1.410 (0.207) -1.470 0.090 0.051 -1.251 (0.339) -1.375 0.249 0.177

Addfor
1000

20% -1.5 -1.384 (0.170) -1.454 0.116 0.043 -1.405 (0.171) -1.468 0.095 0.038
50% -1.5 -1.427 (0.153) -1.482 0.073 0.029 -1.340 (0.262) -1.434 0.160 0.094
70% -1.5 -1.411 (0.200) -1.474 0.089 0.048 -1.252 (0.339) -1.372 0.248 0.176

Genetic
20% -1.5 -1.382 (0.171) -1.453 0.118 0.043 -1.407 (0.169) -1.471 0.093 0.037
50% -1.5 -1.425 (0.153) -1.479 0.075 0.029 -1.334 (0.264) -1.427 0.166 0.097
70% -1.5 -1.408 (0.201) -1.473 0.092 0.049 -1.248 (0.340) -1.368 0.252 0.179
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have a big bias and MSE, especially for censoring rates over 50%. Detailed results

are shown in Table 6.6 and Figure 6.4(b). On the other hand, when the theoretical

cut point is c1 = −1.5, this is, it is shifted to the area of high-risk (Scenario VI), the

c-index performs better than the CPE (see Table 6.7 and Figure 6.4(c)).

Figure 6.5 and Figure 6.6 depict the boxplots of the estimated optimal cut points

over 500 simulated data sets, for each of the proposed algorithm, c-index and CPE

estimator, 20% and 70% censoring rates and a sample size of N = 500 for Scenarios

VII and VIII, where two optimal cut points are sought for a linear and nonlinear risk

relationship between the continuous predictor X and the outcome respectively. Nu-

merical results are reported in Table 6.8 for Scenario VII and Table 6.9 for Scenario

VIII, respectively.

Simulation results for k = 2 cut points showed that the theoretical optimal cut

points were estimated more accurately when the relationship between the continuous

predictor X and the response variable was not linear (Scenario VIII) than when it

was linear (Scenario VII) (see Figures 6.5 and 6.6). When the AddFor algorithm

was used, smaller bias and MSE values were obtained with the CPE index for low

censoring rates (20%), while the c-index performed better for high censoring rates

(70%). For censoring rates around 50% no differences were observed between both

discrimination indexes. However, when the Genetic method was used, estimated cut

points had smaller bias and MSE than the ones obtained with the AddFor algorithm,

especially in Scenario VII where the relationship between the continuous predictor

and the response variable was linear. In fact, in this scenario and for a sample size

of 500, 70% censoring rate and CPE index, MSE of 0.164 and 0.32 were obtained

when the Genetic and AddFor algorithms were used respectively.

Figure 6.7 and Figure 6.8 depict the boxplots of the estimated optimal cut points

over 500 simulated data sets, for each of the proposed algorithms, c-index and CPE

estimator, 20% and 70% censoring rates and a sample size of N = 500 for Scenarios

IX and X, where three optimal cut points are sought for a linear and nonlinear

risk relationship between the continuous predictor X and the outcome, respectively.

Numerical results are reported in Table 6.10 for Scenario IX and Table 6.11 for

Scenario X, respectively.

Similar to what we observed for k = 2, simulation results for k = 3 suggested that

the estimation of the optimal cut points was not very accurate when the relationship

between the continuous predictor variable X and the response variable was linear

(Scenario IX), particularly when the censoring rate was around 50% or above. As

can be observed in Table 6.10, for high censoring rates, estimation of the second and
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third cut points presents a high bias. However, in Scenario X where the relationship

is not linear, the method performs satisfactorily (see Figure 6.8). Additionally, for

high censoring rates, the third cut point bias is smaller when the c-index is used

rather than when the CPE is used, for both algorithms AddFor or Genetic (see

Table 6.10).

Table 6.5: Simulation results when one theoretical optimal cut point 0 was chosen with

a decreasing risk relationship with the outcome (γ0, λ0) = (1, 1) and (γ1, λ1) = (1, 3) and

censorship of 20%, 50% and 70% (Scenario IV). Mean, standard deviation (sd), median

(Me.), bias and mean squared error (MSE) for the estimated cut points are reported when

CPE or c-index discriminative ability estimators are used as the maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20% 0 -0.001 (0.060) 0.000 -0.001 0.004 0.000 (0.072) 0.001 0.000 0.005
50% 0 0.008 (0.085) 0.001 0.008 0.007 -0.011 (0.100) -0.005 -0.011 0.010
70% 0 0.032 (0.141) 0.008 0.032 0.021 -0.037 (0.161) -0.015 -0.037 0.027

Addfor
1000

20% 0 0.005 (0.051) 0.000 0.005 0.003 -0.005 (0.062) -0.004 -0.005 0.004
50% 0 0.013 (0.092) 0.000 0.013 0.009 -0.017 (0.095) -0.011 -0.017 0.009
70% 0 0.029 (0.143) 0.000 0.029 0.021 -0.037 (0.150) -0.021 -0.037 0.024

Genetic
20% 0 0.011 (0.052) 0.005 0.011 0.003 0.001 (0.063) 0.000 0.001 0.004
50% 0 0.017 (0.092) 0.004 0.017 0.009 -0.014 (0.095) -0.008 -0.014 0.009
70% 0 0.033 (0.141) 0.000 0.033 0.021 -0.036 (0.151) -0.016 -0.036 0.024

Sample Size N = 1000

Addfor
100

20% 0 -0.005 (0.033) -0.005 -0.005 0.001 0.003 (0.041) 0.002 0.003 0.002
50% 0 0.009 (0.056) 0.003 0.009 0.003 -0.005 (0.057) -0.004 -0.005 0.003
70% 0 0.021 (0.076) 0.008 0.021 0.006 -0.011 (0.077) -0.009 -0.011 0.006

Addfor
1000

20% 0 0.002 (0.024) 0.000 0.002 0.001 0.000 (0.041) -0.002 0.000 0.002
50% 0 0.006 (0.050) 0.000 0.006 0.003 -0.010 (0.051) -0.007 -0.010 0.003
70% 0 0.013 (0.074) -0.002 0.013 0.006 -0.022 (0.073) -0.013 -0.022 0.006

Genetic
20% 0 0.003 (0.027) 0.002 0.003 0.001 0.002 (0.042) -0.001 0.002 0.002
50% 0 0.008 (0.050) 0.001 0.008 0.003 -0.009 (0.052) -0.006 -0.009 0.003
70% 0 0.012 (0.076) 0.000 0.012 0.006 -0.021 (0.080) -0.013 -0.021 0.007

Table 6.12 shows the results obtained with the AddFor algorithm (M = 100), a

sample size of N = 1000 and 500 replicates for the bias correction of the CPE and

c-index concordance probability estimators. The theoretical concordance probabil-

ity has been calculated empirically for the theoretical categorical variable in each

scenario over 1000 replicates for a sample size of N = 10, 000.

The results corroborate the fact that the CPE is an unbiased estimator, where

slight differences can be observed between the estimated CPE and bias-corrected

CPE. However, for the c-index, different results are obtained depending on the
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(b) Scenario V
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(c) Scenario VI

Figure 6.4: Boxplot of the estimated optimal cut points based on 500 simulated data sets,
N = 500 sample size, one theoretical cut point and decreasing risk relationship with the
outcome. Results are shown for AddFor (M = 100) and Genetic algorithms, censoring
rates of 20% and 70% and c-index and CPE discriminative ability estimators. From top to
bottom: (a) theoretical cut points (0); (b) theoretical cut points (1.5); and (c) theoretical
cut points (−1.5).
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Table 6.6: Simulation results when one theoretical optimal cut point 1.5 was chosen with

a decreasing risk relationship with the outcome (γ0, λ0) = (1, 1) and (γ1, λ1) = (1, 3) and

censorship of 20%, 50% and 70% (Scenario V). Mean, standard deviation (sd), median (Me.),

bias and mean squared error (MSE) for the estimated cut points are reported when CPE or

c-index discriminative ability estimators are used as the maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20% 1.5 1.327 (0.227) 1.407 -0.173 0.081 1.352 (0.246) 1.441 -0.148 0.082
50% 1.5 1.366 (0.262) 1.455 -0.134 0.087 1.267 (0.368) 1.403 -0.233 0.189
70% 1.5 1.368 (0.314) 1.449 -0.132 0.116 1.143 (0.504) 1.325 -0.357 0.381

Addfor
1000

20% 1.5 1.316 (0.224) 1.394 -0.184 0.084 1.348 (0.238) 1.442 -0.152 0.079
50% 1.5 1.356 (0.253) 1.442 -0.144 0.085 1.251 (0.364) 1.384 -0.249 0.195
70% 1.5 1.355 (0.302) 1.449 -0.145 0.112 1.129 (0.510) 1.323 -0.371 0.397

Genetic
20% 1.5 1.322 (0.228) 1.401 -0.178 0.084 1.360 (0.237) 1.451 -0.140 0.076
50% 1.5 1.361 (0.258) 1.448 -0.139 0.086 1.260 (0.357) 1.390 -0.240 0.185
70% 1.5 1.358 (0.302) 1.451 -0.142 0.111 1.132 (0.513) 1.329 -0.368 0.398

Sample Size N = 1000

Addfor
100

20% 1.5 1.383 (0.153) 1.442 -0.117 0.037 1.419 (0.133) 1.465 -0.081 0.024
50% 1.5 1.422 (0.151) 1.470 -0.078 0.029 1.344 (0.253) 1.438 -0.156 0.088
70% 1.5 1.424 (0.182) 1.475 -0.076 0.039 1.283 (0.322) 1.399 -0.217 0.150

Addfor
1000

20% 1.5 1.381 (0.163) 1.438 -0.119 0.041 1.415 (0.145) 1.475 -0.085 0.028
50% 1.5 1.423 (0.145) 1.478 -0.077 0.027 1.344 (0.248) 1.437 -0.156 0.086
70% 1.5 1.426 (0.169) 1.476 -0.074 0.034 1.266 (0.327) 1.390 -0.234 0.161

Genetic
20% 1.5 1.387 (0.158) 1.445 -0.113 0.038 1.417 (0.147) 1.479 -0.083 0.028
50% 1.5 1.428 (0.143) 1.480 -0.072 0.026 1.339 (0.256) 1.432 -0.161 0.092
70% 1.5 1.423 (0.180) 1.479 -0.077 0.038 1.266 (0.327) 1.391 -0.234 0.162
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Table 6.7: Simulation results when one theoretical optimal cut point −1.5 was chosen with

a decreasing risk relationship with the outcome (γ0, λ0) = (1, 1) and (γ1, λ1) = (1, 3) and

censorship of 20%, 50% and 70% (Scenario VI). Mean, standard deviation (sd), median

(Me.), bias and mean squared error (MSE) for the estimated cut points are reported when

CPE or c-index discriminative ability estimators are used as the maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20% -1.5 -1.436 (0.135) -1.480 0.064 0.022 -1.367 (0.232) -1.455 0.133 0.071
50% -1.5 -1.282 (0.298) -1.411 0.218 0.136 -1.368 (0.241) -1.466 0.132 0.075
70% -1.5 -0.997 (0.524) -1.170 0.503 0.526 -1.340 (0.339) -1.469 0.160 0.140

