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Abstract—Nowadays, Power grids are critical infrastructures
on which everything else relies, and their correct behavior is
of the highest priority. New smart devices are being deployed
to be able to manage and control power grids more efficiently
and avoid instability. However, the deployment of such smart
devices like Phasor Measurement Units (PMU) and Phasor
Data Concentrators (PDC), open new opportunities for cyber
attackers to exploit network vulnerabilities. If a PDC is
compromised, all data coming from PMUs to that PDC is lost,
reducing network observability.

Our approach to solve this problem is to develop an
Intrusion detection System (IDS) in a Software-defined net-
work (SDN). allowing the IDS system to detect compromised
devices and use that information as an input for a self-healing
SDN controller, which redirects the data of the PMUs to a
new, uncompromised PDC, maintaining the maximum possible
network observability at every moment.

During this research, we have successfully implemented Self-
healing in an example network with an SDN controller based on
Ryu controller. We have also assessed intrinsic vulnerabilities
of Wide Area Management Systems (WAMS) and SCADA
networks, and developed some rules for the Intrusion Detec-
tion system which specifically protect vulnerabilities of these
networks.

The integration of the IDS and the SDN controller was also
successful.
To achieve this goal, the first steps will be to implement
an existing Self-healing SDN controller and assess intrinsic
vulnerabilities of Wide Area Measurement Systems (WAMS)
and SCADA networks. After that, we will integrate the Ryu
controller with Snort, and create the Snort rules that are
specific for SCADA or WAMS systems and protocols.

Keywords—Intrusion Detection System (IDS), Software-
Defined Networking (SDN), Cybersecurity, Phasor Data Con-
centrator (PDC), Phasor Measurement Unit (PMU), Wide Area
Measurement System (WAMS), SCADA.

I. INTRODUCTION

Nowadays, power grids are evolving and a new kind of
smart power grid is being deployed in wide-area monitoring
systems. In order to collect data from the grid, phasor
measurement units (PMUs) are being installed. These
devices are able to perform multiple measurements such as
estimating the state of the grid, detecting and preventing
power line outage etc.[1]
The measurements collected by PMUs are then delivered
to a phasor data concentrator (PDC), which acts as

an aggregator, receiving data from multiple PMUs and
combining it before sending it to a higher level in the
hierarchy, either a higher level PDC or directly the control
center. The resulting system can be thought of as a
hierarchical tree, with the control center at the top of the
tree and the PMUs as the final elements or leaves.
The addition of intelligent devices to power grids has its
own advantages and disadvantages:

• Advantages:
◦ A smart grid will generally be much more effi-

cient
◦ Makes the grid easier to control
◦ improves the speed of the response in case of

failure.

• Disadvantages:
◦ Every time you add smart, connected devices,

this creates new vulnerabilities.
◦ Adding smart devices such as PMUs creates the

opportunity for cyber-attackers to interfere with
the network.

◦ Some recent studies show that PMUs and
PDCs can be targeted by denial-of-service and
man-in-the-middle attacks [2], [3].

A. Problem Statement

If a device is compromised or disconnected, part of the
system will not be monitored, affecting the estimations
and reducing the ability to detect anomalies in the power
grid. This can lead to undetected failures in the system.
This project will attempt to solve this problem by using
an SDN-based self-healing network. In this context, the
problem can be divided into two sub-problems:

1) The first issue is the detection of compromised
devices. In order to use a self-healing mechanism,
first the compromised device must be detected and
isolated, to stop further infection if possible. To
achieve this, we want to implement an intrusion
detection system (IDS). This can be done by using
Snort combined with the SDN controller. More
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information on this can be found in Section III of
this paper.

2) The second phase involves the self-healing of the
network. In case the compromised device is a
PMU, this is not too critical, because it is only
one monitoring device that will fail to collect data.
But if a PDC is compromised, all data sent to it
by multiple PMUs will be lost. In order to collect
that data, the traffic can be rerouted to another
PDC. Specifically, an integer linear programming
(ILP) model found in previous research is used
to jointly minimize the overhead of re-configuring
the communications network while considering the
constraint of its hardware resources, such as the size
of the forwarding table in switches. [4]

B. Similarities between WAMS and SCADA networks
For further research, it should be noted that we consider

SCADA and WAMS networks to be equivalent, because the
architecture behind them is really similar. For that reason,
the solution given in this project may be developed for
SCADA instead of WAMS depending on available resources
and compatibility of the controllers and IDS mechanisms.

C. Network architecture
The network architecture of WAMSs can be seen in

the image below. Several PMUs are logically connected
to a single PDC,although they do not have to be directly
connected, but there may be several switches between them.
The PDC is also connected to either the control center or a
next level PDC.
SCADA architecture has the same kind of architecture
were multiple devices gather information and then send
it to a higher level device, and they use a Master-slave
communication system. In the SCADA architecture, it is
normally PLCs that act as the analogue of the PMUs in
WAMS. These PLCs act as slaves, and they are controlled
my a Master which sends the control messages.

The remainder of this paper is organized as follows. Sec-
tion II discusses relevant contributions by previous research.
Section III discusses our research approach, including the
different steps in our plan and examining the most challeng-
ing parts of this project. Section IV shows our results up
to this moment, and section V gives our conclusions on the
topic.

II. RESEARCH APPROACH

This section describes how we are focusing our research
approach, and gives an introduction on each step. After
reviewing the previous work in this field, we are ready to
plan our line of research. This project will have several
progressive phases, each one building on top of each other,
apart from the first one which can be done in parallel with
the rest of them. We believe this approach will have certain
challenges that will be also addressed at the end of this
section.

Fig. 1. WAMS network

A. Implementation of Self-Healing SDN Controller
This first phase addresses the need to implement the self-

healing app for the Ryu controller proposed by [4]. At
this moment, we have been able to replicate the solution
via a hard-coded controller with limited functionality. We
intend to extend this controller and add all the different
functionalities and steps proposed in this previous work:
recover observability first, and then maximize this observ-
ability by recovering all the remaining disconnected PMUs.
In order to do so, we will solve the currently existing
optimization problem for optimal reroute. Finally, we will
evaluate our results in Mininet, a software platform for SDN,
to demonstrate the self-healing mechanisms in a simulated
network system.

B. SCADA/WAMS Protocol Study
SCADA Systems and Wide Area Measurement Systems

(WAMS) share some specific similarities that can make our
solution suitable for both architectures:

1) SCADA Systems monitor field instruments via
Remote Terminal Units (RTU), while WAMS
Systems make readings through Phasor Measurement
Units (PMU).

2) Both architectures share data aggregators (Nodes in
SCADA and Phasor Data Concentrators (PDC) in
WAMS ), which are used to combine the different
measurements and send them to the next level
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aggregator or control center.

However, SCADA and WAMS Systems differ in the
amount and characteristics of data they monitor. On the one
hand, SCADA usually has asynchronous information every
few seconds. On the other hand, WAMS requires synchro-
nization and reads every few milliseconds. Nevertheless, this
fact does not suppose any mishaps in our work, since the
preprocessor will potentially monitor the network the same
way in both architectures.

This is the main reason why one of our first steps will be
a deep study in SCADA and WAMS protocols, concretely
Modbus and DNP3 for SCADA, and C37.118-2005 for
WAMS. After we understand this protocols correctly, we
will be able to complete the next phase.

C. Vulnerability Assessment
The next natural step to take is make a vulnerability

assessment for SCADA and WAMS Systems. As we men-
tioned previously, there are already some works on this
field that will set up the antecedents for this phase. We
intend to provide a detailed study on these technologies, also
focusing on the challenges that the addition of Software-
Defined Networking can bring to the picture. The result of
this vulnerability assessment will represent the starting point
for our Intrusion Detection System rules’ development.

D. Find a suitable Preprocessor
Preprocessors allow the functionality of Snort to be ex-

tended significantly. They can be used to either examine
packets for suspicious activity or modify packets so that the
detection engine can properly interpret them. Preprocessors
are indispensable in discovering non-signature-based attacks,
and they are responsible of normalizing traffic so that the
detection engine can accurately match signatures. Another
functionality worth mentioning is the ability to defeat attacks
that attempt to evade Snort’s detection engine by manipulat-
ing traffic patterns. Therefore, the preprocessor will be a key
part of our system. It is important to conduct an extensive
research in this area and try to identify the most suitable
for our solution. Currently, the two main contributors to this
field are Digital Bond (with a DNP3 preprocessor for Snort),
and Cisco (with both Modbus and DNP3 solutions).

E. Ryu - Snort Integration
One of the most significant components of our novel

approach is the combination of an SDN controller with an
IDS. Due to previous works in this area, we have chosen Ryu
as SDN controller and Snort as Intrusion Detection System.
Ryu is a lightweight, component-based SDN framework that
provides a well defined API that allows developers to create
new network management and control applications. Snort is
an open source IDS capable of real-time traffic analysis and
packet logging.

Once the integration phase is completed, it will be tested
with a simple controller application in a single-switch topol-
ogy before starting the next development phase.

F. Snort Rules Development
This phase consists on developing specific Snort rules

taking into account the expertise gained from the previous
steps: the vulnerability assessment will allow us to specify
certain rules to be checked, and the preprocessor will in-
crease the functionality of the IDS running coordinately with
the SDN controller. This work comprises the last design and
development phase, prior to the final tests and evaluation of
results.

G. Evaluation and Results
Finally, after all development phases have been com-

pleted, we will evaluate the performance of the proposed
solution in terms of speed and accuracy. To do this, we
will simulate an scenario on Mininet with the necessary
SDN controller and IDS application. Additional results on
scalability or impact in the network performance could be
provided.

