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Abstract

Recently, nanostructured materials are received tremendous research interests because
of their exceptional properties and great potential in applications. In this thesis, we
investigated the thermoelectric transport properties of Si and Ge nanomembranes and
nanowires as well as silica nanoclusters by using density functional theory calculations
combined with Landauer-Büttiker formalism in the linear response regime. We also
investigated the thermoelectric coefficients for quantum devices in the Coulomb blockade
regime. The thesis is organized as follows.

We firstly investigated the thermoelectric properties in one- and two-dimensional Si and
Ge nanomembranes, i.e., silicene and germanene. We found that the figure of merit
ZT in the one-dimensional zigzag-edged silicene and germanene nanoribbons decreases
monotonously when the width of the nanoribbons increases. The decreasing figure of
merit can be attributed to the rapid rising of the thermal conductance. Broader nanorib-
bons have more phonon modes contributing to the transport than those of the narrow
nanoribbons, while electron conduction does not change so much. For armchair-edged
silicene and germanene nanoribbons, ZT as a function of ribbon width shows an oscil-
lating behavior. To improve the thermoelectric performance, we mixed the Si and Ge in
the nanoribbons to enhance the lattice scattering. We found that the figure of merit at
room temperature for hybrid narrow silicene and germanene nanoribbons is remarkably
high, up to 2.5.

Secondly we investigated the thermoelectric energy conversion efficiency of Si and Ge
nanowires, and in particular, that of SiGe core-shell nanowires. We showed how the
presence of a thin Ge shell on a Si core nanowire increases the overall figure of merit.
We found the optimal thickness of the Ge shell to provide the largest figure of merit
for the devices. We also considered the Ge-core/Si-shell nanowires. We found that an
optimal thickness of the Si shell does not exist, since the figure of merit is a monotonically
decreasing function of the radius of the nanowire. Moreover, we considered the nanowire
in which the shell is an alloy of Si and Ge. We verified the empirical law relating the
electron energy gap to the optimal working temperature, at which the efficiency of the
device is maximized.

Thirdly we investigated the heat transfer between two silica nanoclusters. We found
that when the gap between two neighboring clusters is in the range 4 Å to 3 times
the cluster size, the thermal conductance decreases due to the surface charge-charge
interaction. When the gap is further increased to 5 times the cluster size, the volume
dipole-dipole interaction dominates. On the other hand, when the gap is smaller than
4 Å, a quantum interaction dominates, where electrons of both clusters are shared.
This quantum interaction leads to the dramatic increase of thermal coupling between
neighboring clusters when the gap distance decreases. This study provides a description
of the transition between radiation and heat conduction in gaps smaller than a few
nanometers.

Finally we investigated the thermoelectric coefficients, in particular the Seebeck efficient,
for strongly interacting electrons in the Coulomb blockade regime. The Seebeck coeffi-
cient plays a fundamental role in identifying the efficiency of a thermoelectric device. Its
theoretical evaluation for atomistic models is routinely based on density functional the-
ory calculations combined with the Landauer-Büttiker approach to quantum transport.
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This combination, however, suffers from serious drawbacks for devices in the Coulomb
blockade regime. We showed how to cure the theory through a simple correction in terms
of the temperature derivative of the exchange-correlation potential. We also showed the
comparison of our results with those obtained from both rate equations and experimen-
tal measurements on carbon nanotubes, and we found good qualitative agreement in all
cases.

Our results are expected to be beneficial for the understanding of material performance
and for designing future nanodevices.
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Resumen

Recientemente, los materiales nanoestructurados han recibido un gran interés por sus
excepcionales propiedades y su enorme potencial para aplicaciones. En esta tesis inves-
tigamos las propiedades de transporte termoeléctrico de nanomembranas y nanohilos de
Si y el Ge aśı como nanoclusters de silicio utilizando cálculos de teoŕıa del funcional de
la densidad combinados con el formalismo Landauer-Büttiker en régimen de respuesta
lineal. También investigamos los coeficientes termoeléctricos para dispositivos cuánticos
en régimen Coulomb blockade. La tesis se organiza como sigue.

Primero analizamos las propiedades termoeléctricas en nanomembranas de Si y Ge uni-
dimensionales y bidimensionales, es decir, siliceno y germaneno. Encontramos que el
factor de mérito ZT en nanocintas unidimensionales terminadas en zigzag de siliceno y
germaneno decrece monótonamente cuando el ancho de las nanocintas aumenta. El fac-
tor de mérito decreciente puede atribuirse al rápido aumento de la conductancia térmica.
Las nanocintas más anchas tienen más modos fonónicos contribuyendo al transporte que
las nanocintas más estrechas, mientras que la conducción de electrones no cambia mu-
cho. Para nanocintas de siliceno y germaneno con borde armchair, ZT como función del
ancho de la cinta muestra un comportamiento oscilatorio. Para mejorar el rendimiento
termoeléctrico mezclamos Si y Ge en las nanocintas para mejorar el lattice scattering.
Encontramos que el factor de mérito a temperatura ambiente para nanocinas estrechas
h́ıbridas de siliceno y germano es destacablemente alto, hasta 2.5.

En segundo lugar analizamos la eficiencia de conversión termoeléctrica de nanohilos de Si
y Ge, y en particular, la de nanohilos de núcleo-capa SiGe. Mostramos cómo la presencia
de una fina capa de Ge sobre un núcleo de nanohilo de Si incrementa el factor de mérito
general. Encontramos el ancho óptimo para la capa de Ge para obtener el máximo factor
de mérito para los dispositivos. También consideramos los nanohilos núcleo de Ge/capa
de Si. Encontramos que el ancho óptimo de la capa de Si no existe, ya que el factor
de mérito es una función monótonamente decreciente del radio del nanohilo. Es más,
analizamos también nanohilos en los que la capa en una aleación de Si y Ge. Verificamos
la ley emṕırica que relaciona el gap de enerǵıa electrónico a la temperatura óptima de
trabajo, a la que la eficiencia del dispositivo es máxima.

En tercer lugar analizamos la transferencia de calor entre dos nanoclusters de silicio.
Encontramos que cuando el gap entre dos clusters vecinos está en el rango de 4 Å a 3 veces
el tamaño del cluster, la conductancia térmica decrece debido a la interacción carga-
superficie. Cuando el gap es aumentado a 5 veces el tamaño del cluster, la interacción
en volumen dipolo-dipolo domina. Por otro lado, cuando el gap es menor que 4 Å, una
interacción cuántica domina, en la que los electrones de ambos clusters son compartidos.
Esta interacción cuántica provoca un incremento dramático del acoplamiento térmico
entre los clusters vecinos cuando la distancia de gap disminuye. Este estudio proporciona
una descripción de la transición entre la conducción por radiación y por calor en gaps
menores que unos pocos nanómetros.

Por último, investigamos los coeficientes termoeléctricos, en particular el coeficiente de
Seebeck, para electrones interaccionando fuertemente en régimen de Coulomb block-
ade. El coeficiente de Seebeck juega un papel fundamental en identificar la eficien-
cia de un dispositivo termoeléctrico. Su evaluación teórica para modelos atomı́sticos
está basada de la manera corriente en cálculos de teoŕıa del funcional de la densidad



vi

combinados con con el método de Landauer-Büttiker para transporte cuántico. Esta
combinación, sin embargo, sufre serios inconvenientes para dispositivos en el régimen
Coulomb blockade. Mostramos cómo subsanar la teoŕıa mediante una simple corrección
en términos de derivadad de la temperatura del potencial de correlación-intercambio.
También mostramos la comparación de nuestros resultados con lo obtenidos tanto de
ecuaciones de ritmo como de medidas experimentales en nanotubos de carbono, y en-
contramos un buen acuerdo cualitativo en todos los casos.

Se espera que nuestros resultados sean beneficiosos para el entendimiento del rendimiento
de los materiales y para diseñar futuros nanodispositivos.
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Chapter 1

Introduction to thermoelectricity

1.1 Three significant physical effects

Thermoelectric materials that convert waste heat into electricity or electrical power into
cooling have been studied for a long time due to the technological applications in devel-
oping alternative energy sources to reduce our dependence on fossil fuels and accordingly
reduce greenhouse gas emissions [3–5]. The first discovered physical phenomena of the
thermoelectric conversion are the Seebeck, Peltier and Thomson effects. In the following
we introduce these three effects briefly.

1.1.1 Seebeck effect

In 1821, T. J. Seebeck first discovered that when two different metals a and b are
connected to form a ring, a current can be generated if the two metals have different
temperatures. The arrangement is shown in Fig. 1.1. This is a thermocouple and the
electromotive force produced by the temperature difference is called thermovoltage, VT .
The magnitude of the thermovoltage is proportional to the difference of the temperature
of the thermocouple junctions, and the Seebeck coefficient Sab is therefore defined as

Sab = −
(
VT
∆T

)∣∣∣∣
J=0

=

(
V

∆T

)∣∣∣∣
J=0

, (1.1)

where Sab = Sb − Sa with Sa and Sb the Seebeck coefficients of metals a and b, and
∆T = T2 − T1 is the temperature difference between the two metals at the interfaces,
V is the external bias which is applied to balance the thermovoltage VT so that the
current J = 0. The minus sign before VT comes from the fact that we define the
Seebeck coefficient for hole transport as positive and for electron transport as negative.
Assuming a is a n-type material in which electrons are the dominant carriers and b is a
p-type material in which holes are the dominant carriers, if the temperature T2 is larger
than T1, carriers will move from the high temperature region to the low temperature
region, i.e., electrons and holes will move from interface B to A. In this case a current is
created, flowing from interface A to B carried by electrons in the left-hand-side (l.h.s.)
of Fig. 1.1 with material a and flowing from interface B to A carried by holes in
the right-hand-side (r.h.s.) of Fig. 1.1 with material b. Therefore, the temperature
gradient induced potential at the r.h.s. of interface A is higher than that at the r.h.s.

1
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of interface B because at the r.h.s., A accumulates the positive charges and B keeps the
negative charges. However, the situation for the l.h.s. of Fig. 1.1 is completely reversed.
Consequently S is positive for p-type materials and negative for n-type materials.

Figure 1.1: (Color) Diagram of the circuit on which Seebeck discovered the thermo-
electric effect. a and b are two different metals with n-type and p-type, respectively.
The interfaces A and B have temperatures T1 and T2. We assume T2 > T1 so that

carriers will move from B to A.

1.1.2 Peltier effect

Conversely to the Seebeck effect, in 1834 J. Peltier found that when a current is made
to flow through a junction composed of materials a and b, at the interface there exist
heat generation and absorption phenomena. A schematic picture of this effect is shown
in Fig. 1.2. If we take the absorbed heat as positive and released heat as negative, then
the Peltier heat Q per unit time is equal to

dQ

dt
= JΠab, (1.2)

where Πab = Πb −Πa is the Peltier coefficient which depends on the temperature of the
interface and the materials composition. When a current flows from material a to b, heat
absorption happens at the l.h.s of the interface since we take a as a n-type material and
heat generation happens at the r.h.s. of the interface because b is a p-type material (see
Fig. 1.2). In this case the Peltier coefficient Πa is negative and Πb is positive. The sign
of the Peltier coefficient we defined here is consistent with the sign of Seebeck coefficient.
Actually these two thermoelectric coefficients are not independent and we will show their
relation later. The Peltier effect is reversible. If one changes the current direction in
Fig. 1.2, equivalent heat energy will be generated and absorbed corresponding to the
left and the right sides of the interface.

1.1.3 Thomson effect

After the discovery of the Seebeck and Peltier effects, in 1855 W. Thomson found that
there is another heating or cooling process. When a current flows through a conductor
and inside the conductor there exists temperature gradient, in addition to form the
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Figure 1.2: (Color) A schematic illustration of the Peltier effect, where heat absorp-
tion and generation are shown at the left and right sides of the interface.

Joule heat that is related to the conductor resistance, there is another heat generated
or absorbed. A schematic illustration of this phenomenon is shown in Fig. 1.3. The
absorbed or released heat per unit time is proportional to the current and temperature
gradient, which is given by

dQ

dt
= ΘaJ

dT

dx
, (1.3)

where Θa is the Thomson coefficient with unit V/K which depends on the material
properties and temperature gradient, dx is the distance that current flows through the
conductor per unit time. The Thomson effect is also reversible. The Thomson coefficient
is positive for p-type materials and negative for n-type materials. If the current flows
from low temperature region to high temperature region, it will absorb heat energy in
conductors with positive Θ and release heat energy with negative Θ.

Figure 1.3: (Color) A schematic illustration of the Thomson effect, where a current
flows through the conductor and inside the conductor there exists temperature gradient.
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The above Seebeck, Peltier and Thomson coefficients are not independent. They have
the relations:

Πab = TSab, (1.4)

Θab = T
dSab
dT

, (1.5)

where the temperature T = (T1 + T2)/2. The proof of these relations can be found in
appendix A. In the above discussion, we have assumed the materials a and b are metallic.
For semiconductors, the relations of the three coefficients still exist. More detailed
information can be found in the book edited by H. J. Goldsmid [6]. Considering the
mutual dependence of the three parameters, in the rest of this thesis, we will only focus
on the Seebeck coefficient and omit the discussion of Peltier and Thomson coefficients.

Very recently, a novel thermoelectric phenomenon, spin Seebeck effect, is found in ferro-
and antiferro-magnetic materials experimentally, which refers to the generation of a
spin voltage caused by a temperature gradient. However, the discussion on this topic is
beyond the scope of the present thesis [7–10].

1.2 Thermoelectric efficiency

1.2.1 Maximizing the efficiency

We determine the performance of thermoelectric devices using the model shown in Fig.
1.4 for a single thermocouple. Practical devices usually make use of modules that contain
a number of thermocouples connected electrically in series and thermally in parallel.
This enable the cooler or heat pump to be operated from a power source that delivers a
manageable current with a reasonable voltage drop. It is a simple matter to extend the
equations we derive below for a single couple to a multi-couple arrangement [6].

We first make the following assumptions for simplicity to calculate the thermoelectric
efficiency over the temperature range Tc ≤ T ≤ Th:
(1) σp = σn = σ is the electrical conductivity and Gp = Gn = G is the electrical
conductance;
(2) λp = λn = λe is the electric thermal conductivity and κp = κn = κe is the electric
thermal conductance;
(3) Sp = −Sn = S is the Seebeck coefficient;
(4) Ap = An = A is the cross-sectional area of the thermoelements and lp = ln = l is
the length of the thermoelements.

For the thermoelements, half of which are n-type and half of which are p-type, both
electrical and thermal conductivities have the relations with their corresponding con-
ductances:

G =
Aσ

l
, (1.6)

κe =
Aλe
l
. (1.7)
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The total internal electrical resistance r and theremovoltage VT are

r =
l

Aσ
, (1.8)

VT = −Sn(Th − Tc) = S∆T, (1.9)

respectively. In the thermoelectric generator, the electrical current J and power W
delivered to the external load R are

J =
S∆T

r +R
, (1.10)

W = J2R =
S2∆T 2R

(r +R)2
, (1.11)

where the load R can be chosen freely according to the device requirement.

Figure 1.4: (Color) A two-element thermoelectric generator. The p-type and n-type
materials with different temperatures, Th and Tc, at the interfaces are connected. The
current is generated due to the moving of carriers from the hot terminal to the cold

terminal.

We now derive the efficiency of the device shown in Fig. 1.4. The input energy is the
heat energy entering the hot junction and is given by [11]

Qh = κe−ph∆T + SThJ −
J2r

2
, (1.12)

where κe−ph = κe + κph and κph can be the phonon or lattice thermal conductance. If
we define

y =
R

r
, (1.13)

and use the expressions of J and W as shown in Eqs. (1.11), the efficiency can be written
as

η =
W

Qh
=

∆T

Th

y/(y + 1)

1 + κe−ph(y + 1)r/(S2Th)−∆T/(2Th(y + 1))
. (1.14)

By defining

Z =
S2

rκe−ph
, (1.15)
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we can rewrite Eq. (1.14) as

η =
∆T

Th

y/(y + 1)

1 + (y + 1)/ZTh −∆T/(2Th(y + 1))
. (1.16)

So this formulation expresses the efficiency as a function of the parameters Th and Tc
and the parameters y and Z. As mentioned previously, the load resistance R is a free
variable and may be chosen as desired to achieve any specific y = R/r.

There are two choices for the load resistance, R, that are particularly important. The
first choice is to take R = r, which yields maximum power output W . The second choice
is the one that yields maximum efficiency by maximizing Eq. (1.16) with respect to y,
i.e.,

∂η

∂y
= 0. (1.17)

After some algebra, one can get

Rηmax = ry = r
√

1 + ZT , (1.18)

where T = (Th + Tc)/2. The product ZT is a dimensionless figure of merit and is often
used instead of Z for thermoelectric materials. Substituting Eq. (1.18) into (1.16) yields
the maximum possible efficiency for any thermoelectric generator:

ηmax =
∆T

Th

√
1 + ZT − 1√

1 + ZT + Tc/Th
. (1.19)

This formula provides a guideline on how to improve the thermoelectric energy con-
version efficiency. The key quantity in Eq. (1.19) is the figure of merit ZT . In many
situations we also use the definition:

ZT =
σS2T

λe−ph
=
GS2T

κe−ph
, (1.20)

where λe−ph = λe + λph and λph is the phonon thermal conductivity. To achieve Eq.
(1.20), we have used the relations shown in Eqs. (1.6)-(1.8) and also κph = Aλph/l. The
r.h.s. of the above Eq. (1.20) in many cases is more popular because the conductivity is
not well defined for some materials such as the nanostructured atomic layered membranes
where the cross-section area is not easy to estimate. And we will have more discussions
on this in chapter 3 for calculating the figure of merit of two- and one-dimensional silicon
and germanium nanosystems.