Addfor
1000

20% -1.5 -1.437 (0.134) -1.480 0.063 0.022 -1.364 (0.255) -1.467 0.136 0.083
50% -1.5 -1.271 (0.311) -1.395 0.229 0.149 -1.366 (0.254) -1.472 0.134 0.082
70% -1.5 -0.976 (0.512) -1.087 0.524 0.536 -1.348 (0.334) -1.480 0.152 0.134

Genetic
20% -1.5 -1.429 (0.134) -1.472 0.071 0.023 -1.361 (0.238) -1.459 0.139 0.076
50% -1.5 -1.261 (0.315) -1.397 0.239 0.156 -1.360 (0.253) -1.468 0.140 0.083
70% -1.5 -0.968 (0.518) -1.079 0.532 0.551 -1.343 (0.324) -1.472 0.157 0.129

Sample Size N = 1000

Addfor
100

20% -1.5 -1.472 (0.068) -1.487 0.028 0.005 -1.430 (0.128) -1.467 0.070 0.021
50% -1.5 -1.391 (0.174) -1.456 0.109 0.042 -1.422 (0.143) -1.467 0.078 0.026
70% -1.5 -1.177 (0.332) -1.278 0.323 0.214 -1.408 (0.174) -1.465 0.092 0.039

Addfor
1000

20% -1.5 -1.465 (0.063) -1.487 0.035 0.005 -1.432 (0.126) -1.478 0.068 0.021
50% -1.5 -1.384 (0.179) -1.456 0.116 0.045 -1.426 (0.143) -1.478 0.074 0.026
70% -1.5 -1.175 (0.330) -1.276 0.325 0.215 -1.415 (0.173) -1.478 0.085 0.037

Genetic
20% -1.5 -1.463 (0.064) -1.485 0.037 0.005 -1.423 (0.137) -1.475 0.077 0.025
50% -1.5 -1.385 (0.176) -1.457 0.115 0.044 -1.422 (0.150) -1.476 0.078 0.028
70% -1.5 -1.172 (0.330) -1.277 0.328 0.216 -1.417 (0.174) -1.478 0.083 0.037
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Figure 6.5: Boxplot of the estimated optimal cut points based on 500 simulated data sets,
sample size N = 500 and Scenario VII - two theoretical optimal cut points (−1 and 1) and a
linear relationship with the outcome (γ0, λ0) = (1, 0.5),(γ1, λ1) = (1, 1) and (γ2, λ2) = (1, 2).
Results are shown for AddFor (M = 100) and Genetic algorithms, censoring rates of 20%
and 70% and c-index and CPE discriminative ability estimators.
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Table 6.8: Simulation results when two theoretical optimal cut points −1 and 1 were

chosen with a linear relationship with the outcome (γ0, λ0) = (1, 0.5),(γ1, λ1) = (1, 1) and

(γ2, λ2) = (1, 2) and censorship of 20%, 50% and 70% (Scenario VII). Mean, standard

deviation (sd), median (Me.), bias and mean squared error (MSE) for the estimated cut

points are reported when CPE or c-index discriminative ability estimators are used as the

maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20%
-1 -0.826 (0.303) -0.951 0.174 0.127 -0.789 (0.344) -0.907 0.211

0.152
1 0.857 (0.335) 0.970 -0.143 0.856 (0.347) 0.958 -0.144

50%
-1 -0.782 (0.375) -0.928 0.218

0.175
-0.834 (0.351) -0.907 0.166

0.167
1 0.894 (0.389) 0.960 -0.106 0.862 (0.407) 0.971 -0.138

70% -1 -0.726 (0.467) -0.876 0.274 0.327 -0.954 (0.451) -0.951 0.046 0.251
1 1.001 (0.602) 0.956 0.001 0.861 (0.527) 0.953 -0.139

Addfor
1000

20% -1 -0.827 (0.291) -0.944 0.173 0.128 -0.772 (0.339) -0.892 0.228 0.151
1 0.848 (0.345) 0.979 -0.152 0.859 (0.339) 0.969 -0.141

50%
-1 -0.792 (0.372) -0.945 0.208

0.172
-0.825 (0.355) -0.890 0.175

0.178
1 0.884 (0.386) 0.951 -0.116 0.868 (0.429) 0.964 -0.132

70% -1 -0.737 (0.464) -0.908 0.263 0.323 -0.945 (0.452) -0.951 0.055 0.252
1 0.958 (0.600) 0.941 -0.042 0.817 (0.514) 0.931 -0.183

Genetic

20% -1 -0.983 (0.146) -0.987 0.017 0.021 -0.990 (0.169) -1.000 0.010
0.027

1 0.991 (0.147) 1.002 -0.009 0.992 (0.157) 1.000 -0.008

50%
-1 -0.953 (0.202) -0.980 0.047

0.054
-1.012 (0.252) -1.000 -0.012

0.073
1 1.022 (0.255) 0.999 0.022 0.968 (0.286) 0.984 -0.032

70% -1 -0.901 (0.318) -0.964 0.099 0.164 -1.076 (0.381) -1.024 -0.076 0.167
1 1.055 (0.463) 1.000 0.055 0.902 (0.418) 0.946 -0.098

Sample Size N = 1000

Addfor
100

20% -1 -0.855 (0.256) -0.965 0.145 0.119 -0.800 (0.308) -0.950 0.200
0.127

1 0.814 (0.342) 0.972 -0.186 0.853 (0.312) 0.974 -0.147

50%
-1 -0.809 (0.323) -0.958 0.191

0.150
-0.831 (0.273) -0.923 0.169

0.122
1 0.827 (0.359) 0.956 -0.173 0.862 (0.349) 0.982 -0.138

70% -1 -0.759 (0.391) -0.932 0.241
0.203

-0.896 (0.319) -0.945 0.104
0.161

1 0.931 (0.437) 0.972 -0.069 0.828 (0.424) 0.971 -0.172

Addfor
1000

20%
-1 -0.839 (0.268) -0.957 0.161 0.123 -0.804 (0.301) -0.941 0.196

0.122
1 0.827 (0.344) 0.986 -0.173 0.851 (0.306) 0.982 -0.149

50%
-1 -0.805 (0.320) -0.947 0.195

0.144
-0.822 (0.288) -0.921 0.178

0.123
1 0.822 (0.342) 0.959 -0.178 0.863 (0.335) 0.979 -0.137

70% -1 -0.762 (0.376) -0.943 0.238 0.189 -0.895 (0.293) -0.952 0.105 0.156
1 0.909 (0.415) 0.968 -0.091 0.814 (0.425) 0.962 -0.186

Genetic

20% -1 -0.987 (0.064) -0.993 0.013 0.006 -0.991 (0.081) -0.997 0.009
0.008

1 0.995 (0.084) 1.004 -0.005 0.995 (0.099) 1.001 -0.005

50%
-1 -0.981 (0.094) -0.992 0.019

0.015
-1.001 (0.107) -1.001 -0.001

0.022
1 1.013 (0.141) 1.007 0.013 0.966 (0.180) 0.991 -0.034

70% -1 -0.958 (0.157) -0.983 0.042 0.054 -1.021 (0.166) -1.007 -0.021 0.056
1 1.035 (0.283) 1.011 0.035 0.922 (0.281) 0.981 -0.078
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Figure 6.6: Boxplot of the estimated optimal cut points based on 500 simulated data sets,
sample size N = 500 and Scenario VIII - two theoretical optimal cut points (−1 and 1) and
a nonlinear relationship with the outcome (γ0, λ0) = (1, 0.5),(γ1, λ1) = (1, 3). Results are
shown for AddFor (M = 100) and Genetic algorithms, censoring rates of 20% and 70% and
c-index and CPE discriminative ability estimators.
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Table 6.9: Simulation results when two theoretical optimal cut points −1 and 1 were

chosen with a nonlinear relationship with the outcome (γ0, λ0) = (1, 0.5),(γ1, λ1) = (1, 3)

and (γ2, λ2) = (1, 1) and censorship of 20%, 50% and 70% (Scenario VIII). Mean, standard

deviation (sd), median (Me.), bias and mean squared error (MSE) for the estimated cut

points are reported when CPE or c-index discriminative ability estimators are used as the

maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20% -1 -1.005 (0.039) -1.006 -0.005 0.003 -1.000 (0.039) -1.000 0.000 0.005
1 0.988 (0.062) 0.998 -0.012 0.983 (0.085) 0.995 -0.017

50%
-1 -0.991 (0.051) -0.994 0.009

0.014
-1.002 (0.049) -1.000 -0.002

0.010
1 0.941 (0.146) 0.982 -0.059 1.001 (0.134) 1.001 0.001

70% -1 -0.947 (0.107) -0.981 0.053 0.049 -1.011 (0.093) -1.005 -0.011 0.034
1 0.889 (0.267) 0.963 -0.111 1.009 (0.242) 1.011 0.009

Addfor
1000

20% -1 -1.001 (0.032) -1.004 -0.001 0.003 -1.003 (0.039) -1.004 -0.003 0.005
1 0.972 (0.06) 0.986 -0.028 0.980 (0.085) 0.991 -0.020

50%
-1 -0.989 (0.056) -0.999 0.011

0.017
-1.009 (0.051) -1.007 -0.009

0.011
1 0.924 (0.158) 0.972 -0.076 0.996 (0.137) 0.999 -0.004

70% -1 -0.956 (0.113) -0.994 0.044 0.052 -1.024 (0.090) -1.012 -0.024 0.034
1 0.880 (0.274) 0.957 -0.120 1.008 (0.242) 1.015 0.008

Genetic

20% -1 -0.999 (0.033) -1.000 0.001 0.003 -0.999 (0.037) -1.000 0.001 0.004
1 0.975 (0.062) 0.989 -0.025 0.985 (0.080) 0.995 -0.015

50%
-1 -0.990 (0.052) -0.996 0.010

0.017
-1.005 (0.053) -1.002 -0.005

0.011
1 0.928 (0.161) 0.979 -0.072 1.000 (0.139) 1.005 0.000

70% -1 -0.958 (0.118) -0.994 0.042 0.053 -1.015 (0.090) -1.008 -0.015 0.034
1 0.887 (0.277) 0.963 -0.113 1.013 (0.243) 1.019 0.013

Sample Size N = 1000

Addfor
100

20% -1 -1.007 (0.025) -1.007 -0.007 0.001 -0.998 (0.025) -0.999 0.002
0.002

1 0.997 (0.043) 1.001 -0.003 0.991 (0.051) 0.996 -0.009

50%
-1 -0.995 (0.031) -0.998 0.005

0.003
-0.999 (0.032) -0.999 0.001

0.003
1 0.972 (0.070) 0.986 -0.028 0.995 (0.072) 0.996 -0.005

70% -1 -0.977 (0.045) -0.983 0.023 0.015 -1.005 (0.052) -1.000 -0.005 0.010
1 0.935 (0.150) 0.969 -0.065 1.008 (0.129) 0.997 0.008