H. Challenges
It is worth mentioning a few challenges that we think we

might encounter during this research project:

• Ryu-Snort integration: Even though there are already
some works in this area, we believe that this step
can be one of the most time consuming, both in the
system work and testing work. Trying to integrate
this two technologies in Power Grid networks is a
novel approach and difficulties will arise.

• Vulnerability Assessment: SCADA and WAMS
protocols have been less studied than the classic
Internet protocols, which means that less architectural
vulnerabilities have been discovered. This fact will
put as in a more difficult position to determine a
trustworthy, extensive list of vulnerabilities.

• IDS Rules: Due to our lack of expertise and previous
work in this area, this can be another potential
challenge in our research. In order to pave the way,
we’ll start training with classic protocol rules, so we
can understand better how IDS systems work.

III. RELATED WORKS

There is some previous research about IDS in this kind
of networks, especially in SCADA networks. In the paper
”Industrial Cybersecurity for power system and SCADA
networks”[5], the authors present an interesting high level
analysis of the possible vulnerabilities and threats affecting
a power plant environment, including information about
commonly used devices and a discussion about intrinsic
vulnerabilities of power plants.
There is more interesting research about security in
SCADA networks in the paper ”Security Strategies for
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Scada Networks”, where two different strategies are
described to defend SCADA networks, and outlining some
vulnerabilities that should be improve in order to secure this
kind of architectures. The problem in these environments
is usually that many of the communication protocols used
in industrial environments (e.g. Modbus, DNP3 etc.) where
not designed with security considerations in mind.
There are some interesting research papers about these
protocols too, including one aiming to correct the
vulnerabilities in DNP3.In the paper ”Distributed Network
Protocol Security (DNPSec) security framework” the
authors present an extension to the protocol DNP3 which
solves some of the vulnerabilities found in this protocol,
adding Integrity,Authentication, non-repudiation etc.[7]

The use of classical ICT security countermeasures in order
to protect the process network and the field network of a
SCADA system have been proven inadequate [8], [9].
Traditional firewalls are usually unable to detect attack pat-
terns specifically designed to exploit SCADA vulnerabilities,
since most of this protocols are coded at application level
and run over the TCP/IP communication stack.
Although it is true that Cisco started developing a prototype
of Netfilter module with the ability to perform filtering
analysis on single Modbus packets [10], this kind of mech-
anism can only detect malicious packets in the network, but
is unable to identify complex attack where multiple licit
commands are injected by an attacker in order to drive the
system to unstable behaviors.

Most SCADA systems were originally designed for serial
communication, when security was not a relevant factor
for these control systems. These protocols (e.g. Modbus,
DNP3), have then been ported to the application level to
run over the classical TCP/IP protocol stack, introducing
more complexity for the management of reliable delivery
of control packets with strong real time constraints, and has
introduced new vulnerabilities against cyber-attacks. Some
of this vulnerabilities are:

• No integrity guaranteed: These protocols do not
perform any kind of integrity checks on the control
packets sent between master and slave, allowing easy
alteration of the packets.

• No authentication: Anyone claiming to be the
‘Master’ can send commands to the slaves, because
there are no authentication mechanisms.

• No anti-replay mechanisms

This makes it easy for attackers to perform several kinds of
attacks such as [12]:

• Unauthorized execution of commands: Anyone who
gains access to the network can send control messages
to operate the slave devices

• DOS attack: Attackers can also forge meaningless
Modbus/DNP3 packets,impersonating the Master, and
consume all the resources.

• MITM-attacks: The fact that there is no integrity
mechanism makes it easy for attackers to manipulate
messages

• Replay attacks: There is no mechanism to repel this
kind of attack either, so these systems are vulnerable
to malicious replayed control messages.

All the previously discussed papers focus on the intrusion
detection, but not on the self-healing part of our project.Self-
healing in PMU networks can be achieved by exploiting the
features of software-defined networking (SDN) to achieve
resiliency against cyber-attacks [4]. Once a compromised
device is detected, the switches in the network will be re-
configure to isolate it and maintain connectivity of the PMUs
with one PDC, ensuring the observability of the system.
This can be done with integer linear programming (ILP)
model to minimize the overhead of the self-healing, with
the constraints of power system observability, hardware
resources, and network topology[4].

IV. VULNERABILITY ASSESSMENT

This section contains a thorough vulnerability assessment
on WASM networks. This is a important part of our investi-
gation, as it will provide the base on which the Snort Rules
will be designed. The section is structured as follows: first, a
brief introduction to the PMU protocol IEEE C37.118 allows
the reader to understand the architecture and particularities
of this protocol. Then, a set of vulnerabilities on this protocol
are given, along with examples and possible outcomes from
their exploits.

A. Background on IEEE C37.118
Although several standards and protocols support the

WAMS infrastructure communications, we will focus on
the latest version of the PMU/PDC protocol, IEEE C37.118
[13]. The main reason is that our protocol focuses on self
healing compromised PMUs, therefore, we must analyze the
protocol directly involved with this kind of devices.

IEEE C37.118 substituted on 1998 the previous IEEE
1344 synchrophasor protocol for PMUs. The main objective
of IEEE C37.118 is improve the previous protocol as well as
define clearly the format of data transmitted from PMU to
PDC. In short, we can say that IEEE C37.118 is a protocol
that defines synchrophasor data conventions, measurement
accuracies and communication formats.

Thus, IEEE C37.118 introduces 4 different frames:

• Command: The contents of this frame if binary
information that contains particular actions within the
WAMS network. It is received by a PDC or PMU in
order to perform a given action, and it is always sent
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hierarchically from a PCD to a lower level PDC or
PMU.

• Configuration: This binary frame contains the
information and processing parameters of the PMU
(e.g. phasor, frequency, number of analog values,
conversion factors).

• Data: Containing only binary data as well, it provides
information regarding the phasor data, frequency,
estimates, etc.

• Header: The only header written on ASCII, thus,
human readable. It contains information about
the PMU, the source of the data, algorithms and
other related information that can be useful for the
administrator.

B. Vulnerabilities of IEEE C37.118

IEEE C37.118 does not support authentication,
confidentiality or integrity on its own. If it is not combined
with other security measures, it can lead to potential exploits
that can compromise critical infrastructure networks. Some
of the vulnerabilities that we have identified are:

• Packet analysis. TCP/IP packets sent from PMUs
are clearly susceptible to eavesdropping and later
analysis. Simple sniffing software could allow
attackers to analyze traffic across the network if not
encryption is used. For example, [15] uses Wireshark
[16] to analyze packets in synchrophasor networks
and found that they were being sent in plain text.
One possible countermeasure is encrypting traffic
end-to-end between PMU and PDC, with techniques
like VPN tunneling via SSL/TLS [15]. However, we
cannot forget that this solutions also have well-known
vulnerabilities. These vulnerabilities will not be
covered in this paper due to its limited extension,
but there is a large amount of literature on the topic.
Another possible countermeasures are analyzed on
[22].

• Packet injection. In this possible attack, the attacker
would send packets from a compromised device in
the network to other PMUs or PDCs. This packets
can contain instructions that can jeopardize the
visibility of the system, or induce the PMUs to
stop taking measurements. Furthermore, an attacker
could be capable of injecting code or shell code to
send malicious instructions to an existing database
management system [17]. Finally, it would also be
possible to insert wrong data in the network spoofing
a PMU and hijack the readings. Previous works in
this attack include [18], which injects false data into
the system, and [19], in which researchers are able to

spoof GPS time stamps of the measurements.

• Man in the Middle Attacks. This attack is one of
the most extended, and PMU networks are not an
exception. In the WAMS architecture, the attacker is
positioned between PDC and PMU, making the PDC
think that it is talking to the PMU and vice versa.
This attack can result in compromised certificates.
One clear countermeasure is provide authentication
from client to server. Other works [20] suggest
that with few extra PMUs, bad data detection and
identification capability of a given system can be
drastically improved.

• Denial of Service. Denial of Service (DoS) attacks are
focused on exhausting the resources of their victims
(e.g. CPU, bandwidth, memory) to prevent it from
working correctly. This is critical in WAMS networks,
since there is a great loss in visibility and control.
There are multiple techniques [21] to achieve denial
of service, here we will mention a few of them:
◦ ICMP Smurf: The attacker spoofs the victim’s

IP address on the sender field and sends ICMP
requests to multiple hosts that will reply to the
victim, overwhelming its resources.

◦ Fuzzing: This attack is based on the creation of
random network packets with incorrect values in
its fields, which can crash applications, services
and soft rebooting due to the protocol mutations.

◦ DDoS: The attacker is in control of a large
amount of machines (bots), that can send ICMP
packets to a victim with enough frequency to
take it down.

Feasible countermeasures can be the inclusion
of filtering routers, disable IP broadcasting, and
performing intrusion detection, which will be covered
in the next section of the document.

• Physical Attacks. This last type of vulnerability lies
within the physical aspect instead of the information
security world, but it is also important noticing that
these attacks can have catastrophic consequences.
Unauthorized access to critical infrastructure can lead
to the manipulation of the PMU or the injection of
devices in otherwise safe networks.

V. MININET AND SDN CONTROLLER

In order to develop and experiment with the controller of a
Software-Defined Network, there are two aspects to choose:
• The testing environment: There are several network

simulation tools, although Mininet seems to be the
simplest and best choice for an SDN network.

• The Controller: There are several open-source SDN
controllers that can be used for this task, like NOX,
POX, Floodlight, Ryu etc.
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A. mininet

Mininet has been chosen as the proper environment to
test the self-healing in a software defined network, because
it it allows you to easily interact with your network using
the Mininet client, customize it, or even deploy it on
real hardware. Mininet is a very useful for development,
learning and research. It is a reliable way to develop and
experiment with OpenFlow and Software-Defined networks
and is released under a permissive BSD Open Source license.

