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Preface

The aim of this dissertation is to introduce Bessel functions to the reader, as well as studying
some of their properties. Moreover, the final goal of this document is to present the most well-
known applications of Bessel functions in physics.

In the first chapter, we present some of the concepts needed in the rest of the dissertation.
We give definitions and properties of the Gamma function, which will be used in the defini-
tion of Bessel functions. We also provide the reader with the basics of Sturm-Liouville problems,
which again are to be used in Chapter 3. Finally, we present three examples of partial differential
equations. These equations are well-known in physical mathematics, and are solved in Chapter 4.

In Chapter 2, we introduce Bessel functions. We start solving a particular differential equa-
tion known as Bessel’s equation, and we define its solutions as Bessel functions of the first kind.
We also define different kinds of Bessel functions, including solutions of a modified Bessel’s equa-
tion.

In Chapter 3, we prove some essential properties of Bessel functions. First, we establish the
basic properties such as recurrence relations of functions seen in Chapter 2. Bessel functions of
integer order can also be seen as the coefficients of a Laurent series. Moreover, these particular
functions are proved to have some integral expressions, known as Bessel’s integral formulas. Our
next goal will be approximating Bessel functions via asymptotics. Furthermore, we will make use
of these approximations to estimate the zeros of the functions. Finally, we will study orthogonal
sets of Bessel functions.

In the final chapter, we will use the concepts we have developed previously to solve the three
partial differential equations described in Chapter 1. These equations are in fact the heat and
wave equations, and the Dirichlet problem.

Besides the development of the theory of Bessel functions, some problems regarding that
theory are solved at the end of Chapters 2 and 3.
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Chapter 1

Preliminaries

Finding solutions of differential equations has been a problem in pure mathematics since the
invention of calculus by Newton and Leibniz in the 17th century. Besides this, these equations
are used in some other disciplines such as engineering, biology, economics and physics. Bessel
functions are solutions of a particular differential equation, called Bessel’s equation.

In the late 17th century, the Italian mathematician Jacopo Riccati studied what we nowadays
know as Riccati’s equations. Given P , Q and R three functions of z ∈ C (it is supposed that
neither P nor R are identically zero), Riccati’s equations are differential equations of the form

dw

dz
= P +Qw +Rw2.

The theory of Bessel functions is connected with Riccati’s equations. In fact, Bessel functions
are defined as solutions of Bessel’s equation, which can be derived from a Riccati’s equation.
Riccati and Daniel Bernoulli discussed this particular Riccati’s equation,

dw

dz
= azn + bw2,

and Bernoulli himself published a solution in 1724. Euler also studied this particular equation.
This equation can be reduced to Bessel’s equation by elementary transformations, and is there-
fore solvable via Bessel functions.

In 1738, Bernoulli published a memoir containing theorems on the oscillations of heavy chains.
A function contained in one of these theorems was the now called Bessel function of argument
2
√
z/n. Thus, Bernoulli is considered the first to define a Bessel function.

In 1764, while Euler was investigating the vibrations of a stretched membrane, he arrived at
the following equation:

1

E2

d2w

dt2
=
d2w

dr2
+

1

r

dw

dr
+

1

r2
d2w

dθ2
, (1.1)

where w(r, θ, t) is the transverse displacement of a point expressed in polar coordinates by (r, θ),
at time t, and E is a constant depending on the density and tension of the membrane. He wanted
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to find solutions of the following form,

w(r, θ, t) = u(r) sin (αt+A) sin (βθ +B),

where A, B, α and β are constants. Substituting it in equation (1.1), we get

d2u

dt2
+

1

r

du

dr
+

(
α2

E2
− β2

r2

)
u = 0.

This equation is known as Bessel’s equation of order β, and its solution was found by Euler
himself in that year.

Some other mathematicians, such as Lagrange, Laplace and Poisson worked with Bessel’s
equation as well. The well-known German astronomer and mathematician Friedrich Wilhelm
Bessel also studied the equation while he was working on dynamical astronomy. In 1824, Bessel
wrote a memoir where he made a detailed investigation on the solutions of Bessel’s equation. Al-
though Bessel functions were originally discovered by Bernoulli, they were generalised by Bessel,
and were named after him years after his death.

In this dissertation we will not make a chronological approach to Bessel functions, but rather
focus on the theoretical development. In order to study the theory of Bessel functions, we will
need some properties of the Gamma functions and Sturm-Liouville problems, which will be given
in this chapter.

1.1 The Gamma function

The Gamma function plays a role when defining most Bessel functions. In this dissertation we
will also use some properties regarding this function. First, let us describe the Gamma function.
There are several alternative definitions of the Gamma function. We will give the following one,
which uses a convergent improper integral.

Definition 1.1. Let z be a complex number such that Re(z) > 0. The Gamma function Γ is
defined in the following way.

Γ(z) =

∫ ∞
0

e−ttz−1dt.

Integrating by parts, we get the following recurrence relation:

Γ(z + 1) = zΓ(z).

The Gamma function is the generalisation of the factorial to complex numbers. In fact, for
all n ∈ N ∪ {0},

Γ(n+ 1) = n!

Moreover, Euler and Weiestrass describe the Gamma function using infinite products. It can
be proved that the following other expressions are alternative definitions of the Gamma function,
for all complex values of z except for negative integers.
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(i) Euler’s definition

Γ(z) = lim
n→∞

n!nz

z(z + 1)(z + 2) . . . (z + n)
,

(ii) Weierstrass’ definition
1

Γ(z)
= zeγz

∞∏
n=1

{(
1 +

z

n

)
e−z/n

}
,

where
γ = lim

n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
≈ 0.5772. (1.2)

is Euler’s constant.

As a consequence of this last definitions, we have the following properties of the Gamma
function.

Proposition 1.1. If n ∈ N,

Γ′(n+ 1)

Γ(n+ 1)
= −γ + 1 +

1

2
+

1

3
+ · · ·+ 1

n
, (1.3)

where γ is Euler’s constant (1.2).

Proposition 1.2 (Duplication formula). Let z ∈ C. Then,

Γ(2z) =
22z−1√
π

Γ(z)Γ

(
z +

1

2

)
. (1.4)

Proposition 1.3 (Euler’s reflection formula). Let z ∈ C− Z. Then

Γ(z)Γ(1− z) =
π

sinπz
. (1.5)

In particular, for z = 1/2,
Γ(1/2) =

√
π.

The proof of this proposition, as well as more details regarding the Gamma function can be
found in [3].

1.2 Sturm-Liouville problems

We will use the theory of Sturm-Liouville problems to obtain properties of Bessel functions in
Section 3.6. Therefore, we shall also introduce these problems. We start defining self-adjoint
transformations.

Definition 1.2. Let V be a vector space, with the inner product 〈·, ·〉. The linear transformation
T : V → V is said to be self-adjoint if

〈T (x), y〉 = 〈x, T (y)〉, ∀x, y ∈ V.
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From now on, we consider the space C2([a, b]) where a, b ∈ R and a < b, with the inner
product 〈·, ·〉 defined by

〈f, g〉 =

∫ b

a
f(x)g(x)dx.

Let us define the formal adjoint of a linear operator.

Definition 1.3. If L : C2([a, b])→ C2([a, b]) is the linear transformation

L(f) = rf ′′ + qf ′ + pf, p, q, r ∈ C2([a, b])

(we also assume p, q, r take real values), the formal adjoint of L is defined by

L∗(f) = (rf)′′ − (qf)′ + pf = rf ′′ + (2r′ − q)f ′ + (r′′ − q′ + p)f.

Moreover, if L = L∗, then L is said to be formally self-adjoint.

Lagrange’s Identity is a well known property of formally self-adjoint operators.

Lemma 1.1 (Lagrange’s Identity). If L : C2([a, b])→ C2([a, b]) is a formally self-adjoint oper-
ator of the form

L(f) = rf ′′ + qf ′ + pf, p, q, r ∈ C2([a, b]),

then
〈L(f), g〉 = 〈f, L(g)〉+ [r(x)(f ′(x)g(x)− f(x)g′(x))]ba. (1.6)

Proof. Since L is formally self-adjoint and therefore L = L∗, we know that

2r′ − q = q and r′′ − q′ + p = p.

Thus, q(x) = r′(x), and
L(f) = rf ′′ + r′f ′ + pf = (rf ′)′ + pf.

Hence,

〈L(f), g〉 − 〈f, L(g)〉 =

∫ b

a

(
L(f)(x)g(x)− f(x)L(g)(x)

)
dx

=

∫ b

a

[
g(x)

(
(r(x)f ′(x))′ + p(x)f(x)

)
− f(x)

(
(r(x)g′(x))′ + p(x)g(x)

) ]
dx

=

∫ b

a

(
g(x)(r(x)f ′(x))′ − f(x)(r(x)g′(x))′

)
dx.

Integrating by parts,

〈L(f), g〉 − 〈f, L(g)〉 =
[
g(x)r(x)f ′(x)

]b
a
−
∫ b

a
r(x)f ′(x)g′(x)dx

−
[
f(x)r(x)g′(x)

]b
a

+

∫ b

a
r(x)f ′(x)g′(x)dx

=
[
r(x)

(
f ′(x)g(x)− f(x)g′(x)

)]b
a
.
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Let us define the boundary condition of a problem.

Definition 1.4. Let [a, b] ⊆ R , and f ∈ C2([a, b]). A boundary condition is a restriction of the
type

B(f) = αf(a) + α′f ′(a) + βf(b) + β′f ′(b) = 0,

where α, α′, β and β′ are constants.
Moreover, let L : C2([a, b])→ C2([a, b]) be a formally self-adjoint operator defined by

L(h) = rh′′ + qh′ + ph,

where r, p and q are real functions in the space C2([a, b]). If [r(f ′g − fg′)]ba = 0 is satisfied for
all f, g such that B(f) = B(g) = 0, the boundary condition B is said to be self-adjoint.

Remark. In our case, we will work with boundary conditions of the type

B(f) = αf(a) + α′f ′(a) = 0.

Finally, let us define the regular Sturm-Liouville problem.

Definition 1.5 (Regular Sturm-Liouville problem). A regular Sturm-Liouville problem is defined
by the following data.

(i) A formally self adjoint operator L defined as

L(f) = (rf ′)′ + pf,

where r, r′ and p are real and continuous on [a, b] and r > 0 on [a, b].

(ii) A set of self-adjoint boundary conditions B1(f) = 0 and B2(f) = 0, for the operator L.

(iii) A positive, continuous function w on [a, b].

The goal is to find all solutions f of the boundary value problem{
L(f) + λwf = 0,

B1(f) = B2(f) = 0,
(1.7)

where λ is an arbitrary constant.
For most values of λ, the only solution of the problem is the null function. If the problem

has nontrivial solutions for some values of λ, those constants are called eigenvalues, and the
corresponding solutions are called eigenfunctions.

Moreover, the weighted inner product and norm of the space L2
w(a, b) are defined as

〈f, g〉w =

∫ b

a
f(x)g(x)w(x)dx = 〈wf, g〉 = 〈f, wg〉, (1.8)

‖f‖w =
√
〈f, g〉w.

9



Theorem 1.1. Let a regular Sturm-Liouville problem of the form (1.7) be given. Then,

(i) All eigenvalues are real.

(ii) Eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect to the
weight function w, that is, if f and g are eigenfunctions with eigenvalues λ and µ, λ 6= µ,
then

〈f, g〉w =

∫ b

a
f(x)g(x)w(x)dx = 0.

Proof. We will make use of the same notation as in Definition 1.5.

(i) If λ is an eigenvalue of (1.7), with eigenfunction f , then by Lagrange’s Identity (1.6) and
(1.8),

λ‖f‖2w = 〈λwf, f〉 = −〈L(f), f〉 = −〈f, L(f)〉 = 〈f, λwf〉 = λ〈f, wf〉 = λ‖f‖2w.

Thus, λ = λ and the eigenvalue λ is real.

(ii) We take f and g eigenfunctions for the eigenvalues λ and µ, respectively. Then, since the
eigenvalues are real,

λ〈f, g〉w = 〈λwf, g〉 = −〈L(f), g〉 = −〈f, L(g)〉 = 〈f, µwg〉 = µ〈f, g〉w.

If λ 6= µ, then 〈f, g〉w = 0.

Finally, the Sturm-Liouville theory gives us the following result.

Theorem 1.2. For every regular Sturm-Liouville problem of the form (1.7) on [a, b], there exists
an orthonormal basis {φn}∞n=1 of L2

w(a, b) consisting of eigenfunctions of the problem. If λn is
the eigenvalue for φn, then limn→∞ λn = +∞. Moreover, if f is of class C2([a, b]) and satisfies
the boundary conditions B1(f) = B2(f) = 0, then the series

∑
〈f, φn〉φn converges uniformly to

f .

1.3 Resolution by separation of variables

In this last section we will study a method to give solutions of a partial differential equation. The
method of resolution by separation of variables will play a major role in reducing some equations
such as the wave or heat equations to several equations of one variable.

We consider the following differential equation

F (u(x, y), ux(x, y), uxx(x, y), uy(x, y), uyy(x, y)) = 0. (1.9)

The method by separation of variables finds solutions of (1.9) of the type

u(x, y) = X(x)Y (y).
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After substituting X(x)Y (y) in equation (1.9), we may be able to write it in the form

F1(X(x), X ′(x), X ′′(x)) = F2(Y (y), Y ′(y), Y ′′(y)). (1.10)

If this is the case, since the left-hand side of the equation depends only on x, and the right-hand
side depends only on y, it follows that both sides of (1.10) are equal to a constant ξ. Therefore,
we can reduce problem (1.9) to solve

F1(X(x), X ′(x), X ′′(x)) = ξ and F2(Y (y), Y ′(y), Y ′′(y)) = ξ.

It should be noticed that this method does not always find a solution, but it can be applied to
problems such as the heat equation or the wave equation.

Before we apply the method to some particular cases, let us consider the two-dimensional
Laplace operator.

1.3.1 The Laplacian in polar coordinates

We want to transform the Laplace operator

∆u = uxx + uyy

into another expression, using the following change of variables.{
x = r cos θ

y = r sin θ

where r > 0 and −π < θ < π.

First, we define v(r, θ) = u(x, y) and we consider the partial derivatives of v.

ux = vrrx + vθθx

uy = vrry + vθθy

uxx = (vrrrx + vrθθx)rx + vrrxx + (vθrrx + vθθθx)θx + vθθxx

uyy = (vrrry + vrθθy)ry + vrryy + (vθrry + vθθθy)θy + vθθyy

But since r2 = x2 + y2, we have that 2rrx = 2x, 2rry = 2y and thus rx = cos θ, ry = sin θ.
Moreover, rxx = − sin θθx and ryy = cos θθy.