Addfor
1000

20% -1 -1.001 (0.013) -1.001 -0.001 0.001 -1.002 (0.017) -1.002 -0.002
0.001

1 0.988 (0.036) 0.994 -0.012 0.991 (0.042) 0.997 -0.009

50%
-1 -0.996 (0.024) -1.000 0.004

0.003
-1.003 (0.026) -1.003 -0.003

0.003
1 0.970 (0.073) 0.992 -0.030 1.001 (0.066) 1.000 0.001

70%
-1 -0.984 (0.046) -0.997 0.016

0.016
-1.014 (0.050) -1.006 -0.014

0.009
1 0.927 (0.159) 0.976 -0.073 1.014 (0.126) 1.004 0.014

Genetic

20% -1 -0.999 (0.013) -1.000 0.001 0.001 -1.001 (0.018) -1.000 -0.001
0.001

1 0.988 (0.037) 0.994 -0.012 0.993 (0.044) 0.999 -0.007

50%
-1 -0.997 (0.023) -0.999 0.003

0.003
-1.002 (0.030) -1.001 -0.002

0.003
1 0.972 (0.074) 0.994 -0.028 1.002 (0.071) 1.002 0.002

70% -1 -0.989 (0.041) -0.999 0.011 0.016 -1.013 (0.051) -1.005 -0.013 0.009
1 0.930 (0.157) 0.980 -0.070 1.016 (0.125) 1.007 0.016
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Figure 6.7: Boxplot of the estimated optimal cut points based on 500 simulated data
sets, sample size N = 500 and Scenario IX - three theoretical optimal cut points (−1.5,
0 and 1) and a linear relationship with the outcome (γ0, λ0) = (1, 0.5),(γ1, λ1) = (1, 1),
(γ2, λ2) = (1, 2) and (γ3, λ3) = (1, 3). Results are shown for AddFor (M = 100) and Genetic
algorithms, censoring rates of 20% and 70% and c-index and CPE discriminative ability
estimators.
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Table 6.10: Simulation results when three theoretical optimal cut points −1.5, 0 and 1

were chosen with a linear relationship with the outcome (γ0, λ0) = (1, 0.5),(γ1, λ1) = (1, 1),

(γ2, λ2) = (1, 2) and (γ3, λ3) = (1, 3) and censorship of 20%, 50% and 70% (Scenario IX).

Mean, standard deviation (sd), median (Me.), bias and mean squared error (MSE) for the

estimated cut points are reported when CPE or c-index discriminative ability estimators are

used as the maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20%
-1.5 -1.496 (0.151) -1.498 0.004

0.068
-1.490 (0.164 ) -1.500 0.010

0.0760 -0.053 (0.187) -0.014 -0.053 -0.049 (0.182) -0.018 -0.049
1.5 1.458 (0.377) 1.494 -0.042 1.415 (0.400) 1.484 -0.085

50%
-1.5 -1.477 (0.185) -1.494 0.023

0.120
-1.533 (0.264) -1.510 -0.033

0.1980 -0.013 (0.213) -0.003 -0.013 -0.169 (0.297) -0.098 -0.169
1.5 1.598 (0.521) 1.539 0.098 1.332 (0.615) 1.398 -0.168

70%
-1.5 -1.323 (0.448) -1.472 0.177

0.323
-1.576 (0.337) -1.533 -0.076

0.3060 0.109 (0.479) 0.005 0.109 -0.281 (0.404) -0.168 -0.281
1.5 1.657 (0.688) 1.612 0.157 1.212 (0.690) 1.323 -0.288

Addfor
1000

20%
-1.5 -1.480 (0.141) -1.481 0.020

0.062
-1.477 (0.168) -1.492 0.023

0.0760 -0.043 (0.171) -0.010 -0.043 -0.047 (0.185) -0.018 -0.047
1.5 1.439 (0.362) 1.481 -0.061 1.436 (0.399) 1.478 -0.064

50%
-1.5 -1.448 (0.229) -1.476 0.052

0.142
-1.534 (0.294) -1.510 -0.034

0.2180 -0.004 (0.266) -0.002 -0.004 -0.189 (0.33) -0.098 -0.189
1.5 1.546 (0.548) 1.510 0.046 1.282 (0.612) 1.376 -0.218

70%
-1.5 -1.288 (0.472) -1.456 0.212

0.341
-1.563 (0.339) -1.534 -0.063

0.3530 0.058 (0.474) 0.003 0.058 -0.300 (0.423) -0.195 -0.300
1.5 1.566 (0.725) 1.554 0.066 1.096 (0.714) 1.199 -0.404

Genetic

20%
-1.5 -1.487 (0.160) -1.490 0.013

0.071
-1.491 (0.170) -1.499 0.009

0.0770 -0.009 (0.204) 0.008 -0.009 -0.009 (0.193) -0.001 -0.009
1.5 1.465 (0.380) 1.501 -0.035 1.454 (0.403) 1.494 -0.046

50%
-1.5 -1.459 (0.224) -1.486 0.041

0.159
-1.522 (0.279) -1.507 -0.022

0.1900 0.071 (0.287) 0.024 0.071 -0.101 (0.326) -0.019 -0.101
1.5 1.604 (0.572) 1.553 0.104 1.384 (0.603) 1.460 -0.116

70%
-1.5 -1.226 (0.488) -1.388 0.274

0.444
-1.570 (0.395) -1.535 -0.070

0.3660 0.246 (0.625) 0.123 0.246 -0.230 (0.502) -0.133 -0.230
1.5 1.548 (0.753) 1.526 0.048 1.165 (0.722) 1.218 -0.335

Sample Size N = 1000

Addfor
100

20%
-1.5 -1.488 (0.079) -1.494 0.012

0.028
-1.479 (0.100) -1.488 0.021

0.0300 -0.038 (0.133) -0.020 -0.038 -0.038 (0.110) -0.015 -0.038
1.5 1.489 (0.243) 1.497 -0.011 1.460 (0.252) 1.485 -0.040

50%
-1.5 -1.477 (0.095) -1.482 0.023

0.052
-1.500 (0.119) -1.501 0.000

0.1000 -0.008 (0.114) -0.002 -0.008 -0.116 (0.238) -0.038 -0.116
1.5 1.494 (0.364) 1.490 -0.006 1.384 (0.449) 1.457 -0.116

70%
-1.5 -1.468 (0.177) -1.480 0.032

0.155
-1.551 (0.241) -1.512 -0.051

0.2080 0.006 (0.209) 0.004 0.006 -0.219 (0.347) -0.100 -0.219
1.5 1.579 (0.619) 1.502 0.079 1.232 (0.569) 1.327 -0.268

Addfor
1000

20%
-1.5 -1.481 (0.082) -1.489 0.019

0.019
-1.482 (0.101) -1.494 0.018

0.0290 -0.024 (0.086) -0.008 -0.024 -0.032 (0.110) -0.011 -0.032
1.5 1.499 (0.204) 1.499 -0.001 1.455 (0.246) 1.477 -0.045

50%
-1.5 -1.476 (0.105) -1.487 0.024

0.067
-1.510 (0.154) -1.498 -0.010

0.1130 -0.020 (0.159) -0.004 -0.020 -0.129 (0.240) -0.043 -0.129
1.5 1.494 (0.404) 1.482 -0.006 1.322 (0.459) 1.418 -0.178

70%
-1.5 -1.464 (0.185) -1.486 0.036

0.144
-1.539 (0.214) -1.505 -0.039

0.2100 -0.013 (0.203) -0.003 -0.013 -0.233 (0.338) -0.131 -0.233
1.5 1.479 (0.595) 1.458 -0.021 1.212 (0.576) 1.331 -0.288

Genetic

20%
-1.5 -1.482 (0.083) -1.492 0.018

0.023
-1.483 (0.102) -1.494 0.017

0.030 -0.003 (0.120) 0.001 -0.003 0.000 (0.083) -0.001 0.000
1.5 1.503 (0.220) 1.502 0.003 1.479 (0.267) 1.492 -0.021

50%
-1.5 -1.478 (0.103) -1.488 0.022

0.071
-1.509 (0.172) -1.497 -0.009

0.0920 0.010 (0.117) 0.002 0.010 -0.037 (0.213) -0.003 -0.037
1.5 1.497 (0.434) 1.489 -0.003 1.435 (0.444) 1.470 -0.065

70%
-1.5 -1.463 (0.205) -1.484 0.037

0.168
-1.562 (0.248) -1.510 -0.062

0.2240 0.042 (0.303) 0.009 0.042 -0.154 (0.374) -0.022 -0.154
1.5 1.476 (0.607) 1.462 -0.024 1.325 (0.642) 1.384 -0.175
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Figure 6.8: Boxplot of the estimated optimal cut points based on 500 simulated data
sets, sample size N = 500 and Scenario IX - three theoretical optimal cut points (−1.5, 0
and 1) and a nonlinear relationship with the outcome (γ0, λ0) = (1, 0.5),(γ1, λ1) = (1, 3),
(γ2, λ2) = (1, 1) and (γ3, λ3) = (1, 0.5). Results are shown for AddFor (M = 100) and
Genetic algorithms, censoring rates of 20% and 70% and C-index and CPE discriminative
ability estimators.
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Table 6.11: Simulation results when three theoretical optimal cut points −1.5, 0 and 1 were

chosen with a nonlinear relationship with the outcome (γ0, λ0) = (1, 0.5),(γ1, λ1) = (1, 3),

(γ2, λ2) = (1, 1) and (γ3, λ3) = (1, 0.5) and censorship of 20%, 50% and 70% (Scenario X).

Mean, standard deviation (sd), median (Me.), bias and mean squared error (MSE) for the

estimated cut points are reported when CPE or c-index discriminative ability estimators are

used as the maximisation criteria.

