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Abstract
Multi-Agent Reinforcement Learning (MARL) algorithms face two main difficulties: the curse

of dimensionality, and environment non-stationarity due to the independent learning pro-

cesses carried out by the agents concurrently. In this paper we formalize and prove the con-

vergence of a Distributed Round Robin Q-learning (D-RR-QL) algorithm for cooperative

systems. The computational complexity of this algorithm increases linearly with the number

of agents. Moreover, it eliminates environment non sta tionarity by carrying a round-robin

scheduling of the action selection and execution. That this learning scheme allows the

implementation of Modular State-Action Vetoes (MSAV) in cooperative multi-agent sys-

tems, which speeds up learning convergence in over-constrained systems by vetoing state-

action pairs which lead to undesired termination states (UTS) in the relevant state-action

subspace. Each agent’s local state-action value function learning is an independent pro-

cess, including the MSAV policies. Coordination of locally optimal policies to obtain the

global optimal joint policy is achieved by a greedy selection procedure using message pass-

ing. We show that D-RR-QL improves over state-of-the-art approaches, such as Distributed

Q-Learning, Team Q-Learning and Coordinated Reinforcement Learning in a paradigmatic

Linked Multi-Component Robotic System (L-MCRS) control problem: the hose transporta-

tion task. L-MCRS are over-constrained systems with many UTS induced by the interaction

of the passive linking element and the active mobile robots.

Introduction
The transportation problem The transportation of a hose by a team of robots is a paradig-
matic instance of the tasks that can be performed withMulti-Component Robotic Systems
(MCRS) [1]. In fact, a hose with a team of robots attached to it is a Linked MCRS (L-MCRS),
because it can be viewed as a collection of autonomous robots physically connected by a passive
two-dimensional object, i.e. the hose.
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Autonomous learning Reinforcement Learning (RL) [2, 3] is the main paradigm for auton-
omous learning. Agent-environment interaction is modeled as a Markov Decision Process
(MDP) specified by a system state space, the transitions between states, and the actions that the
agent can perform in each system state. Agent learning is guided by an external reward signal
that gives a feedback assessment of the value of an action executed while the system is at some
state. The goal of RL is to estimate optimal action selection policies maximizing the expected
reward. In most cases, the agent-environment MDP is not an irreducible ergodic Markov
Chain, but has some terminal states where the system lies forever if reached, i.e. probability of
exiting the state is zero regardless of the action taken. While learning, the system must be re-
initialized after reaching the terminal state in order to continue learning and exploration.
Therefore, the overall learning process carried by RL is composed of successive trial episodes,
which are independent realizations of the evolving MDP starting from (random) initial states,
i.e. the MDP changes some of its policy making parameters in between or during trials. The
simplest model-free RL algorithm is Q-learning [4, 5], which applies an iterative reward propa-
gation rule to estimate the state-action value function implementing the optimal policy. It is
often the case that rewards only happen in succesful termination states, so that learning
involves the repetition of the task trial many times. Autonomous learning of the L-MCRS con-
trol by single-agent RL approaches has been demostrated [6, 7] in the small scale cases, how-
ever applying RL to systems with many robots faces an exponential computational complexity
growth. Therefore, we are looking for distributed multi-agent approaches which promise
computational speed-up through parallel processing, direct modeling of multi-component sys-
tems, fault-tolerance inherent to distributed control realizations, and the ability to provide lin-
ear complexity approximations to problems which are combinatorial in nature, so that their
complexity grows exponentially with the number of agents.

Overconstrained systems In robotic applications, normal termination is given by the
accomplishment of the assigned task, so that the agent obtains a positive reward. Undesired
terminal states (UTS) correspond to irreversible situations where the system is stuck in a
rewardless state and no evolution to a successful termination of the proposed task is possible.
Hence, the work performed to reach this state is fruitless, the agent does not extract any posi-
tive training information. UTS often correspond to catastrophic error conditions. We say that
a system is over-constrained when the number of UTS is large relative to the state space size. In
over-constrained systems, RL convergence is severely handicapped by the high frequency of
learning episodes ending in UTS. In single-agent domains, Modular State-Action Vetoes
(MSAV) [8] provide a convergence speedup by early avoidance of UTS, minimizing unneces-
sary computation for the estimation of state-action values. The reward signal is decomposed
into separate signal classes, each of them associated with a particular class of physical con-
straint which is commonly related to a specific subset of state variables. Modules specialized in
each signal class can be taught independently when there is no interaction between state vari-
ables modeling the failure signal classes.

MARLMulti-Agent Reinforcement Learning (MARL) [9] scenarios involve several agents
learning concurrently, so that some coordination mechanism is required for agents to agree on
the joint-action to be taken. MARL has been successfully applied to several problems, such as
traffic control [10], supply chain ordering management [11], prey chase [12], or intrusion
detection [13]. The concurrent adaptation of the individual agent policies makes the environ-
ment non-stationary from an agent’s perspective. For this reason, few MARL algorithms offer
any theoretical results about convergence to an optimal joint-policy. Moreover, solving the
coordination problem ensuring convergence has additional cost in memory or communication
resources [14]. The main issue in Q-Learning based MARL approaches is the exponential
growth of the state-action space when the number of agents is increased (curse of
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dimensionality), because it needs to consider all possible combinations of local agent actions,
even when all agents share a common set of state variables. This problem has been dealt with
using general Function Approximators which reduce the amount of information storage
needed [15–21], but data fitting processes impose specific assumptions which can bias the solu-
tion [17, 22]. Besides, most MARL approaches need communication between agents either for
coordination or for internal computations. Communication channels introduce delays and
noise compromising the system’s learning convergence. Depending on the nature of the
rewards, MARL systems can be cooperative or competitive [9]. In cooperative systems, all
agents receive the same reward, perceived as the result of the joint actions of the agents in the
actual system state without requiring explicit communication between agents. We will only
consider cooperative systems.

Paper contribution This paper formalizes and proves the convergence of the Distributed
Round-Robin Q-Learning (D-RR-QL) algorithm in which agents follow a predefined Round
Robin (RR) order to execute their local actions sequentially. Agents are endowed with local Q-
tables performing local estimation of the state-action value function. Local agent policies are
composed into a joint policy that approximates the global optimal policy using a message-
based procedure. D-RR-QL converges to an optimal policy even in stochastic environments.
Besides, sequential execution of local actions allow agents to use MSAV when dealing with
over-constrained systems, because the outcome depends only on the local action. Computa-
tional experiments show that in over-constrained environments, D-RR-QL with MSAV is able
to estimate a good approximation to an optimal policy, whereas competing state-of-the-art
algorithms D-QL [23], Team QL [24], and Coordinated RL [25] never reached the goal state,
even when allowed a bigger learning time span, so that they were unable to perform any learn-
ing step.

Problem Statement
The specific instance of the hose transportation problem dealt with in this paper is represented
in Fig 1. A set of robots is attached to a hose and they must maneuver so that the tip of the hose
reaches a predefined goal destination. The hose is a passive linking element that constrains
non-linearly the motion of the robots. The dynamics of the whole system are highly non-linear.

