
DOCUMENTOS DE TRABAJO

BILTOKI

Facultad de Ciencias Económicas.
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Abstra
t

We present a general multistage sto
hasti
 mixed 0-1 problem where the un
ertainty

appears everywhere in the obje
tive fun
tion, 
onstraints matrix and right-hand-side.

The un
ertainty is represented by a s
enario tree that 
an be a symmetri
 or a nonsym-

metri
 one. The sto
hasti
 model is 
onverted in a mixed 0-1 Deterministi
 Equivalent

Model in 
ompa
t representation. Due to the di�
ulty of the problem, the solution

o�ered by the sto
hasti
 model has been traditionally obtained by optimizing the ob-

je
tive fun
tion expe
ted value (i.e., mean) over the s
enarios, usually, along a time

horizon. This approa
h (so named risk neutral) has the in
onvenien
e of providing a

solution that ignores the varian
e of the obje
tive value of the s
enarios and, so, the o
-


urren
e of s
enarios with an obje
tive value below the expe
ted one. Alternatively, we

present several approa
hes for risk averse management, namely, a s
enario immunization

strategy, the optimization of the well known Value-at-Risk (VaR) and several variants

of the Conditional Value-at-Risk strategies, the optimization of the expe
ted mean mi-

nus the weighted probability of having a "bad" s
enario to o

ur for the given solution

provided by the model, the optimization of the obje
tive fun
tion expe
ted value sub-

je
t to sto
hasti
 dominan
e 
onstraints (SDC) for a set of pro�les given by the pairs

of threshold obje
tive values and either bounds on the probability of not rea
hing the

thresholds or the expe
ted shortfall over them, and the optimization of a mixture of the

VaR and SDC strategies.

Keywords: Multistage sto
hasti
 mixed 0-1 optimization, s
enario analysis, mixed 0-1

Deterministi
 Equivalent Model, risk aversion measures, s
enario immunization, VaR,

CVAR, mean-risk, sto
hasti
 dominan
e 
onstraints.

1 Introdu
tion

Sto
hasti
 optimization is 
urrently one of the most robust tools for de
ision making. It

is broadly used in real-world appli
ations in a wide range of problems from di�erent areas

su
h as �nan
e, s
heduling, produ
tion planning, industrial engineering, 
apa
ity allo
ation,

energy, air tra�
, logisti
s, et
. The integer problems under un
ertainty have been studied in
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[4, 13, 43, 48, 54, 56℄, just for 
iting a few referen
es. An extended bibliography of Sto
hasti


Integer Optimization has been 
olle
ted in [60℄.

It is well known that a mixed 0-1 problem under un
ertainty with a �nite number of

possible s
enarios has a mixed 0-1 Deterministi
 Equivalent Model (DEM), where the risk

of providing a wrong solution is in
luded in the model, partially at least, via a set of rep-

resentative s
enarios. Let us assume that we are dealing with a maximization problem.

Traditionally, spe
ial attention has been given to optimizing the DEM by maximizing the

obje
tive fun
tion expe
ted value over the s
enarios, subje
t to the satisfa
tion of all the

problem 
onstraints in the de�ned s
enarios. Currently, we are able to solve huge DEMs

by using di�erent types of de
omposition approa
hes, see [23℄ and, parti
ularly, our Bran
h-

and-Fix Coordination algorithm for multistage problems, BFC-MS, presented in [23, 26, 29℄.

However, the optimization of the so named risk neutral approa
h has the in
onvenien
e of

providing a solution that ignores the varian
e of the obje
tive value of the s
enarios and, so,

the o

urren
e of s
enarios with an obje
tive value below the expe
ted one, see e.g., [51℄.

Alternatively, we present in this work several approa
hes for risk management, i.e., risk

averse strategies for multistage sto
hasti
 problems, namely, (1) a s
enario immunization

strategy, (2) the maximization of the well known Value-at-Risk, (3) the maximization of

several variants of the Conditional Value-at-Risk (CVaR), (4) the maximization of the mean-

risk, i.e., the expe
ted obje
tive minus the weighted probability of having a "bad" s
enario

o

urring for the given solution provided by the model, (5) the maximization of the obje
tive

fun
tion expe
ted value subje
t to �rst-order sto
hasti
 dominan
e 
onstraints (SDC) for a

set of pro�les given by the pairs of threshold obje
tive values and the probability of not

rea
hing them, (6) the maximization of the obje
tive fun
tion expe
ted value subje
t to

se
ond-order SDC whose set of pro�les is given by the pairs of threshold obje
tive values

and bounds on the expe
ted shortfalls on rea
hing the thresholds, and (7) the maximization

of the mixture of the VaR & SDC strategies.