B. SDN controller

There are multiple options among open-source SDN con-
trollers. Here we give a short list of their characteristics.
• NOX: It was the first highly popular OpenFlow

controller. It was not heavily implemented primarily
because NOX is programmed primarily in C++ and
lacks good documentation. It supports OpenFlow 1.0
only.

• POX: It was NOX’s successor, and has an easier
development environment to work with and a
reasonably well written API and documentation. It
is written in Python, which typically shortens its
experimental and developmental cycles. It supports
OpenFlow 1.0 only.

• Ryu: It is similar to POX, but developed
independently. Ryu provides software components
with well defined API that make it simple to develop
new network applications. It is also written in Python,
and supports Openflow versions 1.0, 1.1, 1.2, 1.3,
1.4, 1.5 and the Nicira extensions.

• Floodlight: This one was a Fork from a previous
controller ‘Beacon’. It is written in Java, has a
good documentation and a better performance than
the other controller mentioned, but is not easy to
develop and also lacks the support for later OpenFlow
versions (just OpenFlow 1.0)

In the following table you can see a summary of their
characteristics.

TABLE I. COMPARISON OF SDN CONTROLLERS

NOX POX Ryu Floodlight

Language C++ Python Python JAVA

Distributed No No Yes Yes

Openflow
version 1.0 1.0 1.0-1.5 +

Nicira versions 1.0

Learning
curve Moderate Easy Moderate Steep

Performance Good Medium Medium Good

In this research, the performance of the controller is not
the highest priority, as the objective is to test self-healing
algorithms in SDN networks and to integrate this with an
Intrusion detection System. This is the reason Floodlight is
not a good choice, as it is programmed in Java and has a
steep learning curve.
Support for later versions is a desirable feature for future
testing and development. For the previously stated reasons,
we find Ryu to be the best fit for our project, as it provides
a good API and good documentation, is written in Python,
which makes it easy to develop, and supports multiple
versions of OpenFlow.

VI. SNORT INTEGRATION

This section explains the SDN - Snort integration in our
solution. It is divided in four subsections: first, we introduce
a brief background on Snort and its rules; then, the final
proposed architecture is presented; next, a set of rules is
given as an example of this integration; and, finally, we
discuss the benefits and drawbacks of this solution.

A. Snort IDS
SNORT is a popular open source Network Intrusion

Detection System (NIDS) created by Martin Roesch in 1998.
It is capable of performing real-time traffic analysis and
packet logging on IP networks. There are three different
operational modes available:

1) Sniffer: read network packets and display them on
terminal.

2) Packet logger: log packets to the disk.

3) Network Intrusion Detection: analyze traffic against
a rule set defined by the user.

The Network Intrusion Detection mode is the most suit-
able one for our solution, since we will run Snort as a NIDS
monitoring several network interfaces. This will allow us to
analyze traffic from PMUs to PDCs (and from PDCs to other
top-level PDCs), and check it against a rule set specifically
designed for PMU networks.

In Snort, rules are defined as strings of plain text com-
posed of different parts (e.g. action, protocol, source and
destination IP addresses, source and destination ports, and
message and rule options for administrators). This flexibility
is one of the main reasons why we chose Snort: we can
easily develop rules for any protocol if we understand its
architecture and vulnerabilities correctly.

B. Architecture
The architecture of this integration comprises one of

the most important decisions of this solution. We have to
analyze all the possible alternatives, both with advantages
and disadvantages, in order to pick the most suitable one. We
must analyze the architecture from two levels of perspective:
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the first one, within the general PMU network, while the
second one will address the device-level architecture.

When it comes to the design of the network architecture,
there are two options to take into account:

• Centralized architecture. This architecture would per-
form a single Snort instance monitoring all the net-
work interfaces at once in one of the central switches.
To achieve this, we need to perform port mirroring
from all the switches in the network to an interface
that will be sniffed by the Snort IDS.
The information collected by Snort will be sent to
the controller via one of the two options that will be
analyzed later.
The main advantage of this solution is the fact that
the maintenance and set up will be easier as we just
need to take care of one Snort instance. However, a
centralized architecture will have a worse scalability
and possible bottlenecks if the traffic scales as well,
as the amount of traffic can surpass the network
capacity in the monitored interface.

• Distributed architecture. On the other hand, a dis-
tributed architecture will perform multiple instances
of Snort monitoring each one of the ‘network units’
composed by a PDC, the PMUs directly dependent on
it, and the switch connecting the previous mentioned
devices.
In this case, Snort will monitor one interface of the
switch that will have the rest traffic mirrored to it,
making sure that we sniff all the packets in the
network (we could just monitor the PDC, but we will
lose a possible attempt of communication between
PDCs, which should not happen under normal condi-
tions). It is also worth noticing that we could simplify
this architecture into monitoring only in the central
switches of the network, instead of every single one
of them, and then add more Snort instances as the
network scales.
However, this is not the objective of this research, and
we will focus on the simple distributed architecture.
The main advantage of this solution is the better
scalability against the centralized one. Nevertheless,
this architecture is more complex and prone to errors.

We have decided that the distributed architecture is
the best for our needs, especially due to its scalability.
After this technical decision, it is time to evaluate how the
interaction between the Ryu controller and the Snort IDS
will be performed. Again, we have two different options in
this level of design:

• Deploy Ryu and Snort on the same machine. This
option is more suitable for quick demos or tests.
In this architecture, Ryu would receive Snort alerts
packets via the Unix Domain Socket.

• Deploy Ryu and Snort on different machines. This
option, on the other hand, has a better performance
due to the large computational power that Snorts
requires for analyzing packets. Ryu would receive
Snort alerts packets via a Network Socket in this case.

We have decided that the most suitable solution is to
run Ryu and Snort on different machines. We can see the
proposed architecture in Fig. [2].

Fig. 2. Proposed architecture for the Ryu-Snort integration

The functionality is straightforward: in order to monitor
packets between any hosts, Ryu will install the corre-
sponding flows to mirror the packets to Snort, where the
preprocessing and rule checking will take place. In case one
of these rules is broken, Snort will send alerts to the SDN
controller. After that, the controller application will decide
how to proceed with the network self-healing process while
keeping maximum observability.

C. Rules Development

One of the perks of integrating Snort with SDN is the
flexibility that its rules offer. With a set of fine tuned
rules, we can alert Ryu of several exploit attempts and act
in consequence, either installing new SDN rules for the
corresponding flows or starting the self-healing process if a
PMU is compromised, for example. In this subsection we
introduce a couple of rules as an example of how we can
benefit of IDSs on SDN environments.

For example, we can write the following rules in order
to alert the controller that a DoS attack is taking place in
the network:
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alert tcp any any -> $PDCIP any (msg:"Syn Flood to
PDC"; flags:S,CE; flow:to_server;
detection_filter: track by_src, count 500,
seconds 1; priority:5; sid:1000001;)

alert tcp any any -> $PMUIP any (msg:‘Syn Flood to
PMU’; flags:S,CE; flow:to_server;
detection_filter: track by_src, count 500,
seconds 1; priority:5; sid:1000001;)

Specifically, the previous first rule will alert Ryu when
any TCP connections from any IP address and any port
with destination any port of the PDC surpass the rate of
500 packets per second, considered enough to interrupt
the service of this network element. In the same way, the
second rule will perform the an identical alert when the
victim is any PMU.

This is just an example on how a simple rule can help
detect and avoid a serious vulnerability. Literature on this
topic is really scarce, but we can point out the work on
developing rules against fuzzing attacks on [14].

There are multiple rules we can use for the Snort
preprocessor in case we want to protect SCADA systems
with Modbus or DNP3 protocols.

Suppose your network contains a DNP3 sensor device.
In this scenario, the master station usually polls the device
to read data, but it rarely sends any write requests to the
device, as its normal operation is to send data to the master.
If a write request is issued, this should be informed, as
it may be an attack (or just legitimate behavior, but still
anomalous). To inform of such an activity, you could use
the following rule:

alert tcp $EXTERNAL_NET any -> $MY_SENSOR 20000 (
msg:"WRITE REQUEST ON THE DNP3 SENSOR!"; flow:
established,to_server; dnp3_func:write; sid
:1000000;)

The previous rule would alert if a DNP3 Write request
is seen going towards ”MY SENSOR”. If Snort is running
inline, these requests can even be blocked.

You can see an example below:

drop tcp !$MASTER any -> $MY_SENSOR 20000 ( msg:"
DNP3 Restart command received not originating
from Master device’s IP address, It has been
dropped fro security reasons"; flow:
established,to_server; dnp3_func:cold_restart;
sid:1000001;)

The previous rules is an example of how to make Snort
automatically discard any packets. In this case, it will
specifically drop packets containing a DNP3 command
forcing a cold restart if it does not have the Master station’s
IP address as the source of the packet.

Snort is a very useful tool that makes it very easy to
develop new rules, and is very flexible, making it a great
choice as an Intrusion Detection System for our purpose.

D. Conclusions

We can extract a few conclusions about the integration of
Snort in SDN networks:

• There is no perfect solution. In the design process
we needed to overcome a few decisions regarding
the architecture of our solution. Our election is not
always optimal, but we believe is the most suitable
one for our needs and requirements.

• The flexibility of Snort allows us to check for intrusion
detections or generate alerts for other vulnerabilities
in our system while keeping the benefits of SDN: data
and control plane independence, ease of management,
better network granularity.

• Additionally, SDN also benefits traditional IDS
systems by adding that centralized view of the
network provided by the controller, thus solving
the management difficulties when we have multiple
NIDS instances.

