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We review the appropriateness of using SNIa observations to detect potential signatures of anisotropic 
expansion in the Universe. We focus on Union2 and SNLS3 SNIa datasets and use the hemispherical 
comparison method to detect possible anisotropic features. Unlike some previous works where non-
diagonal elements of the covariance matrix were neglected, we use the full covariance matrix of the SNIa 
data, thus obtaining more realistic and not underestimated errors. As a matter of fact, the significance of 
previously claimed detections of a preferred direction in the Union2 dataset completely disappears once 
we include the effects of using the full covariance matrix. Moreover, we also find that such a preferred 
direction is aligned with the orthogonal direction of the SDSS observational plane and this suggests a 
clear indication that the SDSS subsample of the Union2 dataset introduces a significant bias, making the 
detected preferred direction unphysical. We thus find that current SNIa surveys are inappropriate to test 
anisotropic features due to their highly non-homogeneous angular distribution in the sky. In addition, 
after removal of the highest inhomogeneous sub-samples, the number of SNIa is too low. Finally, we 
take advantage of the particular distribution of SNLS SNIa sub-sample in the SNLS3 data set, in which 
the observations were taken along four different directions. We fit each direction independently and find 
consistent results at the 1σ level. Although the likelihoods peak at relatively different values of Ωm, the 
low number of data along each direction gives rise to large errors so that the likelihoods are sufficiently 
broad as to overlap within 1σ .

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recent results from the Planck mission [1] have strengthened 
the status of the �CDM model [2] as the standard cosmological 
model driving the dynamics of our Universe. This evidence should 
not be lightly assumed though, as the �CDM model implicitly 
requires the validity of a large number of assumptions: the Cos-
mological Principle [3], i.e., that our Universe is homogeneous and 
isotropic on sufficiently large scales; the full validity of General 
Relativity all the way up to the horizon scale; the existence of un-
known dark matter to grow structures via gravitational collapse; 
the presence of an unnaturally small cosmological constant, which 
drives the present acceleration of our Universe; and a nearly scale 
invariant Gaussian primordial spectrum of perturbations generated 
during an inflationary epoch in the early universe. Each of them 
might be individually questioned [4]. Among them, we will focus 
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here on the validity of the Cosmological Principle and analyze the 
possibility of detecting a certain amount of anisotropy by using 
SNIa observations.

Theoretically motivated models giving rise to a violation of 
the Cosmological Principle by inducing a late-time anisotropic ex-
pansion of the universe have been extensively considered in the 
literature. In [5], it was argued that the presence of large scale 
(homogeneous) magnetic fields [5] could induce a certain level of 
eccentricity in the universe expansion that might even solve the 
low CMB quadrupole problem. The same kind of anisotropic ex-
pansion can be achieved by assuming that the dark energy large 
scale rest frame might differ from that of radiation and/or matter, 
giving rise to a cosmology with moving fluids. Within this sce-
nario, the dipole acquires a cosmological contribution [6], the CMB 
quadrupole is also modified because the relative motion introduces 
a certain level of eccentricity [7] and large scale flows of mat-
ter are generated [8]. The possibility of having different large-scale 
frames for dark matter and dark energy has also been considered 
more recently in [9]. Another scenario with anisotropic expansion 
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was proposed in [10], where the effects of having an anisotropic 
cosmological constant was studied. More generally, models with 
anisotropic dark energy [11–14] or anisotropic curvature [15] have 
also been considered.

Most of the models leading to anisotropic expansion discussed 
in the previous paragraph make the universe metric be of the 
Bianchi I type, that is, the universe expands at different rates along 
the three spatial directions. Some of those models are character-
ized by the presence of a privileged direction, which is identified 
with the vector characterizing the model, direction of the magnetic 
field, direction of the relative motion between different species. 
In these cases, the metric is restricted to be of the axisymmet-
ric Bianchi I type in which the expansion rate along the privi-
leged axis differs from the expansion rate along the orthogonal 
directions. Of course, the amount of anisotropy that these mod-
els can generate while being compatible with the highly isotropic 
CMB is tightly constrained. The main effect comes from the In-
tegrated Sachs–Wolf effect, which is an accumulative effect from 
the last scattering surface until today. Thus, for models with 
a non-dynamical evolution of the eccentricity like models with 
anisotropic equation of state, such anisotropy is essentially con-
strained to be less than �10−4 [16]. However, if the source of 
anisotropy is dynamical or there are compensating effects, the con-
straints are less stringent. In fact, having a period of anisotropic ex-
pansion at low redshift would mainly affect the CMB quadrupole, 
which is affected by a large cosmic variance so that it has less con-
straining power than the higher multipoles.