The remainder of the paper is organized as follows. In Se
tion 2 the un
ertainty in the

problem's 
oe�
ients and the s
enario analysis methodology to use for dealing with the

un
ertainty are presented as well as the model for the risk neutral environment. Se
tion 3

present the risk aversion strategies of our 
hoi
e. Se
tion 4 
on
ludes.

2 Multistage mixed 0-1 sto
hasti
 problems

Without loss of generality, let us 
onsider the following multistage deterministi
 mixed 0-1

model

max
∑

t∈T

atxt + btyt

s.t. A′
txt−1 +Atxt +B′

tyt−1 +Btyt = ht ∀t ∈ T
xt ∈ {0, 1}nxt , yt ∈ IR+nyt ∀t ∈ T ,

(1)

where T is the set of stages, xt and yt are the nxt and nyt dimensional ve
tors of the 0-

1 and 
ontinuous variables, respe
tively, at and bt are the ve
tors of the obje
tive fun
tion


oe�
ients, A′
t, At, B

′
t and Bt are the 
onstraint matri
es and ht is the right-hand-side ve
tor
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(rhs) for stage t.

However, some of the problem 
oe�
ients in the obje
tive fun
tion, 
onstraint matrix

and rhs are frequently un
ertain, mainly in dynami
 domains (i.e, problems whose de
isions

to be made are based on data along a time horizon). There are several ways in whi
h to

express future un
ertainty in the 
oe�
ients. One the most used 
onsists of representing it

by 
onsidering s
enarios with known or estimated probabilities. For this purpose we need

some de�nitions.

De�nition 1 A stage of a time horizon is a set of one or various time periods in whi
h the

random parameters are realized.

De�nition 2 A s
enario 
onsists of a realization of all the random parameters in all stages,

that is, a path through the s
enario tree from the root to a leaf node.

For representing the un
ertainty we use a s
enario tree approa
h in whi
h un
ertainty is

modeled in terms of a set of s
enarios.

De�nition 3 A partial s
enario for a given stage 
onsists of a realization of all the random

parameters up to that stage. That is, the part of the path thorough that s
enario from the

root up to the intermediate node at that stage.

De�nition 4 A s
enario group for a given stage is the group of s
enarios with the same

partial s
enario up to that stage.

Noti
e that the partial s
enarios for the last stage are the 
orresponding s
enarios.

To illustrate the multistage s
enario tree 
on
ept, let Fig. 1 depi
t a s
enario tree in

whi
h ea
h node represents a situation in a stage, where a de
ision 
an be taken and, after

that, various possible situations may o

ur. In our example there are two situations in stage

t = 2. This information is generally presented in the form of a tree in whi
h ea
h path from

the root to a leaf represents a s
enario and 
orresponds to the realization of the entire set

of un
ertain parameters. For example, path {1, 3, 6, 12} represents one s
enario, and it is


ustomary to 
all it s
enario 12. In what follows, we do not distinguish between a s
enario

(or a group) and the 
orresponding node on the tree (with the same number). Ea
h node in

the tree must be asso
iated with a s
enario group in su
h a manner that any two s
enarios

belong to the same group (i.e., they have the same partial s
enario) in a given stage if they

in
lude the same o

urren
es of un
ertain parameters up to that stage. In this 
ase, the well

known nonanti
ipativity prin
iple applies. It was stated in [61℄ and restated in [53℄; see also

[13℄, among others. This prin
iple requires that the de
isions pertaining to s
enarios in the

same group (i.e., partial s
enarios with the same value in the parameters) be the same. For

example, for stage 3, s
enarios 12 and 13 belong to the same group asso
iated with path

{1, 3, 6}, i.e., with group g = 6. Noti
e the di�eren
e between a s
enario (a path from the

root node to a leaf node) and a partial s
enario (a path from the root to an intermediate

node).

