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Preface

The aim of this dissertation is to introduce Bessel functions to the reader, as well as studying
some of their properties. Moreover, the final goal of this document is to present the most well-
known applications of Bessel functions in physics.

In the first chapter, we present some of the concepts needed in the rest of the dissertation.
We give definitions and properties of the Gamma function, which will be used in the defini-
tion of Bessel functions. We also provide the reader with the basics of Sturm-Liouville problems,
which again are to be used in Chapter[3] Finally, we present three examples of partial differential
equations. These equations are well-known in physical mathematics, and are solved in Chapter [4]

In Chapter [2] we introduce Bessel functions. We start solving a particular differential equa-
tion known as Bessel’s equation, and we define its solutions as Bessel functions of the first kind.
We also define different kinds of Bessel functions, including solutions of a modified Bessel’s equa-
tion.

In Chapter [3| we prove some essential properties of Bessel functions. First, we establish the
basic properties such as recurrence relations of functions seen in Chapter 2] Bessel functions of
integer order can also be seen as the coeflicients of a Laurent series. Moreover, these particular
functions are proved to have some integral expressions, known as Bessel’s integral formulas. Our
next goal will be approximating Bessel functions via asymptotics. Furthermore, we will make use
of these approximations to estimate the zeros of the functions. Finally, we will study orthogonal
sets of Bessel functions.

In the final chapter, we will use the concepts we have developed previously to solve the three
partial differential equations described in Chapter [ These equations are in fact the heat and
wave equations, and the Dirichlet problem.

Besides the development of the theory of Bessel functions, some problems regarding that
theory are solved at the end of Chapters 2| and






Chapter 1

Preliminaries

Finding solutions of differential equations has been a problem in pure mathematics since the
invention of calculus by Newton and Leibniz in the 17th century. Besides this, these equations
are used in some other disciplines such as engineering, biology, economics and physics. Bessel
functions are solutions of a particular differential equation, called Bessel’s equation.

In the late 17th century, the Italian mathematician Jacopo Riccati studied what we nowadays
know as Riccati’s equations. Given P, Q and R three functions of z € C (it is supposed that
neither P nor R are identically zero), Riccati’s equations are differential equations of the form

d
—w:P—i—Qw—i—RwQ.
dz

The theory of Bessel functions is connected with Riccati’s equations. In fact, Bessel functions
are defined as solutions of Bessel’s equation, which can be derived from a Riccati’s equation.
Riccati and Daniel Bernoulli discussed this particular Riccati’s equation,

dw
dz
and Bernoulli himself published a solution in 1724. Euler also studied this particular equation.

This equation can be reduced to Bessel’s equation by elementary transformations, and is there-
fore solvable via Bessel functions.

= az" + bw?,

In 1738, Bernoulli published a memoir containing theorems on the oscillations of heavy chains.
A function contained in one of these theorems was the now called Bessel function of argument
24/z/n. Thus, Bernoulli is considered the first to define a Bessel function.

In 1764, while Euler was investigating the vibrations of a stretched membrane, he arrived at

the following equation:
1 d®w  dw ldw 1 d%w

5 = 5t t+ 55— 1.1

EZ dt2  dr?  rdr @ r2df?’ (1)
where w(r, 0,t) is the transverse displacement of a point expressed in polar coordinates by (r, 6),
at time ¢, and F is a constant depending on the density and tension of the membrane. He wanted



to find solutions of the following form,
w(r,0,t) = u(r)sin (at + A) sin (80 + B),

where A, B, a and ( are constants. Substituting it in equation ([1.1]), we get

dtz = rdr E?2 g2 e

This equation is known as Bessel’s equation of order (3, and its solution was found by Euler
himself in that year.

Some other mathematicians, such as Lagrange, Laplace and Poisson worked with Bessel’s
equation as well. The well-known German astronomer and mathematician Friedrich Wilhelm
Bessel also studied the equation while he was working on dynamical astronomy. In 1824, Bessel
wrote a memoir where he made a detailed investigation on the solutions of Bessel’s equation. Al-
though Bessel functions were originally discovered by Bernoulli, they were generalised by Bessel,
and were named after him years after his death.

In this dissertation we will not make a chronological approach to Bessel functions, but rather
focus on the theoretical development. In order to study the theory of Bessel functions, we will
need some properties of the Gamma functions and Sturm-Liouville problems, which will be given
in this chapter.

1.1 The Gamma function

The Gamma function plays a role when defining most Bessel functions. In this dissertation we
will also use some properties regarding this function. First, let us describe the Gamma function.
There are several alternative definitions of the Gamma function. We will give the following one,
which uses a convergent improper integral.

Definition 1.1. Let z be a complex number such that Re(z) > 0. The Gamma function T is
defined in the following way.

F(z)—/ e 't* 1t
0

Integrating by parts, we get the following recurrence relation:

I(z+1) =2I'(2).

The Gamma function is the generalisation of the factorial to complex numbers. In fact, for
all n € NU {0},
'n+1)=mn!

Moreover, Euler and Weiestrass describe the Gamma function using infinite products. It can
be proved that the following other expressions are alternative definitions of the Gamma function,
for all complex values of z except for negative integers.



(i) Euler’s definition
nin
T'(z) = 1i
()= ey )

(ii) Weierstrass’ definition

1 z
— L VZ 1 ) —z/n}
Iz ¢ II{(1+ !
n=1
where
—lim (14t ~ 0.5772 (1.2)
v = lim 513 — —logn | ~0. . .

is Euler’s constant.

As a consequence of this last definitions, we have the following properties of the Gamma
function.

Proposition 1.1. Ifn € N,
I'(n+1) 11 1
—_— == 1+-+-+--+ = 1.3
I'(n+1) vt +2+3+ Y (13)
where 7y is Euler’s constant .
Proposition 1.2 (Duplication formula). Let z € C. Then,

2z—1
VT

Proposition 1.3 (Euler’s reflection formula). Let z € C —7Z. Then

I'(2z2) =

T(z)0 (z + ;) . (1.4)

™

T(2)D(1 - z) =

sinmz’

In particular, for z = 1/2,
T(1/2) = /7.

The proof of this proposition, as well as more details regarding the Gamma function can be
found in [3].

1.2 Sturm-Liouville problems

We will use the theory of Sturm-Liouville problems to obtain properties of Bessel functions in
Section [3.6f Therefore, we shall also introduce these problems. We start defining self-adjoint
transformations.

Definition 1.2. Let V be a vector space, with the inner product (-, -). The linear transformation
T:V — V is said to be self-adjoint if

(T'(x),y) = (2,T(y), Vo,yeV.



From now on, we consider the space C2([a,b]) where a,b € R and a < b, with the inner
product (-, -) defined by

o= [ s
Let us define the formal adjoint of a lineas operator.
Definition 1.3. If L : C*([a,b]) — C?([a,b]) is the linear transformation
L(f)=rf"+af +pf, pareC?(ab])
(we also assume p, ¢, take real values), the formal adjoint of L is defined by
L'(f)=0h)"— @) +pf=rf"+ 2" = f + (" —d +p)f.
Moreover, if L = L*, then L is said to be formally self-adjoint.

Lagrange’s Identity is a well known property of formally self-adjoint operators.
Lemma 1.1 (Lagrange’s Identity). If L : C*([a,b]) — C*([a,b]) is a formally self-adjoint oper-
ator of the form
L(f)=rf"+qf +pf,  p.gr e C*(a,b]),

then

(L(f),9) = (f: L(9)) + [r(@)(f' (2)g(x) — f(x)g' ()] (1.6)
Proof. Since L is formally self-adjoint and therefore L = L*, we know that

2 —q=gq and " —q¢ +p=np.
Thus, ¢(z) = 7'(x), and
L(f)=rf"+r'f +pf=(f) +pf.

Hence,

Integrating by parts,




Let us define the boundary condition of a problem.

Definition 1.4. Let [a,b] CR , and f € C?([a,b]). A boundary condition is a restriction of the
type
B(f) = af(a) +o'f'(a) + Bf(b) + 8'f'(b) =0,

where a, o/, 8 and 3/ are constants.
Moreover, let L : C*([a,b]) — C?([a,b]) be a formally self-adjoint operator defined by

L(h) = rh” + qh/ + ph,

where 7, p and ¢ are real functions in the space C?([a,b]). If [r(f'g — fg')]% = 0 is satisfied for
all f, g such that B(f) = B(g) = 0, the boundary condition B is said to be self-adjoint.

Remark. In our case, we will work with boundary conditions of the type
B(f) = af(a) +a'f'(a) = 0.
Finally, let us define the regular Sturm-Liouville problem.

Definition 1.5 (Regular Sturm-Liouville problem). A regular Sturm-Liouville problem is defined
by the following data.

(i) A formally self adjoint operator L defined as
L(f) = (rf") +pf,
where 7, 7' and p are real and continuous on [a, b] and r > 0 on [a, b].
(ii) A set of self-adjoint boundary conditions By (f) = 0 and Ba(f) = 0, for the operator L.
(iii) A positive, continuous function w on [a, b].
The goal is to find all solutions f of the boundary value problem

{L(f) +Awf =0,

(1.7)
Bl(f) - BQ(f) =0,

where )\ is an arbitrary constant.

For most values of A, the only solution of the problem is the null function. If the problem
has nontrivial solutions for some values of A, those constants are called eigenvalues, and the
corresponding solutions are called eigenfunctions.

Moreover, the weighted inner product and norm of the space L2 (a,b) are defined as
b -
(F9)a = [ F@g@w(e)ds = (wf.g) = (f.ug), (18)
[ fllw = V{fs 9w



Theorem 1.1. Let a reqular Sturm-Liouville problem of the form be given. Then,
(1) All eigenvalues are real.

(ii) Figenfunctions corresponding to distinct eigenvalues are orthogonal with respect to the
weight function w, that is, if f and g are eigenfunctions with eigenvalues A and p, \ # p,
then

b [
(f,9)w = / f(@)g(x)w(x)dz = 0.
Proof. We will make use of the same notation as in Definition [I.5]

(i) If X is an eigenvalue of (1.7)), with eigenfunction f, then by Lagrange’s Identity (1.6) and

).
MIEIE = Qwf, f) = —(L(f). f) = =(£, L)) = {F, Mwf) = Xfwf) = MFII-
Thus, A = X and the eigenvalue \ is real.

(ii) We take f and g eigenfunctions for the eigenvalues A and p, respectively. Then, since the
eigenvalues are real,

M 9w = (Mwf,g) = —(L(f), 9) = —(f, L(9)) = {f, pwg) = p{f, 9w
If A # p, then (f,g)w = 0. O
Finally, the Sturm-Liouville theory gives us the following result.

Theorem 1.2. For every regular Sturm-Liouville problem of the form on [a,b], there exists
an orthonormal basis {¢n}oo | of L% (a,b) consisting of eigenfunctions of the problem. If A, is
the eigenvalue for ¢y, then lim, oo A\, = +00. Moreover, if f is of class C?([a,b]) and satisfies
the boundary conditions B1(f) = Ba(f) = 0, then the series Y (f, dn)dn converges uniformly to

f-
1.3 Resolution by separation of variables

In this last section we will study a method to give solutions of a partial differential equation. The
method of resolution by separation of variables will play a major role in reducing some equations
such as the wave or heat equations to several equations of one variable.

We consider the following differential equation

F(u(fc,y),ux(x,y),um(:v,y),uy(x,y),uyy(x,y)) = 0. (1'9)

The method by separation of variables finds solutions of ((1.9) of the type
u(z,y) = X (2)Y (y).

10



After substituting X (x)Y (y) in equation (1.9), we may be able to write it in the form
Fi(X(2), X'(z), X"(2)) = B(Y (1), Y (), Y"(y))- (1.10)

If this is the case, since the left-hand side of the equation depends only on x, and the right-hand
side depends only on y, it follows that both sides of ([1.10]) are equal to a constant . Therefore,
we can reduce problem ([1.9)) to solve

R(X(2), X (x), X" (x)) =¢§  and  F(Y(y),Y'(y),Y"(y)) =&

It should be noticed that this method does not always find a solution, but it can be applied to
problems such as the heat equation or the wave equation.