On the other hand, derivating with respect to y,

x = r cos θ ⇒ 0 = ry cos θ − r sin θθy

⇒ θy =
ry cos θ

r sin θ
=

sin θ cos θ

r sin θ
=

cos θ

r
.

Similarly,

θx = −sin θ

r
.
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Derivating again with respect to x, we get

θxx = −r cos θθx − rx sin θ

r2
= −r cos θ(− sin θ/r)− rx sin θ

r2
=

2

r2
cos θ sin θ.

Similarly,

θyy = −2

r
sin θ cos θ.

Then, by substitution,

uxx =vrr cos2 θ + vrθ cos θ(− sin θ/r) + vr(− sin θ(− sin θ/r))

+ vrθ cos θ(− sin θ/r) + vθθ sin2 θ/r2 + vθ((2/r) sin θ cos θ),

uyy =vrr sin2 θ + vrθ sin θ(cos θ/r) + vr(cos θ(cos θ/r))

+ vrθ sin θ(cos θ/r) + vθθ cos2 θ/r2 + vθ((−2/r) sin θ cos θ).

Therefore,

∆u = uxx + uyy = vrr +
1

r
vr +

1

r2
vθθ.

1.3.2 The wave equation

The wave equation is the hyperbolic partial differential equation

utt − c2∆u = 0, (1.11)

where the function u ≡ u(x, y, t) indicates the position of the point (x, y) ∈ R2 at a moment t.
It shows the expansion of a wave in the plane. The constant c is determined by the propagation
speed of the wave.

Let us solve this equation by separation of variables. First, we consider the Laplacian in its
polar form, (r, θ) being the polar coordinates of the point (x, y). In order to simplify notation,
we will also use u(r, θ) to express v(r, θ) = u(r cos θ, r sin θ).

utt − c2∆u = utt − c2(urr +
1

r
ur +

1

r2
uθθ). (1.12)

We can think of solutions of the type

u(r, θ, t) = T (t)v(r, θ).

Substituting in (1.12),

utt − c2∆u = T ′′(t)v(r, θ)− c2T (t)∆v(r, θ) = 0.

Therefore
T ′′(t)

c2T (t)
=

∆v(r, θ)

v(r, θ)
= −µ2,

where −µ2 is a constant. From this equation we get

12



• Regarding the equation with T ,

T ′′(t) + c2µ2T (t) = 0. (1.13)

• On the other hand, we get
∆v(r, θ) + µ2v(r, θ) = 0.

If we consider v of the form v(r, θ) = R(r)Θ(θ),

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) + µ2R(r)Θ(θ) = 0.

Mutiplying by r2 and dividing by R(r)Θ(θ),

1

R(r)
(r2R′′(r) + rR′(r) + r2µ2R(r)) = −Θ′′(θ)

Θ(θ)
= ν2,

where ν2 is again a constant. Thus, we get

Θ′′(θ) + ν2Θ(θ) = 0, (1.14)

r2R′′(r) + rR′(r) + (r2µ2 − ν2)R(r) = 0. (1.15)

If we want to solve this problem in a bounded region, we need some boundary conditions to
be verified by the general solution of equations (1.13), (1.14) and (1.15).

1.3.3 The heat equation

In this case, we have a similar equation

ut −K∆u = ut −K(urr +
1

r
ur +

1

r2
uθθ),

where K is a constant (known in physics as the thermal diffusivity) determined by the nature of
the space. This equation measures the heat in a point (x, y) at time t.

We want to find solutions of the type u(r, θ, t) = T (t)R(r)Θ(θ), so applying the same process
as for the wave equation, we get equations (1.14) and (1.15). However, in this case, instead of
(1.13), we get

T ′(t) +Kµ2T (t) = 0. (1.16)

Of course, we also need boundary conditions to establish the solution of the problem in a
bounded region.
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1.3.4 The Dirichlet problem

Finally, we will study the Dirichlet problem in R3. The equation to be satisfied is simply Laplace’s
equation in three dimensions

∆u = 0.

Using the polar Laplacian in two dimensions, we write it as

(uxx + uyy) + uzz = urr +
1

r
ur +

1

r2
uθθ + uzz = 0. (1.17)

Applying again separation of variables, we try to find solutions of the type

u(r, θ, z) = R(r)Θ(θ)Z(z)

and we get again equations (1.14) and (1.15), but now we have also

Z ′′(z)− µ2Z(z) = 0. (1.18)
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Chapter 2

Bessel functions and associated
equations

In this chapter, we are going to introduce the Bessel functions of the first, second and third
kind. In order to define these functions, we will solve a differential equation known as Bessel’s
equation.

2.1 The series solution of Bessel’s equation

As we have mentioned in Chapter 1, Bessel functions are solutions of Bessel’s equation, so our
first step is to define this differential equation.

Definition 2.1. Let ν ∈ C. The following differential equation

z2
d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0 (2.1)

is known as Bessel’s equation of order ν.

We are looking for functions which solve this equation. These solutions can be found with
the Frobenius method, which consists in finding functions of the form

w(z) =

∞∑
r=0

arz
α+r, a0 6= 0

where we have to determine a constant α and the coefficients aj , for all j ∈ N ∪ {0}. The first
and second derivatives of w with respect to z are

dw

dz
=
∞∑
r=0

ar(α+ r)zα+r−1,
d2w

dz2
=
∞∑
r=0

ar(α+ r)(α+ r − 1)zα+r−2.

15



Substituting these series in equation (2.1), we get

0 =

∞∑
r=0

ar(α+ r)(α+ r − 1)zα+r +

∞∑
r=0

ar(α+ r − ν2)zα+r +

∞∑
r=0

arz
α+r+2

=
∞∑
r=0

((α+ r)(α+ r − 1) + (α+ r)− ν2)arzα+r +
∞∑
r=0

arz
α+r+2

=
∞∑
r=0

ar((α+ r)2 − ν2)zα+r−1 +
∞∑
r=2

ar−2z
α+r.

This means every coefficient of the powers of z has to be zero. Thus, we have the following
equations: 

(α2 − ν2)a0 = 0,

((α+ 1)2 − ν2)a1 = 0,

((α+ r)2 − ν2)ar + ar−2 = 0, ∀r ≥ 2.

Since a0 6= 0, α = ±ν. First, we take α = ν. The other equations are

(2ν + 1)a1 = 0, r(2ν + r)ar + ar−2 = 0, ∀r ≥ 2.

If 2ν is not a negative integer, these equations establish

a1 = 0, ar = − ar−2
r(2ν + r)

, ∀r ≥ 2.

This means that the coefficients of odd index are all zero, and that the ones with even index are
determined by this formula,

a2r = − a2r−2
22r(ν + r)

, r ∈ N.

Hence,

a2 = − a0
22(ν + 1)

=⇒ a4 = − a2
222(ν + 2)

=
a0

24 2(ν + 1)(ν + 2)

=⇒ a6 = − a4
223(ν + 3)

= − a0
26 3!(ν + 1)(ν + 2)(ν + 3)

=⇒ · · · =⇒ a2r =
(−1)ra0

22r r!
∏r
k=1(ν + k)

, ∀r ∈ N.

Since we can choose a0, we take it to be

a0 =
1

2νΓ(ν + 1)
,

where Γ is the Gamma function described in Chapter 1.

Now we can finally give an expression for a solution of (2.1).
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Definition 2.2. Let ν be a complex constant such that 2ν is not a negative integer. Then,

Jν(z) =

∞∑
r=0

(−1)r(z/2)ν+2r

r! Γ(ν + r + 1)
(2.2)

is called the Bessel function of the first kind of order ν and argument z.

The same process can be applied for α = −ν. In this case, we get

J−ν(z) =

∞∑
r=0

(−1)r(z/2)−ν+2r

r! Γ(−ν + r + 1)
. (2.3)

This time, we are considering 2ν is not a positive integer.

In order to work with these expressions, we would like the series (2.2) and (2.3), to be
absolutely convergent.

Lemma 2.1. The series defining Bessel functions of the first kind of order ν and −ν are abso-
lutely convergent for all z 6= 0.

Proof. Recall

Jν(z) =
∞∑
r=0

(−1)r(z/2)ν+2r

r! Γ(ν + r + 1)
=
(z

2

)ν ∞∑
r=0

(−1)rz2r

r! 4r Γ(ν + r + 1)
.

Notice that since ν is taken to be complex, (z/2)ν is not defined at z = 0 since log z is not. We
can use the Cauchy-Hadamard theorem to find the radius of convergence of the series on the
right. Making x = z2,

R = lim
r→∞

|ar|
|ar+1|

, where ar =
(−1)r

r! 4r Γ(±ν + r + 1)
,

is the radius of convergence of
∑∞

r=0 arx
r. Using the properties of Gamma function,

|ar|
|ar+1|

=
1/r! 4r|Γ(±ν + r + 1)|

1/(r + 1)! 4r+1|Γ(±ν + r + 2)|
= 4(r + 1)| ± ν + r + 1|

and thus,

R = lim
r→∞

|ar|
|ar+1|

= lim
r→∞

4(r + 1)| ± ν + r + 1| =∞.

Then, the series
∑∞

r=0 arx
r =

∑∞
r=0 arz

2r is absolutely convergent for all x = z2 ∈ C, so it is
absolutely convergent for all z ∈ C.

Remark. As series (2.2) and (2.3) are both convergent for all z 6= 0, we may differentiate them
term-by-term.

As Jν and J−ν are solutions of a second-order linear differential equation, we want to see that
they are linearly independent, and thus they form a basis for the vector space of the solutions of
(2.1).
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Proposition 2.1. If ν ∈ C−{k/2 | k ∈ Z}, the Bessel functions of the first kind Jν and J−ν are
linearly independent. In that case, for any solution w of (2.1), there exist A,B ∈ C such that

w(z) = AJν(z) +BJ−ν(z).

Proof. It is enough to see that the Wronskian of Jν(z) and J−ν(z),

W (Jν(z), J−ν(z)) =

∣∣∣∣Jν(z) J−ν(z)
J ′ν(z) J ′−ν(z)

∣∣∣∣ ,
does not vanish at any point. Since Jν and J−ν satisfy (2.1),

z2J ′′ν (z) + zJ ′ν(z) + (z2 − ν2)Jν(z) = 0,

z2J ′′−ν(z) + zJ ′−ν(z) + (z2 − ν2)J−ν(z) = 0.

We multiply these two equations by J−ν(z) and Jν(z), respectively. Substracting one to the
other, and dividing by z, we get

z
(
Jν(z)J ′′−ν(z)− J−ν(z)J ′′ν (z)

)
+ Jν(z)J ′−ν(z)− J−ν(z)J ′ν(z) = 0.

This is equivalent to

d

dz

(
z(Jν(z)J ′−ν(z)− J−ν(z)J ′ν(z)

)
=

d

dz
[zW (Jν , J−ν)] = 0.

This implies W (Jν , J−ν) = C/z, C being a constant to be determined. Taking into account the
first term in the series (2.2),

Jν(z) =
(z/2)ν

Γ(ν + 1)
(1 +O(z2)), J ′ν(z) =

(z/2)ν−1

2Γ(ν)
(1 +O(z2)).

The same applies to J−ν(z). Then, using the property (1.5),

W (Jν(z), J−ν(z)) =
1

z

(
1

Γ(ν + 1)Γ(−ν)
− 1

Γ(−ν + 1)Γ(ν)

)
+O(z)

= −2 sin νπ

πz
+O(z).

But we had stated W (Jν(z), J−ν(z)) = C/z, so the last O(z) must be zero and

W (Jν(z), J−ν(z)) = −2 sin νπ

πz
, (2.4)

which only vanishes when ν is an integer. By hypothesis, 2ν is not an integer, so neither is ν
and

W (Jν(z), J−ν(z)) 6= 0, ∀z ∈ C−
{
k

2
| k ∈ Z

}
.

So Jν(z) and J−ν(z) are linearly independent solutions of (2.1), which is a second-order linear
differential equation. Because of the solutions forming a two-dimensional vector space, and Jν(z)
and J−ν(z) being linearly independent, any solution can be expressed as a linear combination of
them.
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We have seen that Jν(z) and J−ν(z) are linearly independent when ν is not an integer or half
an integer. Now we focus on the case when ν is either n or n+ 1/2 for an integer n.

Let ν = −n − 1/2 where n is a positive integer or zero. Then, 2ν is not a positive integer,
and we define J−ν as in (2.3). However, when taking α = ν, we get

(2ν + 1)a1 = 0, r(2ν + r)ar + ar−2 = 0, ∀r ≥ 2.

Since 2ν = −2n− 1, when r = 2n+ 1, 2ν + r = 0 and the value of a2n+1 is no longer established
by a2n−1, so a2n+1 is not forced to be zero and can take arbitrary values. However, if we still take
Jν and J−ν defined as in (2.2) and (2.3), respectively, this functions are linearly independent, as
their Wronskian (showed in (2.4)) does not vanish. So when ν is half an odd integer, we take Jν
and J−ν as defined before, and any solution of (2.1) will be a combination of them.

The same argument applies when ν = n + 1/2, n being a positive integer. In this case, we
can give arbitrary values to a2n+1 when α = −ν, but we will still define J−ν in the same way.

Remark. We can now generalise Definition 2.2 for all complex values of ν.
Now, let ν be a nonnegative integer n. Then, using that Γ(k + 1) is infinite for all negative

integer k, and making r − n = s in the third step,

J−ν(z) =
∞∑
r=0

(−1)r(z/2)−n+2r

r! Γ(−n+ r + 1)
=
∞∑
r=n

(−1)s+n(z/2)−n+2r

r! Γ(−n+ r + 1)

=
∞∑
s=0

(−1)s(−1)n(z/2)−n+2(s+n)

(s+ n)! Γ(−n+ s+ n+ 1)
= (−1)n

∞∑
s=0

(−1)s(z/2)n+2s

Γ(n+ s+ 1) s!

= (−1)nJν(z). (2.5)

Hence, Jν and J−ν are linearly dependent, and we need to define a new solution of (2.1), linearly
independent to Jν .

Example 2.1. The functions J0(z) and J1(z) play a major role in physical applications. By
definition, Bessel functions of the first kind of orders 0 and 1 are

J0(z) =
∞∑
r=0

(−1)r(z/2)2r

r! Γ(r + 1)
=
∞∑
r=0

(−1)r(z/2)2r

(r!)2
,

J1(z) =

∞∑
r=0

(−1)r(z/2)2r+1

r! Γ(ν + 2)
=

∞∑
r=0

(−1)r(z/2)2r+1

(r + 1)(r!)2
.