Method Cens.
t.cut Cut point CPE Estimation Cut point C-index Estimation

point Mean (sd) Me. Bias MSE Mean (sd) Me. Bias MSE

Sample Size N = 500

Addfor
100

20%
-1.5 -1.520 (0.060) -1.512 -0.020

0.051
-1.517 (0.073) -1.509 -0.017

0.0630 0.094 (0.187) 0.036 0.094 0.071 (0.183) 0.015 0.071
1.5 1.423 (0.318) 1.480 -0.077 1.383 (0.364) 1.450 -0.117

50%
-1.5 -1.513 (0.07) -1.507 -0.013

0.071
-1.536 (0.114) -1.516 -0.036

0.0770 0.027 (0.212) 0.009 0.027 0.082 (0.258) 0.021 0.082
1.5 1.385 (0.385) 1.441 -0.115 1.425 (0.373) 1.445 -0.075

70%
-1.5 -1.503 (0.132) -1.502 -0.003

0.173
-1.597 (0.257) -1.530 -0.097

0.2110 -0.097 (0.360) -0.014 -0.097 0.033 (0.527) 0.019 0.033
1.5 1.212 (0.528) 1.355 -0.288 1.488 (0.529) 1.465 -0.012

Addfor
1000

20%
-1.5 -1.511 (0.060) -1.500 -0.011

0.048
-1.517 (0.067) -1.506 -0.017

0.0650 0.086 (0.186) 0.016 0.086 0.068 (0.189) 0.010 0.068
1.5 1.428 (0.308) 1.466 -0.072 1.357 (0.362) 1.437 -0.143

50%
-1.5 -1.507 (0.065) -1.503 -0.007

0.082
-1.537 (0.118) -1.514 -0.037

0.0880 0.009 (0.227) 0.005 0.009 0.087 (0.264) 0.028 0.087
1.5 1.343 (0.409) 1.433 -0.157 1.411 (0.407) 1.442 -0.089

70%
-1.5 -1.506 (0.133) -1.507 -0.006

0.203
-1.615 (0.265) -1.538 -0.115

0.2260 -0.119 (0.385) -0.012 -0.119 0.049 (0.535) 0.045 0.049
1.5 1.165 (0.563) 1.301 -0.335 1.467 (0.551) 1.461 -0.033

Genetic

20%
-1.5 -1.513 (0.059) -1.503 -0.013

0.014
-1.516 (0.068) -1.505 -0.016

0.0210 -0.016 (0.059) -0.007 -0.016 -0.004 (0.068) 0.000 -0.004
1.5 1.517 (0.185) 1.496 0.017 1.529 (0.231) 1.507 0.029

50%
-1.5 -1.505 (0.069) -1.503 -0.005

0.038
-1.536 (0.102) -1.515 -0.036

0.0530 -0.036 (0.139) -0.004 -0.036 0.021 (0.167) 0.008 0.021
1.5 1.535 (0.296) 1.504 0.035 1.574 (0.337) 1.514 0.074

70%
-1.5 -1.493 (0.17) -1.503 0.007

0.172
-1.617 (0.286) -1.538 -0.117

0.2090 -0.147 (0.327) -0.030 -0.147 -0.031 (0.480) 0.020 -0.031
1.5 1.318 (0.571) 1.477 -0.182 1.606 (0.539) 1.519 0.106

Sample Size N = 1000

Addfor
100

20%
-1.5 -1.518 (0.032) -1.517 -0.018

0.043
-1.507 (0.039) -1.510 -0.007

0.0410 0.118 (0.186) 0.040 0.118 0.073 (0.159) 0.017 0.073
1.5 1.447 (0.276) 1.504 -0.053 1.381 (0.277) 1.479 -0.119

50%
-1.5 -1.509 (0.037) -1.509 -0.009

0.059
-1.516 (0.085) -1.509 -0.016

0.0560 0.025 (0.173) 0.007 0.025 0.076 (0.207) 0.015 0.076
1.5 1.338 (0.346) 1.468 -0.162 1.404 (0.320) 1.463 -0.096

70%
-1.5 -1.513 (0.124) -1.504 -0.013

0.078
-1.539 (0.165) -1.511 -0.039

0.0980 0.002 (0.245) 0.006 0.002 0.090 (0.329) 0.016 0.090
1.5 1.317 (0.354) 1.432 -0.183 1.456 (0.382) 1.464 -0.044

Addfor
1000

20%
-1.5 -1.505 (0.027) -1.501 -0.005

0.041
-1.506 (0.030) -1.502 -0.006

0.040 0.104 (0.177) 0.021 0.104 0.070 (0.158) 0.009 0.070
1.5 1.429 (0.275) 1.491 -0.071 1.390 (0.277) 1.477 -0.110

50%
-1.5 -1.506 (0.032) -1.502 -0.006

0.056
-1.518 (0.100) -1.504 -0.018

0.0590 0.022 (0.173) 0.008 0.022 0.076 (0.234) 0.019 0.076
1.5 1.352 (0.337) 1.476 -0.148 1.416 (0.316) 1.469 -0.084

70%
-1.5 -1.518 (0.119) -1.504 -0.018

0.084
-1.548 (0.153) -1.512 -0.048

0.0920 -0.011 (0.249) 0.005 -0.011 0.101 (0.324) 0.029 0.101
1.5 1.313 (0.376) 1.425 -0.187 1.465 (0.368) 1.477 -0.035

Genetic

20%
-1.5 -1.505 (0.026) -1.501 -0.005

0.006
-1.505 (0.025) -1.501 -0.005

0.0070 -0.004 (0.033) -0.002 -0.004 0.002 (0.037) 0.001 0.002
1.5 1.517 (0.122) 1.501 0.017 1.523 (0.138) 1.504 0.023

50%
-1.5 -1.504 (0.031) -1.501 -0.004

0.011
-1.512 (0.045) -1.506 -0.012

0.0150 -0.018 (0.071) -0.003 -0.018 0.016 (0.071) 0.007 0.016
1.5 1.519 (0.159) 1.503 0.019 1.549 (0.188) 1.510 0.049

70%
-1.5 -1.500 (0.053) -1.502 0.000

0.028
1.541 (0.140) -1.512 -0.041

0.0500 -0.048 (0.144) -0.010 -0.048 0.026 (0.200) 0.018 0.026
1.5 1.510 (0.240) 1.501 0.010 1.593 (0.285) 1.529 0.093
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simulated scenarios. For example, in Scenario II and Scenario VI where the c-index

performs successfully when it comes to search the optimal cut point (see Table 6.3

and Table 6.7), we observe that the c-index bias increases as censorship increases,

but the bias correction procedure corrects this bias, although for a 70% censoring

rate it is still 0.014 and 0.013 in Scenarios II and VI, respectively. However, in

Scenarios III and IV where we are not able to find the location of the optimal

cut point by the maximisation of the c-index, the bias correction procedure is not

correcting this bias; on the contrary, the bias gets larger. In our opinion, the reason

for this might be that, since we are not able to select the optimal cut points, the

categorisation for which we are estimating the c-index is not optimal, and hence,

this estimation cannot be compared with the theoretical concordance probability.

Similar conclusions are obtained for k = 2 and k = 3 cut points.

Finally, the AddFor algorithm was applied in the scenario in which the pro-

portional hazards assumption does not hold for k = 2 number of cut points. No

differences were observed in estimated optimal cut points with regard to the com-

parable scenario for proportional hazards. Data for these simulation results are not

shown because no differences were observed with the proportional hazards scenario

and the non-proportional hazard was out of the scope of the work presented in this

chapter.
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6.3 Application to the Stable-COPD study

We applied the methodology proposed in Section 6.1 to the Stable-COPD study

presented in Chapter 2, Section 2.2.

As we mentioned before, COPD is the third leading cause of death worldwide

(Murray et al. 2013). Patients suffering from COPD have difficulties breathing, and

hence, they have airflow limitation; therefore, spirometry is an important test to

evaluate the disease. Classically, the severity of the disease has been graded by

FEV1% which represents the proportion of air that a person is able to expire in

the first second of expiration. Although this is a continuous variable, in practice

it is commonly categorised and used to classify patients in distinct severity groups.

Recently, Almagro et al. (2014) proposed new thresholds to categorise FEV1% into

mild (≥ 70%), moderate (56 − 69%), severe (36 − 55%) and very severe (≤ 35%)

categories and predict survival at 5 years in COPD patients. They compared this

categorisation to the most common nowadays, such as, the Global Obstructive Lung

Disease (GOLD) and ATS/ERS guidelines (Global Initiative for Chronic Obstructive

Lung Disease 2013), and the old ATS standards proposal. The latter is the one used

by the BODE index (Celli et al. 2004).

Clinical researchers involved in the Stable-COPD study presented us with two

goals. First, the aim was to categorise the predictor variable FEV1% into four cate-

gories (mild, moderate, severe and very severe ), i.e., k = 3, in a univariate setting

in order to compare the results obtained with previous categorisation proposals such

as COCOMICS or GOLD. The second goal was to look for the best categorisation

(location and number of cut points) in a multivariate setting, taking into account the

effect of age and dyspnoea, which are seen as important predictors for the severity

of sCOPD patients (Bestall et al. 1999).

Table 6.13 shows the results obtained in the univariate setting for k = 3 cut

points with the CPE and c-index estimators. The same results were obtained with

the Genetic and AddFor algorithms. However, the results obtained when the CPE

estimator was used differed from the ones obtained with the c-index. The censoring

rate in our data set was 66.6% and the relationship between the predictor FEV1%

and the response variable time until death in a 5 year follow-up was approximately

linear, as can be seen in Figure 6.9. In view of the results obtained in the simulation

study, we considered focusing on the results obtained with the c-index, since this

appeared to perform better under this scenario.

The categorisation proposal obtained in the univariate setting with the AddFor
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Table 6.13: Results obtained in the categorisation of the predictor variable FEV1% of the

Stable-COPD study in a univariate setting for k = 3 number of cut points.

Method
Concordance
probability
estimator

Estimated
cut points

Concordance probability

Estimated Bias-corrected

Addfor 100
c-index

36.45 ; 50.52 ; 64.58 0.620 0.605
Addfor 1000 36.98 ; 50.05 ; 64.07 0.620 0.604
Genetic 36.29 ; 50.75 ; 64.38 0.620 0.602

Addfor 100
CPE

52.27 ; 56.67 ; 64.58 0.611 0.609
Addfor 1000 52.05 ; 56.93 ; 64.07 0.611 0.609
Genetic 52.26 ; 56.25 ; 64.57 0.611 0.609
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Figure 6.9: Estimated smooth relationship of the predictor variable FEV1% with the re-
sponse variable time until death in a univariate setting.

and Genetic algorithms, together with the GOLD, COCOMICS and BODE categori-

sation proposals is shown in Table 6.14. In addition, when applied to this data set,
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the results we obtained improved the ones obtained with other categorisation pro-

posals in terms of maximal estimated c-index. Nevertheless, the cut points obtained

are very similar to the ones used in the BODE index.

Table 6.14: Results obtained in the categorisation of the predictor variable FEV1% in a
Cox proportional hazards univariate model, together with the cut points proposal available
in the literature and the corresponding c-index when applied to the Stable-COPD study.

c-index

Mild Moderate Severe
Very

Severe
Estimated

Bias
corrected

COCOMICS ≥ 70 (55− 70) (35− 55] ≤ 35 0.6003 0.587
GOLD ≥ 80 [50− 80) [30− 50) < 30 0.5879 0.565
BODE ≥ 65 [50− 65) (35− 50) ≤ 35 0.6003 0.591
Genetic c-index > 64 (50− 64] (36− 50] ≤ 36 0.6200 0.605
AddFor c-index > 64 (50− 64] (36− 50] ≤ 36 0.6200 0.602

Additionally, we considered categorising the predictor variable FEV1% in a mul-

tivariate Cox PH model in which the effect of the covariates age and dyspnoea was

taken into account. In fact, these variables together with a categorisation of FEV1%

are the ones used in the ADO index (Puhan et al. 2009), which turned out to be

the best multivariate index to predict 5-year mortality based on the c-index (Marin

et al. 2013).

Table 6.15 shows the results obtained in the multivariate setting for k = 2 and

k = 3 cut points with the CPE and c-index estimators. In a first stage we looked

for k = 3 cut points and compared them with k = 2 cut points, which are also the

number of cut points used in the categorisation of FEV1% in the ADO index. When

we compared k = 2 versus k = 3 number of cut points, we obtained a bootstrap

95% CI for the bias-corrected c-index of (−0.005, 0.015) with the AddFor algorithm

with a grid of size M = 1000 and the c-index as the maximisation criteria. Almost

same results were obtained with the AddFor with a grid of size M = 100 and the

Genetic algorithm. Consequently, the optimal number of cut points considering the

multivariate setting would be k = 2. The same optimal cut points were obtained

with the AddFor and the Genetic algorithms, resulting in mild-moderate (> 50%),

severe (30 − 50%) and very severe (< 30%) categories. An estimated c-index of

0.734 was obtained, which was higher than the c-index obtained with the ADO

categorisation proposal, which was 0.719. The multivariate Cox model with the

optimal categorisation FEV1% adjusted by age and dyspnoea is summarised in Table

6.16.
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Table 6.15: Results obtained in the categorisation of the predictor variable FEV1% of the

Stable-COPD study in an multivariate setting with the predictors age and dyspnoea.