Before we apply the method to some particular cases, let us consider the two-dimensional
Laplace operator.
1.3.1 The Laplacian in polar coordinates

We want to transform the Laplace operator
AU = Ugy + Uyy

into another expression, using the following change of variables.

T =r7rcosf
y =rsinf
where r > 0 and —7 < 0 < 7.

First, we define v(r,0) = u(x,y) and we consider the partial derivatives of v.

Uy = VpTy + Vgl
Uy = VpTy + Vgl
Ugy = (U'rrrr + ’Ur99x)74x + Uprye + ('UHTTm + U@HQm)em + Uéemm
Uyy = (VppTy + Vpgly)Ty + VpTyy + (VorTy + Veg0y )8y + Vebyy
2 = 22 + 42, we have that 2rr, = 2z, 2rry = 2y and thus r, = cosf,r, = sin@.
Moreover, 7, = —sin 86, and ry, = cos 00,.
On the other hand, derivating with respect to y,

But since r

x =rcosf) = 0 =r,cost —rsinbl,

rycosf)  sinflcos cosd
=0, = = =

rsin @ rsinf r

Similarly,
6, — _ sin 9.
r

11



Derivating again with respect to =, we get

0, — _rcos@@z 2— 74 Sin 0 _ _rcos@(— sinHQ/r) — 7, sind _ %cos&sin@.
r r r
Similarly,
2
0yy = ——sinf cos 0.
r

Then, by substitution,

Ugy =Vpr COS2 0 + Vg cos O(—sin@/r) 4 v, (— sin O(— sin 6 /7))
+ vpg cos O(— sin /1) 4 vgg sin® 0 /12 + vg((2/7) sin 6 cos ),
Uyyy =y 02 O + Vg 5i0 O(cos 0 /1) + v,.(cos O(cos /7))

+ v, 5in 0(cos 0/1) + vgg cos® 0/r% + vg((—2/r) sin A cos 6).

Therefore,

1 1
AU = Uy + Uyy = Vpp + ;vr + r—Qvgg.

1.3.2 The wave equation
The wave equation is the hyperbolic partial differential equation
g — AAu = 0, (1.11)

where the function u = u(x,y,t) indicates the position of the point (z,y) € R? at a moment .
It shows the expansion of a wave in the plane. The constant ¢ is determined by the propagation
speed of the wave.

Let us solve this equation by separation of variables. First, we consider the Laplacian in its
polar form, (r,6) being the polar coordinates of the point (z,y). In order to simplify notation,
we will also use u(r, 6) to express v(r,0) = u(rcosf,rsinb).

uy — AU = uy — ¢ (upp + S + T—Zugg). (1.12)
We can think of solutions of the type
u(r,0,t) = T(t)v(r,0).

Substituting in ((1.12)),
ug — EAu = T"(t)v(r,0) — AT (t)Av(r,0) = 0.
Therefore
T"(1t) _ Av(r6)
ST~ o(re)

where —p? is a constant. From this equation we get

12



e Regarding the equation with 7',

T"(t) + Ap*T(t) = 0. (1.13)

e On the other hand, we get
Av(r,0) + pv(r,0) = 0.

If we consider v of the form v(r,8) = R(r)©(0),
R/(1)6(0) + ~ R(1)O(0) + 5 R(r)O"(6) + > R(r)O(6) = 0.

Mutiplying by 72 and dividing by R(r)©(0),

Rgr) (PR (r) + TR (r) + r262R(r)) = - %"((;)) — 2,
where 2 is again a constant. Thus, we get
Q") +v*e(h) =0, (1.14)
r?R"(r) + rR'(r) + (r*u? — v*)R(r) = 0. (1.15)

If we want to solve this problem in a bounded region, we need some boundary conditions to
be verified by the general solution of equations (1.13]), (1.14]) and (1.15)).

1.3.3 The heat equation

In this case, we have a similar equation
1 1
u — KAu = up — K (upy + S+ ﬁuw),

where K is a constant (known in physics as the thermal diffusivity) determined by the nature of
the space. This equation measures the heat in a point (x,y) at time ¢.

We want to find solutions of the type u(r,0,t) = T(t)R(r)©(0), so applying the same process
as for the wave equation, we get equations (1.14)) and ((1.15). However, in this case, instead of

(1.13), we get
T'(t) + KuT(t) = 0. (1.16)

Of course, we also need boundary conditions to establish the solution of the problem in a
bounded region.

13



1.3.4 The Dirichlet problem

Finally, we will study the Dirichlet problem in R3. The equation to be satisfied is simply Laplace’s
equation in three dimensions

Au=0.

Using the polar Laplacian in two dimensions, we write it as
1 1
(Upz + Uyy) + Uzz = Upp + S + g6 + Uy, = 0. (1.17)

Applying again separation of variables, we try to find solutions of the type
u(r,0,z) = R(r)©(0)Z(z)

and we get again equations (|1.14) and (1.15]), but now we have also

Z"(z) — 2 Z(2) = 0. (1.18)

14



Chapter 2

Bessel functions and associated
equations

In this chapter, we are going to introduce the Bessel functions of the first, second and third
kind. In order to define these functions, we will solve a differential equation known as Bessel’s
equation.

2.1 The series solution of Bessel’s equation

As we have mentioned in Chapter [I] Bessel functions are solutions of Bessel’s equation, so our
first step is to define this differential equation.

Definition 2.1. Let v € C. The following differential equation

d? d
zz—w+z—w+(z2—y2)w:0 (2.1)
2 2

is known as Bessel’s equation of order v.

We are looking for functions which solve this equation. These solutions can be found with
the Frobenius method, which consists in finding functions of the form

oo
w(z) = Z a2t ag # 0
r=0

where we have to determine a constant « and the coefficients a;, for all j € NU {0}. The first
and second derivatives of w with respect to z are

dw & atr—1 Pw &S a2
$:Zar(a+7‘)z , w:Zar(a—Fr)(a—H“—l)z :
r=0 r=0

15



Substituting these series in equation (2.1)), we get

00 00
ar(a+7a)(a+7a_1)za+r+Zar(a+7ﬂ_y2)za+r+ZaTza+r+2
r=0 r=0

ﬁ
Il
=)

o)
(a+r)(a+r—1)+ (a+7)—1Ha,22T" + Z apzotr 2
r=0

e

ﬁ
Il
=)

o0
ar((a +7)% —v?)z0t 1 4 Z ap_22%"".

r=2

e

ﬁ
Il
=)

This means every coefficient of the powers of z has to be zero. Thus, we have the following
equations:
(a® —v?)ag =0,
(a+1)2 = v?)a; =0,
(a+7)?=v¥ar +ar_2 =0, Vr>2.

Since ag # 0, a = +v. First, we take a = v. The other equations are
(2v+1)a; =0, r(2v +r)a, + ar—o =0, Vr > 2.

If 2v is not a negative integer, these equations establish

Qr—2

—_ Vr > 2.
r(2v+r)’ "=

a; =0, ay =
This means that the coefficients of odd index are all zero, and that the ones with even index are

determined by this formula,
a2r—2

Aoy = —m, r € N.
Hence,
ap ag ap
CETRLr M T ®mu 12 220+ D +2)
i a4 . ao
T T30, 13) 23wt )w +2)(v +3)
(=1)"ao

:>"':>a2’f‘: 7\VITGN-

22r I e (v + k)
Since we can choose ag, we take it to be

1

W T 1)

where I' is the Gamma function described in Chapter

Now we can finally give an expression for a solution of ([2.1)).

16



Definition 2.2. Let v be a complex constant such that 2 is not a negative integer. Then,

o0 1) (z/2)v+2r
=2, ; r)(u( = ) (22)

is called the Bessel function of the first kind of order v and argument z.

The same process can be applied for &« = —v. In this case, we get

oo —1)(z/2 —v2r
T-v(2) = Zo f’! F)(—(V/+)r +1) (23)

<

This time, we are considering 2v is not a positive integer.

In order to work with these expressions, we would like the series (2.2) and (2.3), to be
absolutely convergent.

Lemma 2.1. The series defining Bessel functions of the first kind of order v and —v are abso-
lutely convergent for all z # 0.

Proof. Recall

; ( ) i (_1)r(z/2)z/+2r (Z),,i (—I)TZZT

z) = == .

v TZO?“!F(V—F’I“—I—l) 2 T:Or!47“F(1/—|—7"+1)

Notice that since v is taken to be complex, (z/2)” is not defined at z = 0 since log z is not. We
can use the Cauchy-Hadamard theorem to find the radius of convergence of the series on the
right. Making = 22,

="

. |a7~\ -
s W O = e D+ r - 1)

=00 @y’

is the radius of convergence of Y 2 a,z". Using the properties of Gamma function,

lar| 1/rt 4D (v + 7+ 1)]
lari1]  1/(r + D)V AT (£v + 1 + 2)]

=4(r+1)|tv+r+1|

and thus,

R=tim 19— i 4 1)) 2 v+ 1) = 00

r—00 |apy1 r—00
Then, the series > o0 a,a” = Y o0 a,z*" is absolutely convergent for all z = 22 € C, so it is
absolutely convergent for all z € C. O
Remark. As series (2.2) and ([2.3) are both convergent for all z # 0, we may differentiate them
term-by-term.

As J, and J_,, are solutions of a second-order linear differential equation, we want to see that
they are linearly independent, and thus they form a basis for the vector space of the solutions of

).

17



Proposition 2.1. Ifv € C—{k/2 | k € Z}, the Bessel functions of the first kind J,, and J_, are
linearly independent. In that case, for any solution w of , there exist A, B € C such that

w(z) = AJy(z) + BJ_,(2).
Proof. 1t is enough to see that the Wronskian of J,(z) and J_,(z),

Ju(z) J_u(2)

W2 T (@) =\ iy ()

)

does not vanish at any point. Since J, and J_, satisfy ,
I () + 2J(2) + (22 = V) (2) = 0,
2T (2) 4 2T (2) + (22 = )T, (2) = 0.
We multiply these two equations by J_,(z) and J,(z), respectively. Substracting one to the
other, and dividing by z, we get
2 ()" (2) = T TL)) + T2 (2) = To(2) (=) = 0.
This is equivalent to
d , , d
A 2) = T2 (2)) = - W (o T)] = 0.

This implies W (J,, J_,) = C/z, C being a constant to be determined. Taking into account the
first term in the series (2.2)),

P v 2 v—1
Ju(z) = F((l//—2i—)1)(1 + 0(2?)), J(2) = %(1 + 0(22%)).

The same applies to J_,(z). Then, using the property (1.5),

1 1 1
W((2), J-u(2)) = 3 (r(y +1O0(—v) T(-v+ 1)r(y)) +0()

_ _281111/71’ +O(z).

T2z
But we had stated W (J,(z), J_,(z)) = C/z, so the last O(z) must be zero and

W (I (2), Joo(2)) = — 20T (2.4)

Tz

which only vanishes when v is an integer. By hypothesis, 2v is not an integer, so neither is v
and

W(J,(2),J-u(2)) # 0, VZGCC—{;C ] kGZ}.

So J,(z) and J_,(2) are linearly independent solutions of ([2.1)), which is a second-order linear
differential equation. Because of the solutions forming a two-dimensional vector space, and J,,(z)
and J_,(z) being linearly independent, any solution can be expressed as a linear combination of

them. 0

18



We have seen that J,(z) and J_,(z) are linearly independent when v is not an integer or half
an integer. Now we focus on the case when v is either n or n + 1/2 for an integer n.

Let v = —n — 1/2 where n is a positive integer or zero. Then, 2v is not a positive integer,
and we define J_, as in ([2.3). However, when taking a = v, we get

(2v+1)a; =0, r2v+r)a, + ar—o =0, Vr > 2.