Fig 1. Graphic representation of the hose transportation problem. The robots attached to the hose must
move coordinately so that the tip of the hose carried by the robot R4 reaches the goal position.

doi:10.1371/journal.pone.0127129.g001
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Accurate dynamical modeling of the hose motion pushed by the robots can be achieved using
bi-dimensional Geometrically Exact Dynamic Splines (GEDS) [26–28]. The spline is defined as

qðu; tÞ ¼Pi¼0
nc

Ni;dðuÞ � ciðtÞ, where ci(t), i = 1, . . ., nc are the dynamic control points and Ni, d is

the d-degree polynomial specified by control point ci(t). This equation defines the position of
the spline for a normalized value u 2 [0,1) at time t. Robots are modeled as control points

along the spline, and the actions executed by robots are modeled as the external forces~F i; i ¼
1; . . . ; n exerted on the hose. The GEDS model is illustrated in Fig 2.

Simulation of the linked system using GEDS modeling is computationally very expensive
(for some systems it takes about 2 minutes to simulate a single time step on a standard desktop
computer). Transfer learning can be applied to overcome this computational cost barrier, i.e.
tackling the problem as a two-step process: first, agents are trained on a simplified model that
uses line segments to model the passive linking element, such as in Fig 3, so that they acquire
the basic control skills through RL; second, this knowledge is transferred to learning the control
of the robots when the hose is modeled by a GEDS, so that agents refine their control skills
with the most accurate model [29].

Most important, the hose-robots system is an overcontrained system. Whenever any of the
dynamic constraints is broken the system reaches a UTS, and it must be reset so that the learning
episode needs to start again from the initial setting. Specifically, we consider four dynamic con-
straints: (a) the robots are not allowed to step over the hose, (b) the hose cannot be overstretched,
(c) robots must not collide with each other, and (d) they must stay within the simulation bounds.

Fig 2. Second order model approach to the hose transportation problem applying GEDS. Arrows
indicate the actual force applied by the robots on the hose.

doi:10.1371/journal.pone.0127129.g002
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Reinforcement Learning Background

Single-Agent Reinforcement Learning
Markov decision processes. In RL algorithms, the interaction between an agent and its

environment is modeled as a Markov Decision Process (MDPs), defined as a tuple< S, A, P, R
>, where S is a finite set of states, A is a set of actions which the agent can execute, P:S × A × S
! [0, 1] is a probabilistic transition function P(s, a, s0) giving the probability of observing state
s0 after executing action a in state s, and R:S! R is the expected immediate reward after reach-
ing state s. The set of terminal states T is defined as the set of states having null outgoing transi-
tion probabilities, i.e. T = {sSj8s0 6¼ s, a;P(s, a, s0) = 0}. The action selection policy is usually
modeled as the probability distribution π:S × A! [0, 1] of taking action a in state s.

The value Vπ(s) of state s is the expected accumulated reward obtained from that state fol-
lowing policy π. It can be expressed as

VpðsÞ ¼ Ep
X1
k¼0

gkrtþkþ1 j st ¼ s

( )

¼
X
a

pðs; aÞ
X
s0
Pðs; a; s0Þ½Rðs0Þ þ gVpðs0Þ�;

ð1Þ

where Eπ denotes the expected return from time step t following policy π thereafter, ri repre-
sents the reward received at time i, and γ 2 [0, 1] is a discount-rate parameter decreasing the
weight of the reward at each time-step. Eq (1) is the Bellman equation for Vπ [3]. There always
exists one or more optimal policies π� maximizing the state value, denoting V� this maximum

Fig 3. First order model approach to the hose transportation problem using line segments to
represent the hose. Arrows indicate the actual force applied by the robots on the hose.

doi:10.1371/journal.pone.0127129.g003

Learning Hose Transportation by Round-Robin Distributed Q-Learning

PLOS ONE | DOI:10.1371/journal.pone.0127129 July 9, 2015 5 / 27



value. It satisfies:

V�ðsÞ ¼ max
a2A

X
s0
Pðs; a; s0Þ½Rðs0Þ þ g � V�ðs0Þ�

( )
: ð2Þ

The goal of the learning agent is to find this optimal policy. The expected value of executing
an action a in state s following a policy π, is modeled by the state-action value function Qπ(s, a):

Qpðs; aÞ ¼ Ep
X1
k¼0

gkrtþkþ1 j st ¼ s; at ¼ a

( )
;

where at represents the action taken at time-step t. The optimal state-action value function is
obtained applying an optimal policy π�:

Q�ðs; aÞ ¼
X
s0
Pðs; a; s0Þ Rðs; a; s0Þ þ g½max

a0
Q�ðs0; a0Þ�

� �
: ð3Þ

An episode consists of a sequence of state transitions fired by actions executed by the agent,
leading to a terminal state that represents the success/failure of the completion of a proposed
task. The deterministic greedy action selection involves selecting always the action with the
highest Q-value exploiting the available knowledge

pgreedyðsÞ ¼ arg max
a02A

Qðs; a0Þ;

implementing the optimal policy implied by the actual Q-table. This policy is applied in the
test and operational phases of the system. In order to ensure convergence during learning, the
system must be able to explore, i.e. to reach any state from any state, therefore action selection
probabilities must be non-null. One way to ensure that is an stochastic action selection algo-
rithm such as Soft-Max:

pSoftMaxðs; a; tÞ ¼
exp Qðs;aÞ=tX

a0
exp Qðs;a0Þ=t ; ð4Þ

where τ 2 (0,1] is a parameter controlling the flatness of the probability distribution, aka tem-
perature parameter.

Q-Learning. Q-Learning [5] is a model-free Temporal Difference reinforcement learning
algorithm performing an iterative estimation of the state-action value function Q(s, a), hence
its name. It allows agents to find the optimal policy for an MDP without a priori knowledge
about the transition function P and the reward function R. Denote {Qt(s, a);t = 0, 1, 2, . . .} the
sequence of state-action value function estimations during RL, converging to Q�(s, a).

The original Q-Learning algorithm stores in tabular form state-action values Q(s, a). At
each learning episode, the agent observes the actual state st, selects an action to be executed at,
receives the immediate reward rt, observes the subsequent state s0 and updates the state-action
value matrix to Qt(s, a) from the previous estimation Qt−1(s, a). Learning speed is controlled by
the gain αt and Q-values are updated using the following rule:

Qtðs; aÞ  ð1� atÞQt�1ðs; aÞ þ at rt þ gmax
a0

Qt�1ðs0; a0Þ
� �

ð5Þ

Q-learning converges with probability 1 to the optimal policy in a stationary environment
[5] when all system’s states are visited infinitely often, and the learning gain αn complies with
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the stochastic gradient conditions. This ergodic condition on the stochastic process realized by
the agent according can not be fulfilled by an MDP containing terminal states (T 6¼ Ø) or hav-
ing sparse state transition probability matrix. To avoid the latter, SoftMax action selection
function is applied. To overcome the former, the learning process must be reinitialized each
time that it falls in a terminal state. A separate representation for each state-action value is also
required, and thus, the storage space requirements are O(jS × Aj), growing linearly with the
state-action product space size.