Thus, for small values of z, J0(z) ∼ 1 and J1(z) ∼ z/2. Moreover, we have that for real
values of x

lim
x→0

J0(x) = 1

lim
x→0

J1(x) = 0

Graphics for this functions are shown in Figure 2.1.
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Figure 2.1: Graphical representations of Bessel functions of the first kind of orders 0 (blue) and 1 (red).

2.2 Bessel functions of the second and third kind

We want to define a new function, solution of Bessel’s equation and linearly independent to Jν
when ν is an integer.

Definition 2.3. Let ν be a complex constant. Then,

Yν(z) = lim
α→ν

(cosαπ)Jα(z)− J−α(z)

sinαπ
(2.6)

is called the Bessel function of the second kind of order ν and argument z.

Remark. When ν is not an integer, the limit is obtained by substitution and

Yν(z) =
(cos νπ)Jν(z)− J−ν(z)

sin νπ
.

Since Yν(z) is a linear combination of solutions of (2.1), it is also a solution.
However, when ν = n ∈ Z, the expression above takes the form (0/0), and we take the limit.

Proposition 2.2. For all integer n, the Bessel function of the second kind Yn is a solution of
Bessel’s equation, and it is linearly independent of Jn(z).

Proof. As we have stated before, when ν = n ∈ Z, the expression inside the limit in (2.6) takes
the form (0/0) (notice that sinnπ = 0, cosnπ = (−1)n and J−n(z) = (−1)nJn(z)) , and we can
use L’Hôpital’s rule to obtain the limit. Hence,
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Yn(z) = lim
α→n

−π sin(απ)Jα(z) + cos(απ) ∂
∂αJα(z)− ∂

∂αJ−α(z)

π cos(απ)

=
1

π

[
∂

∂α
Jα(z) + (−1)n+1 ∂

∂α
J−α(z)

]
α=n

. (2.7)

Since Jα is a solution of (2.1), and taking the derivatives with respect to α on each side of
equation (2.1),

∂

∂α

[(
z2

d2

dz2
+ z

d

dz
+ z2 − α2

)
Jα(z)

]
= 0

=⇒ − 2αJα(z) +

(
z2

d2

dz2
+ z

d

dz
+ z2 − α2

)
∂

∂α
Jα(z) = 0

=⇒
(
z2

d2

dz2
+ z

d

dz
+ z2 − α2

)
∂

∂α
Jα(z) = 2αJα(z).

The same process can be applied for J−α.

Applying the equation to Yn(z) and using (2.7),

(
z2

d2

dz2
+ z

d

dz
+ z2 − α2

)
Yn(z)

=
1

π

[(
z2

d2

dz2
+ z

d

dz
+ z2 − α2

)
d

dα
Jα(z)

−(−1)n
(
z2

d2

dz2
+ z

d

dz
+ z2 − α2

)
d

dα
J−α(z)

]
α=n

=
1

π

[
2αJα(z) + (−1)n+12αJ−α(z)

]
α=n

=
2n

π
(Jn(z)− (−1)nJ−n(z))

= 0.

This proves that Yn is a solution of (2.1).

Now, we should show that Yn(z) is linearly independent of Jn(z). First, we will calculate the
Wronskian for Jα and Yα when α is not an integer. The result of the Wronskian of Jν(z) and

21



J−ν(z) is used here.

W (Jα(z), Yα(z)) =

∣∣∣∣Jα(z) Yα(z)
J ′α(z) Y ′α(z)

∣∣∣∣
=

∣∣∣∣∣∣∣
Jα(z)

(cosαπ)Jα(z)− J−α(z)

sinαπ

J ′α(z)
(cosαπ)J ′α(z)− J ′−α(z)

sinαπ

∣∣∣∣∣∣∣
=

1

sinαπ

[
cosαπ

(
Jα(z)J ′α(z)− J ′α(z)Jα(z)

)
+J ′α(z)J−α(z)− Jα(z)J ′−α(z)

]
= − 1

sinαπ
W (Jα(z), J−α(z))

=
2

πz
6= 0.

Because of the continuity of Jα and Yα with respect to the variable α, this result is also true for
any α = n ∈ N, and thus the Wronskian cannot vanish anywhere. Therefore, Jn and Yn are also
linearly independent, and so are J−n and Yn.

Corollary 2.1. The general solution of Bessel’s equation (2.1) of order ν ∈ C is

w(z) = AJν(z) +BYν(z), A,B ∈ C.

Proof. When ν is not an integer, Jν(z) and Yν(z) are trivially solutions to (2.1) because of Jν(z)
and J−ν(z) being solutions too. Since we have shown previously that Jν(z) and J−ν(z) are
linearly independent, so are Jν(z) and Yν(z). The result of the previous proposition gives us the
proof for integer values of ν.

Example 2.2 (A transformation of Bessel’s equation). Some physical problems can be solved
with Bessel functions. This is either because Bessel’s equation arises during the resolution of the
problem, or because making some modifications to the original equation gives Bessel’s equation
as a result. Let z = βtγ , with β, γ ∈ C. Then,

dw

dz
=
dw/dt

dz/dt
=

1

βγtγ−1
dw

dt
.

Hence,

z
dw

dz
=
t

γ

dw

dt
.

On the other hand, writing Bessel’s equation (2.1) as

z
d

dz

(
z
dw

dz

)
+ (z2 − ν2)w = 0,
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and substituting the values,

t
d

dt

(
t
dw

dt

)
+ (β2γ2t2γ − ν2γ2)w = 0.

If we take w(t) = tαu(t), with α ∈ C,

t
dw

dt
= αtαu+ utα+1du

dt
.

Thus,

t
d

dt

(
t
dw

dt

)
= tα+2d

2u

dt2
+ (2α+ 1)tα+1du

dt
+ α2tαu.

Now, we can substitute this in Bessel’s equation.

tα+2d
2u

dt2
+ (2α+ 1)tα+1du

dt
+ α2tαu+ (β2γ2t2γ − ν2γ2)tαu = 0.

Dividing by tα,

t2
d2u

dt2
+ (2α+ 1)t

du

dt
+ (α2 + β2γ2t2γ − ν2γ2)u = 0. (2.8)

Since the general solution of Bessel’s equation is AJν(z) + BYν(z) (with A,B ∈ C), the
solution of the equation (2.8) is

u(t) = t−α(AJν(βtν) +BYν(βtν)), A,B ∈ C.

Example 2.3. We will calculate the series expression of Y0(z). The same argument can be
applied for the rest of the integers. Applying (2.7) when n = 0, and making β = −α in the
second equality,

Y0(z) =
1

π

[
∂

∂α
Jα(z)− ∂

∂α
J−α(z)

]
α=0

=
1

π

[
∂

∂α
Jα(z)

]
α=0

− 1

π

[
− ∂

∂β
Jβ(z)

]
β=0

=
2

π

[
∂

∂α
Jα(z)

]
α=0

.

Using the series form of Jα(z),

∂

∂α
Jα(z) =

∂

∂α

[(z
2

)α ∞∑
r=0

(−1)r(z/2)2r

r!

1

Γ(α+ r + 1)

]

=

∞∑
r=0

(−1)r(z/2)α+2r

r!Γ(α+ r + 1)

(
log
(z

2

)
− Γ′(α+ r + 1)

Γ(α+ r + 1)

)
.
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Thus,

Y0(z) =
2

π

∞∑
r=0

(−1)r(z/2)2r

r!Γ(r + 1)

(
log
(z

2

)
− Γ′(r + 1)

Γ(r + 1)

)

=
2

π

∞∑
r=0

(−1)r(z/2)2r

r! r!

(
log
(z

2

)
−
(
−γ + 1 +

1

2
+

1

3
+ · · ·+ 1

r

))

=
2

π

∞∑
r=0

(−1)r(z/2)2r

r! r!

(
log
(z

2

)
+ γ −

r∑
k=1

1

k

)

=
2

π

(
log
(z

2

)
+ γ
)
J0(z)−

2

π

∞∑
r=0

r∑
k=1

(−1)r(z/2)2r

k (r!)2
.

Notice that in the third equality we have used formula (1.3).

Sometimes, it is interesting to express solutions of Bessel’s equation in a different way. There-
fore, we also define Bessel functions of the third kind in terms of Jν(z) and Yν(z).

Definition 2.4. Let ν be a complex constant. Then,

H(1)
ν (z) = Jν(z) + iYν(z), (2.9)

H(2)
ν (z) = Jν(z)− iYν(z) (2.10)

are called Hankel functions or Bessel functions of the third kind of order ν.

Let us prove that any solution of Bessel’s equation can be written as combinations of H(1)
ν (z)

and H(2)
ν (z).

Proposition 2.3. Given a constant ν ∈ C, Hankel functions of order ν are linearly independent
and the general solution of (2.1) can be expressed as

w(z) = AH(1)
ν (z) +BH(2)

ν (z), A,B ∈ C.

Proof. Using Corollary 1.1, Hankel functions are solutions of (2.1). Moreover, their Wronskian
is

W (H(1)
ν (z), H(2)

ν (z)) = (Jν(z) + iYn(z))(J ′ν(z)− iY ′ν(z))

− (J ′ν(z) + iY ′ν(z))(Jν(z)− iYn(z))

= −2i(Jν(z)Y ′ν(z)− Yν(z)J ′ν(z))

= − 4i

πz
6= 0,

and therefore Hankel functions are linearly independent and form a basis of the vector space of
the solutions of (2.1).
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Example 2.4 (Bessel functions with argument zemπi). It should be noted that Bessel functions
are multivalued functions in C − {0}, this is, one point z ∈ C − {0} may have more than one
image. Nevertheless, the functions Jν(z)/zν are single-valued (have only one image). Then, for
a complex z, and for any integer m,

Jν(emπiz)

emπiνzν
=
Jν(z)

zν
.

Equivalently,
Jν(emπiz) = emπνiJν(z).

We can also get
J−ν(emπiz) = e−mπνiJ−ν(z).

If we now consider Bessel functions of the second kind,

Yν(zemπi) =
1

sin νπ

(
(cos νπ)Jν(zemπi)− J−ν(zemπi)

)
=

1

sin νπ

(
(emνπi cos νπ)Jν(z)− e−mνπiJ−ν(z)

)
=

1

sin νπ

(
e−mνπi[(cos νπ)Jν(z)− J−ν(z)] + (emνπi − e−mνπi) cos νπJν(z)

)
= e−mνπiYν(z) + 2i sinmνπ

1

tan νπ
Jν(z).

Repeating a similar argument with Hankel functions, we get

H(1)
ν (zemπi) =

sin(1−m)νπ

sin νπ
H(1)
ν (z)− e−νπi sinmνπ

sin νπ
H(2)
ν (z),

H(2)
ν (zemπi) =

sin(1 +m)νπ

sin νπ
H(2)
ν (z)− eνπi sinmνπ

sin νπ
H(1)
ν (z).

2.3 Modified Bessel functions

The following equation arises in some physical problems.

z2
d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0. (2.11)

Actually, (2.11) is the result of replacing z by iz in Bessel’s equation (2.1). Thus, we deduce that
Jν(iz) and J−ν(iz) are solutions of (2.11). However, we usually want to express these solutions
in a real form. The function e−νπi/2Jν(iz) is a solution of (2.11). Notice that

e−νπi/2Jν(iz) = (−i)ν
∞∑
r=0

(−1)riνi2r(z/2)ν+2r

r!Γ(ν + r + 1)
=

1

iν

∞∑
r=0

(−1)riν(i2)r(z/2)ν+2r

r!Γ(ν + r + 1)
(2.12)

which is, in fact, the next function we are going to define.
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Definition 2.5. Let ν ∈ C. The function

Iν(z) =

∞∑
r=0

(z/2)ν+2r

r!Γ(ν + r + 1)
(2.13)

is called the modified Bessel function of the first kind of order ν.

As Iν and I−ν are multiples of Jν(iz) and J−ν(iz), respectively, they are linearly independent
if ν 6∈ Z. When ν is an integer n, we have again that

I−n =
∞∑
r=n

(z/2)−n+2r

Γ(r + 1)Γ(−n+ r + 1)

=

∞∑
s=0

(z/2)n+2s

Γ(n+ s+ 1)Γ(s+ 1)

= In(z).

As we have done with Bessel functions of the first kind, we define a new function which will
be linearly independent of the first one.

Definition 2.6. Let ν be a complex constant. The function

Kν(z) =
π

2
lim
α→ν

I−α(z)− Iα(z)

sinαπ
(2.14)

is called the modified Bessel function of the third kind or the modified Hankel function of order
ν.

As we have mentioned, we define these functions because of their following property.

Proposition 2.4. The modified Hankel function of order ν ∈ C is a solution of (2.11) and it is
linearly independent of the modified Bessel function of the first kind of the same order.

Proof. If ν 6∈ Z, Kν is a linear combination of Iα(z) and I−α(z), and therefore it is a solution of
(2.13). Since Iν(z) and I−ν(z) are linearly independent, so are Iα(z) and a linear combination
of Iα(z) and I−α(z). Thus, the problem reduces to prove the linear independence of Kν and Iν
when ν = n ∈ Z.

Notice that the limit gives an indetermination (0/0) when ν is an integer n. By L’Hôpital’s
rule,

Kn(z) =
π

2
lim
α→n

[
∂
∂αI−α(z)− ∂

∂αIα(z)

π cosαπ

]
=

(−1)n

2

[
∂

∂α
I−α(z)− ∂

∂α
Iα(z)

]
ν=n

. (2.15)
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Since Iα is a solution of (2.11) for ν = α,(
z2

d2

dz2
+ z

d

dz
− z2 − α2

)
Iα(z) = 0

=⇒ ∂

∂α

[(
z2

d2

dz2
− z d

dz
− z2 − α2

)
Iα(z)

]
= 0

=⇒ − 2αIα(z) +

(
z2

d2

dz2
+ z

d

dz
− z2 − α2

)
∂

∂α
Iα(z) = 0

=⇒
(
z2

d2

dz2
+ z

d

dz
− z2 − α2

)
∂

∂α
Iα(z) = 2αIα(z).

The same happens for J−α. Therefore, by (2.15),(
z2

d2

dz2
+ z

d

dz
− z2 − α2

)
Kn =

(−1)n

2
[2αI−α − 2αIα]α=n = 0

and Kn(z) is a solution of (2.11).

On the other hand, we can deduce from (2.14), by substitution, that for any ν 6∈ Z,

W (Iν(z),Kν(z)) = Iα(z)K ′ν(z)−Kν(z)I ′ν(z) =
π

2 sin νπ
W (Iν(z), I−ν(z)) = −1

z
.

Then, by the continuity of this expression with respect to ν, this equality also holds for integer
values of ν.

Corollary 2.2. The general solution of (2.11) is

w(z) = AIν(z) +BKν(z), A,B ∈ C.