1.2.2 Performance analysis

After the theoretical derivation, we discuss here the performance of the Eq. (1.19).
Figure 1.5 shows the thermoelectric energy conversion efficiency η as a function of tem-
perature difference ∆T . In the calculations we define the temperatures Th = Tc + ∆T
and Tc = 200 K. It can be seen that the efficiency increases monotonously with the
temperature difference. For a given ∆T , the larger the figure of merit ZT , the higher
the efficiency η. At ∆T = 300 K or Th = 500 K, we find that η ≈ 13.7% even at ZT = 1.
As ZT increases to 2, the efficiency reaches 20.6% approximately. The current efficiency
of Si-based solar cell is just about 20%.
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Figure 1.5: (Color) Thermoelectric efficiency η versus temperature difference ∆T for
figure of merit ZT ranging from 1 to 10, where the temperature in the cold side is

Tc = 200 K and hot side is Th = Tc + ∆T .

So far the best value for the figure of merit achieved with state-of-the-art technique
is about 1. Although higher values have been reported in the literature for particular
materials, those materials have been proven difficult to be integrated into our tech-
nologies presently, or to be produced industrially in a reliable way [12]. Indeed, the
optimization of the figure of merit is a difficult problem. From the definition of ZT ,
we can see that an ideal thermoelectric material should hold an electrical conductiv-
ity and Seebeck coefficient as high as possible, while keeping the thermal conductivity
as low as possible. Unfortunately, because the semi-empirical Wiedemann-Franz law,
i.e., λe/σ = (kBπ)2T/3e2, where kB and e are the Boltzmann constant and electron
charge, respectively, is valid in a great extent for metals, the two conductivities are
locked together and the increase of the first leads to the increase of the second [13].

1.3 Research on this thesis

To achieve a high thermoelectric energy conversion efficiency, a large ZT value is re-
quired. In the literature, many different approaches have been tried, for example, intro-
ducing impurity atoms, superlattice modulation, stress effect and so on [14]. Neverthe-
less due to the mutual dependence of the quantities in ZT , the task becomes difficult.
Usually increasing the electrical conductance, meanwhile, increases the thermal conduc-
tance. As far as I know the current highest ZT value reported by Zhao et al. is about 2.6
for a working temperature (T = 923 K) in SnSe crystal along a certain lattice direction
[15], but it remains to be checked how efficiently these devices can be integrated within
our actual Si-based technology.

In this thesis we work on the thermoelectric transport in nanostructured materials aim-
ing to gain a considerable figure of merit. Our theoretical tools are based on DFT
calculations and NEGF technique in the linear response regime. DFT combined with
NEGF provides a standard way to calculate the electrical conductance, Seebeck coef-
ficient and thermal conductance which are the quantities included in ZT and we will
discuss more about this approach in the next chapter. Our studies are mainly focused
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on nanomaterials since they have been predicted to exhibit a promising figure of merit
due to the quantum confinement effect. Furthermore we are interested in nanomaterials
because they have exceptional properties, such as high electron conduction and out-
standing optical characteristics, which make them have great potential in applications
in future power generation and thermoelectric devices.

In chapter 2 we introduce the basics of DFT in detail. We start from the MB interacting
Hamiltonian. Because of the complexity of directly solving the MB Schrödinger equation,
the Born-Oppenheimer approximation (BOA) is introduced to separate the electrons
and nuclei motion. Based on BOA, the Hartree-Fock equations are then proposed.
DFT is another theory within BOA to solve the many-particle problem, and its starting
point is the Hohenberg-Kohn theorem. For KS-DFT, the MB interacting density is
effectively mapped into the density of a non-interacting system in which single particle
wave functions are used. The particle-particle interaction for KS-DFT is included in
a potential called xc potential. Although KS-DFT turns the complicated MB problem
into a single particle problem, the xc potential remains unknown. In nowaday practical
calculations, the most popular approximations for the xc potential are the local density
approximation and the generalized gradient approximation. On the other hand, besides
DFT, NEGF is also a powerful theory for the study of material properties. We will
introduce NEGF for both fermionic and bosonic systems. Using the theory we derive
the heat and electric current formulas based on the canonical Hamiltonian. Then the
electrical conductance, Seebeck coefficient, thermal conductance and accordingly ZT
can be calculated in terms of the Green’s functions. Finally we introduce briefly the
BTE and RE which are used for the calculations partially in chapters 3 and 4.

In chapter 3 we first implement the theory we have described above for silicene and
germanene nanomembranes. Silicene and germanene are atomically thin materials of
Si and Ge, respectively, which have similar honeycomb lattice structure as graphene.
We use DFT and Landauer theory to calculate their electronic structural and transport
properties. For the two-dimensional systems, we find some interesting properties, such
as there is a Dirac-cone with linear dispersion in the band structure for free-standing
both silicene and germanene at the K point of the first-Brillouin zone. We also study
the properties of one-dimensional nanoribbons. We find that silicene and germanene
nanoribbons exhibit a high figure of merit with narrow widths. When the width of
the nanoribbons increases, the figure of merit decreases due to the rapidly increased
phonon thermal conductance. Finally we explore the behavior of hybrid structures by
mixing silicene and germanene in the growth direction of the nanoribbons. We find these
hybrid structures can have better thermoelectric performance than that of pure silicene
and germanene due to the increase of lattice scattering.

We then investigate the thermoelectric figure of merit of SiGe nanowires, and in partic-
ular, that of SiGe core-shell nanowires. We find the figure of merit of SiGe core-shell
nanowires can be effectively improved in contrast to that of pure Si and Ge nanowires.
We show that the figure of merit of Si-core/Ge-shell nanowires undergoes a transition
when the diameter of the nanowires increases. An optimal thickness of Ge-shell to pro-
vide the largest ZT is observed. However, in the case of Ge-core/Si-shell nanowires, the
figure of merit as a function of diameter decreases monotonously. We also investigate
the disorder effect on the figure of merit by mixing Si and Ge compositions in the shell
layers. In addition, we investigate the figure of merit as a function of temperature. We
verify an empirical law relating the band gap to the working temperature, at which the
figure of merit ZT is maximized.
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We also investigate in chapter 3 the heat transfer between two silica nanoclusters by
using NEGF method. We find a significant phase transition of heat transfer from classical
to quantum regime. When the gap between two neighboring clusters is lesser than 4
Å, quantum interaction dominates. However, when the gap is larger than 4 Å but still
lesser than 3 times the size of the nanoclusters, classical surface charge-charge interaction
determines the behavior of thermal conductance. When the gap is further increased to
be larger than 5 times the cluster size, classical volume dipole-dipole interaction plays a
crucial role in determining the heat conduction. We compared these results with those
obtained from molecular dynamics which is based on the Kubo theory. Unsurprisingly
the classical molecular dynamics simulation fails to capture the quantum effect, although
it shows a good agreement with NEGF calculation in the classical regime.

In chapter 4 we investigate the thermoelectric coefficients, in particular the Seebeck
coefficient, for strongly interacting electrons in the CB regime. We first show the deriva-
tion of the theory of the dynamical xc correction to the KS conductance and Seebeck
coefficient. Afterwards we evaluate the performance of the formulas we derived by im-
plementing numerical calculations. We apply the theory to single impurity Anderson
model and calculate the corresponding electrical conductance and Seebeck coefficient.
We find that the dynamical xc correction plays a crucial role in evaluating the conduc-
tance and Seebeck coefficient. We also apply the theory to HOMO-LUMO model and
multiple level systems to check the validity of the theory. Finally we compare our results
with those obtained from MB and RE calculations and those obtained from experimen-
tal measurements on carbon nanotubes, and we find good qualitative agreement in all
cases.

In chapter 5 we show a global conclusion of this thesis. We expect the results presented
in this thesis are beneficial for future applications in the design of thermoelectric devices
and other nanocircuits.





Chapter 2

Density functional and
thermoelectric transport theory

2.1 Many body problem

One of the basic problems in theoretical physics and chemistry is the description of the
structural and dynamical properties of many particle systems. The many particle system
includes single atoms comprised of electrons and nuclei and all kinds of molecules ranging
from dimers to proteins. It is complicated to solve the MB problem directly because
of the particle-particle interactions. In this chapter we will discuss DFT and NEGF
approaches which are widely used in calculating the electronic structures, energy bands,
and transport properties of solid state materials [16–21]. We will introduce DFT in
detail and derive the general expressions of electric and heat currents using the Green’s
functions based on the interaction Hamiltonian. At the end of this chapter we will also
introduce BTE and RE, which will be used for the calculations in chapters 3 and 4.

2.1.1 Many particle Schrödinger equation

The starting point of exploring the electronic and structural properties of materials is
the many particle Schrödinger equation [22, 23], which is given by

ĤΨ(r,R) = EΨ(r,R), (2.1)

where Ĥ is the MB Hamiltonian operator, Ψ is the eigenfunction, and E is the eigen-
value. r = (r1, r2, · · · ) represents all the coordinates of electrons and R = (R1,R2, · · · )
represents all the coordinates of nuclei. Without taking into account the electric or
magnetic fields, the MB Hamiltonian Ĥ can be split into

Ĥ = Ĥe + ĤN + Ĥe−N , (2.2)

where the electronic Hamiltonian is

Ĥe = T̂e(r) + V̂e(r) = −
∑
i

~2

2me
O2
ri +

1

2

∑
i,i′

i 6=i′

e2

|ri − ri′ |
, (2.3)

11
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where the Gaussian units are used. In the above equation, T̂e is the kinetic energy of
electrons, V̂e describes the electron-electron interactions, and me is the mass of electrons.
The Hamiltonian of nuclei is

ĤN = T̂N (R) + V̂N (R) = −
∑
j

~2

2Mj
O2
Rj

+
1

2

∑
j,j′

j 6=j′

VN (Rj −Rj′), (2.4)

where the first term is the kinetic energy of nuclei, the second term describes the nucleus-
nucleus interaction, and Mj is the j-th nuclear mass. The electron-nucleus interaction
in Eq. (2.2) can be written as

Ĥe−N (r,R) =
∑
i,j

Ve−N (ri −Rj). (2.5)

Equations (2.1) to (2.5) are the elementary building blocks of non-relativistic quantum
mechanics in solid state physics. Once solving these equations, one can obtain in prin-
ciple all the information of materials such as density, total energy and so on. However,
in every cubic metre there are nearly 2.7× 1025 particles. This huge number of particles
leads to the impossibility of solving the equations directly with our current computer
sources. We have to find an effective way to simplify the problem without changing the
physics.

2.1.2 Born-Oppenheimer approximation

It is noticed that the Hamiltonian Ĥe only includes the electronic coordinates r and ĤN

is merely a function of the nuclear coordinates R. For the electron-nucleus interaction
Ĥe−N , both electronic and nuclear coordinates appear. It is not reasonable if we simply
ignore the electron-nucleus interaction. But we still have the possibility to separate
the nuclear and electronic motions. The reason is that the mass of nuclei Mj is much
larger than that of electrons me. The nuclear mass is about 1836 times of the electronic
mass. This leads to the mobility of nuclei much less than that of electrons. Electrons
can move at a very high speed, while nuclei just vibrate around their own equilibrium
positions. Thus we can divide the problem into two parts. When we consider the
electronic motion, the nuclei stay on particular positions. When we consider the nuclear
motion, the electrons keep in their ground state positions. This approach was first
proposed by Born-Oppenheimer.

Within this approximation, the many particle wave function shown in Eq. (2.1) can be
written as

Ψ(r,R) =
∑
k

χk(R)Φk(r,R), (2.6)

where Φk(r,R) satisfies the following equation:

Ĥ0(r,R)Φk(r,R) = Ek(R)Φk(r,R), (2.7)

with
Ĥ0(r,R) = Ĥe(r) + Ĥe−N (r,R) + V̂N (R). (2.8)

Here χk(R) is a wave function that contains only the coordinates of nuclei, Φk(r,R) is
a wave function that contains both electronic and nuclear coordinates r and R, and k is
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a quantum number of electronic states. We notice that the nuclear coordinate R shown
in the electronic wave function appears just as a parameter.

To understand the effect of nuclear kinetic energy operator T̂N (R) on the electronic
Hamiltonian Ĥ0, we introduce a small quantity:

ζ =

(
me

M0

)1/4

, (2.9)

where M0 is the average value of all nuclear masses. We use ζu = (R−R0) to denote the
renormalized vibrational displacement of nuclei in contrast to its equilibrium position
R0. In this case the kinetic energy operator for nuclei can be expressed as

T̂N (R) = −ζ2
∑
j

M0

Mj

~2

2me
O2
uj . (2.10)

On the other hand, the wave function Φk(r,R) can be expanded order by order as

Φk(r,R) = Φk(r,R0 + ζu) = Φ
(0)
k + uΦ

(1)
k +

u2

2!
Φ

(2)
k +

u3

3!
Φ

(3)
k + · · · , (2.11)

where Φ
(ν)
k is the ν-th derivative of Φk with respect to u.

We now substitute Eq. (2.6) into Eq. (2.1) and multiply Φk′(r,R) on the left side of
Eq. (2.1), and we can then obtain after an integral over r [19]

[T̂N (R) + Êk(R) + Ĉk(u)]χk(R) +
∑
k′( 6=k)

Ĉkk′(u)χk′(R) = Eχk(R), (2.12)

where

Ĉkk′(u) = −ζ2
∑
i

M0

Mi

~2

2me

∫ ∞
−∞

drΦ∗k(r,u)[OuiΦk′(r,u)Oui + O2
uiΦk′(r,u)], (2.13)

Ĉk(u) = −ζ2
∑
i

M0

Mi

~2

2me

∫ ∞
−∞

drΦ∗k(r,u)O2
uiΦk(r,u). (2.14)

In the above equations, the first term of the operator Ĉkk′(u) is a third-order small
quantity of ζ. The second term of Ĉkk′(u) and the Ĉk(u) are the forth-order small
quantities of ζ, while the nuclear kinetic energy operator T̂N is a second-order small
quantity with respect to ζ. Considering Φ(ν) is the ν-th order small quantity, we use
the perturbation approach and neglect the higher order term. By setting the operator
Ĉkk′(u) = 0, we can rewrite Eq. (2.12) as

[T̂N (R) + Êk(R) + Ĉk(u)]χkK(R) = EkKχkK(R), (2.15)

where EkK and χkK(R) are the solutions of the above equation, K is a quantum num-
ber of the vibrational states. The wave function χkK(R) for describing the nuclei is
only related to the k-th quantum state of the electronic system. The wave function
corresponding to the eigenvalue EkK is

ΨkK(r,R) = χkK(R)Φk(r,R), (2.16)
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where the first factor χkK(R) describes the nuclear motion. The nuclei look like moving
in a potential well Ek(R) + Ck(u). The second factor Φk(r,R) describes the electronic
motion. The nuclei are fixed in their instantaneous positions when electrons move, and
the nuclear motion does not influence the electronic motion.

2.2 Hartree-Fock approximation

Through the Born-Oppenheimer adiabatic approximation, the electronic and nuclear
motions are separated. In the following we introduce briefly the Hartree-Fock equations.

2.2.1 Hartree equation

The many-electron Schrödinger equation can be rewritten as[
−
∑
i

~2

2me
O2
ri+

∑
i

V (ri,R)+
1

2

∑
i,i′

i 6=i′

e2

|ri − ri′ |

]
Φ =

[∑
i

Ĥi+
∑
i,i′

Ĥi,i′

]
Φ = EΦ, (2.17)

where V (ri,R) is the external potential. This equation is still not easy to solve due to
the interaction term Ĥi,i′ . If the interaction term equals zero, the equation turns out to
be a single particle equation. In this case, the Schrödinger Eq. (2.17) becomes∑

i

ĤiΦ = EΦ, (2.18)

where
Φ(r) = ϕ1(r1)ϕ2(r2) · · ·ϕn(rn) (2.19)

is called the Hartree wave function. Inserting Eq. (2.19) into Eq. (2.18) and taking
E =

∑
iEi, we have

Ĥiϕi(ri) = Eiϕi(ri). (2.20)

The single particle Hartree wave function is a solution of the Eq. (2.17) if the interaction
is zero, although this is not possible in reality. We now calculate the expectation value
of energy, i.e., E = 〈Φ|Ĥ|Φ〉. Assuming ϕ satisfies 〈ϕi|ϕj〉 = δij , we have

E = 〈Φ|Ĥ|Φ〉 =
∑
i

〈ϕi|Ĥi|ϕi〉+
1

2

∑
i,i′

〈ϕiϕi′ |Ĥi,i′ |ϕiϕi′〉. (2.21)

According to the variational principle, we have

δ[E −
∑
i

Ei〈ϕi|ϕi〉] = 0, (2.22)

and

〈δϕi|Ĥi|ϕi〉+
∑
i′( 6=i)

〈
δϕiϕi′

∣∣∣∣ e2

ri − ri′

∣∣∣∣ϕiϕi′〉− Ei〈δϕi|ϕi〉
=

〈
δϕi

∣∣∣∣Ĥi +
∑
i′(6=i)

〈
ϕi′

∣∣∣∣ e2

ri − ri′

∣∣∣∣ϕi′〉− Ei∣∣∣∣ϕi〉, (2.23)
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where the equation is independent on the δϕ∗i . Thus[
− ~2

2me
O2
ri + V (ri,R) +

∑
i′(6=i)

∫ ∞
−∞

dri′
e2|ϕi′(ri′)|2

|ri − ri′ |

]
ϕi(ri) = Eiϕi(ri). (2.24)

Eq. (2.24) is the single particle Hartree equation, describing an electron at position ri
moving in a mean field potential of all other electrons.

2.2.2 Fock equation

For the Hartree equation, although the Pauli exclusion principle is included, the wave
function is not antisymmetric in the electron coordinates. There are N ! different ar-
rangements if there are N electrons located at the positions r1, r2, · · · , rN . And these
N arrangements are equivalent because electrons are identical. If we denote the i-th
electron’s wave function as ϕi(ri), where we assume ri includes also the spin, then the
Slater determinant

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) . . . ϕN (r1)
ϕ1(r2) ϕ2(r2) . . . ϕN (r2)

...
...