3



t = 1 t = 2 t = 3 t = 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ω = Ω1 = {8, . . . , 15}; Ω2 = {8, 9, 10, 11}

G2 = {2, 3}; σ(4) = 2; N 7 = {1, 3, 7}

Figure 1: A multistage s
enario tree

De�nition 5 A symmetri
 tree is a tree where the number of bran
hes is the same for all


onditional distributions in the same stage, that is, the number of bran
hes arising from any

s
enario group at ea
h stage t to the next one is the same for all groups in the stage.

De�nition 6 A nonsymmetri
 tree is a tree where the number of bran
hes is not the

same for all 
onditional distributions in one stage, at least.

See e.g., [6, 7, 26℄ for symmetri
 s
enario trees, among many others, and [29℄ for nonsym-

metri
 ones. Note: Fig. 1 depi
ts a symmetri
 tree, and the tree that results from taking

out any ar
 is a nonsymmetri
 tree.

It is out of the s
ope of this work to present a methodology for multistage s
enario tree

generation and redu
tion; see e.g., [20, 37, 38℄ and referen
es therein.

The notation for the s
enario tree to be used in the paper is as follows:

T , set of stages {1, 2, ..., T} in the time horizon with T = |T |.

T −, set of all stages ex
ept the last one.

Ω, set of s
enarios.

G, set of s
enario groups.

Gt, set of s
enario groups in stage t (Gt ⊆ G), for t ∈ T .

t(g), stage to whom group g belongs to, su
h that g ∈ Gt(g).
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Ωg, set of s
enarios in group g (Ωg ⊆ Ω), for g ∈ G.

σ(g), immediate an
estor node of node g, for g ∈ G.

N g, set of an
estor groups (i.e, nodes) to group g, in
luding itself.

d, any s
enario group that belongs to the last stage, i.e., g ∈ GT . Note: Ωd
is a singleton

set.

Let us assume that all or some of the parameters in problem (1) are random ones to be

presented by a set of dis
rete o

urren
es, say, aωt and bωt for the obje
tive fun
tion ve
tors

at and bt, respe
tively, A
′ω
t , Aω

t , B
′ω
t and Bω

t for the A′
t, At, B

′
t and Bt 
onstraint matri
es,

respe
tively, and hωt for the rhs ht, for s
enario ω ∈ Ω. So, the model for maximizing the

expe
ted obje
tive value over the s
enarios 
an be expressed

max
∑

ω∈Ω

∑

t∈T

wω(aωt x
ω
t + bωt y

ω
t )

s.t. A
′ω
t xωt−1 +Aω

t x
ω
t +B

′ω
t yt−1 +Bω

t y
ω
t = hωt ∀t ∈ T , ω ∈ Ω

(x, y) ∈ NAC

xωt ∈ {0, 1}nx
ω
t , yωt ∈ IR+nyωt ∀t ∈ T , ω ∈ Ω,

(2)

where wω
is a positive weight assigned to s
enario ω, for instan
e its probability su
h that

∑

ω∈Ω

wω = 1, xωt and yωt represent the repli
as of xt and yt variables for s
enario ω, respe
tively,

x = (xωt ∀t ∈ T , ω ∈ Ω) and y = (yωt ∀t ∈ T , ω ∈ Ω). The nonanti
ipativity set is de�ned by

NAC = {xωt = xω
′

t ; yωt = yω
′

t ∀ω, ω′ ∈ Ωg, g ∈ Gt, t ∈ T −}. (3)

The nonanti
ipativity prin
iple ensures that the solution for stage t in the model does

not depend on information that is yet unavailable. For modeling the set (3) in model (2),

two di�erent approa
hes 
an be used, namely, the 
ompa
t representation and the splitting

variable representation, see [23℄, among others. For the purpose of presenting the risk mea-

sures we will only 
onsider the �rst representation. However we noti
e that the algorithm

BFC-MS [29℄ uses a mixture of the 
ompa
t and splitting variable representations.