Since 2v = —2n — 1, when r = 2n+ 1, 2v 4+ r = 0 and the value of a2y, is no longer established
by aop—1, S0 agn+1 is not forced to be zero and can take arbitrary values. However, if we still take
J, and J_, defined as in and , respectively, this functions are linearly independent, as
their Wronskian (showed in (2.4)) does not vanish. So when v is half an odd integer, we take .J,,
and J_, as defined before, and any solution of will be a combination of them.

The same argument applies when v = n + 1/2, n being a positive integer. In this case, we
can give arbitrary values to as,4+1 when o = —v, but we will still define J_, in the same way.

Remark. We can now generalise Definition [2.2] for all complex values of v.

Now, let v be a nonnegative integer n. Then, using that I'(k 4+ 1) is infinite for all negative
integer k, and making » — n = s in the third step,

(=17 (z/2) 72 SN (—D)H(z/2)
Jou(z) = Zr T(ntr+1) 2 Al(-ntril)

=0
io: 1 s (2/2) n+2(s+n) B (_1)n§: (_1)5(2/2)n+25

= ( 8+n'F —n+s+n+1) ~TI(n+s+1) s
— (—1)" (). (2.5)

Hence, J,, and J_, are linearly dependent, and we need to define a new solution of (2.1)), linearly
independent to J,.

Example 2.1. The functions Jy(z) and Ji(z) play a major role in physical applications. By
definition, Bessel functions of the first kind of orders 0 and 1 are

[e.9]

S (DY N (2
']O(z)_; P T(r+1) _; ™z

B o (—1)T(z/2)2r+1 B o (—1)T(z/2)2r+1
D=2 Ty X e

r=0

Thus, for small values of z, Jy(z) ~ 1 and Ji(z) ~ z/2. Moreover, we have that for real
values of x

lim Jo(z) =1
z—0
lim Ji(z) =0
z—0

Graphics for this functions are shown in Figure 2.1]

19



08l \

\ \
nal
Y
\ —_—
.\l. \.\ -
o2l \ Y
A

2‘-\-\ \.{yﬁ s\m

04|

Figure 2.1: Graphical representations of Bessel functions of the first kind of orders 0 (blue) and 1 (red).

2.2 Bessel functions of the second and third kind

We want to define a new function, solution of Bessel’s equation and linearly independent to J,
when v is an integer.

Definition 2.3. Let v be a complex constant. Then,

(2.6)

Y, (2) = lim (cosam)Jy(z) — J_a(2)

a—v sin arr

is called the Bessel function of the second kind of order v and argument z.

Remark. When v is not an integer, the limit is obtained by substitution and

(cosvm)d,(z) — J_,,(z).

sin v

Yu(z) =

Since Y, (#) is a linear combination of solutions of (2.1)), it is also a solution.
However, when v = n € Z, the expression above takes the form (0/0), and we take the limit.

Proposition 2.2. For all integer n, the Bessel function of the second kind Y, is a solution of
Bessel’s equation, and it is linearly independent of Jp,(z).

Proof. As we have stated before, when v = n € Z, the expression inside the limit in (2.6) takes

the form (0/0) (notice that sinnm =0, cosnm = (—1)" and J_,(2) = (—1)"J,(z)) , and we can
use L’Hopital’s rule to obtain the limit. Hence,
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Ya(z) = lim —msin(am)Ja(z) +;os<ozzgw<z> ~ 2T alz)
1[0 . o
B E R i O B (2.7)

a=n

Since J, is a solution of (2.1]), and taking the derivatives with respect to a on each side of

equation ([2.1)),

&y[('z @—’—Z@‘f‘z — Ja(Z) —0

d? d 0
20° 4 o 2\ 9 _
— <z 1.2 +zdz +2°—a > aJa(Z) 20, (2).

The same process can be applied for J_,.

Applying the equation to Y,,(z) and using (2.7)),

_ l 2i2 +2— + 2_a2) —=J ( )
A\ a2 T T T ) dale
2 d d
—(—1)” (22612:2 + de + Z2 a2> da‘]—&(z):l
_1 [2a]0(2) + (—1)" 1200 o (2)] ,_,

This proves that Y,, is a solution of ({2.1).

Now, we should show that Y;,(z) is linearly independent of J,,(z). First, we will calculate the
Wronskian for J, and Y, when « is not an integer. The result of the Wronskian of J,(z) and
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J_,(z) is used here.

Jo(2) Yal(2)

Jo(z) Yi(2)

(cosam)dy(z) — J_a(z)

W(Ja(2), Ya(2)) =

_ Ja(2) sin am
Ty 2Dl Z )
— sinlom [cos am (Ja(z)Jé(Z) - Jé(z)Ja(z))

+J0(2)J—a(2) — Ja(z)J'_a(z)]
L W(Ja(2), Ja(2))

sin o

2
== %o
Tz

Because of the continuity of J, and Y, with respect to the variable «, this result is also true for
any « = n € N, and thus the Wronskian cannot vanish anywhere. Therefore, J,, and Y,, are also
linearly independent, and so are J_,, and Y. 0

Corollary 2.1. The general solution of Bessel’s equation of order v € C is
w(z) = AJ,(2) + BY,(2), A,BeC.

Proof. When v is not an integer, J,(z) and Y, (z) are trivially solutions to because of J,(z)
and J_,(z) being solutions too. Since we have shown previously that J,(z) and J_,(z) are
linearly independent, so are Jy,(z) and Y, (z). The result of the previous proposition gives us the
proof for integer values of v. O

Example 2.2 (A transformation of Bessel’s equation). Some physical problems can be solved
with Bessel functions. This is either because Bessel’s equation arises during the resolution of the
problem, or because making some modifications to the original equation gives Bessel’s equation
as a result. Let z = t7, with 8,v € C. Then,

dw dw/dt 1 dw
dz  dz/dt  Bytr—1ldt’
Hence,
v _tdw
dz vy dt’

On the other hand, writing Bessel’s equation (2.1)) as



and substituting the values,

If we take w(t) = t“u(t), with a € C,

dw du
t— = at® A —
7 at"u+u 7

Thus,

d ( dw o d*u Ldu
27 ) o 200 1 o+ oz
tdt<tdt> t dt2+( + 1)t d—I—at

Now, we can substitute this in Bessel’s equation.

d%u du
t“”d 5 + (20 +1)ta“d + ot + (B2t — 24 H)t% = 0.
Dividing by <,
2

adu d
2o+ 20+ 1)td—1‘ + (o2 + B9 — vy )u = 0. (2.8)

Since the general solution of Bessel’s equation is AJ,(z) + BY,(z) (with A, B € C), the
solution of the equation (2.8)) is

u(t) =t~ “(AJ,(Bt") + BY,(Bt")), A, BeC.
Example 2.3. We will calculate the series expression of Yy(z). The same argument can be

applied for the rest of the integers. Applying (2.7) when n = 0, and making f = —a in the
second equality,

170 0
V(o) = 1 [ 5900 = el

170 1 0

—+ [n 0]zl
270

B ; 9 JO‘(Z):| a=0

Using the series form of J,(
z a 1" (z/2)* 1
6 7! Ma+r+1)

(—=1)" z/2 yort2r <10g<z>_1“’(04—|—7“+1)>‘

r'F(oH—r—l—l) 2 MNa+r+1)

ﬁmg
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Thus,

2 o= (=1)"(2/2)%"
=23 SR

] (s
I3
(e

r=

Notice that in the third equality we have used formula ([1.3)).

Sometimes, it is interesting to express solutions of Bessel’s equation in a different way. There-
fore, we also define Bessel functions of the third kind in terms of J,(2) and Y, (z).

Definition 2.4. Let v be a complex constant. Then,

HY(z)
HP)(2)

v

Jo(2) + Y, (2), (2.9)
Jy(2) — iY,(2) (2.10)

are called Hankel functions or Bessel functions of the third kind of order v.

Let us prove that any solution of Bessel’s equation can be written as combinations of H, l(,l) (2)
and H? (2).

Proposition 2.3. Given a constant v € C, Hankel functions of order v are linearly independent
and the general solution of can be expressed as

w(z) = AHM(z) + BH?(2),  A,BeC.

Proof. Using Corollary 1.1, Hankel functions are solutions of (2.1)). Moreover, their Wronskian
is

W(HP (2), HP (2) = (Ju(2) + iYa(2)) (T (2) = iY;)(2))
— (J(2) +1Y)(2))(Ju(2) — i¥n(2))
= =2i(J,(2)Y)(2) = Yu(2)J,(2))

4i
= _i # 07
v

and therefore Hankel functions are linearly independent and form a basis of the vector space of
the solutions of (2.1f). O
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Example 2.4 (Bessel functions with argument ze™™). It should be noted that Bessel functions
are multivalued functions in C — {0}, this is, one point z € C — {0} may have more than one
image. Nevertheless, the functions J,(z)/z" are single-valued (have only one image). Then, for
a complex z, and for any integer m,

J (™)  Jy(2) '

emwiuzy oV

Equivalently, ' '
Jy(eMz) =™ T, (2).

We can also get ' ‘
J_V(emﬂ"tz) — efmﬂ'VZJ_V(Z)‘

If we now consider Bessel functions of the second kind,

Yl,(zemm): COS UT) mm) J_(z mm))

Sln 120

((
_ ( mumi COS VT[' J (Z) _ efmwrij_y(z))
(

SlIl v

—mwrz J o J—l/ mymi __ —mumi Jy
. C [(cosvm)d,(2) (2)] + (e e ) cos v, (z))

1

tan vm

e”™TY,,(2) + 2i sinmym

Ju(2).

Repeating a similar argument with Hankel functions, we get

HO (zemi) sin(l.— m)vm HO(2) — evri sin mym HO(2)
sinvm sin vm
H (pemmiy = S TVT oy oy i SBIVT
sin v sin v
2.3 Modified Bessel functions
The following equation arises in some physical problems.
d*>w dw
ga”w 2 2y, _
“ +z T — (" 4+ v*)w =0. (2.11)

Actually, (2.11)) is the result of replacing z by iz in Bessel’s equation ([2.1]). Thus, we deduce that
Jy(iz) and J_,(iz) are solutions of (2.11)). However, we usually want to express these solutions
in a real form. The function e ™/2.J,(iz) is a solution of (2.11)). Notice that

o 7' % 2'r v+2r X \rv v42r
efum/QJ ZZ VZ 2/2) _ l ( 1) ? ( ) (Z/2) (212)

! v !
o rf‘u+r+1) = v +r+1)

which is, in fact, the next function we are going to define.
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Definition 2.5. Let v € C. The function

oo 2/9 v+2r
L(2) = ZO T,F((V/sz (2.13)

is called the modified Bessel function of the first kind of order v.

As I, and I_, are multiples of J,(iz) and J_, (iz), respectively, they are linearly independent
if v € Z. When v is an integer n, we have again that

(/2) "+
Fr+1)I'(—n+r+1)

(2/2)71-‘1-28
—~ T'(n+s+1)I'(s+1)

z).

Iy,

M

r

Il
3

= 10

(IJ

Il
3
/\D

As we have done with Bessel functions of the first kind, we define a new function which will
be linearly independent of the first one.

Definition 2.6. Let v be a complex constant. The function

I_o(2) — Ia(2)

sin o

K, (2) = g lim (2.14)
is called the modified Bessel function of the third kind or the modified Hankel function of order
v.

As we have mentioned, we define these functions because of their following property.

Proposition 2.4. The modified Hankel function of order v € C is a solution of and it is
linearly independent of the modified Bessel function of the first kind of the same order.

Proof. If v ¢ Z, K, is a linear combination of I,(z) and I_,(z), and therefore it is a solution of
(2.13). Since I,(z) and I_,(z) are linearly independent, so are I,(z) and a linear combination
of I,(z) and I_,(2). Thus, the problem reduces to prove the linear independence of K, and I,
when v =n € Z.

