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Abstract

When acquired in attenuating media, digital images often suffer from a
particularly complex degradation that reduces their visual quality, hin-
dering their suitability for further computational applications, or simply
decreasing the visual pleasantness for the user. In these cases, mathe-
matical image processing reveals itself as an ideal tool to recover some
of the information lost during the degradation process. In this disserta-
tion, we deal with three of such practical scenarios in which this prob-
lematic is specially relevant, namely, underwater image enhancement, fog
removal and mammographic image processing. In the case of digital mam-
mograms, X-ray beams traverse human tissue, and electronic detectors
capture them as they reach the other side. However, the superposition
on a bidimensional image of three-dimensional structures produces low-
contrasted images in which structures of interest suffer from a diminished
visibility, obstructing diagnosis tasks. Regarding fog removal, the loss
of contrast is produced by the atmospheric conditions, and white colour
takes over the scene uniformly as distance increases, also reducing visibili-
ty. For underwater images, there is an added difficulty, since colour is not
lost uniformly; instead, red colours decay the fastest, and green and blue
colours typically dominate the acquired images. To address all these chal-
lenges, in this dissertation we develop new methodologies that rely on: a)
physical models of the observed degradation, and b) the calculus of varia-
tions. Equipped with this powerful machinery, we design novel theoretical
and computational tools, including image-dependent functional energies
that capture the particularities of each degradation model. These en-
ergies are composed of different integral terms that are simultaneously
minimized by means of efficient numerical schemes, producing a clean,
visually-pleasant and useful output image, with better contrast and in-
creased visibility. In every considered application, we provide comprehen-
sive qualitative (visual) and quantitative experimental results to validate
our methods, confirming that the developed techniques outperform other
existing approaches in the literature.
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Chapter 1

Introduction

In our modern society, we encounter digital images everywhere, from the internet or
mobile devices to hospitals or satellites. The ability to process and enhance them is of
paramount importance, and this is reflected by the wide range of advanced techniques
for mathematical image processing that lies behind our everyday technology. These
include modern digital cinema and television, medical image analysis programs, or
consumer software such as Photoshop or Instagram, to name a few. From a more
technical point of view, preprocessing input images may represent an essential step
in order to improve ulterior computer vision tasks.

Despite being a mature area, mathematical image processing and enhancement is
still a remarkably rich and lively field of research. In this sense, there are still strong
limitations in the current state-of-the-art to properly process and enhance the quality
of images whenever they are acquired in a non-controlled or hostile environment. It
is therefore necessary to develop robust and efficient mathematical tools, capable of
capturing the physical characteristics of each particular problem.

In this dissertation, we focus on three real-world image enhancement applications.
Namely, underwater image enhancement, fog removal, and the enrichment of visual
quality of digital mammograms. In the case of fog removal (also known as image
dehazing), pixels that correspond to regions on the scene that are far away from the
observer suffer from a loss of contrast that reduces visibility, as well as a decrease in
saturation that leads to poor chromatic information. For underwater images, not only
is contrast lost in far away areas of the scene, but also colour is deteriorated in a special
manner that has nothing to do with the degradation that the atmosphere produces.
Due to the different velocity at which wavelengths travel, colours associated to short
wavelengths (e.g. red) tend to degrade the fastest, while colours related to longer
wavelengths (for instance, green and blue) travel further in the scene and typically
dominate the colour of acquired images. Finally, digital mammogram images do
not suffer from chromatic degradation, since they are grayscale images. However,
there is also low contrast in this class of medical images, and structures of interest lie
occluded by uninteresting tissue. Therefore, digital mammograms also require specific
methods to handle different regions of the image in distinct ways depending on the
image content, and conventional methods seem to cope poorly with this necessity.

To address all these challenges, in this dissertation we study traditional as well



as modern techniques to improve image quality, and analyse why they may fail in
retrieving adequate visibility in these cases. Our main objective is to develop novel
approaches to overcome the described obstacles and design new more effective and ef-
ficient numerical methods for image enhancement in the aforementioned applications.
To that end, we strongly base our developments on two methodological cornerstones:
a) physical models of the propagation of light in attenuating media, and b) the calcu-
lus of variations. Regarding the first one, it provides an understanding of the causes of
the image degradation; therefore, it comes with valuable information that, if available,
no image enhancement approach should neglect. With respect to variational calculus,
it equips us with a solid theoretical framework that enables us to design computa-
tional models that capture the particularities of each problem. This is achieved by
means of the definition of image-dependent functional energies, composed of several
terms modelling different parts of the problem. Moreover, these terms are weighted
by scalar coefficients that allow the user to easily and intuitively control the visual
characteristics present in the final solution.

The main contribution of this dissertation is thus to propose innovative mathe-
matical and computational tools to enhance the quality of images that suffer from
a complex degradation produced by an attenuating medium. Specifically, we math-
ematically represent that degradation through new physical and variational models,
and we provide novel efficient numerical methods to solve those models.

The rest of this dissertation is structured as follows:

e In the second chapter of this dissertation we present a broad historical review
of the field of mathematical image enhancement. We review some of the most
notable methods proposed in the last decades. Two of such methods are of
particular relevance for us, and we will analyse them in detail: 1) the variational
formulation of histogram equalization proposed by Sapiro and Caselles in [§],
and the subsequent works of Bertalmio et al. [3,9,/10], that extend it, connecting
it to the Retinex theory of visual human perception [11], and 2) the simple but
powerful dark channel method [7,/12], designed for the task of image dehazing.

e The third chapter of this dissertation is dedicated to the problem of underwater
image enhancement. We examine existing approaches to the visual improvement
of this kind of images, and notice some of their main drawbacks. We then
show how to overcome these drawbacks by extending the dark channel ideas
and adapting them to the particularities of the underwater degradation. We
provide an exhaustive evaluation of the quality of the images provided by our
technique when compared with other relevant methods of the state-of-the-art.

e The fourth chapter of this dissertation deals with the problem of image dehazing.
Contrarily to conventional approaches, we adopt here a variational point of view
to model the problem. This gives us the ability to split the solution in different
sub-tasks, and design an image energy that involves different functional terms
defined in order to solve those sub-tasks. The first of these terms allows us to
control the amount of deviation from the original input image; the second one
provides a modified (lower) average gray value for the output image; the third
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term is responsible for locally enhancing contrast, and the last one supplies a
better saturation, improving colour quality. The overall action of these terms
configures a novel image dehazing method that exhibits a better behaviour than
current approaches, typically based on a physical model of haze degradation.
This is particularly true when there is an uneven illumination present in the
scene we want to enhance, since physical models are unable to consider this
additional spatially variant source of degradation.

In the fifth chapter of this dissertation we deal with a kind of images that are
not acquired from real-world scenarios, namely digital mammograms. These
images are formed by projecting X-ray beams in the interior of the breast and
detecting the amount of electrons that are able to go through it. In other words,
we represent the different attenuation capability of the tissues contained in the
breast on a digital image. Due to the superimposition on a bi-dimensional image
of three-dimensional structures in the interior of the human body, this imaging
technique provides low-contrasted images, in which structures of interest suffer
from a low visibility. We modify the variational framework proposed in the
previous chapter to capture these particularities. After describing our novel
mammographic image enhancement method, we provide a comprehensive eval-
uation on a modern digital mammogram database. Based on existing human
visual saliency models, we are also able to assess the ability of our method to
increase the amount of computational attention generated by regions containing
tumoral masses within the breast.

We close this dissertation in the sixth chapter, where we draw our main conclu-
sions, and analyse some of the different research directions that arise from the
developed work.






Chapter 2

Background and Literature Review
on Image Enhancement and
Restoration

In this chapter, we first review some of the most well-established methods for image
enhancement. These are general methodologies that are usually applied to many
image analysis task as a preliminary step, and represent a good benchmark to compare
with.

Then, we present a detailed overview of some modern methods that are of interest
for the next chapters of this dissertation. In all of our three problems the distortion
of the images is spatially varying, due to the distance-dependent degradation that
the media lying between the scene and the observer induces. We will introduce
two families of enhancement algorithms. The latter relies on a physical model for
distance-dependent degradation, that has been intensively used in the literature of
image dehazing. We will analyse the different existing approaches to invert this model.
The former, rather than attempting to model degradation, is based on how humans
perceive colour and contrast, and attempts to implement some perceptual hypothesis
of how the Human Visual System works. Quite remarkably, this model can be derived
from one of the most simple image enhancement algorithms.

2.1 Classical Image Enhancement and Restoration
Algorithms

Among the great number of image enhancement algorithms that have been developed
in the last decades, there is a natural classification between methods working on the
spatial domain and on the frequency domain. In the sections that follow, we make a
short review of the most fundamental methods of both families.



2.1.1 Intensity Transformations. Variational Histogram Equal-
ization

The most basic operations to enhance image contrast are defined pixel-wise. This
means that the intensity value of every pixel is changed, not having into account its
neighbourhood, or any other part of the image. Simply, to a given intensity value
I(z,y), we associate a new value:

J(z,y) = T(I(z,y)), (2.1)

where I(z,y) is the input image and J(x,y) is the result of enhancing I by means of
the transformation T. For now, we consider gray-scale images with domain Q C R?
and range being [0, 256] or [0, 1] as convenient. We will follow this notation for input
and output images along the rest of the dissertation.

We can represent the transformation process performed by by means of the
graph of a bijective continuous function. Typical transformations together with their
effects on an unevenly illuminated image are displayed in Fig. .

1 1 1 1 1

—= == — =

Figure 2.1: Simple intensity transformations and their effect

In the above equation , T is an operator on I, that acts in this case pixel-
wise. If we denote as r and s the intensities of [ and J at pixel (x,y) respectively, then
s = T(r) is an intensity transformation function, and T : [0,1] — [0,1]. One of the
most popular choices for t is the power-law or gamma transformations, which
have the basic form of s = ar?, being «y a positive constant. Whenever v € [0, 1], this
transformation will map a narrow range of dark input intensities to a wider range
of output values, although it will saturate brighter values, obtaining the opposite
effect if v > 1, as can be anticipated by looking at Fig. 2.2 Gamma correction
is a widely used technique in most modern image capture and display devices [13],
although it depends on the a priori knowledge of acquisition parameters that are often
not available, which makes this a challenging problem. Blind appropriate gamma
correction is still an active field of research [14]. Other recent research directions
involve, for example, locally adaptive gamma correction [15,|16], or extensions to
other image modalities such as infra-red [17].



As an alternative to gamma
correction for contrast increase, ———
one can use a piecewise lin- — y=02
ecar function, which allows for *° — r=051}]
more complex image modifica-
tions. Although it is a more flex- 06 y=20 ||
ible technique, it requires the
user to provide more informa- o4
tion [1§].

Another prominent family of ),
methods rely on processing the
histogram of the image. The
histogram of an image with dis-
crete intensity levels in [0, L] is a
discrete function h with domain
[0, L] that associates to each in-
tensity step r the number of pixels ny that intensity contains, i.e., h(ry) = ng. Thus,
if an image is very bright, high values will occur more often and its histogram will be
unbalanced to the right, as we can appreciate in Fig.

After dividing each bin count by the number of intensity levels L in the image, we
obtain a normalized histogram that can be interpreted as a probability distribution
of the intensity levels of the image. The histogram can be used not only to enhance
an image, but it also contains useful statistical information of it that can be used for
other applications such as segmentation or compression.

The most popular method that makes use of the histogram for image enhancement
purposes is known as histogram equalization. The underlying idea is to transit
from an unevenly concentrated distribution such as the one in the left part of Fig.
to a distribution that is ideally uniform, as in the right part of Fig. [2.3b] The
goal is thus to have a similar quantity of pixels lying in the different intensities, aiming
at making maximal use of the available dynamic range.

We now switch from the continuous to the discrete representation of images, to
allow both counting of occurrences of intensity levels and differentiation /integration.
To find the required transform, we impose monotonicity to the transformation. For
I(z,y) = k, we will require J(z,y) = T(I(z,y)) > k, since we do not want to reverse
intensities. Suppose we have the distribution p,.(r), where r is the input intensity.
If we want it to be transformed to another distribution ps(s), where s is the output
intensity, by means of a transformation 7'(r) = s of the input image intensities, then
the relationship between both distributions is:

0.0 .
0 1

Figure 2.2: Different gamma correction curves

pe(s) = ()| 5| (2.9

Now, we assert that a transformation that makes the histogram uniform can be
written as follows:

T(r)=s=(L—1) /O " py(w)dw. (2.3)
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(a) Overexposed image (b) Result of Histogram Equalization

Figure 2.3: Result of applying Histogram Equalization to an overexposed image and the
correspondent histograms.

To prove this, notice that:

ds dT(r) d(L—-1) [y pr(w)dw

ds _ _ — (L —1)p,(r), 2.4
& _ 4t % (L~ 1), (r) (2.4)
so inserting (2.4) in eq. (2.2)), we obtain:
1 1
ps(s) - pr(r)| (L _ 1)]?7»(7“) | - L — 1a

since all the above quantities are positive. In the above equation, ps is a uniform dis-
tribution, which means that the transformation in eq. achieves the objective of
making the output image histogram evenly distributed. We conclude that to equalize
the histogram in practice (i.e., in a discrete setting), we can build the cumulative dis-
tribution of the histogram. For a pixel of intensity level k£ we would count the number
of occurrences of every pixel intensity from 0 up to k. We then would associate that
quantity in the output image to every pixel with intensity k.

Being a relatively simple technique, the study of histogram equalization and its
possible variants and extensions still motivates plenty of research works. Often the
main goal is to retain the enhancement capabilities of histogram equalization while
avoiding typical unpleasant artifacts in the form of noise amplification and over-
enhancement. Localized and adaptive histogram equalization algorithms have been
proposed, e.g. in [19-22]. In such approaches, usually a sliding window is imple-
mented, which runs across the image pixels, equalizing each of the subimages defined
by that window, and finally combining the resulting components to obtain an im-
proved output with less over-enhancement artifacts. Alternatively, a thresholding
and weighting approach can be adopted , where the histogram of the original im-
age is clipped by an upper and lower threshold, and only the intermediate histogram
is transformed, to be combined with the non-transformed part of the original image
with proper weights. Optimization-based methods also exist in the literature, e.g.
in authors propose a linear programming formulation and in , where they
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employ genetic algorithms in an effort to attain a parameter-free method. There also
exist methods that aim to take into account contextual information beyond pixel in-
tensities, such as [26],27], which use image edge information to weight the histogram.
Several other generalizations have been proposed in the literature. In [28|, the authors
propose to integrate histogram equalization with the white balance technique; in [29],
authors extend the 1D conventional to two dimensions in an attempt of capturing the
spatial information that is inherently lost in the construction of an image histogram.
Histogram equalization has also been extended non-trivially for colour images, for
instance in [30] or in [31].

Besides this, histogram equalization is of particular interest for the rest of this
dissertation, specially for Chapters 3 and 4, as it forms the basis for the HVS-based
methods that we will further adapt to our particular scenarios. The key property of
histogram equalization that enables us to adapt it to specific situations is that it can
be embedded in a variational formulation that permits its modification to perform
joint contrast enhancement and other tasks of interest. This variational formulation
was first introduced by Caselles and Sapiro in [8], and we describe in detail it here
for the sake of completeness.

Let us assume the input image is defined in a domain Q = [0, W] x [0, H] C R?,
and take two pixels in this domain x = (21, 22),y = (y1,92) € Q. Consider a smooth
function ¢ : [0,1] — R, ¢» € CY(0,1). We define the following energy functional
acting on the space of allowed images:

/ (1(x))da — 7// y)| dedy. (2.5)

To enable differentiation, we define an approximation of the non-differentiable abso-

lute value in ([2.5)) by:
ol = VT2,

the derivative of which is:
d z

&= e )

being sign. a function that tends to the sign function as ¢ tends to 0:

1, ift>0
signo(t) =< 0, ift=0 (2.6)
1, ift<0.

We define also the positive sign function, given by:

1, ift >0
sign™(t) =< 1/2, ift=0
0, if t <0.

With this terminology, we can write an approximate version of the energy (12.5)) as:

/ »(I(z)) dx — 7// Y)e dzdy, (2.7)
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and we can now compute the variational derivative of (2.7 at the image I, in the
direction of the variation oI:

SEL1(),51(0) = [ 9101 da— [ signe(12)=100))01(2) ~51(y)) vy,

Using equality sign.(t) = —sign.(—t) and changing variables x — ¥ in the second
term, we can decompose the second integral as:

J[L, sign-(1@) = 1)) d(x) dady + [| sign.(1(x) = 1(y)) sL(y) dzdy
=2 [ sign.(1(x) ~ 1(y)) 81(a) dudy,

which allows us to write the above derivative as:

51(2),010)) = [ (/@) = 57 [ sign-(1(e) = 1(0) dy) 01(2) d.

The above equality is the interior product of the variational derivative of E.(I) with
respect to the direction 67(x), which means that we can write:

0E-(I(z)) = ¢'(I(x)) signe(1(z) — 1(y)) dy.

- WH Jo
When ¢ tends to 0, we obtain:

2

~ Wi signo(1(z) — 1(y)) dy,

0E(I(z)) = ¢'(I(z))

Since signg(t) = 2sign™(t) — 1 and | ldxdy = WH, we can finally rewrite the
variational derivative of the energy ([2.5)) as:

SE(I(z)) =¢'(I(x)) +2 — T/;H A sign® (I(x) — I(y)) dzdy. (2.8)

Now, let us write I(z) = A, and define:

1 .
() = 7 [ sign® (0= 1(y) dy.

for A € [0, 1]. Notice that this is a variational version of the cumulative histogram of
I(x). If we had Hy(A) = A VA, then the histogram of I(x) would be uniform. In other
words, the transformation:

1
A WE b signt (A —1(y)) dy
performs an equalization of the histogram of the input image I.
Let us observe that the variational derivative in (2.8) can be rewritten in terms
of Hyi(\) as:
SE(I(z)) =¢'(I(z)) + 2 — 4H1(N). (2.9)
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Given that we can find a local minimum of the energy (2.5) by imposing that its
variational derivative (2.9)) vanishes, a stationary image for this flow will verify:

A +2

Hy(\) = 1

This means that to equalize the histogram of the input image, we would need to set
P =4\ — 2 ie., ¥(\) = 2\ — 2\ + K, with K an arbitrary constant. Writing
K = 1/2, we obtain ¥(\) = 2(A — 1/2)%. Thus, we conclude that an energy that
equalizes the histogram of an input image I when minimized is given by:

E(I(z)) = 2/9(1(@ Y i// y)| dzdy. (2.10)

Its derivative would be given by:

4
SE(I(z)) =4l(x) =242 — —— Sign+(1(x) —1(y)) dy (2.11)
WH
To interpret (2.10]), we can define the average contrast of I is:
C(I(x) =WH //Q2 y)| dxdy.

With this definition, we see now that minimizing amounts to maximizing the
average contrast of the image I while penalizing deviation of intensity from a theo-
retically correct mean of 1/2.

A simple numerical scheme to minimize could consist on a descent in the
direction of maximum decrease of the energy, i.e., the negative gradient. To that end,
we introduce an artificial time parameter ¢, and we obtain the following algorithm:

ol(x) _
o = —0B(I(2)).

e Discretize in time, and iterate until steady-state the following expression:

e Set I(0) =1, and set

fa(e) = 1(w) = At (1) = 5oz [ sign + (1) ~ 1) dy) . (212)

By implementing , we obtain a sequence of modified versions of the initial image
I(z) that converges to a histogram-equalized version of it. This formulation in itself
is of no practical interest, since it is computationally expensive and we are losing the
simplicity and efficiency of simple histogram equalization. Nevertheless, it formalizes
and throws light to the whole histogram equalization process. The advanced contrast
enhancement methods we will analyse and extend in this dissertation build on these
ideas. Therefore, it is worth to explain the details of this variational formulation.

11



2.1.2 Spatial Filtering

One of the main drawbacks of the enhancement techniques presented so far is that
they operate in a pixel-wise manner, acting over the intensity distribution of the
whole image, and thus remaining “blind” to the intensity of surrounding pixels. This
global approach can be useful for overall contrast enhancement, but it is not suitable
in the majority of the cases, when one wants to enhance details on specific areas
of the image. Histogram processing techniques can be adapted to perform local
enhancement by computing at each pixel the histogram of the points within a specified
neighbourhood, although this is computationally very expensive. They can also be
localized in the intensity range, by not allowing too dramatic intensity changes. This
is known as contrast-limited histogram equalization [32]. Another possibility would
be to compute the histograms of non-overlapping areas and use them to compute the
intensity transform function. However, this often leads to undesired block artifacts
in the resulting image [33].

Spatial filtering, on the other hand, works in a neighbourhood of each pixel of
the image by performing computations involving the pixel itself and the surrounding
pixels, and stores the result in the same location of the output image. Spatial filters
receive sometimes the names of masks, kernels or windows. Grossly speaking, one
designs a filtering mask, and then convolves the image with this mask with a sliding
window approach, padding the image where necessary. In fact, the word filter is inher-
ited from the frequency counterpart that we shall briefly review in the next section.
The basic property that relates both points of view is that convolution is equivalent
to product in the Fourier transformed space. This allows a reduced computational
complexity. However, there is an important difference between spatial and frequency
filtering, namely, spatial filtering permits the implementation of non-linear filtering,
while this cannot be achieved straightforwardly in the frequency domain, since con-
volutions are linear operators. An example of this filter is the median filter [34], in
which the intensity value of a pixel is substituted by the median of the surrounding
intensities, rather than the mean.

The definition of the mask determines the output of the filtering process, that can
range from a blurred version of the original image to a sharpened version of it. This
choice will depend on the specific applications, such as denoising, removing defocus,
or detail enhancement.

A particularly popular filter is the one employing a Gaussian kernel. It is equiv-
alent to blurring the image by convolution with a Gaussian. As long as the noise
present in the image matches a Gaussian white noise model, this approach will work.
Unfortunately, although white noise is often employed to test the performance of de-
noising methods, its use is rare in practice. Another drawback of this simple approach
is that while denoising the image, a Gaussian filter will also blur informative parts of
it.

Gaussian blurring can be seen to be equivalent to applying the heat diffusion
equation to the input image. As a consequence, information in the image is diffused
in an isotropic manner. This can be improved by designing different filters that
depend on the image content. A famous solution was proposed by Perona and Malik
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in , where the blurring kernel is modified to make it depend on the image gradient,
and behave as an impulse function close to edges and other structures that must
be preserved in the resultant image. In Fig. , reproduced from [36], we can
appreciate how, while both Gaussian and anisotropic diffusion succeed in removing
the noise in the input image, the former preserves better high-frequency content
(borders).

(a) Original noisy image (b) Gaussian denoising (¢) Anisotropic denoising

Figure 2.4: Noisy image and application of Gaussian and anisotropic diffusion for denoising.

Combinations of different procedures can also be useful to enhance details in an
image. That is the case with a popular process called unsharp masking .
It consists on blurring the original image, and building a mask by subtracting the
blurred image from the original. Adding that mask to the initial image results in
detail enhancement and sharpening. This method can be formulated as:

mask(z,y) = l(z,y) — (G(x,y) x [(z,y)), (2.13)
J(z,y) = l(z,y) + amask(z, y),

where G(z,y) is a Gaussian blurring filter and « controls the amount of enhancement.
Extensions of this simple idea are still been investigated, as in the recent works of
or [39]. The result of applying this basic technique can be appreciated in Fig. (2.5]).

2.1.3 Frequency Domain Methods

With the evolution of computers, the frequency domain analysis of images became
essential as a tool that must be in the repertory of every practitioner of the field of
digital image processing. There are some elements of the human perception that are
better understood in terms of frequencies rather than of the spatial distribution of
intensities. As a result, a wide range of applications have benefited from the idea of
studying the spectrum of frequencies of an image, being possibly the most successful
ones image compression and denoising. In the next lines we provide a broad overview
of this important approach to image enhancement and restoration.
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(a) Original blurry image (b) Unsharp masking, & = 0.25 (c) Unsharp masking, o = 0.5
Figure 2.5: Result of applying Unsharp Masking with increasing degree of enhancement

2.1.3.1 Fourier Methods for Image Processing

Frequency Domain methods are one of the most powerful tools in the field of signal
and image processing, with a large quantity of research devoted to them ,.
When we consider an image I as a continuous function, defined for simplicity in the
unit domain Q = (0,1) x (0,1), and periodically extended, the information that I
encodes can be completely captured into the coefficients that compose its Fourier
series representation, that are given by:

Cn = Cnyng = (I(z), 627Ti<gcyn>>L2(Q)’

for n = (ny,n9) € Z?%, and being x = (xq,25) € €.

A great computational advantage can be achieved for the Fourier transform when
considered in the discrete domain. In that setting, the image domain is a discrete
grid. Q@ ={0,...,N —1} x {0,..., N — 1}, and the image can be interpreted as a
matrix 1(j), for j = (j1,72) € Q. Then, the Fourier coefficients of the image can be
computed with the Discrete Fourier Transform (DFT) as:

.2 .
Cn = Cpyng = Z Ijezﬁﬂ <],7’L>,
JEQ

for n € ). The DFT admits a fast implementation known as the Fast Fourier Trans-
form, invented by Cooley and Tukey [42], which is able to improve the performance of
a large number of image processing tasks needing to run fast, often in real time [43].
The Fourier transform and its variations (e.g., cosine/sine transform) have been ap-
plied in uncountable image processing tasks, apart of image enhancement, such as
image compression or medical image reconstruction [45].

One of the most straightforward applications of the Fourier transform for image
enhancement is possibly the homomorphic filter [46]. It consists of expressing an
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image I as the product of its illumination j(z) and its reflectance r(z). This is known
as the illumination-reflectance model of image formation, and it specifies that the
intensity of each pixel, i.e., the light reflected by a point in the object and reaching
the sensor in the camera, is the product of the illumination of the scene with the
reflectance of the object. This can be written as I(z) = j(x) - r(x), with j(z) being
the scene illumination, and r(x) the scene reflectance. In other words, reflectance is
produced by the properties of the scene objects themselves, while illumination results
from the lighting conditions at the image capture moment.