Example 2.5. As we said with the Bessel functions of the second kind, it is hard to find the
general series expression for these functions when ν is an integer, but we can do it for ν = 0.

From (2.15),

K0(z) =
1

2

[
∂

∂α
I−α(z)− ∂

∂α
Iα(z)

]
α=0

= −
[
∂

∂α
Iα(z)

]
α=0

.

Besides, the derivative of Iν with respect to α is

∂

∂α
Iα(z) =

∞∑
r=0

(z/2)α+2r

r!Γ(α+ r + 1)

(
log(z/2)− Γ′(α+ r + 1)

Γ(α+ r + 1)

)
.

Using property (1.3) of the Gamma function,

K0(z) = −
(
γ + log

z

2

)
I0(z) +

∞∑
r=1

(z/2)2r

(r!)2

r∑
k=1

1

r
.
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By substitution in (2.13), we also have

I0(z) =

∞∑
r=0

(z/2)2r

(r!)2
.

Moreover, when z is small, we have that I0(z) ∼ 1 and K0(z) ∼ −γ − log
z

2
.
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2.4 Exercises

1. Prove the following inequality, for all z ∈ C.

|Jn(z)| ≤ 1

n!

(
|z|
2

)ν
e(|z|/2)

2
, ∀n ∈ Z.

Solution. We only have to bound |Jn(z)| step by step. Using series (2.2),

|Jn(z)| =

∣∣∣∣∣
∞∑
r=0

(−1)r(z/2)n+2r

r!(n+ r)!

∣∣∣∣∣
≤
∞∑
r=0

∣∣∣∣(−1)r(z/2)n+2r

r!(n+ r)!

∣∣∣∣
=

∞∑
r=0

(|z|/2)n+2r

r!(n+ r)!

=

(
|z|
2

)n ∞∑
r=0

1

r!(n+ r)!

(
|z|
2

)2r

≤
(
|z|
2

)n ∞∑
r=0

1

r!n!

(
|z|
2

)2r

=
1

n!

(
|z|
2

)n
e(|z|/2)

2
.

In the last step we have used the series expression of ez,

ez =

∞∑
r=0

zr

r!
.

2. Use Exercise 1 to prove that for a fixed z ∈ C,

lim
n→∞

Jn(z) = 0.

Solution. We know that

lim
n→∞

Jn(z) = 0 ⇐⇒ lim
n→∞

|Jn(z)| = 0.

By Exercise 1,

lim
n→∞

|Jn(z)| ≤ lim
n→∞

1

n!

(
|z|
2

)n
e|z|

2/4 = 0.
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3. Prove the following relation

d

dz

(
J−ν(z)

Jν(z)

)
= − 2 sin νπ

zπ(Jν(x))2
.

Deduce that Jν and J−ν are linearly dependent if and only if ν ∈ Z.

Solution. Computing the derivative with the usual formula, and recalling the Wronskian
function of Jν and J−ν ,

d

dz

(
J−ν(z)

Jν(z)

)
=
J ′−ν(z)Jν(z)− J−ν(z)J ′ν(z)

J2
ν (z)

=
W (Jν(z), J−ν(z))

J2
ν (z)

=
2 sin νπ

zπ(Jν(z))2
.

When is J−ν a multiple of Jν?

∃C ∈ C s.t. J−ν(z) = CJν(z) ⇐⇒ ∃C ∈ C s.t.
J−ν(z)

Jν(z)
= C

⇐⇒ d

dz

(
J−ν(z)

Jν(z)

)
= 0

⇐⇒ 2 sin νπ

zπJ2
ν (z)

⇐⇒ ν ∈ Z.

4. Show that if ν 6∈ Z

H(1)
ν (z) =

J−ν(z)− e−νπiJν(z)

i sin νπ
, H(2)

ν (z) = −J−ν(z)− eνπiJν(z)

i sin νπ
,

and deduce that H(1)
−ν (z) = eνπiH

(1)
ν (z) and H(2)

−ν (z) = e−νπiH
(2)
ν (z).

Solution. First of all, by equations (2.9) and (2.6) (ν 6∈ Z),

H(1)
ν (z) = Jν(z) + iYν(z)

= Jν(z) + i
cos νπJν(z)− J−ν(z)

sin νπ

=
Jν(z)(sin νπ + i cos νπ)− iJ−ν(z)

sin νπ

=
Jν(z)(− cos νπ + i sin νπ) + J−ν(z)

i sin νπ

=
−Jν(z)e−νπi + J−ν(z)

i sin νπ
.

In the last step we have used that

− cos νπ + i sin νπ = −(cosνπ − i sin νπ) = −e−νπi.
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Similarly,

H(2)
ν (z) = Jν(z)− iYν(z)

= Jν(z)− icos νπJν(z)− J−ν(z)

sin νπ

=
Jν(z)(sin νπ − i cos νπ)− iJ−ν(z)

sin νπ

=
Jν(z)(cos νπ + i sin νπ) + J−ν(z)

i sin νπ

= −Jν(z)eνπi + J−ν(z)

i sin νπ
.

Moreover,

H
(1)
−ν (z) =

Jν(z)− eνπiJ−ν(z)

i sin(−νπ)

=
eνπiJ−ν(z)− Jν(z)

i sin νπ

= eνπi
(
J−ν(z)− e−νπiJν(z)

i sin νπ

)
= eνπiH(1)

ν (z).

Similarly,

H
(2)
−ν (z) =

Jν(z)− e−νπiJ−ν(z)

−i sin(−νπ)

=
e−νπiJ−ν(z)− Jν(z)

−i sin νπ

= e−νπi
(
J−ν(z)− eνπiJν(z)

−i sin νπ

)
= e−νπiH(2)

ν (z).
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Chapter 3

Properties of Bessel functions

In Chapter 2 we presented Bessel functions of several kinds. Now we will focus on some proper-
ties of these functions.

First, we will study some recurrence relations between Bessel functions defined in Chapter 2.
We will also see the Bessel functions of the first kind as the coefficients of a generating function.
As a consequence, we will prove some properties of the trigonometric functions. We will also
study an integral formula for the Bessel functions of the first kind.

When solving a differential equation in physics or engineering, we sometimes need to evaluate
Bessel functions at a certain point. As the functions are given by their series expressions, they
are not easy to evaluate, so we need functions which give an approximation of them. In this
chapter, we are going to learn how to approximate Bessel functions and their zeros.

Finally, we will calculate the solutions to a certain Sturm-Liouville problem, involving Bessel
functions. As a consequence, we will get orthogonal sets of Bessel functions.

3.1 Recurrence relations

We want to analyse the relations between the Bessel functions of the first kind.

Proposition 3.1. Let ν ∈ C. Then,

Jν+1(z) =
ν

z
Jν(z)− J ′ν(z), (3.1)

Jν−1(z) =
ν

z
Jν(z) + J ′ν(z). (3.2)

Proof. Using the series expression of Jν(z), we obtain

z−νJν(z) = 2−ν
∞∑
r=0

(−1)r(z/2)2r

r! Γ(ν + r + 1)
.
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Taking derivatives with respect to z on each side,

−ν z
−ν

z
Jν(z) + z−νJ ′ν(z) = 2−ν

∞∑
r=0

(−1)r2r(z/2)2r−11/2

r! Γ(ν + r + 1)
.

Thus,

ν

z
Jν(z)− J ′ν(z) = −zν2−ν

∞∑
r=1

(−1)rr(z/2)2r−1

r! Γ(ν + r + 1)

= −zν2−ν
∞∑
r=0

(−1)r+1(r + 1)(z/2)2(r+1)−1

(r + 1)! Γ(ν + r + 2)

= zν2−ν
∞∑
r=0

(−1)r(z/2)2r+1

r! Γ(ν + r + 2)

=
∞∑
r=0

(−1)r(z/2)ν+2r+1

r! Γ(ν + r + 2)

= Jν+1(z).

Similarly,

zνJν(z) = 2ν
∞∑
r=0

(−1)r(z/2)2ν+2r

r! Γ(ν + r + 1)
,

which, using the same argument, give us identity (3.2).

Combining the previous two formulas, we obtain these recurrence relations.

Corollary 3.1. If ν ∈ C,

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z), (3.3)

Jν−1(z)− Jν+1(z) = 2J ′ν(z). (3.4)

Example 3.1. We take again the example when ν = 0. From (3.1) we get

J1(z) = −J ′0(z),

which gives us another expression for the derivative of J0(z) with respect to z.

Remark. It is worth noting that these formulas can also be applied to Bessel function of ssecond
and third kind, as they are nothing but linear combinations of Bessel functions of the first kind
(except when ν is an integer but, because of continuity, the formulas are still valid).
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Remark. Notice also that in the process of getting equation (3.1), we arrived at
d

zdz

(
z−νJν(z)

)
= −z−ν−1Jν+1(z).

Taking again the derivatives with respect to z and multiplying by z,(
d

zdz

)2 (
z−νJν(z)

)
= − d

zdz

(
z−ν−1Jν+1(z)

)
= (−1)2z−ν−2Jν+2.

Repeating the process m times,(
d

zdz

)m (
z−νJν(z)

)
= (−1)mz−ν−mJν+m(z). (3.5)

Similarly, from the process of getting (3.2) we also prove(
d

zdz

)m
(zνJν(z)) = zν−mJν−m(z). (3.6)

Example 3.2 (Spherical Bessel functions). Bessel functions of the type Jn+1/2, with n ∈ N∪{0},
are often used to solve problems of spherical waves. That is why these functions are called Spher-
ical Bessel functions.

In order to calculate the values of these functions, we will first get the value of J1/2(z). Using
that by formula (1.4)

r!Γ(r + 3/2) = Γ(r + 1)Γ(r + 3/2) =
√
π2−2r−1Γ(2r + 2) =

√
π2−2r−1(2r + 1)!,

we get

J1/2(z) =

∞∑
r=0

(−1)r(z/2)2r+(1/2)

r!Γ(r + (3/2))

=

(
2

πz

)1/2 ∞∑
r=0

(−1)rz2r+1

(2r + 1)!

=

(
2

πz

)1/2

sin z.

Similarly,

J−1/2(z) =

(
2

πz

)1/2

cos z.

Using (3.5), we get

Jn+1/2 = (−1)nzn+
1
2

(
d

zdz

)n (
z−1/2J1/2(z)

)
= (−1)nzn+

1
2

(
d

zdz

)n [
z−1/2

(
2

πz

)1/2

sin z

]

= (−1)nzn+
1
2

(
2

π

)1/2( d

zdz

)n(sin z

z

)
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Similarly, but now using (3.6),

J−n−(1/2)(z) = zn+
1
2

(
2

π

)1/2( d

zdz

)n(sin z

z

)
.

In conclusion, we can express Jn+1/2 and J−n−1/2 with a finite number of sines, cosines and
powers of z.

We can also get Bessel functions of the second and third kind in this way. For example,

Y−1/2(z) = J−1/2(z) =

(
2

πz

)1/2

sin z,

H
(1)
−1/2 = J−1/2(z) + iY−1/2 =

(
2

πz

)1/2

cos z + i

(
2

πz

)1/2

sin z =

(
2

πz

)1/2

eiz,

H
(2)
−1/2 = J−1/2(z)− iY−1/2 =

(
2

πz

)1/2

cos z − i
(

2

πz

)1/2

sin z =

(
2

πz

)1/2

e−iz.

We can also give the recurrence formulas for the modified Bessel functions.

Proposition 3.2. Let ν ∈ C. Then,

−Iν+1(z) =
ν

z
Iν(z)− I ′ν(z),

Iν−1(z) =
ν

z
Iν(z) + I ′ν(z),

Iν−1(z)− Iν+1(z) =
2ν

z
Iν(z),

Iν−1(z) + Iν+1(z) = 2I ′ν(z).

Proof. Using the same argument as in Proposition 3.1,

z−νIν(z) = 2−ν
∞∑
r=0

(z/2)2r

r!Γ(ν + r + 1)
.

Taking the derivatives,

ν

z
Iν(z)− I ′ν(z) = −zν2−ν

∞∑
r=1

(z/2)2r−1

r!Γ(ν + r + 1)
= −

∞∑
r=0

(z/2)ν+1+2r

r!Γ(ν + r + 2)
= −Iν+1(z). (3.7)

We can also get from

zνIν(z) = 2ν
∞∑
r=0

(z/2)2ν+2r

r!Γ(ν + r + 1)

the equality
ν

z
Iν(z) + I ′ν(z) = Iν−1(z). (3.8)

We get the rest of the formulas combining equations (3.7) and (3.8).
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Example 3.3. For ν = 0, we have
I1(z) = I ′0(z).

Corollary 3.2. If ν ∈ C,

−Kν+1(z) = −ν
z
Kν(z) +K ′ν(z),

−Kν−1(z) =
ν

z
Kν(z) +K ′ν(z),

Kν−1(z)−Kν+1(z) = −2ν

z
Kν(z),

Kν−1(z) +Kν+1(z) = −2K ′ν(z).

Example 3.4. Again, taking ν = 0, we get

K1(z) = −K ′0(z).

3.2 Bessel coefficients

In physics, the following differential equation

∂2

∂ρ2
V (ρ, φ) +

1

ρ

∂

∂ρ
V (ρ, φ) +

1

ρ2
∂2

∂φ2
V (ρ, φ) + k2V (ρ, φ) = 0

is frequently studied. By substitution, it can be proved that V (1)(ρ, φ) = eikρ sinφ and V (2)
n (ρ, φ) =

Jn(kρ)einφ, where n ∈ Z, are solutions of this equation. We will study the connection between
these functions.

We can write V (1) as a Fourier series, as it is periodic with respect to φ. So it admits the
form

∞∑
n=−∞

cn(kρ)einφ.

We can calculate the coefficients cn(kρ) by using the series form of the exponential function.
Making kρ = z and eiφ = t,

V (1)(z, t) = ez(t−t
−1)/2 = ezt/2e−z/2t =

∞∑
r=0

1

r!

(
zt

2

)r ∞∑
s=0

1

s!

(
− z

2t

)s
=

∞∑
r=0

∞∑
s=0

(−1)s

r!s!

(z
2

)r+s
tr−s.

As t = eiφ, we are looking for the coefficients of this power series. If we make n = r − s, then
the coefficient of tn for n ≥ 0 is

∞∑
s=0

(−1)s

(n+ s)!s!

(z
2

)n+2s
= Jn(z).
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On the other hand, the coefficient of t−n is, using relation (2.5),
∞∑
s=n

(−1)s

(−n+ s)!s!