Upon in
orporating the set (3) in model (2), we 
an obtain the related multistage mixed

0-1 Deterministi
 Equivalent Model (DEM) in its 
ompa
t representation. The new model


an be expressed

QE = max
∑

g∈G

wg(agxg + bgyg)

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
xg ∈ {0, 1}nx

g

, yg ∈ IR+nyg ∀g ∈ G,

(4)

where wg =
∑

ω∈Ωg

wω
gives the weight assigned to s
enario group g, and ag and bg are the


ounterparts of parameters at and bt related to s
enario group g, for g ∈ Gt, t ∈ T , su
h that
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the values of the parameters for ea
h s
enario in the group are identi
al. Additionally, xg

and yg represent the repli
as of x and y variables for s
enario group g, respe
tively, A′g
and

B′g
are the 
onstraint matri
es in s
enario group g for the x and y variables related to the

immediate an
estor of group g and, similarly, we have the matri
es Ag
and Bg

and the rhs

hg, su
h that we will 
onsider t ≡ t(g) through Se
tion 3.

3 Risk aversion management

The model (4) aims to maximize the obje
tive fun
tion expe
ted value (i..e., mean) alone,

then, the so named risk neutral strategy is 
onsidered. The main 
riti
ism that 
an be

made to this very popular strategy is that, as we noted above, it ignores the varian
e on

the obje
tive fun
tion value over the s
enarios and, in parti
ular, the "left" tail of the non-

wanted s
enarios. However, there are some risk averse approa
hes that additionally deal

with risk management by 
onsidering, e.g., the following 
oherent [9℄ measures: s
enario

immunization, see [17℄ and its treatment in [22℄, semi-deviations [2, 49℄, Value-and-Risk

[15, 32, 33℄, Conditional Value-at-Risk [2, 10, 12, 45, 50, 52, 56, 57℄, ex
ess probabilities

[55℄, and �rst- and se
ond-order Sto
hasti
 Dominan
e Constraints (SDC) strategies, see

[34, 35, 36℄ and the referen
es therein, among others. See also [5, 8, 14, 19, 30, 31, 58℄ for

appli
ations of SDC, spe
i�
ally, in energy, �nan
e and mining, among others, parti
ularly

for se
ond-order SDC for the two-stage environment by using Lagrangean and 
utting plane

approa
hes.

Let us 
onsider the following risk averse measures, that take into a

ount the bad tail of

the obje
tive value distribution over the s
enarios:

• S
enario Immunization (SI): Minimizing a norm of the expe
ted deviation of the obje
-

tive fun
tion value over the s
enarios given by the solution o�ered by the model while

jointly satisfying the 
onstraints for all es
enarios from the optimal obje
tive fun
tion

value obtained by 
onsidering ea
h s
enario alone.

• Value-at-Risk (VaR): Well known theoreti
al resear
h subje
t in �nan
e suggests that

the measures based on quantiles are good fun
tions for risk management. Among

them, the Value-at-Risk (VaR) has also turned into a referen
e to many appli
ations

in other se
tors su
h as transportation, produ
tion planning, et
. That approa
h is

very attra
tive sin
e it is easy to interpret. By de�nition, the β-VaR of an obje
tive

fun
tion over a set of s
enarios is its lowest value, say α, su
h that the obje
tive fun
tion

value of the s
enario to o

ur is over α with β probability. The strategy 
onsists of

maximizing VaR. Note: The β probability is provided by the modeler.

• Conditional Value-at-Risk (CVaR): The advantage of the VaR strategy over the tra-

ditional maxmin strategy is obvious, sin
e it takes into a

ount an upper bound β on

the probability of the o

urren
e of a s
enario whose obje
tive value is not below α.

However, it does not 
onsider how bad the s
enarios with an obje
tive value below

VaR 
an be. The β-Conditional Value-at-Risk (CVaR) strategy takes into a

ount the
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obje
tive value of the bad s
enarios for a

1
β
weighting parameter, where CVaR is the


onditional expe
tation of the obje
tive value below α.

• De�
it Probability (DP): As an alternative to the VaR and CVaR strategies, DP is

a risk measure for weighting the probability that a non-desired s
enario will o

ur,

that is, the s
enario where the obje
tive value is below a given threshold, say φ. This

parameter is provided by the modeler.

• Sto
hasti
 Dominan
e Constraints strategies (SDC), where the obje
tive fun
tion ex-

pe
ted value is maximized, su
h that a set of thresholds of the obje
tive fun
tion value

for ea
h s
enario is to be satis�ed with either a given failure's probability on ea
h

threshold (the so named �rst-order SDC) or a bound on the expe
ted obje
tive fun
-

tion shortfall on rea
hing it (the so named se
ond-order SDC). Note 1: A pro�le is

said to be in
luded by the pair given by a threshold and a bound on either its failure

probability or its expe
ted shortfall. Note 2: The set of pro�les is provided by the

modeler.