Concordance probability

Method Estimator k cut points Estimated
Bias

corrected
Difference
(95%CI∗)

Addfor
100

c-index
2 29.42 ; 50.52 0.734 0.716

-0.002
(-0.005,0.016)

3 29.42 ; 49.64 ; 50.52 0.737 0.715

c-index
2 29.93 ; 50.05 0.734 0.714

Addfor
1000

0.008
(-0.005,0.015)

3 29.93 ; 49.00 ; 50.05 0.737 0.722

Genetic c-index
2 29.32 ; 50.69 0.734 0.717

0.006
(-0.004,0.013)

3 29.90 ; 49.95 ; 50.54 0.737 0.723

Addfor
100

CPE
2 29.42 ; 50.52 0.709 0.704

0.007
(8e-04,0.013)

3 29.42 ; 49.64 ; 50.52 0.715 0.712

Addfor
1000

CPE
2 29.93 ; 50.05 0.709 0.705

0.005
(4e-04,0.012)

3 29.93 ; 49.00 ; 50.05 0.715 0.710

Genetic CPE
2 29.79 ; 50.63 0.709 0.705

0.006
(9e-04,0.013)

3 29.69 ; 49.37 ; 50.82 0.715 0.711
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Note that results obtained for k = 3 cut points when the CPE was used did

not correspond with the ones obtained with the c-index. As we mentioned for

the univariate setting, the c-index outperformed the CPE in this setting in the

simulation results, and hence, we focused on the results obtained when the c-index

was maximised.

Table 6.16: Results of the Cox proportional hazards model with the optimal categorisation
obtained for the predictor variable FEV1% adjusted by age and dyspnoea, considering the c-
index as the index to be maximised and Genetic and AddFor algorithms. Hazard ratio (HR)
and coefficient estimates (β) are reported together with the p-values of their significance.

Variables β HR p-value

FEV
≤ 29 1.575 4.832 < 0.0001

(29− 50] 0.522 1.685 0.003
> 50 - - -

Age 0.091 1.095 < 0.0001
Dyspnoea

0-1 - - -
2 0.332 1.394 0.065
3 0.830 2.293 0.004
4 0.825 2.282 0.010

c-index 0.734 and bias-corrected c-index 0.719

6.4 Conclusions

As an extension to the methodology proposed in Chapter 5, the goal in this chapter

was to obtain optimal cut points to categorise continuous predictor variables in a

Cox PH model. Hence, in this chapter we present the two algorithms proposed in

Chapter 5 but adjusted to the Cox PH approach. We have proposed two alternative

estimators of the concordance probability for the maximisation of the discriminative

ability of the Cox PH model. These are the c-index proposed by Harrell et al. (1982)

and the CPE proposed by Gönen and Heller (2005). Additionally, we have developed

a proposal to select the optimal number of cut points based on the bias-corrected

concordance probability estimator.

To the best of our knowledge, all previous proposals for categorisation of con-

tinuous predictors in a survival model have been done to select a unique cut point;

this is to dichotomise the continuous variable. However, we consider that more than

two categories may be needed. In fact, the most common multivariate prediction
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models used to predict mortality in COPD patients, such as BODE or ADO, use

categorised versions (with more than two categories) of continuous predictors (Celli

et al. 2004, Puhan et al. 2009).

Sima and Gönen (2013) proposed the maximal discrimination as a method to

dichotomise a continuous predictor when the outcome is right censored. They com-

pared the maximisation of the discrimination indexes CPE and c-index together

with the maximisation of the long-rank, Wald and partial likelihood ratio statistics

for the location of one optimal cut point. What our proposal adds to the proposal of

Sima and Gönen (2013) is first, the selection of more than one cut point and second,

the ability to categorise a continuous predictor in a multivariate setting.

Both in the application to a real data set of patients with sCOPD and in the

simulation study, we see that we have proposed a valid methodology when the aim

is to categorise a predictor variable in more than two categories. When we applied

the proposed methodology to the Stable-COPD study, we improved the existing

categorisation proposals in terms of discriminative ability, obtaining clinically valid

optimal cut points. We showed that the optimal cut points proposed in the CO-

COMICS study can be improved by applying the methodology presented above.

Additionally, the simulation results for k = 2 and k = 3 showed that the pro-

posed method performed satisfactorily, especially when the relationship between the

predictor and the outcome was not linear. This result makes sense since the change

on risk of decreasing time to event might be more pronounced when the relation is

not linear. Furthermore, we showed that the two algorithms that we proposed to

seek the optimal cut points performed well, although the Genetic performed slightly

better, as it happened in the proposal for the logistic regression.

Nevertheless, in our simulation study we also considered the particular case of

k = 1. In fact, Scenarios I and II are similar to the ones considered in Sima and

Gönen (2013) (they differ in sample size). When the true cut point lies in the

centre of the continuous predictors distribution (Scenario I) we obtained results

similar to those obtained by Sima and Gonen; that is, the CPE and the c-index

have comparable performance. When the true cut point migrates from the centre

of the distribution, Sima and Gonen found that the CPE performed better than

the c-index. However, we saw that for a unique and not centred cut point, neither

CPE nor c-index performed satisfactorily. Depending on whether the location of the

theoretical cut point was shifted to the area of high or low risk, smaller bias and

MSE values were obtained for CPE or c-index. Consequently, a limitation of this

proposal is that in practice, it should not be used for dichotomisation. Nevertheless,
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in case it is used, we recommend to plot the relationship between the predictor

continuous variable and the outcome to determine the location of the continuous

predictor’s value for which the average risk is obtained, and use the best criterion

based on its location.

Another limitation of this approach is that we have focused exclusively on the

c-index and the CPE as estimators of the discriminative ability of the model. Other

estimators have been proposed and compared in the literature; however, none has

been proven to be the best (Schmid and Potapov 2012). In our case, we first consid-

ered the c-index proposed by Harrell et al. (1982) because it is the most widely used

estimator. Since the bias of this estimator increases with increasing censorship, we

considered an unbiased estimator that had been specifically developed for the Cox

PH model, as it is the CPE proposed by Gönen and Heller (2005). On the other

hand, we have not considered time-dependent discriminative ability measures as a

parameter for selecting optimal cut points. Thus, we have assumed that the optimal

cut points to categorise a continuous predictor variable in a Cox PH model are the

same for any given time of interest which may not be true.



Chapter 7
Software development

The work presented in the second section of this chapter is being prepared for publi-

cation in the Journal of Statistical Software and has been partially presented in an

international conference.

Barrio, I., Rodŕıguez-Álvarez, M.X., and Arostegui, I. CatPredi: An R package for optimal

categorisation of continuous predictors. Journal of Statistical Software; (In preparation)

ERCIM WG on Computing and Statistics 2012. Development and implementation of a

methodology to select optimal cut-points to categorize continuous covariates in prediction mod-

els. Barrio, I., Arostegui, I., Rodŕıguez-Álvarez, M.X., and Quintana, J.M. Invited contribution.

Oviedo, December 2012. This talk was awarded, “Best oral presentation”.

In previous chapters we have proposed several methods to categorise continuous

predictor variables in different settings. We now focus on how these methods can

be applied in practice using the software R (R Core Team 2014).

In the first section of this chapter, we present the R function we developed to

calculate the average-risk category presented in Chapter 4.

Additionally, we have developed a user-friendly R package, named CatPredi, to

obtain optimal cut points to categorise continuous predictor variables. This package

includes the functions needed to apply the methods presented in Chapter 5 and

Chapter 6, respectively. Thus, the CatPredi package allows for categorising any

predictor variable when the response variable is binary or time to event, in either a

univariate or a multivariate setting. This package is presented in Section 7.2.

119
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7.1 An R function to calculate the average-risk category

We have developed an R function called average.risk to calculate the average-

risk category proposed in Chapter 4, above. This function depends on the libraries

mgcv (Wood 2006) and BB (Varadhan and Gilbert 2009) that need to be loaded.

The former is needed to fit the GAM model while the latter is used to compute the

average-risk value x0 using the dfsane function. This function solves a “Large-Scale

Nonlinear System of Equations” (Varadhan and Gilbert 2009).

Before going into the main average-risk function, let us briefly introduce the

functions f.smooth and f.smooth2. For each value x of the predictor variable X, a

given fitted logistic GAM model and a predicted probability p0 = π0, the function

f.smooth returns the value β0 + f(x) − logit(p0) according to equation (4.2) in

Chapter 4. In a similar way, the function f.smooth2 returns the values of f(x) for

each x in X. The specific syntax for these functions is given below.

f.smooth <- function (x, model, p0) {

df <- data.frame(x)

names(df) <- attributes(terms(model))$term.labels

res <- as.numeric(predict(model, newdata=df, type="terms")[1]

- family(model)$linkfun(p0) + coef(model)[1])

res

}

f.smooth2 <- function (x, model) {

df <- data.frame(x)

names(df) <- attributes(terms(model))$term.labels

res <- as.numeric(predict(model, newdata=df, type="terms"))

res

}

The average.risk function returns the average-risk interval, together with the

average-risk value x0. The arguments needed in this function are the following:

• Y: the response variable

• X: the predictor variable we want to categorise



7.1. An R function to calculate the average-risk category 121

• data: the data set with all needed variables

• point: a real value argument, indicating the initial guess for x0.

The code developed for this function is as follows:

average.risk <- function(Y, X , data , point ) {

#Fit the GAM model

fitted.model <- gam(Y~s(X, bs="ps"), method="REML",

family = binomial, data = data)

#Look for x0 such that f(x0)=0

x0 <- dfsane(par=point, fn=f.smooth2, model= fitted.model,

control=list(trace=FALSE), quiet=TRUE)

#New data

data.new <- data.frame(X=x0$par)

l.pred <- predict(fitted.model, se=TRUE, newdata=data.new)

u.ci <- exp(l.pred$fit + 1.96*l.pred$se.fit)/(1+exp(l.pred$fit

+ 1.96*l.pred$se.fit))

l.ci <- exp(l.pred$fit - 1.96*l.pred$se.fit)/(1+exp(l.pred$fit

- 1.96*l.pred$se.fit))

p.max <- predict(fitted.model, newdata = data.frame(X=max(X)),

type="response")

p.arisk <- predict(fitted.model, newdata=data.new, type="response")

pos <- p.max - p.arisk

#Upper and lower limits for the average-risk category

if(pos>0){

inf_x0<-dfsane(par=x0$par-1, fn=f.smooth,

model= fitted.model, p0=l.ci, control=list(trace=FALSE),

quiet=TRUE)

sup_x0<-dfsane(par=x0$par+1, fn=f.smooth,
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model= fitted.model, p0=u.ci, control=list(trace=FALSE),

quiet=TRUE)

} else if(pos <= 0) {

inf_x0<-dfsane(par=x0$par-1, fn=f.smooth,

model= fitted.model, p0=u.ci, control=list(trace=FALSE),

quiet=TRUE)

sup_x0<-dfsane(par=x0$par+1, fn=f.smooth,

model= fitted.model, p0=l.ci, control=list(trace=FALSE),

quiet=TRUE)

}

average.risk.cat <- c(inf_x0$par , sup_x0$par)

average.point <- x0$par

res <- list(average.risk.cat = average.risk.cat,

average.point = average.point)

res

}

The specific syntax for the categorisation of the predictor variable RR of the

IRYSS-COPD study is shown below. Note that after reading the data set, we will

select those individuals for which there is no missing value in the predictor variable.