VII. EXPERIMENTS

As mentioned before, the Snort IDS could either be
integrated into the same device as the controller or run on
a different machine. Below you can see both possibilities
represented.

Fig. 3. SDN with Ryu and Snort IDS in separate machines
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Fig. 4. SDN with Snort IDS integrated in the Ryu controller

We decided to use the second version for simplicity,
as combining the Snort IDS and the controller gives an
easier view of the network. It also avoids extra traffic
exchanged between the IDS and the controller, because both
are integrated into only one device.
In the following subsection we describe the topology used
in the mininet environment to test the integration of Snort
and Ryu.

A. mininet scenario

In the following picture you can have a glance at the
network used in our tests, this is a screenshot from miniedit,
the GUI tool developed for mininet.

Fig. 5. mininet topology

The scenario shown in the above figure in miniedit is a
simple PMU network consisting of:

• Controller: Ryu+ Snort IDS

• 4 backbone switches

• Multiple edge switches

• Each edge switch has a PDC connected

• Each edge switch has one or more PMUs connected

• Every PMU is assigned to a PDC, and traffic is only
possible between PMUs and their assigned PDCs

B. Running the complete network
To simulate the network, several processes must be

launched. The following steps have been taken to simulate
the network:
• Run miniedit

• Load topology and run the network

• Wait for the network to be loaded into mininet. Start
the developed controller which integrates Ryu and
Snort IDS

Before testing the full network, the Ryu controller was tested
independently in order to verify the correct operation of
the controller and check the self-healing properties of the
network. Once this is fully working, the Snort IDS can be
run in the network, and exchange information with the Ryu
controller.
• Start the Snort monitoring process

• At this point, everything is running in the same
network, Snort IDS and Ryu are integrated into the
controller

VIII. RESULTS AND ANALYSIS

Using the sample network presented in the previous sec-
tion, we tried to implement some Snort rules to validate the
correct functioning of the implementation. In the following
example we show some sample results taken from the tests.
A rule was implemented to alert every time a ping was
performed between a PDC and a PMU.

Fig. 6. mininet topology

This alert is triggered by the following simple Snort rule:
alert icmp any any -> any any (msg:"Pinging...";

sid:1000004;)
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If we use a more specific rule, like blocking unwanted
traffic trying to access the PMU from an external address,
we can get a message like this:

Fig. 7. mininet topology

This would happen with an access attempt from an
IP address outside the network 10.0.0.0/24 (in this case
10.0.2.1) if you use a rule like this:

alert ![10.0.0.0/24] any -> [10.0.0.0/24] 1111 (
msg:" UNWANTED CONNECTION.";sid:1000005;)

After a real threat is detected, if the anomalous behavior
comes from an internal device, it would be disconnected and
isolated, and if it is a PDC, the PMUs previously connected
to it would be redirected to a nearby PDC.

Fig. 8. mininet topology

Here you can see the compromised PDC is ”PDC1”, so
it was isolated. The controller checks which PMUs were
sending its traffic to PDC1, and perform a self-healing
algorithm to redirect their traffic to a nearby PDC, in this
case PDC4.

The results of the tests are promising. The results combine
success in different areas.
• First of all, Snort was deployed on the SDN Network

and some rules have been successfully tested to
produce alerts.

• The Self-healing mechanism has been tested and is
working properly on the Ryu controller

• We were able to successfully integrate Snort and
Ryu into the same network.In our test scenario we
only tried to integrate Ryu and Snort into the same
machine, but separating them into two different
devices would be really similar, bu can prove to be

more useful in a real environment were performance
is key.

The custom Ryu controller integrating Snort successfully
detected anomalies, leading to the disconnection of misbe-
having PDCs, which can be marked as out of service.
Traffic from PMUs with destination to the compromised
PDC will be redirected to a nearby PDC, allowing the
network to self heal and maintain 100% observability, which
is key in these critical networks.

IX. CONCLUSIONS

In this project we have presented an innovative approach
to Intrusion Detection Systems in SCADA and WAMS
Systems. This mechanism is supported by previous works
in this area, which have been explained in Section II.

We believe that we have been able to successfully face
the challenges that appeared in the design and development
phases.
The developed system combines the strengths of two already
existing technologies: the Ryu SDN controller and Snort,
a widespread IDS open-source software. After monitoring
the network and checking for the rules established, the IDS
sends the corresponding alerts to the controller self-healing
application.

The integration of Snort Intrusion Detection system with
the Ryu SDN controller has proven to be successful in our
experiments.

The use of this technology in critical infrastructure net-
works could possibly avoid some vulnerabilities these sys-
tems currently have, and protect the system against malicious
traffic or cyber-attacks.

The combination of an Intrusion Detection system and
an SDN network may prove very effective as it combines
the flexibility and control advantages Software-Defined Net-
working bring on the table, while avoiding some of the
vulnerabilities these networks have.

We believe this could lead to great improvements in
efficiency and security for sensor networks.

X. FUTURE WORKS

In this research project we have focused on the following
topics:
• Implementation of self-healing in a ‘PMU-like’ SDN

Network

• Implementation of the Intrusion Detection System
Snort in an SDN Network

• Research on Snort Rules for PMU networks

• Integration of the Intrusion Detection System with
the self-healing controller

Although we did integrate the self-healing controller and
the Snort IDS into the same network, and we used a



CS-558: FINAL REPORT, MAY 2016 11

sample PMU architecture, we did not use actual PMU host
emulators, and therefore could not test the specific Snort
rules for these environments. This would be a nice addition
to the project.
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XI. APPENDIX 1: MININET NETWORK

1 # ! / u s r / b i n / py thon
2
3 from m i n i n e t . n e t i m p o r t M i n i n e t
4 from m i n i n e t . node i m p o r t C o n t r o l l e r , R e m o t e C o n t r o l l e r , OVSCont ro l l e r
5 from m i n i n e t . node i m p o r t CPULimitedHost , Host , Node
6 from m i n i n e t . node i m p o r t OVSKernelSwitch , Use rSwi t ch
7 from m i n i n e t . node i m p o r t IVSSwitch
8 from m i n i n e t . c l i i m p o r t CLI
9 from m i n i n e t . l o g i m p o r t s e tLogLeve l , i n f o