Some of these risk measures and other approa
hes in the literature try to redu
e either the

probability of the o

urren
e of non-wanted s
enarios or the maximization of the obje
tive

value for the worst s
enario with a given failure's probability. However, they do not pay

attention to the good s
enarios (ex
ept the last strategy depending on the set of pro�les

to 
onsider). On the 
ontrary, de
ision makers usually look for a trade-o� between the risk

minimization and the obje
tive value maximization. For this reason, the above 
ited risk

measures are usually 
ombined with the optimization of the obje
tive fun
tion, leading to

strategies as the 
ombination of the Expe
ted Value and De�
it Probability [55℄ and the


ombination of Expe
ted Value and CVaR [56℄, among others.

We present in this work the modeling of the above risk averse strategies for multistage

sto
hasti
 mixed 0-1 programs by in
luding some new variables and 
onstraints, where the

new variables are 0-1 ones but for the CVaR and se
ond-order SDC strategies. Additionally,

some strategies require 
onstraints with variables from di�erent s
enarios, su
h as VaR, SDC

and other strategies, see below.

3.1 Two step S
enario Immunization strategy

The model for S
enario Immunization minimizes a given norm, say ℓ, of the expe
ted devi-

ation of the s
enario obje
tive fun
tion value given by the model over the s
enarios (where

the 
onstraints for all the s
enarios are jointly satis�ed) from the optimal obje
tive value of

ea
h s
enario individually 
onsidered. It 
an be represented as follows,

D = min
∑

ω∈Ω

wω(Qω∗

−Qω)ℓ

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
xg ∈ {0, 1}nx

g

, yg ∈ IR+nyg ∀g ∈ G,

(5)
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where

Qω =
∑

t∈T

(aωt x̂
ω
t + bωt ŷ

ω
t ) =

∑

g∈N d

(agx̂g + bgŷg)

is the obje
tive fun
tion value of the DEM problem ((2) or (4)) for the solution values

of the x and y variables under ea
h s
enario ω. Noti
e that xω = {xg ∀g ∈ N d} and

yω = {yg ∀g ∈ N d}, where x̂g and ŷg are the solution of the variables xg and yg, respe
tively,

and ω is the unique s
enario in set Ωd
, for d ∈ GT . Remember that N d

gives the set of

an
estor nodes (i.e., s
enario groups) in the ba
k path from leaf node d to root node 1.

Additionally, the obje
tive fun
tion value Qω∗

for the individual model related to ea
h

s
enario ω 
an be expressed

Qω∗

= max
∑

g∈N d

(agxg + bgyg)

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ N d

xg ∈ {0, 1}nx
g

, yg ∈ IR+nyg ∀g ∈ N d.

(6)

Noti
e that Qω∗

−Qω ≥ 0.

In order to make 
omputationally manageable the above approa
h and at the same time

risk e�e
tive, the following two-step approa
h is introdu
ed in [22℄, where the minimization

of the norm ℓ = ∞ is performed in the �rst stage, let D denote the value. Additionally, the

minimization of the norm ℓ = 1 is performed in the se
ond stage, subje
t to the 
onstraint

that for
e the deviation of the obje
tive fun
tion value given by the model for ea
h s
enario

from its optimal obje
tive value in its individual model be not greater than D, the minimum

greatest deviation by 
onsidering jointly all s
enarios. The two step strategy is as follows.

Step 1 in strategy (∞, 1)

D = min maxω∈Ωwω(Qω∗

−Qω)

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
xg ∈ {0, 1}nx

g

, yg ∈ IR+nyg ∀g ∈ G.

(7)

Step 2 in strategy (∞, 1)

D = min
∑

ω∈Ω

wω(Qω∗

−Qω)

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
wω(Qω∗

−Qω) ≤ D ∀ω ∈ Ω
xg ∈ {0, 1}nx

g

, yg ∈ IR+nyg ∀g ∈ G.