Multi-agent Reinforcement Learning
MARL algorithms were classified in [30] depending on agents’ perception capabilities: in Inde-
pendent Learners (IL) approaches, agents are able to observe the global state but restricted to
know their own local actions, while in Joint-Action Learners (JAL) approaches, agents are
allowed to observe both the global state and all the actions taken by all agents. IL are a more
realistic framework for real life deployment of MCRS systems, because communication
requirements are inmediately scalable.

Independent Learners (IL). IL approaches decompose the global state-action value Q-
table into local Q-tables owned by agents. The easliest instance of this approach is the naive IL
approach [30], where agents implement a single-agent RL algorithm obviating the decisions
and the payoff obtained by the remaining agents. Because of the lack of a coordination mecha-
nism, the system cannot be guaranteed to converge to a stable or a globally optimal policy. The
Distributed Rewards and Distributed Value Functions were studied in [31] as a way to motivate
cooperation between neighbors. Instead of updating the state-action values using only the local
reward or values, agents also used weighted rewards or state-action values of their teammates.
The computational complexity of these methods scale linearly with the number of agents, but
no proof of convergence exists. Distributed Q-Learning (D-QL) [23] performs local training on
a local Q-table per agent assuming optimal behavior from all remaining agents. The virtual
global Q-table is decomposed into local Q-tables. For each local action ai, the agent stores only
the value of the joint-action containing ai that maximizes the reward. Thus, agents need not be
aware of the actions taken by the rest of agents to be able to converge to a globally optimal pol-
icy. However, this convergence is not guaranteed in stochastic environments. Some authors
propose the use of an actual centralized table updated by all agents [32, 33]. Some others have
presented very good results applying a heuristically modified version of D-QL, known as Hys-
teretic QL [34]. Distributed RL has also been proposed to deal with multi-objective optimiza-
tion problems using negotiation protocols between agents [35].

Joint-Action Learners (JAL). The most straight-forward JAL approach to MARL is to
implement an independent Q-Learning process in each agent estimating the Q-value of each of
the joint-actions. Team Q-Learning [24] (Team-QL) assumes that a unique optimal action
decision exists in each state.

Some authors have proposed model based heuristic algorithms [30, 36] to estimate the most
likely response of the remaining agents, using them to bias local policies towards coordinated
joint actions. Those models are learned from experience. Following a different approach, each
state in an MDP can be regarded as a virtual stateless Stochastic Game (SG), therefore adaptive
methods [14, 37] have been proposed to bias local action selection towards a globally optimal
joint action. These approaches require additional memory resources and knowledge about the
optimal state-joint-action function, scaling badly with the problem size.

The Coordinated Reinforcement Learning (Coordinated-RL) [25] approximates the global
joint value function as a linear combination of local value functions [38]. The complexity of
agreeing on a globally optimal joint action can be reduced assuming that agents need not
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coordinate with all remaining agents, but with a small subset. These coordination dependencies
between agents are context-specific, can change dynamically and can be defined as a Coordina-
tion-Graph, where undirected edges represent a coordination dependence between agents. The
use of the Coordination Graph reduces the state-action space by defining which actions are rel-
evant to each local value function, and it can still be further reduced by identifying which state
variables are relevant to each local value function.

RelatedWork
In this section, we first review previous work on dynamic constraints in single-agent RL. To
the best of our knowledge, no relevant work can be found on constraints in multi-agent sys-
tems. Next, we describe the three MARL algorithms that we have used in our experiments for
benchmarking: Team Q-Learning, Distributed Q-Learning, and Coordinated RL.

Dynamic Constraints in RL
In the literature about RL, undesired terminal states (UTS) have been dealt with in different
ways: (a) Using null state transitions and/or generating negative rewards [39–41]. (b) Manually
discarding actions that could lead to an undesirable state [42], defining a state dependent
action repertoire A(s). (c) Defining MDPs with Constraints [43–45], where the goal is to maxi-
mize the expected accumulated reward subject to minimize the risk of ending in an error state
after taking action a in state s. The estimated risk expectation is updated similarly to the Q-
table values. The state-action value is the weighted mixture of expected accumulated rewards
and risks. Learning searches first for a minimum risk policy. After that, an optimal policy
below an upper bound for the allowed risk of reaching an error state is sought. (d) Assuming
availability of experience tuples from a demonstration of the task performed by an expert [46].
Using state-actions known to be safe from these initial samples, RL is used to achieve a near-
optimal performance with respect to the available data. Finally, (e) [47] consider undesirable
states as critical, proposing a graph-based algorithm to safely explore a given state-space with-
out reaching a critical state. They assume that error states are defined by the magnitude of the
rewards, which involves that states near critical states can be detected by the rewards. None of
these approaches are feasible for over-constrained systems such as L-MCRS for the following
reasons: (a) using null state transitions and negative rewards does not encorage the agent to
avoid them fast enough because Q-values are weighted sums of the immediate negative rewards
and future positive rewards, (b) the system designer requires knowledge of the transition func-
tion in order to manually define a state dependent action repertoire, and (c) calculating the risk
of reaching an UTS from each state-action pair makes the problem even more complex and
requires even more computation.

Modular state-action vetoes. In over-constrained single-agent tasks, we define a partition
of the terminal states into two sets T = G[U, where G� S is the set of good termination condi-
tions, and U� S is the set of UTS. We can also identify the set T� S of transitory states. We
can state that they are characterized by the sign of the achieved rewards as follows:

G ¼ s j s 2 S;RðsÞ > 0f g;
T ¼ s j s 2 S;RðsÞ ¼ 0f g;
U ¼ s j s 2 U ;RðsÞ < 0f g:
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We can decompose further the reward signal asm different signals

RðsÞ ¼ RG þ
Xm�1
i¼1

RU
i ðsÞ;

where

• RG(s)� 0 is strictly positive only if the task has been successfully accomplished, and zero for
transitory states.

• RU
i sð Þ � 0; i ¼ 1; . . . ;m� 1 are strictly negative signals only when a certain class of UTS has

been reached, e.g. collision, broken physical constraint, etc.

This modular partition into is particularly useful when dealing with over-constrained systems,
because it facilitates the learning of how to avoid triggering of the alarm signals RU

i using only
information from the relevant state subspace SUi . Under the assumption that the optimal policy
will in no case reach a UTS, Safe Modular State-Action Veto (MSAV) policies [8] are useful to
boost the exploration efficiency. Let the state space be S ¼ SX 	 SUi , where S

U
i is the state sub-

space used by the i-th module. Every time RU
i is triggered, jSXj states are effectively vetoed in

the complete state space. Thus, MSAV policies will learn Ae(s) faster than any policy learning
over the complete state space, and the speed gain introduced is proportional to the number of
irrelevant state variables.

The system learns simultaneously the Q-values and the Safe Action Repertoire Ae(s)

AeðsÞ ¼ aja 2 A ^
X
s02U

Pðs; a; s0Þ ¼ 0

 !( )
;

which is the set of actions that cannot lead to a UTS. Vetoes are imposed to risky state-action
pairs using only the corresponding state subspace. UTS can be safely avoided and learnt using
a Safe-MSAV policy such as

p̂SoftMaxðs; a; tÞ ¼

0 Vetoðs; aÞ
exp Qðs;aÞ=tX

a02AeðsÞ
exp Qðs;a0Þ=t :Vetoðs; aÞ

; ð6Þ

8>>><
>>>:

where Veto(s, a) is a boolean value that represents whether state-action pair (s, a) should be
available to be chosen by the agent or vetoed based on the agent’s past experience. Using a
Safe-MSAV policy can converge with probability 1 to the optimal values of MDP< T[G, Ae,
P, R> using standard Q-Learning.