Notice that the limit gives an indetermination (0/0) when v is an integer n. By L’Hopital’s
rule,

Kn(z) =

Q)—'

—1, . 2.15
T COS (T 2 (Z) ( )

w\z]

[&Id@—ih@q_bﬂw[a 0
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Since I, is a solution of (2.11)) for v = a,

d? d 0
_ 20" 4 o o\ O _
= 2al,(2) + <z 1.2 +Zdz - —« ) ao[Ioé(z) 0
= sz—z 42— —22—a? EI (2) = 2al,(2)
dz? d oa “

The same happens for J_,. Therefore, by (2.15)),

2 —1)"
(zzdsz + Z% 2 a2> K, - 2) 2004 — 200 ) gen = 0

and K, (z) is a solution of (2.11)).

On the other hand, we can deduce from ([2.14)), by substitution, that for any v & Z,

W (L (2), Ky () = La(2) K} () = Ku(2)I(2) = 5 W(L,(z),l,,,(z)):—l.

2sinvm z

Then, by the continuity of this expression with respect to v, this equality also holds for integer
values of v. ]

Corollary 2.2. The general solution of is
w(z) = Al (z) + BK,(2), A,BeC.

Example 2.5. As we said with the Bessel functions of the second kind, it is hard to find the
general series expression for these functions when v is an integer, but we can do it for v = 0.

From (215),

110 0 0
K =—|=1I_ ——1 =—|=1
o) = g | gela) = geln@)] == ge)]
Besides, the derivative of I, with respect to « is
0 = (z/2)0t? Ma+r+1)
—1I,(2) = —— (1 2)— —— = .
O (2) ; ril(a+r+1) 0g(2/2) MNa+r+1)

Using property (1.3]) of the Gamma function,

z = (2/2)% <&
Ko(z) = — (’y—i—log 5) In(z) + Z (({1'2))2 Z %
r=1

k=1
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By substitution in (2.13)), we also have

0 2/2 2r
Io(2) = Zo ((7/4))2 :

Moreover, when z is small, we have that Ip(z) ~ 1 and Ky(z) ~ —y — log g

28



2.4 Exercises

1. Prove the following inequality, for all z € C.

|%@N§i)@§)ewwﬂ nc Z.

Solution. We only have to bound |J,,(z)| step by step. Using series (2.2)),

o (=17 (z/2)m

Z rl(n+r)!

(1) (/2
rl(n+r)!

0 2| /2)n+2r
)

ri(n+r)!

In the last step we have used the series expression of e?,
X _r
z
€Z = E 7'
r=0 "

2. Use Exercise [I] to prove that for a fixed z € C,

nh_)n(f)lo Jn(z) = 0.
Solution. We know that
nh_)rrolo Jn(z) =0 = nh_}rgo |Jn(2)| = 0.

By Exercise
1 n
lm\%@ﬂﬁhmod>e*“_a
n—00 2

n—oo n!
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3. Prove the following relation

£ (58) =<z

Deduce that J, and J_, are linearly dependent if and only if v € Z.

Solution. Computing the derivative with the usual formula, and recalling the Wronskian
function of J, and J_,,

i J_u(2) _ J/—V(Z)JV(Z) - Jfll(z)‘]llz(z) _ W(JV(Z)a‘]—y(z)) N 2sinvm
dz \ J,(2) ) J2(z) B J2(2) —ozn(Jy(2))2
When is J_, a multiple of J,?

cecst =¥ _ o

AC eCst. J_y(2) =CJ,(z2) — 7,00

— 4 (T2
dz \ J,(z) )]

PN 2sinvm
zmdJ2(2)

<~ vel.

4. Show that if v & Z
ngl)(z) _ J*I/(Z) —e JV(Z)’ HIS2)(Z) _ _J,V(Z) —¢€ Jl/(’z)7

isinvm isinym
and deduce that H(_llz(z) = e”mH,Sl)(z) and H(_le(z) = e‘”mH,EQ)(z).
Solution. First of all, by equations (2.9) and (2.6) (v & Z),

HW (2) = J,(2) + 1Y, (2)

— )+ ;cos mrJ,,Fz) —J_(2)
sin v

Jy(z)(sinvrm + icosvm) —iJ_p(z)

sin v
Jy(z)(—cosvm + isinvm) + J_,(2)
isinvm

—J(2)e7"™ + J_,(2)

tsinvm

In the last step we have used that

—cosvm + isinvm = —(cosvm — isinvmw) = —e” U
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Similarly,

38
&

—
N

N—
I

Ju(z) —iY,(z)

() — ;cos vrdy(z) — J_u(z)

sin v
Ju(z)(sinvm — icosvm) —iJ_,(2)

sin v
Jy(2)(cosvm +isinvm) + J_,(2)
1sinvm

Ju(2)e’™ + J_,(2)

isinvm
Moreover,
J(2) —e’™J_,(2)
B isin(—vm)
e’ J_,(2) — Ju(2)
isinvm A
euﬂ'i <‘]—V(Z) — e_ym‘]V(Z)>

i sin vm

= " HWM ().

Similarly,

_ J(2) —e VT, (2)
—isin(—vm)

e VI _(2) — J,(2)

—¢sinvm

— (Jy(z) - e”%(@)

—isinvm
= e "M H(2).
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Chapter 3

Properties of Bessel functions

In Chapter [2] we presented Bessel functions of several kinds. Now we will focus on some proper-
ties of these functions.

First, we will study some recurrence relations between Bessel functions defined in Chapter 2]
We will also see the Bessel functions of the first kind as the coefficients of a generating function.
As a consequence, we will prove some properties of the trigonometric functions. We will also
study an integral formula for the Bessel functions of the first kind.

When solving a differential equation in physics or engineering, we sometimes need to evaluate
Bessel functions at a certain point. As the functions are given by their series expressions, they
are not easy to evaluate, so we need functions which give an approximation of them. In this
chapter, we are going to learn how to approximate Bessel functions and their zeros.

Finally, we will calculate the solutions to a certain Sturm-Liouville problem, involving Bessel
functions. As a consequence, we will get orthogonal sets of Bessel functions.
3.1 Recurrence relations
We want to analyse the relations between the Bessel functions of the first kind.
Proposition 3.1. Let v € C. Then,
4 !
Ju1(z) = . v(2) = J,(2), (3.1)
v
Jy—1(z) = ;Jy(z) + J,(2). (3.2)

Proof. Using the series expression of J,(z), we obtain

—v oV G (_1)7’(z/2)2r
ECOR D By il
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Taking derivatives with respect to z on each side,

z7Y = ) 2r(z/2)% 112
- J; I (2)=27" .
" v(z)+2 ; r'FV—I—r—l—l)
Thus,
[ee]
v o (CD)r(z/2)2
—Jy(2) = J(2) = —2"277
z (2) = Ju(2) : TZ:; r!'T(v+r+1)
— o i (=1 (r + 1)(2/2)*0 0!
~ (+DITv+r+2)
o
—1)r ) 2r+1
_ ZVQ-I/Z( ) (Z/ )
r' T(v+r+2)
OO 1 2/2)1/+2r+1
B Z r! T(v+1r+2)
= y+1(2)
Similarly,
e 2/2)2V+27‘
220 r! F (v+r+1)’
which, using the same argument, give us identity (3.2]). O

Combining the previous two formulas, we obtain these recurrence relations.

Corollary 3.1. Ifv € C,

Example 3.1. We take again the example when v = 0. From (3.1)) we get
Ji(z) = = Jo(2),
which gives us another expression for the derivative of Jy(z) with respect to z.
Remark. It is worth noting that these formulas can also be applied to Bessel function of ssecond

and third kind, as they are nothing but linear combinations of Bessel functions of the first kind
(except when v is an integer but, because of continuity, the formulas are still valid).
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Remark. Notice also that in the process of getting equation (3.1]), we arrived at

4 (27" J(2)) = —2" 7, 0(2).

zdz
Taking again the derivatives with respect to z and multiplying by z,

2
<ZZZ> (7" u(z) = — (=7 r(2) = (-1)%7 2 pa

zdz

Repeating the process m times,

(j)m (7 u(2)) = (1) " pom(2).

Similarly, from the process of getting (3.2) we also prove

) @) = (o),
()

zdz

(3.5)

(3.6)

Example 3.2 (Spherical Bessel functions). Bessel functions of the type J,,1 /2, with n € NU{0},
are often used to solve problems of spherical waves. That is why these functions are called Spher-

ical Bessel functions.

In order to calculate the values of these functions, we will first get the value of .J; 5(z). Using

that by formula ([1.4)

rI0(r +3/2) =T(r + D)D(r +3/2) = Va2~ 27 0(2r 4+ 2) = Va2 71 (2r + 1)1,

we get
B o0 ’I’ )2r+(1/2)
Tijalz _; rvr +(3/2))
B ) 1/2 OO 1)7‘ 2r+1
A\ 7z r:O (2r+ 1)
( 2 )1/2
=|— sin z.
Tz
Similarly,

9\ 1/2
J_12(2) = <) Cos 2.

w4

Using (3.5)), we get
n_n+i d " —
Jn+1/2 = (*1) z T2 <> (Z 1/2J1/2(Z)>

n 1/2
= (—1)"z"s <Z> [z_l/z <2> sin z]
zdz Tz
T zdz z
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Similarly, but now using (3.6)),

1/2 noso
el g i sin z
Jon—(y2)(z) = 2""2 <W> (zdz> < z ) .

In conclusion, we can express Jy,;1/o and J_,_;/; with a finite number of sines, cosines and

powers of z.

We can also get Bessel functions of the second and third kind in this way. For example,

9\ 1/2
Y71/2(2) = J—1/2(Z) = <> sin z,

Tz

. 9\ 1/2 a2 o \1/2
H£13/2:J—1/2(2)+1Y—1/2= <m> cosz+@<> sinz = (m> ez,

mz

1/2 1/2 1/2
@ _ _ _ (2 (2 (2 iz
H—1/2 =J_12(2) —iY_1 ) = <7r2> cosz —1 <7rz> sinz = <7rz> e %,

We can also give the recurrence formulas for the modified Bessel functions.

Proposition 3.2. Let v € C. Then,

~Loa() = Z1() - I,(2),
L1(2) = ZL(2) + I)(2),
2u

I,1(2) = Ly1(2) = 711/(3)7
Io1(2) + T (2) = 212,

Proof. Using the same argument as in Proposition [3.1

vy or N (/27
27V, (2) =2 ;M

Taking the derivatives,

)__I/+1

o0 Py 2r—1 o0 Py v+1+42r
) _ Gy "

v o __ veo—v _\=/a)
zIV(Z) L(z) = =2 ZT!F(V+T+1)

r=1

riC(v+r+2

We can also get from
oo
(Z/2)2u+2r
VIV —9v o \<f=
Fh () ; rll(v+r+1)

the equality
v
;L,(z) +I,(2) = I-1(2).

We get the rest of the formulas combining equations (3.7) and (3.8]).
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Example 3.3. For v = 0, we have

Corollary 3.2. Ifv € C,
v
Ko () =~ K (2) + KL (),

- y—l(z) - gKV(Z) + Kl//(z)a

Kor(2) = Ko (2) = — 2o (2),

K,,_l(Z) + KV_H(Z) = —QKIIJ(Z).
Example 3.4. Again, taking v = 0, we get
Ki(z) = —=K{(2).

3.2 Bessel coefficients

In physics, the following differential equation

02 10 1 02
87)2‘/([)’ ®) +—=-V(p,9) + 2952

pdp
is frequently studied. By substitution, it can be proved that V(1 (p, ) = e?*Ps" ¢ and V,S2) (p,¢) =
Jn(kp)emd), where n € Z, are solutions of this equation. We will study the connection between
these functions.