(8)

Noti
e the relationship between D (8) and QE (4), sin
e the obje
tive fun
tion of model (8)


an be expressed

∑

ω∈Ω

Qω∗

+max
∑

g∈G

wg(agxg + bgyg).
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3.2 Value-at-Risk strategy

The model that maximizes a 
ombination of the obje
tive fun
tion expe
ted value and the

β-VaR 
an be expressed as follows,

max γ
∑

g∈G

wg(agxg + bgyg) + ρα

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
∑

g∈N d

(agxg + bgyg) +Mωνω ≥ α ∀ω ∈ Ω

∑

ω∈Ω

wωνω ≤ 1− β

xg ∈ {0, 1}nx
g

, yg ∈ IR+nyg ∀g ∈ G
νω ∈ {0, 1} ∀ω ∈ Ω
α ∈ R,

(9)

where α is a rational variable expressing the VaR to maximize, νω is a 0-1 variable su
h that

its value is 1 if the obje
tive value for s
enario ω is smaller than α and otherwise, 0, Mω

is the "big M" parameter, preferably to be the smallest one, whi
h does not eliminate any

feasible solution for s
enario ω in the original sto
hasti
 model, ρ is a weighting parameter,

and γ ∈ {0, 1} is another parameter su
h that for γ = 0 and ρ = 1 it results the 
lassi
al VaR
obje
tive fun
tion. Note: The 1− β failure's probability of not satisfying a given 
onstraint

may have its roots in the 
on
ept of Chan
e Constraints introdu
ed in [16℄.

3.3 Conditional expe
tation below VaR strategy

As stated above, the advantage of the VaR strategy over the traditional maxmin strategy

is obvious sin
e it takes into a

ount the probability of the o

urren
e of s
enarios whose

obje
tive value is below VaR. However, it does not 
onsider how bad the s
enarios with a

obje
tive value below VaR 
an be. On the 
ontrary, the model that maximizes a 
ombination

of the obje
tive fun
tion expe
ted value and the β-CVaR 
an be expressed as follows,

max γ
∑

g∈G

wg(agxg + bgyg) + ρ
(

α−
1

β

∑

d∈GT

wd
(

α−
∑

g∈N d

(agxg + bgyg)
)

+

)

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
xg ∈ {0, 1}nx

g

, yg ∈ IR+nyg ∀g ∈ G
α ∈ R,

(10)

where wd = wω
being ω ∈ Ωd

, and z+ = max{0, z}. Re
all that d ∈ GT . Note: For γ = 0
and ρ = 1, it results the CVaR strategy introdu
ed in [52℄. See also [46, 47℄.

Also denoted as CVaR

−
, a more amenable representation of model (10), see [56℄, is given

as follows

9



max γ
∑

g∈G

wg(agxg + bgyg) + ρ
(

α−
1

β

∑

ω∈Ω

wωvω
)

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G

α−
∑

g∈N d

(agxg + bgyg) ≤ vω ∀ω ∈ Ω

xg ∈ {0, 1}nx
g

, yg ∈ IR+nyg ∀g ∈ G
vω ≥ 0 ∀ω ∈ Ω
α ∈ R,

(11)

su
h that vω is a non-negative variable equal to the di�eren
e (if its positive) between α

and the obje
tive value for s
enario ω, the so named obje
tive fun
tion shortfall on rea
hing

VaR α. For γ = 1 and ρ = 1 ,it results the maximization of the so named average VaR

deviation (also known as the average CVaR deviation), see in [39℄ an interesting appli
ation

for sele
ting the optimal pension plan fund.

3.4 Conditional expe
tation above VaR strategy

As an alternative to the Conditional expe
tation below VaR strategy, see model (11), the

so named CVaR

+
strategy maximizes a 
ombination of VaR and the weighted Conditional

expe
tation above VaR, su
h that the model is as follows,

max α+ ρ
∑

d∈GT

wd
(

∑

g∈N d

(agxg + bgyg)− α
)

+

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
∑

g∈N d

(agxg + bgyg) +Mωνω ≥ α ∀ω ∈ Ω

∑

ω∈Ω

wωνω ≤ 1− β

xg ∈ {0, 1}nx
g

, yg ∈ IR+nyg ∀g ∈ G
νω ∈ {0, 1} ∀ω ∈ Ω.