Cooperative Multi-Agent Reinforcement Learning
When the system is composed of several interacting autonomous agents, the Multi-Agent
Reinforcement Learning (MARL) problem consists of the search for the joint optimal policies
maximizing the reward for each and all agents [9]. In the following, regular characters denote
local actions (i.e. a, ai, A) and corresponding functions (Q, P and R); bold characters denote
joint-actions (i.e. a, ai, A) and corresponding functions. The extension of the MDP for the
multi-agent case is a Stochastic Game (SG) defined by tuple< S, A1, . . ., AN, P, R1, . . ., RN >,
where N is the number of agents, S is the set of environment states, Ai, i = 1, . . ., N are sets of
actions that each agent can execute, yielding the joint action set A = A1 × . . . × AN. P:S × A × S
! [0, 1] is the probabilistic state transition function P(s,a, s0) that defines the probability of
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observing state s0 after all agents execute the joint action a 2 A in state s, and R:S × A × S! R
N

are the expected rewards received by agents after transition (s,a, s0).
In the multi-agent case, state transitions are the result of the concurrent joint action an =

[a1,n, . . ., aN, n]
T 2 A, ai, k 2 Ai. As a consequence, the rewards also depend on the collective

action. The local policy of each agent πi:S × Ai! [0, 1] gives the probability of the ith agent exe-
cuting action a in state s. The local policies are composed into a global joint policy π(s,a) =
{π1(s, a1), . . ., πN(s, aN)}.

The SG is fully cooperative when the local rewards are identical for all agents R1(s,a, s0) =
R2(s,a, s0) = . . . = RN(s,a, s0),

If a centralized learner exists, the task could be mapped to an MDP, whose centralized Q-
function could be expressed as

Qpðs; aÞ ¼ Ep
X1
k¼0

gkrtþkþ1 j st ¼ s; at ¼ a

( )
; ð7Þ

and the optimal policy could be expressed as p� sð Þ ¼ p�1 sð Þ; . . . ; p�N sð Þ� �
, where

p�i ðsÞ ¼ argmax
ai

Q�ðs; ½a1 . . . ai . . . aN �Þ; ð8Þ

where ai 2 Ai and i = 1, . . ., N. When there are more than one optimal action choice, the opti-
mal policy is achieved by a consensus protocol.

Team Q-Learning (Team-QL) [24] works on the assumption that there is only one optimal
state-action value on each state, so that it updates the local estimates using the standard
Q-Learning update rule Eq (5). The Q function depends on the complete joint-action a 2 A,
and thus, storage requirements grow withO(S × A).

In Distributed Q-Learning (D-QL) [23] each agent assumes that the remaining agents will
select the optimal action. The virtual centralized state-action Q function Eq (7) is decomposed
into smaller local Qi(s, a) where a 2 Ai, such that only the maximum value for each local action
is stored:

Qiðs; aÞ ¼ max
ai

Qðs; ½a1 . . . ai . . . aN �Þ:

This algorithm needs only to be aware of the local action, updating the local Q-values only
when the updated state-action value is higher than the previous one:

Qi
tðs; aÞ  max Qi

t�1ðs; aÞ; rt þ gmax
a0

Qi
t�1ðs0; a0Þ

� �
:

Because Q-values are only updated when increased, D-QL is expected to estimate the same
optimal policies that a centralized learner would learn, without any explicit communication
between agents. Its storage requirements grow withO(S × A).

More sophisticated approaches include explicit coordination mechanisms. Coordinated RL
(C-RL) [25] approximates the global joint value function as a linear combination of local value
functions [38]. The complexity of agreeing on a globally optimal joint action can be reduced
assuming that agents need not coordinate with all remaining agents, but with a smaller subset.
These coordination dependencies are defined as a Coordination-Graph, denoted CG(s) = {V,
E}, where undirected edges eij 2 E represent a coordination dependence between agents i and j.

Each agent has a local Qi function, which contributes to the global function Q ¼PN
i¼1

Qi si; að Þ,
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where a 2 × Aj such that eij exists in CG(s). This method reduces the state-action space by
defining which actions are relevant to each Qi function.

When implementing the optimal policy, agents need to coordinate the selection of the local
actions to build the optimal joint-action. Agents can agree on the optimal joint-action using a
Variable Elimination (VE) procedure, which maximizes the global value function by maximiz-
ing one variable at a time. An agent is chosen to communicate its expected local value for each
action to one of its neighbors. Then, this agent can be eliminated from the graph and the
selected neighbor can compute the action that maximizes its local value function for the one
chosen by the first agent. This procedure is applied to the remaining agents. When only one
agent is left, it computes the global maximum and the joint action is propagated with another
pass over the CG. This algorithm can be implemented using a simple message-based protocol,
and it always computes the global optimal joint-action regardless of the elimination order.
However, time constraints can render this approach not suitable for real-time systems.

Cooperative Round-Robin Stochastic Games
To reduce the complexity of dealing with joint actions, we propose to decompose them into a
sequence of local actions by considering a Round-Robin schedule assigning turns to execute
actions. The Cooperative Round-Robin Stochastic Games formalize this idea.

Definition 1 A Cooperative Round-Robin Stochastic Game (C-RR-SG) is a tuple< S,
A1. . .AN, P, R, δ>, where

• N is the number of agents.

• S is the set of states, fully observable by all the agents.

• Ai, i = 1, . . ., N are the sets of local actions to the i-th agent.

• P:S × [Ai × S! [0, 1], i = 1, . . ., N is the state transition function Pt(s, a, s0) that defines the
probability of observing s0 after agent δ(t) executes, at time t, action a from its local action
repertoire Aδ(t).

• R:S × [Ai × S! R is the shared scalar reward signal Rt(s, a, s0) received by all agents after
executing a local a action from Aδ(t).

• δ:R! {1, . . ., N} is the turn function implementing the Round-Robin cycle of agent calling
for action execution. δ(t) gives the index of the agent allowed to execute an action at time t
(times are relative to the start of the episode). This function is cyclic, 8t 2 N;δ(t) = δ(t + N),
therefore, agents are always visired in the same order, so that without loss of generality, we
can denote i + 1 the agent that will be visited after i.