Observations of SNIa have been proposed and used as probes 
of large scale anisotropies. One of the first attempts to constrain 
the isotropy of the universe by resorting to SNIa measurements 
was made in [17]. In [18] the luminosity-distance dipole from the 
SNIa distribution was analyzed and shown how to use it to obtain 
measurements of the Hubble expansion rate H(z). Higher multi-
poles and additional contributions to the luminosity distance were 
subsequently computed [19]. SNIa measurements have also been 
used to study the isotropy of the Hubble diagram [20], local bulk 
flows [21], the matter distribution [22] or the potential anisotropy 
of the deceleration parameter [23]. The possibility of constraining 
dark energy fluctuations by means of the luminosity distance was 
explored in [24]. In [25], a dipole-like distribution for dark en-
ergy was analyzed along with its possible correlation with the fine 
structure dipole. Also a dipole-like distribution was considered in 
[26], but applied to the luminosity distance with respect to the 
�CDM case. A fully Bayesian tool to search for systematic contam-
ination in SnIa data was developed in [27] and further extended, 
including searches for anisotropic signals, in [28].

In the present work we will revisit the constraints that can 
be obtained on the anisotropy of the universe from SNIa observa-
tions. We shall mainly follow the same approach as in [22] where 
the authors used a certain version of the hemispherical compar-
ison method to test the isotropy of the matter distribution at 
the background (homogeneous) level. We intend to refine their 
approach by including some influential subtleties concerning the 
SNIa observations. In particular, we show that including the full 
covariance matrix with the corresponding increase in the errors 
makes the significance of previously claimed preferred direction 
detections disappear. Moreover, we will show that such potential 
(although not statistically significant) preferred direction happens 
to be aligned with the orthogonal direction to the plane of obser-
vation of the SDSS subsamples, being an indication of its biased 
origin due to the particular observation strategy (i.e., of its highly 
clustered angular distribution along only four directions in the sky) 
of such a subsample.

The paper is organized as follows: in Section 2 we will describe 
the SNIa samples we have chosen for our analysis and their main 
properties; in Section 3 we will describe the original method we 
use to test the presence of anisotropic expansion and the main 
novelties we introduce; in Section 4 we apply our method to a set 
of simulated data with a known anisotropic distribution in order to 
test its validity; in Section 5 we finally show the results obtained 
from our analysis and in Section 6 we conclude by discussing our 
results.

2. SNIa data

This section will be devoted to introducing the SNIa datasets 
that we will use later on for our analysis. We will discuss the χ2

estimator to be used when using SNIa as well as some useful prop-
erties of our cosmological data sample which should be taken into 
account in order to obtain correct results.

The most updated SNIa samples so far are SNLS3 [29] provided 
by the SuperNova Legacy Survey team and Union2 [31] provided by 
the SuperNova Cosmology Project team. A newer collection of SNIa 
from the Union team is available and called Union2.1. It has 23
more SNIa with respect to its predecessor. However, we prefer to 
use the Union2 compilation in favor of making the comparison 
with older literature easier and more direct. Also, Union2.1 only 
adds ≈ 23 SNIa, so we expect their statistical weight for our anal-
ysis to be not very significant. There is also a recent compilation 
with 112 new SNIa provided by the Pan-STARRS1 Medium Deep 
Survey team [32], which we will not use because it has a non-
homogeneous angular distribution (see Table 1 from [32]), which 
makes it unsuitable for testing anisotropy. It is worth stressing 
here nevertheless that we aim to testing the suitability of current 
SNIa datasets to seek for anisotropic features and we do not intend 
to obtain the most updated constraints on them (since, as we will 
show, current datasets are actually unsuitable for that purpose).

2.1. Statistical background

The χ2 estimator for SNIa observations is generally defined as

χ2 = �F · C−1 · �F , (1)

where �F = Ftheo − Fobs is the difference between the observed 
and theoretical value of the observable quantity, F , and C−1 is 
the inverse of the covariance matrix. For the SNLS3 compilation, 
the observable quantity F will be the SNIa magnitude mmod for 
SNLS3, defined by

mmod = 5 log10
[
dL(z; ci)

] − α(s − 1) + βC +M. (2)

In this expression, the ci denote the set of cosmological parameters 
that are to be fitted, M is a nuisance parameter combining the 
Hubble constant H0 and the absolute magnitude of a fiducial SNIa 
and dL is the dimensionless luminosity distance:

dL(z, ci) = (1 + z)

z∫
0

dz′

E(z′, ci)
, (3)

with E(z) the dimensionless Hubble expansion function H(z, ci)/

H0.
The SNLS3 team also provides the full multidimensional co-

variance matrix with statistical and systematic errors for all the 
physical quantities involved in their analysis, assuming α and β as 
free fitting parameters:

Ĉ = σ 2
stat̂I + v̂0 + α2 v̂2

a + β2 v̂2
b + 2α v̂0a − 2β v̂0b − 2αβ v̂ab (4)

with
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Fig. 1. SNIa sky distribution in galactic longitude l and latitude b. Left panel. SNLS3 SNIa sample: light grey points are Low-z SNIa; and Hubble data set; black points are SDSS 
SNIa; numbers in bracket are SNLS3 SNIa pointing toward different directions of the sky. Right panel. Union2 SNIa sample: light grey points are from SDSS, SNLS and smaller 
sub-samples with a not-homogeneous distribution in the sky; black points constitute the cut Union2 sample and highlight sub-sample from the total Union2 data set which 
show a homogeneous distribution in the sky.
σ 2
stat = σ 2

mB + α2σ 2
st + β2σ 2

col + 2ασms − 2βσmC

− 2αβσsC + σ 2
int + σ 2

z + σ 2
pec (5)

the diagonal elements of the statistical errors, which are respec-
tively: errors on magnitude; errors on stretch; errors on color; 
correlations between magnitude and stretch, magnitude and col-
ors, stretch and colors; intrinsic dispersion errors; redshift errors; 
peculiar velocity errors; and: v̂0 the out-of-diagonal statistical and 
systematic errors on magnitude; ̂va the same for the stretch; ̂vb for 
the color; v̂0a for the correlation between magnitude and stretch; 
v̂0b for the correlation between magnitude and color; v̂ab for the 
correlation between stretch and color. In [29] it is also argued that 
a correlation between SNIa magnitude and the mass of the host 
galaxy might be present. To account for this effect, they propose to 
divide the total sample into two groups: SNIa whose host galaxy 
mass is <1010 M� and SNIa with galaxy mass >1010 M� . This 
division influences the definition of the χ2; see the appendix of 
[29] and the two M values marginalization formulae that we will 
adopt for SNLS3.

On the other hand, the Union2 compilation observable is the 
distance modulus μ, defined by

μ ≡ mmod − M = 5 log10
[
dL(z, ci)

] + μ0, (6)

where M is the absolute magnitude and μ0 is a nuisance pa-
rameter similar to SNLS3 parameter M. The main difference with 
SNLS3 is that the α and β parameters are fixed at a preliminary 
stage [31] and the given full covariance matrix does not depend 
on them. Union2 files lack of the necessary data to distinguish the 
two host galaxy mass families, so that we will use the one-M
value marginalization formulae in [29].

2.2. Angular distribution

Since the main aim of the present work is testing the isotropy 
of SNIa samples, it is important to perform a preliminary analy-
sis of the angular distribution of the samples that we are going to 
use. This is important since one could encounter cases with a false 
detection of a preferred direction in the universe, whose actual un-
derlying reason might be a non-homogeneous angular distribution 
of the sample. We also stress here that no tomographic analysis 
considering redshift distribution of SNIa will be performed in this 
work. Even if possible, it would reduce the number of SNIa data 
in each redshift bin, thus reducing the predictive power with too 
large errors on the cosmological parameters. We implicitly assume 
that the SNIa properties do not evolve throughout the expansion 
of the universe (at least for low redshifts where the SNIa are ob-
served), but studying redshift-dependences of intrinsic SNIa prop-
erties is beyond the scope of the present work. We also comment 
here in advance that the main problem (discussed in next sections) 
will be related to the angular distribution of SNIa in the Union2 
and SNLS3 datasets (mainly due to the fact that the SDSS sub-
sample only gives data along 4 specific directions in the sky).

The SNLS3 sample is made out of four smaller sub-samples 
from four different surveys [29]: Low-z, SDSS, SNLS and SNIa from 
the Hubble Telescope. In the left panel of Fig. 1 we show in galac-
tic coordinates the position of each SNIa in the sky, the longitude 
l and the latitude b. SNIa from Low-z and Hubble samples are 
shown in light grey; SDSS SNIa are shown in black; SNLS SNIa 
are identified by numbers in brackets. SDSS SNIa are distributed 
in the region scanned by the SDSS survey and specifically chosen 
for the supernova survey project [30]. On the other side, SNLS SNIa 
show a beam distribution: all (242) them are concentrated in four 
beams pointing toward different directions of the sky. Clearly, this 
is a counter intuitive property which makes them unsuitable to 
be used in our analysis (this was also pointed out in [20] where 
the authors referred to the very predecessor of this latest sam-
ple). However, this sample is specially suited for the approach 
suggested in [14], since one can determine the cosmological pa-
rameters along the four different directions independently. We will 
perform this analysis in Section 5.3.

In the right panel of Fig. 1 we show the Union2 sample distri-
bution in sky. It shares many objects in common with the SNLS3 
sample, but with the addition of many smaller sub-samples. We 
still have SDSS and SNLS sub-samples in it, clearly identified in 
light grey circles.