...
ϕ1(rN ) ϕ2(rN ) . . . ϕN (rN )

∣∣∣∣∣∣∣∣∣ (2.25)

satisfies the exchange anti-symmetric properties. We now calculate the expectation value
of energy again by using Eq. (2.25):

E = 〈Φ|Ĥ|Φ〉 =
∑
i

∫ ∞
−∞

driϕ
∗
i (rj)Ĥiϕi(rj) +

1

2

∑
i,i′

∑
j,j′

j 6=j′

drjdrj′
|ϕi(rj)|2e2|ϕi′(rj′)|2

|rj − rj′ |

− 1

2

∑
i,i′

∑
j,j′

j 6=j′

∫ ∞
−∞

drjdrj′
ϕ∗i (rj)ϕi(rj′)e

2ϕ∗i′(rj′)ϕi′(rj)

|rj − rj′ |
.

(2.26)

Comparing Eq. (2.26) with Eq. (2.21), there is an additional term shown in Eq. (2.26).
Accordingly, the variation becomes

δ[E −
∑
i,i′

λi,i′(〈ϕi|ϕi′〉 − δi,i′)] = 0, (2.27)

and so we have[
− ~2

2me
O2
rj + V (rj ,R)

]
ϕi(rj) +

∑
i′,j′

j 6=j′

∫ ∞
−∞

drj′
e2|ϕi′(rj′)|2

|rj − rj′ |
ϕi(rj)

−
∑
i′,j′

j 6=j′

∫ ∞
−∞

drj′
e2ϕ∗i′(rj′)ϕi(rj′)

|rj − rj′ |
ϕi′(rj) =

∑
i′

λi,i′ϕi′(rj).

(2.28)
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On the right side, we can always find a transformation for ϕi′(rj) so that the λi,i′ becomes
diagonal, i.e., λi,i′ = Eiδi,i′ . Finally, we can obtain[

− ~2

2me
O2
rj + V (rj ,R)

]
ϕi(rj) +

∑
i′,j′

j 6=j′

∫ ∞
−∞

drj′
e2|ϕi′(rj′)|2

|rj − rj′ |
ϕi(rj)

−
∑
i′,j′

j 6=j′

∫ ∞
−∞

drj′
e2ϕ∗i′(rj′)ϕi(rj′)

|rj − rj′ |
ϕi′(rj) = Eiϕi(rj).

(2.29)

This is the Hartree-Fock equation. By comparing with the Eq. (2.24), we find that there
is an additional term, i.e., the 4th-term on the r.h.s. of Eq. (2.29), which is due to the
exchange interaction.

2.3 Density functional theory

2.3.1 Hohenberg-Kohn theorem

In this section we introduce the density functional theory. The basic idea of DFT is
that the ground state physical properties of atoms, molecules and solid states can be
described by its density, originating from the work of H. Thomas and E. Fermi in 1927
[24, 25]. The starting point of DFT is the Hohenberg-Kohn theorem [20], which can be
summarized as:
(1) The ground state energy of a fermionic (electronic) system is a unique functional of
the density ρ(r);
(2) Energy functional E[ρ] at constant particle number takes the minimum value for
correct electronic density, and moreover it equals the ground state energy of the system.

In the theorem the case for spin-degeneracy is not included. We now prove the Hohenberg
-Kohn theorem. The central point of item (1) is that particle density is a basic quantity
that determines the ground state physical properties of the system. Let us first define
the particle density as

ρ(r) = 〈Φ|ψ̂†(r)ψ̂(r)|Φ〉, (2.30)

where Φ is the ground state wave function. ψ̂†(r) and ψ̂(r) are the field operators of
creating and annihilating a particle at position r. Then the Hamiltonian of the identical
fermionic (electronic) system becomes

Ĥ = T̂ + Û + V̂ , (2.31)

with

T̂ = − ~
2me

∫ ∞
−∞

Oψ̂†(r) · Oψ̂(r)dr, (2.32)

Û =
1

2

∫ ∞
−∞

e2

|r− r′|
ψ̂†(r)ψ̂†(r′)ψ̂(r)ψ̂(r′)drdr′, (2.33)

V̂ =

∫ ∞
−∞

v(r)ψ̂†(r)ψ̂(r)dr, (2.34)
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where T̂ is the kinetic energy operator, Û is the Coulomb repulsion, and V̂ is the external
potential.

We use an indirect method to prove that v(r) is the unique functional of ρ(r) up to a
constant. We assume that there is another potential v′(r) which gives the same particle
density ρ′(r) = ρ(r). Taking Ĥ as the Hamiltonian including v(r), its ground state is
Φ and energy expectation value is E. Taking Ĥ ′ as the Hamiltonian including v′(r),
its ground state is Φ′ and energy expectation value is E′. According to the variational
principle, in the case of spin non-degeneracy, for a true ground state Φ it always has

E′ = 〈Φ′|Ĥ ′|Φ′〉 < 〈Φ|Ĥ ′|Φ〉

= 〈Φ|Ĥ + V̂ ′ − V̂ |Φ〉 = E +

∫ ∞
−∞

ρ(r)[v′(r)− v(r)]dr.
(2.35)

Accordingly we have

E′ < E +

∫ ∞
−∞

ρ(r)[v′(r)− v(r)]dr. (2.36)

Using the same manipulation but starting from Ĥ, we can get

E = 〈Φ|Ĥ|Φ〉 < 〈Φ′|Ĥ|Φ′〉

= 〈Φ′|Ĥ ′ + V̂ − V̂ ′|Φ′〉 = E′ +

∫ ∞
−∞

ρ(r)[v(r)− v′(r)]dr,
(2.37)

and we have

E < E′ +

∫ ∞
−∞

ρ(r)[v(r)− v′(r)]dr. (2.38)

The combination of Eqs. (2.36) and (2.38) yields

E + E′ < E′ + E. (2.39)

This turns out to be absurd. So ρ(r) 6= ρ′(r), i.e., v(r) is the unique functional of ρ(r).
Therefore, the ground state energy is a unique functional of the density.

As to the second item of the Hohenberg-Kohn theorem, the key point is that the variation
of the energy functional with respect to the particle density gives the ground state energy
of the system EG[ρ]. For a given potential v(r), the energy functional EG[ρ] is defined
as

EG[ρ] ≡
∫ ∞
−∞

drv(r)ρ(r) + 〈Φ|T̂ + Û |Φ〉. (2.40)

By defining
F [ρ] ≡ 〈Φ|T̂ + Û |Φ〉, (2.41)

we have

EG[ρ] ≡
∫ ∞
−∞

drv(r)ρ(r) + F [ρ]. (2.42)

According to the variational principle at a constant particle number, for an arbitrary
state Φ′, the energy functional EG[Φ′] is

EG[Φ′] ≡ 〈Φ′|T̂ + Û |Φ′〉+ 〈Φ′|V̂ |Φ′〉. (2.43)

The minimum of EG[Φ′] happens when Φ′ = Φ. Taking Φ′ and ρ′ as the ground state
and the density corresponding to the potential v′(r), so EG[Φ′] could also be a functional
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of ρ′. Then we have

EG[Φ′] = EG[ρ′] = F [ρ′] +

∫ ∞
−∞

ρ′(r)v′(r)dr > EG[Φ]

= F [ρ] +

∫ ∞
−∞

ρ(r)v(r)dr = EG[ρ].

(2.44)

For all the other densities ρ′(r) relating to v′(r), EG[Φ] is the minimum value. In other
words if one obtains the ground state particle density, one can know the minimum of
the energy functional, and this energy functional equals the ground state energy.

In the above expressions we have not taken into account the spin factor. With spin
and relativistic effect, the Hohenberg-Kohn theorem can be found elsewhere [26]. The
functional F [ρ] can be rewritten in the form of

F [ρ] = T [ρ] +
1

2

∫ ∞
−∞

∫ ∞
−∞

drdr′
ρ(r)ρ(r′)

|r− r′|
+ Exc[ρ], (2.45)

where the first and second terms are respectively the kinetic energy and Hartree term
of non-interacting particles, the third term Exc[ρ] is called exchange-correlation (xc)
interaction and is also a functional of ρ. The Hohenberg-Kohn theorem shows that the
particle density ρ is a basic variable for calculating the ground state physical properties.
However, there are still three unsolved questions:
(1) how to obtain the particle density ρ;
(2) how to obtain the kinetic energy functional T [ρ];
(3) how to obtain the exchange correlation functional Exc[ρ].
The first and second questions are solved by W. Kohn and L. J. Sham [27]. The third
question can be answered by doing approximations. In the following we will introduce
them.

2.3.2 Kohn-Sham equations

According to the Hohenberg-Kohn theorem, ground state energy and ground state par-
ticle density can be obtained from the variation of energy functional with respect to
density, i.e.,∫ ∞

−∞
drδρ(r)

[
δT [ρ(r)]

δρ(r)
+ v(r) +

∫ ∞
−∞

dr′
ρ(r′)

|r− r′|
+
δExc[ρ(r)]

δρ(r)

]
= 0. (2.46)

Taking into account the condition that the particle number is constant:∫ ∞
−∞

drδρ(r) = 0, (2.47)

we have
δT [ρ(r)]

δρ(r)
+ v(r) +

∫ ∞
−∞

dr′
ρ(r′)

|r− r′|
+
δExc[ρ(r)]

δρ(r)
= µ, (2.48)

where the Lagrange multiplier µ is the chemical potential. Equation (2.48) expresses
the particles moving in an effective potential which has the form:

Veff (r) = v(r) +

∫ ∞
−∞

dr′
ρ(r′)

|r− r′|
+
δExc[ρ(r)]

δρ(r)
, (2.49)
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though the kinetic energy T [ρ] in Eq. (2.46) is still unknown.

Because the kinetic energy of the interacting system is unknown, W. Kohn and L. J.
Sham proposed that the interacting kinetic energy functional T [ρ] can be replaced by a
functional TS [ρ] of a non-interacting system, where the non-interacting system has the
same density as the interacting system. In this case the difference between T [ρ] and
TS [ρ] is added to the exchange correlation Exc[ρ]. In order to realize the single particle
picture, Kohn and Sham used the single particle wave function ϕi(r) to construct the
density, which is given by

ρ(r) =
∑
i=1

|ϕi(r)|2, (2.50)

where φi(r) satisfies the following Schrödinger equation:

(T̂S [ρ] + V̂S [ρ])ϕi(r) =

(
− ~2

2m
O2 + vs(r)

)
ϕi(r) = εiϕi(r). (2.51)

The TS [ρ] and VS [ρ] are the single particle kinetic and potential energies of the non-
interacting system. Accordingly the total energy functional is

ES [ρ] = TS [ρ] +

∫ ∞
−∞

drρ(r)vs(r). (2.52)

The variation of Eq. (2.52) with respect to density gives

δES [ρ]

δρ(r)
=
TS [ρ]

δρ(r)
+ vs(r) = µ. (2.53)

By comparing Eq. (2.53) with Eq. (2.48), we have

vs(r) =
δT [ρ(r)]

δρ(r)
− TS [ρ]

δρ(r)
+ v(r) +

∫ ∞
−∞

dr′
ρ(r′)

|r− r′|
+
δExc[ρ(r)]

δρ(r)

= v(r) +

∫ ∞
−∞

dr′
ρ(r′)

|r− r′|
+
δEsxc[ρ(r)]

δρ(r)
,

(2.54)

and

vsxc[ρ](r) =
δEsxc[ρ(r)]

δρ(r)
, (2.55)

where we have put the difference between the two kinetic energies into the exchange
correction potential Esxc[ρ(r)]. Equations (2.50), (2.51), (2.54), and (2.55) are together
called the KS equations. Figure 2.1 shows clearly the difference between the KS and
real systems. For practical calculations, we still need to know the explicit formula of the
potential vsxc. For simplicity in the rest part of this thesis, we omit the superscript s in
vsxc[ρ](r) and Esxc[ρ(r)].

2.3.3 Approximate functionals

2.3.3.1 Local density approximation

The oldest approximation of DFT, the local density functional (LDA), was originally
proposed by Kohn and Sham in 1965 [27]. It expresses the xc energy of an inhomo-
geneous system as the integral over the xc energy density of a homogeneous electron
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Figure 2.1: (Color) A schematic picture of real system and KS system, where in both
cases ground state densities are the same.

liquid, evaluated at the local density. To better understand the concept of LDA, let me
first recall how the non-interacting kinetic energy TS [ρ] is treated in the Thomas-Fermi
approximation. In a homogeneous system one knows that the kinetic energy density is
[17, 28]

thoms (ρ) =
3~2

10me
(3π2)2/3ρ5/3, (2.56)

where the density ρ is constant. In an inhomogeneous system, one approximates

ts(r) ≈ thoms (ρ(r)) =
3~2

10me
(3π2)2/3ρ(r)5/3, (2.57)

where the density ρ is a functional of the local coordinate r, i.e., ρ = ρ(r). Then the
total kinetic energy is obtained by integration over all space

TLDAS [ρ] =

∫ ∞
−∞

drthoms (ρ(r)) =
3~2

10me
(3π2)2/3

∫ ∞
−∞

drρ(r)5/3. (2.58)

For the kinetic energy, the approximation TS [ρ] ≈ TLDAS [ρ] is much inferior to the exact
treatment of TS in terms of orbitals, offered by the KS equations. However the LDA
concept turns out to be a highly useful for the exchange-correlation potential Exc[ρ].
For the exchange energy Ex[ρ] the procedure is very simple, since the exchange energy
density of homogeneous electron liquid is known exactly [29],

ehomx (ρ) = −3e2

4

(
3

π

)1/3

ρ4/3. (2.59)

Thus we have

ELDAx [ρ] = −3e2

4

(
3

π

)1/3 ∫ ∞
−∞

drρ(r)4/3. (2.60)

For the correlation energy Ec[ρ], the situation is more complicated since ehomc (ρ) is
not known exactly: The determination of the correlation energy of a homogeneous in-
teracting electron system is already a difficult many-body problem on its own. Early
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approximate expressions for ehomc (ρ) were based on applying perturbation theory. Mod-
ern expressions for ehomc (ρ) are parametrizations of the obtained data from quantum
Monte Carlo calculations. These expressions are implemented in most standard DFT
program packages. Independently of the parametrization, the LDA for Exc[ρ] formally
is [26]

Exc[ρ] ≈ ELDAxc [ρ] =

∫ ∞
−∞

drehomxc (ρ)
∣∣∣
ρ→ρ(r)

=

∫ ∞
−∞

drehomxc (ρ(r)), (2.61)

where ehomxc = ehomx + ehomc . The corresponding xc potential is

vLDAxc [ρ](r) =
∂ehomxc (ρ)

∂ρ

∣∣∣∣
ρ→ρ(r)

. (2.62)

The physical meaning of LDA is: At each point r in space, the xc energy density exc is
approximated by that which one would obtain from a homogeneous electron liquid that
has a density ρ(r) everywhere. This approximation for Exc[n] has proved amazingly
successful numerically, even when applied to systems that are quite different from the
electron liquid that forms the reference system for the LDA. In the next calculations of
this thesis, we will adopt this approximation in our considered nanosystems.

2.3.3.2 Generalized gradient approximation

The idea of improving the LDA by constructing xc functionals which depend not only
on the local density itself but also on its gradients has a long history, going back to the
original work by Hohenberg and Kohn in 1964. In the LDA one exploits knowledge of
the density at point r. Any real system is spatially inhomogeneous, i.e., it has a spatially
varying density ρ(r), and it would be clearly useful to also include information on the
rate of this variation in the functional. A first attempt at doing this was the so-called
gradient expansion approximation. In this approximation, one tries to systematically
calculate the gradient correlations of the form |Oρ(r)|, |Oρ(r)|2, |O2ρ(r)|, etc., to the
LDA. A famous example is the lowest-order gradient correction to the Thomas-Fermi
approximation for TS [ρ],

TS [ρ] ≈ TWS [ρ] = TLDAS [ρ] +
~2

8me

∫ ∞
∞

dr
Oρ(r)|2

ρ(r)
, (2.63)

where the second term on the right hand side is called the Weizsäker term [29]. Similarly,

Ex[ρ] ≈ EGEA(2)
x [ρ] = ELDAx [ρ]− 10e2

432π(3π2)1/3

∫ ∞
−∞

dr
|Oρ(r)|2

ρ(r)4/3
, (2.64)

where the second term on the right hand side is the lowest-order gradient correction
to ELDAx [ρ]. In practice, the inclusion of lowest-order gradient corrections almost never
improves on the LDA, and often even worsens it. Higher-order corrections, on the other
hand, are exceedingly difficult to calculate and little is known on them. In this situation
it was a major breakthrough in the early stage to get a more general functionals which
need not proceed order by order. Generalized gradient approximations (GGA) are a
class of xc functionals which have the following structure [26]:

EGGAxc [ρ] =

∫ ∞
−∞

dreGGAxc (ρ(r),Oρ(r)). (2.65)
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GGA does not arise from systematic order-by-order expansions in terms of the density
gradients. Instead, the key idea is to construct explicit mathematical expressions for
eGGAxc which satisfy as many of the known exact properties of exc as possible. In a way
this can be viewed as attempting to find a proper method for the gradient expansion
series.