The state value function Vπ(s, i) gives the value of being in state s for agent i 2 {1, . . ., N} under
joint policy π, and it is the expected accumulated discounted rewards following the joint policy
π. The Bellman equation for a joint policy π in a C-RR-SG is

Vpðs; iÞ ¼ Ep
X1
k¼0

gkrtþkþ1 j st ¼ s

( )

¼
X
a2Ai

piðs; aÞ
X
s0
Pðs; a; s0Þ

� ½Rðs; a; s0Þ þ gVpðs0; iþ 1Þ�;
where Eπ represents the expectation from time t onwards, following joint policy π. The optimal
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state value V�(s, i) is given by:

V�ðs; iÞ ¼ max
a2Ai

X
s0
Pðs; a; s0Þ½Rðs; a; s0Þ þ gV�ðs0; iþ 1Þ�

( )
: ð9Þ

The state-action value function for agent i following joint policy π can be expressed as

Qpðs; a; iÞ ¼
X
s0
Pðs; a; s0Þ½Rðs; a; s0Þ þ gVpðs0; iþ 1Þ� ð10Þ

and the optimal state-action value function for each agent i is

Q�ðs; a; iÞ ¼
X
s0
Pðs; a; s0Þ½Rðs; a; s0Þ þ gmax

a02Aj

Q�ðs0; a0; iþ 1Þ�:

Centralized Q-Learning for C-RR-SG
The straightforward approach to learn the optimal policy for a C-RR-SG is applying the single-
agent Q-Learning update:

Qtðs; a; dðtÞÞ  ð1� atÞQt�1ðs; a; dðt � 1ÞÞ
þ at½rt þ gmax

a0
Qt�1ðstþ1; a0; dðt � 1ÞÞ�: ð11Þ

Proposition 1 A centralized single-agent Q-Learning training of a C-RR-SG by the rule of Eq
(11) will converge to Q�(s, a, i) if each agent fulfills the conditions for convergence of the single
agent Q-learning.

Proof. If we are able to map the C-RR-SG into an MDP, then the proof of the proposition
follows from the convergence of single agent Q-learning. The map is as follows: The MDP state
space S is the same of the C-RR-SG, since it is defined by a set of global variables visible by all

agents. The MDP set of actions is the union of the local sets of actions A ¼ SN
i¼1 Ai, where

actions lose the direct identification with the agent. The MDP state transition probability is
built by considering P(s, a, s0) = P(s, aδ(t), s0), that is, actions are sequenced according to the
turn function. The MDP reward function is built by R(s0) = R(s, aδ(t), s0), that is, we record the
reward at the arriving state. The C-RR-SG turn function removes the uncertainty and concur-
rency about the joint agent actions, therefore the MDP policy can be stated as π(st) = πδ(t)(st),
that is, we apply at each time the local policy of the agent selected by the turn function. The
MDP Q-table is built by collapsing all the agent Q-tables into a monolithic one by applying the
turn function, i.e. Qt(s, a) = Q(s, a, δ(t)). Single-agent Q-Learning converges to optimal Q�(s, a)
values under two conditions [5]: all state-action pairs (s, a), a 2 [Ai, s 2 Smay be visited infi-
nite times, and the learning gain αt is decreased according to the conditions for convergence of
the stochastic gradient, i.e. ∑t αt =1 and ∑t(αt)

2 <1. The second condition is easy to fulfill,
by selecting an appropriate schedule for αt. To prove the first condition, it is enough to show
that the MDP obtained from the C-RR-SG is an irreducible Markov chain. This follows inme-
diately if the sate transition matrix P does not contain zero elements, and the action selection
policy attributes nonzero probability to all actions in every state. The latter is assured by the
use of exploratory policies (i.e. SoftMax), the former is ensured by the fact that each individual
agent fullfills the conditions for convergence, i.e. P(s, aδ(t), s0)> 0 therefore the MDP state tran-
sition probabilities will be positive.

This centralized learning process represents the straightforward tabular implementation of
centralized Q-Learning on a C-RR-SG. This algorithm is able to learn a set of locally optimal
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policies which result in a globally optimal policy π�. This centralized implementation, while
conceptually simple, has a big drawback: it assumes an omniscient centralized learner. This is
hardly true in real-world applications because of the communication requirements, especially
in an MCRS scenario, where noisy and faulty communications make this problem even worse.
From the point of view of computational complexity, this centralized learner should store jS ×
[Aij, i = 1, . . ., N entries in its Q-table.

Distributed Round-Robin Q-Learning
In distributed implementations the state-action value matrix Q(s, a, i) is decomposed into local
independent matrices Qi(s, a) corresponding to the agent owning turn i, so that all information
is distributed Q(s, a, i) = Qi(s, a). We present two different distributed Round-Robin Q-Learn-
ing algorithms (D-RR-QL) update rules for stochastic games of type C-RR-SG that differ in
their communication strategies: the first one requires at each time-step to send information
from the current agent to the next in turn according to the Round-Robin schedule, the second
is communication-free. In both cases, we prove convergence to an optimal policy.

In the first D-RR-QL update rule, the Q-table is updated using the information from the
next agent in the RR scheduling cycle, so that local Q-table updating does not need to wait the
full cycle. However it requires that agent i + 1 informs agent i of its optimal policy given by

max
a0

Qj
t�1 stþ1; a

0� 	
. Once this value is communicated, the i-th agent can update its own Q-table

using the following update rule:

Qi
tðs; aÞ  ð1� atÞQi

t�1ðs; aÞ
þ at½rt þ gmax

a0
Qj

t�1ðstþ1; a0Þ�:

The D-RR-QL algorithm using this rule inherits its convergence properties from the central-
ized single-agent algorithm, and needs not additional proof.

The communication-free D-RR-QL algorithm is specified in Algorithm 1. In this algorithm
the local Qi table is updated at the end of an RR cycle using the information of the rewards that
have been broadcasted to all agents because we are dealing with a fully cooperative MARL,
according to the following rule:

Qi
tðs; aÞ ¼ ð1� atÞQi

t�Nðs; aÞ

þ at
XN�1
k¼0

gkrtþk þ gNmax
a0

Qi
tðstþN ; a0Þ

" #
ð12Þ

applied when st = s, at = a, δ(t) = δ(t − N) = i. This update rule allows each agent to update its
local Qi-table without the need to know the Q-tables of other agents. This is the communica-
tion-free implementation of the D-RR-QL algorithm which will be the subject of our
experiments.

Algorithm 1 Algorithm executed by agent i for the estimation of the local Qi

table according to the communication-free D-RR-QL algorithm assuming a
global time counter visible to all agents.

Initialize Qi
0ðs; a; iÞ ¼ 0; s 2 S; a 2 A; i ¼ 1 . . .N


 �
arbitrarily

Repeat (for each episode) n:
Repeat (for each step t of episode):
• Wait until δ(t) = i
• Observe current state st
• Select and execute action at
• Give turn to next agent in RR
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• Observe the rewards rt, . . ., rt + N−?1 of a complete RR cycle and new
state st + N after the RR cycle.

• Adaptation of the local Qi table
– if st = s, at = a, i = δ(t)

Qi
tðs; aÞ ¼ ð1� atÞQi

t�1ðs; aÞ

þ at
XN�1
k¼0

gkrtþk þ gNmax
a0

Qi
tðstþN ; a0Þ

" #

– Qi
tðs; aÞ ¼ Qi

t�1ðs; aÞ otherwise
until st +?1 is terminal

Proposition 2 Convergence of the communication-free D-RR-QL of Algorithm 1 to the opti-
mal policy, Qi

t s; að Þ ! Q� s; a; ið Þ as t!1, for a given a C-RR-SG hS, A1. . .AN, P, R, δi is
guaranteed when each agent fulfills the conditions of convergence of single-agent Q-Learning in
a MDP.