Based on these considerations, and in order to develop our 
analysis, we will perform our statistical study considering two 
samples: the total Union2 data set; and the so-called cut Union2 
one, which will correspond to the black points in Fig. 1. The cut
sample is obtained considering only sub-samples which show a
homogeneous distribution in space, so that, for example, SDSS, 
SNLS and others which have a peculiar angular distribution are 
not considered. The cut sample will be made of 226 SNIa, approxi-
mately the 40% of the total sample. The cut-criterium has not been 
arbitrarily chosen but it is well-motivated by the results we will 
show in next sections, essentially consisting in removing the highly 
inhomogeneous subsamples.
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Finally, we underline another important property of the SNIa 
distribution: the lack of observations in a narrow region about the 
galactic plane, clearly identified by the condition b = 0. Both SNLS3 
and Union2 data sets show a void in the region −15 � b � 15; this 
is a consequence of the obscuration from excessive stellar density 
in such direction, and it is a problem that cannot be overcome in 
any way in this case.

3. Hemispherical comparison method

This method was already used to look for asymmetries in the 
CMB in [33], where the hemispherical asymmetry anomaly was 
discovered. More recently, it has also been used to look for evi-
dences of anisotropic features in the Hubble diagram [20], whereas 
a different version of it was used in [22]. We will adopt the ap-
proach used in the latter.

The main idea behind it is to split the celestial sphere into 
two hemispheres and fit the corresponding cosmological data sets 
for each hemisphere independently. The two hemispheres are de-
termined by the corresponding equatorial plane identified, in our 
analysis, by the vector orthogonal to such a plane, with galactic 
longitude la and latitude ba . Then, one looks for the splitting that 
yields the maximum difference for the cosmological parameters of 
the best fit on each hemisphere. It is maybe convenient to stress 
that this method is simply designed to look for anisotropic fea-
tures within a given data set of cosmological observations, but it 
does not imply a direct link with the true universe model.

Obviously, this procedure will always give a maximum difference
direction, and one should study then the statistical significance of 
such detection as compared to the expected level of anisotropy in 
a pure isotropic model (that will always have some anisotropy due 
to statistical fluctuations). In [22], the authors fit the SNIa of each 
hemisphere to two independent �CDM models with vanishing spa-
tial curvature and two different matter density parameters. Then, 
they search for the direction that maximizes the quantity

�Ωm

Ωm
≡ 2

ΩN
m − Ω S

m

ΩN
m + Ω S

m
(7)

where ΩN,S
m correspond to the values of Ωm for the North and 

South hemispheres with respect to the chosen equatorial plane. 
This quantity can be interpreted as a normalized difference be-
tween both values of Ωm . In [22], the authors actually do not look 
for the maximum of this quantity. Instead, they generate a cer-
tain number of random directions in the sky (400 directions for 
the Union2 data set, with about 280 SNIa per hemisphere) and 
consider the maximum value of �Ωm

Ωm
among the random distri-

bution of generated directions. In this work we aim at revisiting 
this problem by making subtle methodological differences, which 
we describe and justify below, from which expectably more refined 
conclusions will emerge and which, why not, will perhaps eventu-
ally lead to different conclusions. Specifically, in this work we will 
consider the following points:

• We will assume that each hemisphere is well-described by a 
�CDM model, although they might have a different matter 
density, Ωm . Despite the availability of more complex cosmo-
logical models involving a larger number of theoretical param-
eters, this choice seems a reasonably minimal extension and 
appropriate for our purposes.

• The main difference from previous works (specially with [22]) 
will be the use of Monte Carlo Markov Chain (MCMC) methods 
for the statistical analysis. After having split the data into two 
hemispheres, we will not select a certain amount of random 
directions but, instead, we will use an MCMC method to ex-
plore the entire space parameter and to obtain an angular map 
of the χ2 function. Then, we will be able to conclude which 
is the preferred direction of anisotropy of our SNIa sample, if 
any.

We will minimize the χ2 estimator using MCMC methods and 
testing their convergence with the power spectrum algorithm de-
fined in [34]. In the case of the hemispherical comparison method, 
such an estimator is defined as explained in detail in the previous 
section with the following Hubble expansion rate:

E(z) =
{ [ΩN

m (1 + z)3 + (1 − ΩN
m )]1/2, if r̂ · r̂i > 0

[Ω S
m(1 + z)3 + (1 − Ω S

m)]1/2, if r̂ · r̂i < 0
(8)

where

r̂ = (cos la cos ba, sin la cos ba, sin ba)

r̂i = (cos li cos bi, sin li cos bi, sin bi), (9)

are the directions identifying the equatorial plane and the direc-
tions of each SNIa in the sample, respectively, with (l, b) the cor-
responding galactic coordinates. Of course, the �CDM model and 
spatial flatness are assumed in each hemisphere. This assumptions 
might be dropped and more general cases could be considered. 
The simplest step further could be the addition of an anisotropic 
dark energy equation of state parameter w [14], but this is out of 
the purpose of this work. Moreover, present data sets comprise too 
few SNIa already for the simplest case, so even poorer constraints 
will be obtained if we allow for additional free parameters.