2.4 Fermionic Green’s function

2.4.1 Modeling electronic Hamiltonian

In this section, we derive the electric and energy current formulas for electron transport
in terms of the Green’s functions. The modelled system is schematically shown in
Fig. 2.2, which is divided into three parts: left lead (L), central interacting region (C)
and right lead (R). The Hamiltonian of the systems is

Ĥ =
∑
α=L,R

Ĥα + ĤC + ĤLC + ĤRC + ĤU , (2.66)

where Ĥα describes the Hamiltonian of the left and right leads, ĤC models the Hamil-
tonian of the central scattering region, ĤLC or ĤRC is the coupling between the left
or right lead and the central scattering region, and ĤU describes the inelastic interac-
tion in the device. The interaction between the two leads is not considered. Guided
by the typical experimental geometry in which the leads rapidly broaden into metallic
contacts, we assume electrons in the two leads are non-interacting particles. Thus the
Hamiltonian of the lead is

Ĥα =
∑
k

εkαĉ
†
kαĉkα, (2.67)

where ĉ†kα and ĉkα are respectively the creation and annihilation operators for electrons
in the lead α with momentum k in reciprocal space, εkα is the electron energy in the
lead. The coupling between the lead and the central region is

ĤαC =
∑
k,n

[Vkα,nĉ
†
kαd̂n + h.c.], (2.68)

where d̂n and d̂†n are the annihilation and creation operators for electrons in the cen-
tral region, respectively, Vkα,n is the coupling matrix element, and h.c. indicates the
corresponding Hermitian conjugate. The Hamiltonian of the central region is given by

ĤC =
∑
m

εmd̂
†
md̂m, (2.69)

where we have used m and n to denote the quantum number of the central region. The
interaction Hamiltonian in Eq. (2.66) can be written as

ĤU =
1

2

∑
mn

Umnd̂
†
md̂
†
nd̂md̂n, (2.70)

where Umn describes the interacting strength of electrons. The above Hamiltonian from
Eq. (2.67) to (2.70) does not include the spin explicitly, while the spin factor can be
added easily at any time as an additional quantum number.
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Figure 2.2: (Color) A schematic illustration of the modelling system including left and
right leads and central interacting region, where µL and µR are the chemical potentials,

TL and TR are the temperatures of the left and right leads, respectively.

2.4.2 General expression of currents

Based on the Hamiltonian shown in Eq. (2.66), the energy current flowing from the left
lead to the central region can be calculated from the time evolution of the Hamiltonian
operator of the left lead:

IEL (t) = −〈 ˙̂
HL〉 = − i

~
〈[Ĥ, ĤL]〉, (2.71)

where the expectation value is taken with respect to the ground state of the interacting
system. Since ĤL, ĤC + ĤU , ĤR and ĤRC commutate with ĤL, one finds

IEL = − i
~
〈[ĤLC , ĤL]〉 =

i

~
∑
k,n

εkL[VkL,n〈ĉ†kLd̂n〉 − V
∗
kL,n〈d̂†nĉkL〉], (2.72)

where the following relations have been used:

[ÂB̂, Ĉ] = Â{B̂, Ĉ} − {Â, Ĉ}B̂, (2.73)

[Â, B̂Ĉ] = {Â, B̂}Ĉ − B̂{Â, Ĉ}, (2.74)

where the square brackets [Â, B̂] = ÂB̂−B̂Â denote the commutator and curly brackets
{Â, B̂} = ÂB̂ + B̂Â denote the anti-commutator.

To derive the expression of energy current, we first define six Green’s functions for
fermionic system in a general way:

Grxx′(t, t′) = − i
~
θ(t− t′)〈{ψx(t), ψ†x′(t

′)}〉, (2.75)

Gaxx′(t, t′) =
i

~
θ(t′ − t)〈{ψx(t), ψ†x′(t

′)}〉, (2.76)

G<xx′(t, t
′) =

i

~
〈ψ†x′(t

′)ψx(t)〉, G>xx′(t, t
′) = − i

~
〈ψx(t)ψ†x′(t

′)〉, (2.77)

Gtxx′(t, t′) = − i
~
θ(t− t′)〈ψx(t)ψ†x′(t

′)〉+
i

~
θ(t′ − t)〈ψ†x′(t

′)ψx(t)〉, (2.78)

G t̄xx′(t, t′) = − i
~
θ(t′ − t)〈ψx(t)ψ†x′(t

′)〉+
i

~
θ(t− t′)〈ψ†x′(t

′)ψx(t)〉, (2.79)
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where ψx(t) and ψ†x′(t
′) are the annihilation and creation operators for the leads or for

the central interacting region with respect to the degrees of freedom of x and t. x could
represent either the quantum state kα of the lead or the state mn of the central region as
we shall see later. The step function satisfies the properties: θ(t−t′) = 1 if (t−t′) ≥ 0 and
0 if (t − t′) < 0. The above six Green’s functions are respectively named as retarded,
advanced, lesser, greater, time-ordered and anti-time ordered Green’s functions. The
physical meaning of the Green’s function can be understood as a propagator, such as
G<xx′ represents the transmission probability of a particle moving from x to x′. And for
more detailed introduction about the Green’s function, one can find in the book edited
by G. Stefanucci and R. van Leeuwen [30]. From the definitions, we find the following
relations:

Grxx′(t, t′) = θ(t− t′)[G>xx′(t, t
′)− G<xx′(t, t

′)], (2.80)

Gaxx′(t, t′) = −θ(t′ − t)[G>xx′(t, t
′)− G<xx′(t, t

′)], (2.81)

Gtxx′(t, t′) = θ(t− t′)G>xx′(t, t
′) + θ(t′ − t)G<xx′(t, t

′), (2.82)

G t̄xx′(t, t′) = θ(t′−′)G>xx′(t, t
′) + θ(t− t′)G<xx′(t, t

′). (2.83)

So the above six fermionic Green’s functions are not independent. Moreover in equilib-
rium or in steady state, the six Green’s functions only depend on the time difference
(t− t′). In this thesis we will mainly focus on the retarded and lesser Green’s functions
and our calculations in the next chapter are also limited in steady state. In terms of the
Green’s functions, the energy current at long time limit can be rewritten as

IEL = 2
{

Re
[∑
k,n

εkLVkL,nG<n,kL(t, t)
]}
, (2.84)

where

G<n,kα(t, t′) =
i

~
〈ĉ†kα(t′)d̂n(t)〉, (2.85)

G<kα,n(t, t′) =
i

~
〈d̂†n(t′)ĉkα(t)〉, (2.86)

are the lesser Green’s functions relating to the lead and the central region and having
the property: G<kα,n(t, t) = −[G<n,kα(t, t)]∗. We note that the energy current is calculated
by taking the time-diagonal components of the lesser Green’s function.

For the next step we need to derive the expression of G<n,kα(t, t′). As to the non-

interacting lead, a general relation for the time-ordered Green’s function Gtn,kα(t, t′)
can be derived from the equation of motion (see appendix B), and we obtain

Gtn,kα(t, t′) =
∑
m

∫ ∞
−∞

dt1Gtnm(t, t1)V ∗kα,mg
t
kα(t1, t

′), (2.87)

where Gtnm(t, t1) is the time-ordered Green’s function of the central region, and gtkα(t1, t
′)

is the time-ordered Green’s function of the lead α. Then according to the Langreth
theorem [31], we have

G<n,kα(t, t′) =
∑
m

∫ ∞
−∞

dt1[Grnm(t, t1)V ∗kα,mg
<
kα(t1, t

′) + G<nm(t, t1)V ∗kα,mg
a
kα(t1, t

′)], (2.88)
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where g<kα and gakα are the lesser and advanced Green’s functions of the lead, respectively.
The Fourier transform 1 of Eq. (2.88) is

G<n,kα(ε) =
∑
m

[Grnm(ε)V ∗kα,mg
<
kα(ε) + G<nm(ε)V ∗kα,mg

a
kα(ε)]. (2.89)

Whereby the energy current becomes

IEL = 2
{

Re
∑
k,n

εkLVkL,n

[ 1

2π

∫ ∞
−∞
G<n,kL(ε)e−iε(t−t)dε

]}
= 2

∫ ∞
−∞

dε

2π

{
Re
[∑
k,nm

VkL,nV
∗
kL,m(Grnm(ε)g<kL(ε) + G<nm(ε)gakL(ε))

]}
,

(2.90)

where the first and the second terms relate to g<kα(ε) and gakα(ε) in the energy current
formula. As to the lesser Green’s function of the lead, using the definition of Eq. (2.77),
we have

g<kα(t, t′) =
i

~
〈ĉ†kα(t′)ĉkα(t)〉 =

i

~
f(εkα)e−iεkα(t−t′), (2.91)

where we have used ĉ†kα(t′) = ĉ†kαe
iεkαt

′
, ĉkα(t) = ĉkαe

−iεkαt, 〈ĉ†kαĉkα〉 = f(εkα) =
1/[e(εkα−µα)/kBTα + 1] is the Fermi-Dirac distribution function at temperature Tα, and
kB is the Boltzmann constant.

Fourier transform of Eq. (2.91) gives

g<kα(ε) =
2πi

~
f(εkα)δ(ε− εkα). (2.92)

In a similar process, the retarded Green’s function for the lead can be derived, using the
definition of Eq. (2.75), as

grkα(t, t′) = − i
~
θ(t− t′)〈{ĉkα(t), ĉ†kα(t′)}〉

= −1

~

∫ ∞
−∞

dε

2π

1

ε− iζ
e−i(εkα−ε)(t−t

′),
(2.93)

where we have replaced the step function with θ(t−t′) =
∫∞
−∞

dε
2πi

eiε(t−t
′)

ε−iζ . After a Fourier
transform, we have

grkα(ε) =
1

~
1

ε− εkα + iζ
. (2.94)

where ζ is an infinite positive small quantity. Therefore the advanced Green’s function
for the lead is

gakα(ε) =
1

~
1

ε− εkα − iζ

=
1

~
P
( 1

ε− εkα

)
+
iπ

~
δ(ε− εkα),

(2.95)

where the first term is the principal value.

1We define the Fourier transform for electrons as: G(ε) =
∫∞
−∞ G(t)eiεtdt, or inversely, G(t) =

1
2π

∫∞
−∞ G(ε)e−iεtdε.
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Substituting Eqs. (2.91) and (2.95) into Eq. (2.90), as to the first term of Eq. (2.90)
we have

Re
[∑
k,nm

εkLVkL,nV
∗
kL,mGrnm(ε)g<kL(ε)

]
= Re

[∑
nm

Grnm(ε)
i

~
εf(ε)ΓL,mn

]
=

i

2~
{εf(ε)ΓL(ε)[Gr(ε)− Ga(ε)]},

(2.96)

where the line-width function is defined as Γkα,mn(ε) = 2πVkα,nV
∗
kα,mδ(ε− εkα). As to

the second term of Eq. (2.90), we obtain

Re
[∑
k,nm

εkLVkL,nV
∗
kL,mG<nm(ε)gakL(ε)

]
=

i

2~
[
εΓL(ε)G<(ε)

]
. (2.97)

The principal value of Eq. (2.97) is zero, because

Re
[
2
∑
k,nm

εkLVkL,nV
∗
kL,mG<nm(ε)P

( 1

ε− εkL

)]
=
[∑
k,nm

G<nm(ε)P
(εkLVkL,nV ∗kL,m

ε− εkL

)]
+
[∑
k,nm

G<nm(ε)P
(εkLVkL,nV ∗kL,m

ε− εkL

)]∗
= 0,

(2.98)

where we have used [G<(ε)]† = −G<(ε).

We now use Eqs. (2.96)-(2.98) and the energy current of Eq. (2.90) can then be rewritten
as

IEL =
i

~

∫ ∞
−∞

dε

2π
εTr{ΓL(ε)G<(ε) + fL(ε)ΓL(ε) [Gr(ε)− Ga(ε)]}. (2.99)

The energy current from the right lead to the central region can be derived with the
same process by starting from the time evolution of the Hamiltonian operator of the
right lead. After some algebra, we can have

IER =
i

~

∫ ∞
−∞

dε

2π
εTr{ΓR(ε)G<(ε) + fR(ε)ΓR(ε) [Gr(ε)− Ga(ε)]}. (2.100)

In steady state, the energy current flowing from the left lead to the central region
should be equal to that flowing from the right lead to the central region except for a
sign difference, i.e., IEL = −IER . This leads to

IE =
IEL − IER

2

=
i

2~

∫ ∞
−∞

dε

2π
εTr{[ΓL(ε)− ΓR(ε)]G<(ε)+

[fL(ε)ΓL(ε)− fR(ε)ΓR(ε)][Gr(ε)− Ga(ε)]}.

(2.101)

Similar to the derivation of energy current, one can derive the electric current according
to

JL = −e〈 ˙̂
NL〉 = − ie

~
〈[Ĥ, N̂L]〉, (2.102)
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where N̂L =
∑

k ĉ
†
kLĉkL is the occupation number operator. After some algebra, finally

one can arrive at

JL =
ie

~

∫ ∞
−∞

dε

2π
Tr{ΓL(ε)G<(ε) + fL(ε)ΓL(ε)[Gr(ε)− Ga(ε)]}. (2.103)

Taking into account the symmetric distribution of electric current in steady state as we
mentioned before for energy current, one obtains

J =
JL − JR

2

=
ie

2~

∫ ∞
−∞

dε

2π
Tr{[ΓL(ε)− ΓR(ε)]G<(ε)+

[fL(ε)ΓL(ε)− fR(ε)ΓR(ε)][Gr(ε)− Ga(ε)]}.

(2.104)

Thus, the electric thermal current is defined according to the energy conservation law:

Ih = IE − µJ

=
i

2~

∫ ∞
−∞

dε

2π
(ε− µ)Tr{[ΓL(ε)− ΓR(ε)]G<(ε)+

[fL(ε)ΓL(ε)− fR(ε)ΓR(ε)][Gr(ε)− Ga(ε)]},

(2.105)

where µ = (µL + µR)/2 is the chemical potential and we take the energy current is the
sum of heat current and charge current. The results are presented so far without any
approximations.

Usually the energy-dependent line-width function is not very important and further sim-
plification for Eqs. (2.101), (2.104), and (2.105) can be achieved by making assumptions
on the Γ. We will have more discussions about this approximation in chapter 4. On the
other hand if the left and right leads are constructed in the same way and thus their
line-width functions are equal to each other, i.e., ΓL(ε) = ΓR(ε), in this case the energy,
electric and heat currents can be expressed as

IE =
1

~

∫ ∞
−∞

dε

2π
ε[fL(ε)− fR(ε)]Te(ε), (2.106)

J =
e

~

∫ ∞
−∞

dε

2π
[fL(ε)− fR(ε)]Te(ε), (2.107)

Ih =
1

~

∫ ∞
−∞

dε

2π
(ε− µ)[fL(ε)− fR(ε)]Te(ε), (2.108)

where

Te(ε) = Tr

{
ΓL(ε)ΓR(ε)

ΓL(ε) + ΓR(ε)
i[Gr(ε)− Ga(ε)]

}
, (2.109)

is the electronic transmission coefficient, which represents the transmission probability
of particles from the left (right) lead to the right (left) lead through the quantum device
in the central region. The above equations are widely used for quantum transport
calculations and we will also use them in the following two chapters.

Based on the electric and thermal current formulas, we now derive the electrical con-
ductance, Seebeck coefficient and electric thermal conductance. In the linear response
regime where temperature gradient and bias between the two leads are small, we take a
Taylor expansion up to first-order for the heat and electric currents with respect to the
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temperature and chemical potential, and we have

Ih =
∂Ih

∂T
∆T +

∂Ih

∂µ
∆µ, (2.110)

J =
∂J

∂T
∆T +

∂J

∂µ
∆µ. (2.111)

Then the electrical conductance is

G =
J

V

∣∣∣∣
∆T=0

= e
∂J

∂µ
=
e2

~

∫ ∞
−∞

dε

2π
Te(ε)

(
−∂f(ε)

∂ε

)
, (2.112)

where ∆µ = eV . The Seebeck coefficient is

S =
V

∆T

∣∣∣∣
J=0

= −1

e

(
∂J

∂T

/
∂J

∂µ

)
= − 1

eT

∫∞
−∞ dεTe(ε)(ε− µ)∂f(ε)

∂ε∫∞
−∞ dεTe(ε)

∂f(ε)
∂ε

. (2.113)

The electric thermal conductance is

κe =
Ih

∆T

∣∣∣∣
J=0

=
∂Ih

∂T
− ∂Ih

∂µ

∂J

∂T

/
∂J

∂µ

=
1

T~

{∫ ∞
−∞

dε

2π
Te(ε)(ε− µ)2

(
−∂f(ε)

∂ε

)
−

[∫∞
−∞ dεTe(ε)(ε− µ)∂f(ε)

∂ε

]2

2π
∫∞
−∞ dεTe(ε)

(
−∂f(ε)

∂ε

) }
.

(2.114)

In the above derivation, we have used the relations: ∂f(ε,µ,T )
∂µ = −∂f(ε,µ,T )

∂ε and ∂f(ε,µ,T )
∂T =

− ε−µ
T

∂f(ε,µ,T )
∂ε . These equations are valid in linear response regime and provide a rigorous

way to calculate the transport coefficients. The key quantity we found is the transmission
probability function which depends on the Green’s functions.

2.4.3 Landauer theory for electron transport

The above formulas are derived in terms of Green’s functions based on the MB interac-
tion Hamiltonian. For a non-interacting system, if one defines [30, 32]

Σ>
α (ε) = i(fα(ε)− 1)Γα(ε), (2.115)

Σ<
α (ε) = ifα(ε)Γα(ε), (2.116)

then the greater and lesser Green’s functions are

G>(ε) = Gr(ε)[Σ>
L (ε) + Σ>

R(ε)]Ga(ε), (2.117)

G<(ε) = Gr(ε)[Σ<
L (ε) + Σ<

R(ε)]Ga(ε), (2.118)

where Σ>
α (ε) and Σ<

α (ε) are the non-interacting self energies of the lead α. The self-
energy describes the coupling between the lead and the central region.