The goal of homomorphic filtering consists of compensating for a non-uniform
illuminant by separating and removing the illumination from the true scene content.
The key idea is that illumination fields are generally slowly-varying, while image
information mainly lies on the mid-high frequencies. To obtain such a separation, we
first take natural logarithms in the previous expression:

Inl(z) =Inj(z) + Inr(zx).

Notice that the previous equation would lead to non-integrability (and thus the
Fourier transform would not be computable) if the input image is dark, so that its
logarithm is equal to —oo. This case is not considered here, since for a black image
there is no illumination to remove, so we restrict ourselves to the subset of images
that take strictly positive values.

Now we move to the spectral domain. Denoting the Fourier Transform of each
of the terms of the above equation as F; = §(lnl(z)), F; = §(lnj(z)), and F, =
S(lnr(x)), we can write:

Aw) = Fy(w) + Fr(w).

We are indeed interested on recovering an enhanced version of r(x), namely, the
original image but free of illumination influence. Having assumed that j(x) lies in
the low frequencies (and so does In j(x)), the idea is to filter the low values on the
above equation. That can be achieved by multiplying by high-pass filter H(w):

H(w)Fi(w) = H@)F)(w) +H(w)F,(w) ~ Hw)F,(w)

Now we can come back to the spatial domain. Denote the Inverse Fourier Transforms

of the filtered images by I(x) = § 1(H(w)Fi(w)) and 7(z) = F ' (H(w)F,(w)). The
enhanced reflectance of the input image I'is given, after undoing the initial logarithmic
transformation, by "®, which can now be written in terms of the original image:

(@) — @) _ TN HW)F(W) _ 8 (H(@)§(nl(z))) (2.14)

Eq. (2.14) provides a method to remove illumination effects while enhancing
the image content and details. Thus, the homomorphic filters and its extensions
have been applied to normalize illumination before segmentation or face recognition
tasks [47-49], among others. The effects of applying this procedure can be appreciated
on Fig. [2.6
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(a) Original unevenly image (b) Homomorphically filtered image

Figure 2.6: Unevenly illuminated image, and the result of applying the Homomorphic filter.
Notice the non-uniform illumination field varying from left to right and from top to bottom,
that has been corrected by the filtering process.

Wiener filter [50] is another popular image enhancement technique that relies on
the spectral transform of the input image. The fundamental idea is the consideration
of images as random variables, as well as their noise. Thus, the goal of the Wiener
filter is to derive an estimate I of an ideally clean image I that is optimal in terms of
the mean square error between them. The assumptions of the Wiener filter are that
the noise and the image are not correlated, one of them has zero mean (they can have
different variances) and that intensity values of the estimate of the noise-free image
are linearly related to values in its degraded counterpart. Under such conditions, it
can be shown that the spectral transform of the minimum of the error function
is given by: ,

- Hw)l , (2.15)

H(w) [H(w)]? + N(w)/S(w)

where H(w) is a linear function modelling the degradation (in the transformed do-
main), N(w) is the power spectrum of the noise, and S(w) is the power spectrum of
the undegraded image. Inverse Fourier Transform applied to the output of Eq.
produces then the restored image. Power spectrum here is defined to be the sum of
the squares of the real and the imaginary parts of the noise. Both the spectrum of
the noise and the undegraded image must be estimated before Wiener filtering can
be applied. A common simplification is to consider noise as white (Gaussian), which
leads to a constant spectrum N (w). Since noise is of zero mean, only variance needs
to be estimated, and it is usually approximated by the local standard deviation on
the image. Spectrum of the undegraded image, though, is rarely known, and must be
estimated with an auxiliary method. If this is not possible, a frequent simplification
is to employ the following formula:

1 |Hw)P
Hw) [ Hw)P+ K

3l = (2.16)
where K is a constant that remains as a parameter of the method. An example of
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Wiener denoising, when compared to other conventional techniques, can be found in

Fig. (Z7).

noisy lena

(a) Original image with  (b) Gaussian filter. (¢) Median filter. (d) Wiener filter.
Gaussian noise.

Figure 2.7: Result of applying different denoising techniques to an image corrupted with
Gaussian noise.

Wiener filter, being itself a fundamental and basic method, still serves these days
as a basis for more advanced techniques, with modern applications such as superres-
olution or dehazing . Wiener filter is also a key component of other recent
noise removal techniques, such as BM3D , an state-of-the-art denoising method
based on the consideration that an image has a locally sparse representation in trans-
form domain. This sparsity is enforced by grouping similar 2D image patches into 3D
groups, that are then filtered jointly, and the result combined to obtain a noise-free
image.

2.1.3.2 Multiresolution Image Processing via Wavelets

Although Fourier analysis is one of the most popular and widespread tools for i-
mage processing and restoration, in the last decades of the 20th century a different
frequency-based approach, known as wavelet analysis, has revealed itself as an even
more general and powerful approach [55]. Wavelets consists of a localized version of
Fourier analysis, capable of operating at different scales.

To better understand the difference between wavelet and Fourier analysis, let us
switch momentarily to temporal signals. A signal f(¢) defined in the temporal domain
and its Fourier transform f (w), defined in the frequency domain, have the following
linking relationships:

f(w) _ /_o:o f(t)e%riwt dt,

and
1

t) = —/Oo Flw)e 2™t du.
=5 [ Fw)
Thus, Fourier transform characterizes the content of signal f through its frequency
components. Given that the support of the basis functions e?™t encompasses the

whole time domain (infinite support), f(w) depends on the values of f(t) for all
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times. This makes the Fourier transform a global transform unable to analyse local
properties of the original signal.

To be capable of performing a local frequency analysis, a windowed Fourier trans-
form (WFT) was first introduced by means of a window function w(t) acting into the
Fourier transform [56]:

o0

Sf(w.t) = / F(P)w(t — 7)e 27 dr,

— o0

The energy of these new basis functions g, ¢(t) = w(t — 7)e”*™" is concentrated in a

neighbourhood of time 7 over an interval of size o, which corresponds to the standard
deviation of |g|2. The Fourier transform of these functions is g, ¢ = (w—&)e 2™7@=¢),
with energy in frequency domain localized around &, over an interval of size o,,. The
Heisenberg uncertainty principle states that the energy spread of a function and its

Fourier transform cannot be simultaneously arbitrarily small, since it must be verified:

N | —

010, >

To analyse local signal structures of various supports and amplitudes in time, it
is necessary to use basis functions with different support sizes for different temporal
locations. For instance, in the case of high frequency structures, which vary rapidly in
time, higher temporal resolution is needed to accurately capture those changes; on the
other hand, for a lower frequency, a relatively higher absolute frequency resolution
will give a better measurement of frequency values. Wavelet transforms provide a
natural representation to accomplish this analysis.

One of the most important features of wavelet transforms is thus their multi-
resolution representation. Physiological analogies have suggested that wavelet trans-
forms are similar to low level visual perception. From texture recognition, segmenta-
tion to image registration, such multi-resolution analysis provides the possibility of
studying a particular problem at various spatial /frequency scales. The main idea of
wavelet analysis is to capture that locality by passing from the Fourier orthogonal
basis to localized bases, which are designed according to different resolutions, i.e.,
scales of details in the image.

A wavelet function is defined as a function ¢ € L*(R) with zero average:

/ D(t)dt =0, (2.17)
that is normalized so that ||¢(¢)|| = 1, and centred in a neighbourhood of ¢t = 0. A
family of wavelet functions is then derived from ¢ by simple translation and scaling

of it: . b
o) = o0l

where a € RT, b € R. Thus, a family of wavelet functions originates from a mother
wavelet function, that is scaled by the coefficient a and then translated by b. The
result is that way localized in both frequency and spatial domain.

), (2.18)
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Although wavelets have been applied extensively in many image processing fields,
such as compression or super-resolution, their most traditional and successful applica-
tion has been image denoising. An image is often corrupted by noise in its acquisition,
transmission, compression, reconstruction, etc. The goal of image denoising is to pro-
duce good estimates of the original image from noisy observations.

The general process can be summarized as follows. Consider a noisy image X =
[+ N, where N is additive noise and I is the noise-free image. Let W and W~! be the
forward and inverse wavelet transform operators. Denoting a threshold function of
parameter \ as D(-, \), to recover an estimate I of the noise-free image I, the following
steps are implemented:

1. To apply wavelet transform on the degraded image: Y = W (X).
2. To threshold wavelet basis coefficients adequately Z = D(Y, \).
3. To reconstruct the image I = W~1(X).

The idea is that small coefficients in the wavelet decomposition are more likely
associated to noise, and large coefficients come from important signal features (such
as edges). Therefore, in its most basic form, this technique denoises in the orthogonal
wavelet domain, where each coefficient is thresholded: if the coefficient is smaller
than the threshold, it is set to zero; otherwise it is kept or modified. This is known
as hard thresholding. The next natural step is the analysis of different thresholding
mechanisms. The most important one was proposed by Donoho et al. in . Since
then, a large amount of work [58-60] has been devoted to the automatic optimal
selection of the wavelet coefficients and their thresholding in order to perform image
restoration after it has been corrupted by noise. Wavelet decomposition of the noisy
image in Fig. [2.7] can be appreciated in Fig. 2.8 together with the corresponding
thresholded wavelet coefficients and the reconstructed noise-free image after inverse
wavelet transform of the modified coefficients.

(a) Wavelet coefficients of the (b) Thresholded coefficients. (c) Reconstruction of a denoised
noisy image in Fig. version of Fig.

Figure 2.8: Wavelet denoising of Fig. The values of wavelet coeflicients have been
inverted (darker means higher) and stretched for better visualization.
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2.2 Modern Model-Based Image Enhancement and
Restoration Techniques

In this section, we describe two families of specific methods that attempt to enhance
images from a substantially different point of view, when compared to the previously
outlined techniques.

First, we give a complete description of a series of methods that are based in
modelling the way humans perceive the world. The underlying philosophy is that
if we understand some of the mechanisms of human perception, we can then use a
mathematical model of them to modify a digital image in order to obtain an enhanced
version of it, more complying with what a human expects to perceive, hopefully
suppressing the present distortions.

Second, we study the modelling of a specific kind of degradation that affects the
process of image acquisition when the signal is attenuated by the media. We describe
how a simple physical model is able to capture to a reasonable extent the particular-
ities of the degradation caused by the atmosphere, and we review the currently most
powerful technique to invert that model and estimate an undegraded image.

2.2.1 Models of the Visual System

In this section, we explain the details of a family of methods that are inspired in
the way humans perceive colour and luminance to process an image. These ideas
are of great importance for the rest of the dissertation: a considerable part of the
methodologies we develop in chapters 4 and 5 builds on the techniques we describe
in the following pages.

The underlying mechanisms that govern human perception have inspired the im-
age processing community for many years. One key milestone is the Retinex model,
developed by Land and McCann in the seventies [11]. From this work, many other
models have been derived for colour image processing. Let us explain qualitatively
the ideas underlying it.

When we look at an object from different distances, perspectives, or illuminations,
the large changes in the image that is formed in our retina do not affect our perception
of the object. This implies that our brain is able to compensate for these modifications
and we still perceive its physical properties (such as colour or size) with little variation.
In other words, our sensations are much more stable than what we could expect after
substantial changes of the retinal image.

When applied to colour invariancy, this phenomenon is known as colour constancy.
It simply means that our visual system understands the permanency of colours of
objects even when it is exposed to large changes in the spectral composition of the
light that arrives to our retina. This spectral composition is known to be made of
two different factors that combine themselves in a non-linear way. These factors are
spectral reflectance of the observed object (the property an object has to reflect certain
wavelengths more than others) and spectral composition of the scene’s illuminant,
i.e., the composition of wavelengths that form the light that falls on the object.
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Figure 2.9: Land and McCann experiment setting

Colour constancy explains the fact that when we look at a scene illuminated with, for
instance, a tungsten reddish light, and we suddenly turn off the tungsten bulb letting
the sunlight illuminate the scene, the perception of the colours of objects on the scene
will remain stable, as it just depends on their spectral reflectance. If we were seeing
an object as yellow, our visual system will not depart as much from that yellow as
we would have expected from such a large change in the illumination. In this same
context, an optical camera would fail to compensate for differences in light sources,
revealing that it is our visual system, having become robust to such changes through
many years of human evolution, who unconsciously performs colour constancy.
Land and McCann conducted a famous series of experiments to prove this prop-
erty of the Human Visual System (referred to as HVS from now on). They exposed a
group of people to a large display of abstract colour patches (this famous pictures are
called Mondrians, see Fig. ), and let them illuminate the patches with a device
equipped with colour filters that controlled the brightness and spectral composition
of the emitted light. With this setting, they compared the real reflectance of patches,
measured with spectrophotometers, and the sensations induced in the observers un-
der changing illuminants. This allowed them to build a lightness perception model
that proposes that colour is determined by three lightnesses. Each of them would
be computed by performing differential comparisons of intensity information coming
from the whole image. To access this far away information, the Land and McCann
lightness model states that the HVS calculates ratios of energies at nearby points, and
propagates this information by multiplication of ratios to form products that relate
different image regions. The mean of many different products of ratios can then be
used to predict the lightness and the colour sensation that the observer will report.
Building on the revolutionary work of Land and McCann, many perceptually in-
spired colour correction algorithms have been designed, with the goal of manipulating
an image in a manner that is consistent with the way the HVS actually behaves. A
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colour correction algorithm is said to be inspired by the HVS if it maps an input RGB
image I(z) = (I1%(x),1%(x),15(z)) to a processed image J(x) = (JE(z), J% (), JB(x))
by means of a series of operations derived from some of the HVS internal mecha-
nisms. In general, a HVS-inspired method should implement the following character-
istics [61], that are closely related to the observations of Land and McCann:

P.1 It should mimic the differential nature of colour perception. The way we per-
ceive an image has been experimentally demonstrated to come from differential
comparisons that our brain does between different areas of it.

P.2 It should take into account the spatially variant nature of colour perception.
Our visual sense is affected by the context in which the object we are looking
to is situated.

P.3 It should simulate the non-linear behaviour of the HVS. When our visual system
is locally or globally stimulated, the response it produces is nonlinear. Conse-
quently, any method that aims at reproducing the way we perceive stimuli
should also contain non-linear processes.

P.4 It should try to reproduce the HVS property of colour constancy. This means
it should be stable to some extent, when the illuminant of the scene varies.

A perceptual algorithm is one that relies on a simplified mathematical model of
these (and others) low-level mechanisms of human visual perception. Several image
processing and computer vision tasks can be approached from this point of view,
such as colour stabilization, tone mapping, feature and object recognition (robust to
changes in the illumination, for example), and so on. In the case of interest for us,
image restoration and enhancement, the idea is to design a method that simulates the
perception of humans by mimicking the above mechanisms. In this way, the objective
of perceptually-inspired image enhancement methodologies is to produce an image
that is more natural-looking for the observer, since it is processed in a way consistent
with respect to human perception.

For colour images, two well established methods that are used to implement light-
ness and colour constancy are Gray-World and White-Patch [62].

Regarding Gray-World, it is based on the idea that the lightness constancy makes
us perceive the objects that reflect the average luminance of a scene as medium gray.
To be consistent with this phenomenon, we should enforce that the distribution of
intensities in an image has its center of mass around the middle value. Implement-
ing this property independently for each of the chromatic channels can also aid in
suppressing some colour cast present in the scene.

The White Patch (WP) hypothesis is based on the fact that the brightest area in
each spectral channel reflects all the illuminant energy on that channel. The HVS, to
recover constant colours, relies then on the brightest patch on the scene, considering
it as its white reference, and normalizing the rest of the reflectances with respect
to it. Thus, to be consistent with the perceptual processing of an image, we should
normalize its channel values, maximizing towards an hypothetical white reference. In

22



practice, this translates to the requirement that there is at least one white pixel in
the image.

2.2.1.1 Automatic Colour Enhancement - ACE

Let us now analyse a recently developed colour correction method able to implement
most of the hypothesis explained above, called ACE, for Automatic Colour Equal-
ization [63]. It is thus a perceptual image enhancement method. Although it was
developed as a one-step filter, posterior research revealed deep connections with the
variational histogram equalization we presented in section [2.1.1]

Let : Q x Q — (0, 1] be an image, where domain € is [0, 1]. The ACE filter maps
the intensity of a pixel x to a new intensity ACE(x) in two stages, as follows:

_ Xyw(@y)sa(I(z) — 1(y))

I(z) —R(x) S o(e.) : (2.19)
R(z) —ACE(z) = ; + JZLE\?, (2.20)

where M = max,cq(R(x)), w(z,y) is a weighting function, and s, : [-1,1] - R is a
slope function defined as follows:

—-1, if —1<t< -1,
sa(t) =qat, if —1<t<2 (2.21)
1, if 1<t<1

Notice that in the limit of @ — o0, the slope function s, tends to the sign function
9.

The weighting function w : Q x Q —]0, 1] is a monotonically decreasing function,
capturing the locality of the mutual chromatic influence of pixels, adding the capa-
bility to account for property of the HVS explained above. Common choices of
w are inverse Euclidean distance function or a Gaussian decaying function centred at
pixel x.

Contrarily to Retinex, ACE is implemented through differences of pixel intensities,
rather than ratios. This is a more natural choice, if one is to implement the differential
nature of spatial comparisons jointly with the Gray World hypothesis [P.4] Tt is
in fact this local weighting and the term 1/2 in Eq. who induce a local GW
behaviour [61].

Non-linearity of ACE’s response is induced by the slope function (2.21)). This
mechanism amplifies small differences of intensity, while saturating large ones. This is
because for small intensity differences, falling in the range —1/a < I(z) —I(y) < 1/a,
s, will increase the contrast as it maps I(x) — I(y) to a(I(x) — I(y)), and « is greater
than one. On the other hand, large differences will be mapped to 0 or 1, depending
on their sign. This amounts to expanding or compressing the available dynamic range
according to the local image content.
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Finally, it always exists a pixel x¢ such that R(z¢) = max,cq(R(x)) = M, and the
intensity of that pixel will be mapped to 1 after application of (2.20)). This enforces
a global White Patch behaviour, further fulfilling [P.4]

The implementation of all these mechanisms turns ACE into a (very) simplified
model of the HVS, as the enhancement it achieves is consistent with human percep-
tion.

2.2.1.2 Improving ACE: Perceptual Colour Correction with Variational
Techniques

ACE exhibits a remarkable ability to remove colour cast from images, thanks to the
GW hypothesis, and is able to locally increase contrast. Also, it is able to deal with
over and underexposed images, since it can increase the intensity of some pixels while
decreasing intensity of others. However, it suffers from a series of drawbacks. For
instance, it is computationally quite intensive. Moreover, uniform areas are mapped
to the middle gray, not taking into account the original colour. Besides, it tends to
overenhance some image areas, washing out the result.

To circumvent all these issues, in 2007, Bertalmio et al. [3] introduced a perceptua-
lly-inspired variational framework for contrast enhancement. The authors proposed
an energy that, when minimized, leads to a local contrast enhancement of the initial
image, while still respecting the GW and WP assumptions. This framework incor-
porated an attachment to data constraint that serves as a regularization mechanism,
preventing overenhacement and avoiding chromatic noise introduction.

In its most general form, this energy can be written as:

Eos(1) = Dy(1) — C.y (D). (2.22)

The first term in the right hand side of Eq. is a dispersion measure, meant to
control the departure of the original image from an ideal one, and the second term
provides local contrast enhancement.

The dispersion term is formulated as a linear combination of two energies, both

of the form: B
Da(1) = [[ | (w,y) 1) = (y) dady. (2.23)

The first of these dispersion term is obtained when we set w(z,y) to be a normalized
kernel |, i.e.,

/Qw(a:,y)dy =1 Vaz,
and we take I?(y) = p for every y:
D, (1) = /Q(I(y) — p)* dy.

By further writing u = 1/2, we obtain a term that enforces the Gray World hypothesis:

D) = [ (ly) = 5)* dy.

Q
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The second part of the dispersion control is the Attachment to Data term. If Iy(z)
is the original image to be enhanced, and we set:

I =/Q®(w7y)lo(y) dy,

we obtain the dispersion term D 0. For the particular case of the kernel given by
w(z,y) = d(x —y), being § the Dirac delta, we get:

Dasp(l) = /Q (I(z) — Lo(x))? dz. (2.24)

Regarding the local contrast enhancement measure, given an even functional J : R —
[0, 00|, we define:

Coa®) = [[ o) (1) = 1(y)) d. (2.25)

We obtain now a complete energy formulation by writing:
E,.(I)=8D,I) +vDap(I) — C, s(I). (2.26)

Now, to minimize (2.26)) we need to compute first the variational derivatives of every
term. These are derived in the following Proposition:

Proposition 2.2.1 Whenever J is even and differentiable, and w is symmetric, we
obtain:

1. 6CLa () =2 [ we,y)J' (1) = 1(y) dy.

2. 6D,(D)(z) = 2(I(z) - p).
3. 6Dasp(D)(z) = 2(I(z) — Io(x)).

A proof of these statements can be found in [3], and we develop it also in Appendix
for completeness. Note that in the original work [3], proof is also provided for
the more general case of J being an even and convex functional. This includes the
absolute value function as a particular case.

Putting the pieces together, we now can write the Euler-Lagrange equation that
an image I*(z) must satisfy to be a minimizer of the energy functional (2.26)):

26(I"(x) — ) + 2y(I"(z) — To(x)) — 2/QW(:B,y)J’(I*(y) —I"(2)) dedy = 0. (2.27)

Part of the interest of this formulation is that it encompasses both the variational
formulation of histogram equalization given in Section [2.1.1] and ACE as particular
cases. For the first one, by comparing equations (2.10) and (2.26) when p = 1/2 and
v = 0, we directly see that this new energy formulation is a scaled version of the
variational histogram equalization functional proposed in [§]. The two key differences
are that now we have an attachment to data term that reduces the typical overen-
hancement that histogram equalization produces, and that the contrast enhancement

25



term is modulated by a weighting function that incorporates a local behaviour in the
energy functional.
To see the connection with ACE, let us write a discrete version of ([2.26]), again

with = 1/2 and v = 0. This is, consider the following energy:
1

B =3 X 06@) - 3P+ 57 5 el n)Sa@), (229

z€eQ zeQ yed

being S, such that S/, = s,. Since s, was odd, S, will be an even function. Intuitively,
we can think in a regularized version of the absolute value as an example of S,, and
the sign function as its derivative. Euler-Lagrange equations of the energy
can be computed in the same way as in Proposition (2.2.1]), yielding that if I(x) is a
minimum, then:

(1) = 5) =237 3wl 9)31) = 10)) =0,
that can be rewritten as:
li7) = 5 + 537 3 ol p)salle) 1))

The above equality is exactly the process described in Equations and .
This shows that a minimum of energy must be a fixed point of ACE, i.e.,
I(z) = ACE(I)(x).

Regarding the numerical minimization of , the straightforward approach is

to use a descent on the gradient direction, i.e., make I(z) evolve as i —0E(I).
Discretizing explicitly in time, we have:
[ (2) — T*(z) 1 1
=(z-I* — 2.2

where Ry is the contrast operator defined in Equation (2.19)), applied to the k-th
iteration. Eq. (2.29)) can in turn be rewritten as:

I (z) = (1 — ADT*(x) + At(1 + iRpc(:)e)) (2.30)
2 2M

Selecting At = 1 and M = max,eq{ Ry, ()} yields the evolution I*+!'(2) = ACEF(1°).
Unfortunately, as ACE does, evolving until steady state leads to overen-
hanced images. It is here where the attachment to data term of Eq. provides
a regularizing mechanism useful to avoid this problem. Activating the regularizer by
setting v = A/2 for A > 0, and also writing for simplicity § = u = 1/2, we can write

an explicit gradient descent for the full energy as:

I H(x)A;I 2 _ 2]1\4 > w(w y)sa(l(x) —1(y)) + (; —I"(x)) + A(I*(z) — I°(x)),

ye
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that reduces to the descent given by:

1 (2) = (1 — (1 + NADTF(z) + At(; + R;’ﬁ)

ACE(I* (z))

)+ AAH (7).

The above equation reveals that ACE is part of this new framework, that also
includes a term penalizing the departure from I°(x) by adding together in the kth
iteration scaled versions of 1*(z), ACE(I*(z)), and 1°(x).

This work has been further generalized in several directions. In [10], Palma-
Amestoy et al. suggested to employ, rather than a quadratic dispersion term given
by:

D%i?d(l)zﬁz%(l( Y +’Yz;l _IO 27 ﬁ77>07
e xre

an entropic dispersion term. To that end, the authors take the function f(s) =
alog(a/s)—(a—s), with a > 0,s €]0, 1[. Then, f'(s) = 1 —a/sand f"(s) = a/s* > 0,
so s = a is a global minimum of f. Defining:

1 2 1 I x
D) =1 X §os(5) - (= 1000) 9 X P o1 — (o) ~ 160,
xEQ €0
f(I(z)), with a=1/2 f(I(z)), with a=I%(z)

we have a minimum of this regularization term whenever I(z) = 1/2 and I(z) = I(z).
The entropic term represents a compromise of both assumptions, balanced by v and
B.

Another generalization proposed in |10] was to substitute the term in Eq. ([2.25))
by the minimization of different inverse contrast measures, such as:

Clog Z Z ZL‘ y 10 mln(I(x)7I<y)) ) (231)

zeQ yeN maX(I(a:), I(y))

In fact, the authors claimed that any non-increasing function of the variable t =
min(I(z), I(y))

max(I(x),I(y))
increases and/or min(I(z),I(y)) decreases, minimizing a term like the one in (2.31)) is
equivalent to performing a local contrast stretching.

represents a local contrast-increase. Notice that, as long as max(I(x), [(y))

2.2.2 Modelling the Degradation

In this section, we approach the problem of improving an image from a different point
of view. The idea now is, if we (at least partially) know the physical phenomenon that
produced the degradation of an input image, and we are able to model it mathemat-
ically, we could try an invert that model, apply to the corrupted image the resulting
method and expect to find a restored image with better visual features. A quite
general model for image degradation can be formulated as:

I(z) = D(J(x)) + n(=), (2.32)
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where D is the degradation function, and 7 represents additive noise.