It is worth to point out here that MCMC methods give us the 
possibility to easily implement priors on fitting parameters, if any 
physically well motivated reason is for them. In our analysis, we 
have left the cosmological parameters ΩN

m and Ω S
m free to span 

the range [0, 1] with no other requirement. On the other hand, the 
equatorial planes coordinates la and ba can be constrained to a cer-
tain range due to evident symmetries considerations; we chose the 
ranges 0◦ ≤ ba ≤ 90◦ and 0◦ ≤ la < 360◦ . This last point has to be 
investigated in detail, as long as we do not know the degree of 
suitability of MCMCs for such a test. The main parameters to be 
fit here will be the two cosmological values of Ωm , namely ΩN

m
and Ω S

m , and the two equatorial plane coordinates, i.e. la and ba . 
While it is well known the way ΩN

m and Ω S
m are related to obser-

vations and theory, this is not the same for the equatorial plane 
coordinates. ΩN

m and Ω S
m are smoothly varying quantities, in the 

sense that χ2 varies smoothly when they are changed; on the other 
hand, a change in la and ba might not be related to a change in χ2

for a given dataset. Depending on the spatial distribution of SNIa, 
there are voids in the SNIa distribution because of the few num-
ber of SNIa available for the whole sky, so that any value of la and 
ba in that range would give the same result. In other words, for 
changes in (la, ba) such that the number of supernovae on each 
hemisphere remains the same, χ2 will not vary.

If we wanted to perform an analysis similar to [22], we should 
use MCMC to minimize χ2 in each random direction as the au-
thors do; but this would not bring any novelty to the topic. Here 
instead, we let the MCMC explore freely all the parameter space, 
obtaining a full-sky angular χ2 distribution, from which we can 
derive the probability distributions of all the theoretical parame-
ters involved. In other words, even if the MCMC will jump in a 
discrete way from one point to another, it will be the closest-to-
continuous exploration method of the space parameter that can be 
realized in a non-hardware/time consuming effort. Notice that the 
MCMC will allow to refine the search as much as necessary.
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Table 1
MCMC results.

Mock I: known anisotropy vs homogeneous angular distribution

Mock (ΩN
m − 1σ ,ΩN

m + 1σ) (Ω S
m − 1σ ,Ω S

m + 1σ) (la − 1σ , la + 1σ) (ba − 1σ ,ba + 1σ)

total diag (I) (0.520,0.586) (0.064,0.099) (133.81◦,138.01◦) (26.43◦,27.64◦)
total cov (I) (0.479,0.581) (0.048,0.098) (133.62◦,137.51◦) (26.49◦,27.62◦)
cut cov (I) (0.509,0.744) (0.041,0.154) (121.64◦,147.97◦) (22.64◦,39.95◦)

Real data: unknown anisotropy vs real angular distribution

Real (ΩN
m − 1σ ,ΩN

m + 1σ) (Ω S
m − 1σ ,Ω S

m + 1σ) (la − 1σ , la + 1σ) (ba − 1σ ,ba + 1σ)

tot diag (0.239,0.287) (0.257,0.310) (0◦,360◦) (0◦,90◦)
tot cov (0.215,0.313) (0.251,0.354) (0◦,360◦) (0◦,90◦)
cut cov (0.208,0.302) (0.363,0.550) (132.16◦,152.84◦) (26.39◦,27.83◦)
As a further difference with previous works in the literature, 
we will use the full statistical plus systematic non-diagonal co-
variance matrix error for SNIa. As we will show, this will impact 
crucially the corresponding findings. In [22] each hemisphere was 
independently fitted, i.e., the total χ2 was obtained as the sum of 
the two independent contributions obtained for each hemisphere 
χ2

full sky = χ2
north + χ2

south. This approach was possible because the 
considered covariance matrix was diagonal, thus allowing the sep-
aration of the χ2 in the northern and southern terms so that min-
imization of each one can be independently performed. However, 
the use of only diagonal terms of statistical errors is well-known 
to produce a large underestimation of errors on cosmological pa-
rameters (up to ≈70%, see [29]) and might also produce a bias 
in the detection of an eventual anisotropy. Moreover, the indepen-
dent fit of each hemisphere is not strictly correct, because another 
well-known effect is that SNIa are strongly correlated with each 
other thus resulting in a non-diagonal covariance matrix, which 
will play a crucial role for the significance of possible anisotropic 
features. Finally, in [22], the parameter used to define the 1σ con-
fidence levels of the equatorial plane direction is strongly related 
to the errors on cosmological parameters (see their Eq. (2.11)). It is 
thus clear that any larger contribution to such errors will produce 
larger errors for the equatorial plane coordinates, and so a less es-
tablished detection of anisotropy. Having stablished the main lines 
of revision we continue to describe the setup still following the 
mentioned main references.