10 from m i n i n e t . l i n k i m p o r t TCLink , I n t f
11 from s u b p r o c e s s i m p o r t c a l l
12
13 d e f myNetwork ( ) :
14
15 n e t = M i n i n e t ( t opo =None ,
16 b u i l d = F a l s e ,
17 ipB as e = ’ 1 0 . 0 . 0 . 0 / 8 ’ )
18
19 i n f o ( ’∗∗∗ Adding c o n t r o l l e r \n ’ )
20 c0= n e t . a d d C o n t r o l l e r ( name= ’ c0 ’ ,
21 c o n t r o l l e r = R e m o t e C o n t r o l l e r ,
22 i p = ’ 1 2 7 . 0 . 0 . 1 ’ ,
23 p r o t o c o l = ’ tcp ’ ,
24 p o r t =6633)
25
26 i n f o ( ’∗∗∗ Add s w i t c h e s \n ’ )
27 s17 = n e t . addSwi tch ( ’ s17 ’ , c l s =OVSKernelSwitch )
28 s15 = n e t . addSwi tch ( ’ s15 ’ , c l s =OVSKernelSwitch )
29 s20 = n e t . addSwi tch ( ’ s20 ’ , c l s =OVSKernelSwitch )
30 s19 = n e t . addSwi tch ( ’ s19 ’ , c l s =OVSKernelSwitch )
31 s16 = n e t . addSwi tch ( ’ s16 ’ , c l s =OVSKernelSwitch )
32 s3 = n e t . addSwi tch ( ’ s3 ’ , c l s =OVSKernelSwitch )
33 s4 = n e t . addSwi tch ( ’ s4 ’ , c l s =OVSKernelSwitch )
34 s7 = n e t . addSwi tch ( ’ s7 ’ , c l s =OVSKernelSwitch )
35 s6 = n e t . addSwi tch ( ’ s6 ’ , c l s =OVSKernelSwitch )
36 s11 = n e t . addSwi tch ( ’ s11 ’ , c l s =OVSKernelSwitch )
37 s9 = n e t . addSwi tch ( ’ s9 ’ , c l s =OVSKernelSwitch )
38 s8 = n e t . addSwi tch ( ’ s8 ’ , c l s =OVSKernelSwitch )
39 s12 = n e t . addSwi tch ( ’ s12 ’ , c l s =OVSKernelSwitch )
40 s13 = n e t . addSwi tch ( ’ s13 ’ , c l s =OVSKernelSwitch )
41 s18 = n e t . addSwi tch ( ’ s18 ’ , c l s =OVSKernelSwitch )
42 s1 = n e t . addSwi tch ( ’ s1 ’ , c l s =OVSKernelSwitch )
43 s14 = n e t . addSwi tch ( ’ s14 ’ , c l s =OVSKernelSwitch )
44 s5 = n e t . addSwi tch ( ’ s5 ’ , c l s =OVSKernelSwitch )
45 s10 = n e t . addSwi tch ( ’ s10 ’ , c l s =OVSKernelSwitch )
46 s2 = n e t . addSwi tch ( ’ s2 ’ , c l s =OVSKernelSwitch )
47
48 i n f o ( ’∗∗∗ Add h o s t s \n ’ )
49 pmu9 = n e t . addHost ( ’ pmu9 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 5 ’ , d e f a u l t R o u t e =None )
50 pmu12 = n e t . addHost ( ’ pmu12 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 8 ’ , d e f a u l t R o u t e =None )
51 pdc3 = n e t . addHost ( ’ pdc3 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 ’ , d e f a u l t R o u t e =None )
52 pdc11 = n e t . addHost ( ’ pdc11 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 1 ’ , d e f a u l t R o u t e =None )
53 pdc12 = n e t . addHost ( ’ pdc12 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 2 ’ , d e f a u l t R o u t e =None )
54 pmu27 = n e t . addHost ( ’ pmu27 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 4 3 ’ , d e f a u l t R o u t e =None )
55 pdc8 = n e t . addHost ( ’ pdc8 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 8 ’ , d e f a u l t R o u t e =None )
56 pmu14 = n e t . addHost ( ’ pmu14 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 0 ’ , d e f a u l t R o u t e =None )
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57 pmu19 = n e t . addHost ( ’ pmu19 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 5 ’ , d e f a u l t R o u t e =None )
58 pdc15 = n e t . addHost ( ’ pdc15 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 5 ’ , d e f a u l t R o u t e =None )
59 pdc4 = n e t . addHost ( ’ pdc4 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 4 ’ , d e f a u l t R o u t e =None )
60 pmu22 = n e t . addHost ( ’ pmu22 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 8 ’ , d e f a u l t R o u t e =None )
61 pdc5 = n e t . addHost ( ’ pdc5 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 5 ’ , d e f a u l t R o u t e =None )
62 pmu5 = n e t . addHost ( ’ pmu5 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 1 ’ , d e f a u l t R o u t e =None )
63 pmu10 = n e t . addHost ( ’ pmu10 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 6 ’ , d e f a u l t R o u t e =None )
64 pmu4 = n e t . addHost ( ’ pmu4 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 0 ’ , d e f a u l t R o u t e =None )
65 pmu25 = n e t . addHost ( ’ pmu25 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 4 1 ’ , d e f a u l t R o u t e =None )
66 pmu13 = n e t . addHost ( ’ pmu13 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 9 ’ , d e f a u l t R o u t e =None )
67 pdc9 = n e t . addHost ( ’ pdc9 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 9 ’ , d e f a u l t R o u t e =None )
68 pmu17 = n e t . addHost ( ’ pmu17 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 3 ’ , d e f a u l t R o u t e =None )
69 pmu28 = n e t . addHost ( ’ pmu28 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 4 4 ’ , d e f a u l t R o u t e =None )
70 pmu6 = n e t . addHost ( ’ pmu6 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 2 ’ , d e f a u l t R o u t e =None )
71 pdc6 = n e t . addHost ( ’ pdc6 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 6 ’ , d e f a u l t R o u t e =None )
72 pmu1 = n e t . addHost ( ’ pmu1 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 7 ’ , d e f a u l t R o u t e =None )
73 pmu8 = n e t . addHost ( ’ pmu8 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 4 ’ , d e f a u l t R o u t e =None )
74 pmu29 = n e t . addHost ( ’ pmu29 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 4 5 ’ , d e f a u l t R o u t e =None )
75 pmu15 = n e t . addHost ( ’ pmu15 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 1 ’ , d e f a u l t R o u t e =None )
76 pmu16 = n e t . addHost ( ’ pmu16 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 2 ’ , d e f a u l t R o u t e =None )
77 pdc7 = n e t . addHost ( ’ pdc7 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 7 ’ , d e f a u l t R o u t e =None )
78 pmu26 = n e t . addHost ( ’ pmu26 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 4 2 ’ , d e f a u l t R o u t e =None )
79 pmu30 = n e t . addHost ( ’ pmu30 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 4 6 ’ , d e f a u l t R o u t e =None )
80 pdc2 = n e t . addHost ( ’ pdc2 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 ’ , d e f a u l t R o u t e =None )
81 pdc1 = n e t . addHost ( ’ pdc1 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 ’ , d e f a u l t R o u t e =None )
82 pmu23 = n e t . addHost ( ’ pmu23 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 9 ’ , d e f a u l t R o u t e =None )
83 pdc14 = n e t . addHost ( ’ pdc14 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 4 ’ , d e f a u l t R o u t e =None )
84 pmu21 = n e t . addHost ( ’ pmu21 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 7 ’ , d e f a u l t R o u t e =None )
85 pmu11 = n e t . addHost ( ’ pmu11 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 7 ’ , d e f a u l t R o u t e =None )
86 pdc16 = n e t . addHost ( ’ pdc16 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 6 ’ , d e f a u l t R o u t e =None )
87 pdc10 = n e t . addHost ( ’ pdc10 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 0 ’ , d e f a u l t R o u t e =None )
88 pmu7 = n e t . addHost ( ’ pmu7 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 2 3 ’ , d e f a u l t R o u t e =None )
89 pdc13 = n e t . addHost ( ’ pdc13 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 3 ’ , d e f a u l t R o u t e =None )
90 pmu20 = n e t . addHost ( ’ pmu20 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 6 ’ , d e f a u l t R o u t e =None )
91 pmu3 = n e t . addHost ( ’ pmu3 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 9 ’ , d e f a u l t R o u t e =None )
92 pmu24 = n e t . addHost ( ’ pmu24 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 4 0 ’ , d e f a u l t R o u t e =None )
93 pmu2 = n e t . addHost ( ’ pmu2 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 1 8 ’ , d e f a u l t R o u t e =None )
94 pmu18 = n e t . addHost ( ’ pmu18 ’ , c l s =Host , i p = ’ 1 0 . 0 . 0 . 3 4 ’ , d e f a u l t R o u t e =None )
95
96 i n f o ( ’∗∗∗ Add l i n k s \n ’ )
97 n e t . addLink ( s1 , s17 )
98 n e t . addLink ( s2 , s17 )
99 n e t . addLink ( s3 , s17 )

100 n e t . addLink ( s4 , s17 )
101 n e t . addLink ( s5 , s18 )
102 n e t . addLink ( s6 , s18 )
103 n e t . addLink ( s7 , s18 )
104 n e t . addLink ( s8 , s18 )
105 n e t . addLink ( s19 , s9 )
106 n e t . addLink ( s19 , s10 )
107 n e t . addLink ( s11 , s19 )
108 n e t . addLink ( s12 , s19 )
109 n e t . addLink ( s16 , s20 )
110 n e t . addLink ( s15 , s20 )
111 n e t . addLink ( s14 , s20 )
112 n e t . addLink ( s13 , s20 )
113 n e t . addLink ( s17 , s18 )
114 n e t . addLink ( s17 , s20 )
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115 n e t . addLink ( s20 , s19 )
116 n e t . addLink ( s18 , s19 )
117 n e t . addLink ( s17 , s19 )
118 n e t . addLink ( s20 , s18 )
119 n e t . addLink ( pdc2 , s2 )
120 n e t . addLink ( pdc3 , s3 )
121 n e t . addLink ( pdc4 , s4 )
122 n e t . addLink ( pdc5 , s5 )
123 n e t . addLink ( pdc6 , s6 )
124 n e t . addLink ( pdc7 , s7 )
125 n e t . addLink ( pdc8 , s8 )
126 n e t . addLink ( pdc9 , s9 )
127 n e t . addLink ( pdc10 , s10 )
128 n e t . addLink ( pdc11 , s11 )
129 n e t . addLink ( pdc12 , s12 )
130 n e t . addLink ( pdc13 , s13 )
131 n e t . addLink ( pdc14 , s14 )
132 n e t . addLink ( pdc15 , s15 )
133 n e t . addLink ( pdc16 , s16 )
134 n e t . addLink ( pdc1 , s1 )
135 n e t . addLink ( pmu2 , s1 )
136 n e t . addLink ( pmu4 , s1 )
137 n e t . addLink ( pmu1 , s1 )
138 n e t . addLink ( s2 , pmu3 )
139 n e t . addLink ( s3 , pmu5 )
140 n e t . addLink ( s3 , pmu7 )
141 n e t . addLink ( s4 , pmu6 )
142 n e t . addLink ( s4 , pmu8 )
143 n e t . addLink ( s5 , pmu9 )
144 n e t . addLink ( s5 , pmu11 )
145 n e t . addLink ( s6 , pmu10 )
146 n e t . addLink ( s6 , pmu17 )
147 n e t . addLink ( s6 , pmu20 )
148 n e t . addLink ( s6 , pmu21 )
149 n e t . addLink ( s7 , pmu12 )
150 n e t . addLink ( s7 , pmu13 )
151 n e t . addLink ( s7 , pmu14 )
152 n e t . addLink ( s8 , pmu15 )
153 n e t . addLink ( s8 , pmu18 )
154 n e t . addLink ( s8 , pmu23 )
155 n e t . addLink ( pmu16 , s9 )
156 n e t . addLink ( s10 , pmu19 )
157 n e t . addLink ( s11 , pmu22 )
158 n e t . addLink ( s12 , pmu24 )
159 n e t . addLink ( s13 , pmu25 )
160 n e t . addLink ( s13 , pmu26 )
161 n e t . addLink ( s14 , pmu27 )
162 n e t . addLink ( s15 , pmu28 )
163 n e t . addLink ( s16 , pmu29 )
164 n e t . addLink ( pmu30 , s14 )
165
166 i n f o ( ’∗∗∗ S t a r t i n g ne twork \n ’ )
167 n e t . b u i l d ( )
168 i n f o ( ’∗∗∗ S t a r t i n g c o n t r o l l e r s \n ’ )
169 f o r c o n t r o l l e r i n n e t . c o n t r o l l e r s :
170 c o n t r o l l e r . s t a r t ( )
171
172 i n f o ( ’∗∗∗ S t a r t i n g s w i t c h e s \n ’ )