In practice, however, solving for J in the above equation is a really challenging
problem. Multiple degradation processes can occur that are usually quite difficult to
model, tending to have many degrees of freedom that are not easy to fix. Fortunately,
in some situations simplified versions of these models can still do a good job in
restoring a degraded image. This is the case for example when equation is a
completely linear process and spatially invariant. Then, it can be shown that the
degraded image can be written in the spatial domain as:

I(x) = h(z) * J(z) + n(x), (2.33)

where now h is the spatial representation of the degradation function, and the sym-
bol % indicates spatial convolution. Given that convolution in the spatial domain
amounts to multiplication in frequency, we can write the model in its equiva-
lent frequency domain representation as:

G(u) = H(u)F(u) + N(u), (2.34)

where G, H, F, N are the Fourier transform of I, h, J, 1 respectively. The pair of equa-
tions and are the basis to a large number of image restoration methods.

Particular cases of equation instantiate different image restoration prob-
lems. For example, when h(u) = u, i.e. the identity operator, we face the denoising
problem. When 7 is null, but h is not the identity, the resulting problem is known
as deblurring. Usually the size and shape of the blur is assumed to be constant, or
at most Gaussian. Dropping this assumption leads to a really challenging problem
known as blind image deconvolution, that has historically attracted much interest in
the image processing community [64-66].

We now turn to a particular kind of degradation, known as distance-dependent
degradation. This process cannot be modelled linearly, as some parts of the image
are affected more than others, and thus, it is spatially variant. However, it is of great
interest for us, since the kind of degradation we will try to undo in the next chapters
is precisely distance-dependent, and it is the media that lies in between the observer
and the imaged objects what produces it.

2.2.2.1 Depth-Dependent Degradation and the Dark Channel Method

Of particular relevancy for this dissertation is a kind of degradation that occurs with
more intensity as the object in the scene is further away from the observer. This is
the case for example under bad weather conditions. The longer the path the signal
travels until it reaches the observer is, the more it is attenuated. Unfortunately, the
direct approach of restoring that signal by amplifying it in each pixel at the same
time would also amplify noise, and close by objects would be over-enhanced in an
attempt to improve contrast of far way parts of the scene.

In recent years, the particular case of restoring a degradation that has been pro-
duced by the atmosphere has been tackled with reasonable success by the Computer
Vision community thanks to the introduction of different techniques able to invert a
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simplified model of that degradation. Later in this dissertation we will review some
of these methods, but one of them, the Dark Channel Method introduced in [7,/12],
is of particular interest to us, since it forms the basis for the underwater restoration
technique we introduce in the next chapter.

The Dark Channel technique, as many other related approaches, attempts to
invert a physical model of image formation under atmospheric degradation that was
suggested by Kochsmieder in [67]:

I(z) = J(2)t(z) + A(z)(1 — t(z)). (2.35)

This equation deserves a detailed analysis. It describes a three dimensional scenario
like the one depicted in Fig. (2.10). In (2.35)), = is a point located in the scene, and:

e I(z) is the observed intensity, i.e., the input hazy colour image.
e J(z) is the scene radiance, which corresponds to the non-degraded image.

e t(z) is a scalar quantity called transmission, that describes the amount of light
that is not scattered nor absorbed, and reaches the observer. According to the
Beer-Lambert law, transmission is exponentially decreasing with respect to the
distance. Hence, given an object in the scene, its transmission depends both in
the composition of the portion of the atmosphere that the light beam has tra-
versed to reach it and the distance from the observer. A common simplification
is to assume the atmosphere is homogeneous, which allows us to write:

t(z) = e P4, (2.36)

where d(z) is the scene depth and S is the (constant) scattering coefficient;
in atmospheric models, it is usually considered that absorption is negligible
compared to scattering effects, i.e., that atmosphere does not absorb light.

e The second term, A(z)(1 —t(z)), represents the degradation due to haze effect.
Notice that according to (2.35)), the scene radiance first goes through a mul-
tiplicative distortion, which result is the direct attenuation J(z)t(z), and then
through an additive distortion, produced by this second term. Here the airlight
A plays the role of the colour of the haze, which is usually considered constant
over the scene, and therefore in a channel-wise formulation it is a scalar value.

One can see that at zero depth, transmission becomes t(x) = 1, and airlight
attenuation has no influence in (2.35), that reduces to I(z) = J(x). Conversely,
as the depth in the scene increases, transmission decreases to zero, making the
airlight contribution in (2.35) exponentially more significative, until it dom-
inates the whole scene, properly modelling what happens in the horizon of
natural hazy scenes:

Notice also that the hypothesis of the homogeneity of the atmosphere has an-
other simplifying consequence: the airlight can be considered as constant across
the scene, i.e., A(x) = A.
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Figure 2.10: Atmospheric Model of Haze, reproduced from .

When we deal with two-dimensional RGB images, the goal of a dehazing algorithm
is to invert ([2.35)) and recover J. Computationally, we have an RGB input image I,
and the goal is to estimate a haze-free version J, also RGB. But the transmission
t(x), a scalar image, and the airlight, another RGB image, need to be calculated too
in , which leaves us with 3 equations and 7 unknowns for each pixel in the
image. This means 3N + N + 3 = 4N + 3 unknowns and 3N constraints in total.
This accounts for the ambiguity of not knowing whether the colour of an object in
our 2D image is far away from the observer, and thus affected by the haze, or it is
its true colour, and the object is in fact located near the observer in the real scene.

Scene radiance recovery is theoretically possible from equation , if we assume
airlight and transmission are known, by simply rearranging and writing:

Jx) = (I(z) — A)t(z) + A.

t(x)

However, this is not the general case. As a result, there is a need to introduce
some kind of prior information. In the Dark Channel method, this prior is introduced
through the observation that a haze-free outdoor image exhibits shadows and textures
everywhere, and thus, locally at least one colour channel has some pixel with a low
intensity, near the black colour. The authors propose to build an image in which
for each pixel they store the minimum value among the R, G and B channels of the
corresponding image in the input image, and inspect the degree of “darkness” of it.
This new image is called Dark Channel, and it is defined as:

yeQ(z) \ ce{R,G,B}

Jdark () = min ( min Jc(y)> :
where Q(z) is a neighbourhood of pixels around the x location, and the minimum is
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first over the three colour channels of the observed image J and then over each local
patch. The Dark Channel Prior then simply states that for outdoor haze-free images,
for almost every z, it holds that:

Jdark () — 0. (2.37)

In Fig. (2.11]), we can see a haze-free image together with its dark channel, which
does not present bright areas as expected (unless in the sky region), and in Fig. ([2.12))
we can find a hazy image, with its bright dark channel.

Figure 2.12: A hazy natural scene and its Dark Channel.

After assuming the Dark Channel prior, the estimation of airlight and transmission
becomes straightforward. Supposing for the moment that the airlight has already been
computed and divide Eq. (2.35) by it, we obtain:

I°(x) Jo(x)
Ac Ac
A second assumption needs to be done now. We suppose that transmission (and thus

depth) is locally constant in a natural image. Denoting this approximated trans-
mission by t(z), we now take minima over every channel on (2.38)), and again over

= t(x) +1—t(z), ce{R,G,B}. (2.38)
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each local patch; since t(z) is constant it can be taken out of the minima operators,
yielding:

min (mcin(ICA(f))> = i(2) min (K?) +1-1%(z), ce€{R,G,B}. (2.39)

y€eQ(z)

Now, we use the fact that J is a haze-free image, and its dark channel is almost a
close-to-zero image. As the airlight must be a positive quantity, we can write:

min (Jc(x)> ~ 0. (2.40)

yeQ(z) \ Ac

Inserting (2.40)) in (2.38)) provides the estimate for the transmission we were looking
for:

- : ()
t(z) =1-— nin (chln( Ac )) . (2.41)
The fact that we can recover transmission from the Dark Channel of a hazy image
makes physical sense, since haze usually becomes denser as distance from the observer
increases, and it is that information what the Dark Channel prior captures. Notice
that equation directly relates transmission and depth of the scene.

As we see in Fig. , the assumption that the transmission map can be con-
sidered patch-wise constant is unrealistic. If the patch has inside a depth jump, this
hypothesis fails and leads to artifacts in the recovered scene. To overcome this issue,
a refinement step must be performed, in which the rough transmission-map estimate
is bilaterally filtered with the original image to recover fine structures in the depth
image.

Regarding the airlight, represented by the colour of the horizon, it can be extracted
from the Dark Channel of the input image. Since the effect of haze is additive on
a haze-free image, one can consider that a bright dark channel contains haze only,
and estimate the airlight A from it. The brightest pixel in the dark channel can be
considered to be the representative of the haze colour, and its correspondent pixel in
the hazy image is selected to be the airlight A.

The final step is simply to invert in (2.35). Usually a lower bound is inserted in
the denominator to prevent dividing by small numbers:

Ir) = [(z) — A

B max(t(_x), to) A, (242)

where a typical value for ty, can be 0.1.

Equation ([2.42) represents one of the most powerful methods to remove haze from
weather-degraded images. Its strength lies on its simplicity. Previous attempts to
fulfil the dehazing goal were cumbersome, some of them requiring complex image ac-
quisition techniques or very involved numerical methods. A sample of the impressive
visual results produced Dark Channel Method can be appreciated in Fig. .
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(a) Hazy input image (b) Corresponding Dark Channel.

(c) Corresponding transmission map. (d) Detail of the lamp-post, containing a depth
jumps, and its computed transmission.

Figure 2.13: Hazy scene with strong depth discontinuities, and illustration of how the
unrefined transmission map fails to to capture depth differences.

Figure 2.14: (a) Hazy urban scene. (b) Result of applying the Dark Channel corresponding

to the image of Fig.
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Chapter 3

Underwater Image Restoration

In the last section of the previous chapter, we have discussed the problem of restor-
ing an image that has lost its contrast in far away regions of the scene due to a
distance-dependant degradation. The main related application is that of image de-
hazing, since fog fits nicely with this definition of degradation. On a hazy regime,
contrast in the scene is adequate in areas of the image that lie near the observer,
while it uniformly degrades as we move away from such observer, exhibiting colours
exponentially increasing towards white.

However, it turns out that not only haze, but also other phenomena follow these
scheme of degradation. The overall idea of distance-dependant degradation is that
the media lying in between the observer and objects in the scene is not transparent,
and it gets “thicker” with distance. In this chapter, we analyse the case of images
acquired in an underwater environment, and the problem of improving their quality.

Underwater images also suffer from low contrast as a result of the exponential de-
cay that light suffers as it travels. Hence, this problem shares some of the character-
istics of image dehazing. However, underwater images also exhibit a particular colour
distortion associated to different wavelengths having different attenuation rates, be-
ing the red wavelength the one that attenuates the fastest. In other words, while in a
hazy scenario every colour degrades at the same rate towards white, in the underwa-
ter setting, wavelengths associated typically to the blue and green colours dominate,
while the wavelength associated with the red colour tends to vanish rapidly.

To overcome this unbalanced loss of contrast and colour distortion, we will develop
a new approach, based on a modified Dark Channel prior. We call this technique the
Red Channel method. The Red Channel method is designed to restore the lost con-
trast while recovering colours associated to short wavelengths. After briefly reviewing
some previous work related to the specific application of underwater image enhance-
ment, we will explain the details behind this extension of the Dark Channel method
to underwater images. In particular, we will explain how to deal with artificially
illuminated areas, which are typical of underwater images. A comprehensive set of
experimental results demonstrate that the proposed technique is capable of achieving
a natural colour correction and superior or equivalent visibility improvement when
compared to other state of the art methods.
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3.1 Introduction

The field of underwater imaging has drawn much attention over the last years due
to the wide range of existing applications, from marine biology and archaeology [6§]
to ecological research [69]. The improvement of remotely operated vehicles (ROV)
navigation capabilities [70] is also a very important field of application. For example,
underwater vehicle navigation can be guided through video mosaics [71]. Mosaicking
requires a previous registration of different input images [72], and image processing
techniques are usually implemented as a preprocessing step to improve the results.

The problem of restoring images degraded by an underwater environment is chal-
lenging, in part because light travelling underwater suffers from two combined degra-
dations, known as scattering and absorption. The former consists on a change of
direction of light after collision with particles, and the latter explains how particles
absorb light. The main consequences of these degradation processes are a decrease in
the visibility distance and a colour distortion that depends on the wavelength of each
light beam. The shorter wavelengths (green and blue colours), reach further depths
in the scene than the rapidly vanishing longest ones (red), transferring to the final
image a characteristic bluish-greenish tone. Together with turbidity of the water,
and the organic particles suspended on the medium, this yields to a hard restoration
problem, since overall algorithms performance becomes highly dependent on environ-
mental conditions. Often, an artificial light source is added to the imaging device to
try to increment the visibility range in the scene, but this entails some disadvantages:
the amount of power needed to illuminate underwater scenarios can be prohibitively
expensive; moreover, illumination is not obtained in a global uniform way and a bright
area in the center of the image tends to appear, as backscattering occurs from nearby
particles causing visual disturbance.

The restoration of images degraded by an underwater environment with image pro-
cessing techniques has been studied in various ways. For instance, in [73,74] authors
suggest an algorithm that takes as input two images obtained through a polariser that
is rotated to work at different orientations, obtaining in this way extra information
about the scene that facilitates the inversion of the image formation process. Also, a
supervised algorithm is presented in [75], where parameters of colour correction are
learnt over training data. The above methods require additional information, and do
not work on single images without extra input. Single-image approaches can be found
in [76], where they employ an image fusion strategy, or |[77] and [7§|, where authors
are more focused on colour treatment. A more exhaustive review of these and other
works can be found in the recent survey [79].

Underwater image restoration can also be considered as a distance-dependent
degradation problem. From this point of view, it is interesting to recall the atmo-
spheric degradation model of Kochsmieder, presented in the previous chapter:

T(x) = T (@)t(x) + A(1 - t(x) (3.1)

_>
In | , I is the observed intensity, the input degraded colour image, t is the trans-
mission, which describes the amount of light that is not scattered nor absorbed, and
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reaches the observer (inversely related to the depth in the scene), A is the airlight,

physically related to the colour of the haze, and J is the scene radiance, which is
associated to the non-degraded image.

As outlined in the previous chapter, one of the most powerful methods to invert
eq. is the recently developed Dark Channel method. Unfortunately, the nature
of the degradation induced by a marine environment prevents from directly applying
the Dark Channel method. Absorption, which is not present in the atmosphere, since
it is considered to be transparent, influences the way in which colours are lost in an
underwater scene. Red channel rapidly loses intensity, while the green and blue ones
keep their intensity longer. In this situation, the Dark Channel Prior has no sense
anymore: being the image degraded or not, there is almost always one colour channel
with low intensity (the red one).

Several authors have proposed various modifications of the Dark Channel Method
method to solve model adapted to the underwater environment. In [80], authors
modify the algorithm prior to reflect the difference in attenuation between colours,
while in [81] they keep the algorithm essentially untouched and prefer to modify the
model by adding some parameters reflecting the disparity of degradation in different
wavelengths and depths. Unfortunately, while in [80] the different rates of colour
degradations are not taken into account, the method in [81] strongly depends on the
choice of the parameters that govern the algorithm, limiting the capability of both
approaches.

In the next pages, a Red Channel method is proposed that is suitable for underwa-
ter images. It can be interpreted as a variant of the Dark Channel method employed
in dehazing of atmospheric images. The Red Channel method is simple and
robust, and it recovers part of the lost visibility range while correcting
the colour distortion produced by absorption. Additionally, it has fewer
free parameters than previously existing methods, and can cope efficiently
with artificial light sources possibly present in the scene.

3.2 Red Channel Underwater Image Restoration

Examining in detail , we observe that the scene radiance Y(x) first goes through
a multiplicative distortion and then through an additive distortion. According to
the Beer-Lambert law, transmission t is exponentially decreasing with respect to the
distance. For the case of haze in the atmosphere, the transmission of an object in
the scene depends both on the composition of the portion of air that the light beam
has traversed to reach it, and the distance from the observer. Assuming that the
atmosphere is homogeneous allows us to write:

t(z) = e P4, (3.2)

where d(z) is the scene depth and f is the (constant) attenuation coefficient. From
Eq. (3.2)), we see that at zero depth, the transmission becomes t(z) = 1, and airlight

_>
attenuation has no influence in Eq. 1} which reduces to I (z) = ?(x) Con-
versely, as the depth in the scene increases, transmission decreases to zero, making
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the airlight contribution in exponentially more significative, until it dominates
the Whole> scene, effectively modelling what happens in the horizon of natural hazy
scenes, I ()~ A.

All the above intuition can be translated to the underwater environment with
some adaptations. To that end, we rearrange the original model and write:

1-Tf=t(1-J%+(1-t)(1 - A"
1€ =tJ9 + (1 - t)A® (3.3)
1% =tJ% + (1 —t)A",

being T = (IZ,1¢,1P) and 7 = (JB,JE JB) the degraded and the original images
respectively. Notice that is completely equivalent to . Therefore, it still
reflects the fact that the light attenuates with distance, as it actually happens under-
water. The main difference we must have into account is that red intensity decays
faster as distance increases. To reflect this fact, a possible solution is the following
modification of the Dark Channel prior, denoted as Red Channel Prior. It states
that:

JRED (4) = mmin (yg&)<1 - JR(?J)),yg&)(JG(y)Lyg&)(JB(y))) ~0, (34

for a non-degraded underwater image. Here, Q(z) is a neighbourhood of pixels around
the = location. Notice that for a degraded image near the observer, the red channel
still keeps some intensity, so its reciprocal 1 — J¥ is low, and the prior is still true.
However, as distance increases, red intensity rapidly decays, and its weight in the
Red Channel image decreases, so the prior begins to be false. This will allow us to
estimate the depth in the scene, as well as the colour of the water veil.

%
Remark 3.2.1 Notice that we denote the Red Channel of an image J = (J, JG, JB),
given by Eq. , as JRED while its red component is denoted by JE.

3.2.1 WaterLight estimation from Red Channel

The first thing we need to estimate is the colour of the water. One ideally wants
to pick a pixel that lies at the maximum depth with respect to the camera. Since
we are assuming that the degradation is distance dependent, this location naturally
corresponds to the _r)naxigum values in the Red Channel of the original image.

Let us denote A = T (zp) = (1 — A% A9 AP). We choose as the waterlight x,
the pixel in the degraded image that corresponds to the brightest pixel in its Red
Channel:

X = (F(20),1(z0), 1% (29)) such that TR¥P(zg) > TR¥P(z) va.

The analogous method to the one suggested in [7] would be to take the top 10%
brightest pixels in the Red Channel image, and among this set of pixels, select the
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(d)
Figure 3.1: Waterlight detection from Red channel. (a) Original image, the red rectangle
marks the region from where waterlight was extracted (b) In red, exact pixel location of
waterlight within the rectangle marked in (a) (¢) Red Channel of the original image (d)
Final restoration result.

one that is brightest in the degraded image. This pixel does not need to be the
brightest pixel in the Red Channel. However, the brightest pixel in the degraded
image is an ambiguous definition. In the underwater case, picking among that 10% of
pixels the one that has lower red component obtains the best results in the performed
experiments, see Fig. [3.]

3.2.2 Transmission Estimate from Red Channel

After estimating the waterlight, we are now able to produce an estimate for the
transmission of the scene. This is achieved with the following result:

%
Theorem 3.2.2 Given an estimate A = (A", A9 AP) for the waterlight, assuming
that transmission is locally constant, and under the Red Channel hypothesis ,
t(x) can be estimated as:

min (1 —I% min I¢ min 12
N yeQ(m)( (y)) Juin, (y) nin, (y)

t(z) =1 — min 1 AR : AG AP (3.5)

Proof: It is a simple adaptation of the steps of the derivation in . Starting from
Egs. (3.3), we divide them by the waterlight:

L A S tl_JR+1—tt£+1—tt£+1—t
1-ARTAY AP ) "1 - AR TTAY AP ’

and we take minima over local neighbourhoods on every image. Since waterlight are
scalar images build out of constant values, they can be extracted from the minima
operators. This is also true for the estimate of the transmission map, which we
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consider to be a locally constant image, Iél(ll)l t(x) = t(x), so we obtain:
T

min(1 — I) minI% minI?
Q Q Q

1A% 7 AG AP

_min((1—J%))
t
1-— AR

N Ninn Je ~mﬂin JB N
R e Bl A v Il

After taking minima at both sides of the above equation, we obtain:

min(1 — I) minI% minI?
Q Q Q

M TAR AT AR | T
_ min((1 — J#)) min(J®) min(J?) N
tmin | - , @ @ +1-—t

1-— AR A 7 AB

Direct application now of the Red Channel prior (3.4)) cancels out the first term of

the right hand side of the above equation. Simple rearrangement leads to the desired

conclusion. O
Let us stress that model is in fact a convex combination with coefficients t

and 1 — t, so the estimate t of t must also lie in [0, 1]. This is a non-trivial fact that

relies on how we performed the estimation of the waterlight. We have:

Theorem 3.2.3 Transmission estimate verifies t(z) € [0,1] for all pizel x in
the image.

Proof: According to Eq. (3.5)), it is enough to prove that:

min1 — I*(z) minI%(x) minI?(z
i1 -1°0) e garE)

1-—AR 7 AG 7 AB -

(3.6)

0 < min

for every pixel x. Being every quantity in Ineq. (3.6) positive, the first inequality is
automatically _V>eriﬁed. To see that the inner expression is bounded by 1, let us recall
that Airlight A was defined to be located at the pixel z( verifying that:

%
A = (AR AC AP) = (1%(20),1% (o), 1P (20)) st.  THEP(3g) > THEP (1) Va.
Then, we take an arbitrary pixel location z*, and we apply the definition of the Red
Channel given in Eq. 1} to the degraded image I :

Imnggg41—ﬁ@»,mm<F@»7mm<ﬁ@»)s

yeQ(z*) yeQ(z*)
i in (1 —1%(y)), min (I(y)), min (1" 3.7
min (yergl(go)( (), min (I"(y)), min ( (y))> (3.7)
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Since we always have g € (xg), we can write:

min (1 —If(y)) < 1 —1%(z),
y€Q(20)

min 19(y) <19(xy),
yeQ(z0)

min 17 < IB(xp).
min 17(y) < 17(ay)

With this, we can rewrite Ineq. as:
min | min (1 —I% . min 1%(y), min (I® <
(i 0= 1000, i, 19000, i () <

min (1 — I%(zg), 1%(20), 1% (10)) = min(1 — A% A% A5). (3.8)

Now, for the pixel x*, there are three possibilities regarding the left-hand-side of Ineq.
(3.8)), depending on which of the three inner quantities attains the minimum.

First Possibility: Suppose it is the first quantity, i.e.:

i i (1= 1), gin (), i (°(0)) = min (1~ 1)

In this case, Eq. (3.8)) can be used to write:

rgi(n )(1 —1%(y)) < min(1 — A% A% AB) <1 - AR
yeQ(x*

and we obtain that:

<1 3.9
1 - AR - (3.9)
Finally, using Ineq. (3.9)), we arrive to the desired conclusion:
min 1 —IF min 1¢ min I min (1 —IF
(LA (v) min I"(y) min I”(y) 3 fain, ( (%) -,
1-— AR ’ AG ’ AB - 1-— A% -

Second Possibility: Suppose now the minimum on the left hand side of Ineq. (3.8])

is attained by H%Zl(n) I%(y). Just as in the first case, we can write:
yeld(x

min 1%(y) < min(1 — A% A% AB) < AC

yEQ(z*)
and we deduce now that:
min 1%(y)
yEQ(z*) <1
A &7
which leads us to:
in 1-1% in 1¢ in 17 in 1¢
(T a6 e PO )
1— AR ’ AG ’ AB - AC -

41



Third Possibility: If the minimum in the left hand side of Ineq. (3.8) is attained
by min I”(y), similar derivations as in the previous cases lead us to:

ye(z*)
min 1 —I% min I¢ min 17 min 12
[ (y) Jain (y) duin (y) _ vt (y) -,
1— AR ’ AG ’ AB - AP -

With any of the three possibilities, the result of the theorem is verified. As the choice
of pixel z* was arbitrary, this concludes the proof.

O

Nevertheless, this straightforward extension of the Dark Channel Method to in-
clude the Red Channel Prior fails to take into account the velocity of different wave-
lengths in the light. To incorporate this behaviour in our model, we suggest two
possibilities. The first one is performed in the transmission estimate step, and con-
sists of extending the model to involve three transmission maps, one for each
colour component. The second one occurs during the final inversion step, and con-
sists of weighting the additive contribution of each waterlight component. In this
dissertation, we select the former approach.