Proof. Let us consider for agent i the state value after N steps, combining the accumulation
of the sequence of N rewards observed during an RR cycle starting and ending in agent i and
the forgetting factor, which is given by

RðNÞt ¼
XN�1
k¼0

gkrtþkþ1 þ gNVtðstþN ; iÞ:

For agent i, the corrected N-step truncated reward return [3], which is is the perceived incre-
ment of the state value after N update steps of the learning process is given by:

DVtðst; iÞ ¼ a½RðNÞt � Vtðst; iÞ�; ð13Þ

where Vt(st, δ(t)) is the value of being in state st at time t. For single agent learning, N-step TD
Methods converge to optimal value functions V�(s) due to their error reduction property [4]:

max
s
jEp RðNÞt j st ¼ s
� �� V�ðsÞj � gNmax

s
jVtðstÞ � V�ðsÞj;

which means that the error commited by worst one-step ahead estimate Vt(st) is an upper

bound of the error committed by the N-step ahead estimate Ep R Nð Þ
t j st ¼ s

n o
of the optimal

state value function. Besides, this error bound can be made as tight as desired because the factor
γN! 0 as N!1. From Eq (13) we can derive the update rule for the state-action table of Eq
(12) used by Algorithm 1:

DQi
tðst; aÞ ¼ a

XN�1
k¼0

gkrtþkþ1 þ gNVtðstþN ; iÞ
" #

¼ a
XN�1
k¼0

gkrtþkþ1 þ gNmax
a0

Qi
tðstþN ; a0Þ

" #
:

Therefore, in the communication-free D-RR-QL of Algorithm 1 each agent performs a N-step
ahead update of its local state-action value function, where the accumulated rewards are exoge-
nous variables to the agent. The local updating of Qi(s, a) are time-interleaved Q-learning pro-
cesses, which converge to the optimal Q�(s, a, i) if the stochastic gradient conditions of [5]
hold for each agent, i.e. it can visit all state-action pairs infinitely often. Each agent

Learning Hose Transportation by Round-Robin Distributed Q-Learning

PLOS ONE | DOI:10.1371/journal.pone.0127129 July 9, 2015 14 / 27



computations are separated from the others, though they share the same global state and
rewards so they can not be considered statistically independent. Statistical independence is not
a requirement for convergence of the computationally independent learning processes.

Composition of Concurrent Joint-Action Policies
A C-RR-SG is an approximation to the original Cooperative Stochastic Game (C-SG) problem,
because agents are forced to carry out actions following a predefined sequential order. Policies
learned using this approximation are very likely to be suboptimal in the original C-SG environ-
ment, because the discounted reward approach assumes that the task completion instant is crit-
ical for the definition of optimal policies. The problem posed in this section is how to compose
the local policies learned by the separate agents using D-RR-QL into the optimal policy for the
original C-SG, where actions can be executed concurrently. Therefore, we deal with a combina-
torial optimization problem. In this section, we present a sequential greedy coordination algo-
rithm to build an approximation of the C-SG optimal policy π(s,a) from the distributed Q-
tables learned using D-RR-QL.

Definition 2 A C-RR-SG< S, A1. . .AN, P, R, δ> is a sequential realization of a C-SG< S,
A1. . .AN,P,R> if the following two properties hold:

• 8s, s0,a, i;P(s,ai, s0) = P(s, ai, s0)

• 8s, s0,a, i;R(s,ai, s0) = R(s, ai, s0),
where joint-action ai is defined as the joint-action in which only the i-th agent performs an
action, i.e. ai = [Ø, . . ., Ø, ai, Ø, . . ., Ø]. Null action Ø is defined as the action that does not
perform any state transition: 8s;P(s, Ø, s) = 1.

The transition probabilities and discounted rewards of a joint-action a = [a1, a2, . . ., aN],
ai 2 Ai, are approximated by the sequential execution of agents’ actions following RR schedul-
ing δ:

• P(s,a, s0)’ P(s, aδ(1), aδ(2). . .aδ(N), s0)

• R(s,a, s0)’ R(s, aδ(1), aδ(2). . .aδ(N), s0),

where P(s, aδ(1), aδ(2). . .aδ(N), s0) and R(s, aδ(1), aδ(2). . .aδ(N), s0) denote the probability of
reaching state s0 after executing actions specified in a in the sequence established by δ, and the
expected reward of this transition, respectively. Under this assumption, Q-values for joint-
actions can be approximated by composition of the transition and reward functions of local
actions. The state-action value for composed joint-actions can be defined as

Qpðs0; aÞ ¼
X

s1...sN2S

YN�1
i¼0

Pðsi; aiþ1; siþ1Þ
 !

�
XN�1
i¼0

gi � Rðsi; aiþ1; siþ1Þ þ gN �max
a0

QpðsN ; a0; dð1ÞÞ
( ) ð14Þ

where a = [a1 a2. . .aN], ai 2 Aδ(i). Note that rewards inside a joint-action are weighted as in the
C-RR-SG.

Greedy selection of optimal joint policy The combinatorial optimization problem of chos-
ing the best ordering of the local actions has been tackled as a greedy variable selection process

[25] requiring agents to store estimations of the transition probabilities P̂ i s; a; s
0ð Þ and rewards

R̂i sð Þ for local actions a 2 Ai. Observed rewards can be stored with minimal storage require-
ments. Typical delayed reward scenarios involve a small number of terminal states that receive
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a non-null reward. Moreover, MSAV policies store state-action pairs with negative rewards
using only the relevant state variables. Therefore, an agent can keep track of those states that
have yielded an immediate positive reward in the past as a set of pairs
Sri ¼ hsi; rii; i ¼ 1; . . . ; kf g, where k is the number of elements in the set. Every time a reward R
(s, a, s0)> 0 is observed, the pair hs0, R(s, a, s0)i is added to the set Sri , if it wasn’t already in it.
The reward function estimate can be written as

R̂iðsÞ ¼
ri if 9i; 1 � i � k ^ si ¼ s

0 otherwise;
;

(

where si represents the i
th state in set Sr. At this point, we are assuming that rewards are deter-

ministic functions of the state where they are received.
The greedy maximization algorithm to obtain the optimal joint policy maximizing the state-

value function of Eq (14) follows a message-passing scheme. Each agent selects its optimal action
according to the local Q-table, then the agent forwards to the next agent in the RR schedule the
list of positive probability state transitions after executing the selected action. Let the system start
in a state s0, agent δ(1) selects a1 ¼ arg max

a
Qd 1ð Þ s0; að Þf g and sends a message

hsj1; P̂d 1ð Þ s0; a1; s
j
1

� 	
; j ¼ 1; . . . ; k1i to agent δ(2), where k1 is the number of states sj1 such that

P̂d 1ð Þ s0; a1; s
i
1

� 	
> 0. Then, agent δ(2) selects its optimal action on the basis of the possible states:

a2 ¼ arg max
a

X
j¼1...k1

P̂dð1Þðs0; a1; sj1Þ � ðR̂dð1Þðsi1Þ þ g2 � Qdð2Þðsj1; aÞÞ
( )

;

and sends a message hsj2; P̂ s0; a1; ; a2s
j
2

� 	
; j ¼ 1; . . . ; k2i to the next agent δ(3), where

P̂ðs0; a1; a2; sj2Þ ¼
X
j¼1...k1

P̂dð1Þðs0; a1; sj1Þ � P̂dð2Þðsj1; a2; sj2Þ;

and k2 is the number of states si2 such that P̂ s0; a1; a2; s
i
2

� 	
> 0.