CS-558: FINAL REPORT, MAY 2016 15

173 n e t . g e t ( ’ s17 ’ ) . s t a r t ( [ c0 ] )
174 n e t . g e t ( ’ s15 ’ ) . s t a r t ( [ c0 ] )
175 n e t . g e t ( ’ s20 ’ ) . s t a r t ( [ c0 ] )
176 n e t . g e t ( ’ s19 ’ ) . s t a r t ( [ c0 ] )
177 n e t . g e t ( ’ s16 ’ ) . s t a r t ( [ c0 ] )
178 n e t . g e t ( ’ s3 ’ ) . s t a r t ( [ c0 ] )
179 n e t . g e t ( ’ s4 ’ ) . s t a r t ( [ c0 ] )
180 n e t . g e t ( ’ s7 ’ ) . s t a r t ( [ c0 ] )
181 n e t . g e t ( ’ s6 ’ ) . s t a r t ( [ c0 ] )
182 n e t . g e t ( ’ s11 ’ ) . s t a r t ( [ c0 ] )
183 n e t . g e t ( ’ s9 ’ ) . s t a r t ( [ c0 ] )
184 n e t . g e t ( ’ s8 ’ ) . s t a r t ( [ c0 ] )
185 n e t . g e t ( ’ s12 ’ ) . s t a r t ( [ c0 ] )
186 n e t . g e t ( ’ s13 ’ ) . s t a r t ( [ c0 ] )
187 n e t . g e t ( ’ s18 ’ ) . s t a r t ( [ c0 ] )
188 n e t . g e t ( ’ s1 ’ ) . s t a r t ( [ c0 ] )
189 n e t . g e t ( ’ s14 ’ ) . s t a r t ( [ c0 ] )
190 n e t . g e t ( ’ s5 ’ ) . s t a r t ( [ c0 ] )
191 n e t . g e t ( ’ s10 ’ ) . s t a r t ( [ c0 ] )
192 n e t . g e t ( ’ s2 ’ ) . s t a r t ( [ c0 ] )
193
194 i n f o ( ’∗∗∗ P o s t c o n f i g u r e s w i t c h e s and h o s t s \n ’ )
195
196 CLI ( n e t )
197 n e t . s t o p ( )
198
199 i f name == ’ main ’ :
200 s e t L o g L e v e l ( ’ i n f o ’ )
201 myNetwork ( )
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XII. APPENDIX 2: CONTROLLER

1 # C o p y r i g h t (C) 2016 J i a q i Yan , I I T
2 #
3 # L i c e n s e d unde r t h e Apache License , V e r s i o n 2 . 0 ( t h e ” L i c e n s e ” ) ;
4 # you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e wi th t h e L i c e n s e .
5 # You may o b t a i n a copy of t h e L i c e n s e a t
6 #
7 # h t t p : / / www. apache . o rg / l i c e n s e s / LICENSE−2.0
8 #
9 # U n l e s s r e q u i r e d by a p p l i c a b l e law or a g r e e d t o i n w r i t i n g , s o f t w a r e

10 # d i s t r i b u t e d unde r t h e L i c e n s e i s d i s t r i b u t e d on an ”AS IS ” BASIS ,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s o r
12 # i m p l i e d .
13 # See t h e L i c e n s e f o r t h e s p e c i f i c l a n g u a g e g o v e r n i n g p e r m i s s i o n s and
14 # l i m i t a t i o n s unde r t h e L i c e n s e .
15
16 ”””
17 IEEE 30 Bus Power Network ’ s S e l f−h e a l C o n t r o l l e r
18 Based on an OpenFlow 1 . 0 L2 l e a r n i n g s w i t c h i m p l e m e n t a t i o n .
19 ”””
20
21 i m p o r t a r r a y
22
23 from ryu . ba se i m p o r t app manager
24 from ryu . c o n t r o l l e r i m p o r t o f p e v e n t
25 from ryu . c o n t r o l l e r . h a n d l e r i m p o r t CONFIG DISPATCHER , MAIN DISPATCHER
26 from ryu . c o n t r o l l e r . h a n d l e r i m p o r t s e t e v c l s
27 from ryu . o f p r o t o i m p o r t o f p r o t o v 1 0
28 from ryu . l i b . mac i m p o r t h a d d r t o b i n
29 from ryu . l i b . p a c k e t i m p o r t p a c k e t
30 from ryu . l i b . p a c k e t i m p o r t e t h e r n e t
31 from ryu . l i b . p a c k e t i m p o r t e t h e r t y p e s
32 from ryu . l i b . p a c k e t i m p o r t ipv4 , icmp
33 from ryu . t o p o l o g y i m p o r t e v e n t
34 from ryu . t o p o l o g y . a p i i m p o r t g e t s w i t c h , g e t l i n k
35 from ryu . l i b i m p o r t s n o r t l i b
36
37
38 f a i l i n g P D C s =[ F a l s e f o r i i n r a n g e ( 0 , 1 6 ) ]
39
40 c l a s s S e l f H e a l C o n t r o l l e r ( app manager . RyuApp ) :
41 ” S e l f H e a l c o n t r o l l e r based on ryu ’ s s i m p l e s w i t c h ”
42 OFP VERSIONS = [ o f p r o t o v 1 0 . OFP VERSION ]
43 CONTEXTS = { ’ s n o r t l i b ’ : s n o r t l i b . S n o r t L i b }
44
45
46 d e f i n i t ( s e l f , ∗ a rgs , ∗∗ kwargs ) :
47 ”””
48 C r e a t e c o n t r o l l e r o b j e c t
49
50 A t t r i b u t e s :
51 t o p o l o g y a p i a p p : m o n i t o r t h e t o p o l o g y changes by
52 ” ryu−manager −−obse rve− l i n k s ”
53 s w i t c h e s ( l i s t o f i n t ) : s t o r e e v e r y sw ’ s dp id
54 l i n k s (2− l e v e l d i c t ) : s t o r e t h e p o r t number from
55 sw ( l e v e l −1 key , dp id ) t o sw ( l e v e l −2 key , dp id )
56 s w t o h o s t ( d i c t ) : s t o r e t h e p o r t number from sw ( l e v e l −1 key , dp id )
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57 t o h o s t ( l e v e l −2 key , IP s t r i n g )
58 ”””
59 s u p e r ( S e l f H e a l C o n t r o l l e r , s e l f ) . i n i t (∗ a rgs , ∗∗ kwargs )
60
61 s e l f . t o p o l o g y a p i a p p = s e l f
62 s e l f . s w i t c h e s = [ ]
63 s e l f . l i n k s = {}
64 s e l f . s w t o h o s t = {}
65
66 s e l f . s n o r t = kwargs [ ’ s n o r t l i b ’ ]
67 s e l f . s n o r t p o r t = 3
68 s e l f . m a c t o p o r t = {}
69 s o c k e t c o n f i g = { ’ un ixsock ’ : True }
70 s e l f . s n o r t . s e t c o n f i g ( s o c k e t c o n f i g )
71 s e l f . s n o r t . s t a r t s o c k e t s e r v e r ( )
72
73 # i n i t p a t h from edge sw t o PDCs
74 f o r i i n r a n g e ( 1 , 17) :
75 s e l f . s w t o h o s t [ i ] = { ’ 1 0 . 0 . 0 . % d ’ % i : 1}
76 # i n i t i a l p a t h from edge sw t o PMUs
77 s e l f . s w t o h o s t [ 1 ] [ ’ 1 0 . 0 . 0 . 1 7 ’ ] = 4
78 s e l f . s w t o h o s t [ 1 ] [ ’ 1 0 . 0 . 0 . 1 8 ’ ] = 2
79 s e l f . s w t o h o s t [ 1 ] [ ’ 1 0 . 0 . 0 . 2 0 ’ ] = 3
80 s e l f . s w t o h o s t [ 2 ] [ ’ 1 0 . 0 . 0 . 1 9 ’ ] = 2
81 s e l f . s w t o h o s t [ 3 ] [ ’ 1 0 . 0 . 0 . 2 1 ’ ] = 2
82 s e l f . s w t o h o s t [ 3 ] [ ’ 1 0 . 0 . 0 . 2 3 ’ ] = 3
83 s e l f . s w t o h o s t [ 4 ] [ ’ 1 0 . 0 . 0 . 2 2 ’ ] = 2
84 s e l f . s w t o h o s t [ 4 ] [ ’ 1 0 . 0 . 0 . 2 4 ’ ] = 3
85 s e l f . s w t o h o s t [ 5 ] [ ’ 1 0 . 0 . 0 . 2 5 ’ ] = 2
86 s e l f . s w t o h o s t [ 5 ] [ ’ 1 0 . 0 . 0 . 2 7 ’ ] = 3
87 s e l f . s w t o h o s t [ 6 ] [ ’ 1 0 . 0 . 0 . 2 6 ’ ] = 2
88 s e l f . s w t o h o s t [ 6 ] [ ’ 1 0 . 0 . 0 . 3 3 ’ ] = 3
89 s e l f . s w t o h o s t [ 6 ] [ ’ 1 0 . 0 . 0 . 3 6 ’ ] = 4
90 s e l f . s w t o h o s t [ 6 ] [ ’ 1 0 . 0 . 0 . 3 7 ’ ] = 5
91 s e l f . s w t o h o s t [ 7 ] [ ’ 1 0 . 0 . 0 . 2 8 ’ ] = 2
92 s e l f . s w t o h o s t [ 7 ] [ ’ 1 0 . 0 . 0 . 2 9 ’ ] = 3
93 s e l f . s w t o h o s t [ 7 ] [ ’ 1 0 . 0 . 0 . 3 0 ’ ] = 4
94 s e l f . s w t o h o s t [ 8 ] [ ’ 1 0 . 0 . 0 . 3 1 ’ ] = 2
95 s e l f . s w t o h o s t [ 8 ] [ ’ 1 0 . 0 . 0 . 3 4 ’ ] = 3
96 s e l f . s w t o h o s t [ 8 ] [ ’ 1 0 . 0 . 0 . 3 9 ’ ] = 4
97 s e l f . s w t o h o s t [ 9 ] [ ’ 1 0 . 0 . 0 . 3 2 ’ ] = 2
98 s e l f . s w t o h o s t [ 1 0 ] [ ’ 1 0 . 0 . 0 . 3 5 ’ ] = 2
99 s e l f . s w t o h o s t [ 1 1 ] [ ’ 1 0 . 0 . 0 . 3 8 ’ ] = 2