V(p, )+ k*V(p,¢) =0

We can write V() as a Fourier series, as it is periodic with respect to ¢. So it admits the

form
o0

Z cn(kp)e™.

n=—oo

We can calculate the coefficients ¢, (kp) by using the series form of the exponential function.
Making kp = z and €' = t,

r OO

V() = 2(t0/2 — got/2g—2/2t _ ;:‘ (Z;> Z% (_%)5
oo o0 (_1)3
- ;Z rls!

Z\Tts
- tT‘—S'
(5)
T s=0

As t = €', we are looking for the coefficients of this power series. If we make n = r — s, then
the coefficient of t" for n > 0 is

> oiam (5) =

s=0
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On the other hand, the coefficient of t~" is, using relation (2.5)),

> (—7(:)':)!31 (%)_MT = J-n(2)

Hence,

VO () =02 = 37 g2t = Y V(e (3.9)

n=—0oo n=—oo

Because of this relation, .J,,(z) are called the Bessel coefficients and V(1) is called the gener-
ating function of the Bessel coefficients.

Relation (3.9) was used by Jacobi to get the following equalities of trigonometric functions.
Proposition 3.3. Let z € C and ¢ € R. Then,
(i) cos(zsing) = Jo(2) + 2 071 Jon(z) cos(2ne).
(ii) sin(zsing) =23 > Jopi1(2)sin((2n + 1)¢).
(iii) cos(zcos @) = Jo(2) + 2 07 1 (—1)"Jan(z) cos(2ne).
(iv) sin(zcos @) =237 o (=1)"Jopy1(2) sin((2n + 1)¢).
Proof. Making t = €' in equation (3.5)), and using relation ,

e = N g (2)e = Jo(2) + D [emd’ + (1) Ju(2)
n=1

n=-—o00
Notice that the left-hand side of the identity is €?*$"® = cos(z sin ¢) + i sin(z sin ¢) and that

2 cosng, if n is even,

em’qﬁ + (_l)ne—m’d) —
2isinng, if n is odd

Equating real and imaginary parts, we prove (i) and (ii). Moreover, taking 5 = —¢+m/2, we

obtain (iii) and (iv). O

3.3 Bessel’s integral formulas

Using some of the properties seen previously, we can deduce several identities of Bessel functions,
known as Bessel’s integral formulas.

Theorem 3.1 (Bessel’s Integral Formulas). Let z be a complex number and n an integer. Then,
1 T
In(z) = / cos (zsinf — n#)do.
T Jo

Moreover,
Tn(2) % OW/2 cos (zsinf) cosnb db, if n is even,
n zZ) = p i ] ' . ‘
% 0 /% sin (zsin@)sinnf df, if n is odd.
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Proof. By Proposition [3.3] we know that

cos(zsin ) )+2 Z Jan(z) cos(2n8),

sin(zsinf) = 2 Z Jon+41(2) sin((2n + 1)0).
n=0

As the previous functions are even and odd, respectively, with respect to 6, we can see them as
Fourier Cosine and Sine series, respectively. Then,

cos(zsin 0) + Z an(z) cosnb, sin(z sin ) Z bn(2) sinnd,
where
2J,(2), if nis even, 0, if n is even,
an(2) = e bn(2) = e .
0, if n is odd 2Jn(2), ifnisodd

Notice that
an(z) + bn(z)

2

On the other hand, if we compute the Fourier coefficients for these Cosine and Sine series,

= Jn(2), n € NU{0}.

an(z) = 2/0 cos (z sin 6) cos nfdf

™

and o
bn(z) = / sin (z sin 6) sin nfd6.
0

Summing and dividing by two,

. n Lt o
a(z)—2|—b(z) = / (sin (z sin #) sinnf + sin (z sin 0) sinnb) d
T Jo

1 ™
= / cos (nf — zsin @) df.
0

™

Hence, comparing the two expressions for (a, + b,)/2,
1 [/" )
In(z) = / cos (nf — zsin @) db.
T Jo

Moreover, we also have that

if n is even,

Jn(2) = 2
=, if nis odd.
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Equating with the coefficients of the Fourier series,

In(z) = {}r Jo cos (zsinf)cosnf df, if n is even,

% fOTr sin (zsin @) sinnf df, if n is odd.
Since the integrands are symmetric respect to # = w/2 in the interval (0, ),

T(2) % OW/Z cos (zsinf) cosnf df, if n is even,
n zZ) = . . ] . . . )
% 0 /2 sin (zsinf)sinnf df, if n is odd

These integral expressions for J,(z) can be used to make numerical approximations of the
series (2.2)) via methods such as Simpson’s rule.

3.4 Asymptotics of Bessel functions

As we have mentioned in the introduction of this chapter, when applying the theory of Bessel
functions to solve problems in physics or engineering, it is sometimes required to evaluate Bessel
functions at a point z, or to solve equations such as J,(z) = 0.

However, due to the definition of the function by a series, the partial sums only provide a
good approximation of Bessel functions of the first kind when z is small. Therefore, we now want
to approximate J,(z) for large values of z, using other expressions (easier to handle).

From this section onwards, we assume v is real and z = x € R is positive.

First, take g(z) = xl/zf(:z:), where f is a solution of Bessel’s equation (2.1). Then,

g'(x) _d(x)  3g9(x)

f(l') - ma f/(x) - .’131/2 2];3/27 f”(l') = xl/Q x3/2 4$5/2 :

Substituting in Bessel’s equation,

0=2*f"(2) +af'(z) + (a* 1) f (a)
(L) o) ) (1) s et

21/2  9.3/2 21/2

21/2 23/2 T 45/2

_ x3/2g”(x) _ a:l/zg’(x) + 3g9(z) +$1/2g/(x) _ g9(z) +x3/zg(:p) _ v2g(x)

4x1/2 271/2 21/2
= 232" () + 239 (x) + (le — 1/2> .Z(la/?Q)
Multiplying by 1/z%/2,
(@) + gla) + 1 g() =0



So, when x is large, the last summand tends to zero, and thus
g9"(x) + g(x) = 0.

But the solutions to the equation ¢”(x)+g(x) = 0 are combinations of trigonometric functions
of the form
Acosx + Bsinz, A, B eR.

Those solutions can also be written in the form asin (z + ), where o and [ are again real
constants. So, we can guess that Bessel functions can be approximated using Sine or Cosine
functions when z is large. The following result gives us that approximation.

Theorem 3.2. Let v be a real constant. Then, there exists a constant C,, such that,

2 C
Ve>1, J,(x)= HE cos (a: — % - %) + E,(z), |E,(x)] < xs/VQ' (3.10)
Proof. This proof requires more advanced techniques, and can be found in Chapters VII and
VIII of [4]. O

This result lets us approximate the Bessel function of the first kind of order v € R and
argument x > 1, giving us an upper bound for the error. Moreover, this error decreases as x
tends to infinity. With this result we can also give approximate values for other functions seen
in Chapter [2

Corollary 3.3. If v is a real constant, for any x > 1,

Proof. In order to prove (i) we have to take into account the definition of Y, (equation (2.6)),
when v is not an integer. Also, using the following trigonometrical formula (Cosine of a sum)

<+1/7T 71')_ () ( VT 7T) ()< VT 71')
cos | x 5 1 = cos (vm)cos |z 5 1 sin (vm)sin ( x 5 1

and Theorem for J_, we find that

1 () 2 ( v 7r) 2 ( n vm 71')
——— |cos (vm)y/ —cos(x — — — —) —y/ —cos(z+ — — —
sin (v) T 2 4 T 2 4

@ [COS (v7) cos ( vn ﬂ.) — coS (fﬁ + = - ﬁ)}

Y, (z) =

- sin (v) Ty T 2 4
V2/(mx) . . vmT T
:SiE(Vﬂsm(mr)sm(x—2—4>

41



By an argument of continuity, for all v € R, we get

To prove part (ii), we use the recurrence relation (3.2). On the one hand,

2 v—1)mr =«
Jyo—1(x) = \/% cos (:1: - (2) - 4> +E,_1(x)
2 vm w7
=\ (- -7t g) T Eaw
2 . Vw7
=\ (e - - 7) + B

On the other hand,

10 < 212+ G < (WO + G
Y =\ 7 x3/2 r5/2 — 73/2 '
Combining the two results, we obtain (iii). O

3.5 Zeros of Bessel functions

Now, we want to describe the zeros of Bessel functions. Notably, in boundary value problems,
the following equation arises

aJ,(x) + bzJ,(z) =0, (3.11)
where v > 0 and (a,b) € R? — {(0,0)}.

Let us begin by taking the function =" [a.J, (z) + bxJ}(z)]. This function is now analytic at
every point, once removed the singularity at = 0, so its zeros are isolated. This means that in
a bounded region we have only finitely many zeros. Hence, we can arrange the positive zeros of
our function in the following way

D<M <X<....

We want to calculate the asymptotic behavior of the sequence {A,}2° ;. In order to solve this
problem, we will use the following lemma.

Lemma 3.1. Let f be a differentiable, real-valued function that satisfies
|f(x) —cosz| <€ and |f'(z) +sinz| <e, x> Mm, (3.12)

where € < 1 and M € R. Then, for all integers m > M, f has exactly one zero z, in each
interval [mm, (m + 1)xw]. Moreover, zy, ~ (m + 1/2)x.

Proof. Let us take an integer m > M. Because of m being an integer,

cos (mm) = (=1)™ and  cos [(m + ;) n] = 0.
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Therefore, the hypothesis | f(z) — cosz| < e implies, by evaluating f at mm and (m + 1)m (both
greater than M),

[f(mm) = (=1)"| < e and [f((m+1)7)+ (=1)"| <
Consequently,
flmm) € B((=1)™e) and f((m+1)m) € B(—(—1)",€),

Since by hypothesis € < 1, f((m + 1)7) and f(mm) have different signs. Because of f being
continuous (it is differentiable), by Bolzano’s Theorem,

3z € (mm, (m+ 1)7) s.t. f(zm) =0.

So we have proved the existence of a zero of f in the interval (mm, (m+ 1)x), where m > M.
Now, let z,, be a zero of f in that interval. From the first equation of (3.12)) we get

|f(zm) — cos zp| = |cos zp| <, e 1.

But this means cos z,, ~ 0, which implies z,, ~ (m + 1/2)7.

Moreover, since (m + 1/2)r > M and sin ((m + 1/2)7) = cos (mm) = (—1)™,
r((me ) s

f<<m+;> Tr)> €(-l—e—-14+U(l—el+e),

This implies

so f' does not vanish around (m + 1/2)7. Hence, f is strictly increasing or decreasing near
(m + 1/2)m, and thus there is exactly one zero in the interval (mm, (m + 1)7). O

We shall distinguish two cases, depending on whether b = 0 or b # 0 in equation (3.11)).

If b =0, we want to get the zeros of J,(z). In this case, we can easily get the asymptotic
expression for the zeros of (3.11)) based on the asymptotics of J,(x), this is, based in identity

(3.10). In fact,

vm

implies a large x will satisfy J,(z) = 0 if cos (a: -5 = ) is near zero.

s
4
In fact, we can apply Lemma to prove what we have stated. Let us consider the function

1 1
flz) = 2Y27,(8), :Z‘:;U—l—imr—i—zﬂ.
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By (3.10),

[ 2 1 1 [ 2 2
f(x)z~1/2 —cos (& —-vr— -7 ) =72 NCOSZ‘Z\/7COSJ}.
T 2 4 T 7r

1

Since

@) =&20(@) + 55720, ()

and by (3.10) and Corollary

2 2 2
il/ZJL(i)%—il/Z\/fsin <§:—%—%) =32/ = sinz = —\/ Zsinz
T Tz T

V2,5 ~ ~_1/2\/i~cos (50 — %T - %) = %\/gcosx ~ 0
T z\7

for large values of x. Thus,

N |

and

for large values of x.

As we have seen before, these errors in approximation tend to zero when x tends to infinity.
Applying Lemma , for x > Mm, we can approximate the zeros of f(x). In fact, for a large
enough m, there exists a unique zero z,, in each interval [mm, (m + 1)7] and z,, ~ (m + 1/2)7.