Then, before computing the average risk category, we will fit the GAM model and

plot the graph in order to visualise the relationship between the predictor variable

RR and the poor evolution outcome. Finally, the function average.risk will return

the average-risk category together with the average-risk point.

R> data.ecopd <- read.table("ecopd.txt")

R> no_miss <- which(is.na(data.ecopd$RR)==FALSE)

R> data.ecopd<-data.ecopd[no_miss,]

R> fit <- gam(PoorEvolution~s(RR, bs="ps"), method="REML",

+ family=binomial, data=data.ecopd)

R> plot(fit,shade=T,scale=0, xlab="Respiratory rate",

+ ylab="f(Respiratory rate)")

R> abline(h=0,lty=2,lwd=0.5)

R> average.risk.RR <- average.risk(Y=data.ecopd$PoorEvolution,

+ X=data.ecopd$RR, data=data.ecopd , point=20)

R> average.risk.RR
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$average.risk.cat

[1] 20.06430 24.11343

$average.point

[1] 22.08885

7.2 The CatPredi package

CatPredi is a package of R functions that allows the user to categorise a continuous

predictor variable either before or during the development of a prediction model.

Different approaches have been implemented depending on the prediction model

chosen, i.e., logistic regression (for binary response variables) or Cox PH model (for

time to event outcomes).

The CatPredi package can be used to categorise a predictor variable in a uni-

variate or a multivariate setting. It provides the optimal location of cut points for a

chosen number of cut points, fits the prediction model with the categorised predictor

variable and returns the estimated and bias-corrected discriminative ability index

for this model. Additionally, it allows a comparison of two categorisation proposals

for a different number of cut points and the selection of the optimal number of cut

points.

The CatPredi package has been designed similarly to other packages in R. It has

two main functions called catpredi.binary() and catpredi.survival(), which

categorise a continuous predictor variable in a logistic regression model or a Cox

PH model, respectively. Numerical and graphical summaries of the fitted objects

can be obtained by using print.catpredi.binary, summary.catpredi.binary

and plot.catpredi.binary for catpredi.binary type objects and analogously

for catpredi.survival type objects. Table 7.1 contains a description of all the

functions available in the package. Furthermore, two more main functions have

been developed - comp.cutpoints.binary and comp.cutpoints.survival - to ob-

tain the optimal number of cut points in a logistic regression or Cox PH model,

respectively.

Below, we give a general overview of the package and its general use. As an

illustrative example for the catpredi.binary() function, we will use the IRYSS-

COPD study presented in Section 2.1. In addition, we will use the Stable-COPD

study presented in Section 2.2 to exemplify the catpredi.survival() function.
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Table 7.1: Summary of the functions in the CatPredi package.

Function Description

catpredi.binary Returns an object with the optimal cut

points to categorise a continuous predictor

variable in a logistic regression model.

controlcatpredi.binary Function used to set several parameters

to control the selection of the optimal cut

points in a logistic regression model.

print.catpredi.binary Print method for objects of type

catpredi.binary.

summary.catpredi.binary Produces a summary of the

catpredi.binary object.

plot.catpredi.binary Plots the relationship between the contin-

uous predictor and the response variable

obtained by fitting a GAM function, to-

gether with the location of the optimal cut

points.

comp.cutpoints.binary Compares two objects of type

catpredi.binary.

print.comp.cutpoints.binary Print method for objects of type

comp.cutpoints.binary.

catpredi.survival Returns an object with the optimal cut

points to categorise a continuous predictor

variable in a Cox PH regression model.

controlcatpredi.survival Function used to set several parameters

to control the selection of the optimal cut

points in a Cox PH regression model.

print.catpredi.survival Print method for objects of type

catpredi.survival.

Continues on next page.
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Function Description

summary.catpredi.survival Produces a summary of the

catpredi.survival object.

plot.catpredi.survival Plots the smooth relationship between the

continuous predictor and the estimated

smooth function in a Cox PH model, to-

gether with the location of the optimal cut

points.

comp.cutpoints.survival Compares two objects of type

catpredi.survival.

print.comp.cutpoints.survival Print method for objects of type

comp.cutpoints.survival.

7.2.1 catpredi.binary() function

The catpredi.binary() function provides the optimal cut points to categorise a

continuous predictor variable in a logistic regression model. This function creates an

object of class catpredi.binary. The main arguments of this function are presented

in Table 7.2. The call to the function is as follows:

catpredi.binary(formula, cat.var, cat.points, data,

method = c("addfor","genetic"), range=NULL, correct.AUC=TRUE,

control = controlcatpredi.binary())

In the formula argument users must specify the prediction model setting in which

they want to categorise the predictor variable X specified in the cat.var="X" ar-

gument. If the model is univariate, then the formula would be specified as Y∼1,

with Y being the response variable available in the data set specified in the argu-

ment data. However, if the model is multivariate, and the aim is to categorise the

predictor variable X together with another predictor Z, then the formula would be

specified as Y∼Z. Additionally, in the argument cat.points the user must specify

the number of cut points to look for. The range argument allows for modifying the

range of the predictor variable X in which to look for the cut points. By default it

would be NULL, which represents the entire range of X. Finally, if correct.AUC is

set to TRUE, the bias-corrected AUC would be estimated.



126 Chapter 7.

Table 7.2: Summary of the arguments in the catpredi.binary() function.

Argument Description

formula A formula giving the model to be fitted.

cat.var Name of the continuous variable to categorise.

cat.points Number of cut points to look for.

data Data frame containing all needed variables.

method The algorithm selected to search for the optimal cut
points- "addfor" if the AddFor algorithm is chosen;
otherwise, "genetic".

range The range of the continuous variable in which to look
for the cut points. By default NULL, i.e., the entire
range.

correct.AUC A logical value. If TRUE the bias-corrected AUC is
estimated.

control Output of the controlcatpredi.binary() function

The specific syntax for the eCOPD data using a univariate model is shown below.

In this example, the AddFor algorithm with a grid of size M = 100 is used to look

for two optimal cut points for the predictor variable PCO2.

R> library(CatPredi)

R> data.ecopd <- read.table("ecopd.txt")

R> cat.k2 <- catpredi.binary(VerySevereEvolution~1, cat.var="pco2",

+ cat.points=2, data=data.ecopd, method="addfor",correct.AUC=TRUE)

A numerical summary of the results of the categorisation method can be obtained

by calling the functions print.catpredi.binary() or summary.catpredi.binary().

While the former gives the optimal cut points together with the corresponding esti-

mated AUC and bias-corrected AUC, the latter gives, in addition to that, the fitted

logistic regression model for the categorised predictor variable. When the method

selected is the AddFor, the summary returns the estimated AUC for each of the

selected cut points. For example, if k = 2 is chosen, it returns the estimated AUC

for k = 1 and k = 2. Additionally, if correct.AUC=TRUE is chosen it returns the

bias-corrected AUC for k = 2. If the method selected is the Genetic, estimated cut

points, AUC and bias-corrected AUC will be given only for the selected number of
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cut points.

R> summary(cat.k2)

Call:

catpredi.binary(formula = VerySevereEvolution ~ 1, cat.var = "pco2",

cat.points = 2, data = data.ecopd, method = "addfor",

correct.AUC = TRUE)

*************************************************

Addfor Search Algorithm

*************************************************

Optimal cutpoints Optimal AUC Corrected AUC

50.87 0.6969 NA

62.67 0.7213 0.696

---------------------------------------------------

Fitted model for the categorised predictor variable

---------------------------------------------------

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.9479 0.1875 -21.060 < 2e-16 ***

pco2_cat(50.9,62.7] 1.0972 0.2967 3.698 0.000217 ***

pco2_cat(62.7,160] 2.2010 0.2570 8.565 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

7.2.2 controlcatpredi.binary() function

The function catpredi.binary() has the argument control, which can be used

to set several parameters for the categorisation process. This argument is the out-

put of the controlcatpredi.binary() function. For instance, the grid size used
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with the AddFor algorithm can be specified in the addfor.g argument (by default

addfor.g=100). In addition, the number of bootstrap replicates used for the bias

correction of the AUC can also be specified in argument B, which by default takes

the value of 50. The argument b.method allows for specifying whether the boot-

strap resampling should be done considering the outcome variable. The option

“ncoutcome” indicates that the data is resampled without taking into account the

response variable, while “coutcome” indicates that the data is resampled in regard

to the response variable. Other arguments such as min.p.cat and print.gen are

also available in the controlcatpredi.binary() function. The former allows for

specifying the minimum number of individuals in each category. If the user wants

to ensure a minimum number of individuals in each category, he or she should spec-

ify this number in the min.p.cat argument. Finally, the latter corresponds to the

argument print.level of the genoud() function in the rgenoud package (Mebane

and Sekhon 2011). This argument controls the level of printing that the genoud

function does, which in our setting, corresponds to the printing of the optimisation

process when the Genetic algorithm is used.

7.2.3 plot.catpredi.binary() function

The function plot.catpredi.binary() plots the relationship between the contin-

uous predictor variable that is selected to be categorised and the response variable

based on a GAM model. Additionally, the optimal cut points obtained with the

catpredi.binary() function are drawn on the graph.

R> plot(cat.k2)

The result of the above code is shown in Figure 7.1.

7.2.4 catpredi.survival() function

The catpredi.survival() function provides the optimal cut points to categorise a

continuous predictor variable in a Cox PH model. This function creates an object

of class catpredi.survival. The main arguments of this function are presented in

Table 7.3. The call to the function is as follows:

catpredi.survival(formula, cat.var, cat.points, data,

method = c("addfor","genetic"), conc.index = c("cindex","cpe"),

range = NULL, correct.index = TRUE ,

control = controlcatpredi.survival)
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Figure 7.1: Relationship between the predictor variable PCO2 and the response variable

very severe evolution from the IRYSS-COPD study based on a logistic GAM, together with

the optimal cut points obtained with the catpredi.binary() function.