(z
2

)−n+2r
= J−n(z)

Hence,

V (1)(z, t) = ez(t−t
−1)/2 =

∞∑
n=−∞

Jn(z)tn =

∞∑
n=−∞

V (2)
n (z, t) (3.9)

Because of this relation, Jn(z) are called the Bessel coefficients and V (1) is called the gener-
ating function of the Bessel coefficients.

Relation (3.9) was used by Jacobi to get the following equalities of trigonometric functions.

Proposition 3.3. Let z ∈ C and φ ∈ R. Then,

(i) cos(z sinφ) = J0(z) + 2
∑∞

n=1 J2n(z) cos(2nφ).

(ii) sin(z sinφ) = 2
∑∞

n=0 J2n+1(z) sin((2n+ 1)φ).

(iii) cos(z cosφ) = J0(z) + 2
∑∞

n=1(−1)nJ2n(z) cos(2nφ).

(iv) sin(z cosφ) = 2
∑∞

n=0(−1)nJ2n+1(z) sin((2n+ 1)φ).

Proof. Making t = eiφ in equation (3.5), and using relation (2.5),

ez(e
iφ−e−iφ)/2 =

∞∑
n=−∞

Jn(z)einφ = J0(z) +
∞∑
n=1

[
einφ + (−1)ne−inφ

]
Jn(z)

Notice that the left-hand side of the identity is eiz sinφ = cos(z sinφ) + i sin(z sinφ) and that

eniφ + (−1)ne−niφ =

{
2 cosnφ, if n is even,
2i sinnφ, if n is odd

.

Equating real and imaginary parts, we prove (i) and (ii). Moreover, taking φ̃ = −φ + π/2, we
obtain (iii) and (iv).

3.3 Bessel’s integral formulas

Using some of the properties seen previously, we can deduce several identities of Bessel functions,
known as Bessel’s integral formulas.

Theorem 3.1 (Bessel’s Integral Formulas). Let z be a complex number and n an integer. Then,

Jn(z) =
1

π

∫ π

0
cos (z sin θ − nθ)dθ.

Moreover,

Jn(z) =

{
2
π

∫ π/2
0 cos (z sin θ) cosnθ dθ, if n is even,

2
π

∫ π/2
0 sin (z sin θ) sinnθ dθ, if n is odd.
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Proof. By Proposition 3.3, we know that

cos(z sin θ) = J0(z) + 2
∞∑
n=1

J2n(z) cos(2nθ),

sin(z sin θ) = 2
∞∑
n=0

J2n+1(z) sin((2n+ 1)θ).

As the previous functions are even and odd, respectively, with respect to θ, we can see them as
Fourier Cosine and Sine series, respectively. Then,

cos(z sin θ) =
a0(z)

2
+

∞∑
n=1

an(z) cosnθ, sin(z sin θ) =

∞∑
n=1

bn(z) sinnθ,

where

an(z) =

{
2Jn(z), if n is even,
0, if n is odd

, bn(z) =

{
0, if n is even,
2Jn(z), if n is odd

.

Notice that
an(z) + bn(z)

2
= Jn(z), n ∈ N ∪ {0}.

On the other hand, if we compute the Fourier coefficients for these Cosine and Sine series,

an(z) =
2

π

∫ π

0
cos (z sin θ) cosnθdθ

and

bn(z) =
2

π

∫ π

0
sin (z sin θ) sinnθdθ.

Summing and dividing by two,

an(z) + bn(z)

2
=

1

π

∫ π

0
(sin (z sin θ) sinnθ + sin (z sin θ) sinnθ) dθ

=
1

π

∫ π

0
cos (nθ − z sin θ) dθ.

Hence, comparing the two expressions for (an + bn)/2,

Jn(z) =
1

π

∫ π

0
cos (nθ − z sin θ) dθ.

Moreover, we also have that

Jn(z) =

{
an
2 , if n is even,
bn
2 , if n is odd.
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Equating with the coefficients of the Fourier series,

Jn(z) =

{
1
π

∫ π
0 cos (z sin θ) cosnθ dθ, if n is even,

1
π

∫ π
0 sin (z sin θ) sinnθ dθ, if n is odd.

Since the integrands are symmetric respect to θ = π/2 in the interval (0, π),

Jn(z) =

{
2
π

∫ π/2
0 cos (z sin θ) cosnθ dθ, if n is even,

2
π

∫ π/2
0 sin (z sin θ) sinnθ dθ, if n is odd

.

These integral expressions for Jn(z) can be used to make numerical approximations of the
series (2.2) via methods such as Simpson’s rule.

3.4 Asymptotics of Bessel functions

As we have mentioned in the introduction of this chapter, when applying the theory of Bessel
functions to solve problems in physics or engineering, it is sometimes required to evaluate Bessel
functions at a point z, or to solve equations such as Jν(z) = 0.

However, due to the definition of the function by a series, the partial sums only provide a
good approximation of Bessel functions of the first kind when z is small. Therefore, we now want
to approximate Jν(z) for large values of z, using other expressions (easier to handle).

From this section onwards, we assume ν is real and z = x ∈ R is positive.

First, take g(x) = x1/2f(x), where f is a solution of Bessel’s equation (2.1). Then,

f(x) =
g(x)

x1/2
, f ′(x) =

g′(x)

x1/2
− g(x)

2x3/2
, f ′′(x) =

g′′(x)

x1/2
− g′(x)

x3/2
+

3g(x)

4x5/2
.

Substituting in Bessel’s equation,

0 = x2f ′′(x) + xf ′(x) + (x2 − ν2)f(x)

= x2
(
g′′(x)

x1/2
− g′(x)

x3/2
+

3g(x)

4x5/2

)
+ x

(
g′(x)

x1/2
− g(x)

2x3/2

)
+ (x2 − ν2)g(x)

x1/2

= x3/2g′′(x)− x1/2g′(x) +
3g(x)

4x1/2
+ x1/2g′(x)− g(x)

2x1/2
+ x3/2g(x)− ν2g(x)

x1/2

= x3/2g′′(x) + x3/2g(x) +

(
1

4
− ν2

)
g(x)

x1/2
.

Multiplying by 1/x3/2,

g′′(x) + g(x) +
1
4 − ν

2

x2
g(x) = 0.
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So, when x is large, the last summand tends to zero, and thus

g′′(x) + g(x) ≈ 0.

But the solutions to the equation g′′(x)+g(x) = 0 are combinations of trigonometric functions
of the form

A cosx+B sinx, A,B ∈ R.

Those solutions can also be written in the form α sin (x+ β), where α and β are again real
constants. So, we can guess that Bessel functions can be approximated using Sine or Cosine
functions when x is large. The following result gives us that approximation.

Theorem 3.2. Let ν be a real constant. Then, there exists a constant Cν such that,

∀x ≥ 1, Jν(x) =

√
2

πx
cos
(
x− νπ

2
− π

4

)
+ Eν(x), |Eν(x)| ≤ Cν

x3/2
. (3.10)

Proof. This proof requires more advanced techniques, and can be found in Chapters VII and
VIII of [4].

This result lets us approximate the Bessel function of the first kind of order ν ∈ R and
argument x ≥ 1, giving us an upper bound for the error. Moreover, this error decreases as x
tends to infinity. With this result we can also give approximate values for other functions seen
in Chapter 2.

Corollary 3.3. If ν is a real constant, for any x ≥ 1,

(i) Yν(x) ≈
√

2

πx
sin
(
x− νπ

2
− π

4

)
,

(ii) J ′ν(x) ≈
√

2

πx
sin
(
x− νπ

2
− π

4

)
.

Proof. In order to prove (i) we have to take into account the definition of Yν (equation (2.6)),
when ν is not an integer. Also, using the following trigonometrical formula (Cosine of a sum)

cos
(
x+

νπ

2
− π

4

)
= cos (νπ) cos

(
x− νπ

2
− π

4

)
− sin (νπ) sin

(
x− νπ

2
− π

4

)
and Theorem 3.10 for J−ν we find that

Yν(x) ≈ 1

sin (νπ)

[
cos (νπ)

√
2

πx
cos
(
x− νπ

2
− π

4

)
−
√

2

πx
cos
(
x+

νπ

2
− π

4

)]

=

√
2/(πx)

sin (νπ)

[
cos (νπ) cos

(
x− νπ

2
− π

4

)
− cos

(
x+

νπ

2
− π

4

)]
=

√
2/(πx)

sin (νπ)
sin (νπ) sin

(
x− νπ

2
− π

4

)
=

√
2

πx
sin
(
x− νπ

2
− π

4

)
.
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By an argument of continuity, for all ν ∈ R, we get

Yν(x) ≈
√

2

πx
sin
(
x− νπ

2
− π

4

)
.

To prove part (ii), we use the recurrence relation (3.2). On the one hand,

Jν−1(x) =

√
2

πx
cos

(
x− (ν − 1)π

2
− π

4

)
+ Eν−1(x)

=

√
2

πx
cos
(
x− νπ

2
− π

4
+
π

2

)
+ Eν−1(x)

= −
√

2

πx
sin
(
x− νπ

2
− π

4

)
+ Eν−1(x)

On the other hand, ∣∣∣ν
x
Jν(x)

∣∣∣ ≤√ 2

π

|ν|
x3/2

+
|ν|Cν
x5/2

≤
(
√

2/π + Cν)|ν|
x3/2

.

Combining the two results, we obtain (iii).

3.5 Zeros of Bessel functions

Now, we want to describe the zeros of Bessel functions. Notably, in boundary value problems,
the following equation arises

aJν(x) + bxJ ′ν(x) = 0, (3.11)

where ν ≥ 0 and (a, b) ∈ R2 − {(0, 0)}.
Let us begin by taking the function x−ν [aJν(x) + bxJ ′ν(x)]. This function is now analytic at

every point, once removed the singularity at x = 0, so its zeros are isolated. This means that in
a bounded region we have only finitely many zeros. Hence, we can arrange the positive zeros of
our function in the following way

0 < λ1 < λ2 < . . . .

We want to calculate the asymptotic behavior of the sequence {λn}∞n=1. In order to solve this
problem, we will use the following lemma.

Lemma 3.1. Let f be a differentiable, real-valued function that satisfies

|f(x)− cosx| ≤ ε and |f ′(x) + sinx| ≤ ε, x ≥Mπ, (3.12)

where ε � 1 and M ∈ R. Then, for all integers m ≥ M , f has exactly one zero zm in each
interval [mπ, (m+ 1)π]. Moreover, zm ∼ (m+ 1/2)π.

Proof. Let us take an integer m ≥M . Because of m being an integer,

cos (mπ) = (−1)m and cos

[(
m+

1

2

)
π

]
= 0.
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Therefore, the hypothesis |f(x)− cosx| ≤ ε implies, by evaluating f at mπ and (m+ 1)π (both
greater than Mπ),

|f(mπ)− (−1)m| ≤ ε and |f((m+ 1)π) + (−1)m| ≤ ε.

Consequently,

f(mπ) ∈ B((−1)m, ε) and f((m+ 1)π) ∈ B(−(−1)m, ε),

Since by hypothesis ε � 1, f((m + 1)π) and f(mπ) have different signs. Because of f being
continuous (it is differentiable), by Bolzano’s Theorem,

∃ zm ∈ (mπ, (m+ 1)π) s.t. f(zm) = 0.

So we have proved the existence of a zero of f in the interval (mπ, (m+ 1)π), where m ≥M .
Now, let zm be a zero of f in that interval. From the first equation of (3.12) we get

|f(zm)− cos zm| = |cos zm| ≤ ε, ε� 1.

But this means cos zm ∼ 0, which implies zm ∼ (m+ 1/2)π.

Moreover, since (m+ 1/2)π ≥Mπ and sin ((m+ 1/2)π) = cos (mπ) = (−1)m,∣∣∣∣f ′((m+
1

2

)
π)

)
+ (−1)m

∣∣∣∣ ≤ ε.
This implies

f ′
((

m+
1

2

)
π)

)
∈ (−1− ε,−1 + ε) ∪ (1− ε, 1 + ε),

so f ′ does not vanish around (m + 1/2)π. Hence, f is strictly increasing or decreasing near
(m+ 1/2)π, and thus there is exactly one zero in the interval (mπ, (m+ 1)π).

We shall distinguish two cases, depending on whether b = 0 or b 6= 0 in equation (3.11).

If b = 0, we want to get the zeros of Jν(x). In this case, we can easily get the asymptotic
expression for the zeros of (3.11) based on the asymptotics of Jν(x), this is, based in identity
(3.10). In fact,

Jν(x) ≈
√

2

πx
cos
(
x− νπ

2
− π

4

)
implies a large x will satisfy Jν(x) = 0 if cos

(
x− νπ

2 −
π
4

)
is near zero.

In fact, we can apply Lemma 3.1 to prove what we have stated. Let us consider the function

f(x) = x̃1/2Jν(x̃), x̃ = x+
1

2
νπ +

1

4
π.
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By (3.10),

f(x) ≈ x̃1/2
√

2

πx̃
cos

(
x̃− 1

2
νπ − 1

4
π

)
= x̃1/2

√
2

πx̃
cosx =

√
2

π
cosx.

Since
f ′(x) = x̃1/2J ′ν(x̃) +

1

2
x̃−1/2Jν(x̃)

and by (3.10) and Corollary 3.3,

x̃1/2J ′ν(x̃) ≈ −x̃1/2
√

2

πx̃
sin
(
x̃− νπ

2
− π

4

)
= −x̃1/2

√
2

πx̃
sinx = −

√
2

π
sinx

and

x̃−1/2Jν(x̃) ≈ x̃−1/2
√

2

πx̃
cos
(
x̃− νπ

2
− π

4

)
=

1

x̃

√
2

π
cosx ≈ 0

for large values of x. Thus,

f ′(x) ≈ −
√

2

π
sinx

for large values of x.
As we have seen before, these errors in approximation tend to zero when x tends to infinity.

Applying Lemma 3.1, for x ≥ Mπ, we can approximate the zeros of f(x). In fact, for a large
enough m, there exists a unique zero zm in each interval [mπ, (m+ 1)π] and zm ∼ (m+ 1/2)π.
Thus,

z̃m ∼
(
m+

1

2

)
π +

1

2
νπ +

1

4
π =

(
m+

ν

2
+

3

4

)
π.

So we conclude the zeros of Jν , which are in fact the zeros of x1/2Jν(x), are approximated by
(m+ ν/2 + 3/4)π.

Now, we consider the case in which b 6= 0. We can apply again Lemma 3.1, but now to the
function

f(x) = cx̃−1/2Jν(x̃) + x̃1/2J ′ν(x̃), x̃ = x+
1

2
νπ − 1

4
π and c =

a

b
.