Considering the relation Gr −Ga = G> −G<, and substituting Eqs. (2.117) and (2.118)
into Eqs. (2.101), (2.104), and (2.105), then the electrical conductance G, Seebeck
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coefficient S, and electric thermal conductance κe can be recast as

G(µ, T ) = e2L0(µ, T ), (2.119)

S(µ, T ) = − 1

eT

L1(µ, T )

L0(µ, T )
, (2.120)

κe(µ, T ) =
1

T

(
L2(µ, T )− L1(µ, T )2

L0(µ, T )

)
, (2.121)

where

Ln(µ, T ) =
2

h

∫ ∞
−∞

dεTe(ε)(ε− µ)n
(
−∂f(ε, µ, T )

∂ε

)
, (2.122)

is the Lorentz function and the pre-factor 2 is added by hand due to spin. Te(ε) is the
electronic transmission coefficient, which is given by

Te(ε) = Tr[Gr(ε)ΓL(ε)Ga(ε)ΓR(ε)]. (2.123)

In contrast to Eq. (2.109), Eq. (2.123) is valid for single particle approximation since
the Green’s functions here do not include the interacting effect. The explicit formulas
for MB interacting and single-particle approximated Green’s functions are shown in
appendix B. As to the expressions of self-energies, one can find them in Ref. [30]. In
the ballistic transport regime, for a periodic quasi-dimensional system the transmission
coefficient is the same as the number of modes which can be easily captured from the
band structure.

2.5 Bosonic Green’s function

2.5.1 Modeling Hamiltonian of phonons

In this section we derive the lattice heat current formula for phonon transport in terms of
the bosonic Green’s functions. The system we modelled has been shown in Fig. 2.2. The
left and right leads act as heat baths and their temperatures are TL and TR, respectively.
The two heat baths are sufficiently large so that any finite energy transfer does not
change its temperature. The heat can transport from left (or right) to right (or left)
baths by crossing the central region if TL 6= TR. To keep the discussion simple, we
employ a transformation of the atomic coordinates, i.e., ûi =

√
Mi∆R̂i, where ui is the

mass renormalized displacement and ∆Ri is the displacement for i− th atom in contrast
to its equilibrium position. In this way, the system Hamiltonian can be expressed as
[33–35]

Ĥ =
∑

α=L,C,R

Ĥα + ĤLC + ĤCR + Ĥn

=
∑

α=L,C,R

[
1

2
( ˙̂uα)T ˙̂uα +

1

2
(ûα)TKαûα

]
+ (ûL)TV LC ûC

+ (ûC)TV CRûR +
∑
ijk

1

3
Kijkû

C
i û

C
j û

C
k ,

(2.124)

where the superscript T indicates the matrix transpose, ûα is a column vector consisting
of all the displacement variables in region α, Kα is the spring constant matrix, V LC or
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V CR is the coupling matrix between the lead and the central region, and Ĥn describes
the non-linear interaction. In Eq. (2.124) the cubic-order anharmonic interaction term
is shown explicitly.

2.5.2 General expression of lattice heat current

Based on the lattice Hamiltonian, we define six Green’s functions for bosons (phonons).
They are

Gr(t, t′) = − i
~
θ(t− t′)〈[û(t)T , û(t′)]〉, (2.125)

Ga(t, t′) =
i

~
θ(t′ − t)〈[û(t)T , û(t′)]〉, (2.126)

G>(t, t′) = − i
~
〈û(t)T û(t′)〉, G<(t, t′) = − i

~
〈û(t′)T û(t)〉T , (2.127)

Gt(t, t′) = θ(t− t′)G>(t, t′) + θ(t′ − t)G<(t, t′), (2.128)

G t̄(t, t′) = θ(t′ − t)G>(t, t′) + θ(t− t′)G<(t, t′), (2.129)

where the notation 〈[AT , B]〉 should be interpreted as 〈ATB〉 − 〈BTA〉T . In the above
definitions, we did not illustrate the particular region, L or C or R, for the operator û
since it could represent either the displacement variable of the leads or the displacement
variable of the central region. Then the Green’s function corresponds to the region
as û specified and we shall see this clearly later. Similar to the fermionic Green’s
functions, Eqs. (2.125) to (2.129) are called the bosonic retarded, advanced, greater,
lesser, time-ordered and anti-time-ordered Greens functions, respectively. For more
detailed discussion about the bosonic Green’s functions, one can find in Ref. [23]. From
these definitions, we find that the following relations always hold:

Gr(t, t′)− Ga(t, t′) = G>(t, t′)− G<(t, t′), (2.130)

Gt(t, t′) + G t̄(t, t′) = G>(t, t′) + G<(t, t′), (2.131)

Gt(t, t′)− G t̄(t, t′) = Gr(t, t′) + Ga(t, t′), (2.132)

Gr(t, t′) = Gt(t, t′)− G<(t, t′), Ga(t, t′) = G<(t, t′)− G t̄(t, t′). (2.133)

Considering the mutual dependence of the above six Green’s functions, we focus in the
following mainly on the retarded and lesser Green’s functions since the others can be
derived easily from them. The bosonic Green’s functions will be used to calculate the
transmission probability of phonons and we shall introduce later.

Using these bosonic Green’s functions, we now derive the lattice-vibrational heat current
formula. The thermal flux out of the left lead is

IphL = −
〈dĤL

dt

〉
=
i

~
〈[ĤL, ĤLC ]〉

=
i

2~

〈[∑
jk

˙̂uLj (t) ˙̂uLj (t) + ûLj (t)KL
jkû

L
k ,
∑
j′k′

ûLj′(t)V
LC
j′k′ û

C
k′(t)

]〉
= 〈 ˙̂uL(t)TV LC ûC(t)〉,

(2.134)
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where we have used the commutation relations for the displacement variables, i.e.,
[ ˙̂uαj (t), ûα

′
j′ (t)] = −i~δjj′δαα′ and [ûj(t), ûj′(t)] = 0. By defining

G̃CL,<kj (t, t′) = − i
~
〈 ˙̂uLj (t′)ûCk (t)〉, (2.135)

we have
IphL = i~Tr[G̃CL,<(t, t)V LC ], (2.136)

where the lattice heat current is expressed in time space and for the frequency domain,
a Fourier transform of Eq. (2.135) yields

G̃CL,<kj (t, t′) =
d

dt′
GCL,<kj (t, t′) =

1

2π

∫ ∞
−∞

iωGCL,<kj (ω)e−iω(t−t′)dω, (2.137)

where GCL,<kj (t, t′) = − i
~〈û

L
j (t′)ûCk (t)〉 according to the definition of Eq. (2.127). Inserting

Eq. (2.137) into Eq. (2.138), we obtain

IphL = − 1

2π

∫ ∞
−∞

~ωTr[GCL,<(ω)V LC ]dω. (2.138)

The center-left Green’s function GCL,<(ω) can be replaced by the center-center Green’s
function GCC according to the Langreth theorem [34], i.e.,

G<CL(ω) = GrCC(ω)V CLg<L (ω) + G<CC(ω)V CLgaL(ω), (2.139)

where we have moved the superscript CL to the subscript. g<,aL (ω) are the lesser or
advanced Green’s functions of the left lead, respectively. The detailed derivation of Eq.
(2.139) coming from the equation of motion of the time-ordered Green’s function can be
found in appendix B. Substituting Eq. (2.139) into Eq. (2.138), we obtain

IphL = − 1

2π

∫ ∞
−∞

~ωTr[GrCC(ω)V CLg<L (ω)V LC + G<CC(ω)V CLgaL(ω)V LC ]dω. (2.140)

If one defines

Σ<
L (ω) = V CLg<L (ω)V LC , (2.141)

Σa
L(ω) = V CLgaL(ω)V LC , (2.142)

where Σ<
L and Σa

L are the lesser and advanced self-energies of the left lead, respectively,
Eq. (2.140) turns into

IphL = − 1

2π

∫ ∞
−∞

~ωTr[GrCC(ω)Σ<
L (ω) + G<CC(ω)Σa

L(ω)]dω. (2.143)

In the following we present the derivation of the Green’s functions of the lead. According
to the definition shown in Eq. (2.127), the lesser Green’s function of the lead is

g<(t, t′) = − i
~
〈û(t′)T û(t)〉T = − i

2Ω

[
eiΩ(t−t′)(1 + n(Ω)) + eiΩ(t′−t)n(Ω)

]
, (2.144)
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where Ω is the intrinsic vibrational frequency and the following relations are used:

û =

√
~

2Ω
(â+ â†), (2.145)

â(t) = âe−iΩt, â†(t) = â†eiΩt, (2.146)

[â, â†] = 1, 〈â†â〉 = n(Ω, T ) =
1

e~Ω/kBT − 1
, (2.147)

where n(Ω, T ) is the Bose-Einstein distribution function. The Fourier transform of Eq.
(2.144) gives

g<(ω) = −πi
Ω

[−δ(ω + Ω)n(−Ω) + δ(ω − Ω)n(Ω)] , (2.148)

where we have used the properties: δ(Ω) = 1
2π

∫∞
−∞ e

iΩtdt and n(−Ω) = 1
e−~Ω/kBT−1

=

−
(

1 + 1
e~Ω/kBT−1

)
= −[1 + n(Ω)]. The retarded Green’s function of the lead can be

derived in a similar way and it is

gr(t, t′) = − i
~
θ(t− t′)〈[û(t)T , û(t′)]〉

= − i

2Ω
θ(t− t′)

[
eiΩ(t′−t) − eiΩ(t−t′)

]
.

(2.149)

In the frequency domain, Eq. (2.149) becomes

gr(ω) =

∫ ∞
∞

gr(t, t′)eiω(t−t′)dt

=
1

(ω + iζ)2 − Ω2
,

(2.150)

where we have used
∫∞
−∞ g(ω)δ(ω − Ω)dω = g(Ω). Therefore, the advanced Green’s

function of the lead is

ga(ω) = [gr(ω)]† =
1

(ω − iζ)2 − Ω2
. (2.151)

Using the symbolic formula:

1

ω ± iζ
= P

(
1

ω

)
∓ iπδ(ω), (2.152)

Eq. (2.151) can be rewritten as

ga(ω) =
1

2Ω

[
P

(
1

ω − Ω

)
+ iπδ(ω − Ω)− P

(
1

ω + Ω

)
− iπδ(ω + Ω)

]
. (2.153)
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We now substitute Eqs. (2.148) and (2.153) into Eq. (2.140). For the first term shown
in Eq. (2.140), we have

− 1

2π

∫ ∞
−∞

~ωTr[GrCC(ω)V CLg<L (ω)V LC ]dω

=
i

2Ω

∫ ∞
−∞

~ωTr{GrCC(ω)V CL[−δ(ω + Ω)nL(−Ω) + δ(ω − Ω)nL(Ω)]V LC}dω

=
i

π

∫ ∞
0

~ωTr[GrCC(ω)ΓL(ω)nL(ω)]dω,

(2.154)

where nL(ω) is the Bose-Einstein distribution of the left lead, and the line-width function
is defined as ΓL(ω) = iV CLg<L (ω)V LC [nL(ω)]−1 = iV CL[grL(ω)−gaL(ω)]V LC = i[Σr

L(ω)−
Σa
L(ω)]. For the second term of Eq. (2.140), it has

− 1

2π

∫ ∞
−∞

~ωTr[G<CC(ω)V CLgaL(ω)V LC ]dω

= − 1

2π

∫ ∞
−∞

~ωTr
{
G<CC(ω)V CL 1

2Ω

[
P
( 1

ω − Ω

)
+ iπδ(ω − Ω)−

P
( 1

ω + Ω

)
− iπδ(ω + Ω)

]
V LC

}
dω,

(2.155)

where the principal part:

− 1

2π

∫ ∞
−∞

~ωTr

{
G<CC(ω)V CL 1

2Ω

[
P

(
1

ω − Ω

)
− P

(
1

ω + Ω

)]
V LC

}
dω = 0, (2.156)

because [G<CC(ω)]† = −G<CC(ω). The proof is similar to the one we have shown in Eq.
(2.98) for the electronic Green’s functions in Sec. 2.4. Thus Eq. (2.155) becomes

− i

2π

∫ ∞
0

~ωTr[G<CC(ω)ΓL(ω)]dω. (2.157)

Substituting Eqs. (2.154) and (2.157) into Eq. (2.140), finally we obtain the lattice
thermal current:

IphL =
1

2π

∫ ∞
0

~ωTr{[inL(ω)(GrCC(ω)− GaCC(ω))− iG<CC(ω)]ΓL(ω)}dω, (2.158)

where we have taken into account the fact that the current must be real. In the following
we omit the subscript CC in the Green’s functions.

With the same manipulation, one can also derive the heat current from the right lead
and one can obtain

IphR =
1

2π

∫ ∞
0

~ωTr{[inR(ω)(Gr(ω)− Ga(ω))− iG<(ω)]ΓR(ω)}dω, (2.159)

where nR(ω) is the Bose-Einstein distribution of the right heat bath. In steady state,
the heat flux out of the left lead should be the same as the heat flux out of the right
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lead. Thus Eq. (2.158) can be written in a symmetric way as

Iph =
IphL − I

ph
R

2

=
1

4π

∫ ∞
0

~ωTr{i[Gr(ω)− Ga(ω)][nL(ω)ΓL(ω)− nR(ω)ΓR(ω)]−

iG<(ω)[ΓL(ω)− ΓR(ω)]}dω.

(2.160)

So far, we haven’t made any approximations. Eq. (2.160) is a general expression for the
lattice heat current. Comparing with the electric heat current [see Eq. (2.105)], there is
no chemical potential in the lattice heat current. Moreover, the Green’s functions here
as a function of phonon frequency have completely different physical meaning with those
of the fermionic system.

2.5.3 Landauer-like formula for phonon transport

In the above derivations, anharmonic effect is considered for the modelling of the Green’s
functions. While for a harmonic system, if one defines [33–35]

Σ<
α (ω) = −inα(ω)Γα(ω), (2.161)

Σ>
α (ω) = −i[nα(ω)− 1]Γα(ω), (2.162)

then the Green’s functions become

G<(ω) = Gr(ω)[Σ<
L (ω) + Σ<

R(ω)]Ga(ω), (2.163)

G>(ω) = Gr(ω)[Σ>
L (ω) + Σ>

R(ω)]Ga(ω), (2.164)

where Σ<
α and Σ>

α are the lesser and greater self-energies, respectively. In this case, Eq.
(2.160) can be recast as

Iph =
1

2π

∫ ∞
0

~ωTph(ω)[nL(ω)− nR(ω)]dω, (2.165)

where we have used the relation shown in Eq. (2.130) and the transmission coefficient
is

Tph(ω) = Tr[Gr(ω)ΓL(ω)Ga(ω)ΓR(ω)]. (2.166)

Tph is a probability function for phonons and we will use it to calculate the phonon
thermal conductance. When the temperature difference between the two heat baths is
sufficiently small, i.e., ∆T (= TL − TR)→ 0, the phonon thermal conductance can then
be written as

κph = lim
∆T→0

Iph

∆T
=

1

2π

∫ ∞
0

~ωTph(ω)
∂n(ω)

∂T
dω. (2.167)

This equation is very similar to the formula of the electrical conductance we obtained
from Landauer approach shown in Sec. 2.4 for electron transport [see Eq. (2.119)].
This Landauer-like formula, Eq. (2.167), for phonon transport is valid only in the linear
response regime in harmonic approximation. And we will use this formula to calculate
the lattice thermal conductance in the next chapter 3.
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2.6 Boltzmann transport equation

Within linear response theory the electrical conductivity σ, Seebeck coefficient S and
electronic thermal conductivity λe in the framework of Boltzmann transport equation
can be written as [6, 36, 37]

σ(µ, T ) = e2K0(µ, T ), (2.168)

S(µ, T ) = − 1

eT

K1(µ, T )

K0(µ, T )
, (2.169)

λe(µ, T ) =
1

T

(
K2(µ, T )− K1(µ, T )2

K0(µ, T )

)
, (2.170)

where

Kn(µ, T ) =
1

V

∑
i,k

τi,e(k)vi(k)⊗ vi(k)[εi(k)− µ]n
(
−∂f(εi(k), µ, T )

∂εi(k)

)
. (2.171)

In the above Eq. (2.171), ⊗ denotes a tensor product, Kn can be a tensor for two
and three dimensional systems, τi,e(k) is the relaxation time of electrons corresponding

to the energy band index i and momentum k, vi(k) = 1
~
∂εi(k)
∂k is the group velocity for

electrons, εi(k) is the i-th band energy, µ is the chemical potential, V is the volume of the
system, and f(εi, µ, T ) is the Fermi-Dirac distribution function at a given temperature
T .

For the quasi-one-dimensional system, the electrical conductivity, Seebeck coefficient
and electric thermal conductivity can be expressed as scalars instead of tensors. Then
Kn becomes

Kn(µ, T ) =
1

V

∑
i,k

τi,e(k)vi(k) · vi(k)[εi(k)− µ]n
(
−∂f(εi(k), µ, T )

∂εi(k)

)
, (2.172)

and in the energy domain,

Kn(µ, T ) =
1

A

∑
i

∫ ∞
−∞

dεDe,i(ε)τi,e(ε)vi(ε) · vi(ε)[ε− µ]n
(
−∂f(ε, µ, T )

∂ε

)
, (2.173)

where we have introduced the density of states:

De,i(ε) =
1

L

∑
k

δ(ε− εi,k) =
1

2π~|vi(ε)|
, (2.174)

with A the cross-sectional area and L the length of the system in the longitudinal
direction. The second step in Eq. (2.174) to obtain is considering the definition of the
density of states which is given by

De,i(ε) =
dk

2πdεi
=

1

2π~vi(ε)
. (2.175)

Then we obtain

Kn(µ, T ) =
1

Ah

∑
i

∫ ∞
−∞

dετi,e(ε)|vi(ε)|[ε− µ]n
(
−∂f(ε, µ, T )

∂ε

)
. (2.176)
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In the ballistic transport regime, the Boltzmann transport equation should be equivalent
with the Landauer theory. Taking into account that Λi,e = τi,e|vi| is the mean free path
of electrons, we have

Kn(µ, T ) =
1

Ah

∫ ∞
−∞

dεΛeNe[ε− µ]n
(
−∂f(ε, µ, T )

∂ε

)
, (2.177)

where Ne is the total number of opened transport channels which can be calculated
directly from the energy bands. We will use the Boltzmann transport equation and the
Landauer theory to calculate the thermoelectric coefficients in the next chapter.