In the formula argument, users must specify the prediction model setting in

which they want to categorise the predictor variable X specified in the argument

cat.var="X". The response is written on the left of a ∼ operator and the terms,

separated by + operators, on the right. The response must be a Surv object. If the

model is univariate, then the formula would be specified as Surv(SurvT,SurvS)∼1,

being SurvT the observed survival time and SurvS the status indicator (0=censored

and 1=event) in the data set specified in the argument data. If the model is multi-

variate, and the aim is to categorise the predictor variable X together with another

predictor Z, then the formula would be specified as Surv(SurvT,SurvS)∼Z. Ad-

ditionally, in the argument cat.points we must specify the number of cut points

to look for. The range argument allows for modifying the range of the predictor

variable X in which to look for the cut points. By default it is NULL which repre-

sents the entire range of X. In the argument conc.index the user must specify the
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discriminative ability index estimator chosen for maximisation purposes, i.e., “cpe”

if the concordance probability estimator proposed by Gönen and Heller (2005) is

chosen and “cindex” otherwise. If an estimation of the bias-corrected discriminative

ability index is desired, then the argument correct.AUC should be set to TRUE.

Table 7.3: Summary of the arguments in the catpredi.survival() function.

Argument Description

formula A formula giving the model to be fitted. Left hand
side of the formula must be an object of type. Surv

cat.var Name of the continuous variable to categorise.

cat.points Number of cut points to look for.

data Data frame containing all needed variables.

method The algorithm selected to search for the optimal cut
points- “addfor” if the AddFor algorithm is chosen;
otherwise, “genetic”.

conc.index The discriminative ability index selected for maximi-
sation purpose. “cindex” if the c-index proposed by
Harrell et al. (1982) is selected and “cpe” if the concor-
dance probability estimator proposed by Gönen and
Heller (2005) is chosen.

range The range of the continuous variable in which to look
for the cut points. By default NULL, i.e., all the range.

correct.index A logical value. If TRUE the bias-corrected discrim-
inative ability index is estimated according to the es-
timator selected in the argument conc.index.

control Output of the controlcatpredi.survival()

function.

The specific syntax for the sCOPD data using a multivariate model adjusted

for age and dyspnoea, is shown below. In this example, the Genetic algorithm is

used to look for two optimal cut points for the predictor variable FEV1%. The

discriminative ability index chosen in this case was the c-index proposed by Harrell

et al. (1982).

R> library(CatPredi)

R> data.scopd <- read.table("scopd.txt")
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R> summary(data.scopd)

Surv.time Event Fev1 Age Dyspnoea

Min. : 23 Min. :0.0000 Min. : 18 Min. :33.00 0-1:333

1st Qu.:1618 1st Qu.:0.0000 1st Qu.: 45 1st Qu.:63.00 2 :166

Median :1825 Median :0.0000 Median : 55 Median :70.00 3 : 23

Mean :1575 Mean :0.3076 Mean : 55 Mean :68.32 4 : 21

3rd Qu.:1825 3rd Qu.:1.0000 3rd Qu.: 65 3rd Qu.:75.00

Max. :2045 Max. :1.0000 Max. :105 Max. :86.00

R> cat.k2.surv <- catpredi.survival(Surv(Surv.time, Event)~ Age

+ Dyspnoea, cat.var="Fev1", data=data.scopd, cat.points=2,

method="genetic", conc.index="cindex", correct.index = TRUE)

A numerical summary of the results of the categorisation method

can be obtained by calling the functions print.catpredi.survival() or

summary.catpredi.survival(). While the former gives the optimal cut points

together with the corresponding estimated c-index and bias-corrected c-index, the

latter gives in addition to that the fitted Cox PH multivariate model for the cate-

gorised predictor variable together with the covariates age and dyspnoea.

R> summary(cat.k2.surv)

Call:

catpredi.survival(formula = Surv(Surv.time, Event) ~ Age + Dyspnoea,

cat.var = "Fev1", cat.points = 2, data = data.scopd,

method = "genetic", conc.index = "cindex", correct.index =TRUE)

*************************************************

Genetic Search AlgorithmConcordance C-index

*************************************************

Optimal cutpoints

29.32

50.69

Optimal Cindex

0.7335
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Corrected Cindex

0.7167

-------------------------------------------------------

Fitted cph model for the categorised predictor variable

-------------------------------------------------------

Cox Proportional Hazards Model

cph(formula = formula.n, data = data)

Coef S.E. Wald Z Pr(>|Z|)

Age 0.0909 0.0133 6.85 <0.0001

Dyspnoea=2 0.3320 0.1799 1.85 0.0649

Dyspnoea=3 0.8299 0.2895 2.87 0.0041

Dyspnoea=4 0.8251 0.3216 2.57 0.0103

Fev1_cat=(29.3,50.7] -1.0540 0.3312 -3.18 0.0015

Fev1_cat=(50.7,105] -1.5756 0.3454 -4.56 <0.0001

7.2.5 controlcatpredi.survival() function

The function catpredi.survival() has the argument control that can be used to

set several parameters for the categorisation process. This argument is the output

of the controlcatpredi.survival() function. For instance, the grid size used

with the AddFor algorithm can be specified in the addfor.g argument (by default

addfor.g=100). In addition, the number of bootstrap replicates used for the bias

correction of the “cpe” or “cindex” can also be specified in the B argument, which by

default takes the value of 50. The argument b.method allows for specifying whether

the bootstrap resampling should be done considering the outcome variable. The

option “ncoutcome” indicates that the data is resampled without taking into account

the variable event indicator. Other arguments such as min.p.cat and print.gen

are also available in the controlcatpredi.survival() function. The former allows
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for specifying the minimum number of individuals in each category, which by default

is five. Finally, the latter corresponds to the argument print.level of the genoud()

function in the rgenoud package in the same way as we explained previously in the

controlcatpredi.binary() function.

7.2.6 plot.catpredi.survival() function

The function plot.catpredi.survival() plots the functional form of the predictor

variable we want to categorise. Additionally, the optimal cut points obtained with

the catpredi.survival() function are drawn on the graph.

R> plot(cat.k2.surv)

The result of the above code is shown in Figure 7.2.
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Figure 7.2: Smooth function for the predictor variable FEV1% in the fitted multivariate Cox

PH model, together with the optimal cut points obtained with the catpredi.survival()

function.
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7.2.7 comp.cutpoints.binary() function

The function comp.cutpoints.binary() allows for the comparison of two objects of

type catpredi.binary. The aim of this function is to obtain the optimal number of

cut points as explained in Section 5.1.2, above. The main arguments of this function

are presented in Table 7.4. The call to the function is as follows:

comp.cutpoints.binary(obj1, obj2, V = 100)

In the arguments obj1 and obj2, users must specify the two catpredi.binary

objects they want to compare. It must be noted that the models fitted in both

objects must be the same, where the only difference is the selected number of cut

points. Finally, the argument V specifies the number of bootstrap resamples used to

select the optimal number of cut points (by default V=100).

Table 7.4: Summary of the arguments in the comp.cutpoints.binary() function.

Argument Description

obj1 catpredi.binary type object for k number of cut
points.

obj2 catpredi.binary type object for m 6= k number of
cut points.

V Number of bootstraps resamples. By default V = 100.

Continuing with the example above for the eCOPD data, we will look for the

optimal number of cut points for the predictor variable PCO2 in a univariate setting.

R> cat.k2 <- catpredi.binary(VerySevereEvolution~1, cat.var="pco2",

+ cat.points=2, data=data.ecopd, method="addfor",correct.AUC=TRUE)

R>

R> cat.k3 <- catpredi.binary(VerySevereEvolution~1, cat.var="pco2",

+ cat.points=3, data=data.ecopd, method="addfor",correct.AUC=TRUE)

R>

R> comp.k2k3 <- comp.cutpoints.binary(cat.k2, cat.k3, V = 100)

A numerical summary of the result of the selection of optimal cut points can be

obtained by calling the function print.comp.cutpoints.binary().
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*************************************************

Compare optimal number of cut points

*************************************************

Bias-corrected AUC difference: 0.0139

95% Bootstrap Confidence Interval: ( -3e-03 , 0.0415 )

7.2.8 comp.cutpoints.survival() function

The function comp.cutpoints.survival() allows for the comparison of two objects

of type catpredi.survival. The aim of this function is to obtain the optimal

number of cut points as explained in Section 6.1.2, above. The main arguments of

this function are presented in Table 7.5. The call to the function is as follows:

comp.cutpoints.survival(obj1, obj2, V = 100)

In the arguments obj1 and obj2, users must specify the two catpredi.survival

objects they want to compare. It must be noted that the models fitted as well as the

selected discrimination indexes must be the same in both objects, where the only

difference is the selected number of cut points. Finally, the argument V specifies the

number of bootstrap resamples used to select the optimal number of cut points (by

default V=100).

Table 7.5: Summary of the arguments in the comp.cutpoints.survival() function.

Argument Description

obj1 catpredi.survival type object for k number of cut
points.

obj2 catpredi.survival type object for m 6= k number of
cut points.

V Number of bootstraps resamples. By default V = 100.

Continuing with the example above for the sCOPD data, we will look for the

optimal number of cut points for the predictor variable FEV1% in a multivariate

setting.

R> cat.k2.surv <- catpredi.survival(Surv(Surv.time, Event)~Age

+ Dyspnoea, cat.var="Fev1", data=data.scopd, cat.points=2,

method="genetic", conc.index="cindex",correct.index = TRUE)
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R>

R> cat.k3.surv <- catpredi.survival(Surv(Surv.time, Event)~Age

+ Dyspnoea, cat.var="Fev1", data=data.scopd, cat.points=3,

method="genetic", conc.index="cindex",correct.index = TRUE)

R>

R> comp.k2k3.surv <- comp.cutpoints.survival(cat.k2.surv,

cat.k3.surv, V = 100)

A numerical summary of the result of the selection of optimal cut points can be

obtained by calling the function print.comp.cutpoints.survival().

Call:

comp.cutpoints.survival(obj1 = cat.k2.surv, obj2 = cat.k3.surv,

V = 100)

*************************************************

Compare optimal number of cut points

*************************************************

Bias-corrected concordance difference: 0.006

95% Bootstrap Confidence Interval: ( -0.0044 , 0.0134 )



Chapter 8
Conclusions and Future Research

In clinical practice, decisions need to be made by reference to clinical parameters,

which are usually continuous measurements. Accurate knowledge of the relationship

between such parameters and the risk of developing a certain outcome helps iden-

tify individuals most at risk. Considering these parameters as continuous predictors

is preferable from a statistical point of view, since categorisation may lead to loss

of information and reduction in power (Royston et al. 2006). Nevertheless, in the

development of clinical prediction models for application in clinical practice, it may

be preferable for a certain amount of information to be sacrificed in the interests of

enhanced utility and ease of use in daily clinical practice. Moreover, in a study such

as the IRYSS-COPD (Quintana et al. 2011), ED clinical practice prevails over re-

search requirements. Hence, the data available is the information routinely recorded

at the ED for eCOPD patients. In our opinion, the sacrifice of some information in

the subset of data recorded as a continuous variable to avoid information exclusion

of the subset of data recorded as ordinal variable is a worthwhile trade-off.

In this dissertation, we proposed different approaches for the categorisation of

continuous variables depending on the distribution of the response variable. As a

first step, in Chapter 4 we proposed to categorise a continuous variable in a mini-

mum of three categories based on the graphical relationship between the continuous

predictor and the outcome given by a GAM with P-spline smothers. This methodol-

ogy was based on a previous proposal made by Hin et al. (1999) that considered the

selection of a unique cut point. Our proposal provided the possibility of categorising

the variable into more than two categories compared with what already existed in

the literature. However, the selection for an extra cut point when more than three

categories were needed was subjected to clinical significance and the graphical dis-
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play. Hence, we considered developing a more accurate methodology to categorise

continuous predictor variables in prediction models, which was presented in Chapter

5 and Chapter 6 of this dissertation.