4. Analysis: preliminary tests

Prior to the application of the method to real data, we will first 
study and assess the following relevant aspects:

• Suitability of MCMCs for anisotropy detection.
• Degradation in the anisotropy signal due to the use of the full 

covariance matrix error.
• Degradation in the anisotropy signal due to galactic plane.

The first point to be addressed is whether the use of MCMC 
is effectively suitable to look for a certain level of anisotropy in 
the SNIa distribution. For that, before using real SNIa data sets, 
we will apply our algorithm to a set of simulated data with a ho-
mogeneous distribution in the sky data set of supernovae. We will 
endorse this simulated data with a known anisotropic signal as fol-
lows: We will demand a preferred direction determined by r̂ and 
given by the equatorial plane galactic coordinates la = 136.84◦ and 
ba = 27.07◦ . This plane came out as the preferential plane when 
the MCMC analysis was applied to the cut Union2 sample when 
the full covariance matrix error is used (see following sections). 
Then, we generate a homogeneous set of random vectors r̂i that 
will give the distribution of the SNIa in the sky. With this distribu-
tion, we confer each SNIa a distance modulus following the �CDM 
model given in Eq. (8), where we chose ΩN
m = 0.5 and Ω S

m = 0.1, 
and assuming that the Hubble constant is H0 = 72 km s−1 Mpc−1. 
All the other quantities needed, namely, redshifts and covariance 
matrix errors, are assumed to be exactly equal to those of the real 
Union2 dataset.

Another issue that we want to study is the following. Given that 
our galaxy prevents us from having observations of SNIa near the 
galactic plane (or, equivalently, a lack of data points around that 
plane with respect to the rest of the sky) we want to explore also 
whether the absence of SNIa data in the region near the galac-
tic equator can introduce a potential bias or not. In particular, if 
the anisotropy happens to be aligned with the galactic plane, this 
will certainly contribute to increase the errors in the position of 
the preferred axis. To study this effect we will use the mock SNIa 
sample described above and will remove all the SNIa in the range 
−10◦ < b < 10◦ around the galactic plane, and we will redistribute 
them outside that band.

Results are in Table 1. We compare three cases:

1. the total mock Union2 sample with homogeneous distribution 
and diagonal-only errors (named mock total diag (I));

2. the total mock Union2 sample with homogeneous distribution 
and full covariance matrix (named mock total cov (I));

3. the cut mock Union2 sample with homogeneous distribu-
tion, the galactic plane cut applied, and full covariance matrix 
(named mock cut cov (I))

We can point out the following results:

• A homogeneously distributed sample is, of course, the perfect 
ideal case for a clear detection of an anisotropy signal.

• A more important point is that the MCMC method reveals 
to be fully suitable for our scopes: In all the cases consid-
ered the direction and the amount (different Ωm values) of 
the anisotropy signal are quite clearly detected. We note, how-
ever, that even in this case there is an obvious degradation 
of the anisotropy signal, intrinsically due to the dispersion of 
data and to the observational errors. Indeed, such a degrada-
tion will make the detection in real data not very statistically 
significant.

• The use of diagonal-only errors or of the full covariance matrix 
influences only the amount of anisotropy, not its direction. We 
can easily see that the 1σ confidence interval for ΩN

m and Ω S
m

is ≈ 65% larger than the diagonal-only errors case when the 
full covariance matrix errors is used.

• The direction of anisotropy is much more related to the num-
ber of SNIa included in the sample. This is clearly shown by 
comparing the total (557 SNIa) and the cut (226 SNIa) cases. 
We note that the cut sample is derived assuming the lack of 
SNIa around the galactic plane too. Thus, less SNIa and the ob-
servational void around the galactic plane can: double the 1σ



J. Beltrán Jiménez et al. / Physics Letters B 741 (2015) 168–177 173
Fig. 2. Real Union2 with diagonal-only errors: projection of χ2 vs galactic longitude (left) and latitude (right) from MCMC (top) and regular grid (bottom).
confidence interval of ΩN
m and Ω S

m; and enlarge the 1σ con-
fidence interval of equatorial plane coordinates, la and ba , of 
≈10 times.

5. Analysis: results

Now that we have proved the suitability of the MCMC method 
by applying it to simulated data, we shall turn to real data. We 
shall first look at the Union2 compilation. We have applied the 
hemispherical comparison method and run a series of MCMC 
chains to obtain the best fit in three cases:

1. the total real Union2 sample with diagonal-only errors as in 
[22] (named real total diag);

2. the total real Union2 sample with full covariance matrix 
(named real total cov);

3. the cut real Union2 sample with full covariance matrix (named 
real cut cov);

For each one of the previous cases, we have also performed an 
analysis similar to [22]: we have chosen 400 directions, and found 
for the ΩN

m and Ω S
m values which minimize the χ2 function. As 

main differences with [22] we have:

• built a regular grid of direction instead of choosing random 
directions. The coordinates have a grid step of 9◦ both in l
and b. It would certainly be more appropriate to build a grid 
such that all sky cells have the same area. However, we have 
chosen a step-size such that we do not expect big differences 
between both ways of building the grid;
• minimized the total χ2, instead of minimizing the north and 
south χ2 independently.