Thus,
- +1 +1 +1 _ +l/+3
Zm m 5 s 21/7r 471— m 51 .

So we conclude the zeros of J,, which are in fact the zeros of 2!/ 2J,(z), are approximated by
(m+v/243/4) .

Now, we consider the case in which b # 0. We can apply again Lemma but now to the
function

1 1
flx)=ca V20,(2) + 22 T2), d=x+ gvT — g and ¢ = %
On the one hand,

FV2J (%) ~ —jl/%/%sm (x - %ﬁ - g)
T



for large values of z. On the other hand, by (3.10))

2 1 /2
iV ,(%) ~ i'_l/z\/;cos <i - % - %) = j\/;cosx ~ 0.
2
flx) =~ \/>cos:c.
T

Taking the derivative of f with respect to x,

Thus,

1
F(z) = —gaﬁ_?’/ZJl,(fc) e (@) + 5@ () + 3T @).

Since J,, satisfies Bessel’s equation ([2.1]), we know that

JNE) = 271 T(2) — (1 = v2272)J,(2).

flz) = (c+ ;) VR I(E) + 2VRT(8) - gaé_?’/QJl,(j)

<c + ;) F120E) - 3 2ILE) - &P (@) + a2, (@) - SE (@)

L

~ —7'%7,(%).

In the last step we have used that



Finally, applying Lemma m to \/7/2f(z), we get that '/2 f(x) has zeros (its zeros and the
zeros of \/7/2f(x) coincide) when = ~ (m + 1/2)m, this is, when

~ — T -V — =T = —UV — Tr.

Thus, this is an approximation of the zeros of ¢J, (z) + zJ),(x).
This leaves the only question of how to locate the first zeros in the sequence {\, }men. The
following lemma answers that question.

Lemma 3.2. Let v > 0, a,b > 0 with (a,b) # (0,0), and w, the smallest positive zero of
aJ,(x) + bxJ)(x). Then, w, > v.

Proof. If v =0, then w, > 0 = v and we are done.
Let us assume v > 0. Since J, is a solution of (2.1, rearranging the equation we get
d 2

x%[x(]l’,(x)] = (V? —2%)J,(z). (3.13)

Moreover, for small positive values of z, J,(z) and J},(z) are positive. This is obvious when we
take the leading terms of the series (2.1). These are

(/2" vl e
v+1) 2T(v+1)  2°T(v)’
respectively.
By contradiction, we assume (,,, the smallest positive zero of J, (), is less or equal to v. Then,

since #2 < v? and J, is positive for small values of x, (v? — 22)J, () is positive. Therefore, by

equation (3.13), zJ/,(z) is increasing in [0, ¢,]. This implies J},(z) > 0 in the interval, since J},(z)
is positive for small z and increasing. But this is a contradiction, since as J,(0) = J,(¢,) = 0,
applying Rolle’s Theorem there exists ¢ € (0, ¢,) such that J,(c) = 0.

So ¢, > v. As J,(z) is continuous, positive for small values of x, and has no zeros in the
interval (0,v), it is positive in that interval. Hence, (v — x2).J,(x) is also positive and therefore
zJ},(z) is increasing. Since J),(x) > 0 for small values of z, and increasing in (0,v], it is also
positive in this interval. Consequently, a.J,(z) + bzJ,(z) > 0 in the interval (0, ], and the first
positive zero of the function is greater than v. O

With the previous lemmas, we have proved the following results:

Theorem 3.3. If v >0, a,b >0, (a,b) # (0,0), and {\;}ien are the positive zeros of aJ,(x) +
baJ)(x), arranged in increasing order, then

(i) AL > .

(i1) If b= 0, there exists an integer M, such that

1
)\k~<My+k+2u+i>7r as k — oo.
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(iii) If b > 0, there exists an integer M, such that

1 1
)\k~<My+k+21/+2>7r as k — oo.

Proof. Part (i) is a direct consequence of Lemma[3.2] and we got (i) and (iii) distinguishing the
cases as a consequence of Lemma (3.1 O
3.6 Orthogonal sets

Bessel’s equation ([2.1)) is a particular case of

22 f"(x) + xf (x) + (uP2? — V) f(z) =0, (3.14)

when g = 1. The solutions of this are of the form f(z) = g(ux), where g is a solution of Bessel’s
equation. This is easily proved since

() + zf () + (pPa® — V2) f(2) = (ap)*g" (px) + (zp)g’ (px) + ((px)? — v*)g(uz) = 0.

Dividing by z, (3.14) can be written as

l/2 ! V2
of"(@) + f'(2) = —f@) + p2f (@) = [2f'(2)] = —f(2) + p’uf(z) = 0. (3.15)

So we get a Sturm-Liouville equation of the form

(rf') +pf +p*wf =0, where r(z) =z, p(z) = ——, w(z) = .
If we take this equation in the closed interval [a, b] C [0, 00) with boundary conditions

af(a) +a'f'(a) =0,  Bf(b)+B'f(b) =0,

we get a regular Sturm-Liouville problem. Since J, and Y, are linearly independent solutions,
the eigenfunctions of the problem will be of the type

f(x) = cpdv(pz) + d, Yo (p). (3.16)

The boundary conditions let us fix the constants ¢, and d,, in equation (3.16)) and we would
obtain an orthonormal basis of L2 (a,b), with w(x) = x. However, it is not easy nor interesting
to get these coefficients.

Our main goal will be to find the solutions of the Sturm-Liouville equation in the interval [0, b]
when v > 0. At x = 0, r vanishes and p is infinite, so it is not a regular Sturm-Liouville problem
and we cannot add boundary conditions in 0. Indeed, since Y, functions and its derivatives
take infinite values at = 0, we must make d, = 0 in to guarantee that the solution is
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continuous at that point. However, in = b we can impose a condition 3f(b) + ' f'(b) = 0. The
problem would be as follows:

2
of (@) + f'(@) = (@) + pPaf (@) =
f(0T) exists and is finite, (3.17)
BIO)+Bf () =0

Although this is a singular problem, it preserves some of the properties of a regular Sturm-

Lioville problem. First, we want to check that the linear transformation L(f) = (zf’)" — % fis
self-adjoint. We shall take two eigenfunctions f and g,

f@) = Ju(pjz),  g(z) = Ju ().
In order for the transformation to be self-adjoint, it must verify
(L(f),9) = ([, L(9))-

Let us check L is formally self-adjoint. Writing L(f) = zf" + f' — ”?Zf =rf"+qf +pf,

2
L) =rf+ @ =@ + 0" —q +p)f =af + [ = = f = L(J).

So it is formally self-adjoint. Therefore, we can apply Lagrange’s identity,

(L), )~ (F Llo)) = [o7 @)g(@) — 2f@)g )]

The evaluation at x = b is done taking into account the boundary condition at that point.
In fact, for any solution h of the problem,

h(b) = —Zn'(b) if B#£0

Bh(b) + 'R (b) = 0 => {h(b) . 5

Therefore, since g is real,

[/ (@)9@@) — £ @)g @] _ = br (B)g(®) — bf (D)9 D)

x=b

bf’(b)% (U > bTf(b)g'(b) =0, if B#0,
bf'(b)-0—b-0-g(b) =0, if 8=0.
Since 1 )
~ oV ! ~ v—1
@~ MR argy®

when z is small, both J,(z) and J,(z) are multiples of 2¥. Since v > 0, when z tends to zero,
|2f'(2)g(x) — 2.f (2)g' ()] — 0.
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If v =0, then f(0) = g(0) =1 and f'(0) = ¢’(0) =0, so
lim (ef'(€)g(e) — zf(€)g'(€)) =0

the endpoint evaluation at x = € vanishes when € tends to zero. In any case,

(L(f),9) — (£, L(g)) = 0

and therefore L is self-adjoint.

Once we have proved this and although problem (3.17)) is singular at x = 0, Theorem
concerning the reality of the eigenvalues and the orthogonality of the eigenfunctions with respect
to the weight function w(x) = z still holds.

It can also be proved that the space of the solutions of is 1 dimensional. In fact, the
fundamental existence theorem for ordinary differential equations says that for any constants c;
and ¢y there exists a unique solution of L(f) + p?wf = 0 such that f(a) = c¢; and f'(a) = ca.
That is, a solution is specified by two arbitrary constants, so the space of the solutions is 2-
dimensional. However, by imposing the boundary condition B¢y + f'co = 0, we create a linear
relation between ¢y and ¢y and therefore the space of solutions is 1-dimensional.

Since f(z) = J,(px), we have f'(x) = pJ),(ux). Hence, the solutions of (3.17)) are functions
J,(px) such that

BT, (ub) + ', (ub) = 0. (3.18)

If we write A = ub, we get to two different cases:

e If 5/ =0, we have
J,(\) = 0. (3.19)

e If 8/ # 0, denoting ¢ = b3/7,
eJ,(A) + AJL(A) = 0. (3.20)

We solved this problem for A > 0 in Section We got a sequence {\;};cn of zeros, which
gives us the eigenvalues {12 }ien = {A\?/b?}ien. It is only left to see if there are any nonpositive
zeros of these functions.

Lemma 3.3. Zero is an eigenvalue of if and only if B/B" = —v/b, in which case the
eigenfunction is f(x) = x¥. If B/ =0, or B/B > —v/b, there are no negative eigenvalues.

Proof. First, let us prove the initial statement. If zero is an eigenvalue, there exists a non-zero
function f such that f is a solution of (3.17) when p = 0. We distinguish two cases.

If v = 0, then the equation reduces to
af"(x) + f'(z) =0,
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so the general solution is obtained easily using the change of variable g(z) = f'(x). We get
g(x) = —xg'(x), so g(x) = C1/x (where Cy is a constant) and therefore

f(ac) =] logz + Oy, C1,Cy € R.

If the function f is also to satisfy the boundary condition at the origin, the constant C; must be
zero, and thus f/(z) = 0. Since we want f to verify 8f(b)+ 8 f'(b) = SCy = 0 (and we are look-
ing for functions that are not null), we get that u = 0 is an eigenvalue of (3.17)) for v = 0 iff 5 = 0.

If v > 0, we get the Euler equation
2 f"(x) +af' (x) — v f(z) = 0.

Since v and —v are the roots of the polinomial r(r — 1) 4 7 — v/, it follows that the solutions to
the equation by Euler’s method are

f(x) = Ciax¥ + Coz™", Cy,Cy € R

Therefore, in order for f(0") to be finite, Co must be zero. Regarding the second boundary
condition,

BCIY” + B'Crvb” ™" = C1b" " (Bb+ B'v) =0,

and since b > 0, Bb+ B'v = 0. If 8/ = 0, then 8 must be zero and we would have no boundary
condition. Thus, 8 # 0 and since b # 0, the necessary and sufficient condition we get is

g

i - _
Since the condition when v = 0 is included here, we have proved the first part of the lemma.
Moreover, the eigenfunctions we get are 1 = ¥ when v = 0 and ¥ when v > 0.

v
-

Let us focus now on the second part. We take now negative values of p?. We can write
p =ik, with £ > 0. Then, the general solution of the equation of problem (3.17) is

C1Jy(ikz) + C2Y), (ikx), C1,05 e R.