As we mentioned before, previous work on categorisation has been done, but

with the aim in almost all cases to dichotomise the continuous predictor variable,

where the most common alternative is the minimum p-value approach (Miller and

Siegmund 1982). Tsuruta and Bax (2006) proposed a parametric method for obtain-

ing more than one cut point based on the overall discrimination of the prediction

model. Tsuruta and Bax (2006) showed the optimal location of the cut points when

the distribution of the predictor variable was known. In this dissertation, we pro-

posed a methodology to categorise a continuous predictor variable considering any

given number of cut points. Our proposal is based on the maximisation of the dis-

criminative ability of the prediction model but without assuming any distribution

for the predictor variable. Furthermore, two alternative algorithms were proposed,

AddFor and Genetic, in order to look for the vector of cut points to maximise the

discriminative ability. Additionally, our proposal allows for the categorisation of the

predictor variable either in a univariate or multivariate model. To the best of our

knowledge, none of the previous proposals allowed the categorisation in a multivari-

ate setting, that is, during the development of the model. In fact, Mazumdar et al.

(2003) stated that if the aim is to develop a multivariate model, the categorisation

should be performed taking into account the effect that other covariates may have

on the predictor variable we wished to categorise.

Furthermore, since the aim is to use the prediction models in practice, reporting

the discriminative ability of the final model (with the categorised variable) is an

important issue. However, since the same data has been used for the estimation of

the optimal cut points and the model development, the discriminative ability may be

overestimated. Hence, in this dissertation, we proposed a bootstrap based approach

to correct the optimism of the discriminative ability of the model. This has been

specifically developed for the categorisation proposal, although it could be extended

to any other model development.

Looking for the best number of categories in which to categorise a predictor

variable is an area of interest in practice. We are aware that in theory the opti-

mal number of cut points for the categorisation of a continuous variable does not

exist, since above all the possible number of cut points, the best option would be

the continuous variable. However, in clinical practice categorical versions of the

continuous variables are usually preferred without it always being clear how many
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categories is best. It is necessary to find a balance between the clinical sense of the

categories and the minimal loss of information. Therefore, in this dissertation, we

proposed a bootstrap based approach to select the optimal number of cut points

based on the differences of the bias-corrected AUCs for k = l + 1 and k = l num-

ber of cut points. To the best of our knowledge, none of the previous works about

categorisation considered selecting the best number of cut points.

Jointly with the logistic regression, the survival model is the most widely used

prediction model in clinical practice. Among the many outcomes of interest are

either the event or the time until the event occurs. To model the latter, the Cox

PH model is the most broadly used method. Therefore, all the proposed approaches

mentioned above have been developed for these different settings, i.e., the logistic

regression model and the Cox PH model. Additionally, the proposed methods have

been validated considering different contexts and scenarios.

The statistical software R is a free software environment for statistical computing

and graphics (R Core Team 2014). The methodology developed and proposed in

this dissertation has been implemented in an easy to use R package called CatPredi.

This package helps to obtain optimal cut points to categorise continuous predictor

variables either in a logistic regression or a Cox PH model. The aim of this package

is to provide an easy-to-use tool for clinical researchers to obtain optimal cut points

to categorise continuous predictor variables whenever it is deemed necessary. As far

as we know, there is no other package in R that provides the optimal categorisation

of a continuous variable in more than two categories. Therefore, the availability and

easy use of this package allows researchers to obtain optimal cut points whenever

they consider it to be necessary.

Nevertheless, this proposal also has some limitations that should be taken into

account. First of all, to search for the vector of optimal cut points, we proposed two

alternative algorithms, namely, AddFor and Genetic. The AddFor algorithm looks

for one cut point at a time, i.e., once the first one is selected it is fixed and the sec-

ond cut point is sought, which means that in some circumstances the vector of cut

points obtained with the AddFor might not be “optimal”. This happened especially

when we looked for two cut points where simulation results showed that the Genetic

algorithm performed more successfully. However, the Genetic algorithm is compu-

tationally more expensive, which for very large sample sizes might be not feasible.

Secondly, two concordance probability estimators were considered for maximisation

purposes when the methodology was developed for Cox PH models: the c-index pro-

posed by Harrell et al. (1982) and the CPE proposed by Gönen and Heller (2005),
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respectively. Other estimators for the concordance probability have been developed

in the literature, which we did not take into account in this dissertation. In addition,

time dependent discriminatory measures were out of the scope of this dissertation

and were not studied here. Lastly, we must note that in this dissertation we do not

recommend the categorisation as a modelling solution, but our goal is to propose a

valid way to do so whenever it is considered necessary by clinical researchers.

In general, we would like to provide some recommendations on the use of the

methodology developed in this thesis. First of all, as long as it can be computa-

tionally attained, we recommend the use of the Genetic algorithm rather than the

AddFor algorithm. Secondly, when the aim is to categorise a continuous predictor

variable in a Cox PH model, we recommend not to use this methodology to select a

unique cut point for dichotomisation, unless the average risk value is centred in the

continuous predictors distribution. For more than one cut point, as a general rule,

we recommend the use of the CPE for low censoring rates and the c-index for high

censoring rates.

In conclusion, we have proposed and validated a methodology to categorise con-

tinuous predictor variables in prediction models. This methodology would be very

valuable in the development of prediction models and in the application of these mod-

els in practice. The CatPredi package we developed will allow clinical researchers

to apply this methodology in an optimal and easy way.

Further research

Some aspects related to this dissertation are subject to further research. Firstly,

we are interested in the categorisation of more than a unique continuous variable.

In this dissertation, we focused on the categorisation of a unique predictor variable

either in a univariate or a multivariate setting. From a clinical point of view it might

be interesting to categorise two predictor variables at a time; thus, the categorisation

of one variable would depend on the categorisation of the other. Initially, we thought

of two possible approaches to do this. On the one hand, it would be the extension

of the AddFor and Genetic algorithms to search for cut points in a two-dimensional

setting rather than in a one-dimensional setting as we proposed in this dissertation.

On the other hand, we think we could apply P-spline ANOVA-type methodology

(Lee and Durbán 2011) to this specific setting, in order to categorise two continuous

predictors based on different risk areas obtained from the estimation of interaction

terms which would be decomposed as a sum of smooth functions.
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Secondly, it would be also interesting to evaluate time dependent discriminative

ability measures as the maximisation objective in the categorisation of continuous

variables in a Cox PH model. In this dissertation we dealt with the concordance

probability, which is a global discriminative ability measure. This implies that the

optimal cut points are considered to be the same whatever the time of interest

is. In our opinion, it might be of interest to compare the estimated cut points

when time-dependent discriminative ability measures are used. Would the estimated

cut points be different for different event times? Apparently, this question makes

sense clinically. Hence, we will study the performance of different time dependent

indices in the categorisation of predictor variables in a Cox PH model. Several time

dependent discriminative ability estimators have been proposed in the literature. For

example, Zheng and Heagerty (2004) proposed a semi-parametric estimator for the

time-dependent ROC curve, and Antolini et al. (2005) proposed a time-dependent

discrimination index specifically developed for survival data. Other authors have

proposed alternative estimators for time-dependent discriminative ability measures

(Chambless and Diao 2006, Uno et al. 2007). We think it would be interesting to

study all these estimators and their performance in the categorisation of a continuous

predictor variable in a Cox PH setting.

The categorisation of continuous predictor variables considering other regression

modelling approaches is also of great interest. Studying the categorisation of a

predictor variable for outcomes with the Poisson distribution, the Beta-binomial

distribution or in a mixed effects model may be of interest in practice.

In this dissertation we have focused on the categorisation of continuous variables

considering a minimal loss of information in regards to the discriminative ability of

the model. In the development of prediction models it is also of great importance

to assess the goodness of fit of the model. It would be of interest to study the

influence categorisation and more specifically, the number of categories have on the

calibration of the model.

Finally, although the software presented in this dissertation covers the proposed

methods, it would be worthwhile to implement some extensions of interest. Thus, for

instance, it could be useful to extend the CatPredi package to allow for categorising

a continuous predictor variable in the presence of smooth covariates.
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Appendix A
Appendix A

In this appendix we demonstrate the result we mentioned in Chapter 5, above.

Result:

Let X be a predictor variable with a normal distribution separately in each of the

populations defined by the outcome (Y = 0 and Y = 1), i.e., X|(Y = 0) ' N(µ0, σ0)

and X|(Y = 1) ' N(µ1, σ1). When σ0 and σ1 are equal, X is linearly related to the

log odds of the response.

Proof:

Due to Bayes and Total Probability theorems we have that:

P (Y = 1|X) =
P (X|Y = 1)P (Y = 1)

P (X|Y = 1)P (Y = 1) + P (X|Y = 0)P (Y = 0)

=

P (X|Y = 1)P (Y = 1)

P (X|Y = 0)P (Y = 0)

P (X|Y = 1)P (Y = 1)

P (X|Y = 0)P (Y = 0)
+ 1

.

(A.1)

If we denominate the constant fraction P (Y=1)
P (Y=0) as ζ we can rewrite the expression

in A.1 as follows:
P (X|Y = 1)

P (X|Y = 0)
ζ

P (X|Y = 1)

P (X|Y = 0)
ζ + 1

. (A.2)

On the other hand, we want to verify that the linear relationship between X and

the logit function holds, that is, that the logit function can be written as a linear
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function of X:

logit(p) = ln
P (Y = 1|X)

1− P (Y = 1|X)
= β0 + β1X, (A.3)

where β0 and β1 are constants.

Using expression A.2 we can write the logit function as:

ln
P (Y = 1|X)

1− P (Y = 1|X)
=

P (X|Y = 1)

P (X|Y = 0)
ζ

P (X|Y = 1)

P (X|Y = 0)
ζ + 1

1−

P (X|Y = 1)

P (X|Y = 0)
ζ

P (X|Y = 1)

P (X|Y = 0)
ζ + 1

= ln
P (X|Y = 1)

P (X|Y = 0)
ζ = ln ζ + ln

P (X|Y = 1)

P (X|Y = 0)
.

(A.4)

Since X|(Y = 0) ' N(µ0, σ0) and X|(Y = 1) ' N(µ1, σ1) expression A.4 can be

rewritten as follows:

ln ζ + ln


1

σ1
√

2π
e
−

1

2

(x− µ1)2

σ21

1

σ0
√

2π
e
−

1

2

(x− µ0)2

σ20


= ln ζ + ln

σ0σ1e
−

(x− µ1)2σ20 − (x− µ0)2σ21
2σ21σ

2
0

 .

(A.5)

In the particular case in which σ1 = σ0 = σ the squared term of x disappears

and expression A.5 can be rewritten as shown in expression A.6:

ln ζ −
1

2σ2
(µ21 − µ20) +

1

σ2
(µ1 − µ0)x = β0 + β1x.

(A.6)
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