On the other hand for phonon transport, the lattice thermal conductivity can be written
as [38]

λ̃ph(T ) =
1

V

∑
i,k

τi,ph(k)vi(k)⊗ vi(k)~ωi(k)

(
∂n(ωi(k), T )

∂T

)
, (2.178)

where λ̃ph expresses the thermal conductivity as a tensor, τi,ph(k) is the relaxation time

of phonons, vi(k) = ∂ωi(k)
∂k is the group velocity that can be calculated from the phonon

dispersions, ωi(k) is the vibrational frequency with respect to the band index i and
momentum k, and n(ωi(k), T ) is the Bose-Einstein distribution function.

For the quasi-one-dimensional system, the phonon thermal conductivity in the frequency
domain can be expressed as

λph(T ) =
1

A

∑
i

∫ ∞
0

~ωDph,i(ω)|vi(ω)|Λi,ph(ω)

(
∂n(ω, T )

∂T

)
dω, (2.179)

where we have taken into account that the actual phonons can have only positive fre-
quency (otherwise the system is not stable). Dph,i(ω) is the phonon density of states,
which is defined as

Dph,i(ω) =
1

L

∑
k

δ(ω − ωi,k) =
1

2π|vi(ω)|
, (2.180)

and Λi,ph(ω) = τi,ph|vi(ω)| is the mean free path of phonons. The lattice thermal
conductivity can then be rewritten as

λph(T ) =
1

2πA

∑
i

∫ ∞
0

~ω
(
∂n(ω, T )

∂T

)
Λi,ph(ω)dω. (2.181)

For the quasi-one-dimensional periodic system, phonons can transport perfectly without
any scattering. The phonon thermal conductivity can be calculated by

λph(T ) =
1

2πA

∫ ∞
0

~ωΛphNph

(
∂n(ω, T )

∂T

)
dω, (2.182)

where Nph is the total number of transport channels for phonons which can be obtained
directly by counting the number of phonon modes from the dispersion.

Equations (2.177) and (2.182) give a simple method on how to utilize the energy bands
and phonon dispersions which can be obtained from DFT calculations to calculate the
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thermoelectric coefficients in the ballistic transport regime for the quasi-one-dimensional
periodic system.

2.7 Rate equation

In this section we briefly introduce the RE theory which will be used for the calculations
of electrical conductance and Seebeck coefficient in the CB regime in the chapter 4 of this
thesis. We recommend some references here if one has the interests to know the details
of the RE (Refs. [39–41]). The formulas presented below are valid only in linear response
regime for stationary state. The electric current and the heat flux are respectively given
by

J =
e

~kBT

∞∑
p=1

∞∑
N=1

ΓlpΓ
r
p

Γlp + Γrp
Peq(N)Feq(Ep/N)[1− f(εp − EF )]

×
[
eV − ∆T

T
(εp − EF )

]
,

(2.183)

Ih = − 1

~kBT

∞∑
p=1

∞∑
N=1

ΓlpΓ
r
p

Γlp + Γrp
Peq(N)Feq(Ep/N)[1− f(εp − EF )]

× (εp − EF )

[
eV − ∆T

T
(εp − EF )

]
,

(2.184)

where the first summation is over all the single particle energy levels and the second
summation is over all the possible occupation numbers N =

∑
i ni with ni the individual

occupation number of the i-th level. ni can take on only the values 1 and 0 corresponding
to the occupied and unoccupied states, respectively. Γlp and Γrp denote the tunnelling rate
from level p to the left and the right reservoirs, respectively. εp ≡ Ep+U(N)−U(N−1),
where Ep is the single particle energy of level p and U(N) = N(N − 1)e2/2C + Nv is
the charging energy with C the capacitance of the device and v the external potential
applied on the quantum dot.

The equilibrium probability Peq(N) is defined as

Peq(N) =
∑
{ni}

Peq({ni})δN,∑i ni
, (2.185)

Feq(Ep/N) =
1

Peq(N)

∑
{ni}

Peq({ni})δnp,1δN,∑i ni
, (2.186)

where {ni} ≡ {n1, n2, · · · } are all the possible combinations of occupation numbers.

Feq(Ep/N) is the conditional probability in equilibrium that level p is occupied given
that the quantum dot contains N electrons. Peq({ni}) is the Gibbs distribution in the
grand canonical ensemble:

Peq({ni}) = Z−1exp

[
− 1

kBT

( ∞∑
i=1

Eini + U(N)−NEF

)]
, (2.187)
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where Z is the partition function:

Z =
∑
{ni}

exp

[
− 1

kBT

( ∞∑
i=1

Eini + U(N)−NEF

)]
. (2.188)

Therefore according to the definitions shown in Eqs. (2.112)-(2.114) for conductance G,
Seebeck coefficient S, and electric thermal conductance κe, one can obtain

G = L(0), (2.189)

S = − 1

eT

L(1)

L(0)
, (2.190)

κe =
1

e2T

[
L(2) − [L(1)]2

L(0)

]
, (2.191)

where

L(n) =
e2

~kBT

∞∑
p=1

∞∑
N=1

ΓlpΓ
r
p

Γlp + Γrp
[Ep + U(N)− U(N − 1)− EF ]nPeq(N)Feq(Ep/N)

× {1− f [Ep + U(N)− U(N − 1)− EF ]}.
(2.192)

When the coupling Γ→ 0, the RE becomes an exact theory which provides an alternative
approach to calculate the transport coefficients of materials.



Chapter 3

Modeling and analysis of
thermoelectric properties in
nanostructures

3.1 Modeling of thermoelectric coefficients in SiGe nano
membranes ?

3.1.1 Introduction

Thermoelectric energy conversion is the ability of a device to convert a temperature gra-
dient into an electrical current. One of the main advantages of this energy conversion is
that the device can have a very long lifespan. Recently, the quest for a highly efficient
thermoelectric energy material has attracted tremendous interests due to significant po-
tential industrial applications [3, 5, 6, 42, 43]. Following the seminal work by Hicks and
Dresselhaus [44, 45], a strong research activity has been focused on nanostructured ma-
terials. Graphene, a two-dimensional (2D) material, was first discovered experimentally
in 2004 [46]. It exhibits exceptional properties such as high electron mobility as well as
strongly mechanical characteristics. However, the extremely high thermal conductivity
limits pristine graphene as an efficient thermoelectric material [47–49]. Nevertheless, it
was shown that nanostructuring graphene with hexagonal boron-nitride in a nanorib-
bon increased the overall figure of merit by a factor 20 for a specific edge shape [50].
Notwithstanding its phenomenal properties, the integration of graphene with the cur-
rent silicon-based technologies has proven to be a quite challenging task, whose solution
would probably require the complete redesign of electronic devices. As our present
technology is based on Si and Ge semiconductors, it thus appears natural to look at
the thermoelectric properties of these materials, since the integration of a thermoelec-
tric device based on them would be much simpler than the integration of carbon-based
devices.

Silicene resembles graphene in the single atomic layered arrangements, i.e., it forms a
honeycomb lattice and shares with the carbon system similar electronic properties [51–
55]. In particular, it is viewed as a new type of atomic-layered materials with outstanding

?This section is a part of the article Phys. Rev. B 89, 125403 (2014) by K. Yang, S. Cahangirov,
A. Cantarero, A. Rubio, and R. D’Agosta.
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properties such as the zero effective mass at the Dirac-point and infrared absorbance
of optical spectra [56–58]. A free-standing 2D silicene is shown in Fig. 3.1. On the
experimental side, single layered silicene (buckled) [37, 59–69] and silicene nanoribbons
(SiNRs) [59, 61] have been synthesized on Ag substrate. In particular, SiNRs up to a
narrow width of 1.6 nm have been produced, aligned parallel to each other in a well-
distributed way [59]. From the experience gained with the current micro-electronics, we
know that Ge is a good partner of Si since they share similar electronic properties and
form bulk crystal with comparable lattice constant (aSi = 0.5431 nm and aGe = 0.5658
nm) [70]. A single layered hexagonal lattice of Ge, called germanene, has been predicted
from ab-initio calculations [56]. Theoretically, germanene presents a Dirac cone, and
the electronic and structural properties of this material could be very similar to those
of silicene. We will discuss some of them in more detail in the following. In particular,
we will consider germanene nanoribbons (GeNRs) of different widths and consider the
possibility of forming nanoribbons by alternating stripes of Si and Ge.

Figure 3.1: (Color) A schematics of 2D free-standing silicene. In contrast to graphene,
silicene is not flat.

In this section, we systematically investigate with ab-initio technique combined with
Landauer approach in the linear response regime the thermoelectric properties of both
silicene and germanene nanosheets and one-dimensional (1D) Si and Ge nanoribbons. In
Sec. 3.1.2 we will introduce the parameters we set in DFT calculations. In Sec. 3.1.3, we
discuss the stability and study the transport properties of 2D silicene and germanene. In
Sec. 3.1.4 we move the attention to the 1D systems. We focus mostly on the Ge system
since the SiNRs have been investigated elsewhere [71]. From our calculations Si and Ge
nanoribbons do share essentially similar properties. We find that the nanoribbons can
have a quite large figure of merit, which is due to the fact that both Si and Ge nanorib-
bons have a finite electronic gap that leads to a high Seebeck coefficient. In Sec. 3.1.5 we
consider nanoribbons created by alternating stripes of Si and Ge. By nanostructuring
the system we would like to confine phonons and therefore decrease the thermal conduc-
tance. However, we find that the SiGeNRs show some analogous transport properties
of pure Si or Ge nanoribbons. This is due to the limitations of our method of choice,
namely, a full ab-initio study for the phonon transport. Indeed, within this technique
we are limited to fairly small nanoribbons and therefore the long wavelength phonons
are not quenched. We verified this point by using the nonequilibrium Green’s function
calculations within the tight-binding model. On the other hand, a classical technique
based on molecular dynamics, would also allow us to calculate the thermal conductance
of very larger systems. However, this technique does not recover the correct quantum
limit of these 1D systems. And therefore we do expect that the molecular dynamics
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results give the incorrect thermal conductance at temperature below the Debye temper-
ature, which for Si and Ge systems can be estimated to be about 640 K and 374 K [72],
respectively.

3.1.2 Computational details

To obtain the energy bands of electrons and dispersions of phonons, we performed first
principle calculations within local density approximation by using the projector aug-
mented wave potentials as implemented in VASP [73]. The exchange correlation energy
is chosen in the form of Ceperley-Alder which has been parameterized by Perdew and
Zunger [74, 75]. For the self-consistent potential and the total energy calculations,
the k-points of the Brillouin-zone in the reciprocal space are sampled by a (25×1×1)
Monkhorst-Pack grid. The kinetic energy cut-off is set to 500 eV. After ionic relaxation,
the Hellmann-Feynman forces acting on each atom are less than 0.01 eV/Å. We ob-
tain the force constant matrix for the calculation of phonon dispersions through small
displacement method [76]. We use a supercell technique with 15 Å of vacuum. In
these calculations we have neglected both the phonon-phonon and the electron-phonon
interactions. We expect that for the low energy phonons, mostly responsible for the
thermal transport, the correction due to these interactions will be small, especially for
the Seebeck coefficient.

Once we know the band structures of electrons and phonons, we can calculate their
transmission coefficients immediately by counting the number of modes as we have
discussed in chapter 2. Afterwards one can obtain the electrical conductance, Seebeck
coefficient and thermal conductance by using the Landauer approach. This method is
valid only in the ballistic transport regime for quasi-one-dimensional systems. For the
2D system, we use the Boltzmann transport equation to calculate the thermoelectric
coefficients. The BTE theory has been implemented in BoltzTraP [77] and one can use
the code simply.

3.1.3 Two-dimensional silicon and germanium

3.1.3.1 Geometrical structures of two-dimensional Si and Ge nanomem-
branes

We first investigate the structural stability of a single-layer of Si, i.e., silicene. In trying
to closely reproduce the experimental setup [63, 66, 67], we put one-layer of 3×3 silicene
on top of five-layers of 4×4 Ag(111): According to experimental evidence, the two
lattices should match, thus decreasing the total stress at the boundary and creating
an ideal supercell for our calculations. The geometrical structure for silicene obtained
after full relaxation is shown in Fig. 3.2 (a) and corresponds to the structure discussed
in Ref. [69]. We have superimposed a Ag(111) layer to show the excellent structural
matching, as highlighted by the boundary continuous line (red). Figure 3.2 (b) shows
the silicene on Ag substrate in side view. Contrary to graphene, silicene is not a strict
2D system, in the sense that the atoms in silicene are arranged on two sub-layers with a
fairly small buckling distance, which depends on the presence of the substrate. Indeed, it
is found that the atomic arrangement is further distorted by the metallic substrate [69].
Starting from a single layer of Si, arranged in a plane on an hexagonal lattice without
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the Ag substrate, we would have obtained a system with a different buckling, where
the atoms would divide equally between the upper and lower planes. The structure of
the free standing silicene can be seen in Fig. 3.1. After the full relaxation, it is found
that the buckling distance for the free standing silicene is about 0.43 Å. In our optimized
structure, however, we observe that the silicene presents buckling forming two sub-layers
with six atoms on top of the other twelve atoms which are therefore closer to the Ag
surface. The buckling distance between these two sub-layers is about 0.79 Å.

Figure 3.2: (Color) Geometrical structures of one-layer 3×3 silicene (yellow) (a) (top
view) and (b) (side view) on top of five-layers 4×4 Ag(111) (white). Geometrical
structures of one-layer 3×3 germanene (green) (c) (top view) and (d) (side view) on top
of five-layers 4×4 Ag(111). The buckling distances for supported silicene and germanene

are 0.79 Å and 1.42 Å, respectively.

Germanene is an analog of silicene, where Si is replaced by Ge. Here we study the
structural properties of 2D germanene. Figure 3.2 (c) shows the atomic structure of
one-layer 3×3 germanene on top of five-layers 4×4 Ag(111), and Figure 3.2 (d) shows
the single-layered germanene on the Ag substrate with side view. The structure has
been fully relaxed. It is found from Fig. 3.2 (d) that similar to silicene, two sub-layers
are formed with six Ge atoms on the top sub-layer and the other twelve Ge atoms on
the bottom sub-layer closer to the Ag surface. The buckling distance between the two
sub-layers is about 1.42 Å. As to the free standing germanene, the buckling distance is
found to be about 0.65 Å.

3.1.3.2 Energy Bands and electronic figure of merit

After the relaxation of silicene and germanene on Ag substrate, we now remove Ag and
calculate the bands of these distorted silicene and germanene. For the band structures
of supported silicene and germanene, more discussions can be found in Ref. [69]. In
Fig. 3.3 (a) the electronic energy band for the distorted silicene is plotted along the
high-symmetry points of the first Brillouin-zone, where the dotted blue line indicates
the Fermi energy that we set for convenience at 0. It can be seen that a band gap about
0.3 eV crosses the Fermi energy, indicating semiconducting properties of the system.
This must be compared with the flat silicene (unoptimized structure) and the silicene
optimized without the Ag substrate, which both present a Dirac point at the K point
of the first Brillouin-zone, therefore both showing metallic properties (see Fig. 3.4).
Figure 3.3 (b) shows the band structure of the distorted germanene without the Ag
substrate. It is found that there is no gap through the Fermi energy, indicating metallic
properties. The zero gap observed in germanene originates from the larger buckling
distance between the two atomic sub-layers.
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Figure 3.3: (Color) Electronic energy bands corresponding to the distorted (a) silicene
and (b) germanene by removing the Ag substrate, respectively, where the dashed blue
line denotes the Fermi energy position. (c) and (d) Dimensionless electronic figure of
merit ZTe at room temperature as a function of chemical potential µ corresponding
to the distorted silicene and germanene, respectively. The black continuous and red
dashed lines represent ZTe evaluated at constant relaxation time approximation and

1/τe ∝ E, respectively.

Based on the energy bands, we calculate the thermoelectric coefficients of the 2D silicene
and germanene at room temperature, i.e., T = 300 K. To perform the calculation of the
figure of merit, we have evaluated the transport coefficients given in Eqs. (2.168)-(2.170)
and Eq. (2.178). We have utilized the BoltzTraP-code [77] to perform the integration
over the k points in momentum space in the first Brillouin-zone, using the data obtained
from the VASP calculations. To calculate ZT , we have to estimate both the electron
and phonon relaxation times τi,e(k) and τi,p(k) in λe and λph, respectively (see Sec. 2.6
in chapter 2). However, for the electronic figure of merit ZTe, which is defined as

ZTe =
S2σ

λe
T, (3.1)

in the constant relaxation time approximation, ZTe does not depend on τi,e. We can
calculate ZTe independently without considering the phonon effect. Then ZT can be
written according to (see chapter 1)

ZT =
S2σ

λph + λe
T =

S2σ

λe
T

(
1

1 + λph/λe

)
=

ZTe
1 + λph/λe

. (3.2)

ZTe does not include the phonon thermal contribution, but providing an upper limit for
the total figure of merit ZT . A small ZTe will therefore imply a small ZT .
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Figures 3.3 (c) and (d) show the dimensionless electronic figure of merit, ZTe, as a func-
tion of the chemical potential µ for the distorted silicene and germanene, respectively. It
can be seen that the figure of merit for silicene exhibits two peaks in the left- and right-
hand sides of µ = 0, which separately correspond to the hole and electron transport.
The maximum of the peak is about ZTe = 0.81. While for the distorted germanene, it
can be seen from Fig. 3.3 (d) that the peak of ZTe is very small around µ = 0, although
some peaks appear at ∼ ±0.3 eV. The reason is that the distorted germanene has a
metallic character which leads to a very small Seebeck coefficient.