On the one hand,

x̃1/2J ′ν(x̃) ≈ −x̃1/2
√

2

πx̃
sin
(
x̃− νπ

2
− π

4

)
= −x̃1/2

√
2

πx̃
sin
(
x− π

2

)
= −x̃1/2

√
2

πx̃
(− cosx)

=

√
2

π
cosx
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for large values of x. On the other hand, by (3.10)

x̃−1/2Jν(x̃) ≈ x̃−1/2
√

2

πx̃
cos
(
x̃− νπ

2
− π

4

)
=

1

x̃

√
2

π
cosx ≈ 0.

Thus,

f(x) ≈
√

2

π
cosx.

Taking the derivative of f with respect to x,

f ′(x) = − c
2
x̃−3/2Jν(x̃) + cx̃−1/2J ′ν(x̃) +

1

2
x̃−1/2J ′ν(x̃) + x̃1/2J ′′ν (x̃).

Since Jν satisfies Bessel’s equation (2.1), we know that

J ′′ν (x̃) = −x̃−1J ′ν(x̃)− (1− ν2x̃−2)Jν(x̃).

Then,

f ′(x) =

(
c+

1

2

)
x̃−1/2J ′ν(x̃) + x̃1/2J ′′ν (x̃)− c

2
x̃−3/2Jν(x̃)

=

(
c+

1

2

)
x̃−1/2J ′ν(x̃)− x̃−1/2J ′ν(x̃)− x̃1/2Jν(x̃) + ν2x̃−3/2Jν(x̃)− c

2
x̃−3/2Jν(x̃)

≈ −x̃1/2Jν(x̃).

In the last step we have used that

x̃−1/2J ′ν(x̃) ≈ 1

x̃

√
2

π
sin
(
x̃− νπ

2
− π

4

)
x̃−3/2Jν(x̃) ≈ 1

x̃2

√
2

π
cos
(
x̃− νπ

2
− π

4

)
and therefore both tend to zero when x̃ tends to infinity. Therefore,

f ′(x) ≈ −x̃1/2Jν(x̃)

≈ −x̃1/2
√

2

πx̃
cos
(
x̃− νπ

2
− π

4

)
= −x̃1/2

√
2

πx̃
cos
(
x− π

2

)
= −x̃1/2

√
2

πx̃
sinx

= −
√

2

π
sinx
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Finally, applying Lemma 3.1 to
√
π/2f(x), we get that x̃1/2f(x) has zeros (its zeros and the

zeros of
√
π/2f(x) coincide) when x ∼ (m+ 1/2)π, this is, when

x̃ ∼
(
m+

1

2

)
π +

1

2
νπ − 1

4
π =

(
m+

1

2
ν +

1

4

)
π.

Thus, this is an approximation of the zeros of cJν(x) + xJ ′ν(x).
This leaves the only question of how to locate the first zeros in the sequence {λm}m∈N. The

following lemma answers that question.

Lemma 3.2. Let ν ≥ 0, a, b ≥ 0 with (a, b) 6= (0, 0), and ων the smallest positive zero of
aJν(x) + bxJ ′ν(x). Then, ων > ν.

Proof. If ν = 0, then ων > 0 = ν and we are done.
Let us assume ν > 0. Since Jν is a solution of (2.1), rearranging the equation we get

x
d

dx
[xJ ′ν(x)] = (ν2 − x2)Jν(x). (3.13)

Moreover, for small positive values of x, Jν(x) and J ′ν(x) are positive. This is obvious when we
take the leading terms of the series (2.1). These are

(x/2)ν

Γ(ν + 1)
,

ν

2

(x/2)ν−1

Γ(ν + 1)
=

xν−1

2νΓ(ν)
,

respectively.
By contradiction, we assume ζν , the smallest positive zero of Jν(x), is less or equal to ν. Then,

since x2 ≤ ν2 and Jν is positive for small values of x, (ν2 − x2)Jν(x) is positive. Therefore, by
equation (3.13), xJ ′ν(x) is increasing in [0, ζν ]. This implies J ′ν(x) > 0 in the interval, since J ′ν(x)
is positive for small x and increasing. But this is a contradiction, since as Jν(0) = Jν(ζν) = 0,
applying Rolle’s Theorem there exists c ∈ (0, ζν) such that J ′ν(c) = 0.

So ζν > ν. As Jν(x) is continuous, positive for small values of x, and has no zeros in the
interval (0, ν), it is positive in that interval. Hence, (ν2 − x2)Jν(x) is also positive and therefore
xJ ′ν(x) is increasing. Since J ′ν(x) > 0 for small values of x, and increasing in (0, ν], it is also
positive in this interval. Consequently, aJν(x) + bxJ ′ν(x) > 0 in the interval (0, ν], and the first
positive zero of the function is greater than ν.

With the previous lemmas, we have proved the following results:

Theorem 3.3. If ν ≥ 0, a, b ≥ 0, (a, b) 6= (0, 0), and {λi}i∈N are the positive zeros of aJν(x) +
bxJ ′ν(x), arranged in increasing order, then

(i) λ1 > ν.

(ii) If b = 0, there exists an integer Mν such that

λk ∼
(
Mν + k +

1

2
ν +

3

4

)
π as k →∞.
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(iii) If b > 0, there exists an integer Mν such that

λk ∼
(
Mν + k +

1

2
ν +

1

2

)
π as k →∞.

Proof. Part (i) is a direct consequence of Lemma 3.2, and we got (ii) and (iii) distinguishing the
cases as a consequence of Lemma 3.1.

3.6 Orthogonal sets

Bessel’s equation (2.1) is a particular case of

x2f ′′(x) + xf ′(x) + (µ2x2 − ν2)f(x) = 0, (3.14)

when µ = 1. The solutions of this are of the form f(x) = g(µx), where g is a solution of Bessel’s
equation. This is easily proved since

x2f ′′(x) + xf ′(x) + (µ2x2 − ν2)f(x) = (xµ)2g′′(µx) + (xµ)g′(µx) + ((µx)2 − ν2)g(µx) = 0.

Dividing by x, (3.14) can be written as

xf ′′(x) + f ′(x)− ν2

x
f(x) + µ2xf(x) =

[
xf ′(x)

]′ − ν2

x
f(x) + µ2xf(x) = 0. (3.15)

So we get a Sturm-Liouville equation of the form

(rf ′)′ + pf + µ2wf = 0, where r(x) = x, p(x) = −ν
2

x
, w(x) = x.

If we take this equation in the closed interval [a, b] ⊆ [0,∞) with boundary conditions

αf(a) + α′f ′(a) = 0, βf(b) + β′f ′(b) = 0,

we get a regular Sturm-Liouville problem. Since Jν and Yν are linearly independent solutions,
the eigenfunctions of the problem will be of the type

f(x) = cµJν(µx) + dµYν(µx). (3.16)

The boundary conditions let us fix the constants cµ and dµ in equation (3.16) and we would
obtain an orthonormal basis of L2

w(a, b), with w(x) = x. However, it is not easy nor interesting
to get these coefficients.

Our main goal will be to find the solutions of the Sturm-Liouville equation in the interval [0, b]
when ν ≥ 0. At x = 0, r vanishes and p is infinite, so it is not a regular Sturm-Liouville problem
and we cannot add boundary conditions in 0. Indeed, since Yν functions and its derivatives
take infinite values at x = 0, we must make dµ = 0 in (3.16) to guarantee that the solution is
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continuous at that point. However, in x = b we can impose a condition βf(b) +β′f ′(b) = 0. The
problem would be as follows:

xf ′′(x) + f ′(x)− ν2

x
f(x) + µ2xf(x) = 0,

f(0+) exists and is finite, (3.17)

βf(b) + β′f ′(b) = 0.

Although this is a singular problem, it preserves some of the properties of a regular Sturm-
Lioville problem. First, we want to check that the linear transformation L(f) = (xf ′)′ − ν2

x f is
self-adjoint. We shall take two eigenfunctions f and g,

f(x) = Jν(µjx), g(x) = Jν(µkx).

In order for the transformation to be self-adjoint, it must verify

〈L(f), g〉 = 〈f, L(g)〉.

Let us check L is formally self-adjoint. Writing L(f) = xf ′′ + f ′ − ν2

x f = rf ′′ + qf ′ + pf ,

L∗(f) = rf ′′ + (2r′ − q)f ′ + (r′′ − q′ + p)f = xf ′′ + f ′ − ν2

x
f = L(f).

So it is formally self-adjoint. Therefore, we can apply Lagrange’s identity,

〈L(f), g〉 − 〈f, L(g)〉 =
[
xf ′(x)g(x)− xf(x)g′(x)

]b
ε

The evaluation at x = b is done taking into account the boundary condition at that point.
In fact, for any solution h of the problem,

βh(b) + β′h′(b) = 0 =⇒

{
h(b) = −β′

β h
′(b) if β 6= 0

h(b) = 0 if β = 0

Therefore, since g is real,[
xf ′(x)g(x)− xf(x)g′(x)

]
x=b

= bf ′(b)g(b)− bf(b)g′(b)

=

{
bf ′(b)β

′

β g
′(b)− bβ

′

β f
′(b)g′(b) = 0, if β 6= 0,

bf ′(b) · 0− b · 0 · g′(b) = 0, if β = 0.

Since
Jν(x) ≈ 1

2νΓ(ν + 1)
xν , J ′ν(x) ≈ 1

2νΓ(ν)
xν−1

when x is small, both Jν(x) and J ′ν(x) are multiples of xν . Since ν > 0, when x tends to zero,∣∣xf ′(x)g(x)− xf(x)g′(x)
∣∣ −→ 0.
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If ν = 0, then f(0) = g(0) = 1 and f ′(0) = g′(0) = 0, so

lim
ε→0

(
εf ′(ε)g(ε)− xf(ε)g′(ε)

)
= 0

the endpoint evaluation at x = ε vanishes when ε tends to zero. In any case,

〈L(f), g〉 − 〈f, L(g)〉 = 0

and therefore L is self-adjoint.

Once we have proved this and although problem (3.17) is singular at x = 0, Theorem 1.1
concerning the reality of the eigenvalues and the orthogonality of the eigenfunctions with respect
to the weight function w(x) = x still holds.

It can also be proved that the space of the solutions of (3.17) is 1 dimensional. In fact, the
fundamental existence theorem for ordinary differential equations says that for any constants c1
and c2 there exists a unique solution of L(f) + µ2wf = 0 such that f(a) = c1 and f ′(a) = c2.
That is, a solution is specified by two arbitrary constants, so the space of the solutions is 2-
dimensional. However, by imposing the boundary condition βc1 + β′c2 = 0, we create a linear
relation between c1 and c2 and therefore the space of solutions is 1-dimensional.

Since f(x) = Jν(µx), we have f ′(x) = µJ ′ν(µx). Hence, the solutions of (3.17) are functions
Jν(µx) such that

βJν(µb) + β′µJ ′ν(µb) = 0. (3.18)

If we write λ = µb, we get to two different cases:

• If β′ = 0, we have
Jν(λ) = 0. (3.19)

• If β′ 6= 0, denoting c = bβ/β′,
cJν(λ) + λJ ′ν(λ) = 0. (3.20)

We solved this problem for λ > 0 in Section 3.5. We got a sequence {λi}i∈N of zeros, which
gives us the eigenvalues {µ2i }i∈N = {λ2i /b2}i∈N. It is only left to see if there are any nonpositive
zeros of these functions.

Lemma 3.3. Zero is an eigenvalue of (3.17) if and only if β/β′ = −ν/b, in which case the
eigenfunction is f(x) = xν . If β′ = 0, or β/β′ ≥ −ν/b, there are no negative eigenvalues.

Proof. First, let us prove the initial statement. If zero is an eigenvalue, there exists a non-zero
function f such that f is a solution of (3.17) when µ = 0. We distinguish two cases.

If ν = 0, then the equation reduces to

xf ′′(x) + f ′(x) = 0,
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so the general solution is obtained easily using the change of variable g(x) = f ′(x). We get
g(x) = −xg′(x), so g(x) = C1/x (where C1 is a constant) and therefore

f(x) = C1 log x+ C2, C1, C2 ∈ R.

If the function f is also to satisfy the boundary condition at the origin, the constant C1 must be
zero, and thus f ′(x) = 0. Since we want f to verify βf(b) +β′f ′(b) = βC2 = 0 (and we are look-
ing for functions that are not null), we get that µ = 0 is an eigenvalue of (3.17) for ν = 0 iff β = 0.

If ν > 0, we get the Euler equation

x2f ′′(x) + xf ′(x)− ν2f(x) = 0.

Since ν and −ν are the roots of the polinomial r(r− 1) + r− ν2, it follows that the solutions to
the equation by Euler’s method are

f(x) = C1x
ν + C2x

−ν , C1, C2 ∈ R.

Therefore, in order for f(0+) to be finite, C2 must be zero. Regarding the second boundary
condition,

βC1b
ν + β′C1νb

ν−1 = C1b
ν−1(βb+ β′ν) = 0,

and since b > 0, βb + β′ν = 0. If β′ = 0, then β must be zero and we would have no boundary
condition. Thus, β 6= 0 and since b 6= 0, the necessary and sufficient condition we get is

β

β′
= −ν

b
.

Since the condition when ν = 0 is included here, we have proved the first part of the lemma.
Moreover, the eigenfunctions we get are 1 = xν when ν = 0 and xν when ν > 0.

Let us focus now on the second part. We take now negative values of µ2. We can write
µ = iκ, with κ > 0. Then, the general solution of the equation of problem (3.17) is

C1Jν(iκx) + C2Yν(iκx), C1, C2 ∈ R.

Again, the boundary condition at the origin fixes C2 = 0, as Yν(z) blows up at z = 0. The
condition at b can be written as (3.19) or (3.20), depending on the value of β′, where λ = iκb
and c = bβ/β′. If we denote y = κb > 0, we want the solutions to verify one of these equations.

Jν(iy) = 0 (if β′ = 0) or cJν(iy) + iyJ ′ν(iy) = 0 (if β′ 6= 0).

From equation (2.12) we know that

Iν(y) = e−νπi/2Jν(iy) = (−i)νJν(iy) =⇒ Jν(iy) = iνIν(y).

Moreover, by equation (3.1),

iyJ ′ν(iy) = νJν(iy)− iyJν+1(iy) = νiνIν(y)− iν+2yIν+1(y) = iν [νIν(y) + yIν+1(y)] .
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Therefore, the boundary conditions at b can be written as

Iν(y) = 0 or (c+ ν)Iν(y) + yIν+1(y) = 0,

where y > 0. But since y > 0, by definition we have Iν(y) > 0, so when β′ = 0, there are no
solutions of problem (3.17). Furthermore, if β 6= 0 and since Iν+1 > 0 and c+ν = (bβ/β′)+ν ≥ 0
by hyphotesis, the corresponding boundary condition cannot be satisfied. As a consequence, there
are not any negative eigenvalues in the established conditions.