(12)

A more amenable representation of model (12) is as follows,

max α+ ρ
∑

ω∈Ω

wωvω

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
∑

g∈N d

(agxg + bgyg)− α+Mωνω ≥ vω ∀ω ∈ Ω

vω ≤ Mω(1− νω) ∀ω ∈ Ω
∑

ω∈Ω

wωνω ≤ 1− β

xg ∈ {0, 1}nx
g

, yg ∈ IR+nyg ∀g ∈ G
νω ∈ {0, 1}, vω ≥ 0 ∀ω ∈ Ω,

(13)

10



su
h that vω is a non-negative variable equal to the di�eren
e between the obje
tive value

for s
enario ω and α in 
ase the di�eren
e is positive and otherwise, 0.

3.5 Conditional expe
tation of the obje
tive fun
tion shortfall on rea
h-

ing a threshold

max
∑

g∈G

wg(agxg + bgyg)− ρ
∑

ω∈Ω

wωvω

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
∑

g∈N d

wg(agxg + bgyg) + vω ≥ φ ∀ω ∈ Ω

xg ∈ {0, 1}nx
g

, yg ∈ IR+nyg ∀g ∈ G
vω ≥ 0 ∀ω ∈ Ω,

(14)

where vω is a nonnegative variable equal to the di�eren
e between a given threshold, say, φ

and the obje
tive value for s
enario ω and otherwise, 0. The model for the maximization

of the obje
tive fun
tion expe
ted value minus the weighted expe
ted obje
tive fun
tion

shortfall on rea
hing threshold φ is inspired in [21℄, and related to the Integrated Chan
e

Constraints 
on
ept due to [42℄, see also [43, 44℄. In a di�erent 
ontext see [11, 59℄.

3.6 De�
it probability

The strategy that maximizes the obje
tive fun
tion expe
ted value minus the weighted prob-

ability of having the obje
tive value for the s
enario to o

ur below a given threshold is

modeled below, see [55℄. As in the VaR strategy, a new 0-1 variable per s
enario, say νω is

needed, su
h that its value is 1 if the obje
tive value for s
enario ω is smaller than threshold

φ and otherwise, 0.

max
∑

g∈G

wg(agxg + bgyg)− ρ
∑

ω∈Ω

wωνω

s.t.A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
∑

g∈N d

(agxg + bgyg) +Mωνω ≥ φ ∀ω ∈ Ω

xg ∈ {0, 1}nx
g

, yg ∈ IR+nyg ∀g ∈ G

νω ∈ {0, 1} ∀ω ∈ Ω.

(15)

Noti
e that the threshold satisfa
tion 
onstraints allow to impose a lower limit, say Lω
, in

the obje
tive value for s
enario ω, just by �xing Mω = φ−Lω
. For example, Mω = φ means

that a negative obje
tive value is not allowed for s
enario ω ∈ Ω.

3.7 Sto
hasti
 dominan
e 
onstraint strategies SDC

As an alternative to the above strategies, let the re
ent approa
hes based on the �rst-order

and se
ond-order sto
hasti
 dominan
e 
onstraints (SDC) for mixed-integer linear re
ourse

11



introdu
ed in [34℄ and [35℄, respe
tively. See also [18℄ for the 
ase of 
ontinuous variables

where the problems is 
onsidered as a semi-in�nite one.

The �rst-order so named SDC-1 requires a set of pro�les, say P, given by the pairs

(φp, βp
) ∀p ∈ P, where φp

is the threshold on the obje
tive fun
tion value to be satis�ed

by s
enario ω with a su

ess probability βp
. Let us implement this strategy by proposing

model (16), su
h that the fun
tion value

∑

g∈N d(agxg+ bgyg) (i.e., the obje
tive value of the

unique s
enario ω in set Ωd
where d ∈ GT ) is not below threshold φp

with probability βp
.

max
∑

g∈G

wg(agxg + bgyg)

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
∑

g∈N d

(agxg + bgyg) +Mωνωp ≥ φp ∀ω ∈ Ω, p ∈ P

∑

ω∈Ω

wωνωp ≤ 1− βp ∀p ∈ P

xg ∈ {0, 1}nxt , yg ∈ IR+nyg ∀g ∈ G
νωp ∈ {0, 1} ∀ω ∈ Ω, p ∈ P,

(16)

where νωp is a 0-1 variable su
h that its value is 1 if the obje
tive value for s
enario ω is

smaller than threshold φp
and otherwise, 0.