This has to be considered as a consistency test: by comparing 
MCMC results and the grid ones, we can test if and in what they 
differ, or not. Results are quite interesting and are shown in Figs. 2, 
3 and 4. We should remind here the main difference between the 
two methods. When using the grid, we minimize the χ2 with re-
spect to ΩN

m and Ω S
m for each direction and, consequently, in the 

corresponding figures we plot the best χ2 values for each chosen 
direction (i.e. fixing ΩN

m and Ω S
m at the found best fit values). On 

the contrary, the MCMC shows us the full angular dependence of 
the χ2 function, and the values in the figures could not correspond 
to the best χ2 values for each depicted coordinates set. In some 
sense, the information from MCMC is more complete and detailed 
because we perform a full exploration of the spatial variation of 
the χ2.

5.1. Total sample cases

We can easily check by visual inspection, how MCMC repro-
duces at a very high accuracy the grid results, as a further con-
firmation of its goodness. With respect to the grid method, the 
MCMC have the improved feature of a complete span of the full 
parameter space. This feature eliminates the doubts about whether 
the number of grid/random directions is enough or not for the 
statistical analysis. In some cases we can also check one clear 
improvement from using MCMC: it finds some set of preferred pa-
rameters which cannot be analyzed by the grid method, neither 
with a regular grid or a random directions selection, as in [22]. 
Finally, it gives a direct and straightforward system to derive er-
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Fig. 3. Real Union2 with total covariance matrix: projection of χ2 vs galactic longitude (left) and latitude (right) from MCMC (top) and regular grid (bottom).
rors on all the parameters involved in the analysis, as they can be 
extracted directly from the MCMC outputs.

Concerning the case of diagonal-only errors, Fig. 2, we can see 
how the direction corresponding to the minimum of χ2 is slightly 
different from the one corresponding to the maximum anisotropy 
parameter |�Ωm|: the former corresponding to the plane identi-
fied by coordinates (144◦, 27◦), the latter to (315◦, 27◦). This last 
direction is very close to the one identified in [22] (differences 
arise only from the randomness versus regular grid choices we 
have used), but it is not statistically preferred, as its χ2 is not the 
best found. Thus, assuming this as the anisotropy axis is doubt-
ful. Moreover, when moving to the total covariance error matrix, 
Fig. 3, we see how this direction now disappears, while a new one, 
namely (202◦, 9◦), is present. The MCMC confirms these directions, 
giving also a more complete sketch of the remaining parameter 
space.

The two cases, diagonal-only and full covariance matrix, also 
share a common property: in both of them, there is a direction 
which results to be associated with very low values of the χ2. It 
corresponds approximately to l ≈ (122◦–128◦) and b ≈ (16◦–27◦). 
These values might have to be considered with more attention be-
cause they correspond to the SDSS observational plane. We show 
it in Fig. 5: the plane described above is in red, while the SDSS 
SNeIa are shown as black points. The correspondence between the 
two is strikingly evident, and it is only slightly weakened when 
using the total covariance matrix for the higher error budget con-
sidered. If we think that the SDSS are approximately the 23% of the 
total sample, and are highly clustered, they might be considered as 
an intrinsic strong bias in this analysis.

Finally, by looking at Table 1 and at the very close values of 
the χ2 shown in Figs. 2 and 3, we can see that in the total diag
and the total cov cases, no anisotropy is found, neither for what 
concerns its amount (ΩN

m and Ω S
m are perfectly consistent) nor for 

its direction (no preferred axis is found). This is not in conflict with 
results in [22] if we consider that errors on Ωm are approximately 
double when moving from a diagonal to a full covariance matrix. 
In [22], using diagonal errors, it is argued that there is not a clear 
evidence for anisotropy. With a full covariance matrix we can here 
assess that no anisotropy is found at all.

5.2. Cut sample cases

There seems to be a clear evidence that the statistical analysis 
using the full Union2 sample is dominated by the SDSS subset, 
aligned with SDSS scanning direction, and that such a subset is 
introducing a strong bias in the best fits. This is the reason for 
defining the cut sample, where SDSS and SNLS SNeIa are removed 
in order to have a more homogeneous distribution of supernovae. 
This might help to assess more clearly for a detected anisotropy, 
even though the cut in the number of data will inevitably degrade 
the signal (if any), as we have shown in the preliminary analysis 
with mock data.