100 s e l f . s w t o h o s t [ 1 2 ] [ ’ 1 0 . 0 . 0 . 4 0 ’ ] = 2
101 s e l f . s w t o h o s t [ 1 3 ] [ ’ 1 0 . 0 . 0 . 4 1 ’ ] = 2
102 s e l f . s w t o h o s t [ 1 3 ] [ ’ 1 0 . 0 . 0 . 4 2 ’ ] = 3
103 s e l f . s w t o h o s t [ 1 4 ] [ ’ 1 0 . 0 . 0 . 4 3 ’ ] = 2
104 s e l f . s w t o h o s t [ 1 4 ] [ ’ 1 0 . 0 . 0 . 4 6 ’ ] = 3
105 s e l f . s w t o h o s t [ 1 5 ] [ ’ 1 0 . 0 . 0 . 4 4 ’ ] = 2
106 s e l f . s w t o h o s t [ 1 6 ] [ ’ 1 0 . 0 . 0 . 4 5 ’ ] = 2
107 s e l f . s w t o h o s t [ 1 7 ] = {}
108 s e l f . s w t o h o s t [ 1 8 ] = {}
109 s e l f . s w t o h o s t [ 1 9 ] = {}
110 s e l f . s w t o h o s t [ 2 0 ] = {}
111
112
113 d e f p a c k e t p r i n t ( s e l f , p k t ) :
114 p k t = p a c k e t . P a c k e t ( a r r a y . a r r a y ( ’B’ , p k t ) )
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115
116 e t h = p k t . g e t p r o t o c o l ( e t h e r n e t . e t h e r n e t )
117 ipv4 = p k t . g e t p r o t o c o l ( i pv4 . i pv4 )
118 icmp = p k t . g e t p r o t o c o l ( icmp . icmp )
119
120 i f icmp :
121 s e l f . l o g g e r . i n f o (”% r ” , icmp )
122
123 i f ipv4 :
124 s e l f . l o g g e r . i n f o (”% r ” , ipv4 )
125
126 i f e t h :
127 s e l f . l o g g e r . i n f o (”% r ” , e t h )
128
129 # f o r p i n p k t . p r o t o c o l s :
130 # i f h a s a t t r ( p , ’ p ro toco l name ’ ) i s F a l s e :
131 # b r e a k
132 # p r i n t ( ’ p : %s ’ % p . p r o t o c o l n a m e )
133
134 d e f take down pdc ( s e l f ) :
135 p r i n t ” k e q e r f q o r g o ”
136 @ s e t e v c l s ( s n o r t l i b . E v e n t A l e r t , MAIN DISPATCHER)
137 d e f d u m p a l e r t ( s e l f , ev ) :
138 msg = ev . msg
139
140 p r i n t ( ’\ n\nALERT : %s \n\ n D e t a i l s : ’ % ’ ’ . j o i n ( msg . a l e r t m s g ) )
141
142 s e l f . p a c k e t p r i n t ( msg . p k t )
143 p r i n t ”\n\n ”
144
145 @ s e t e v c l s ( e v e n t . E v e n t S w i t c h E n t e r )
146 d e f g e t t o p o l o g y d a t a ( s e l f , ev ) :
147 ””” A u t o m a t i c a l l y c r e a t e sw t o sw p o r t t a b l e @self . l i n k s .
148
149 N o t i c e t h a t @ev i s n o t used a t a l l
150 ”””
151 s e l f . l o g g e r . i n f o ( ” Upda t ing p o r t map between s w i t c h e s ” )
152 s w i t c h l i s t = g e t s w i t c h ( s e l f . t o p o l o g y a p i a p p , None )
153 # c r e a t e dp id t o d a t a p a t h mapping
154 f o r sw i n s w i t c h l i s t :
155 i f sw . dp . i d n o t i n s e l f . s w i t c h e s :
156 s e l f . s w i t c h e s . append ( sw . dp . i d )
157
158 # c r e a t e l i n k s : t h e p o r t on s r c sw t o d s t sw
159 l i n k l i s t = g e t l i n k ( s e l f . t o p o l o g y a p i a p p , None )
160 f o r l i n k i n l i n k l i s t :
161 i f l i n k . s r c . dp id n o t i n s e l f . l i n k s . keys ( ) :
162 s e l f . l i n k s [ l i n k . s r c . dp id ] = {}
163 s e l f . l i n k s [ l i n k . s r c . dp id ] [ l i n k . d s t . dp id ] = l i n k . s r c . p o r t n o
164 p r i n t s e l f . l i n k s
165
166 @ s e t e v c l s ( e v e n t . Even tPo r tMod i fy )
167 d e f l i n k d e l e t e h a n d l e r ( s e l f , ev ) :
168 ””” Reac t t o l i n k down e v e n t
169
170 @ev : from which we can e x t r a c t P o r t o b j e c t
171 ”””
172 p o r t = ev . p o r t
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173 dp id = p o r t . dp id
174 h o s t s =[” no ” , ” no ” , ” no ” , ” no ” , ” no ” ]
175 h o s t s 2 =[” no ” , ” no ” , ” no ” , ” no ” , ” no ” ]
176 discPMUs =[” no ” , ” no ” , ” no ” , ” no ” , ” no ” ]
177 discPMUs2 =[” no ” , ” no ” , ” no ” , ” no ” , ” no ” ]
178 h o s t s 3 =[” no ” , ” no ” , ” no ” , ” no ” , ” no ” ]
179 discPMUs3 =[” no ” , ” no ” , ” no ” , ” no ” , ” no ” ]
180 n=−1
181 dp id2 =0
182 dp id3 =0
183 g l o b a l f a i l i n g P D C s
184 f a i l i n g P D C s [ dpid −1]= True
185 p r i n t ”\n\n−−−−”+ s t r ( f a i l i n g P D C s )+”−−−−\n\n ”
186 # p o r t n o = p o r t . p o r t n o
187 # event name = p o r t . name
188
189 # make s u r e c o n t r o l l e r has g l o b a l view
190 s e l f . g e t t o p o l o g y d a t a ( None )
191
192 i f p o r t . is down ( ) :
193 r a w i n p u t ( ” S t a r t s e l f−h e a l i n g by p r e s s i n g E n t e r . . . ” )
194 p r i n t ” The f a i l i n g PDC i s ” + s t r ( dp id ) +”\n ”
195 # p a t h f o r pmu15 ( 1 0 . 0 . 0 . 3 1 ) t o pdc5 ( 1 0 . 0 . 0 . 5 )
196 h o s t s = s e l f . s w t o h o s t [ dp id ] . keys ( )
197 h o s t = [ ]
198 h o s t 2 = [ ]
199 s i z e = l e n ( h o s t s )
200 # p r i n t ”\n Number o f PMUs i s : ” + s t r ( s i z e )
201 p r i n t ”PMUs c o n e c t e d t o t h i s PDC a r e t h e f o l l o w i n g : ”
202 f o r num i n r a n g e ( 0 , s i z e ) :
203 h o s t =map ( i n t , h o s t s [ num ] . s p l i t ( ’ . ’ ) )
204 i f h o s t s [ num ] !=” no ” and h o s t [3] >16:
205 n=n+1
206 discPMUs [ n ]= h o s t s [ num ]
207 p r i n t ” PMU”+ s t r ( n +1) + ” : ”+ s t r ( discPMUs [ n ] )
208
209 p r i n t ”\ n S t a r t s e l f h e a l i n g \n ”
210 x = ( ( dpid −1) / 4 ) ∗4
211 y=x+3
212 c o r e s w i t c h =17+x / 4
213 # p r i n t ”\n X= ”+ s t r ( x ) +” Y= ”+ s t r ( y ) +”\n ”
214 # p r i n t ”\n −−−Core s w i t c h i s : ” + s t r ( c o r e s w i t c h ) +” −−−\n ”
215 newPDC=dpid−1
216 i f newPDC==x :
217 newPDC=y+1
218 p r i n t ”New a s s i g n e d PDC i s PDC”+ s t r ( newPDC ) +”\n ”
219 # f o r now l e t s t r y t o r e c o n n e c t t h e pmus wi th t h e n e x t pdc ( pdc [ dp id + 1 ] )
220 m=0
221 f o r m i n r a n g e ( 0 , n +1) :
222 # r a w i n p u t ( ” Reconnec t PMUs : PRess E n t e r . . ” )
223 s e l f . s w t o h o s t [ newPDC ] [ discPMUs [m] ] = s e l f . l i n k s [ newPDC ] [ c o r e s w i t c h ]
224 s e l f . s w t o h o s t [ c o r e s w i t c h ] [ discPMUs [m] ] = s e l f . l i n k s [ c o r e s w i t c h ] [ dp id ]
225 s e l f . s w t o h o s t [ dp id ] [ ’ 1 0 . 0 . 0 . ’ + s t r ( newPDC ) ]= s e l f . l i n k s [ dp id ] [

c o r e s w i t c h ]
226 s e l f . s w t o h o s t [ c o r e s w i t c h ] [ ’ 1 0 . 0 . 0 . ’ + s t r ( newPDC ) ]= s e l f . l i n k s [

c o r e s w i t c h ] [ newPDC ]
227 p r i n t ”\nPMU wi th IP a d d r e s s ”+ discPMUs [m]+” has been r e c o n n e c t e d wi th

