Theoretical and experimental absorption spectra study of [(FeTPPbipy)\textsubscript{n}] by means of TD-DFT calculations

A. Fidalgo-Marijuana, G. Barandikab, B. Bazána, M. K. Urtiagaa, M. I. Arriortuaa

aDepartment of Mineralogy and Petrology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao (Spain)
bDepartment of Inorganic Chemistry, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Spain)

Iron metallocorphyrins are paradigmatic examples of nanodevices used by natural systems like haemoglobin or cytochromes in oxygen transport, electron transfer and catalysis.1 Therefore, they can be thought to be developed as MOFs for several applications, and the UV-Vis spectra of metallocorphyrins is a powerful tool to understand their electronic behaviour analyzing the typical Soret and Q bands.

In this work, we have characterised the UV-Vis spectrum of [(FeTPPbipy)\textsubscript{n}]\textsubscript{=} (TPP= meso-tetraphenylporphyrin, bipy= 4,4’-bipyridine) neutral radical from both experimental and theoretical point of view. The later has been carried out by means of Time Dependent-Density Functional Theory (TD-DFT) calculations.2

The interest of this compound lies on the presence of an unpaired electron per metallic centre that is delocalised on the phenyl groups of TPP. Moreover, the π-stacking of the crystal structure, is the crucial point on the behaviour of this compound.

Introduction

Experimental

![UV-Vis absorption spectrum](image)

A weak and broad band at 690 nm is in accordance with the presence of a porphyrinic radical.4

Theoretical

![Theoretical spectra](image)

Conclusions

- The blue shifted Soret band indicates the presence of a radical specie.
- The π-stacking along the crystal structure is the responsible of the electron pairing.
- An important charge transfer takes place between the phenyl groups and the metal centre of the porphyrin.

Acknowledgements

This work has been financially supported by the Ministerio de Ciencia e Innovación (MAT2010-15375) and the Gobierno Vasco (Basque University System Research Groups, IT-177-07), which we gratefully acknowledge. SGIker (UPV/EHU) technical support (MEC, GV/EJ, European Social Fund) is gratefully acknowledged. A. Fidalgo-Marijuan thanks the UPV/EHU fellowships.

References