Biomimetic catalysts based on metalloporphyrin MOFs
Arkaitz Fidalgo-Marijuan¹, Gotzone Barandika², Begoña Bazán¹, Miren Karmele Urtiaga¹, Edurne S. Larrea¹, Marta Iglesias³, Maria Isabel Arriortua¹

¹Department of Mineralogy and Petrology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
²Department of Chemistry, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
³Institute of Materials Science of Madrid-CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.

During the past years, a great effort has been devoted to the anchoring of catalysts into MOFs in order to achieve heterogeneous catalysts [1]. In this sense, an innovative approach consists on using metalloporphyrins as coordination-network synthons mimicking their natural catalytic activity in order to reproduce it in the solid state [2].

The work herein presented explores the activity of µ-O-[FeTCPP]₂·nDMF (TCPP= meso-tetracarboxyphenylporphyrin; n≈16) and [CoTPPS₀.₅(bipy)(H₂O)₂]·6H₂O [3] (TPPS= meso-tetrasulfonatophenylporphyrin, bipy= 4,4´-bipyridine) compounds as heterogeneous catalysts on oxidation and acetylation reactions of different organic substrates [4].

This work has been financially supported by the Ministerio de Ciencia e Innovación (MAT2010-15375), the Gobierno Vasco (Basque University System Research Groups, IT-630-13) and the UPV/EHU (UFI 11/15), which we gratefully acknowledge. Technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ESF) is gratefully acknowledged. A. Fidalgo-Marijuan thanks the UPV/EHU for funding.

References