Incorporating Colour Correction I: Vectorial Transmission

Starting from (3.3) and distinguishing three different transmission maps, we have:

1-F=tf1 - %+ (1 -t - AR
1€ =t9J% 4+ (1 —t9)AC (3.10)

)
17 =t8J8 4 (1 - tP)AP

In , we need to estimate the three components of the waterlight, and the
three transmission maps, one for each colour. However, these three terms are not
independent: using , we conclude that we only need to estimate one matrix and
two scalar numbers. We have:

tfi(z) = e~AMd(@)

@
:U‘Q

(6 () = 700 = (=P

5B

8 (z) = e — (¢=IND) ST _ (R(z))e,

= (t"(x))* (3.11)

where \g = /8% and A\ = 37 /B%. This leads to a slightly more difficult (but still
possible) estimation of the transmission, by modification of the Red Channel prior.
We have following property:

Theorem 3.2.4 Assuming that we have already estimated the waterlight, and the
attenuation coefficients for the green and blue transmission maps, A\g and Ag, and
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that:

min i (1~ 37(6)/(1 = Al () i 3°(0)/A%

yeQ(x) yeQ(x)

- 0 @ PO)/AT -0 =0 B

the red, green, and blue components of the transmission map can be estimated as:

min 1 —I% min I¢ min 17
tR(z) =1 — min | L2 W) min I(y) min ()
= 1_ AR AG AB

(@) =(t"(2))* (3.13)
7 (z) =(t"(x))*

Proof: Starting from Egs. (3.10), we divide them by the waterlight:

1-—1% 1¢ 1P 1-—Jk J¢ JB
- —= | = [t +1 -t tC 1 —tC P 1 —tF ),
1— AT ACGTAB 1— AR AC AB

and we take minima over local neighbourhoods on every image. As in the proof of
Theorem (3.2.2)), waterlight and transmission map estimates can be extracted from
the minima operators, since they are locally constant images, yielding:

min(1 —I) minI® minI?
0 Q Q

1-AR " AC AR | T (3.14)
Rm{%n((l — JB) i Gm&n(JG) o Binn(JB) .
1ttt ————4+1 -ttt —4+1—-t
1-AF A CRE AT

We want to compute the minimum of the three components of both sides of (3.14)).
Notice that in our case, the transmission maps can only be extracted from this second
minimum operator after the following manipulations:

min J¢ min J¢

t¢ fAG +1 -t =ttt L 41—ty (tg — t%°)

and analogously,

min J? min J?
t5 %&B +1—tF =tp [ty fAB (1=t | +1—tg
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where (3.11]) has been used.
Inserting the previous result in the above equation, Eq. (3.14)) becomes:

min(1 —I%) minI¢ minI?
Q Q Q

= 3.15
1— A% 7 AG 7 AP 19
. _ 1R in(J¢
R méﬂ((l ) HR*lH%D(J ) 1— !
1 _ AR el T+ R
min(J?)
tABfl%Jrl_tAR*l +(1,1,1) — (tg, tr, tr).

Now we can take the minimum on both sides of Eq. (3.15)):

min(1 —I%) minI¢ minI?
. Q Q Q —
min =

1—Af 7 AG 7 AB

. m{%n((l —J) R 1m{%n(JG)

t min | AR b AC +
min(J?)

1-— tﬁR‘l,tAB—lﬂAiB 1t 11—t

Here the vector multiplying tz cancels out due to the hypothesis of the generalized
Red Channel prior (3.12)), and we obtain:

n mg%nl—IR mg%n ¢ mg%n 7
t*(z) =1 — min AR T AG AB

And the other two transmission maps are immediately deduced from Eqs. (3.11]). [
Remark 3.2.5 Formula contains two convex combinations,
tre ! (inn JG/AG> + (11—t (3.16)
! (/A7) + (- 0,
where these quantities vary from inn J¢/AY and inn JB /AP respectively, to 1. Let

us analyse the extreme cases of this generalized prior.

o When these two quantities are equal to 1, then t3¢ ™ = t3¢ /tg = 0, and t}° =
t?%B/tR = 0, implying that the transmission is null, so the depth is maximum.
In this case, assumption reduces to the Red Channel prior , 80 we

are enforcing our main hypothesis in regions of high depth in the scene.
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(a) Rough transmission estimate (b) Refined transmission estimate.

Figure 3.2: Transmission map refinement.

e When they are min J¢/AC and min JB A respectively, then t3¢™" = t3¢ /tp = 1

and t}\%B_l = tﬁB/tR =1, so tg = tqg = tg. This situation can only happen
when we are near the observer, where the degradation is minimum, and more

intense red can be found, so ( H%zl(n) 1- JR(y)> / (1 — AR> is near zero, making
yeld(x

hypothesis valid.

The fact that the three derived transmission maps still lie in the interval [0, 1] follows
directly from Theorem [3.2.3|

Remark 3.2.6 (Transmission Map Refinement) In all these calculations, we as-
sume that the transmission map can be considered patch-wise constant, but as in the
dehazing case, this is not realistic. If the patch contains a depth jump, this hypothesis
fails and leads to artifacts in the recovered scene.

A possible solution to overcome this problem is to refine the calculated rough trans-
mission map using the guided filter , a version of the bilateral filter that efficiently
captures the fine details of the degraded image, and incorporate them in the estimated
transmission map, see Fig. [3.3. This method is faster and has no noticeable loss of
detail with respect to the method based on the image matting technique , originally

used in [7].

3.2.3 Final Inversion

To solve (3.1)), we need to invert channelwise Eqs. (3.3). Just as in the Dark Channel
method, we prevent divisions by small numbers by introducing a lower bound on the
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denominator:

R(,.\ _ I(z) — A" R
@) = i@ ) A
I9(z) — A%
1) = max((t)G(x),to) + A
JB(.’L'): IB(‘T)_AB —I—AB

max (t8(x), to)

where a typical value for tg can be 0.1.

Incorporating Colour Correction 1I: Weighted WaterLight

Attenuation coefficients A\ and g in (3.13)) are not easy to determine, as they depend
on the type of water. They are usually specified heuristically or left as free parameters.
In this method, a simplified version of the general technique can be obtained by
directly building t as in and employing the additive waterlight to weight the
contributions of each wavelength. This yields a slightly different inversion formula:

rpy _ 1Hx) — Af RAR

T i)
_ I9(x) — A°

" g T

JB(z) = IP(x) — AP + pCAB

max(t(x), to)

where parameters p%, p©, pP weight the contribution of each component. The multi-
plicative part involving I takes care of the restoration of the deep parts of the scene,
while the additive part removes the colour cast. Experience shows that there is no
need to estimate these coefficients, since the reciprocal of the waterlight coefficients
can automatically fulfil this task. Thus, a final version of the algorithm would include
the following inversion formula:

[*(z) — A

Ta) = max (t(z), to)

4 (1= AY)A°,

for « € {R,G,B}. This implementation no longer guarantees that the resultant
image lies in [0, 1]. However, a simple min-max normalization of the intensity values
to carry them to the unit interval easily fixes this issue.

3.2.4 Handling Artificial Illumination

Artificially illuminated underwater images are quite common. Unfortunately, high
intensity of the pixels does not necessarily indicate the presence of artificial light. A
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(a) Image with artificial light on it (b) Segmented artificial light

Figure 3.3: Saturation-based segmentation of artificially illuminated areas. Pixels with
S(z) < 0.4 are painted on red.

much more adequate cue to characterize it is the saturation. The saturation com-
ponent represents the purity of the chromaticity of a pixel: when a colour is in the
pure spectrum, it is completely saturated, containing no white light. A colour loses
saturation when we add white light, which contains power at all wavelengths .
The lack of saturation can thus be interpreted as the amount of white light appearing
within its colour. Saturation is defined as:
St (T — max (I, 1, 1%) — min(I%, 19 1P) 517
at(1) = max(I%, 16, 1B) (3.17)
In Fig. a saturation-based segmentation effectively separates areas with arti-
ficial light from the rest of the image. Additionally, when no light is present in the
scene, the saturation is notably different from zero. This reflects the fact that artificial
illumination forces a pixel to have similar intensity values rather than more green/blue

than red. Then, a low saturation indicates that max(I%, 1 1%) ~ min(I1%, 19 1%), i.e.,
[#~ 16 ~ 18,

It is easy to incorporate saturation into the Red Channel prior. We just extend
(3.4) to the following Red-Saturation Prior:

JREDSAT (4 — i ( min (1= J5(y)), min (J5(y)).
yeQ(x) yeQ(z)

in (JZ(y)), min Sat =0 3.18
i (0 0), i )| 3.15)

This extension handles illumination gracefully. If a pixel exhibits disparity in the
three channels, it is because the Red Channel has already lost intensity, so the object
is far away from the observer and needs to be restored. However, if a pixel has a
value for the three channels that is far from zero, either it lies in a location near the

observer or in an artificially illuminated area. Without adding saturation to (3.4)), an
artificially illuminated area that is not close to the observer can have intermediate
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(d) (e)
Figure 3.4: Result of considering or not the Saturation cue. (a) Image with artificial light
source on it. (b) Red Channel obtained with Eq. (c) Image after processing without
saturation prior. (d) Saturation-based segmentation of artificially illuminated areas. (e)
Improved Red-Saturation Channel obtained with Eq. . (f) Image after processing
with saturation prior.

values in the three channels, e.g. (0.5,0.5,0.5). The Red Channel Prior considers this
pixel to be far away, while classifies it as artificially illuminated, and will not
attempt to restore it, as desired.

To implement this idea within the Red Channel methodology, we simply reformu-

late Theorem [3.2.2] as:

Theorem 3.2.7 Under artificial illumination, we can compute an improved estimate
of t(x) as:

- — -

min (1 — T%(y)) min I%y) min I?
]E( -1 . ye(x) yeQ(x) yeQ(z)

z) =1 —min — ’ — )

1—- AR AC

(y)
.\ min Sat :
o S

where X € [0,1] is a scalar multiplier that can be manually adjusted to suit the amount
of artificial light we want to take into account.

Proof: It is a simple extension of Theorem [3.2.2]

The effect of including saturation can be clearly appreciated in Fig. 3.4 Therein,
Fig. displays an artificially illuminated scene. Fig. (3.4b)) shows the Red
Channel calculated as in Eq. , where artificially illuminated pixels are classified
as if they were in the background of the scene. In Fig. , we see the segmentation

48



of illuminated areas, while Fig. shows the Red-Saturation Channel, computed
using Eq. (3.18). In this figure, misclassified pixels are now darker, implying that they
are closer to the observer, and do not need to be restored. Figs. (3.4c) and (3.4f) show
the results of restoration with and without the Red-Saturation Prior respectively. We
can appreciate a chromatic artifact that renders the restored image in a reddish tone
at illuminated areas due to a wrong depth estimation. The integration of Saturation
in the transmission estimation considerably reduces this effect, as seen in Fig. .

3.3 Experimental Results

It is extremely challenging to assess the performance of an underwater image restora-
tion algorithm, since there is not groundtruth available. Hence, no standard non-
referenced image quality metric, such as PSNR or SSIM, can be used in our situa-
tion. In this dissertation, we evaluate the restoration output in a twofold manner.
First, we will assess the amount of visibility that the presented algorithm, together
with other five state-of-the-art methods, is able to recover. Second, we propose to
evaluate colour correction based on the examination of three indicators of the quality
of the restoration, that will be described in the next section. Each of these indicators
reveals the weaknesses and strengths of the methods we compare in a different aspect
of colour quality.

For comparison purposes, the four test images displayed in Fig. have been
selected, since they have been captured under different conditions, with a varied type
of waters, representing different scene configurations and with a varying degree of
artificial illumination.

3.3.1 Contrast and Visibility Recovery

In this dissertation, to evaluate the amount of contrast recovered we consider a non-
referenced metric proposed in [85]. This metric was employed in [86] for purposes of
visibility recovery assessment on images corrupted by fog. It is meaningful to use this
metric, since it aims at finding whether the algorithm has retrieved some of the edges
that were lost by the scattering effect. It works by computing three coefficients that
measure the amount of new visible edges that a given contrast restoration method
produces, as well as the restoration quality, since retrieving many edges alone is not
an indicator of the quality of the algorithm.

Extensive comparisons of the performance of our algorithm with other five state-
of-the-art techniques for underwater image restoration and enhancement have been
performed, by computing the coefficients e and r, see [85]. The first of these coeffi-
cients, e, is calculated by first building a map of visible edges on the restored images,
and then, counting the amount of edges on the original image, n,, and on the restored
image, n,, and setting:

This formula evaluates the quantity of edges that were not present at I, but are in I,.
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(a) Diver image (b) Open scene image

(c) Shipwreck image (d) Fishes image

Figure 3.5: The set of images selected for evaluation.

Complementarily, for each pixel ¢ belonging to a visible edge, it computes the ratio
of the gradient in the restored image and in the original image r;, and geometrically
averages it to obtain the coefficient r as:

1
r=— Zlog(ri).
ny 5

Finally, it also computes the number n, of pixels that the algorithm saturates to black
or white, normalized by the size of the image, obtaining the third coefficient o:

J— ns

-~ dim, x dim,,’

The visual results of restoring these images with the algorithms described in |76,

80,81}[87,/88] and the Red Channel approach are shown in Figs. (3.6), (3.8), (3.10),

, and the edge maps computed by the evaluation metric we are using are given
in , , , . Tables and show the e and r coefficients that the
different methods scored in these set of images. The o coefficient is not displayed,
since all methods exhibit values very close to zero.

We see that only on the Diver and Fishes images, there is one method, Ancuti’s
algorithm, that outperforms the Red Channel method’s results. However, in Table
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Table 3.1: Visibility recovery coefficient e compared on four images

e coefficient Diver  Open Scene Shipwreck Fishes
Ancuti et al. [76] | 23.7132 0.06377 1.4890  7.5038
Malkasse et al. [87] | 2.4075 0.07222 0.5599  3.0220
Carlevaris et al. [80] | 0.1617 -0.2039 1.3534  0.5345
Chiang et al. [81] 0.1046 0.1705 0.3123 0.1842
Serikawa et al. |[88] | 0.4414 0.14903 0.0381  0.9163
Red Channel 16.4695 0.4011 1.8982 4.5547

Table 3.2: Restoration quality coefficient r» compared on four images

r coefficient Diver Open Scene Shipwreck Fishes
Ancuti et al. [76] | 4.7713 1.7827 1.4890 5.3905
Malkasse et al. [87] | 5.9437 3.6533 4.2686  6.3280
Carlevaris et al. [80] | 1.2083 1.3625 2.6018  0.9813
Chiang et al. [81] | 1.2976 1.7812 1.7677 1.4304
Serikawa et al. [88] | 1.5719 2.1414 2.0557 1.8693
Red Channel 2.1197 1.1235 1.9810 2.3799

3.2 we can see that Ancuti’s method is producing a higher r value. That means that
this method is recovering spurious edges, as confirmed by visual inspection of Figs.
and (3.71), as well as of (3.9a) and ([3.9f). We see there how Ancuti’s algorithm
is recovering much more noise than the Red Channel algorithm on areas of the image
that contain no object, only water.

In every other case, the proposed algorithm performs better than the other state-
of-the-art methodologies in terms of visibility recovery, analysed through the e coef-
ficient. The values of the r coefficient in the Red Channel method tend to be higher
than Carlevaris, Chiang’s and Serikawa’s, but this occurs because these three methods
are not recovering as much visibility as the Red Channel approach does, as reflected
by their scores at the e coefficient table. Since they retrieve substantially less edges,
they also recover less spurious edges.

3.3.2 Colour Correction Evaluation

In terms of colour correction, as there is no groundtruth of how should the colour
on the scene really be, we can only evaluate the ability of each method to remove
the colour cast and recover a more natural colour distribution. Since naturalness of
colours is a rather subjective concept, it is very hard to measure the quality of the
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(a)

(d) Processed with (e) Processed with (f) Processed with Red Channel.

Figure 3.6: Results on the Diver image.

recovered colours.

Other works, see for instance ,, try to assess the ability of a method to
recover real colours by taking an image of a colour board before and after immersion
in a water body, then processing the water-degraded image and comparing the result
to the colours of the image acquired in the atmosphere. This can be a meaningful
evaluation approach for a single method performance analysis. Unfortunately, this
approach has limited usability for comparison tasks, as it is very particular, and
hardly reproducible, since each immersion takes place in different waters and under
very different conditions that could favour one or another method. Moreover, it is
arguable whether an underwater image processing algorithm should have the goal
to convert colours to their equivalent in the surface. The goal here is to obtain an
improved image, in terms of contrast and visibility increase, with realistic colours,
which do not necessarily need to be the real ones as one would see them in the
atmosphere. After all, colour correction must be performed in a way that the resultant
image looks natural to the human eye, and this is inevitably a subjective task that
does not necessarily match the idea of converting an underwater image to its surface
counterpart.

We analyse the behaviour of the different methods regarding three visual com-
ponents that are affected by colour corruption, namely, colour dominance, colour
cast and colour fading which leads to low colour saturation. One metric is proposed
for each of these aspects, allowing to quantitatively evaluate the performance of each
method in a way that proves to be consistent with subjective perceptual criteria when
applied to the test images we handle here.

As advocated in [10], we can associate an image with colour cast to the fact that
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(d) Processed with (e) Processed

Figure 3.7: Visible edge maps of the recovered Diver image.

T

with (f) Processed with Red Channel.

~

(c) Processed with

i A

(d) Processed with (e) Processed with (f) Processed with Red Channel.
Figure 3.8: Results on the Fishes image.
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(d) Processed with (e) Processed with (f) Processed with Red Channel.

Figure 3.9: Visible edge maps of the recovered Fishes image.
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(a) Processed with
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(d) Processed with (e) Processed with (f) Processed with Red Channel.

Figure 3.10: Results on the Open scene image.
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(d) Processed with [81] (e) Processed with [88] (f) Processed with Red Channel.
Figure 3.11: Visible edge maps of the Open scene image.

‘ SEL
(d) Processed with [81] (e) Processed with [88] (f) Processed with Red Channel.

Figure 3.12: Results on the Ship image.
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(a) Processed with [76] (b) Processed with [87] (¢) Processed with [80]

(d) Processed with [81] (e) Processed with [88] (f) Processed with Red Channel.
Figure 3.13: Visible edge maps of the Ship image.

one chromatic channel exhibits a particularly different standard deviation with respect
to others. Moreover, colour cast should not be confused with colour dominance. In the
latter case, it is the average value of a channel that predominates. This interpretation
further motivates the idea that contrast enhancement in colour corrupted images can
help to decrease colour cast, as it spreads the intensity values of all colour channels,
decreasing thus the dispersion of the correspondent standard deviations.

We can thus set as a meaningful goal the reduction of colour cast without increas-
ing colour dominance on the three chromatic components of an underwater image.
To measure the achievement of these goals, we can look at the relative dispersion of
the three RG B channels, ug, pug, g, and of its standard deviations, o, 0g, op. To
quantify this dispersion, we simply pick the maximum of their mutual distances, i.e.:

paie = max(|ur — pal, |pr — psl, lus — 1el) (3.19)

and
UdiffZmaX(|UR—UG’,|UR—UB’,\UB —UGD (3-20)

By enforcing that these coefficients remain relatively low, we are requiring that
colour cast and dominance are reduced. Notice that a completely gray image would
achieve the lowest score in both pgg and ogg. To incorporate the requirement of
recovering a variety of colours, we can simply consider a measure of saturation. To
keep the consistency of requiring low value to reflect optimal behaviour, we introduce
a third coefficient, given by:

A =1 — mean(Sat(I)), (3.21)
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where Sat(I) is defined as in Eq. (3.17)). Each of these metrics measures the ability to
reduce colour dominance, remove colour cast and retrieve rich colours, respectively.

Regarding colour dominance, Fig. reproduces the scores that each method
achieved in the metric given by Eq. , for each image in our test set.
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(a) Diver image (b) Open scene image
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(¢c) Shipwreck image (d) Fishes image

Figure 3.14: Scores for coefficient pqig in each of the four test images.

We observe that the method in is able to carry the chromatic means to a
common value, obtaining the best score in colour dominance reduction. Ancuti’s
algorithm and the Red Channel approach are ranked in second/third position
here, while the rest of the methods fail to remove colour dominance.

Regarding colour cast reduction, again the method in scores in the best po-
sitions, only beaten by the Red Channel method on Image 1 and obtaining similar
results as on Image 3.

However, these results should be judged cautiously. The algorithm in [87] removes
colour dominance and cast by sacrificing the recovery of intense colours, i.e., it is
obtaining rather grayish images, see for example Fig. [3.8bl This is confirmed by
inspection of Fig. [3.16| Therein, we realize that is the method that recovers the
least vivid colours. On the other hand, the methods in [80], and are obtaining
very saturated colours, but clearly sacrificing the reduction of colour dominance, and
to some extent, also colour cast. We thus see that, among the three methods that are
able to reduce colour dominance and colour cast, Ancuti’s method and the Red
Channel technique are again ranked as the first/second with respect to the ability
to retrieve intense colours. This quantitative evaluation seems to soundly match
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Figure 3.15: Scores for coefficient ogig in each of the four test images.

perceptual criteria, as visual inspection of the experimental results in the previous
section reveals.

3.4 Conclusions on Chapter 3

In this chapter, a new method for the restoration of underwater images has been de-
veloped. It tackles both visibility loss and colour corruption. This technique extends
the Dark Channel Method, adapting to the way these images are degraded. A general
methodology to locate artificially illuminated areas within an underwater scene has
also been studied, together with a method to handle these regions properly, avoiding
colour artifacts that can appear as a result of depth miscalculations..

Regarding the experimental results, a twofold evaluation has been carried out.
First, to measure the improvement of image contrast, a metric proposed in has
been employed to quantify visibility enhancement on images degraded by fog. Second,
to evaluate the quality of the recovered colours, three basic indicators that adapt
nicely to the problematic of assessing the quality of underwater colours after image
restoration have been specifically developed.

Images restored with the Red Channel method have been compared with five
different state-of-the-art algorithms. Results show that our approach obtains good-
quality images, with a visibility enhancement comparable a better than other recent
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Figure 3.16: Scores for coefficient A in each of the four test images.

methods. As for colour recovery, the Red Channel technique retrieves natural colours,
consistently ranking between the best positions among different images, regardless of
the different water conditions.

The experiments have been performed on four different test images that attempt
to capture the wide variability of underwater images. Although this test set encom-
passes rather different images, it is obvious that it is impossible to reflect the whole
range of possibilities regarding the different water qualities, depth from the atmo-
sphere, illuminations and a large number of parameters that affect underwater image
acquisition. To improve potential comparison and evaluation, an online repository has
been preparedﬂ where the reader can find all the images that appear in this chapter
at full resolution, as well as restoration results in a wider set of test images.

Ihttps://github.com/agaldran/UnderWater
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Chapter 4

A Variational Framework for
Image Dehazing

Images obtained under adverse weather conditions, such as haze or fog, typically ex-
hibit low contrast and faded colours, which may severely limit the visibility within
the scene. This parallels in some sense the process suffered by underwater images. In
the same way, unveiling the image structure under the haze layer and recovering vivid
colours out of a single image remains a challenging task, since the degradation is again
depth-dependent and conventional methods are unable to overcome this problem. In
this chapter, we extend the perception-inspired variational framework reviewed in
the chapter 3 of this dissertation to make it account for such a particular kind of
degradation. Two main improvements are proposed. First, we replace the value used
by the framework for the grey-world hypothesis by an estimation of the mean of the
clean image. Second, we add a set of new terms to the energy functional for maximiz-
ing the inter-channel contrast. We present experimental results demonstrating that
the developed Enhanced Variational Image Dehazing method (from now on EVID)
outperforms other state-of-the-art methods both qualitatively and quantitatively. In
particular, when the illuminant is uneven, the EVID method is the only one that
recovers realistic colours, avoiding the appearance of strong chromatic artifacts.

4.1 Introduction

Under good visibility conditions, the human eye can resolve two different objects only
within a range of a few kilometres. Indeed, when looking at mid and long range open
natural scenes, colours of far away parts of the scene tend to mix with the colour of
the atmosphere, gradually fading away and vanishing against the horizon. However,
distance is not the only factor that can deteriorate perceptibility, but also bad weather
conditions can accentuate visibility decrease. The presence of tiny suspended particles
in the atmosphere lying between the observer and the objects in the scene can cause
the deflection of light beams that travel from the latter to the former. This is produced
by a wide range of factors, including dust, pollution, fog, haze, rain, or snow.
Recently, the problem of restoring and properly enhancing images affected by bad
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atmospheric conditions has attracted much attention in the image processing and
computer vision community. From a practical point of view, many vision systems
operating in real-world outdoor scenarios assume that the input is the unaltered
scene radiance. These techniques designed for clear weather images may suffer under
bad weather conditions where, even for the human eye, discerning image content can
represent a serious challenge. Therefore, robustly recovering visual information in bad
weather conditions is essential for several machine vision tasks, such as autonomous
robot/vehicle navigation [90], remote sensing [91] or video surveillance systems [92,
93]. Aerial and remotely sensed images, related to applications such as land cover
classification [94}95], and even underwater image restoration [81] can also benefit
from efficient dehazing techniques.

From a physical point of view, models of the propagation of light through the
atmosphere can be traced back to the work of Kochsmieder [67], who formulated a
simple linear model relating the luminance reflected by an object to the luminance
reaching the observer. This model identified the distance between the observer and the
source, as well as the particle composition of the atmosphere, as the key parameters
that govern the decay of the luminance. From then on, studies of the interaction of
light with the atmosphere continued growing as a rich field of research in the area of
applied optics [96197].

Based on these physical models, many image dehazing methods have been pro-
posed. They can be roughly classified into multiple image ones [98-103], if they
use more than one input image to estimate depth information, or single image ones
[7,[861,/104], that work only with an initial degraded image. We can also find works
that directly compute the albedo. In this case a depth map can be obtained as a by-
product of these methods. Examples of this approach include the work of Tan [105],
where the albedo is estimated by imposing a local maximization of contrast, or Fat-
tal [106], where it is assumed that depth and surface shading are locally uncorrelated.
Unfortunately, both of these approaches rely on the assumption that depth is lo-
cally constant, and as a consequence, the obtained images may sometimes suffer from
artifacts and tend to over-enhance the results.

The work presented in the following lines is a combination of the advantages of
the two approaches for image enhancement presented in section [2.2] namely, the mod-
elling of the Human Visual System (HVS) and the modelling of a distance-dependent
degradation. In this sense, two main improvements over the HVS developed in sec-
tion are proposed in the following lines. First, we modify the Gray World
hypothesis to make it comply with the physical model of haze degradation presented
in section . Second, we extend the original functional, adding extra energy
terms that allow us to control the degree of image saturation on the output. We
also conduct an exhaustive quantitative evaluation versus a large set of recent meth-
ods. As the experiments demonstrate, the minimization of this new model provides
high-quality haze-free images, even in challenging scenarios with uneven illumination
or remarkably poor chromatic information. These seem to be situations where the
majority of the state-of-the-art methods tend to encounter difficulties in restoring the
degraded image without introducing unnatural colour artifacts.