PDC”+ s t r ( newPDC ) #” , IP : 1 0 . 0 . 0 . ” + s t r ( newPDC )



CS-558: FINAL REPORT, MAY 2016 20

228
229 # p r i n t ” s e l f . s w t o h o s t [”+ s t r ( newPDC ) + ” ] [ ” + discPMUs [m] + ” ] = s e l f . l i n k s

[”+ s t r ( newPDC ) + ” ] [ ” + s t r ( c o r e s w i t c h ) +”]\ n ”
230 # p r i n t ” s e l f . s w t o h o s t [”+ s t r ( c o r e s w i t c h ) + ” ] [ ” + discPMUs [m] + ” ] = s e l f .

l i n k s [”+ s t r ( c o r e s w i t c h ) + ” ] [ ” + s t r ( dp id ) +”]\ n ”
231 # p r i n t ” s e l f . s w t o h o s t [ dp id ] [ ’ 1 0 . 0 . 0 . ’ + s t r ( newPDC ) ]= s e l f . l i n k s [ dp id ] [

c o r e s w i t c h ] ”
232 # p r i n t ” s e l f . s w t o h o s t [ c o r e s w i t c h ] [ ’ 1 0 . 0 . 0 . ’ + s t r ( newPDC ) ]= s e l f . l i n k s [

c o r e s w i t c h ] [ newPDC ] ”
233
234 i f dp id ==y +1:
235 dp id2 =x+1
236 e l s e :
237 dp id2 = dp id +1
238
239 i f dp id2 ==y +1:
240 dp id3 =x+1
241 e l s e :
242 dp id3 = dp id2 +1
243
244 # p r i n t ” −−−dp id : ”+ s t r ( dp id ) +” dp id2 : ”+ s t r ( dp id2 )+”−−−\n ”
245
246 i f f a i l i n g P D C s [ dpid2 −1] and n o t f a i l i n g P D C s [ dpid3 −1]:
247 h o s t s 2 = s e l f . s w t o h o s t [ dp id2 ] . keys ( )
248 s i z e 2 = l e n ( h o s t s 2 )
249 k=−1
250 f o r num2 i n r a n g e ( 0 , s i z e 2 ) :
251 h o s t 2 =map ( i n t , h o s t s 2 [ num2 ] . s p l i t ( ’ . ’ ) )
252 i f h o s t s 2 [ num2 ] !=” no ” and h o s t 2 [3] >16:
253 k=k+1
254 discPMUs2 [ k ]= h o s t s 2 [ num2 ]
255 p r i n t ” PMU”+ s t r ( k +1) + ” : ”+ s t r ( discPMUs2 [ k

] )
256
257 m=0
258 f o r m i n r a n g e ( 0 , k +1) :
259 s e l f . s w t o h o s t [ newPDC ] [ discPMUs2 [m] ] = s e l f . l i n k s [ newPDC ] [

c o r e s w i t c h ]
260 s e l f . s w t o h o s t [ c o r e s w i t c h ] [ discPMUs2 [m] ] = s e l f . l i n k s [

c o r e s w i t c h ] [ dp id2 ]
261 s e l f . s w t o h o s t [ dp id2 ] [ ’ 1 0 . 0 . 0 . ’ + s t r ( newPDC ) ]= s e l f . l i n k s [ dp id2

] [ c o r e s w i t c h ]
262 s e l f . s w t o h o s t [ c o r e s w i t c h ] [ ’ 1 0 . 0 . 0 . ’ + s t r ( newPDC ) ]= s e l f . l i n k s [

c o r e s w i t c h ] [ newPDC ]
263 p r i n t ”\nPMU wi th IP a d d r e s s ”+ discPMUs [m]+” has been

r e c o n n e c t e d wi th PDC”+ s t r ( newPDC ) #” , IP : 1 0 . 0 . 0 . ” + s t r (
newPDC )

264
265
266 # e l i f f a i l i n g P D C s [ dpid2 −1] and f a i l i n g P D C s [ dpid3 −1]:
267
268
269 p r i n t ”\n−−−−−−−−−−Routes f i x e d−−−−−−−−−−\n ! ”
270
271
272
273
274 d e f add f low ( s e l f , d a t a p a t h , i n p o r t , d s t , a c t i o n s ) :
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275 ””” I s s u e FlowMod message t o s w i t c h @datapath
276
277 t e l l i t t h a t p k t t o @dst s h o u l d be send t o @in por t .
278 @act ions : l i s t o f P a c k e t O u t p u t a c t i o n s ( u s u a l l y j u s t one e l e m e n t )
279 ”””
280 o f p r o t o = d a t a p a t h . o f p r o t o
281
282 match = d a t a p a t h . o f p r o t o p a r s e r . OFPMatch ( i n p o r t = i n p o r t , d l d s t = h a d d r t o b i n (

d s t ) )
283 # match = d a t a p a t h . o f p r o t o p a r s e r . OFPMatch ( i n p o r t = i n p o r t , nw dst= d s t )
284
285 mod = d a t a p a t h . o f p r o t o p a r s e r . OFPFlowMod (
286 d a t a p a t h = d a t a p a t h , match=match , c o o k i e =0 ,
287 command= o f p r o t o . OFPFC ADD, i d l e t i m e o u t =0 , h a r d t i m e o u t =0 ,
288 p r i o r i t y = o f p r o t o . OFP DEFAULT PRIORITY ,
289 f l a g s = o f p r o t o . OFPFF SEND FLOW REM, a c t i o n s = a c t i o n s )
290 d a t a p a t h . send msg ( mod )
291
292 @ s e t e v c l s ( o f p e v e n t . EventOFPPacket In , MAIN DISPATCHER)
293 d e f p a c k e t i n h a n d l e r ( s e l f , ev ) :
294 ””” Ping ( ICMP) p a c k e t h a n d l e r ”””
295 msg = ev . msg
296 d a t a p a t h = msg . d a t a p a t h
297 o f p r o t o = d a t a p a t h . o f p r o t o
298 dp id = d a t a p a t h . i d
299
300 p k t = p a c k e t . P a c k e t ( msg . d a t a )
301 p k t e t h = p k t . g e t p r o t o c o l ( e t h e r n e t . e t h e r n e t )
302 e t h d s t = p k t e t h . d s t
303 e t h s r c = p k t e t h . s r c
304 # i g n o r e l l d p p a c k e t
305 i f p k t e t h . e t h e r t y p e == e t h e r t y p e s . ETH TYPE LLDP :
306 r e t u r n
307 s e l f . l o g g e r . i n f o ( ” p a c k e t i n %s ( p o r t %s ) from %s t o %s ” , \
308 dpid , msg . i n p o r t , e t h s r c , e t h d s t )
309
310 pkt icmp = p k t . g e t p r o t o c o l ( icmp . icmp )
311 i f pk t icmp :
312 p k t i p = p k t . g e t p r o t o c o l ( i pv4 . i pv4 )
313 i p d s t = s t r ( p k t i p . d s t )
314 # f i n d p a t h t o d s t h o s t
315 i f i p d s t i n s e l f . s w t o h o s t [ dp id ] . keys ( ) :
316 o u t p o r t = s e l f . s w t o h o s t [ dp id ] [ i p d s t ]
317 s e l f . l o g g e r . i n f o ( ” f o r w a r d t o p o r t %s ” , o u t p o r t )
318 # i n s t a l l a f low t o a v o i d p a c k e t i n n e x t t ime
319 a c t i o n s = [ d a t a p a t h . o f p r o t o p a r s e r . OFPAct ionOutput ( o u t p o r t ) ]
320 s e l f . add f low ( d a t a p a t h , msg . i n p o r t , e t h d s t , a c t i o n s )
321 # s e l f . add f low ( d a t a p a t h , msg . i n p o r t , i p d s t , a c t i o n s )
322 d a t a = None
323 i f msg . b u f f e r i d == o f p r o t o . OFP NO BUFFER :
324 d a t a = msg . d a t a
325 o u t = d a t a p a t h . o f p r o t o p a r s e r . OFPPacketOut ( \
326 d a t a p a t h = d a t a p a t h , b u f f e r i d =msg . b u f f e r i d , \
327 i n p o r t =msg . i n p o r t , a c t i o n s = a c t i o n s , d a t a = d a t a )
328 d a t a p a t h . send msg ( o u t )
329
330 # @ s e t e v c l s ( o f p e v e n t . E v e n t O F P P o r t S t a t u s , MAIN DISPATCHER)
331 # d e f p o r t s t a t u s h a n d l e r ( s e l f , ev ) :
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332 # ””” More g e n e r a l t h a n Even tPo r tMod i fy ?”””
333 # msg = ev . msg
334 # r e a s o n = msg . r e a s o n
335 # p o r t n o = msg . desc . p o r t n o
336 #
337 # o f p r o t o = msg . d a t a p a t h . o f p r o t o
338 # i f r e a s o n == o f p r o t o . OFPPR ADD :
339 # s e l f . l o g g e r . i n f o ( ” p o r t added %s ” , p o r t n o )
340 # e l i f r e a s o n == o f p r o t o . OFPPR DELETE :
341 # s e l f . l o g g e r . i n f o ( ” p o r t d e l e t e d %s ” , p o r t n o )
342 # e l i f r e a s o n == o f p r o t o . OFPPR MODIFY :
343 # s e l f . l o g g e r . i n f o ( ” p o r t m o d i f i e d %s ” , p o r t n o )
344 # e l s e :
345 # s e l f . l o g g e r . i n f o ( ” I l l e a g a l p o r t s t a t e %s %s ” , po r t no , r e a s o n )