Again, the boundary condition at the origin fixes Co = 0, as Y, (z) blows up at z = 0. The
condition at b can be written as (3.19)) or (3.20]), depending on the value of 3, where A\ = ixb

and ¢ = bB/p’". If we denote y = kb > 0, we want the solutions to verify one of these equations.
J,(iy) =0 (if B/ =0) or ¢, (iy) +iyJ,(iy) =0 (if 8/ #0).
From equation we know that
L(y) = e ™21, 30y) = (=) T (iy) = Ju(iy) = "L, (y).
Moreover, by equation ,

iy, (iy) = v, (iy) — iyJy1(iy) = vi"L(y) — " Pyl (y) = & VL (y) + ylo41(y)] -
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Therefore, the boundary conditions at b can be written as

L(y) =0 or (c+v)L(y) +yla1(y) =0,

where y > 0. But since y > 0, by definition we have I,,(y) > 0, so when 8’ = 0, there are no
solutions of problem (3.17). Furthermore, if § # 0 and since I,,4; > 0 and c+v = (b3/5")+v >0
by hyphotesis, the corresponding boundary condition cannot be satisfied. As a consequence, there
are not any negative eigenvalues in the established conditions. O

So we have a family of orthogonal sets of functions on the interval [0,b] with respect to
w(z) = z. These functions are

ful) = J, (Aff) | (3.21)

The functions in (3.21)) are real, so the norm of these functions is

b b
2 2 o 2
1l = /O ()2 do = /0 (fo(@)z dz.

Regarding this integral, we have the following result.

Lemma 3.4. If 4t >0,b>0 and v > 0,

2 252 _ 2

b
| et do = G a? +

() (3.22)

Proof. Let f(x) = J,(ux). We know that f is a solution of the equation (3.14). Moreover, this

equation can be written as
a(af) = (v = p*a®)f.
Multipying by 2f, we get
2(xf'(2)) (xf'(x)) = (V> — pPa®)2f (2) f (x)).
Reordering both sides of the equation,
[(@f' @) = (* = 12%)(f*(2)"

Now we integrate both parts of the equation from 0 to b, using integration by parts in the
right-hand side of the equation.

b
(@ f @)y = (2 — p22) (f )2 + 202 /0 o (2)?da

At x = 0, the left-hand side vanishes and the term to evaluate on the right-hand side reduces
to v2f2. Since (f(0))? = (J,(0))? = 0 when v > 0, that term also vanishes for all v > 0. As a
consequence,

b
20 [ f(a)dn =01 O + (20 ~ ) F 0
0
Due to f'(x) = pJ, (pux), we get the identity (3.22)). O
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If we take our solution of (3.17)), it satisfies the boundary condition (3.18]), and we can simplify
the right-hand side of (3.22)). If we denote u = A/b, and our condition is of the type (3.19), we
have

/ob v <Ab$>2"3 dr = b;(JL(A))Z’ (3.23)

and if we have a condition of the type (3.20)),

b VA V(N —v2+?),
/0 Jy <b> T dr = 7 (J,(\)2. (3.24)

We can also simplify the right-hand side of (3.23) with the recurrence relation (3.1). If we
substitute z = X in (3.1), we get J,(A\) = —J,+1(A\), and thus if (3.19)) is satisfied,

/Ob <J” </\(;E>>Q$ dz = b;(Ju+1(>\))2- (3.25)

Summing up, given the problem , we get an orthonormal set of Bessel functions, which
we want to be an orthonormal basis. However, since is not a regular Sturm-Liouville prob-
lem, we cannot ensure directly the existence of enough eigenfunctions to form an orthonormal
basis. Nevertheless, it can be proved using more advanced methods that the family of eigenfunc-
tions of the type is in fact an orthonormal basis of L2 (0,b). The proof can be found again
in chapter XVIII of [4].

Theorem 3.4. Let v be a nonnegative real number, b > 0 and w(zx) = z.

(1) Let {\i}ren be the positive zeros of J,(x), and ¢x(x) = J,(Axx/b), for all k € N. Then
{¢1}ren is an orthogonal basis for L2 (0,b), and

b2
H¢kHi, = EJV+1()\]§)27 k e N.

(it) Let {\p}ren be the positive zeros of cJ,(x) + xJ.,(x), and let hp(z) = J,(Apz/b) for k € N.
Also, we define 1o(x) = x¥. If ¢ > —v, then {{y}ren is an orthogonal basis for L2(0,b).
If ¢ = —v, then {{y }renuqoy 18 an orthogonal basis for L2(0,b). Moreover,

b21/+2

T (k2 1), ol = 5.

Therefore, from Theorem [3.4) we know that any f € L2 (0,b) can be expanded in a Fourier-
Bessel series of the form

fle)=> aorx)  or  fl@)= dr(x),
k=1 k=1

52



where

1 b L
cp = WU/O f@)pp(x)x dv  and d = W/O f(@)e(z)z du.

The series above are convergent for all f € L2(0,b). One can prove some properties regarding
these series. For example, if f is piecewise smooth then Y%, cxop(z) and Y ;2 diyy(z) converge

to (f(z7) + f(7))/2.

Example 3.5. If {\; }ren are the positive zeros of Jy(z), and we define f(x) = 1forall0 < x < b,

we have
o0

flx) = ;Cﬂo </\kbx> ;

convergent in the norm of L2 (0,b), with w(x) = x. Since zJo(z) is the derivative of x.J;(x) by
formula (3.6]) (taking m = v = 1), and by substitution of & = bt/\, the coefficients are

2 b )\kx 2 b2 )\k
e R B A i e pm— By N (VW
Ci b2J1()\k-)2 /0 0 ( b ) xrax b2J1(>\k)2 )\z‘ /0 O( )
2 \ 2
_ O = —> keN.
aowe O = X500
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3.7 Exercises

1. Establish Lommel’s formula

2sinvm

Ju(2)J1—u(2) + J_p(2)Jy—1(2) =

v

Solution. By recurrence formulas (3.1)) and (3.2]),
v
Jovi(z) = =—J-u(z) = JL,(2)

and

Jyo1(z) = gJ,,(z) +J(2).

So equation ([3.26|) is equivalent to

) (=200 = IL2)) + 9-002) (S + Lf2)) = 2
= = T ()T (2) + Tu(2)JU(z) = 282:1?
— Wy, ) = QSi:ZW

2sin v 2sinvm
= — |- = :
TZ TZ

2. Let v € C. Prove the following identities.
/Z_V‘HJZ,(Z)dZ = 27", 4(2) 4+ C, C eC,
/z”“Jy(z)dz =2""1J,1(2) + D, D eC.

Solution. Recall recurrence formula (3.1)).

14

Juy1(2) = ;sz(z) — Jy(2)
= 2" (—vz7"" 0, (2) + 27V T (2))

R 0)
Therefore,
d
2y = —a[ziuju@)]-

Replacing v with v — 1 and integrating on each side,

d
/Z_V+1Jy+1dz _ /_dz[z—u—&-ljyl(z)]dz — _Z_V—HJl,,l(Z) +C, CeC.
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Similarly,

and consequently

Replacing v with v 4+ 1 and integrating,

d
/ 2 (2) = / [ ()] = 2 (2) + D, DeC.

. Use Exercise [2] to show that if v € C
/z”HL,(z)dz = 2", 0(2) + O, C, €C,

/z_”HL,(z)dz = z_”“L,,l(z) + Oy Cy eC.
Solution. Recall I,(z) = e ¥™/2],(iz). Then, making iz = w and using (3.28)),
/z’jﬂly(z)dz = /z”Jrle”m/sz(iz)dz
_ e—mri/Q(_i)(_i)l/—i-l /wu-i-ljy(w)dw
— 671/7ri/2(_i)11+2(w1/+1jy+1(w) —I-D)
_,L-e—mri/Q(_Z-w)u—i—ljqul(w) + D
= —ie VT, 1 (i2) + D
_ _izu+legief(u+1)7r/2jy+l(Z-Z) + D
— ef%ierri/QZquleJrl(z) + D

=2"""I,4(2)+ D', D,D eC.

Similarly, using (3.27]),
/z_”+lfy(z)dz = /z_”+1e_””i/2jy(iz)dz

= (—i)(—z’)”He””/Q/wVHJ,,(w)dw

(—i)(—’L')_V+1€_V7Ti/2(—w_y+1Jl,,l(’w) + C)
_ e%i+(_%””i)z_”+1J,,,1(iz) + '
— Z—y—o—le%(zx—l)ﬂ'i u—l(iz) +

=M, 1 (z)+C', O, C eC.
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Chapter 4

Applications of Bessel functions

In this chapter, we want to show some of the applications of Bessel functions in physics. They
are used to solve differential equations where Bessel’s equation arises. For example, if we take
the two-dimensional wave equation in polar coordinates studied in Section

u — A Au = uyy — c? (Urr + %u'r‘ + :Quee) =0,
we obtained the following equations,
T"(t) + AT (t) = 0,
Q"(#) 4+ *0(h) = 0,

r?R"(r) + rR'(r) + (u*r? — v*)R(r) = 0.

In order to solve the problem some boundary conditions must be satisfied. First, let us consider
the problem in the disc of radius b centered at the origin. We have boundary conditions at r = b.

e By definition of polar coordinates, ©(#) must be 2m-periodic. The solution of the equation
for © is
Acosvf + Bsinvf.

So if we apply the condition ©(0) = ©(27) to the solution, we get that A = Acos2mv +
Bsin 27y, This happens when v = n € Z, and since we can take it to be nonnegative due
to the constants A and B,

O(0) = Acosnf + Bsinnb, A, B eR, ne NU{0}.

e Regarding the equation for R(r), we have the generalization of Bessel’s equation (3.14)).
Moreover, we also have a boundary condition for R(r) at r = b of the type

BR(b) + B'R'(b) = 0.

This condition describes the wave at the boundary of our disc.
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Finally, since we want the solution to be defined at the origin, we forbid R(r) to blow up
at r = 0. Summing up, we get the functions studied in Section [3.6

R(r) = CJp(pr), C eR.

Actually, we have stated in Section[3.6]that there is a sequence of py, for which the boundary
conditions are satisfied, which are in fact the eigenvalues {u;}ien of problem (3.17)).

e For the equation of T, we have a homogeneus differential equation.

Solving the previous steps will give us a solution of the type

u(r,0,t) = Z (cnk cosnlb + dpx sinnb) Jy, (per)T'(t).
n,k>0

The initial condition 7'(0) will determine the coefficients ¢, and d.

Remark. In the previous series, an extra condition over O(f) can force n to be a particular
number, and therefore reduce the initial series to one with only one index.

4.1 Vibrations of a circular membrane

Let us solve the problem of the vibrations of a circular membrane, which consists on solving the
wave equation on the disc of radius b centered at the origin. This problem may be representing
the vibrations on a circular drum, whose boundary is attached to a frame.

Thus, we have the wave equation in a disc of radius b. Since the drum is attached to a
frame, the boundary of the disc does not vibrate, and therefore the boundary condition at » = b
is R(b) = 0. Besides that, we have, as always, the conditions of R being continuous at r = 0
and © being periodic. So, as mentioned in Section [1.3] applying separation of variables we get

equations (|1.13)), (1.14) and (1.15). So, as mentioned in the introduction, we get
O(0) = ¢, cosnb + d,, sinnb, Cn,dn € R

R(r) = CJp(pr) =CJ, (?) , C eR,

where n € N.
In the last identity, we have denoted u = A/b. Moreover, in the equation of T'(¢) we have

Act Act
T(t) = ay cos Tc + a9 sin 707 ai,as € R. (4.1)

Let {Ai 1 }ken be the positive zeros of J,(x). As we have seen in Section {In(Akn7/b) ke
is an orthogonal basis for L7, (0,b), where w(r) = r. Since {cosn8},enu(o} U{sinnf}nen is an or-
thogonal basis for L?(—m, 7), it follows that the products J,, (At 7 /b) cos nf and J,, (A ,7/b) sin nd
will form an orthogonal set of L2 (D), where

D={(r0)|0<r<b-r<6<m}, wrb)=r
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is, actually, the disc of radius b which we are working on, and the measure
w(r, 8)drdf = rdrdf = dxdy

is the Euclidean area measure.

Theorem 4.1. Let n € NU{0} and let {\;,}ren be the positive zeros of Jp(x). Then,

Men Ak.n )
{Jn< kl; T)cosn0|n20,k21}U{Jn< kl’) T) smn@n,kZl}

is an orthogonal basis for L?(D), where D is the disc of radius b about the origin.