The rest of the chapter is structured as follows. In the next section we review
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(a) (b)

Figure 4.1: (a) Hazy image, where the degradation increases with distance. A non-uniform
illuminant dominates the scene. (b) The result produced by the EVID method.

recent methods for image dehazing. Next, we formulate the image dehazing problem
in a variational setting, and we develop an Enhanced Variational Image Dehazing
(EVID) method. Section 4.4 is devoted to experimental results and comparison to
other state-of-the-art methodologies. We end up in section 4.5 by summarizing the
entire approach.

4.2 Related work

Most previous works on image dehazing are based on solving the image formation
model presented by Koschmieder [67] that can be computed channel-wise as follows

I(z) = t(2)J(x) + (1 — t(x))A, (4.1)

where z is a pixel location, I(z) is the observed intensity, J(x) is the scene radiance,
corresponding to the non-degraded image, transmission t(x) is a scalar quantity that
is inversely related to the scene’s depth, while A, known as airlight, plays the role of
the haze colour, which is usually considered constant over the scene, and therefore in
a channel-wise formulation it is a scalar value.

Solving Eq. is an under-constrained problem, i.e. there exist a large num-
ber of valid solutions. To constrain this indeterminacy, extra information in different
forms has been introduced in the past. A large part of these works can be grouped
under the category of methods that work with multiple input images or other data,
which must be fused to take profit of this extra-information. For example, in [102],
several instances of the same scene are acquired under different weather conditions.
Then, differences in pixel intensities allow to estimate depth discontinuities, comput-
ing thus a scene structure map that enables the recovery of a clear weather scene.
Schaul et al. acquire visible and near-infra-red (NIR) images of the same scene [107],
taking profit of the fact that NIR images are less sensitive to haze. Both images are
then fused by means of a multi-resolution scheme to obtain a dehazed image. The
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work in [108] retrieves depth information from geo-referenced digital urban and ter-
rain models. An interactive registration of the photograph and its model is performed,
after which depth information is available, making possible to remove haze effects in
the input image. In [100], multiple images acquired through a polarizer at different
orientations are used. This approach relies on the fact that the light scattered by
atmospheric particles is partially polarized. Thus, it is possible to invert a physical
model of image formation, enhancing scene contrast and correcting colour. Unfor-
tunately, all these methods depend on the acquisition of extra information, which is
often unavailable, and this hinders the practical use of these techniques.

Dehazing is particularly challenging when only a single input image is available.
In this case, the majority of existing methods are also focused on solving Eq.
by inferring depth information. The method in [109] assumes that hazy images are
usually acquired outdoors, allowing to conclude certain characteristics about the ge-
ometry of hazy scenarios. For example, the top part of the image is assumed to
contain the most hazy regions in the image. Tarel et al. propose in [86] a fast al-
gorithm that estimates the atmospheric veil (equivalent to the depth map) through
an optimization procedure in which they impose piecewise smoothness. The main
advantage of this method is its low complexity, that they show to be a linear func-
tion of the number of pixels. More recently, several fusion-based dehazing strategies
have also been proposed. In [110], a multi-scale fusion strategy is adopted, in which
the authors compute several weighting maps (based on luminance, chromaticity and
saliency) that they use to fuse a white-balanced and a contrast enhanced version of
the original degraded image. In [2], the depth map is obtained by a fusion procedure
in a probabilistic framework.

When inverting models like the one in Eq. , there is a risk of enhancing both
the underlying signal and the noise. Some works have also studied this issue. For ex-
ample, in [111], a variational formulation is proposed, in which a distance-dependent
and edge-preserving regularization term is introduced, resulting in a numerical scheme
that is able to dehaze the input image while denoising far away regions. The varia-
tional point of view has also been recently exploited in [112], where Fang et al. pro-
posed a variational formulation intended to dehaze a degraded image while denoising
it. After estimating the depth information using a variation of the dark channel prior,
the authors formulated an image energy, that they minimized using the primal-dual
Chambolle-Pock algorithm [113]. Existence of a minimizer and convergence of the
numerical schemes were also discussed.

A special mention deserves the Dark Channel Method [7], probably the most
successful technique to date, due to its simplicity and effectiveness. This method is
based on the statistical observation that haze-free images are colourful and contain
textures and shadows, therefore lacking locally the presence of at least one of the
three colour components. On the contrary, hazy images present less contrast and
saturation. As depth increases and the haze takes over the image, the contrast and
saturation further decrease, providing an estimate of the depth information based on
which it becomes possible to invert Eq. (4.1), obtaining high-quality results. This
method has been explained in detail on section 2.2.2.1.

Several methods that are independent of an initial estimation of the scene depth
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have also been devised. Tan [105] observes that a haze-free image must have more
contrast than a hazy one, and also that the amount of haze varies smoothly. Consid-
ering that nearby pixels tend to lie in the same depth layer of the scene, and thus are
equally affected by haziness, he formulates a cost function attempting to maximize
contrast while preserving depth smoothness locally. This cost function is optimized
within a Markov random field framework, yielding a haze-free image. In [106], Fattal
estimates scene depth by extending the image formation model to take into account
both transmission and surface shading. He then looks for a haze-free solution of the
model in which the resulting shading and transmission functions are locally uncorre-
lated in an statistical sense. In a subsequent work [104], the same author builds on
the concept of colour-lines, establishing that for natural images, pixels exhibit a local
one-dimensional distribution in the RGB space. A local image formation model is de-
vised to adapt the colour-lines concept to hazy images, and transmission in the scene
is estimated by means of a Markov random field that also allows to control noise. A
substantially different approach is adopted by Nishino et al. in [114]. Rather than
attempting to estimate depth in an initial stage, the authors resort to a Bayesian
probabilistic framework, in which they are able to jointly estimate the albedo and the
depth, by considering them as two statistically independent latent layers.

4.3 Enhanced Variational Image Dehazing (EVID)
method

The majority of current dehazing algorithms are based on an estimation of the image
depth (or transmission). Therefore, these methods are susceptible to fail when the
physical assumptions underlying Eq. are violated, as for example, when there
is a source of light hidden by the haze, and in virtually-generated images that add
different types of fog. Methods that do not estimate the model depth do not suffer
from this problem, but they usually result in over-enhanced images due to the special
characteristics of the degradation associated with haze. More conventional contrast
enhancement algorithms, such as histogram equalization, are not suitable either. For-
tunately, recent spatially-variant contrast enhancement techniques can be adapted to
perform well for image dehazing tasks. In the following, we develop a variational
framework for image dehazing that enforces contrast enhancement on hazy regions of
the image throughout an iterative procedure that allows us to control the degree of
restoration of the visibility in the scene.

4.3.1 Variational contrast enhancement

In 2007, Bertalmio et al. [3] presented a perceptually-inspired variational framework
for contrast enhancement. This technique has been analysed in detail in section
2.2.1.2] and we briefly review it here, in its discrete version, for the convenience of
the reader. The method is based on the minimization of the following functional for
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each image channel I:

B0 =53 (1)~ 5) + 5 S0 - @) - 1 Swlie) - 1) (12

T z,y

where I is a colour channel (red, green or blue) with values in [0,1], Iy is the orig-
inal image, x,y are pixel coordinates, «, 3,7 are positive parameters, and w(z,y)
is a positive distance function with its value decreasing as the distance between x
and y increases. This method extends the idea of variational contrast enhancement
presented by Sapiro and Caselles [§8] and it also shows a close connection to the
ACE method [63]. Bertalmio and co-authors later revealed connections between this
functional and the human visual system: they generalized it to better cope with per-
ception results |10, and they established a very strong link with the Retinex theory
of colour [9]. All these features of the above energy have been studied in depth in the
first chapter of this dissertation.

The minimization of the image energy in Eq. represents a competition
between two positive terms and a negative one. The two positive terms prevent the
solution from departing too much from the original image (second term) and preserve
the gray-world hypothesis (first term). The negative competing term attempts to
maximize the contrast. By focusing on this negative term of Eq. , we can
observe a very useful relation with dehazing methods. It can be written as:

Y wlz y)(z) — Ly)| = Y w(z,y) (max(I(z),1(y)) — min(I(z),1(y))).  (4.3)
x,y z,y
We see from the above equation that the contrast term is maximized whenever the
minimum decreases or the maximum increases, corresponding to a contrast stretching.
Notice that minimization of local intensity values is one of the premises of a haze-free
image, according to the Dark Channel prior, see Eqgs. (2.2.2.1) and (2.37). The second

premise of this prior is the presence, locally, of a low intensity of Red, Green or Blue.
We will extend our method to handle also this hypothesis is subsection [£.3.3]

4.3.2 Modifying the Gray World assumption

In the image dehazing context, the Gray World hypothesis implemented in Eq.
is not adequate, since we want to respect the colours of the haze-free image, not to
correct the illuminant of the scene. Different modifications of this hypothesis have
already been proposed for several problems [115,|116]. In this chapter, to approxi-
mately predict which should be the mean value of a dehazed scene, we rely on the
model of Eq. , that is written channel-wise as:

U =Jt+(1-—t)A, (4.4)

where j € {R,G, B}. By rearranging and taking the average of each term, we can
write: ‘ ‘ ‘
mean(J’ - t) = mean(l’) — mean((1 —t)A7).

Now, we make the following two assumptions:
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1. On a hazy image, colour of a pixel is depth-dependent. On a haze-free image,
however, we can expect colours to be independent of where the object is located
in the scene. Thus, we can assume that J7 and t are uncorrelated, allowing us
to write:

mean(J7 - t) = mean(J?) - mean(t)

2. We assume also that t has a uniform distribution across the image, i.e., depth
values are equally distributed. This can be expressed simply as mean(t) = 1/2.

Using the above assumptions, we can estimate mean(J7) as:
mean(J?)/2 ~ mean(I’) — (1/2) mean(A7).

The airlight A takes a constant value for each channel that can be roughly approxi-
mated by the maximum intensity value on each component, since haze regions have
usually higher intensity. Thus, a reasonable approximation for the mean value of the
haze-free scene, and in consequence a new gray-world value, is given by:

@' = mean(J’) ~ 2 mean(l’) — A7, (4.5)
We can now rewrite the energy functional as:
. o fy . .
B(P) = § X 0P(@) =) + 5 X0 (@)~ T@)* = § Cwlw )V @) =P ()] (46
x z,Y

To minimize the above energy, we first need to compute its Euler-Lagrange deriva-
tive. We have already formulated the condition a minimizer of (4.6)) must satisfy. This
was:

VE®l) = a(l/(z) — p;) + BV (z) = B(2)) = yR(F)(z) =0, j € {R,G, B}
where the function R(I) is a contrast enhancement operator:
_ 2wl y)s((z) —(y))
R(I)(.T) - Zy W(l’, y) )

and s is a smooth approximation of the sign function, that accounts for the first
derivative of the absolute value. In the next subsection, we formulate an extended
version of the energy given in . We give in the Appendix a proof of the compu-
tation of its variational derivative.

(4.7)

ol
We can now apply a gradient descent strategy. To this end, we solve 5= —VE(),

being ¢ the evolution parameter. For the case of the energy given by Eq. (4.6)), with
the modified gray world assumption, after an explicit discretization in time, we have:

., =1 - At(a+ B)) + At(ap? + Blo) + AtyR(T}), j€{R,G,B}  (48)

The initial condition for this descent is I,_, = I/(z). The computation of operator R
is reformulated in terms of convolutions by means of Fast Fourier Transforms. This
brings a significant computational improvement to the method, since the effort to
compute expression falls down from O(N?) to O(Nlog(N)). Details of this

argument for complexity reduction can be found in [3}/117].
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4.3.3 Controlling the saturation

The variational framework has several advantages over traditional closed-form so-
lutions. First, it provides an iterative procedure that allows the user to stop the
iterations as soon as the image meets a desired degree of quality. Also, the effect
of the modification of the parameters governing the evolution of Eq. is simple
to understand and has a clear meaning. Furthermore, the energy-based formulation
eases the combination of different image processing objectives. For example, we can
combine Eq. with a depth map coming from any of the algorithms that are
able to estimate a 3D structure in the scene, to enforce denoising or deblurring tasks
in far away areas of the scene. As an additional feature of the proposed method,
in this section we illustrate how we can add an extra term to Eq. in order to
recover more vivid colours when an output image seems too washed-out, or if the user
considers there is too much saturation in the recovered scene.

Hazy images are not only characterized by a loss of contrast, but they also exhibit
a low saturation that makes colours look faint. The degree of saturation of a pixel x
in a RGB image is defined by the following formula:

max(I%(x),1%(x), 18 (x)) — min(I%(z), 1% (), 1% (x))
max (17 (x),1¢(x), 18(x))

S(x) =

min(1%(x),1%(x), 15 (x))

=1- max (17 (x),1¢(x), 18(x))

(4.9)

This implies that saturation of a pixel is augmented as long as the maximum increases
or the minimum decreases in the above formula. This idea complies in part with the
Dark Channel prior, formulated in Eqs. [2.2.2.7 and [2.37, which states that in a local
neighbourhood around a haze-free pixel, we should find a low value of intensity in
some of the RG B channels. We have already included the spatial component of this
assertion in Eq. . The maximization of the expression there enforces locally the
presence of low intensity pixels. To incorporate the chromatic component, we simply
modify the contrast increase term given by Eq. to account for the value of the
pixel in the different channels:

> w(z, )|V (x) = ()| = Y wlz,y) (max(V(z),T'(y)) — min(V(z), I'(y)))

x’y

where j # 1, j,1 € {R,G, B}. This amounts to extending the energy in Eq. (4.6)) by
introducing an inter-channel stretching term:

BIF) =2 Y0 (a) ) + 5 Y (0(@) - @)~ LY wle ¥ (@) - ()

x

- <gzw(w,y)llj(w) — () + 2 > wla )P () - Ij“(y)I) , (4.10)

x7y

where j € Zs. In here, {R, G, B} is identified with the space of integers modulo 3,
Zs, meaning for instance that I? = I%, and I3 = I%#. The derivative of this extended
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energy is given by the following expression:

VE() =a(V () — p;) + BV (z) — Ij(2))
— YR, V) (z) — n[R(I, V) + R(F,F*2)], j € Zs, (4.11)

where we have introduced an extension of the operator (4.7)) by considering the op-
erator R(I',1?) defined as follows:

>y w(z, y)s((z) — P(y))
>y w(,y) '

R(I', 1?)(z) = (4.12)

Notice that when I' = 12, this reduces to the mono-channel contrast enhancement

operator defined in (4.7)). Thus, the energy in Eq. (4.10) includes the one in Eq. (4.6
as a particular case, and so does its derivative. We include a proof of equation (4.11

in Appendix [A]
A complete numerical gradient descent that increases local contrast and saturation
can be written as:

L., =H(1— At{a+ 8)) + At(ags + B) (4.13)
+ AtRE, L) + 0RO T + RO, 1),

where j € Z3. Parameter 1 controls the degree of saturation increase. If necessary, a
change of sign in the last term of would accomplish a local saturation decrease.
The iteration of Eq. (4.13)) until steady-state configures the proposed Enhanced
Variational Image Dehazing (EVID) method. EVID provides the user with a mech-
anism to control the amount of saturation on the recovered colours. As an example,
in Fig. we display a hazy open scene. The enhanced versions of the input
image appearing in Fig. have been obtained by using Egs. and the EVID
method, respectively. The convenience of applying EVID over the method of Eq.
is demonstrated in the close-up details appearing in Figs. to . We
can appreciate how the addition of the inter-channel saturation term produces more
intense colours both in far away regions of the scene and in middle-range areas.

4.4 Experimental Results

In this section, the dehazing capability of our EVID method is tested qualitatively
and quantitatively by comparing it with several existing techniques. To qualitatively
evaluate the method, we have executed it over various hazy images that are quite
popular in the literature of image dehazing for evaluation purposes, as well as in
other realistic scenarios, in which the illumination affecting the scene is non-uniform
and the physical model in Eq. becomes invalid. Likewise, for the quantitative
evaluation of the experimental results, we make use of real depth data provided
by [4] to produce both homogeneous and heterogeneous haze layers over real-world
scenarios. We then compare the ability of our method to remove that haze layer
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(2)

Figure 4.2: (a) Hazy open scene. (b) Result of executing the method in Eq. (4.8). (c)
Result of executing the method in Eq. (4.13)). (d)-(f) Detail of the castle on top of the
image (g)-(i) Detail of the buildings on the middle of the image.

by means of several standard full-reference metrics, comparing also against various
state-of-the-art approaches.

Regarding the parameter configuration, we have considered Eq. with the
following baseline values: o = 0.5, § = 0.5, v = 0.2, and n = 0.02. Both distance
functions were defined as Gaussians with kernel of standard deviation equal to 50 pix-
els. The time step was set to At = 0.15, and we considered that a steady-state of the
gradient descent was achieved when the difference between the images of two consec-
utive iterations was below 0.020. A sensitivity study with respect to the parameters
of our methods is provided in Section [1.4.1.2]

4.4.1 Qualitative Evaluation

To evaluate the performance of a dehazing technique, the most popular criteria are
often the amount of retrieved visibility for far away details, together with the plausi-
bility of the colours that appear in the recovered scene. In this section, we consider
also these subjective measurements to evaluate the performance of our method when
compared with other existing approaches.

Fig. displays a hazy scene typically used as a benchmark for testing a dehazing
method. For this example, all methods effectively recover visibility of hidden details
at the bottom of the scene, being the technique of Meng et al. the one that
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retrieves slightly more structure than the rest. Unfortunately, this seems to happen
at the price of introducing some colour artifacts at the leftmost part of the image.
The rest of the methods are free from these artifacts.

On the other hand, the image in Fig. is a particularly interesting test case,
since the headlights of the train are useful to evaluate the way each method handles
other light sources different from the ambient light. We can appreciate how only our
EVID method and the one of Tarel et al. are capable of correctly preserving the
shape of the three lights. For this example our method recovers more vivid colours
than [86], as can be seen by observation of the red wagon at the left of Figs. ({4.3c))

and ([L31).

(d) Processed with [118| (e) Processed with (f) Processed with EVID

Figure 4.3: Typical benchmark image for dehazing algorithms and result of processing it
with several state-of-the-art methods, including EVID.

Figure [4.4] displays an image of New York City, also often considered for bench-
marking of dehazing algorithms. Therein, our EVID method is compared against the
works in [7,[86L[104H106}[108]. Visibility of distant objects is again recovered by every
method up to a reasonable degree. The recent method of Fattal and the Dark
Channel method [7] are possibly the ones recovering most realistic colours, although
a close analysis reveals that they fail to recover the information underlying in the
horizon (see upper right corner in Figs. and (4.3f)). Additionally, the method
by Tan [105] suffers of noticeable over-saturation artifacts.

The previous two examples demonstrate how for typical images, existing algo-
rithms (including ours) can handle haze effectively, recovering visibility up to some
extent. On the other hand, each of the methodologies restores chromatic information
in a different way, although the majority of the available techniques produce rather
plausible colours. Differences in the performance are subtle and only little details
reveal whether a method is performing better than another in particular regions of
the image.
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(a) Original hazy image (b) Processed with \| (¢) Processed with \\ (d) Processed with \\

(e) Processed with [104] (f) Processed with (g) Processed with (h) Processed with EVID
Figure 4.4: Hazy image of New York City image and result of processing it with several
state-of-the-art methods, including EVID.

Unfortunately, little research has addressed the problem of image dehazing in a
more challenging and also realistic scenario, such as the one depicted in Fig. [4.5] or
Fig. [4.6l Most of the state-of-the-art methodologies rely on the previous compu-
tation of a depth map of the scene. Thus, they usually resort to a physical model
of the image formation under haze and bad weather conditions, such as Eq. .
This model assumes constant illumination in the scene. When this assumption is vi-
olated, the airlight cannot be considered to be constant. The result is a transmission
underestimate or overestimate in unevenly illuminated areas, and colour distortions
characterized by dark blue regions appear in the restored images.

The method proposed in this chapter benefits from the advantage of depending
only mildly on physical considerations. The EVID method does not need to compute
any depth information prior to restoration. Thanks to this feature, unevenly illu-
minated regions are handled properly, and scene structure can be recovered without
introducing excessive colour distortion. Fig. clearly demonstrates this point. The
original image in Fig. was extracted from . The sun appears behind the haze
at the upper left part of the image, producing a non-uniform illuminant: the leftmost
part of the sky appears brighter than the rightmost side. The methods that rely on
an accurate estimate of the airlight and the depth are fooled by this non-uniformity,
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(d) Processed with [118| (e) Processed with (f) Processed with EVID

Figure 4.5: Unevenly illuminated hazy image extracted from , and result of processing it
with several state-of-the-art methods, including EVID.

and generate strong colour artifacts. For this example, only our method is capable of
retrieving some of the buildings structure without producing a chromatic degradation.

The same challenging scenario is faced in Fig. [4.6] Again, the compared methods
cannot avoid the creation of colour distortions in the effort to increase contrast in the
upper rightmost part of the original hazy image. In this case, the EVID method was
executed with a single parameter modification: + was set to 1, forcing the solution to
stay closer to the original image. This represents another advantageous feature of the
variational approach, since the attachment to data term provides the user with an
intuitive way of controlling whether the contrast increase is excessive or insufficient.

The example in Fig. [£.7]shows another useful characteristic of our approach. Most
works rely on the presence of enough colour information in the scene so as to recover
the depth structure. When this chromatic information is weak or missing, the result
is often also an image with unpleasant colour artifacts. The EVID method operates
in a channel-wise manner, handling thus more robustly the lack of colour cues in the
input image, as can be observed in the results obtained by the other physically-based
techniques when compared to our variational approach, see Fig. (4.7f). As in the
previous image, a single parameter variation was considered for this image: v was set
to 1.5, forcing the solution to stay closer to the original image.

Fig. [4.8 presents another image suffering from poor chromatic information. As in
the previous case, our method seems to be the only one capable of restoring content
in far away areas of the scene without introducing a remarkable colour degradation.
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(a) Original hazy image (b) Processed with (¢) Processed with

(d) Processed with (e) Processed with [114] (f) Processed with EVID

Figure 4.6: Unevenly illuminated hazy image of the Thames river, and result of processing
it with several state-of-the-art methods, including EVID.

4.4.1.1 Comparisons with contrast enhancement approaches

The results described in the previous section clearly illustrate the advantages of the
EVID method over other recent dehazing techniques. Most of these advantages come
from the fact that EVID does not compute a transmission map of the hazy scene.
On the other hand, we do incorporate in the model a mild physical constraint, since
our modified Gray-World hypothesis relies on an estimate of the mean of the haze-
free scene, and this is obtained from the physical model given by Eq. . This
also explains the improvement of EVID with respect to other contrast enhancement
methods that do not consider any physical cue. To illustrate this point, we show
in Fig. the result of processing three hazy scenes with EVID, as well as with
a conventional contrast enhancement method (Histogram Equalization, HE) and the
advanced variational contrast enhancement model on which the EVID method builds,
introduced in 3] and described by Eq. . Notice that for a fair comparison, this
model is run here with a parameter configuration analogous to the one of EVID.

In the three examples shown, we can clearly appreciate how EVID produces more
vivid colours while increasing contrast. In Fig. (4.9a]) we see the same hazy image
of a train as in Fig. (4.3al). HE saturates large parts of the image, in an attempt to
obtain a global uniform histogram. On the other hand, the method in does not
saturate bright areas, but it seems unable to retrieve plausible colours in far-away
regions of the scene, such as the red wagon or the green bush next to the train.

In Fig. , we have a natural landscape with a forest on it. Again, HE burns
dark regions while saturating to white on brighter areas. However, in this case, the
method in is capable of retrieving a similar contrast when compared to EVID.
Unfortunately, due to the Gray World hypothesis implemented by [3], the model
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: : 1 l-”,ll'qu: iy - : =g i B
(a) Original hazy image (b) Processed with (c) Processed with [104]

(d) Processed with [114] (e) Processed with [118] (f) Processed with EVID

Figure 4.7: An image of Paris, with a lack of chromatic information due to haze in the
scene, and result of processing it with several state-of-the-art methods, including EVID.
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(d) Processed with [114] (e) Processed with [104] (f) Processed with EVID

Figure 4.8: (a) An image of Moscow, with a lack of chromatic information due to haze in
the scene, and result of processing it with several state-of-the-art methods, including EVID.

lacks the ability to produce intense colours.

Finally, in Fig. (4.9i) we include a hazy view of the city of Taipei. We can
appreciate similar drawbacks for HE, which forces dark areas to become black and
handles incorrectly the sky areas, saturating to white the top part of the image. Also,
the method in |3| recovers some contrast, but again it produces grayish colours due to
the Gray World assumption it incorporates, further supporting the idea that a smart
contrast enhancement is not enough to approach the problem of haze removal. In this
case too, the EVID method is able to recover contrast while producing richer colours.
All these observations can be better appreciated in Fig. [4.10] where we have included
close-up details of the image areas marked by blue, red, and yellow rectangles on Figs.

(£58). (E99). and (9.

4.4.1.2 Parameter Sensitivity

In this section, we study the influence of the different parameters presented in the
model (degree of contrast, attachment to initial input, and saturation enhancement).

Let us first analyse the influence of the parameter ~, which controls the degree of
contrast enhancement provided by the method. Fig. shows a hazy scene of
the city of Bilbao. The restored version displayed in Fig. has been obtained
with the configuration of parameters recommended above, namely a = 0.5, 5 = 0.5,
v =0.2, and n = 0.02. The images appearing in Figs. and have been
produced by varying parameter 7. Specifically, we have set v = 0.1 and v = 0.3.
We can appreciate how this modification produces a smooth variation of contrast in
the scene, with an insufficient increase in contrast for v = 0.1, and a slightly over-
enhanced output for v = 0.3. This can better appreciated in the close-up details of
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Figure 4.9: Result of applying a conventional and an advanced contrast enhancement
method compared with the result obtained by EVID. (a), (e), (i) Different hazy scenes.
(b), (), (j) Result of applying Histogram Equalization. (c), (g), (k) Result of applying the
method in [3]. (d), (h), (1) Our proposed EVID method.

the museum’s faAgade displayed on Figs. (4.11¢)) to (4.11h]).