In Fig. 3.4 we show the electronic properties of the free standing silicene and germanene.
For both the free standing silicene and germanene, from Figs. 3.4 (a) and (b) it can be
seen that there is no gap at the Fermi energy. Indeed, at the high symmetric K point, a
linear energy dispersion is shown in the band structures, indicating the massless Dirac
fermions. This is similar to the 2D graphene system [51]. And our results agree with
the previous work [56].

Figure 3.4: (Color) Electron energy bands of the free-standing (a) silicene and (b)
germanene, respectively, where the dotted blue line denotes the Fermi energy. (c) and
(d) Dimensionless electronic figure of merit ZTe at room temperature as a function of
chemical potential µ for the free-standing silicene and germanene, respectively. The
black and red curves in (c) and (d) represent two different approximations of relaxation

time.

Through the energy band structure calculations, in Figs. 3.4 (c) and (d) we investigate
the dimensionless electronic figure of merit ZTe for both free standing silicene and ger-
manene, respectively. It is found that the figure of merit ZTe for silicene and germanene
shows two peaks near µ = 0. The maximum value of ZTe for silicene is 0.36 [see Fig.
3.4 (c)], and 0.41 for germanene [see Fig. 3.4 (d)]. We would point out here that the
results obtained from BoltzTraP depend sensitively on the number of k points. One
should sample the k points, in particular the k points around the Fermi energy, as much
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as possible to expect an accurate result. In our cases, we sampled 100×100×1 k points
in the whole first-Brillouin-zone for the calculation of the band structures.

To check the effect of the relaxation time on the electronic figure of merit, we have also
performed the calculations by assuming 1/τe to be proportional to the energy [54, 78].
The results are shown in Figs. 3.3 (c) and (d) and Figs. 3.4 (c) and (d) (see the red line).
We found that both approximations give almost the same results. The continuous black
line represents the results in the constant relaxation time approximation, and the dashed
red line represents the results in the inverse energy dependence of relaxation time. The
observation that the electronic figure of merit is independent from the relaxation time
follows from the form of the Lorenz integral, where the derivative of the Fermi function
is a strongly localized function around the Fermi energy. Therefore, the relaxation time
is always evaluated around the Fermi energy and can be replaced with its value at that
point.

Up to now we have shown that silicene and germanene crystal structures, similar to
graphene where carbon has been replaced by either Si or Ge respectively, might possibly
have a figure of merit of the order of 1. Our calculations provide an upper limit to the
theoretical figure of merit since in these calculations we did not include the phonon ther-
mal conductance and suggest that silicene might have a better thermoelectric properties
than germanene in this 2D arrangement since distorted silicene does present a gap in
the electronic energy spectrum and a larger Seebeck coefficient could occur.

3.1.4 Quasi-one-dimensional nanoribbons

We now consider quasi-one-dimensional systems, nanoribbons, made of stripes of ger-
manene or silicene of finite width. We assume that it is possible to ”cut” those stripes
from the respective crystal by removing the excess material. It has been reported that
SiNRs can have a quite large figure of merit, up to 5 at 600 K [71]. Motivated by these
results and by the expectation that GeNRs might perform better since their Debye tem-
perature is lower, we have investigated the thermoelectric efficiency of GeNRs and, in
the next section, nanoribbons obtained by alternating Si and Ge nanostructures or by
incomplete randomising the Si and Ge arrangements. As standard with nanoribbons,
there are two ways to terminate the edges of the ribbons (see Fig. 3.5), forming either
zigzag or armchair edges. We identify the quantities associated with the zigzag with
a Z and those of the armchair with a A. Because of the atomically thin structure, the
cross-section and volume of these systems are not convenient to define. In the following
we will use the concept of conductance instead of conductivity but ZT does not change
as we have discussed in chapter 1 for the ballistic transport regime.

3.1.4.1 Germanene nanoribbons

Figures 3.5 (a) and (c) show the optimized structures of zigzag- and armchair-edged
GeNRs (Z-GeNRs and A-GeNRs), respectively. To see the buckling more clearly, we
have drawn the corresponding side views in (b) and (d). Hydrogen atoms are used to
passivate the unsaturated bonds of the Ge atoms at the edges. WZ and WA identify
the ribbon width. It can be seen from the top view that GeNRs form hexagonal ring as
the union of two sublattices but, at odds with what happens for graphene nanoribbons,
atoms in these two sublattices do not belong to the same plane: In the vertical direction
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there is some buckling, which is almost uniform for the atoms at the edge or in the center.
Our calculations give for the Z-GeNRs a buckling distance of 0.62 Å, while for A-GeNRs
they give 0.66 Å. For these nanoribbons, our total energy calculations show that the
antiferromagnetic (AFM) state of Z-GeNRs is more stable than the ferromagnetic (FM)
and nonmagnetic (NM) states counterparts. This is in agreement with other calculations
performed for SiNRs [71] and theoretical predictions originally derived for graphene [79],
which we expect to be valid for these systems. However, the energy difference between
the different magnetic phases is small. This might be important for device stability,
especially at temperatures higher than 300 K.

Figure 3.5: (Color) Optimized geometrical structures of (a) Z-GeNRs and (c) A-
GeNRs and their lateral views. For the atoms at the edges, we passivate the unsaturated
bonds with hydrogen atoms. WZ and WA denote the width of the nanoribbons for the

zigzag and armchair terminated nanoribbons, respectively.

To further confirm the structural stability of the GeNRs, we have calculated the phonon
dispersion relations. In Figs. 3.6 (a) and (b) we report the phonon dispersions for both
Z-GeNR and A-GeNR with ribbon width 6, i.e., WZ = WA = 6), respectively. We find
that in the limit of phonon energy ω → 0, there are four acoustic phonon modes in the
spectrum stemming from the lattice symmetry. In particular, no negative phonon mode
is observed, which indicates that both Z-GeNRs and A-GeNRs passivated by hydrogen
are structurally stable.

In Figs. 3.7 (a) and (b) the band structures of Z-GeNRs with AFM and FM states are
calculated, respectively, where the dashed blue line corresponds to the Fermi energy. We
can see that the AFM state exhibits a finite small gap: The bands for spin up and down
are degenerate and the gap is about 0.1 eV. While for the FM state, it is found that spin
up and down are nondegenerate, producing metallic properties, and similar properties
are valid for the NM state (not shown). In the case of A-GeNR, our calculations indicate
that the NM state is stable, indicating semiconducting properties as shown in Fig. 3.7
(c). Because the metallic system produces bad thermoelectric properties (generally ZT
is smaller than 0.1), in the rest part of this work, we will put the attentions on the AFM
state in the zigzag-edged nanoribbons and NM state in the armchair-edged nanoribbons.
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Figure 3.6: (Color) Phonon dispersions for (a) Z-GeNRs with WZ = 6 and (b) A-
GeNRs with WA = 6, respectively.

Figure 3.7: (Color) (a) Electron energy band of Z-GeNRs with WZ = 6 for the AFM
state: Notice the presence of a small electronic gap. (b) Electron energy band of Z-
GeNRs with WZ = 6 for the FM state. (c) Electron energy band of A-GeNRs with
WA = 6 corresponding to the NM state. In (a-c) the Fermi energy is chosen as the

reference energy and set to 0.

In Fig. 3.8 we show the band gap of GeNRs as a function of ribbon width. It can be
seen that the band gap of Z-GeNRs decreases monotonously with the increasing of the
ribbon width. This must be compared with the oscillating behaviour we observe for the
A-GeNRs [see Fig. 3.8 (b)]. For the A-GeNRs, for the ribbon widths WA = 3p and
3p+ 1 (where p is positive integer), the gap is larger than that of the ribbon with width
WA = 3p + 2. This width-dependent behavior of band gap is similar to that of the
graphene nanoribbons.

To calculate the figure of merit ZT , we begin with the electronic transport properties.
The upper panel in Fig. 3.9 corresponds to the results of Z-GeNRs, while the lower
panel is for A-GeNRs. Figures 3.9 (a) and (b) show the transmission coefficients Te as a
function of the electron energy E for both Z-GeNRs and A-GeNRs, respectively. It can
be seen that Te exhibits a clear quantum stepwise structure, due to opening and closing
of elastic transmission channels: Notice that the jumps are quantized and equal to 2 due
to the electron spin. By making use of the transmission probability, we can calculate
the electrical conductance G, Seebeck coefficient S and electron contributed thermal
conductance κe. In Figs. 3.9 (c) and (d), the electrical conductance as a function of
chemical potential is plotted for both Z-GeNRs and A-GeNRs, respectively. It can be
seen that the electrical conductance for zigzag nanoribbons gradually increases with
the ribbon width, and there is a peak corresponding the transmission step at E ≈ 0.5
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Figure 3.8: Band gap of (a) Z-GeNRs and (b) A-GeNRs as a function of the ribbon
width WZ and WA, respectively.

eV. Around the Fermi energy, the conductance vanishes due to the finite gap. For
the A-GeNRs, we find that the electrical conductance for the ribbon with width 3p
or 3p + 2 vanishes, while for the ribbon with width 3p + 2, a non-zero dip is found.
Interestingly, the conductance for all the curves of A-GeNRs exhibits quantized plateau-
like characteristics.

Figure 3.9: (Color) Electron transmission coefficient as a function of energy for (a)
Z-GeNRs and (b) A-GeNRs with various ribbon widths, respectively. (c) and (d) Elec-
trical conductance, (e) and (f) Seebeck coefficient, (g) and (h) electron and phonon
thermal conductances for Z-GeNRs and A-GeNRs versus chemical potential µ, where

the temperature is set to 300K.

In Figs. 3.9 (e) and (f) we report the Seebeck coefficient as a function of the chemical
potential µ. It can be seen from Fig. 3.9 (e) that S presents two peaks around the posi-
tion of the chemical potential needed to overcome the gap. Moreover the two peaks show
different sign with positive and negative values. This behavior indicates the different
carrier transport: The positive sign in the region of µ < 0 corresponds to hole transport,
while the negative at µ > 0 corresponds to electron transport. In addition the absolute
value of the peak of the Seebeck coefficient decreases with increasing WZ . In the case of
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A-GeNRs, it is found [see Fig. 3.9 (f)] that for the nanoribbons with width 3p and 3p+1,
the two Seebeck coefficient peaks with opposite sign can also be found centred around
zero value of the chemical potential. We note that for the nanoribbons with width 3p+2,
the Seebeck coefficient is very small due to the small electronic gap. In Figs. 3.9 (g) and
(h) the total thermal conductance, κe + κph, for Z-GeNRs and A-GeNRs is depicted,
respectively. It can be seen that the thermal conductance for Z-GeNRs increases with
increasing the width of the nanoribbon. By checking the variation of the electrical and
electric thermal conductances, G and κe, it is found that corresponding to the dip posi-
tion of the electrical conductance, the electric thermal conductance (and therefore the
total thermal conductance) shows a peak which becomes sharper with increasing WA.
Moreover, a similar effect can also be found in the A-GeNRs with width 3p+2 as shown
in Fig. 3.9 (h).

To understand the transport behavior, we plot the density of states D(E) around the
Fermi energy in Fig. 3.10 for both Z-GeNRs and A-GeNRs. We can see that in the case
of zigzag-edged nanoribbons, there are two peaks around the Fermi energy. In the case
of armchair-edged nanoribbons with width WA = 3, 4, D(E) is zero in the energy range
from 0 to 0.5 eV. However, for the nanoribbons with width WA = 5, D(E) around the
Fermi energy shows a finite value, indicating the metallic properties which leads to the
small Seebeck coefficient as we have seen in Fig. 3.9 (f).

Figure 3.10: (Color) Density of states as a function of chemical potential µ for Z-
GeNR with ribbon width WZ = 3 and for A-GeNRs with ribbon width WA = 3, 4 and

5.

To study the lattice thermal transport properties, the supercell approach is utilised to
calculate the phonon force constant and then the dispersion relation is obtained by di-
agonalizing the corresponding dynamical matrix [76]. In Figs. 3.11 (a) and (b), the
phonon thermal conductance κph as a function of temperature T for both Z-GeNRs and
A-GeNRs is plotted, respectively. It can be seen that the phonon thermal conductance
increases with the increase of temperature, and finally reaches a constant value corre-
sponding to the classical limit when T > 400 K. Moreover the thermal conductance for
wide nanoribbons exhibits a higher value than that of the narrow nanoribbons. This
can be simply explained by ”counting” the number of phonon modes, because the wide
nanoribbons should have more phonon modes contributing to the thermal transport. To
show the behaviour at low temperatures of the phonon thermal conductance, in Fig.
3.11 (c), we plot the logarithm of κph versus the logarithm of T . It can be seen that κph
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shows a linear dependence on the temperature at low T , T < 20 K. At low temperature,
for the one-dimensional systems, the lattice thermal conductance is dominated by the
low-frequency acoustic phonons, which can be read as [80]

κph(T ) =
4k2

BT

h

∫ ∞
0

dξ ξ2 eξ

(eξ − 1)2
=

2πk2
BT

3~
, (3.3)

where ξ = ~ω
kBT

and we have approximated the phonon transmission probability Tph(ω) =
4 because of the sum rule. According to this approximation, it can be seen that the
phonon thermal conductance exhibits a linear dependence on T in quasi-one-dimensional
systems.

Figure 3.11: (Color) Phonon thermal conductance κph of (a) Z-GeNRs and (b) A-
GeNRs with different ribbon width as a function of temperature. (c) The logarithm of
κph for A-GeNRs as a function of logarithm of T , where the linear behavior is shown

as we expect according to Eq. (3.3).

By combining the results of the electron and phonon calculations, we can finally inves-
tigate the thermoelectric efficiency of the GeNRs. Figures 3.12 (a) and (b) report the
thermoelectric figure of merit ZT as a function of chemical potential µ for different rib-
bon width of both Z-GeNRs and A-GeNRs, respectively. We can see that there are two
peaks around µ = 0 for each curve in the case of Z-GeNRs. While for the A-GeNRs, the
height of ZT peak for the ribbon width WA = 5, 8 is much lower than that of the other
ribbons. In Figs. 3.12 (c) and (d) we plot the figure of merit as a function of the ribbon
width. Here ZT is chosen the maximum value of the figure of merit in (a) and (b) with
respect to the chemical potential near the Fermi energy. It can be seen from Fig. 3.12
(c) that at narrow Z-GeNRs, ZT for electron and hole is about 0.35 and 0.61, and then
it decreases with increasing the ribbon width. This effect can be explained by the less-
ening of the Seebeck coefficient and growing of the thermal conductance outweighing the
increasing of the electrical conductance. Moreover, we observe from Fig. 3.12 (d) for the
A-GeNRs, that ZT for both electron and hole transport coefficients show an oscillating
behavior. In the case of the nanoribbons with width WA = 3p and 3p+ 1, ZT is larger
than 1 for narrow nanoribbons. In particular for the ribbon width WA = 4, ZT reaches
1.63, indicating a high thermoelectric conversion efficiency in these nanostructures.

We have also calculated the carrier density ρ at the chemical potential that gives the
maximum efficiency for the GeNRs. To do that we used the formula valid for the electron
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Figure 3.12: (Color) Figure of merit ZT at room temperature for (a) Z-GeNRs and
(b) A-GeNRs as a function of chemical potential µ for different ribbon width WZ and
WA, respectively. In (c) we report the peak value of ZT for Z-GeNRs at negative values
of the chemical potential µ associated with the hole transport (square hollow points)
and positive values µ associated with the electron transport (square full points). In (d)
we pick out the peak value of ZT in (b) for A-GeNRs around µ = 0 for both electron

and hole transport.

Table 3.1: Carrier density for the Z-GeNRs as a function of the ribbon width calcu-
lated at the chemical potential that gives the maximum figure of merit, at T = 300 K.

The e and h subscripts refer to the electrons or holes transport, respectively.

Wz 3 4 5 6 7 8

µM,e (meV) 32.5 32 32 31.5 31 31.5

ρe (1012 cm−2) 6.74 6.85 7.05 6.57 6.18 6.24

µM,p (meV) -24 -22 -20 -19.5 -18 -16

ρp (1012 cm−2) 4.15 3.65 3.13 3.42 2.65 2.71

carrier density in an intrinsic semiconductor:

ρe =

∫ ∞
Ec

dEf(E,µ, T )D(E), (3.4)

where f(E,µ, T ) is the Fermi distribution, D(E) is the density of states, and Ec is the
bottom energy of the conduction band. To calculate the hole carrier density we used

ρp =

∫ Ev

−∞
dE [1− f(E,µ, T )]D(E), (3.5)

where Ev is the top of the valence band. We report our results for the electron and
hole carrier densities for the Z-GeNRs in table 3.1, where µM is the chemical potential
corresponding to the maximum figure of merit.
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Table 3.2: Carrier density for the A-GeNRs as a function of the width calculated at
the chemical potential that gives the maximum figure of merit, at T = 300 K. The e

and h subscripts refer to the electrons or holes transport, respectively.

WA 3 4 5 6 7 8

µM,e (meV) 231 337 22.5 90 131 20

ρe (1012 cm−2) 0.60 3.53 2.24 0.797 0.75 1.97

µM,p (meV) -120 -91 -22 -102 -113 -20

ρp (1012 cm−2) 1.12 2.26 2.37 0.937 0.875 1.88

Similarly, we report our results for the electron and hole carrier densities in table 3.2 for
the A-GeNRs.

Our results are consistent with what has been found for SiNRs [71]. However, we would
like to point out that from our calculations the phonon thermal conductance of the
small GeNR is never negligible with respect to the electronic thermal conductance, as
instead has been argued for the SiNRs in Ref. [71]. We believe this is an artifact of
the classical methods used in Ref. [71]. Unlike our quantum simulations, in these quasi-
one-dimensional systems that are in the ballistic thermal transport regime, classical
methods would not recover the linear dependence of phonon thermal conductance at low
temperatures. Moreover, the classical calculations should be valid only for temperatures
higher than the Debye temperature, which for these systems can be estimated to be about
600 K for SiNRs. In Ref. [71], the classical calculations are instead used to evaluate
the phonon thermal conductance also below the Debye temperature, an assumption that
would need an explanation. At the same time, the quantum technique does not include
any inelastic effect and it is strongly limited in size, i.e., we cannot consider a large
supercell as instead is possible with classical methods [71].