Effectively, working with the cut sample and the full covari-
ance matrix gives much more interesting hints (see last row of 
Table 1). In that case we found an anisotropic signal in terms of 
both amount and direction. First, we wish to point out a quite 
clearly defined difference in the Ωm values: the minimum in χ2

corresponds approximately to ΩN
m ≈ 0.25 for the north pole, and 

Ω S
m ≈ 0.55 for the south pole. Furthermore, we are also able to find 

an anisotropy direction, namely the orientation of the anisotropy-
equatorial plane: la = 137◦ and ba = 27◦ . In Fig. 6 we show the 
χ2 full-sky distribution when a N = 800-cells grid is considered. 
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Fig. 4. Real cut Union2 with diagonal-only errors: projection of χ2 vs galactic longitude (left) and latitude (right) from MCMC (top) and regular grid (bottom).
Fig. 5. This plot shows the distribution of SNIa from the Union2 compilation in the 
sky. The red circle and arrow represent respectively the anisotropy-equatorial plane 
and the orthogonal direction to such a plane with galactic coordinates la = 122◦
and ba = 27◦ from the real diag Union2 analysis. Black points are SNIa from the 
SDSS sample; light gray points are SNIa from other sub-samples in the Union2 data 
set. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 6. Full-sky �χ2 map. A grid with 800 cells is considered; the spacing is 18◦in 
la (horizontal axis) and 2.25◦ in ba (vertical axis). Blue corresponds to �χ2 = 0; red 
to �χ2 = 25. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Unfortunately, the low number of data left after the cut does not 
allow to give a high statistical significance to such a detection.

5.3. SNLS3 fits

Finally, we also consider the SNLS3 SNIa for our analysis. As we 
have discussed, their angular distribution can be seen as a paradig-
matic badly suited sample for testing isotropy on full-sky ranges. 
But their interesting feature of being aligned along four directions 
makes them a specially suitable dataset to look for deviations with 
respect to isotropy in a scanning mode, in a way as the one sug-
gested in [14] to be the optimal manner. However, we have to keep 
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Fig. 7. Here we show the likelihoods for Ωm as obtained from the four different beams of the SNLS3 compilation. We observe no significant tension between them.
in mind that the number of SNIa in each beam is still quite low 
and a large error should be expected. In any case, this is a very in-
teresting pattern that could be very useful for isotropy tests like 
the one performed here if a higher number of supernovae is de-
tected along each direction in future observations.

We have applied a line-of-sight approach to this compilation of 
SNIa by independently fitting the supernovae of each beam search-
ing for a possible direction-dependent change in Ωm . The results 
are shown in Fig. 7. We do not find any significant deviation from 
isotropy, but only a small evidence for possibly different values 
of Ωm:

Ω
〈1〉
m = 0.368+0.129

−0.103

Ω
〈2〉
m = 0.186+0.145

−0.101

Ω
〈3〉
m = 0.245+0.046

−0.042

Ω
〈4〉
m = 0.225+0.041

−0.038.

The likelihoods of two of the beams (3, 4) peak at Ωm values 
which are very similar to each other, but the peak values for 
the other two are quite dissimilar: one is rather higher (1) and 
the other rather lower (2). However, the low number of SNIa 
(≈60 SNeIa in each beam) makes the likelihoods be sufficiently 
wide as to overlap at the 1σ level. But it is not to be discarded 
that in the future, with more SNeIa, one could perhaps be able to 
obtain stronger and more stringent constraints (or not).

6. Conclusions

In this work we have presented some new updated results 
when searching for an anisotropy signal using SNIa measurements. 
We have used the hemispherical comparison method consisting 
on fitting opposite hemispheres with independent �CDM mod-
els with the aim of finding an anisotropic distribution of Ωm . We 
have used the Union2 compilation throughout our analysis. Unlike 
some previous studies, we have considered the full covariance ma-
trix for the SNIa errors and found that it plays a very important 
role. In fact, considering the full matrix introduces larger errors 
than those obtained when using only the diagonal errors. Thus, 
previously reported detections of anisotropy in SNIa observations 
go away completely when introducing the existing correlated er-
rors. Moreover, we have used MCMC method, which implies a full 
detailed angular mapping of the χ2 function, allowing to discard 
possible false minima that could affect the grid or random orien-
tations methods. Our result is in agreement with those in [28], 
where no significant indication of hemispherical anisotropy was 
found. Moreover, we have shown that the particular alignment of 
the SDSS SNIa seems to introduce a strong bias when searching for 
anisotropic features. On the other hand, we have used the SNLS3 
data and have taken advantage of its very special distribution with 
the SNIa lying along four different directions. We have then fitted 
each direction to an independent �CDM model and have obtained 
the corresponding matter density parameters. Although the four 
directions yield likelihoods overlapping at the 1σ level, we have 
found that two of the directions give likelihoods that peak at quite 
different values of Ωm . However, the low number of SNIa in each 
direction does not allow to draw any significant conclusion.
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