Generalizing this process, agent δ(i) receives a message

hsji�1; P̂ s0; a1 . . . ai�1; s
j
i�1

� 	
; j ¼ 1; . . . ; ki�1i, then selects its local optimal action

ai ¼ arg max
a

X
j¼1...ki�1

P̂ðs0; a1 . . . ai�1; sji�1Þ � ðR̂dði�1Þðsji�1Þ þ gi � QdðiÞðsji�1; aÞÞ;
(

and, finally, sends message hsji; P̂ s0; a1 . . . ai; s
j
i

� 	
; j ¼ 1; . . . ; kii to agent δ(i + 1). When the pro-

cedure reaches the last agent, all agents execute a joint-action a = [a1, a2, . . ., aN] with is the
greedy solution to the following minimization problem:

pDðsÞ ¼ arg max
a1 ;a2...aN

X
j¼1...kN

P̂ðs0; a1 . . . aN ; sjNÞ � ðR̂dðNÞðsjNÞ þ gNmax
a0

QdðNÞðsjN ; a0ÞÞ
( )

: ð15Þ

For completeness, terminal states must be taken care of, because we are composing cycles of
actions. If a terminal state is reached, there will not exist transition probability information
from this state onwards. We can address this potential implementation issue by leaving unal-
tered the entries in the incoming messages for which no transition probability is available, so
that the remaining agents will perform no action at all.

Proposition 3 The action selection policy defined by Eq (15) approximates the optimal greedy
joint-policy given by Eq (8).
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Proof. The transition and reward functions are approximated byP s; a; s0ð Þ ’
P̂ s; ad 1ð Þ; ad 2ð Þ . . . ad Nð Þ; s

0
� 

andR s; a; s0ð Þ ’ R̂ s; ad 1ð Þ; ad 2ð Þ . . . ad Nð Þ; s
0

� 
; therefore, we can

aggreagate local actions into a joint action, substituting both approximated terms in Eq (15)
rewriting it as follows:

pDðsÞ ’ arg max
a

Pðs; a; s0Þ � ðRðs; a; s0Þ þ gNmax
a0

QdðNÞðs0; a0ÞÞ
� �

:

Furthermore, argmaxa0 Q
d Nð Þ s0; a0ð Þ ¼ argmaxa0 Q

p s0; a0ð Þ, we conclude that the joint policy
approximates the optimal joint policy learned by a centralized learner given by Eq (8): πD(s)’
π�(s).

This approximation has been tested experimentally in environments with delayed rewards,
with positive results. Unlike the technique presented in [25], where the message network could
have different topologies, our message passing process only needs one cycle to finish. If our
assumptions are completely fulfilled, the system is able to learn an optimal policy for< T[G,
Ae,P,R>.

D-RR-QL with Modular State-Action Vetoes
An additional advantage of D-RR-QL is that it allows us to use MSAV in a multi-agent envi-
ronments. Since we assume that a joint-action is approximately the same as the equivalent
sequence of local actions, agents can veto actions on their local action space. Agents take
actions one by one during the cycle of execution and thus have no interference from the rest of
agents. Of course, this requires taking N time-steps to perform N local actions instead of a sin-
gle joint-action, and the execution time will grow linearly to the number of agents. Neverthe-
less, this is neglectable in the case of overconstrained environments, where learning in an
effective manner Ae(s) is critical.

The speed boost introduced by the use of MSAV in such multi-agent environments is even
bigger than in the single-agent case (SectionModular State-Action Vetoes). Let the state be
defined S ¼ SX 	 SUi , being S

U
i the state subspace used by the i-th Veto-Module, and let the

joint-action space be defined A = Aj × A−, where Aj is j-th agent’s local action space, and A− =
A1 × Aj−1 × Aj + 1 × . . . × AN. Whenever an agent vetoes a state-action pair in its own state-
action subspace, it is effectively vetoing jSX × A− j state-action pairs in the joint state-action
space. The multi-agent Safe-MSAV architecture can be expected to avoid UTS much faster
than any other exploration strategy operating on the complete state space S.

Experiments
Linked Multi-Component Robotic Systems (L-MCRS) are over-constrained systems which can
benefit from the use of D-RR-QL with MSAV. The hose transportation task is a paradigmatic
application of L-MCRS: A set of N = 4 robots is attached to a hose at fixed points and the hose
is modeled as a segment line lying between robots (Fig 3). This simplification of the original
environment in which GEDS are used to model the hose is used as a training arena where
agents learn the basic skills, and then they better tune the policies learnt in the GEDS environ-
ment. The goal is to transport the tip of the hose to a predefined goal position (the reward
received is 10), while the other extreme is attached to a fixed position, a source, arbitrarily set
at the center of the working space. The simulated world consists of 19 × 19 cells and each robot
is controlled by an agent which can execute five actions: Ai = {upi, downi, lefti, righti, nonei}.
The four constraints considered are the ones enumerated in Section Problem Statement, and
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whenever one of these termination conditions is met, the system generates a negative reward
(−1) and the environment is reset to the initial setting (Fig 3). The system state is defined by
the following state variables:

• The relative positions of the N robots. Relative positions are calculated with respect to the
previous robot in the formation (source position (0,0) for the first robot).

• Self-position in absolute coordinates. Each robot perceives its own absolute position.

• Four flag variables indicating whether there is an obstacle (hose, robot) in each of the four
possible directions a robot can move.

Benchmark algorithms (D-QL, Team-QL and Coordinated-RL) only use robot relative posi-
tions because the remaining state variables are a linear function of them and these algorithms
cannot benefit from the additional information provided by the extended set of variables. For
instance, it is of no use to include the obstacle flag variables because they are a function of the
relative positions of the robots and thus, can only take one value for any given set of relative
positions. In order to best learn how to avoid breaking a physical constraint corresponding to
an UTS, we used three Veto-modules within each agent’s MSAV policiy, each of which in
charge of a specific physical constraint:

• Overstretching the hose. This module receives a negative reward every time a hose segment
is overstretched, and its local state space encompasses the relative positions of the robots pre-
ceding and following the robot which executed the action that led to over-stretching its hose
segment.

• Collisions. Every time a robot takes an action that makes it collide with any other, this mod-
ule receives a negative reward. The local state space is composed by the obstacle flag
variables.

• Simulation bounds. This last module uses only its robot’s absolute position and receives a
negative reward every time a robot gets out of the simulation grid.

Each of the four generated negative rewards was fed to a specific module learning the veto of
specific undesired state-actions using the value of the relevant state variables [8].