To assess the effect of a varying attachment-to-data parameter, we have executed
again EVID on the hazy image (4.11a]), varying S in the set {0.25,0.5,0.75} and
keeping fixed the other parameters on its baseline configuration, i.e. v =0.2, § = 0.5
and 7 = 0.02. The effect produced by increasing parameter § is opposite to the
one produced by increasing the contrast parameter v, as expected. We can observe
the result of this on Fig. There, we can appreciate how the variation of the
attachment-to-data parameter influences the degree of separation of the output image
from the original one, allowing the user to control the degree of enhancement provided
by the method.

The gray-world parameter captures the degree of confidence we have on the esti-
mate of the mean of the haze-free image in accordance to Kochsmieder model. The
effect of varying this parameter can be appreciated on Fig. , where we have
executed the EVID method with the parameter reference configuration, and with
a € {0.25,0.5,0.75}. A slight colour shift can be noted in the different outputs.
This is a global effect that can be better appreciated with a close look into the high
resolution versions of the processed images.

Finally, the effect of modifying parameter n affects to the amount of saturation
that colours in the scene experiment. This is illustrated on Fig. , where he have
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(i) () (k) )
Figure 4.10: Zoomed details from Fig. (4.9). (a)-(d) Detail of the red wagon in the left
of the image for the original image, and the output produced by HE, 3], and EVID. (e) -
(f) Detail of the trees in the top part of the scene for the original image, and the output
produced by HE, [3], and EVID. (i)-(1)Detail of the crane in the middle of the scene for the
original image, and the output produced by HE, , and EVID.

Figure 4.11: A hazy view of the city of Bilbao, and the result of varying contrast parameter
7. (a) Original hazy scene. (b) v = 0.1 (¢) v = 0.2 (d) v = 0.3. (e)-(h) Detail of the
Guggenheim museum faAgade.
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Figure 4.12: A hazy view of the city of Bilbao, and the result of varying attachment-to-data
parameter 3. (a) Original hazy scene. (b) f=10.25 (¢) 5= 0.5 (d) 8 = 0.75. (e)-(h) Detail
of the Guggenheim museum faAgade.

Figure 4.13: A hazy view of the city Bilbao, and the result of varying gray-world parameter
B. (a) Original hazy scene. (b) a = 0.25 (¢) @ = 0.5 (d) @ = 0.75. (e)-(h) Detail of the
Guggenheim museum faAgade.
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Figure 4.14: A hazy view of the city of Bilbao, and the result of varying saturation parameter
n. (a) Original hazy scene. (b) n =0 (c) n = 0.02 (d) n = 0.04. (e)-(h) Detail of the park
next to the museum.

executed the EVID method with the baseline parameter configuration, and setting
n € {0.01,0.02,0.03}. Colour saturation gradually grows as 7 increases. We can also
appreciate in the far away buildings and trees the effect produced by a large value of
7, leading to the appearance of colour artifacts on large uniform areas.

4.4.2 Quantitative Evaluation

Evaluating the performance of a dehazing method is always a hard task due to the
inherent lack of ground-truth. To overcome this difficulty, some previous works have
resorted to the generation of a synthetic fog layer ,. However, to be able
to generate a realistic haze, we first need depth data on the scene. To this end, we
employ in this work the LIVE Color+3D Database provided in . This database
includes twelve different scenes together with real depth data. Data was acquired
using an advanced range scanner with a digital camera mounted on top of it.

To incorporate realistic fog layers on top of these images, we employed the ap-
proach of Tarel et al. [5]. The authors provide software to generate up to four dif-
ferent kinds of fog. This is achieved by slightly modifying Eq. to introduce
some variability, adding Perlin’s noise to both transmission t and airlight A. The
only parameter required by the method was the visibility distance, which was set
to 60 meters for all the experiments. An example of an original image in the LIVE
Color+3D Database, together with its ground-truth depth data, and the different
hazy versions of the input image can be seen in Fig. (4.15)]).

We have therefore a total of 48 images (12 scenes under 4 different fogs). We have
compared EVID versus current state-of-the-art methods, namely the ones of He et
al. , Meng et al. , Nishino et al. , Tarel and Hautiere , and Gibson
and Nguyen [53]. Our method was computed with the same fixed parameters for all
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scenes, as pointed out at the beginning of section [4.4]

We have used five different measures, three mainly based on the Mean Square
Error (MSE), and two based on the correlation. The first considered MSE based
measure computes the MSE between the images for each particular channel, and
then combines the three channels using by the /s norm:

MSEqpi = JMSE(IST Im)2 + MSE(IST, Im)2 + MSE(IGT, I7")?,  (4.14)

where I¢T stands for the ground-truth image, I™ stands for the method used, the
subindexes represent each colour channel and

i (I1(3) — I*(i))”

MSE(I', I?) =
( ) ) M )

(4.15)

being M the number of pixels.
The second error measure is the MSE between the luminance of the two images.
Defining I{;] = 0.2126757+0.7152157+0.0722I" and Iy, = 0.21261"+0.71521]" +

lum
0.07221;", the error measure becomes:

MSFEpy, = MSE(IST I ). (4.16)

We have also defined a new error measure in order to consider also the relation
between the three colour channels. We denote this error measure as l; — colour and
we define it as:

My JUET () — ()2 + (17 (0) — ()% + (17 (1) — [77())?

ly — colour = %

(4.17)

Measures based on the correlation are similar to the first two defined measures,
except for the fact that the MSE measure has been replaced by the correlation between
the channels. Mathematically,

Corrspit = \/Correlation(erT, Im)2 + Correlation(IS7, Im)? + Correlation(I{7, I")?,
(4.18)
and
Corry, = Correlation(IZE I Y, (4.19)

lum»

where Correlation gives us the correlation coefficient between the two images.

Results are shown in Table 4.1. Our EVID method outperforms all the others
in the five different measures when the full set of images is considered (table rows
labelled "All’). When dividing the images depending on the fog model, EVID also
outperforms the remaining ones for the homogeneous, heterogeneous attenuation and
heterogeneous airlight fogs in most of the measures, being very close to the best
method (Tarel and Hautiere method [86]) for the remaining fog types.
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Error measure Fog model [53] [86] [114] | [118] [7] EVID
het. air. 4.8639 | 5.2898 | 6.824 | 6.3354 | 5.5232 | 4.8699

het. air. and att. | 4.0625 | 3.7592 | 6.3964 | 5.9873 | 4.193 | 4.0129

ly — colour het. att. 4.9991 | 4.4006 | 6.1187 | 6.2086 | 5.0711 | 4.4687
homo. 6.7278 | 7.2462 | 6.8091 | 6.9326 | 6.6519 | 5.857

All 5.1633 | 5.174 | 6.5371 | 6.366 | 5.3598 | 4.8021

het. air. 0.0249 | 0.0271 | 0.0484 | 0.0513 | 0.0355 | 0.023

het. air. and att. | 0.0168 | 0.0135 | 0.0434 | 0.0494 | 0.0202 | 0.0162

MSEpm het. att. 0.0269 | 0.0202 | 0.0394 | 0.0513 | 0.0305 | 0.0209
homo. 0.0519 | 0.0573 | 0.0481 | 0.0566 | 0.0532 | 0.0365

All 0.0301 | 0.0295 | 0.0448 | 0.0522 | 0.0349 | 0.0242

het. air. 0.2691 0.281 | 0.3608 | 0.3328 | 0.3117 | 0.2582

het. air. and att. | 0.221 | 0.1956 | 0.3391 | 0.3123 | 0.2379 | 0.2113

MSEqpi het. att. 0.2785 | 0.2393 | 0.3249 | 0.3276 | 0.2929 | 0.2377
homo. 0.3825 | 0.4042 | 0.3611 | 0.3701 | 0.3851 | 0.3191

All 0.2878 0.28 | 0.3465 | 0.3357 | 0.3069 | 0.2566

het. air. 1.2215 | 1.1914 | 0.738 | 0.9422 | 1.0925 | 1.2199

het. air. att. 1.442 | 1.3639 | 0.8806 | 1.0961 | 1.3315 | 1.4163

Corrgpi het. att. 1.2529 | 1.2573 | 0.9301 | 1.0125 | 1.2379 | 1.2884
homo. 1.028 1.045 | 0.8417 | 0.8959 | 1.0498 | 1.0765

All 1.2361 | 1.2144 | 0.8476 | 0.9867 | 1.1779 | 1.2503

het. air. 0.6958 | 0.6826 | 0.3937 | 0.5203 | 0.6144 | 0.6991

het. air. att. 0.8297 | 0.7839 | 0.4779 | 0.6299 | 0.7627 | 0.8180

Corrium het. att. 0.7147 | 0.7198 | 0.5036 | 0.5811 | 0.7062 | 0.7395
homo. 0.5598 | 0.5825 | 0.4547 | 0.4848 | 0.5742 | 0.5970

All 0.7 0.6922 | 0.4575 | 0.554 | 0.6644 | 0.7134

Table 4.1: Quantitative results under the five different measures using the four different

types of fog.

4.5 Conclusions on Chapter 4

In this chapter, we have proposed two substantial enhancements for the well-known
perceptual colour correction framework of [3] in order to perform image dehazing and
defogging. First, we have adapted the grey-world hypothesis to deal with hazy scenes.
Second, we have included a set of terms to maximize inter-channels contrast, leading
to the formulation of an Enhanced Variational Image Dehazing (EVID) method. The
numerical experiments demonstrate the excellent behaviour of the EVID method,
which is qualitatively comparable versus state-of-the-art methods for normally de-
graded images while outperforming them in more challenging scenarios. We have
also shown how the proposed method quantitative outperforms other state-of-the-art
methods in various fog scenarios.
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(b) Corresponding depth range data.
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(¢) Fog with heterogeneous airlight added (d) Fog with heterogeneous attenuation added

Y onkd [

(e) Fog with heterogeneous airlight and attenua- (f) Homogeneous fog added
tion added

Figure 4.15: Scene from the LIVE Color+3D Database |\ and different synthetic hetero-
geneous fog added on it by following the method in .
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Chapter 5

Variational Enhancement
of Full-Field Digital Mammograms

In this chapter, we deal with digital mammograms, a class of images that are not ac-
quired from real-life scenes. Image processing and computer vision algorithms are of-
ten employed in mammographic image analysis, typically to: (a) improve the visibility
of abnormalities within the breast, and (b) serve as a pre-processing step facilitating
ulterior tasks such as segmentation, detection, and/or classification. In the first chap-
ter of this dissertation, we analysed the substantial development experimented in the
design of advanced and smart contrast enhancement techniques in the natural image
processing area in recent years. However, this progress has not yet been translated
to the medical imaging setting, where relatively simple and conventional methods
are still employed for image enhancement. In this chapter, we propose to reformu-
late and adapt the modern mathematical model for perceptual colour correction and
contrast enhancement described in Section to the context of Full-Field Digi-
tal Mammograms (FFDM). The proposed model considers both spatial and intensity
information, and also incorporates the empirical observation that sparsity should be
enforced to better reveal the underlying structures of interest within a mammogram.
All this information is integrated in a variational framework that allows to devise an
efficient iterative numerical scheme for FFDM quality enhancement. A comprehen-
sive twofold evaluation is proposed: we first perform a quantitative analysis of the
gain of global and local contrast produced by our method, and second, we assess the
improvement of visual saliency achieved on regions of interest of the mammogram
that contain tumoral masses. Experimental results demonstrate that the proposed
technique consistently increases the quality of the input mammogram both in terms
of contrast and perceptual quality.

5.1 Introduction
Breast cancer has been ranked in the last decades as the second most prevalent

cancer worldwide, and the most common in women [121]. Despite huge research
efforts, prevention remains the most effective long-term strategy for the control of
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breast cancer. One of the main tools to increase early cancer detection are public
screening programs, a process in which women over a certain age are periodically
invited to have a mammographic test. There, radiologists acquire and systematically
examine mammograms to search for possible early signs of abnormalities and track
their evolution over time. The main benefit of mammographic image analysis is that
a mammogram may reveal subtle abnormalities which can be omitted by manual
examination, and which may constitute early evidences of disease. Yet, statistics show
that screening programs imply considerable risks of overdiagnosis and overtreatment,
as well as psychological distress due to false positive findings [122]. Thus, any tool
that has the capability of improving the accuracy of mammogram analysis is of high
interest and may have a strong impact in patient welfare and also in the health care
expenditure.

A mammogram is a low-dose x-ray image of the breast obtained with dedicated
imaging equipment. In modern full-field digital mammography, images are recorded
digitally and displayed or stored immediately on the computer system. Additionally,
more and more digital data is rapidly becoming available to medical practitioners.
This has led to a progressive introduction of image processing and computer vision
algorithms in the field of mammographic image analysis.

Digital image processing algorithms have the potential to allow the radiologist to
examine more accurately certain areas of interest within the image, and it has been
demonstrated that they can have a highly favourable impact in diagnosis perfor-
mance [123]. Moreover, they also serve as a necessary preprocessing step for further
application of Computer Aided Detection and Diagnosis (CAD) techniques. In a
typical CAD system, there are four steps involved [124], the first of which is usually
image preprocessing. Then, a segmentation of suspicious regions that may contain
an abnormality follows. In the next stage, a pre-trained statistical classifier is usually
fed with these candidate regions, in order to classify them according to whether they
contain an abnormality or not, and finally, a diagnosis of the lesion as malignant or
benign is given as output.

Unfortunately, due to the lack of specialized techniques capable of properly han-
dling the particularities of mammographic images, most of the research that focus on
abnormality detection, segmentation or classification, either entirely omits the poten-
tially useful preprocessing step, or employs conventional generic image preprocessing
methodologies that ignore the specific challenges associated to mammogram enhance-
ment. On the clinical side, specialized enhancement techniques are inevitably complex
and parameter-depending. Radiologists are often unaware of most of the underlying
mathematical details of these algorithms. Thus, they may end up being exposed to
a cumbersome manipulation of the main parameters involved in such algorithms in
order to adjust their behaviour.

In this chapter, we propose a novel mathematical model specifically designed for
mammographic image enhancement. The proposed approach relies on a variational
formulation of histogram equalization (HE), but adapted to the specific features of
mammograms. Our approach operates globally on the mammogram, while taking into
account spatial/intensity contextual information, and enforcing sparsity within the
breast area to remove fat and other irrelevant tissue. The resulting iterative algorithm
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is efficiently implemented thanks to the Fast Fourier Transform, and provides a set
of intermediate images where the visibility of abnormalities is gradually increased.
Moreover, it depends on few parameters that have a greatly intuitive interpretation.

The rest of this chapter is organized as follows. In the next section, we describe
some of the most popular mammographic image enhancement methods available in
the literature. Then, we review the basis of a well-known variational formulation for
image contrast enhancement and colour correction. The variational point of view al-
lows us to understand the reasons of the failure of some traditional techniques when
applied to mammograms, and serves as the main setting for the derivation of our
method. In section [5.4], we describe our proposed variational enhancement method.
Section [0.9]is dedicated to the performance evaluation of our method when compared
to other existing approaches. We provide a thorough analysis of the visibility im-
provement capability of our method on a set of breast masses in terms of two popular
global and local performance metrics, and a novel evaluation approach based on the
obtained gain in perceptual visual saliency. The paper is concluded with a discussion
on the benefits and limitations of our approach as well as possible future research
directions.

5.2 Background and Related Work

Mammograms are low-contrast complex images. In addition, signs of early breast
cancer are usually subtle, with a great variety in shape, size and location. As a
consequence, the design of efficient ad-hoc mammographic image enhancement tech-
niques represents a challenging problem. In the past, a number of contributions have
appeared trying to improve the performance of well-known general-purpose image
enhancement methods.

A considerable number of recent works related to mammographic image interpre-
tation and understanding still rely on classical or relatively simple image preprocessing
methodologies. The reduction in size of the image and/or the pre-segmentation of
the breast to save computational time, together with some denoising, frequently by
means of simple Gaussian [125] or median [126] filters, as well as anisotropic dif-
fusion [127] or morphological operations [128], are the most common preprocessing
steps encountered in various works, e.g. [129,/130].

Likewise, basic manipulations of the dynamic range of the mammogram are often
employed. For instance, direct nonlinear rescaling is implemented in [131]. In [132],
a simple logarithmic transformation is performed prior to feature extraction, while
in [133], scaled gamma correction is used. In [134,|135], direct histogram equalization
is applied, while in [136], a very popular variant, known as Adaptive Contrast Lim-
ited Histogram Equalization (CLAHE) [19], is used as the only preprocessing step.
This basic technique was demonstrated to be beneficial for abnormality detection
in mammograms in [137], and it is still the state of the art in visual mammogram
enhancement. In [138], a combination of CLAHE, Gaussian filtering and gamma cor-
rection is applied. In [139], CLAHE is combined with morphological operators and
anisotropic diffusion, and in [140] a fuzzy version of CLAHE is employed.
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Sophisticated enhancement techniques that are better adapted to the mammo-
graphic image modality have a clear potential to help improving posterior mam-
mographic image analysis tasks. Developing such specialized methods has been a
subject of research for several decades. Early work on mammographic image en-
hancement goes back to the eighties, and relied on the application of fundamental
contrast enhancement techniques, such as simple local contrast amplification |141],
edge enhancement [142], unsharp masking [143], or their combination [144].

Starting with the work [145], multi-resolution approaches soon became very pop-
ular for mammogram enhancement, with the goal of accounting for the intrinsic
multi-scale nature of the different abnormalities. The main idea was to decompose
the mammogram into multiple scales and modify the coefficients of the decompo-
sition in order to reconstruct an enhanced image. This idea persists in all multi-
resolution based works, and it is the choice of the decomposition and the coefficient
correction techniques what varies. Wavelets are a common approach to compute
suitable multi-scale decompositions. For instance, the discrete dyadic wavelet rep-
resentation [146], integrated wavelets [147], contourlets [148] or redundant discrete
wavelet transforms [149] have been suggested. Also, different techniques for modify-
ing and enhancing or denoising the decomposition coefficients have been tested, such
as nonlinear steerable filters [150], adaptive unsharp masking [151], wavelet shrinkage
function [152], sigmoid-type transfer mapping [153] or even direct contrast modifi-
cation |154(155]. A thorough review of the details involved in the wavelet-based
approach is included in [156].

Apart from the frequency analysis provided by wavelets, other ways to account
for the intrinsic multiscale nature of the different abnormalities possibly present in a
mammogram, such as Laplacian pyramids, have been proposed in [157,/158]. On the
other hand, some authors have remained septic regarding the benefits of adopting a
multiscale representation of a mammogram [159]. Moreover, some multiscale-based
algorithms may require the a priori knowledge of the range of sizes of the image
structures they expect to enhance, demanding thus a fine tuning of the parameters
governing the algorithm, which may become critical in order to achieve good perfor-
mance.

Another research direction that has drawn some attention is the application of
fuzzy logic approaches in an attempt to handle the uncertainty associated with the
vague definition of image features such as edges, shape, or contrast in the context
of digital mammograms. In [160], the authors employ the maximum fuzzy entropy
principle to map the input image into a fuzzy domain. There, the fuzzy entropy is
used to locally enhance contrast, and the enhanced mammogram is mapped back
into the spatial domain by defuzzification. The posterior work in [161] extended this
approach by combining it with a structure tensor operator.

Specialized filtering techniques are also very popular for mammogram processing.
In [162], authors build density maps of the breast, which are used to weight the
amount of contrast enhancement for each pixel. After denoising, adaptive Wiener
filtering is performed in [163]. In [164], different polynomial filters designed for edge
and contrast enhancement are linearly combined to obtain an improved version of
the input mammogram. The iris filter, introduced in [165], has also been reported
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to be able to improve the quality of mammographic images [166]. It consists of an
adaptive filter capable to enhance low-contrast rounded structures locally using maps
of gradient orientations at each point.

Advanced denoising techniques, specifically adapted for mammographic image
processing, have also been designed in [167-H169], as well as normalization methods
based on modelling the physical formation process of a mammogram [170].

Other common approaches are based on extensions of traditional well-known
methods. Starting from simple histogram equalization, more elaborated techniques
have been developed, such as the one encountered in [171]. The classical unsharp
masking technique has also been the basis for recent methods, see [172]. However,
this extension requires optimization of several parameters. They are selected by defin-
ing contrast measures, and maximizing the output contrast according to this measure.
Since this is a non-differentiable metric, the optimization of the parameters is per-
formed in a greedy manner, which is a computationally intensive approach. Also, the
choice of the initial parameters may severely affect the result. Additional details on
these and other related methods can be found in [173] and |174].

5.3 A Variational Formulation for Mammographic
Image Enhancement

In this section, we explore a variational framework for colour correction and contrast
enhancement that, when adapted to the specificities of mammograms, allows for the
design of an iterative numerical scheme that gradually improves their contrast and
visibility. We start from a variational formulation for histogram equalization that was
proposed in [§], consisting on minimizing the following energy:

E(I) :2/9(1(3:) S do - 7//99 I(y)| dzdy,

where x,y are spatial pixel coordinates belonging to the domain €2 of I, the size of
this domain is W x H, and the range of available intensities is normalized to [0, 1].

This formulation provides some insight on the histogram equalization process: the
above energy formulation can be interpreted as the combination of two qualitatively
different terms: the first one assesses the separation from the mean value 1/2, and the
second one is a global measure of the contrast of the image, obtained after computing
the sum of the absolute values of all pixel intensities differences.

In spite of its popularity, histogram equalization presents several drawbacks when
applied to mammographic contrast improvement. First, the contrast measure in the
previous equation is global, implying that the contrast associated to a given pixel is
computed using information coming from every region within the image domain. Shot
noise is habitual in mammographic images, and it appears as isolated white dots in
uniformly dark areas. Histogram equalization overlooks neighbourhood information
around these pixels, and it is thus prone to noise overenhancing. Furthermore, mam-
mograms can be considered as relatively sparse images, in the sense that without any
prior segmentation of the breast area, almost every background pixel has an intensity

89



close to 0. This decreases the global mean value, that tends to be low. Equalizing the
histogram of a mammogram, thus, inevitably leads to an artificial increase of pixel
intensity values.

There exist several extensions of histogram equalization that attempt to overcome
the described weaknesses. One popular approach is Contrast Limited Adaptive His-
togram Equalization (CLAHE). This technique restricts the amount of enhancement
a pixel can experiment by limiting it, and tries to localize its action adaptively, com-
puting separate histograms in different subimages. Unfortunately, the constraint in
the amount of enhancement is not dependent on the image content, but rather on
the contrast limiting parameter selected by the user. As a result, CLAHE performs
better than simple Histogram Equalization, but its contrast enhancing capabilities
remain limited.

Recently, a variational framework that extends histogram equalization by adding
locality and a mechanism of attachment to data has been introduced by Bertalmio
et al. in [3]. This method builds on top of the variational histogram formulation
proposed in [§]. To introduce locality and penalize excessive departure from the
original image, the following energy is proposed in [3]:

B0 =3 [~ 27 e D [0 @2 -1 [ wyiie) - e
0.1

where Iy is the original image, «, 3,7 are positive parameters and w(z, y) is a positive
weight function (properly normalized to account for image dimensions, see [3| for the
details) with its value decreasing as the distance between x and y increases.

This methodology was originally developed for colour correction. The above en-
ergy is minimized in each RGDB channel of the input image, and it keeps strong
links with some perceptual mechanisms of the Human Visual System, mainly local-
ity, colour constancy and white patch [3]. It has been later extended in 10|, and
further connections with the Retinex theory of colour constancy [11] were established
in [9]. The main idea is that by minimizing Eq. (5.1]), one is still penalizing depar-
ture from a mean gray value (Gray World hypothesis), but also now from the original
image trough the second term, while promoting a local increase in contrast through
the third term, that can in fact be written as:

JIwle.y) (max(i(z). 1y)) - min(i(2),1(y)) dady.

This expression is minimized whenever the minimum decreases and/or the maximum
increases, corresponding to a local contrast stretching.

5.3.1 Sparsity Prior for Variational Mammographic Image
Enhancement

To statistically confirm that mammograms are a relatively sparse class of images, we
have conducted a simple experiment. We have considered the INbreast database ( [6]),
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Figure 5.1: Histogram of pixel intensities in the entire INbreast database [@]

a modern FFDM database containing 410 high resolution images with a bitdepth of
212 and we have computed the mean of the intensities of every pixel in this set
of images. The result is illustrated in Fig. where pixel intensities have been
grouped in sub-intervals of 512 gray levels for better visualization. We see there
how the majority of the pixel intensities lies in the lower half of the available range,
supporting this way our argument.

Fig. also provides insight on some interesting features of mammograms.
Namely, from the intensity distribution we can appreciate that a mammogram has
qualitatively different regions. Accordingly, an enhancement algorithm should pro-
ceed differently in each of these regions. In particular, it should not enhance the
background, and it should operate only within the breast. Therein, the image is not
sparse anymore, but rather, medium to high values predominate. Abnormalities are
also contained in that range of values, but are masked by fat and other dense tissues,
which occlude their visibility.

Ideally, a completely visible abnormality would be represented by high values cor-
responding to abnormalities, surrounded by darker regions, i.e., lesions would exhibit
better contrast with respect to the background. In other words, our goal should be
to smoothly separate the central range of pixels in Fig. [5.1]into two classes in order
to unveil the abnormalities within the breast. Therefore, an ideal processing of the
mammogram would render an even sparser image.