The se
ond-order sto
hasti
 dominan
e 
onstraints strategy (the so named SDC-2) re-

quires a set of pro�les given by the pairs (φp, ep) ∀p ∈ P, where ep is the upper bound of

the expe
ted obje
tive fun
tion shortfall on rea
hing threshold φp
. It 
an be implemented

as follows,

max
∑

g∈G

wg(agxg + bgyg)

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G

φp −
∑

g∈N d

(agxg + bgyg) ≤ vωp ∀ω ∈ Ω, p ∈ P

∑

ω∈Ω

wωvωp ≤ ep ∀p ∈ P

xg ∈ {0, 1}nx
g

, yg ∈ IR+nyg ∀g ∈ G
vωp ≥ 0 ∀ω ∈ Ω, p ∈ P,

(17)

su
h that vωp is a non-negative variable equal to the di�eren
e (if it is positive) between

threshold φp
and the obje
tive value for s
enario ω. Noti
e that this strategy does not

require additional 0-1 variables. The 
on
ept of the expe
ted obje
tive fun
tion shortfall on

rea
hing a given threshold may have its roots in the Integrated Chan
e Constraints 
on
ept

introdu
ed in [42℄ see also [44℄.

3.8 VaR & Sto
hasti
 dominan
e 
onstraint strategies

As an alternative to the SDC-1 and SDC-2 strategies, let a mixture of the VaR (9) & SDC

strategies (16) and (17), su
h that the new models are (18) for SDC-1 and (19) for SDC-2.

12



max γ
∑

g∈G

wg(agxg + bgyg) + ρ
∑

p∈P

αp

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G
∑

g∈N d

(agxg + bgyg) +Mωνωp ≥ αp ∀ω ∈ Ω, p ∈ P

∑

ω∈Ω

wωνωp ≤ 1− βp ∀p ∈ P

αp ≥ φp ∀p ∈ P
xg ∈ {0, 1}nx

g

, yg ∈ IR+nyg ∀g ∈ G
νωp ∈ {0, 1} ∀ω ∈ Ω, p ∈ P.

(18)

max γ
∑

g∈G

wg(agxg + bgyg) + ρ
∑

p∈P

αp

s.t. A′gxσ(g) +Agxg +B′gyσ(g) +Bgyg = hg ∀g ∈ G

αp −
∑

g∈N d

(agxg + bgyg) ≤ vωp ∀ω ∈ Ω, p ∈ P

∑

ω∈Ω

wωvωp ≤ ep ∀p ∈ P

αp ≥ φp ∀p ∈ P
xg ∈ {0, 1}nx

g

, yg ∈ IR+nyg ∀g ∈ G
vωp ≥ 0 ∀ω ∈ Ω, p ∈ P.

(19)

Note: In some appli
ations, mainly in the �nan
ial se
tor, see [8℄, the set of pro�les P refers

to a sele
ted subset of s
enario groups in G, mainly for the groups related to non-wanted

s
enarios.

Solution 
onsiderations: We must point out that the models (9), (13), (16), (17), (18)

and (19) have a 
omputational disadvantage when 
omparing them with the models (11),

(14) and (15), sin
e they have 
onstraints linking variables from di�erent s
enarios. Noti
e

that the disadvantage is stronger for the models (16) and (17) with |P| > 1 than for the

models (9) and (13), and it is stronger for the models (18) and (19) than for the models (16)

and (17). In any 
ase, a de
omposition approa
h must be used for problem solving of huge

instan
es. A Lagrange relaxation 
an be 
onsidered for dualizing those linking 
onstraints

as done in the strategy presented in [35℄ for the se
ond-order SDC, see [28℄, or an extension

of the BFC-MS algorithm presented in [29℄ in order to obtain an exa
t optimal solution in

an a�ordable 
omputing e�ort, see [27℄.

4 Con
lusions

Several risk averse strategies existing in the literature for two-stage sto
hasti
 programs

have been proposed in this work for risk management in multistage sto
hasti
 mixed 0-

1 programs. Those strategies are the two step s
enario immunization (7)-(8), VaR (9),

CVaR (11), mean-risk (here named De�
it probability) (15), and the �rst- and se
ond-order

13



sto
hasti
 dominan
e 
onstraints (SDC-1 and SDC-2, respe
tively) (16) and (17). Some

other risk averse strategies have been proposed, su
h as the 
onditional expe
tation above

VaR (13), the minimization of the obje
tive fun
tion expe
ted shortfall on rea
hing a given

threshold (14), and the mixture of VaR & SDC (18) and (19).
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