Because the amount of episodes and the degree of exploration is key to this particular kind
of tasks, experiments were run with different number of episodes ne. D-RR-QL with MSAV
was run using the Safe Soft-Max policy Eq (6), while the rest of algorithms used regular Soft-
Max exploration Eq (4). We also tested � − greedy policies but the experiments yielded slightly
worse results and thus, will not be reported here. Initially, the temperature parameter was set τ
= 10 and decreased at the end of each episode with4τ = −10/ne. Starting from episode number
500, the learnt policy was evaluated using greedy action selection each 500 episodes. This is the
reason why data plots start from episode 500 instead of episode 0. Each experiment was run 3
times and the results were averaged. The performance was measured using two different crite-
ria: (a) the accumulated discounted rewards, which is the typical performance measurement in
the RL field, and (b) the number of cells reached with the tip of the hose, which allows us to
intuitively assess how effective the exploration of the state-space is.

We implemented ourselves these experiments in C/C++. The source code used in our exper-
iments and can be accesed publicly at: http://www.ehu.es/ccwintco/index.php?title=D-RR-QL.

Experiment 1
In this first experiment, we tested two different values of ne = {104,2 � 104}. Figs 4 and 5 show
the accumulated rewards obtained by agents in the two different settings. The learning gain by
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using D-RR-QL with MSAV is huge. In both cases, it is the only algorithm able to obtain a pos-
itive accumulated discounted reward in the evaluation episodes. It only requires about 4,000
episodes for our method to learn a greedy policy that can reach the goal position. The rest of
algorithms are not only incapable of avoiding UTS, but also of even reaching the goal cell a sin-
gle time.

Figs 6 and 7 on the other hand show the number of different states reached with the tip of
the hose. The plot clearly shows that the exploration of the state-space is much more efficient
when using MSAV than by means of standard Soft-Max policies. By the time D-RR-QL has
been able to learn a greedy policy able to reach the goal, the system has already reached about
275 different cells with the tip of the hose. On the other hand, none of the other algorithms is
able to reach more than 70 different cells throughout the complete experiment.

Episode

R
ew

ar
ds

Fig 4. Rewards obtained by the learnt greedy policies with ne = 104.

doi:10.1371/journal.pone.0127129.g004
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Experiment 2
In order to get a clearer idea of how far the benchmark algorithms are from the goal of learning
a greedy policy that reaches the goal position, we ran a second set of experiments where agents
were allowed much more time for exploration of the environment (ne = 5 � 105 and ne = 106).
We only report the number of reached cells with the tip of the hose, because the accumulated
discounted rewards are similar to those obtained in the previous experiment, and offer no far-
ther information. Both Soft-Max and � − greedy policies were tested and, in this case, slightly
better results were obtained by using � − greedy. Initially, � = 1 and every episode it was
decreased with4� = −1/ne. This is paradoxical considering the better results obtained by Soft-
Max policies in the previous experiment. Our educated guess is that this is due to using the
same decay schedule for the two exploration parameters � and τ. While they have a similar
function, � is the probability of exploring each time-step and τ shapes the probability

Episode
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Fig 5. Rewards obtained by the learnt greedy policies with ne = 2 � 104.
doi:10.1371/journal.pone.0127129.g005
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distribution of the action selection algorithm. Moreover, as the Soft-Max algorithm depends
on the magnitude on the actual estimations of the value function, the efficiency of the explora-
tion algorithm needs not improve linearly to the number of episodes allowed to the agents.

Figs 8 and 9 plot the number of cells and, although the maximum amount of episodes is 2
orders or magnitude greater than in the previous experiments, the system is only able to reach
about 120 cells with the mobile tip of the hose in the case of Coordinated-RL, which outper-
forms the other two algorithms. Next comes Distributed-QL with 92 cells visited, and finally,
Team-QL is only able to reach 74 cells. It is very important to notice that, once again, neither of
these algorithms was able to reach the goal cell even once during the experiments. For the sake
of comparison with the D-RR-QL and MSAV approach, let us recall that the algorithm was
first able to reach the goal greedily selecting the best action when 275 cells had been visited
with the tip of the hose. This is a clear indication of how inefficient the exploration of over-con-
strained environments by standard action selection policies is: if we take the number of cells

Fig 6. Number of cells reached with the tip of the hose with ne = 104, separate plots when applying D-RR-QL, Distributed-QL, Coordinated-RL, and
Team-QL algorithms.

doi:10.1371/journal.pone.0127129.g006
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visited by D-RR-QL before it can learn to reach the goal cell as a reference of how much explo-
ration is needed before a goal state has been discovered, all the competing algorithms are very
far from this number even if allowed to explore two orders of magnitude more.

Conclusions
This paper formalizes and gives convergence proof of a distributed Q-Learning algorithm for
MARL problems amenable to embed Modular State-Action Veto (MSAV) policies which
improve performance in over-constrained environments. First, we have presented agent inter-
action model as a Cooperative Round Robin Stochastic Game (C-RR-SG), in which agents
select and take actions following some predefined order. A communication-free distributed
implementation called Distributed Round Robin Q-learning (D-RR-QL) has been proposed,
providing a proof of its convergence to the optimal policy on a C-RR-SG. We have also pre-
sented a message-based procedure to obtain the optimal policy for the original cooperative

Fig 7. Number of cells reached with the tip of the hose with ne = 2 � 104, separate plots when applying D-RR-QL, Distributed-QL, Coordinated-RL,
and Team-QL algorithms.

doi:10.1371/journal.pone.0127129.g007
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stochastic game (C-SG) from the local policies learned by D-RR-QL. We give a consensus-
based implementation for the decentralized determination of RR turns that may allow fully dis-
tributed implementation of the D-RR-QL.

Computational experiments show that D-RR-QL using MSAV policies can provide a valid
joint-action policy approximating the optimal policy faster than D-QL, Team-QL, and Coordi-
nated-RL in over-constrained systems. Furthermore, the D-RR-QL convergence is not limited
to deterministic MDPs, it can also cope with stochastic environments. Communication
requirements to learn local Q-values (O(1) messages each step if communications are used, 0
messages otherwise) and to obtain the global policy deciding a joint-action (each action
requires O(N) messages) are minimal when compared to coordinated multi-agent approaches
such as Coordinated-QL. As a line of future work, we need to study the equivalence between
C-SG and C-RR-SG to determine the degree of approximation that can be obtained when there
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Fig 8. Number of cells reached with the tip of the hose with ne = 5 � 105, separate plots when applying Distributed-QL, Coordinated-RL, and Team-
QL algorithms.

doi:10.1371/journal.pone.0127129.g008
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is no C-RR-SG equivalent to a C-SG. We also plan to investigate more general ways to learn
how to avoid reaching undesirable terminal states. On the other hand, the degree of abstraction
used in our experiments limits the applicability to real robot control problems. This approach
can be directly applied in real environment as long as low-level controllers and sensors provide
this kind of abstract actions and states, but the coarseness of the state-action space representa-
tion limits the optimality of the learned policies. Therefore, we plan to use continuous state-
action spaces in our future research.
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Fig 9. Number of cells reached with the tip of the hose with ne = 106, separate plots when applying Distributed-QL, Coordinated-RL, and Team-QL
algorithms.

doi:10.1371/journal.pone.0127129.g009
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