The process modelled by minimizing the energy in Eq. approximates to
some extent a local histogram equalization [175], and for this reason, it shares the
same drawbacks as CLAHE. To amplify contrast in the input mammogram while
promoting sparsity, we modify the energy in Eq. by removing the hypothesis
that the mean value of the enhanced mammogram is 1/2, and adding a mechanism to
enforce more sparsity in the resultant image. We propose to minimize the following
energy:

E(I) = g/ﬂ(l(az) ~lo(@)? dr+ 2 [ 1@) do =3 [[  w(a,y)llx) ~ 1(y)]| dedy.
(5.2)
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This new formulation produces a local increase in contrast around abnormalities,
while pushing down the intensity values of uninteresting pixels, and keeping the at-
tachment to data term to manage excessively aggressive or too low enhancement.
Moreover, although the model operates on the entire input mammogram, spatial /in-
tensity contextual information is present in Eq. through w(z,y), which weights
the influence of the contrast term by contextual local information around each pixel,
integrating the Gaussian-weighted intensity profile of its neighbours.

5.4 Algorithm for Mammographic Image Enhance-
ment

Formulating the problem in terms of an energy minimization naturally leads to an
iterative algorithm that generates a set of images approaching a minimum of Eq.
progressively. Next, we give the details of this method.

In order to minimize the above energy, we first compute its derivative. This is
detailed in the following Theorem.

Theorem 5.4.1 The variational derivative of the energy in Eq. is given by:
VE() (@) = A1) ~Lo(x) + 5 1 [ wlzy)sien(l() —1y)) dy.  (53)

Proof: Let us first introduce some notation. We denote by Exap(I) to the part of
the energy of Eq. that accounts for the attachment to data; Ec(I) is the term
responsible of the local contrast increase, and Egpase(I) the term accounting for the
sparsity prior, i.e.:

Eaap(T) Z/Q(I(x) —1Io(2))? du,
Esparse(l) :/ I(ﬂ?) dl’,

Q
Eo(l) = [/ wla.y)ll(x) —1(y)| drdy.

With this notation, the energy we want to differentiate can be written as:

E(I) = SEMD(I) + 2 Buparse (1) = JEc(1).

The variation of Eaop(I) and E¢(I) in the direction of a perturbation dI of the input
image I has been already computed in Proposition (2.2.1)) in the more general case of
an even convex functional. If we consider here the sign function, we can write:

5B (1, 6T) =2 /Q (I(x) — To(x)) 81(x) dx

OEq(I, oT) :/Q </Qw(:z:,y)sign(1(x) —1(y)) dy> ol(z)dx.
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The variation of the sparsity term is a trivial application of the chain rule, and gives:

SEqparse(L, 1) = / 161(z) da.
Q

By assembling the variations of the three terms, we obtain the following expression
for the joint variation of the energy:

B(L6T) = | (ﬁ(I(m) ~To(@)) + 2 =1 /Q w(z, y)sign(I(z) — 1(y)) dy) 51(x)dz.

Q
Thus, the variational derivative of the full energy is indeed given by Eq. (5.3). O

Theorem enables to design a numerical algorithm to minimize the energy.
First, we discretise in space the energy and its derivatives, i.e., integrals in the con-
tinuous domain {2 become sums across a discretised version of it. Let us also denote
the point-wise contrast enhancement operator appearing in Eq. , in its discrete

version, as:
Ri(z) = ) w(z,y)sign(l(z) - I(y)). (5.4)
y
There exist multiple strategies to advance towards a minimum of the energy. We
adopt here a simple gradient descent, that is, we make I evolve in the direction

opposite to the gradient of E,

o1
— = —VE(I).
5 — ~VEWD

Then, by using a simple forward explicit numerical scheme, we obtain:

It+1<$> - It(x) o t t Y
At = B(I(x) — TI'(x)) — 2 + nRye ().

After some manipulations we obtain an iterative scheme, given by the following
equation:

I (2) = I'(z) (1 — BAL) + At(BT4(z) + Ry (x) — % (5.5)

Now, starting from I'=° = I, (input image), we iterate the above equation until we
arrive to a steady state, which is the final result of our algorithm. We consider steady-
state has been reached as soon as the MSE (mean square error) between one iteration
and the next falls below a small fixed stopping criterion. This procedure is outlined
below.

Fig. shows the result of applying the described procedure. It can be appre-
ciated how the iterations generated by Eq. progressively make the occluding
tissue disappear, while the structures of the underlying abnormalities are gradually
revealed. In the next section, we provide an exhaustive quantitative evaluation of our
method.

5.5 Experimental Results

A range of different types of abnormalities can be found in a mammogram, the most
interesting of which, regarding the diagnosis value, are micro-calcification clusters
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Figure 5.2: a) Original and b) successive iterations of our method. (g)-(1): a magni-
fication of the area marked in blue in the interior of the breast, contammg a mass that
progressively becomes more visible, while its contour appears more defined. The ground-
truth labeling of the mass is marked in red on (a).

and masses. Micro-calcifications are tiny calcium deposits ranging from 20 to a few
hundred microns [124], while breast masses are space-occupying lesions that are vis-
ible on two different mammogram projections. In our case, the evaluation has been
performed on a subset of the INbreast database [6] consisting of mammograms con-
taining a mass. These are Full-Field Digital Mammograms with spatial resolution of
3328 x 4084 and a bitdepth of 2!2. Since the groundtruth supplied with the images is
a fine delineation of the outline of the mass, we can easily quantify the visibility gain
around it with well-defined quantitative measures. The proposed approach has been
tested on 107 mammograms, containing a total of 116 masses.

Algorithm 1 Tterative Algorithm for minimizing Eq. (5.2)

Initialize contribution of different terms v, 3,7
Define At, stop
Set I'=0 =1
while MSE(I'*! T") <stop: do
for pixel in image do
Compute Ry (pizel)
Set I (pizel) = I'(pizel) (1 — BAL) + AtpIy(pizel) +nRy(pizel) —3
Store iteration I*
end for
end while
. Return I**+!

— =
— O
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5.5.1 Quantitative Performance Measures

Measuring the improvement in contrast and quality of a mammogram after processing
is a challenging task. A considerable amount of research has been devoted to this
issue [33}/176-178]. For a comprehensive evaluation, in this work we include a measure
to asses the global increase in contrast for mammograms proposed in [178], as well
as a local measure of visibility designed specifically for regions containing masses,
developed in [176]. Furthermore, we propose a new perceptually-based evaluation
metric, based on an established model of visual saliency. All these performance
measures are described in the following sections.

5.5.1.1 Global Quality Evaluation Metric

In [33], a measure called EME was proposed to quantify the enhancement capabilities
of an image processing technique. The basic idea is to divide the image into blocks
of size k1 X ko, and compute at each block a measure of the contrast ratio given by
the quotient of the maximum and the minimum intensity values within the block.
Accumulating these measurement samples throughout the image, the EME measure
is defined as:

k1 ko
EME"*2(I) = MQZsz (fﬂ“), (5.6)

=1 k=1 min

where I¥! and 1%}, denote the maximum and minimum intensities inside the (k, )
block, that has size k; X kzﬂ Starting from Eq. , many variants have been
proposed. From the set of possible extensions of EME, it is advocated in [178] that
the most convenient to measure general contrast improvement for the mammographic

image enhancement scenario is the AMEE:

1 k1 ko Ik l @ Ik? l
AMEER™(I) = Y > a ( maX> ( mm) : (5.7)
klk? =1 k=1 2
AMEE is a non-reference image quality metric designed to measure the overall global

contrast of the entire image rather than the local measurement given by Eq. (5.6]).
A lower AMEE measure implies a better enhancement of the image contrast.

5.5.1.2 Local Quality Evaluation Metric

Despite of the sometimes ill-defined border of masses, the groundtruth of the INbreast
database for this type of lesions is particularly fine. This allows us to determine a
sub-region of the mammogram containing the corresponding mass, as well as a sur-
rounding sub-region. These are easily obtained by simple morphological operations,

e., dilating the binary mask containing the mass, and then computing the differ-
ence between the dilated mask and the original one. An example of this procedure
is shown in Fig. [5.3] The border of the inner mask is displayed in red, while the

'In this work, we select k; and ky as one tenth of the width and height of the mammogram,
respectively.
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Figure 5.3: Target and background regions for the computation of the D-coefficient, together
with the progressive enhancement produced by our method on a region enclosing a mass
(red curve, groundtruth), and the corresponding overlap between the two regions. a) Region
on the input mammogram b)-h) successive iterations of our method.

border of the surrounding outer mask is shown in green. The inner mask is thus the
region enclosed by the red curve, while the outer mask is given by the region enclosed
in between the red and the green curves. We include also in Fig. the successive
iterations produced by minimizing Eq. . We can observe there the ability of
our proposed method to separate the intensities of each region in their histograms
along these iterations, resulting in a better visibility of the mass. In what follows, as
suggested in [176], we refer to the inner mask as target region, and to the outer mask
as the background region.

The work in [176] introduced several quality measures to quantify the degree of
enhancement obtained after processing a given mammogram. The following three
error measures were defined:

DSM = (| — pgl) — (lug — ppl)
TBC, (Wf/1B) — (12 /u3)

of /o
e, — WF/1E) — (17 /1)
e — E /O )
et /et
where u2, u@, 09, 0§ refer to the mean and standard deviation, for the original image,

of the target and the background region respectively, and u%, &, o, ok are the

corresponding counterparts for the enhanced image. Also, eF and 9 are the entropy
of the target region in the original and enhanced images, see for further details.

Each of the above coefficients measure contrast enhancement in a different way.
To merge them in a unique figure of image quality, the authors of propose to
compute the following joint measure:

D = /(1 — DSM)? + (1 — TBC,)? + (1 — TBC.)? (5.8)
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Here, the best enhancement method to process a mammogram is marked by the lowest
D score.

5.5.1.3 Perceptual Saliency-Based Evaluation

Computational models of visual saliency have been heavily studied in recent years by
the computer vision community. They represent an attempt to capture the ability
of the Human Visual System to rapidly localize the most important information on
an image. These models have been extensively validated in several consistent ways,
including the study of their response to psychological patterns or the examination
of their ability to predict human eye fixational movements in psychophysical experi-
ments.

Most of the existing works on computational visual saliency rely on computing
colour and contrast cues of the original image, in order to process them and obtain
a saliency map that assigns higher values to salient objects. After normalization into
the [0, 1] interval, these saliency maps can be understood as probability distributions,
where the most visually relevant areas in the scene hold higher probability values than
the less relevant ones. Here we follow the works in [179] and [180], which consider
saliency detection on a frequency domain approach.

The main advantage of the approach in [179] for us is that it can process grayscale
images. The saliency operator proposed in that work is defined as:

m =gy * (o), (5.9)

where g is a Gaussian kernel of standard deviation k, % stands for the convolution
operator, o is the Hadamard pixelwise product operator, and x represents the inverse
Fourier Discrete Cosine Transform (DCT) of the signature of the image x, which is
defined as & = sign(DCT(x)), being = the input image.

However, the output of the above formula depends on the choice of the Gaussian
kernel g, and it is unable to properly handle the multi-scale nature of the lesions
inside the breast. To overcome this drawback, we combine Eq. with the tech-
nique proposed in [180] to model visual saliency by means of a scale-space analysis.
In that work, the authors compute a saliency map Sy at several scales k, and then
the optimal scale k, is selected to be the one that minimizes the following criterion:

k, = arg min H(Sy), (5.10)
k

where H(x) = — Y7, p;log p; is the entropy operator, with p; being the probability
of occurrence in the image x of the intensity level ¢, which can be calculated from its
histogram, and n is the number of gray levels in the dynamic range of . The entropy
of an image can be understood as a statistical measure of the randomness present in
the image. More details about these two computational visual saliency models can
be found in [179}/180].

To evaluate the potential of different mammogram processing methods to improve
saliency of masses, we first extract a Region of Interest (ROI) of size m, x m,, around
a lesion from the unprocessed and the processed mammogram. Then, we compute
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Figure 5.4: a) Region containing a mass (marked in red), corresponding to Fig. m
(b) - (f) Succesive enhancenment of the region containing the mass. (g)-(1) Saliency maps
corresponding to the regions (a)-(f). Saliency distribution concentrates progressively within
the mass. The amount of saliency gain with respect to the initial saliency map is, in each
iteration: (h) +0.78% (i) +2.99% (j) + 5.49% (k) +13.41% (1) +16.80%.

the saliency map following Eqs. and for each of the ROIs, and normalize
them to the interval [0, 1]. By simply comparing the percentage of visual saliency that
the interior of the mass accumulates on both images, we can numerically quantify the
goodness of a method. If we define the amount of saliency inside the mass enclosed
on a ROI denoted by Ry, m, as Sin(Rm,m,), then the Local Saliency Gain on that
region is defined by:

LSG(m) = Sjn(memy) - Sin(-le-,my)) (511)

where }N%mrmy is the ROI extracted from the mammogram after it has been processed
by the corresponding enhancement method m. A visual example of this saliency
analysis for the mass appearing in the mammogram of Fig. when processed
with our method is shown on Fig. (5.4).

5.5.2 Parameter Configuration

Parameters 3, v, and 7 of Eq. govern the overall behaviour of our method,
weighting the contributions of each of each of its terms. One of the advantages of the
presented method is the intuitive influence these parameters have on its performance:
increasing the attachment-to-data parameter leads to a more conservative behaviour
of the method, while an increase in v produces more contrasted images and  controls
the degree of sparsification of the output. Regarding the weighting function w(x,y),
it is responsible of the extent of local information that the method considers when
increasing contrast. This parameter should be tuned in roughly approximate corre-
spondence to the size of the objects to be enhanced. Given that the average area of
a mass in the INbreast database is of 479 mm?, we have experimented with Gaussian
kernels with a standard deviation of v/479 = 285 mm.
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The time step was always set to At = 1/5, and we considered that a steady-state
of the gradient descent was achieved when the Mean Square Error between I' and
['*! fell below 0.07. In all the experiments, we observed convergence within 4 — 11
iterations.

To reduce the dimensionality of the space parameter, we implemented a simple
normalization strategy consisting of dividing Eq. by g We thus have the
following model for mammogram enhancement:

E() = [ (@) = To(@)? do+5 [ 1@) do =7 [ wlay)iw) = 1(y)] dady,
(5.12)

where 4 = 2v/f and 77 = 2n/f. These two parameters were optimized on a ran-
dom training set of 85 images and then fixed on the remaining 21 test mammograms.
This process was repeated five times in a stratified cross-validation approach, select-
ing the parameter configuration with the best average performance on the resulting
test sets. We varied parameters 4 and 7 across the sets {0.5,0.75,1,1.25,1.5} and
{0.25,0.37,0.5,0.67,0.75} respectively. The optimality criterion was the D measure
detailed in the previous section. Once an optimal pair (7, 7)) was found, it was fixed
for all the experiments in this section at average values of ¥ = 1.3 and 7 = 0.396.

We have tested the performance of our method in comparison to several other
popular and recent methods in the state-of-the-art. These include Contrast-Limited
Adaptive Histogram Equalization (CLAHE, [137]), Density Weighted Contrast En-
hancement (DWCE, [162]), Robust Polynomial Filtering (RPF, [164]), Fuzzy CLAHE
(FCLAHE, [140]), and Histogram-Modified Local Contrast Enhancement (HMLCE,
[171]). For a fair comparison, the described cross-validation procedure was carried out
for all these methods in order to achieve a similar optimal parameter specification.
Next, we provide a brief description of all these techniques and the parameters that
were optimized for our experiments.

CLAHE

Contrast Limited Adaptive Histogram Equalization [137] is a classical method that
still represents the state of the art in most commercial clinical systems to improve the
quality of visualization on medical images. Differently from conventional global his-
togram equalization, CLAHE first divides the input image into small non-overlapping
blocks or tiles, and each of these tiles is subjected to histogram equalization. In such
a local neighbourhood, the presence of noise can influence the results severely. To
control noise overenhancing, if a histogram bin has a higher value than the specified
contrast limit, the associated pixels have their intensity clipped, and this amount is
distributed uniformly over the other bins previous to equalizing the histogram of the
tile. This clipping is performed according to a parameter x, being a typical default
parameter k = 0.01. A higher x results in a stronger contrast enhancement in the
image, but also an increase of saturation and noise levels. To find a good trade-off,
we made k vary in the set {0.01,0.015,0.2,0.25}, and carried out a cross-validation
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process similar to the one described above, which led to an optimal average value of
rk = 0.024.
DWCE

The DWCE technique was designed to
improve mass detection on digitized

mammograms [162]. It relies on a de- <*° 210

composition of the mammogram onto a ' Zos

density and a contrast image, Fp and F¢ % 10 égi

respectively. After normalizing the input £%5— & 0.2 . .
mammogram on the interval [0,1], the S00—— 1, Z 00 : o

Intensity of Fp Intensity of Fxc

density image is obtained applying a low-
pass filter and the contrast mammogram Figure 5.5: a) Contrast fucntion of DWCE b)
is produced by applying a high-pass fil- KNL function of DWCE

ter to the input mammogram. Next,

each pixel in the density image is weighted by a multiplication factor defined by
a non-linear filtering Kj; of the contrast image, obtaining a density-weighted in-
termediate image given by Fko(z,y) = Ky (Fp(z,y)) X Fo(z,y). With this,
the final output of the DWCE technique is a non-linear filter of Fic, given by
Fp(z,y) = Knp(Fro(z,y)) X Fxe(z,y). Fig. displays the two non-linear fil-
ters Ky, and Kyp, the shape of which is controlled by the length of the intervals
0,al, [a,b] and [b,1], as well as [0,c],[c,d] and [d,1]. In the original work [162],
a=1/8b=2/8,¢c=3/8,d="7/8 were employed. In our analysis, we have perturbed
these values by £1/20, so that these four coefficients vary as:

1 111 1 2 1 22 1
. i Y peft__—_ 22—
a€{8 20’8’8+20}’ E{8 20’8’8+20}7
6{3 133—|—1}d€{7 177+1
S T e - — — =, =+ —]
8 20°8’8 207 8 208’8 20

After cross-validation, an optimal configuration for DWCE was found to be a =
3/40,b = 3/10,¢ = 13/40,d = 33/40.

Robust Polynomial Filtering

The Robust Polynomial Filtering framework (RPF) proposed in [164] consists of a
set of one linear filter and two polynomial (quadratic) filters that are combined to
yield an enhanced mammogram. These filters are complex and require a parameter
specification coming from a large parametric space. Part of these coefficients can be
fixed thanks to symmetry and isotropy properties imposed on the filters, leading to
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the following defining equations:

Yiinear = O + 01 (2’ + 23 + 22° + 13") + 02(23° + 23 + 25 + 23°)
Youadratic = P3(T125 + 270§ + a5ay + w3x§ + w§xy + wiwg + 7§ + 157)
+ pa(2b 2l 4 2hal + x2ab + 222b)
+ o5 (w5xe + w528 4 wlal + xfab) + dg(v5as + w5 + 252s + TETS)
Yinear =07 (2125 + 2725 + w3xg + 2575) + ds(w1g + 0327) + do (w505 + w5)

b b b b b b b b
+ dro(xixg + viag + w32, + 5T + 3Ty + wyTs + riTg + THT).

This three filters are finally linearly combined to produce the final output, see [164] for
the details. To deal with the remaining free parameters, the authors experimentally
find the following values: 6y = 0.2,60; = 0y = 0.1, 9 = 8¢, 91 = P = g = —€, P35 =
—0.9€,04 = @5 = 010 = €,07 = —2€,03 = —4€,09 = 4¢, and a = 8u,b = ¢ = L.
This configuration makes the filters dependent of only the two parameters ¢ and
i, that the authors propose to set as ¢ = 0.15 and p € [0.5,0.7]. Consequently,
in our experiments we set ¢ € {0.10,0.15,0.20} and p € {0.5,0.6,0.7} to perform
cross-validation, learning an optimal pair of parameters of ¢ = 0.12 and p = 0.7.

FCLAHE

The FCLAHE method [140] is an extension of CLAHE that adds a non-linear fuzzy
filtering stage to provide an extra enhancement of the gray levels of the image. The
FCLAHE method does not operate on the entire mammogram, but rather on a Region
of Interest, located by specifying an initial seed point on the center of a mass within
the breast. The fuzzy function employed in the original work was F'(p) = %ﬁldl’ where
d is the intensity difference between p and the seed point. Parameter S controls the
degree of opening of F, and thus the amount of enhancement applied within the
neighbourhood of the seed point. With the help of F', FCLAHE processes input gray
level intensities by means of the following formula:

Iout(xv y) = Ar(Im(X’ Y)) + [Im(I7 y) - Ar(Iin(Xv Y))] ' F(|Im(x7 y) - AT(IZTZ(X’ Y))’)v

where coordinates X,Y are related to the location of the seed point, i.e., X =
T — Tseedy, ¥ = Y — Yseed, and A, (1;;,(X,Y)) computes the average of the gray lev-
els within a distance r = X2 4 Y? from the seed point. In the original work
[140], an optimal 8 was found to be 8 = 0.12. Here, we have performed the same
cross-validation process as for all the other methods, varying beta across the set
{0.008,0.010,0.012,0.014,0.016}. We found that an optimal 5 for this database was
£ = 0.0156.

HMLC

The Histogram-Modified Local Contrast Enhancement technique was proposed in
[171] as an alternative to the conventional Histogram Equalization method, in an
attempt to smartly control its enhancement level. It is based on a two-step procedure.
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The first step consists of a modification of the input histogram, given by the solution
of a bi-criteria optimization problem, expressed as min ||g — g;|| + ¥||g — ul|, where
g; is the histogram of the input mammogram, ¢ is the histogram of the enhanced
mammogram, u is a uniform histogram and 1 is the enhancement parameter. An
gi+tvu 1 - wuln
Tty 1+¢7 T 1"
this way, the authors obtain an enhanced mammogram with a modified histogram
that enters into the second step of the method. This consists of a local contrast
enhancement control on g, given by the following rule:

analytical solution to that problem is given by g =

Eg(z,y) if mg,, < KoM and KD < og,, < KyD
g(z,y) =4 _ .
g(x,y)  otherwise,

being M the global mean of the input mammogram, and D its local standard devi-
ation, while mg,, and og,, are images built by storing at each pixel local mean and
standard deviation values. The HMLC technique requires thus the specification of
parameters ¢, F, Ky, K1, and K,. The authors suggest the values of ¢ = 0.8, £ = 3.0,
Ky = 0.5, K1 =0.03 and K5 = 0.5. In here we fixed parameters Ky, K, Ky as pro-
posed in the original work, and optimized parameters v» and E following the same
procedure as in the previous methods, letting ¢, E vary on the sets {0.6,0.7,0.8,0.9,1}
and {1,2,3,4,5}. An optimal pair of parameters was found to be ¢ = 0.62, F = 1.4.

5.5.3 Numerical Results

We examine now the numerical results obtained after applying the described tech-
niques to our entire dataset, in terms of the AMEE, D and LSG coefficients.

We present first the numerical results corresponding to the global quality of the
processed mammograms according to the AMEE index. Table shows the average
AMEE coefficient and standard deviation achieved by each considered approach. Let
us recall that for AMEE, the lowest score represents the better enhancement qual-
ity. We see how our method supplies a substantial global improvement of the input
mammograms, outperforming every other method, although HMLC exhibits a similar
behaviour in terms of global enhancement. Notice that we do not report results of
the FCLAHE method for the AMEE metric, since it is a local technique, meaning
that in does not return a full processed mammogram, but rather a sub-region of it.

With respect to the D-score measurement, our method also achieves a greater im-
provement when compared to other approaches. Only the FCLAHE method provides
a better D-coefficient than our approach. However, this methods enjoys the advan-
tage of operating on a ROI containing the mass, previously defined by the radiologist.
Unfortunately this requirement blocks the possibility of applying FCLAHE in a fully
automated manner.

The D measures discussed above indicates a good local enhancement capability
of our method, that is further confirmed by the evaluation with the Local Saliency
Gain provided in Table In this case, no method matches the increase in saliency
achieved by our variational approach, not even the FCLAHE technique, although
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Table 5.1: Numerical Evaluation - AMEE metric

Ours  CLAHE [137] DWCE [162]

Mean AMEE ~ 0.1487 0.2634 0.4252
Std AMEE  0.1379 0.1834 0.2086
RPF [164] FCLAHE [140] HMLC [171]
Mean AMEE ~ 0.4384 - 0.1761
Std AMEE ~ 0.1946 - 0.1102

Table 5.2: Numerical Evaluation - D-coeflicient

Ours  CLAHE [137] DWCE [162]

Mean D-coefficient 1.2132 1.3715 1.6281
Std D 0.3821 0.4401 0.7724

RPF |164] FCLAHE [140] HMLC [171]
Mean D-coeflicient 1.5365 1.1929 1.2937
Std D 0.4511 0.4645 0.6626

it still performs substantially better than the rest of the considered methods, and
obtains a smaller standard deviation than ours, meaning that its behaviour is slightly
more robust. This agrees with the advantage that FCLAHE enjoys of enhancing only
the region of interest around the masses.

Table 5.3: Numerical Evaluation - Local Saliency Gain

Ours CLAHE [137] DWCE [162]

Local Saliency Gain (LSG)  17.04% 2.52% —0.04%
Std LSG 5.47% 1.62% 2.02%
RPF [164 FCLAHE [140] HMLC [171]
Local Saliency Gain (LSG)  2.83% 8.74%
Std LSG 1.70% 3.39% 2.12%

5.5.3.1 Robustness and Sensitivity to Parameters

The parameters that define our proposed method have an intuitive meaning, and
are thus useful to provide some flexibility to the user. However, to ensure the us-
ability of the method, it is important to study the effect of varying the different
parameters appearing on Eq. . We show in Table the AMEE, D, and
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LSG coefficients corresponding to executing our proposed method on our database
after perturbing the sparse and contrast parameter, decreasing/increasing them by
an amount of 2,5%, 5%, 7,5% and 10%. We can see how, although the results vary
with the different parameter configurations, they do it up to a relatively moderate
amount: for a modification of 10% of the magnitude of both parameters, the vari-
ation of the outputs is of a) 5.38% for AMEE b) 9.32% for the D error ¢) 4.45% for
the LSG. Note also that the best configuration regarding the D coefficient does not
necessarily coincide with the one optimizing the AMEE score or the Local Saliency
Gain analysis, although they seem to be relatively close one to each other.