So we have a family of orthogonal sets of functions on the interval [0, b] with respect to
w(x) = x. These functions are

fk(x) = Jν

(
λkx

b

)
. (3.21)

The functions in (3.21) are real, so the norm of these functions is

‖fk‖2w =

∫ b

0
|fk(x)|2 x dx =

∫ b

0
(fk(x))2x dx.

Regarding this integral, we have the following result.

Lemma 3.4. If µ > 0, b > 0 and ν ≥ 0,∫ b

0
(Jν(µx))2x dx =

b2

2
(J ′ν(µb))2 +

µ2b2 − ν2

2µ2
(Jν(µb))2. (3.22)

Proof. Let f(x) = Jν(µx). We know that f is a solution of the equation (3.14). Moreover, this
equation can be written as

x(xf ′)′ = (ν2 − µ2x2)f.

Multipying by 2f ′, we get

2(xf ′(x))′(xf ′(x)) = (ν2 − µ2x2)(2f ′(x)f(x)).

Reordering both sides of the equation,[
(xf ′(x))2

]′
= (ν2 − µ2x2)(f2(x))′.

Now we integrate both parts of the equation from 0 to b, using integration by parts in the
right-hand side of the equation.

(xf ′(x))2|bx=0 = (ν2 − µ2x2)(f (x))2|bx=0 + 2µ2
∫ b

0
xf(x)2dx

At x = 0, the left-hand side vanishes and the term to evaluate on the right-hand side reduces
to ν2f2. Since (f(0))2 = (Jν(0))2 = 0 when ν > 0, that term also vanishes for all ν ≥ 0. As a
consequence,

2µ2
∫ b

0
f(x)2xdx = b2f ′(b)2 + (µ2b2 − ν2)f(b)2.

Due to f ′(x) = µJ ′ν(µx), we get the identity (3.22).
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If we take our solution of (3.17), it satisfies the boundary condition (3.18), and we can simplify
the right-hand side of (3.22). If we denote µ = λ/b, and our condition is of the type (3.19), we
have ∫ b

0
Jν

(
λx

b

)2

x dx =
b2

2
(J ′ν(λ))2, (3.23)

and if we have a condition of the type (3.20),∫ b

0
Jν

(
λx

b

)2

x dx =
b2(λ2 − ν2 + c2)

2λ2
(J ′ν(λ))2. (3.24)

We can also simplify the right-hand side of (3.23) with the recurrence relation (3.1). If we
substitute z = λ in (3.1), we get J ′ν(λ) = −Jν+1(λ), and thus if (3.19) is satisfied,∫ b

0

(
Jν

(
λx

b

))2

x dx =
b2

2
(Jν+1(λ))2. (3.25)

Summing up, given the problem (3.17), we get an orthonormal set of Bessel functions, which
we want to be an orthonormal basis. However, since (3.17) is not a regular Sturm-Liouville prob-
lem, we cannot ensure directly the existence of enough eigenfunctions to form an orthonormal
basis. Nevertheless, it can be proved using more advanced methods that the family of eigenfunc-
tions of the type (3.21) is in fact an orthonormal basis of L2

w(0, b). The proof can be found again
in chapter XVIII of [4].

Theorem 3.4. Let ν be a nonnegative real number, b > 0 and w(x) = x.

(i) Let {λk}k∈N be the positive zeros of Jν(x), and φk(x) = Jν(λkx/b), for all k ∈ N. Then
{φk}k∈N is an orthogonal basis for L2

w(0, b), and

‖φk‖2w =
b2

2
Jν+1(λk)

2, k ∈ N.

(ii) Let {λ̃k}k∈N be the positive zeros of cJν(x) +xJ ′ν(x), and let ψk(x) = Jν(λ̃kx/b) for k ∈ N.
Also, we define ψ0(x) = xν . If c > −ν, then {ψk}k∈N is an orthogonal basis for L2

w(0, b).
If c = −ν, then {ψk}k∈N∪{0} is an orthogonal basis for L2

w(0, b). Moreover,

‖ψk‖2w =
b2(λ2k − ν2 + c2)

2λ2k
Jν(λk)

2 (k ≥ 1), ‖ψ0‖2w =
b2ν+2

2ν + 2
.

Therefore, from Theorem 3.4 we know that any f ∈ L2
w(0, b) can be expanded in a Fourier-

Bessel series of the form

f(x) =

∞∑
k=1

ckφk(x) or f(x) =

∞∑
k=1

dkψk(x),
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where

ck =
1

‖φk‖2w

∫ b

0
f(x)φk(x)x dx and dk =

1

‖ψk‖2w

∫ b

0
f(x)ψk(x)x dx.

The series above are convergent for all f ∈ L2
w(0, b). One can prove some properties regarding

these series. For example, if f is piecewise smooth then
∑∞

i=1 ckφk(x) and
∑∞

i=1 dkψk(x) converge
to (f(x−) + f(x+))/2.

Example 3.5. If {λk}k∈N are the positive zeros of J0(x), and we define f(x) = 1 for all 0 ≤ x ≤ b,
we have

f(x) =
∞∑
k=1

ckJ0

(
λkx

b

)
,

convergent in the norm of L2
w(0, b), with w(x) = x. Since xJ0(x) is the derivative of xJ1(x) by

formula (3.6) (taking m = ν = 1), and by substitution of x = bt/λk, the coefficients are

ck =
2

b2J1(λk)2

∫ b

0
J0

(
λkx

b

)
xdx =

2

b2J1(λk)2
b2

λ2k

∫ λk

0
J0(t) t dt

=
2

λ2kJ1(λk)
2

[tJ1(t)]
λk
0 =

2

λkJ1(λk)
, k ∈ N.
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3.7 Exercises

1. Establish Lommel’s formula

Jν(z)J1−ν(z) + J−ν(z)Jν−1(z) =
2 sin νπ

πz
(3.26)

Solution. By recurrence formulas (3.1) and (3.2),

J−ν+1(z) = −ν
z
J−ν(z)− J ′−ν(z)

and
Jν−1(z) =

ν

z
Jν(z) + J ′ν(z).

So equation (3.26) is equivalent to

Jν(z)
(
−ν
z
J−ν(z)− J ′−ν(z)

)
+ J−ν(z)

(ν
z
Jν(z) + J ′ν(z)

)
=

2 sin νπ

πz

⇐⇒ − Jν(z)J ′−ν(z) + J−ν(z)J ′ν(z) =
2 sin νπ

πz

⇐⇒ −W (Jν , J−ν) =
2 sin νπ

πz

⇐⇒ −
(
−2 sin νπ

πz

)
=

2 sin νπ

πz
.

2. Let ν ∈ C. Prove the following identities.∫
z−ν+1Jν(z)dz = −z−ν+1Jν−1(z) + C, C ∈ C, (3.27)∫

zν+1Jν(z)dz = zν+1Jν+1(z) +D, D ∈ C. (3.28)

Solution. Recall recurrence formula (3.1).

Jν+1(z) =
ν

z
Jν(z)− J ′ν(z)

= −zν
(
−νz−ν−1Jν(z) + z−νJ ′ν(z)

)
= −zν d

dz
[z−νJν(z)].

Therefore,

z−νJν+1 = − d

dz
[z−νJν(z)].

Replacing ν with ν − 1 and integrating on each side,∫
z−ν+1Jν+1dz =

∫
− d

dz
[z−ν+1Jν−1(z)]dz = −z−ν+1Jν−1(z) + C, C ∈ C.
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Similarly,

Jν−1(z) =
ν

z
Jν(z) + J ′ν(z)

= z−ν
(
νzν−1Jν(z) + zνJ ′ν(z)

)
= z−ν

d

dz
[zνJν(z)],

and consequently

zνJν−1(z) =
d

dz
[zνJν(z)].

Replacing ν with ν + 1 and integrating,∫
zν+1Jν(z) =

∫
d

dz
[zν+1Jν+1(z)] = zν+1Jν+1(z) +D, D ∈ C.

3. Use Exercise 2 to show that if ν ∈ C∫
zν+1Iν(z)dz = zν+1Iν+1(z) + C1, C1 ∈ C,∫
z−ν+1Iν(z)dz = z−ν+1Iν−1(z) + C2 C2 ∈ C.

Solution. Recall Iν(z) = e−νπi/2Jν(iz). Then, making iz = w and using (3.28),∫
zν+1Iν(z)dz =

∫
zν+1e−νπi/2Jν(iz)dz

= e−νπi/2(−i)(−i)ν+1

∫
wν+1Jν(w)dw

= e−νπi/2(−i)ν+2(wν+1Jν+1(w) +D)

= −ie−νπi/2(−iw)ν+1Jν+1(w) +D′

= −ie−νπizν+1Jν+1(iz) +D′

= −izν+1e
π
2
ie−(ν+1)π/2Jν+1(iz) +D′

= e−
π
2
ieπi/2zν+1Iν+1(z) +D′

= zν+1Iν+1(z) +D′, D,D′ ∈ C.

Similarly, using (3.27),∫
z−ν+1Iν(z)dz =

∫
z−ν+1e−νπi/2Jν(iz)dz

= (−i)(−i)−ν+1e−νπi/2
∫
w−ν+1Jν(w)dw

= (−i)(−i)−ν+1e−νπi/2(−w−ν+1Jν−1(w) + C)

= e
π
2
i+(− 1

2
νπi)z−ν+1Jν−1(iz) + C ′

= z−ν+1e
1
2
(ν−1)πiJν−1(iz) + C ′

= z−ν+1Iν−1(z) + C ′, C, C ′ ∈ C.
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Chapter 4

Applications of Bessel functions

In this chapter, we want to show some of the applications of Bessel functions in physics. They
are used to solve differential equations where Bessel’s equation arises. For example, if we take
the two-dimensional wave equation in polar coordinates studied in Section 1.3,

utt − c2∆u = utt − c2
(
urr +

1

r
ur +

1

r2
uθθ

)
= 0,

we obtained the following equations,

T ′′(t) + c2µ2T (t) = 0,

Θ′′(θ) + ν2Θ(θ) = 0,

r2R′′(r) + rR′(r) + (µ2r2 − ν2)R(r) = 0.

In order to solve the problem some boundary conditions must be satisfied. First, let us consider
the problem in the disc of radius b centered at the origin. We have boundary conditions at r = b.

• By definition of polar coordinates, Θ(θ) must be 2π-periodic. The solution of the equation
for Θ is

A cos νθ +B sin νθ.

So if we apply the condition Θ(0) = Θ(2π) to the solution, we get that A = A cos 2πν +
B sin 2πν. This happens when ν = n ∈ Z, and since we can take it to be nonnegative due
to the constants A and B,

Θ(θ) = A cosnθ +B sinnθ, A,B ∈ R, n ∈ N ∪ {0}.

• Regarding the equation for R(r), we have the generalization of Bessel’s equation (3.14).
Moreover, we also have a boundary condition for R(r) at r = b of the type

βR(b) + β′R′(b) = 0.

This condition describes the wave at the boundary of our disc.
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Finally, since we want the solution to be defined at the origin, we forbid R(r) to blow up
at r = 0. Summing up, we get the functions studied in Section 3.6.

R(r) = CJn(µr), C ∈ R.

Actually, we have stated in Section 3.6 that there is a sequence of µk, for which the boundary
conditions are satisfied, which are in fact the eigenvalues {µi}i∈N of problem (3.17).

• For the equation of T , we have a homogeneus differential equation.

Solving the previous steps will give us a solution of the type

u(r, θ, t) =
∑
n,k≥0

(cnk cosnθ + dnk sinnθ)Jn(µkr)T (t).

The initial condition T (0) will determine the coefficients cnk and dnk.

Remark. In the previous series, an extra condition over Θ(θ) can force n to be a particular
number, and therefore reduce the initial series to one with only one index.

4.1 Vibrations of a circular membrane

Let us solve the problem of the vibrations of a circular membrane, which consists on solving the
wave equation on the disc of radius b centered at the origin. This problem may be representing
the vibrations on a circular drum, whose boundary is attached to a frame.

Thus, we have the wave equation (1.11) in a disc of radius b. Since the drum is attached to a
frame, the boundary of the disc does not vibrate, and therefore the boundary condition at r = b
is R(b) = 0. Besides that, we have, as always, the conditions of R being continuous at r = 0
and Θ being periodic. So, as mentioned in Section 1.3, applying separation of variables we get
equations (1.13), (1.14) and (1.15). So, as mentioned in the introduction, we get

Θ(θ) = cn cosnθ + dn sinnθ, cn, dn ∈ R

R(r) = CJn(µr) = CJn

(
λr

b

)
, C ∈ R,

where n ∈ N.
In the last identity, we have denoted µ = λ/b. Moreover, in the equation of T (t) we have

T (t) = a1 cos
λct

b
+ a2 sin

λct

b
, a1, a2 ∈ R. (4.1)

Let {λk,n}k∈N be the positive zeros of Jn(x). As we have seen in Section 3.6, {Jn(λk,nr/b)}k∈N
is an orthogonal basis for L2

w(0, b), where w(r) = r. Since {cosnθ}n∈N∪{0}∪{sinnθ}n∈N is an or-
thogonal basis for L2(−π, π), it follows that the products Jn(λk,nr/b) cosnθ and Jn(λk,nr/b) sinnθ
will form an orthogonal set of L2

w(D), where

D = {(r, θ) | 0 ≤ r ≤ b,−π ≤ θ ≤ π} , w(r, θ) = r
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is, actually, the disc of radius b which we are working on, and the measure

w(r, θ)drdθ = rdrdθ = dxdy

is the Euclidean area measure.

Theorem 4.1. Let n ∈ N ∪ {0} and let {λk,n}k∈N be the positive zeros of Jn(x). Then,{
Jn

(
λk,nr

b

)
cosnθ | n ≥ 0, k ≥ 1

}
∪
{
Jn

(
λk,nr

b

)
sinnθ | n, k ≥ 1

}
is an orthogonal basis for L2(D), where D is the disc of radius b about the origin.

Proof. Orthogonality can be checked evaluating the iterated integrals. The functions in the
set are of the type gi(r)hj(θ), gi and hj forming orthogonal sets in L2

w(0, b) and L2(−π, π),
respectively. Let us take two different functions from the set, gi(r)hj(θ) and gi′(r)hj′(θ). Then
i 6= i′ or j 6= j′. If we compute the integral in L2(D), due to the orthogonality previously
mentioned,∫ b

0

∫ π

−π
rgi(r)hj(θ)gi′(r)hj′(θ)dθdr =

(∫ b

0
gi(r)gi′(r)rdr

)(∫ π

−π
hj(θ)hj′(θ)dθ

)
= 0.