Proof. Orthogonality can be checked evaluating the iterated integrals. The functions in the
set are of the type g;(r)hj(6), g; and h; forming orthogonal sets in L2 (0,b) and L*(—m,n),
respectively. Let us take two different functlons from the set, g;(r)h;(#) and gy (r)h;/(0). Then
i # i or j # j'. If we compute the integral in L?(D), due to the orthogonality previously
mentioned,

/Ob /_7; rgi(r)h;(0)gi (r)h; (0)dOdr = </0b gi(r)gi/(r)rdr> </_7; hj(@)hj/(ﬁ)(w) —

To prove that the set is complete, let us suppose we have f € L?(D) orthogonal to all the
functions J,,(Agn7/b) cosn® and Jy, (g n7/b) sinnf. Then

/ 7r(]“7’9717(

As a consequence,

> cos nfdfdr = 0, / f(r,0)rd, <)\ 2 r) sin nfdfdr = 0.

™ ™

f(r,0) cosnfdbdr, f(r,0) sinnfdodr

-7 -7

are orthogonal to J, (Akl’)ﬂ), for all k£, n. By completeness of this last function set, the integrals

must be zero. Thus, f is orthogonal to sinnf and cosnf , for all n. Therefore, by completeness
this time of the set of the functions sinnf and cosnf, it follows that f is zero. O

Now, we will try to solve the problem with initial conditions
U(T‘,Q,O) = f(ra H)a Ut(T,Q,O) =0

Recall the solution (4.1) of the equation for T'(¢). Since T"(0) = 0, ag = 0 and the general
solution of the problem is

An Ap.kCt
u(r, 0,t) ZZ (Cnk cosnl + dyp sinnb)J, ( b”) OS,TRC'
n=0 k=1
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We have to find ¢, and d,;.. On the one hand,
)\k nT

flr,0) =u(r,0,0) = Z Z(C"k cos nf + dy sinnf)J, < b ) : (4.2)

n=0 k=1

On the other hand, as we have an orthogonal basis of L?(D), we can expand f in terms of
the elements in the basis of Theorem [£.1l We also use the results in Theorem [3.4

An
ZZ (cng cos10 + iy sin ) J ( bkr> (4.3)
n=0 k=1
where the coefficients are
1
c ., = s In (A7 /b) cosnb),,
" e (Aenr/b) cosng,@(f (At /b) >
1 b pm e
= 2 / f(r,0)rdy, ( k, 7"> cosnbdfdr, n>0,k>1,
| Jn (Akn7/b) cos ||, . b
1
d ., = , In Ak /b) sinnf),,
T (A /b) sinnf||, (f, In (Aknr/0) )

A
! / f(r,0)rd, ( ) sinnfdfdr, n,k> 1.
||J (Aknr/b) SlnnHH _r b

But notice that using Theorem [3.4] for all n,k € N,

HJO )\k(ﬂ‘/b / / J() )\ko’l“/b

= 27 || Jo( Ao /0)||
_7Tb J1()\k0)) )

[T (Mg /b) cos nfl||?, / /7r < <A"“" >>20082n9 dfdr
_ (/0 r <Jn <)\kbnr>>2dr> (/icosznﬁ d9>

= [|Ja /D)5 7

= s )

17 (N /) sin ]2 / /7r ( <A’f“ >>2sin2n0 dodr
_ </0 . (Jn ()\kbnr>>2dr> (/_:sm%e d9>

= [|Jn Aot /D)[2 7
b2
5

JV+1(A]€,TL))27
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where || - ||, denotes the norm in L2(0,b) with v(r) = r. Then,

oo L /b i Fr, 0)rJ; AGOT Y oy
O = T2 (o) Jo SO

and for n > 1,

R /b i F(r,0)rJ, Abn” oo nfdbdr
2 g Men)? o ST b ’

d 2 / [ £ 0)rdy {2527 sin nodod
= - n in .
T2 Tt )2 Sy ST\ T ) PR
Equating (4.2) and (4.3),

Cnk = Chey  dpg = dbyy, n e NU{0},k € N.

4.2 The heat equation in polar coordinates

The heat equation in polar coordinates is, as seen in Section [1.3
1 1
u — KAu=u — K Upp + —Up + —5Ugp | -
r r

Notice that if we take the problem in the disc of radius b, we have exactly the same problem as
in Section 4.1 but now with
T'(t) + KpT(t) = 0.

The solutions for T, therefore, are changed to exponential functions, but the rest of the problem
remains the same. So we will solve a different problem. This time, we take it in the region

D={(r0)]0<r<b0<6<a},
where 0 < a < 2w. We are going to suppose, also, that the boundary is insulated. That means
ug(r,0,t) = ug(r, o, t) = u,(b,0,t) = 0.
So, again, separation of variables gives us
T'(t) + KuT(t) = 0, (4.4)
0"0)+1*00) =0, ©(0)=06'(a)=0

2R (r) +rR(r) + (u*r* — v*)R(r) = 0, R'(b) = 0, R does not blow up in r = 0.

First, let us consider the equation for ©. The solution is ©(6) = A cos v+ Bsin v, with A, B
constants. Taking the derivative, ©'(f) = —Avsinvé + Bvcosvf. Applying ©'(0) = 0, we get
0=0'(0) =vB =0, so B=0. The other boundary condition implies 0 = ©'(a) = —vAsinva
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and thus, v = n7/a.

Therefore, we get Bessel functions of order v = nw/a for R. Now, {\;,}ren denote the
positive zeros of J/ _ Jo (). Then, the boundary condition is satisfied when we take the set

e
“ b keN

These functions correspond to eigenvalues ui,n = (Agn/b)?. As we have seen in Theorem
(case (ii)), the set above is an orthogonal basis, except when n = 0. In this case we have to add
the constant function 1 = z° and the eigenvalue p = 0.

Finally, the solutions of equation (4.4]) are

ALKt
T(t) = Ce "’ Kt = Clexp <— k’g“? ) , C eR.

We also want to impose the condition u(r,8,0) = f(r,6). On the one hand, we expand f in
the form

oo [ee] A n
f(r,0) = apy + Z Za;ﬂw}%’f <kbr) cos (n;r0>, (4.5)

n=0 k=1

where a(y,al, € R, with n € NU {0} and k& € N. Using a similar argument to that in Theorem
this is possible. On the other hand, we try to find solutions of the type

oo 00 2
pYE nmh Men KT
u(r, 6,t) = ago + E E ankJ% < 2 > cos <a> exp (— 2 ,

n=0 k=1

where we have to determine coefficients agg, ank, with n € NU {0} and k € N. It follows that

F(r,0) = u(r,0,0) = agp + > Y appJuz (A’“g”"> cos <”ZH> . (4.6)

n=0 k=1

Comparing the coefficients in (4.5) and (4.6)),
agy = agy, Gpk = Ak, ne NU{0}, ke N.
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It is only left to calculate the coefficients agy, a) ,, where n € NU {0} and k € N.

w0 HlH Y
||1H / / f(r,0)rdr do,
o = ||J0()\k07“/b)|| 7 {f:Jo Aeor/0))
a b
o ()\kvor/b)Hfu/O /0 f(r,6)Jo (Akl’)or> rdr df,
! 1

app = 5 (f, Jox (Aur/b) cos(nmb /)
‘ Jnz (Agnr/b) cos(mr@/a)Hw

1 a rb A "
= 5 / / f(r,0)Jux ( k[’) r> cos <n7r9> rdr df.
’ I (Agpr/b) cos(mr&/a)” 0 Jo @
Notice that )
« b2
12 = / / rdrdd = -
o Jo 2
and using Theorem we find

2 “ Ao\ )
o Owar/e)IE = [ [ (o (P55) ) v as
0 0

= a[Jo (Aror/B)I;

|

2 [0} b )\ 2
Jox (Aknr/b) cos(mr&/a)H = / / (JTZr <kbn74>> cos? (7%;:0) rdr df
w 0o Jo
2

2
Juz (Aar /b) H

2|
ab? (AR, — (nm/a)?)

= : Jn7r « (A ,n) 27
4)\%11 ( / k )

where [|-||, is the norm of L2(0,b) with v(r) = r. Thus,

9 a b
apy = od)2/0 /0 f(r,0)rdr db,
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a 20 / / f(r,0)J
Ok = ab?(Mg0)2Jo(Ak0)? 0

and for n, k > 1.

42 0
ahy = b / / f(r,0)Jux () 08 (m )rdr de.
ab? [Ai,n — ( er (M) o

4.3 The Dirichlet problem in a cylinder

) rdr df, (k>1),

Finally, we consider the Dirichlet problem in the cylinder
D={(r0,z) |0<r<b 0<z<I}.

So we want to solve ) )
Uppr + —Up + — oo +uy, =0,
T T
u(r,0,0) = f(r,6),
u(r,0,1) = g(r,0),
u(b, 0, z) = h(0,z).

First, we will look for solutions when f = h =0 and g = g(r) is independent of 8. This case
can be easily generalised to g = g(r, ). The case when g = h = 0 can be done similarly. Finally,
we will analyse the case when f = g = 0. The sum of these solutions will give us the general
solution.

When f = h = 0 and since we take the conditions independent of #, we can assume the
solution is also independent of #, and we apply separation of variables to u(r,z) = R(r)Z(z).

Substituting in (1.17]), we get

R'(r)Z(z) + %R/(T)Z(Z) =—R(r)Z"(2).

Equivalently,
1 11 L, Z2"(z) 2
— - =— =— R.
R0 (R (r) + TR (r)) 70 pno e

As a consequence, we get the following equations:

2R (r) +rR(r) + p*r?R(z) =0,  R(b) =0,
7Z"(2) —pu*Z(z) =0,  Z(0)=0.

As we have seen, the eigenfunctions for the problem of R are Jy(Agr/b), where {\g}ren are
the positive zeros of Jy, and eigenvalues pu? = (A\;/b)?. The solutions to the equation of Z are

Z(z) = Asinh puz + B cosh puz, A, BeR
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and thus the corresponding solutions to Z with Z(0) = 0 are sinh (A;z/b). Hence,

u(r, z) = Zakjo (Ag?") sinh %
k=1

If we want the boundary condition at z = [ given by wu(r,0,1) = g(r) to be satisfied, we can
compute the Fourier-Bessel series of g(r)

or) = gf“o (%),

and equating the expressions for u(r,l) and g(r),

o0 o0

AT\ L ARl Akr
2K} inh 280 — M7
;ak%( 7 >sm 3 kZOCkJO( b >

Hence,
_ Ck
~ sinh (Agl/b)’
Now, we consider the case when f = g = 0. Again, we will assume h is independent

of 6. Thus, the solution u(r, z) will also be independent of . We try functions of the type
u(r,z) = R(r)Z(z), and we have the following equations

r2R"(r) + rR(r) + p*r*R(r) = 0,
Z"(2) —p2Z(2) =0,  Z(0)=Z(l)=0.
The equation for Z gives us again solutions of the type
Z(z) = Asinh pz, A e R,

but now we want g such that sin ul = 0. This implies ul = nmwi, where n € Z. Hence, we have
eigenvalues u such that p? = —(nm/l)? and therefore

Z(z) = Asin(nmz/l), AeR,
so the equation for R becomes
r2R"(r) + rR(r) — (nmwr/1)*R(r) = 0,

If we make the change of variable x = n7r/l, we get the modified Bessel’s equation of order zero.
It follows that the solution of the equation for R is

R(r) = Aly(nnr/l) + BKy(nmr/l), A, B eR.

Since Ky blows up at zero, B = 0. Therefore,
> nmwr nwz
) =D andy () sin .
u(r, 2) 2 anlo { = sin ]
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If we expand the condition u(b, z) = h(z) in a Fourier Sine series on [0, ], we get

where

9 l
a, = / h(z) sin 22 dz.,
A l

Hence, equating the expansions of u(b, z) and h(z),

1 2 [ nwz
w2 h(z)sin T2 e
“ Io(mrb/l)l/o (w) sin —=dz
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