Table 5.4: Numerical Evaluation - Robustness against parameter perturbation

AMEE |7 —10% 7—5% 5  7+5% 7+10%
7—10% | 0.1526 0.1531 0.1508 0.1486  0.1482
7—5% | 0.1517 0.1493 0.1492 0.1480 0.1450
7 0.1505  0.1494 0.1487 0.1426  0.1407
7+5% | 0.1514 0.1499 0.1481 0.1499  0.1452
i+10% | 0.1528 0.1533 0.1517 0.1501  0.1479

D error | ¥ —10% 7 —5% A ¥4+5% 4+ 10%
n—10% 1.2710 1.2598  1.2285 1.2301 1.2414
1 — 5% 1.2849 1.2625 1.2279 1.2276 1.2385
7 1.3012 1.2755 1.2132 1.2419 1.2542
1+ 5% 1.3177 1.2849 1.2386  1.2432 1.2771
1+ 10% 1.3263 1.3005 1.2964 1.2689 1.2811

LSG |5-10% 4—5% 5  4+5% 7+ 10%
7—10% | 15.82 15.48% 15.29% 15.12% 14.95%
i—5% | 16.64% 16.40% 16.13% 15.94% 15.53%

7 17.65% 17.30% 17.04% 16.80% 16.58%
i+5% | 18.900% 18.64% 18.04% 17.70% 17.42%
i+ 10% | 21.49% 10.95% 10.50% 19.03% 18.55%

Another interesting aspect that can be studied to asses the robustness of the local
behaviour of our method is to perform the evaluation on increasingly larger ROIs
containing the lesions. As can be expected, the largest the ROI enclosing the mass,
the less saliency can be captured by its interior. An example of this analysis can
be observed in Fig. [5.6] where we show a mass contained in regions of progressively
larger sizes, both in the original mammogram and also in the one processed by our
method. We see how the Local Saliency Gain decreases with the size of the region,
since enlarging the ROI size amounts in practice to introducing more tissue and other
visually distracting elements on the analysed region. However, our method seems to
have a remarkable ability to preserve the saliency captured by the mass, even when
those elements enter the visual field, while in the original mammogram the saliency
contained in the mass is gradually displaced to the tissue entering the region from

below, see Figs. and [5.6x]
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Figure 5.6: Progressive decrease of the amount of visual saliency captured by the mass
within a region of increasing size. This saliency loss is partially mitigated by the application
of our proposed method. (a) - (f) Region of the input mammogram containing a mass within
progressively larger ROIs. (g)-(1) Corresponding saliency maps. (m)-(r) Region of the same
mammogram after processing it with our proposed method. (s)-(x) Corresponding saliency
maps.

5.6 Discussions and Conclusion

The numerical evaluation detailed in this work demonstrates the advantages of our
proposed method with respect to other state-of-the-art methods, as well as traditional
ones, for FFDM quality enhancement. Only the FCLAHE method is able to compete
with our approach, but it must be taken into account that our model needs no prior
localization of the regions of interest, as FCLAHE does. Additionally, our method
produces a sequence of images that allow the radiologist to better correlate the original
image with the postprocessed one in order to deliver a more accurate diagnostic.
Although the parameter optimization process was carried out focused on the D
coefficient, it could be preferred in some situations another kind of behavior in which
a stronger or weaker contrast enhancement, or less sparsity, could be desirable. Our
method provides enough flexibility to control that behavior, thanks to the attach-
ment to data parameter, which encapsulates in a single parameter the capability to
fix degree of separation of the output from the input. Moreover, we have also shown
how slight perturbations of the parameters defining our method do not produce unex-
pected results. These constitute essential features for any medical image enhancement
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method, and contribute to ease the potential adoption of the technique by clinical
personnel.

In terms of computational efficiency, the result of applying the operator R in Eq.
(5.4) can be estimated approximating the sign function with a sigmoid mapping. In
this way, it can be reformulated in terms of convolutions and computed using Fast
Fourier Transforms. This adds a computational improvement to the method, since
the effort to compute expression drops from O(N?) to O(Nlog(N)). Details
of this argument for complexity reduction can be found in [3]. An unoptimized
implementation in C++, running on an Intel Core i7 at 2.20 GHz, takes a few seconds
in producing each iteration when processing a mammogram of the spatial resolutions
considered here. Moreover, the method operates on the entire image, including dark
background pixels that contain no information. A previous coarse segmentation of
the breast could further increase the speed of our method.
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Chapter 6

Summary and Future Work

Throughout this dissertation, we have extensively studied three qualitatively different
image processing applications, namely underwater image restoration, fog removal,
and mammographic image enhancement. These three problems have in common that
structures of interest lie in areas where there is an undesired lack of contrast that
must be recovered,, while other regions of the image do not need such enhancement;
this demanded a smart application-driven enhancement approach, rather than the
limited general existing techniques.

We have employed different (although related) techniques to solve each of these
problems. For the underwater image restoration case, we proposed an extension of
the fog removal method known as Dark Channel Prior 7] adapted to the particular
characteristics of images acquired in an underwater environment. This implied con-
siderations regarding the particular color cast and loss of contrast typical of these
images, in which colors associated to short wavelengths tend to decay remarkably
faster. For the image dehazing problem, we noticed the weaknesses of current avail-
able models based on physical principles, that do not account, for example, for a
possibly uneven illumination. To overcome this deficiency, we developed a varia-
tional framework based on existing perceptual color correction techniques 3] that we
extended to cope with haze degradation problems. This involved the design of appro-
priate energy terms that allowed us to increase saturation and contrast without the
introduction of noticeable color artifacts, typical of traditional image dehazing meth-
ods. In our third application, we extended again the variational framework in [3]
in order to adapt it to digital mammograms. A comprehensive evaluation based on
perceptual saliency models allowed us to demonstrate the benefits of employing this
novel image enhancement technique to increase visibility of tumoral masses.

On the other hand, the employed techniques are variations and extensions of
general, flexible and powerful ideas, and there is still room for further research and
applications. We describe below two possible future research direction in this context.
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6.1 Satellite Image Enhancement. The
Pansharpening Image Fusion problem

As an example of a possible further application of the framework developed in Chap-
ter 4 of this dissertation, let us consider the problem of image pansharpening. This
problem arises from the acquisition of satellital images. It consists of producing a
high-resolution multispectral (being RGB a special case) image, starting with a cor-
responding low-resolution multispectral and a high-resolution panchromatic image,
which are what satellites typically acquire. The variational approach has been re-
cently very successful in solving this problem, since the introduction of the P+XS
formulation, see |[181]. As usual, this variational formulation involves a data fidelity
component and a regularizing term. The data component is composed of two energy
terms, responsible of keeping the consistency of the output pansharpened image with
the input panchromatic and low-resolution input data, and the regularizing term aims
at transferring the geometry of the panchromatic data and the diverse components
of the multispectral input.

To formulate variationally this problem, we consider the unknown high-resolution
multichannel image I = (Iy,...,1,), which we want to estimate. The input data
captured by the satellite consists of a panchromatic image P, and a series of low-
resolution spectral components I¥ = (I7,... I ). While the high-resolution images I
and P are defined on an open bounded domain €2 C R", the low-resolution components
give us data on a sampled grid S C (). The goal is thus to infer I from the given data
P and I°.

To solve this underdetermined problem, several constraints are imposed in |181],
arising from considerations on the image acquisition process:

e Panchromatic Constraint: The unknown panchromatic image should be ex-
pressed as a linear combination of the different spectral components, with

weights aq, ..., auy:
m

P(z) => al(z) V2 eQ,

i=1
where a; > 0 and >, o; = 1.

o Spectral Constraint: This is a data fidelity term in which we assume that ev-
ery low-resolution image has been formed as a low-pass filtering of the high-
resolution one, followed by a subsampling:

ki xLi(p) =17(p) Vpe S, 1<i<m,

where k; is the impulse response for the spectral component I;. To ensure the
ability to evaluate k; % I; at every point of the subsampling grid S, a mapping
operator IIg and an extrapolation I of I¥ to the global domain €2 are defined,
see [181] for details. The final data fidelity term is defined as:

/ Mg - (ks # L(z) — 12(2))? dz V1 <i<m.
Q
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Figure 6.1: Images showing the difference between original and pansharpened versions of
degraded original, as obtained by different methods. Almost every technique leads to a
considerable loss of spectral information, with a reduction of color saturation, being the
non-local regularization based on Eq. the one that best performs in this case.

In [182], a non-local regularizing term is added to this formulation, aiming at trans-
ferring the geometry of the panchromatic image to the fused output. We denote it
here by NL(I), and refer to the original work for the specific details.

By considering the energy terms involving the above quantities, and the non-local
regularizing term, we can write the full variational framework proposed in :

J(1) = NL(I) + %/Qp(xf dz + gi/{zns(lﬁ «1(z) — 19(2))? du, (6.1)

where A and p are positive parameters weighting the contributions of each term.

Although Eq. (6.1) represents a sophisticated solution that outperforms every
other recent pansharpening method, it still does not seem to fully recover the vivid
colors present in the spectral components, see Fig This resembles the same
drawback we found in the dehazing or the underwater cases. Therefore, we could
employ a strategy to increase saturation similar to the one we implemented in chapter
4 of this dissertation. Namely, to add the inter-channel stretching term of Eq. .
With that in mind, we write the following saturation control term:

ZZ (z, )Tz, y) = T;(z, y)l,

=1 T,y
J#i

where w(z,y) is a symmetric distance function, as defined in Eq. [1.2] This energy
term provides a local increase in the saturation of the output pansharpened image.
This strategy targets directly to the main weakness of the method given by the
minimization of Eq. , namely that the spectral components are all treated in-
dependently, 7.e., they all contribute equally to a sum across the available spectral
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input. Another interesting possibility could be to bound the amount of stretching by
the saturation observed in the input data. This could be achieved by simply writing:

m 2
SC'(1) = Z;w(x,y) (|IZ — L] — |1 - I?D :
i
The minimization of the two energies defined above, namely J(I) = J(I) 4 u SC(I)
and J(I) = J(I) + p SC/(I), aims to represent a new approach to retain the ability of
Eq. to build a consistent pansharpened image while increasing the amount of
saturation present in the fused image, making it coherent with the saturation observed
in the input spectral components in the second case. Further research in this direction
may lead to interesting results, although a deeper analysis is needed to validate these

ideas.

6.2 Dehazing Mammograms

In Chapter 5 of this dissertation, we have explicitly disregarded the physical informa-
tion about the image formation process, adopting a pure image processing approach.
Our goal was to demonstrate that there is a lack of translation of potentially useful
modern advanced image enhancement techniques from the natural scene field to the
medical imaging area, where conventional approaches are still the dominant paradigm.
However, one can easily conceive that these physical considerations can be incorpo-
rated to some extent to this scenario in order to design even more powerful image
enhancement methods. Indeed, this has already been explored in the past with vari-
ous objectives [183-185]. An open question is whether the simple haze/fog formation
model represented by Eq. can be useful for mammographic image enhancement,
i.e., whether it makes sense to dehaze mammograms.

To better understand the problem, let us briefly outline the image formation model
associated to X-ray imaging. X-rays are produced in the context of medical images
by accelerating electrons and making them collide with heavy atoms that lie on a
rotating metal disk, known as anode. These collisions take place on a X-ray tube,
and they make the electrons lose part of their kinetic energy, producing a radiation.
When the colliding electrons have enough energy, they produce a detachment of
electrons belonging to the target metal atoms. In that case, electrons from higher
states move in order to fill this vacuum, and this process emits X-ray photons at a
certain frequency range. From the anode, these photons take off in all directions.
A diaphragm acts as a collimator, forming the beams of X-ray photons that enter
the patient body. Within it, there are many different tissues, each one with different
attenuation properties. Three phenomena can occur:

1. Photons do not interact and go through the tissue meeting no atom in their
way (transmission).

2. Photons interact with tissue atoms and transfer them some energy (absorption).
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3. After interacting, photons are diverted into some other direction (scattering).

In the case of interaction with tissues, the amount of absorbed energy depends on
the atomic mass of the corresponding tissue. For instance, bone and mineral have a
large atomic mass, so they absorb a large amount of radiation. Other softer tissues
such as fat, muscles, etc. are not so dense, and photons have a higher probability of
passing through them. The attenuated radiation reaches a photon detecting film that
lies behind the patient, producing a 2D image. In older days, these detectors consisted
of a cassette that contained a film and an intensifying phosphor screen behind. X-
ray photons went through the screen, and they were captured by the screen, which
absorbed the X-rays and emitted fluorescent light that exposed the film. Nowadays,
these screens have been replaced by electronic devices, giving rise to digital X-ray
imaging techniques.

In any case, when an X-ray beam traversing the body meets, for instance, bone,
a low quantity of photons reach the detector, leaving the film whiter. When this
number of photons is larger, the film becomes darker. This happens when the beam
goes through soft tissue or through air. The attenuation experimented by an X-
ray beam of intensity I depends on the intensity of the source Iy, the attenuation
coefficient 1 of the tissue and the length of the path through that tissue d, and
follows an exponential decay law:

[=1, e "4

The above equation is a very simplified version of the attenuation process that takes
place in the interior of the body. A more realistic (although still rather simplistic)
model is the following:

I(r) =1, - /OO p(E)e” S ur 2Bz g
E=0

where p(FE) is the photon energy spectrum, which depends (and is characterized)
on the anode material, the tube voltage and other acquisition parameters; pu(r, z; E)
is the linear attenuation coefficient for a tissue located at the 3D location (r,z), as
well as the photon energy FE; the inner integral is along the line of length A(r). This
model clearly shows complexity of modelling the physical process of X-ray attenuation
within the human body.

On the other hand, this and related formulations have been successfully used
to implement different quantitative mammographic image analysis tasks, such as
the normalized mammographic representation in |184], leading to several interesting
applications including image restoration, realistic simulations, or advanced visual-
izations. In [185] a model-based breast density estimation is proposed. These and
related works have in common that the tissues contained in the breast are modelled
in terms of two classes: fatty tissue (with a much lower attenuation) and dense,
or “interesting” tissue. The latter includes glandular, fibrous or cancerous tissues.
However, the price to pay for using such an advanced image acquisition model is at
least twofold: first, it requires the availability of several acquisition parameters, and
second, it explicitly ignores the presence of calcium.
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Calcium is present sometimes in the breast in the form of calcifications, in a
relatively very small quantity. Nevertheless, the presence of tiny calcification clusters
(microcalcification) is one of the most useful early indicators of the presence of breast
cancer. Many research has been devoted to the detection and classification of such
clusters, see a comprehensive review in [186]. And it is precisely in this particular
application where the simple haze formation model of (Eq. can be useful. Let
us recall it here for convenience:

I(z) = t(2)J(z) + (1 — t(z))A. (6.2)

Here, z is a pixel location on the foggy scene, I(x) is the observed intensity, J(x) is
the scene radiance corresponding to the haze-free image, transmission t(z) is a scalar
quantity that is inversely related to the scene’s depth, while A, the airlight, plays the
role of the haze color, usually considered constant over the scene.

Let us now reinterpret the above model in terms of digital mammograms and
microcalcifications. To that end, we interpret that the brighter pixel in the mam-
mogram corresponds to the most radio-opaque element within the breast. This will
correspond to a calcification in case it is present. If t(z) is a scalar function that
reaches its maximum for completely non-absorbent tissues (air), and its minimum
in completely radio-opaque tissues, and t(z) € [0, 1], then we have the following
observations:

e For t(x) = 1, the model simplifies to I(z) = J(z). This implies that for low or
non-absorbent tissues, the enhanced mammogram will remain closely similar to
the input mammogram.

e For t(z) = 0, the model simplifies to I(z) = A, the intensity of the most radio-
opaque tissue, i.e. calcifications.

e For the rest of the mammogram, tissues with similar intermediate intensities
will be regarded as equal in terms of absorption, and inversion of the above
formula will lead to a similar enhancement regarding pixels associated to them.

From these remarks, we can draw the conclusion that inversion of Eq. leads to
a selective increase in contrast: non-absorbent tissues will remain unaltered in the
output mammogram, and a progressive contrast enhancement will take place in the
rest of the image. This contrast increase will reach its maximum power in radio-
opaque elements, i.e., in the neighbourhoods of micro-calcification.

Having justified the usefulness of the haze model for the microcalcification sce-
nario, we now turn to the issue of how to solve for J(x) in Eq. to obtain a
dehazed mammogram. This is the key advantage of adopting the approach described
above: as we have reviewed in chapter 4, there are plenty of strategies available from
the image dehazing literature that can be seamlessly exported to the field of mammo-
graphic image enhancement. The only requisite is that the corresponding dehazing
technique is able to work on grayscale images. Unfortunately, this is a non-trivial
requirement. A typical image dehazing technique aims to restore a spatially-variant
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loss of contrast and saturation. Therefore, they tend to rely on luminance as well as
chromatic information present in the hazy image.

Luckily, some of the most successful approaches to image dehazing can be easily
particularized to grayscale images. For instance, was directly proposed for both
color and grayscale images. Also, a specialization of the method in |7] to the grayscale
case can be straightforwardly derived by simply ignoring the chromatic component.
Moreover, the method proposed in chapter 4 of this dissertation can also work in
grayscale images, at least its basic version given by Eq. . In Fig. 6.2, we

(a) Original Mammogram (b) Dehazed Mammogram

(d) Detail of the cluster (e) Detail of the cluster (f) Detail of the cluster

Figure 6.2: Digital mammogram containing a cluster of microcalcifications, together with
the result of applying the dehazing method in , and the CLAHE method. We see how
visibility of the cluster increases noticeably.
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present a visual preliminary result of applying the method in [7] to enhance a digital
mammogram containing a microcalcification cluster, as well as a comparison with the
popular CLAHE algorithm [187], to illustrate the potential benefits of the use of image
dehazing techniques in the context of enhancing the visibility of microcalcifications
within the breast.

There are two key parameters that are typically common to every dehazing strat-
egy, and which we must carefully take into account, since they become critical for the
enhancement of microcalcification clusters: the scale and the enhancement strength.

The scale is usually employed in image dehazing to avoid confusing a white object
near the observer with haze. It is often defined so as to determine a spatial neigh-
bourhood that completely encloses such an object. In our case, this scale parameter
should be defined as the mean size of a microcalcification, which may vary between
5 and 15 pixels, depending on the scanner resolution.

As for the enhancement strength parameter, dehazing methods normally set it to
approximately 0.95, meaning that 5% of the haze present in the scene will be kept.
It is usually argued that a complete removal of all the haze in the scene would render
the output image unnatural to the human eye. From our point of view, we keep
this as a free parameter of the method, which must be tuned, and should vary in
a neighbourhood of 1 from below: it controls the amount of enhancement that the
mammogram will experiment.

Apart of the encouraging visually pleasing results displayed in Fig. , it is
important to validate the proposed method when applied as a preprocessing step for
some Computer Aided Diagnosis task, such as detection or classification of micro-
calcification clusters. In that sense, we have produced interesting preliminary results
considering as the evaluation method the increase in performance of a state-of-the-art
automatic detector called casCADe, described in [188]. Numerical experiments point
to a surprisingly strong added detection capability, with a decrease in the False Posi-
tive rate of the detector. Further experiments are being carried out at the moment in
order to support the claim that dehazing techniques represent a powerful approach
to this problem, and to better determine the potential of these ideas to impact the
field of CAD based on digital mammograms.
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Appendix A

Variational Derivatives

Proof of Proposition (2.2.1

Given a differentiable and even functional J, and a symmetric function w(x,y), we
must prove:

L 0CLs (@) = 2 | wlw,y)J (1) = 1(y) dy.

2. 0D,(1)(a) = 2(1(x) — ).

3. 0Dasn(I)(z) = 2(I(z) — Io(z)).

Recall that given a scalar function ¢ and an arbitrary energy:
B() = [ ¢(i(x)) d,

the chain rule states that its derivative in the éI direction is:

SE(L o1) = /Q ‘;f 81(z) da, (A1)
I(z)

(I(z) — )% dz and Daop (1) = /Q (I(z) — To(x))? dz

which when applied to D, (1) = /
Q
gives:

6D, (181 =2 | (1(x) = pu(a)) 3L(a),
5D asn (T, 6T) =2 /Q (I(z) — Io(x)) 61(x),

which directly leads to the variations given above. Thus we only need to prove the
first of the above equations, involving the contrast term C,, ;(I). The variation of this
functional is given by:

0C(1,08) = [ wle.)J (1) ~ 19)(61(x) - o1(»))

— [ wlwn) 1@ = 1@)ota) — [[ w0 - 1)),
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Since J is even, we can use the formula J/'(z) = —J'(—z) to rewrite the second term
in the right hand side of the last equality:

CoallD) = [ wley) 7 (1w) = 1@)ol) + [ wla.y) (1) - 1(2)3l(y)
=[] wl@ ) 1@) = 1)) + [ w(y.2) 1) ~ 1))

In the above equality, we have interchanged the notation x <+ y in the last term. Since
w(z,y) is a symmetric function, and applying Fubini’s Theorem, we can interchange
the order of integration in the second term of the sum, and gather both terms arriving
at:

5C, (L, 81) = 2 /Q (2intow(z, y)J'(1(z) — I(y)) dy) 01(z) da. (A.2)

This leads to the formula for the variation of C, ; given above.

Proof of Eq. (4.11

Let us denote each of the different terms appearing in the global energy in Eq. (4.10)
as follows:

B (U, 1) =3 (U () — p7)? (A.3)
Eran (V) =3 (V(2) = I (2))? (A.4)
Ec(F,1%) = w(z, )V (z) = T*(y)l. (A.5)

When j = k, Eq. (A.5)) represents the mono-channel contrast enhancement term, and
when j # k, the inter-channel stretching term. With this notation, the full energy in
Eq. (4.10) can be rewritten as:

B) = %Em”(p’“j) N SEAQDW) - %EC(P} V) - % (Ee(V,V*!) 4+ Eo(V, 74%)) .

For the cases of E,,, (I, /) and Exop(I7), as well as the mono-channel contrast en-
hancement Eq(I7, I7), these are only discrete versions of the results provided in Propo-
sition (2.2.1), when J(z) = |z, i.e., a smooth (even) approximation to the absolute
value function. Thus, their discrete variational derivatives are given by :

SEmo(V, 1i?), 67) =2 Z (I (z 7)) 0V (z)

SEop(I7, 517) 221] ) — I(2)) 6V ().

SEG (T, 01) Z (Z w(z,y)sign, (I (z) — V(y)) dy) SV (z),
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where sign, represents the derivative of | - |, tending to the sign function as € ap-
proximates 0. For the case of the inter-channel stretching term, i.e., the variation of
Ec(I7,1%) in the direction of I when j # k, it is a simplification of the derivations
in Proposition (2.2.1)) . Since in this case I¥ can be considered a constant, we can
directly apply a discrete version of the chain rule, obtaining:

SES((P,1F), 619) = 22 <Z z,y)sign, (F () — Ik(y))> 6V (). (A.6)

Y

By letting € tend to zero in the Eq. (A.6) and gathering together all variations,
we can write the variation of the full energy in the direction of §I7 as:

> [W(w) — ) + B (2) = B(2)) — 7 Yo w(z, y)sign(V(z) — F(y))

Y

(Zw z,y)sign(V (z) — P (y)) + Y w(z, y)sign(¥ (z) — Ij+2(y))>1 SV (z).

Y

This shows that the gradient of the full energy amounts to the expression shown in
Eq. (4.11)).
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Appendix B

Main Accomplishments of this
Dissertation

During this Ph.D., in addition to develop the work described in this document, we
have published the following scientific papers in peer-reviewed international journals
and conferences:

e A. Galdran, J. Vazquez-Corral, D. Pardo, and M. Bertalmio, A Variational
Framework for Single Image Dehazing, in Proc. of the 4th Color and Photom-
etry in Computer Vision Workshop (ECCV 2014), Zurich, Sept. 2014.

e A. Galdran, D. Pardo, A. Picén, and A. Alvarez-Gila, Automatic Red-Channel
Underwater Image Restoration, Journal of Visual Communication and Image
Representation, 26 (2015), pp. 132-145.

e A. Galdran, J. Vazquez-Corral, D. Pardo, and M. Bertalmio, Enhanced Varia-
tional Image Dehazing, SIAM Journal on Imaging Sciences, accepted.

e A. Galdran, A. Picon, E. Garrote, A. Bereciartua, D. Pardo, Sparsity-Based
Context-Aware Variational Enhancement of Full-Field Digital Mammograms,
submitted.

The following talks have also been presented in different institutions:

e A. Galdran, J. Vazquez-Corral, D. Pardo, and M. Bertalmio, A Variational
Framework for Single Image Dehazing, in the 4th Color and Photometry in
Computer Vision Workshop (ECCV 2014), Zurich, Sept. 128, 2014.

e A. Galdran, J. Vazquez-Corral, D. Pardo, and M. Bertalmio, A Variational
Framework for Single Image Dehazing, in the Third BCAM Workshop on Com-
putational Mathematics, Bilbao, July 18", 2014.

e A. Galdran, Artzai Picon, and D. Pardo, Image Restoration Techniques on Hazy
and Underwater Environments, in the Mathematics and Applications Days (V-
MAD 4), Valparaiso, Chile, January 8% 2014.
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e A. Galdran, Artzai Picon, and D. Pardo, Distance Dependent Image Degrada-
tion. Restoration Algorithms and Applications to Atmospheric and Underwater
image enhancement, in the Third BCAM Workshop on Computational Mathe-
matics, Bilbao, October 11%", 2013.

e A. Galdran, Mathematical Image Segmentation. Variational and Level Set
Techniques, in Minisymposium: Projects in technology centres of the Basque
Country. Santiago de Compostela, July 12", 2012.
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