To prove that the set is complete, let us suppose we have f ∈ L2(D) orthogonal to all the
functions Jn(λk,nr/b) cosnθ and Jn(λk,nr/b) sinnθ. Then∫ b

0

∫ π

−π
f(r, θ)rJn

(
λk,nr

b

)
cosnθdθdr = 0,

∫ b

0

∫ π

−π
f(r, θ)rJn

(
λk,nr

b

)
sinnθdθdr = 0.

As a consequence, ∫ π

−π
f(r, θ) cosnθdθdr,

∫ π

−π
f(r, θ) sinnθdθdr

are orthogonal to Jn
(
λk,nr
b

)
, for all k, n. By completeness of this last function set, the integrals

must be zero. Thus, f is orthogonal to sinnθ and cosnθ , for all n. Therefore, by completeness
this time of the set of the functions sinnθ and cosnθ, it follows that f is zero.

Now, we will try to solve the problem with initial conditions

u(r, θ, 0) = f(r, θ), ut(r, θ, 0) = 0.

Recall the solution (4.1) of the equation for T (t). Since T ′(0) = 0, a2 = 0 and the general
solution of the problem is

u(r, θ, t) =

∞∑
n=0

∞∑
k=1

(cnk cosnθ + dnk sinnθ)Jn

(
λn,kr

b

)
cos

λn,kct

b
.
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We have to find cnk and dnk. On the one hand,

f(r, θ) = u(r, θ, 0) =
∞∑
n=0

∞∑
k=1

(cnk cosnθ + dnk sinnθ)Jn

(
λk,nr

b

)
. (4.2)

On the other hand, as we have an orthogonal basis of L2(D), we can expand f in terms of
the elements in the basis of Theorem 4.1. We also use the results in Theorem 3.4.

f(r, θ) =
∞∑
n=0

∞∑
k=1

(c′nk cosnθ + d′nk sinnθ)Jn

(
λn,kr

b

)
, (4.3)

where the coefficients are

c′nk =
1

‖Jn (λk,nr/b) cosnθ‖2w
〈f, Jn (λk,nr/b) cosnθ〉w

=
1

‖Jn (λk,nr/b) cosnθ‖2w

∫ b

0

∫ π

−π
f(r, θ)rJn

(
λk,nr

b

)
cosnθdθdr, n ≥ 0, k ≥ 1,

d′nk =
1

‖Jn (λk,nr/b) sinnθ‖2w
〈f, Jn (λk,nr/b) sinnθ〉w

=
1

‖Jn (λk,nr/b) sinnθ‖2w

∫ b

0

∫ π

−π
f(r, θ)rJn

(
λk,nr

b

)
sinnθdθdr, n, k ≥ 1.

But notice that using Theorem 3.4, for all n, k ∈ N,

‖J0 (λk,0r/b)‖2w =

∫ π

−π

∫ b

0
(J0(λk,0r/b))

2dr

= 2π ‖J0(λk,0r/b)‖2v
= πb2(J1(λk,0))

2,

‖Jn (λk,nr/b) cosnθ‖2w =

∫ b

0

∫ π

−π
r

(
Jn

(
λk,nr

b

))2

cos2 nθ dθdr

=

(∫ b

0
r

(
Jn

(
λk,nr

b

))2

dr

)(∫ π

−π
cos2 nθ dθ

)
= ‖Jn (λk,nr/b)‖2v π

=
πb2

2
(Jν+1(λk,n))2,

‖Jn (λk,nr/b) sinnθ‖2w =

∫ b

0

∫ π

−π
r

(
Jn

(
λk,nr

b

))2

sin2 nθ dθdr

=

(∫ b

0
r

(
Jn

(
λk,nr

b

))2

dr

)(∫ π

−π
sin2 nθ dθ

)
= ‖Jn (λk,nr/b)‖2v π

=
πb2

2
(Jν+1(λk,n))2,
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where ‖ · ‖v denotes the norm in L2
v(0, b) with v(r) = r. Then,

c′0k =
1

πb2J1(λk,0)2

∫ b

0

∫ π

−π
f(r, θ)rJ0

(
λk,0r

b

)
dθdr

and for n ≥ 1,

c′nk =
2

πb2Jn+1(λk,n)2

∫ b

0

∫ π

−π
f(r, θ)rJn

(
λk,nr

b

)
cosnθdθdr,

d′nk =
2

πb2Jn+1(λk,n)2

∫ b

0

∫ π

−π
f(r, θ)rJn

(
λk,nr

b

)
sinnθdθdr.

Equating (4.2) and (4.3),

cnk = c′nk, dnk = d′nk, n ∈ N ∪ {0}, k ∈ N.

4.2 The heat equation in polar coordinates

The heat equation in polar coordinates is, as seen in Section 1.3,

ut −K∆u = ut −K
(
urr +

1

r
ur +

1

r2
uθθ

)
.

Notice that if we take the problem in the disc of radius b, we have exactly the same problem as
in Section 4.1, but now with

T ′(t) +Kµ2T (t) = 0.

The solutions for T , therefore, are changed to exponential functions, but the rest of the problem
remains the same. So we will solve a different problem. This time, we take it in the region

D = {(r, θ) | 0 ≤ r ≤ b, 0 ≤ θ ≤ α} ,

where 0 < α < 2π. We are going to suppose, also, that the boundary is insulated. That means

uθ(r, 0, t) = uθ(r, α, t) = ur(b, θ, t) = 0.

So, again, separation of variables gives us

T ′(t) +Kµ2T (t) = 0, (4.4)

Θ′′(θ) + ν2Θ(θ) = 0, Θ′(0) = Θ′(α) = 0

r2R′′(r) + rR′(r) + (µ2r2 − ν2)R(r) = 0, R′(b) = 0, R does not blow up in r = 0.

First, let us consider the equation for Θ. The solution is Θ(θ) = A cos νθ+B sin νθ, with A,B
constants. Taking the derivative, Θ′(θ) = −Aν sin νθ + Bν cos νθ. Applying Θ′(0) = 0, we get
0 = Θ′(0) = νB = 0, so B = 0. The other boundary condition implies 0 = Θ′(α) = −νA sin να
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and thus, ν = nπ/α.

Therefore, we get Bessel functions of order ν = nπ/α for R. Now, {λk,n}k∈N denote the
positive zeros of J ′nπ/α(x). Then, the boundary condition is satisfied when we take the set

{
Jnπ
α

(
λk,nr

b

)}
k∈N

.

These functions correspond to eigenvalues µ2k,n = (λk,n/b)
2. As we have seen in Theorem 3.4

(case (ii)), the set above is an orthogonal basis, except when n = 0. In this case we have to add
the constant function 1 = x0 and the eigenvalue µ = 0.

Finally, the solutions of equation (4.4) are

T (t) = Ce−ν
2Kt = C exp

(
−
λ2k,nKt

b2

)
, C ∈ R.

We also want to impose the condition u(r, θ, 0) = f(r, θ). On the one hand, we expand f in
the form

f(r, θ) = a′00 +
∞∑
n=0

∞∑
k=1

a′nkJnπα

(
λk,nr

b

)
cos

(
nπθ

α

)
, (4.5)

where a′00, a′nk ∈ R, with n ∈ N ∪ {0} and k ∈ N. Using a similar argument to that in Theorem
4.1, this is possible. On the other hand, we try to find solutions of the type

u(r, θ, t) = a00 +

∞∑
n=0

∞∑
k=1

ankJnπ
α

(
λk,nr

b

)
cos

(
nπθ

α

)
exp

(
−
λ2k,nKt

b2

)
,

where we have to determine coefficients a00, ank, with n ∈ N ∪ {0} and k ∈ N. It follows that

f(r, θ) = u(r, θ, 0) = a00 +

∞∑
n=0

∞∑
k=1

ankJnπ
α

(
λk,nr

b

)
cos

(
nπθ

α

)
. (4.6)

Comparing the coefficients in (4.5) and (4.6),

a00 = a′00, ank = a′nk, n ∈ N ∪ {0}, k ∈ N.
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It is only left to calculate the coefficients a′00, a′nk, where n ∈ N ∪ {0} and k ∈ N.

a′00 =
1

‖1‖2w
〈f, 1〉

=
1

‖1‖2w

∫ α

0

∫ b

0
f(r, θ)rdr dθ,

a′0k =
1

‖J0 (λk,0r/b)‖2w
〈f, J0 (λk,0r/b)〉

=
1

‖J0 (λk,0r/b)‖2w

∫ α

0

∫ b

0
f(r, θ)J0

(
λk,0r

b

)
rdr dθ,

a′nk =
1∥∥∥Jnπ

α
(λk,nr/b) cos(nπθ/α)

∥∥∥2
w

〈f, Jnπ
α

(λk,nr/b) cos(nπθ/α)〉

=
1∥∥∥Jnπ

α
(λk,nr/b) cos(nπθ/α)

∥∥∥2
w

∫ α

0

∫ b

0
f(r, θ)Jnπ

α

(
λk,nr

b

)
cos

(
nπθ

α

)
rdr dθ.

Notice that

‖1‖2w =

∫ α

0

∫ b

0
rdrdθ =

αb2

2

and using Theorem 3.4, we find

‖J0 (λk,0r/b)‖2w =

∫ α

0

∫ b

0

(
J0

(
λk,0r

b

))2

rdr dθ

= α ‖J0 (λk,0r/b)‖2v

=
αb2λ2k,0
2λ2k,0

(J0 (λk,n))2 ,

∥∥∥Jnπ
α

(λk,nr/b) cos(nπθ/α)
∥∥∥2
w

=

∫ α

0

∫ b

0

(
Jnπ
α

(
λk,nr

b

))2

cos2
(
nπθ

α

)
rdr dθ

=

(∫ α

0
cos2

(
nπθ

α

)
dθ

)(∫ b

0

(
Jnπ
α

(
λk,nr

b

))2

rdr

)
=
α

2

∥∥∥Jnπ
α

(λk,nr/b)
∥∥∥2
v

=
αb2(λ2k,n − (nπ/α)2)

4λ2k,n

(
Jnπ/α (λk,n)

)2
,

where ‖·‖v is the norm of L2
v(0, b) with v(r) = r. Thus,

a′00 =
2

αb2

∫ α

0

∫ b

0
f(r, θ)rdr dθ,
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a′0k =
2λ2k,0

αb2(λk,0)2J0(λk,0)2

∫ α

0

∫ b

0
f(r, θ)J0

(
λk,0r

b

)
rdr dθ, (k ≥ 1),

and for n, k ≥ 1.

a′nk =
4λ2k,n

αb2
[
λ2k,n −

(
nπ
α

)2]
Jnπ
α

(λk,n)2

∫ α

0

∫ b

0
f(r, θ)Jnπ

α

(
λk,nr

b

)
cos

(
nπθ

α

)
rdr dθ.

4.3 The Dirichlet problem in a cylinder

Finally, we consider the Dirichlet problem in the cylinder

D = {(r, θ, z) | 0 ≤ r ≤ b, 0 ≤ z ≤ l} .

So we want to solve
urr +

1

r
ur +

1

r2
uθθ + uzz = 0,

u(r, θ, 0) = f(r, θ),

u(r, θ, l) = g(r, θ),

u(b, θ, z) = h(θ, z).

First, we will look for solutions when f ≡ h ≡ 0 and g ≡ g(r) is independent of θ. This case
can be easily generalised to g ≡ g(r, θ). The case when g ≡ h ≡ 0 can be done similarly. Finally,
we will analyse the case when f ≡ g ≡ 0. The sum of these solutions will give us the general
solution.

When f ≡ h ≡ 0 and since we take the conditions independent of θ, we can assume the
solution is also independent of θ, and we apply separation of variables to u(r, z) = R(r)Z(z).
Substituting in (1.17), we get

R′′(r)Z(z) +
1

r
R′(r)Z(z) = −R(r)Z ′′(z).

Equivalently,
1

R(r)

(
R′′(r) +

1

r
R′(r)

)
= −Z

′′(z)

Z(z)
= −µ2 ∈ R.

As a consequence, we get the following equations:

r2R′′(r) + rR′(r) + µ2r2R(z) = 0, R(b) = 0,

Z ′′(z)− µ2Z(z) = 0, Z(0) = 0.

As we have seen, the eigenfunctions for the problem of R are J0(λkr/b), where {λk}k∈N are
the positive zeros of J0, and eigenvalues µ2 = (λk/b)

2. The solutions to the equation of Z are

Z(z) = A sinhµz +B coshµz, A,B ∈ R
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and thus the corresponding solutions to Z with Z(0) = 0 are sinh (λkz/b). Hence,

u(r, z) =

∞∑
k=1

akJ0

(
λkr

b

)
sinh

λkz

b
.

If we want the boundary condition at z = l given by u(r, θ, l) = g(r) to be satisfied, we can
compute the Fourier-Bessel series of g(r)

g(r) =
∞∑
k=0

ckJ0

(
λkr

b

)
,

and equating the expressions for u(r, l) and g(r),
∞∑
k=1

akJ0

(
λkr

b

)
sinh

λkl

b
=
∞∑
k=0

ckJ0

(
λkr

b

)
.

Hence,
ak =

ck
sinh (λkl/b)

.

Now, we consider the case when f ≡ g ≡ 0. Again, we will assume h is independent
of θ. Thus, the solution u(r, z) will also be independent of θ. We try functions of the type
u(r, z) = R(r)Z(z), and we have the following equations

r2R′′(r) + rR(r) + µ2r2R(r) = 0,

Z ′′(z)− µ2Z(z) = 0, Z(0) = Z(l) = 0.

The equation for Z gives us again solutions of the type

Z(z) = A sinhµz, A ∈ R,

but now we want µ such that sinµl = 0. This implies µl = nπi, where n ∈ Z. Hence, we have
eigenvalues µ such that µ2 = −(nπ/l)2 and therefore

Z(z) = A sin(nπz/l), A ∈ R,

so the equation for R becomes

r2R′′(r) + rR(r)− (nπr/l)2R(r) = 0,

If we make the change of variable x = nπr/l, we get the modified Bessel’s equation of order zero.
It follows that the solution of the equation for R is

R(r) = AI0(nπr/l) +BK0(nπr/l), A,B ∈ R.

Since K0 blows up at zero, B = 0. Therefore,

u(r, z) =

∞∑
n=1

anI0

(nπr
l

)
sin

nπz

l
.
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If we expand the condition u(b, z) = h(z) in a Fourier Sine series on [0, l], we get

h(z) =
∞∑
n=1

a′n sin
nπz

l
,

where

a′n =
2

l

∫ l

0
h(x) sin

nπz

l
dz.

Hence, equating the expansions of u(b, z) and h(z),

an =
1

I0(nπb/l)

2

l

∫ l

0
h(x) sin

nπz

l
dz.
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