3.1.4.2 Silicene nanoribbons

For completeness, and to have a direct comparison with the results available in the lit-
erature [71], we have calculated the figure of merit of SiNRs similar to the GeNRs that
we have investigated in the previous section. Here we report only the phonon thermal
conductance and the figure of merit. The electronic transport coefficients, G, S, and κe
have shapes similar to those in Fig. 3.9 and we do not show them again. We plot in Figs.
3.13 (a) and (b) the phonon thermal conductance κph for both zigzag- and armchair-
edged SiNRs (Z-SiNRs and A-SiNRs) as a function of temperature T , respectively. It is
seen that the phonon thermal conductance increases with the temperature, and finally
reaches steady value. For the zigzag nanoribbons, the thermal conductance increases
gradually with the ribbon width due to the increase of available phonon transport chan-
nels. As to the armchair nanoribbons, the thermal conductance also increases except
for the ribbon width WA = 3, 4 whose values are indeed close [see Fig. 3.13 (b)].

In Fig. 3.14 the figure of merit for SiNRs as a function of ribbon width is shown. It can
be seen that the figure of merit for Z-SiNRs decreases with the increase of the ribbon
width. Moreover ZT for the hole transport is larger than that contributed from the
electron transport. The reason is due to the increased phonon thermal conductance
and decreased electronic band gap. For the armchair nanoribbons, it is found from Fig.
3.14 (b) that the figure of merit at narrow ribbon is quite large, about 1.04. With the
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Figure 3.13: (Color) Phonon thermal conductance κph of (a) Z-SiNRs and (b) A-
SiNRs as a function of temperature, respectively.

increase of the ribbon width, ZT decreases overall and exhibits an oscillating behavior.
We notice that, due to the larger thermal conductance, we obtain a figure of merit of
the SiNRs that is smaller than the one reported in Ref. [71].

Figure 3.14: (Color) Figure of merit ZT at room temperature for (a) Z-SiNRs and
(b) A-SiNRs as a function of ribbon width WZ and WA, where the black square hollow
points and the red square full points correspond to the hole and electron transport,

respectively.

3.1.5 Silicon-germanium heterostructures

We have shown that Si and Ge nanoribbons can have a substantial figure of merit, which
is slightly above 1 for narrow ribbon with armchair edge. On the other hand, we would
like to explore the possibility of improving on this result by mixing these nanoribbons.
Since Si and Ge nanoribbons do share similar electronic properties, our first attempt is
to investigate a nanoribbon created by alternating stripes of Si and Ge in the direction of
the growth of the nanoribbon. Hopefully, their different masses would create a trap for
the phonon modes, thus reducing the thermal conductance of the device and improving
the overall figure of merit ZT . We will show in the following subsection that this idea
is working partially and we do have a modest increasing of ZT . This is a limitation
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of our quantum method of calculating the thermal conductance. We are limited in
the size of the supercell we can consider for our calculations. Indeed, the low energy
phonons responsible primarily for the thermal transport have a wavelength that spans
many supercells, thus making the chemical modulation ineffective as a phonon trap.
To improve on this result, we have therefore investigated the case where we randomly
substituted some Si atoms with Ge in the nanoribbon crystal. After fully relaxing
the structure, we have, however, observed that also this nanoribbon with randomly
distributed Si and Ge does not work too much as a phonon trap, for essentially the same
reason of the perfect modulation: The Si and Ge randomly distributed supercell is not
large enough to confine the low energy phonon modes.

3.1.5.1 Thermoelectric properties of hybrid silicene-germanene nanorib-
bons

In this subsection, we investigate the thermoelectric properties of orderly-distributed
heterostructured silicene-germanene nanoribbons (SiGeNRs). After forming the struc-
ture, we have relaxed the atomic positions, without taking into account any substrate.
Figure 3.15 shows the optimized geometrical structures of zigzag- and armchair-edged
SiGeNRs (Z-SiGeNRs and A-SiGeNRs) passivated by hydrogen atoms, where the red
line encloses a supercell along the ribbon axis. LSi and LGe are the lengths of silicene
and germanene stripes in the supercell, respectively.

Figure 3.15: (Color) Geometrical structures of (a) Z-SiGeNRs and (b) A-SiGeNRs,
where the red line encloses a supercell along the ribbon axis and LSi and LGe are the
lengths of silicene and germanene stripes in the supercell, respectively. We have chosen
LSi = LGe = 3 for this particular case and used the hydrogen to passivate the ribbon

edges.

In Fig. 3.16 we plot the energy band gap for the hybrid silicene and germanene nanorib-
bons. Increasing the ribbon width, the band gap for Z-SiGeNRs decreases though the
gap has a slight oscillation from WZ = 4 to 7 [see Fig. 3.16 (a)], while the gap for
A-SiGeNRs shows a strongly oscillating phenomenon as shown in Fig. 3.16 (b). When
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the ribbon width WA satisfies either 3p or 3p+ 1, a larger band gap appears than that
of the nanoribbons with width 3p+ 2. This width dependence of the band gap is similar
to that of the A-GeNRs and A-SiNRs as we have discussed in Sec. 3.1.4.

Figure 3.16: (a) and (b) Energy band gap as a function of ribbon width WZ and WA

for Z-SiGeNRs and A-SiGeNRs, respectively.

We now investigate the transport properties and we start from the hybird nanoribbon
with width LSi = LGe = 1. In Figs. 3.17 (a) and (b) we report the transmission co-
efficients as a function of electronic energy for different width of the Z-SiGeNRs and
A-SiGeNRs, respectively. It can be seen that the transmission probability exhibits char-
acteristic quantized steps and a band gap is shown around the Fermi energy. Starting
from this transmission function we can easily obtain the transport coefficients using the
Landauer theory that we have discussed in Sec. 3.1.2. In Figs. 3.17 (c) and (d) we plot
the electrical conductance in the linear response regime as a function of the chemical
potential µ. It is found that the electrical conductance for Z-SiGeNRs exhibits a peak
and a dip around µ = 0. As for the A-SiGeNRs, we show that the electrical conductance
at Fermi energy is zero for the nanoribbon with width WA = 3p and 3p + 1 due to the
presence of the larger band gap as we have seen in Fig. 3.16 (b), while the conductance
at µ = 0 for the ribbon with width WA = 3p + 2 shows a dip where the conductance
assumes a finite value.

In Figs. 3.17 (e) and (f), the Seebeck coefficient versus chemical potential is depicted.
It is found that the Seebeck coefficient around µ = 0 appears two peaks for both Z-
SiGeNRs and A-SiGeNRs with width WA = 3p and 3p + 1. The absolute value of the
peak for A-SiGeNRs is 1.4 mV/K, which is quite larger than the value of Z-SiGeNRs,
indicating a high thermoelectric effect in this armchair edged nanoribbons. On the other
hand, for the armchair nanoribbons with width 3p + 2, the Seebeck coefficient is very
small due to the very small band gap presented in these systems. In Figs. 3.17 (g) and
(h) the total thermal conductance κe +κph including electron and phonon contributions
is plotted. It can be seen that κe + κph for Z-SiGeNRs exhibits a peak at µ = 0, while
for the A-SiGeNRs with widths 3p and 3p + 1, it has a plateau in the energy region
around µ = 0, mostly due to the phonon thermal transport. As for the nanoribbon with
width 3p + 2, the thermal conductance reaches a local maximum on account of a local
maximum of the electronic heat contribution at µ = 0.

Figures 3.18 (a) and (b) show the phonon thermal conductance κph for both Z-SiGeNRs
and A-SiGeNRs as a function of temperature for different nanoribbon widths, respec-
tively. It can be seen that the phonon thermal conductance κph increases gradually
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Figure 3.17: (Color) Electronic transmission coefficient as a function of energy for (a)
Z-SiGeNRs and (b) A-SiGeNRs, respectively. (c) and (d) Electrical conductance, (e)
and (f) Seebeck coefficient, (g) and (h) electron and phonon thermal conductances as
a function of chemical potential µ for Z-SiGeNRs and A-SiGeNRs, respectively, where

we have set the temperature T = 300 K.

with increasing temperature and finally reaches a plateau at T > 400 K. By comparing
Fig. 3.18 with Figs. 3.11 and 3.13, we find that the thermal conductance of SiGeNRs
is located between the value of GeNRs and SiNRs, i.e., the thermal conductance of
SiGeNRs is larger than that of GeNRs, but smaller than that of SiNRs. Similar to
the case of GeNRs or SiNRs, at low temperature region, the linear dependence of the
thermal conductance on the temperature is still observed, in agreement with Eq. (3.3).

Figure 3.18: (Color) Phonon thermal conductance κph of (a) Z-SiGeNRs and (b)
A-SiGeNRs as a function of temperature, respectively.

In Figs. 3.19 (a) and (b), we report the figure of merit ZT for both Z-SiGeNRs and
A-SiGeNRs as a function of ribbon widths WZ and WA, respectively. It is found that
the maximum value of the figure of merit for Z-SiGeNRs appears in the narrowest
nanoribbon, which is about 0.59 corresponding to the hole transport. While for the
electron transport, the corresponding ZT is about 0.38. As to the armchair-edged
nanoribbon with width WA = 3, ZT is found to be 1.46 for both the hole and electron
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transport [see Fig. 3.19 (b)]. With the increase of the ribbon width, the figure of merit
shows an oscillatory behavior reminiscent of the different properties of the nanoribbons
with different widths. The amplitude of the ”oscillation”, however, decreases quite
rapidly with increasing the ribbon width. This is mostly due to the rapid increasing of
the phonon thermal conductance with WA. In particular, ZT is very small in the case of
nanoribbon with width 3p+ 2 due to the small Seebeck coefficient as shown in Fig. 3.17
(f).

Figure 3.19: (Color) Figure of merit ZT at room temperature for (a) Z-SiGeNRs and
(b) A-SiGeNRs as a function of nanoribbon with width WZ and WA, where the hollow

and full points correspond to the hole and electron transport, respectively.

3.1.5.2 Component modulation on the figure of merit of hybrid silicene-
germanene nanoribbons

In Fig. 3.20, we investigate the thermoelectric properties of SiGeNRs by modulating the
component lengths of silicene and germanene stripes in the supercell. Figures 3.20 (a)
and (b), (c) and (d), (e) and (f) show the figure of merit ZT at room temperature for
Z-SiGeNRs and A-SiGeNRs as a function of ribbon width for LSi = LGe = 2, 3 and 4,
respectively. It is found that the maximum ZT for hole and electron transport in the
case of Z-SiGeNRs is 0.85 and 0.42 for LSi = LGe = 2, 0.87 and 0.53 for LSi = LGe = 3,
and 1.06 and 0.54 for LSi = LGe = 4, respectively. As to the armchair nanoribbons,
the maximum of ZT for LSi = LGe = 2 is about 1.93, while the maximum ZT for
LSi = LGe = 3 and 4 is about 2.18 and 2.06, respectively. With the increase of the
ribbon width, the overall figure of merit decreases for both Z-SiGeNRs and A-SiGeNRs
with widthWA = 3p and 3p+1. Regarding the nanoribbon with width 3p+2, the figure of
merit is quite small compared to the ribbons with width 3p and 3p+1. Through checking
the Seebeck coefficient, it is found to be very small for nanoribbons with width 3p+2 due
to the small band gap, in agreement with our analysis of the system with LSi = LGe = 1.
Figures 3.20 (g) and (h) show the figure of merit as a function of temperature for Z-
SiGeNRs with width WZ = 3, 4 and A-SiGeNRs with width WA = 3, 4, respectively.
It can be seen that the figure of merit increases and then decreases with the increase
of the temperature. The maximum ZT for Z-SiGeNRs is about 1.05 at T ≈ 200 K,
and the maximum ZT for A-SiGeNRs is about 3.91 at T ≈ 1000 K. We will have more
discussions about the temperature dependence of ZT in the forthcoming Sec. 3.2.
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Figure 3.20: (Color) Figure of merit ZT at T=300K for Z-SiGeNRs and A-SiGeNRs
as a function of ribbon width WZ and WA under different component lengths of silicene
and germanene stripes: (a) and (b) LSi = LGe = 2, (c) and (d) LSi = LGe = 3, (e) and
(f) LSi = LGe = 4, respectively. (g) and (h) Figure of merit as a function of temperature
for Z-SiGeNRs and A-SiGeNRs with the corresponding ribbon width 3 and 4, where
the lengths of silicene and germanene stripes in the supercell are LSi = LGe = 3. The

hollow and full points correspond to the hole and electron transport, respectively

We wish to point out that ZT of these systems is larger than that for the pure A-GeNRs
or A-SiNRs. This means that nanostructuring can improve the overall energy conversion
efficiency. On the other hand, the modest increase in ZT for these nanoribbons shows
how this nanostructuring is not effective in blocking the phonon modes. We should
probably reach larger LSi and LGe, in order to achieve the trapping of the low energy
phonon modes.

3.1.5.3 Disorder effect on the figure of merit of hybrid silicene-germanene
nanoribbons

In the above discussions, the Si and Ge atoms in the nanoribbons are orderly distributed
along the growth direction. Here we consider the case that Si and Ge atoms randomly
occupy the site of the lattice in Fig. 3.15. The length of the supercell LS(= LSi+LGe) = 6
and the number of Si and Ge atoms in the supercell are taken the same. Since the
armchair nanoribbons show the most promising values of the figure of merit, in Figs. 3.21
(a) and (b) we merely depict the figure of merit ZT as a function of chemical potential
µ for disordered A-SiGeNRs under the ribbon width WA = 3 and 4, respectively. As
a comparison, we have also plotted the figure of merit for A-GeNRs, A-SiGRs and A-
SiGeNRs. It can be seen that the maximum figure of merit for disordered A-SiGeNRs
and ordered A-SiGeNRs is nearly twice of the value of clean A-GeNRs and A-SiGRs. The
maximum ZT for disordered and ordered A-SiGeNRs with width WA = 3 is about 2 for
both electron and hole transport corresponding to the positive and negative chemical
potentials, while the maximum ZT for the ribbon width WA = 4 is 2.18 and 2.56
for electron transport and 1.5 and 1.8 for hole transport, respectively. The principal
reason of the enhanced thermoelectric efficiency comes from the reduced phonon thermal
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conductance, since the electronic properties are slightly affected by the randomness of
the atomic positions. Again, due to the small size of the supercell we can consider
in ab-initio calculations, phonon confinement is not strong enough, and therefore the
thermal conductance of disordered and ordered A-SiGeNRs is only slightly reduced with
respect to the clean Si and Ge system. For the same reason, the thermal conductance
of the random structure is similar to the one of the silicene-germanene heterostructures
as expected.

Figure 3.21: (Color) Figure of merit ZT at T = 300 K for A-GeNRs, A-SiNRs, A-
SiGeNRs and disordered A-SiGeNRs with ribbon width (a) WA = 3 and (b) WA = 4
as a function of chemical potential µ, where we have taken the supercell length LS = 6,

respectively.

To present a proof that a large supercell can effectively reduce the phonon thermal con-
ductance in the SiGe heterostructures as well as considering the computational time
consuming in ab-initio calculations, here we employ the semiclassical tight-binding cal-
culation to investigate the lattice thermal transport properties. To calculate the phonon
Green’s functions, we have to know the force constant firstly. In the following we use
an empirical Keating potential [33, 70, 81] which has been widely applied in the SiGe
nanowire systems [82, 83] and has been proved to provide a very good fit for the phonon
dispersions [70, 84, 85]. The explicit expression of the Keating potential is

V =
1

2
kr
∑
i,j

(
R2

0,i,j −R2
i,j

)2
+

1

2
kθ
∑
i,j,k
k 6=j

(R0,i,j ·R0,i,k −Ri,j ·Ri,k)
2 , (3.6)

where R0,i,j and R0,i,k are the equilibrium position vectors connecting atom i with j and
k, Ri,j and Ri,k are the corresponding position vectors after deformation, respectively.
The bond stretching and bending force parameters, kr and kθ, for silicene in Eq. 3.6 are
7.2186×1020 N/m3 and 1.5225×1020 N/m3 [81]. As to the parameters of germanene,
we roughly estimate kr = 5.3469 × 1020 N/m3 and kθ = 1.2516 × 1020 N/m3 through
comparing the force-constance ratio of this 2D system with that of the bulk Si and
Ge crystals [70]. We have fine tuned these values to improve the agreement between
ab-initio and tight-binding phonon spectra. For the force parameters between Si and
Ge atoms in the hybrid structures, we take their average value. Regarding the Si-H
and Ge-H interactions, we take 10% of the corresponding Si-Si and Ge-Ge interactions,
accordingly. Based on the Keating model and combined with the nonequilibrium Green’s
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function technique, we can calculate the phonon transmission probability and thus the
thermal transport properties, using the theory we have described in detail in chapter 2.

Figures 3.22 (a) and (b) show the phonon thermal conductance calculated from tight-
binding for A-GeNRs (continuous gray line), A-SiNRs(dashed gray line), A-SiGeNRs
(dotted gray line) and disordered A-SiGeNRs (dash-dotted gray line), where the ribbon
width WA = 3. To check how reliable the tight-binding calculations are, we have also
plotted the corresponding thermal conductance calculated from ab-initio [color lines in
Fig. 3.22 (a)]. It can be seen that the thermal conductances obtained from tight-binding
and ab-initio are quite close, especially in the low temperature region. In addition, it is
found that the phonon thermal conductance in the case of A-SiGeNRs and disordered A-
SiGeNRs is drastically decreased compared to the pure A-SiNRs and A-GeNRs. With
further increasing the length of the supercell, the phonon thermal conductance still
decreases as shown in Fig. 3.22 (b).

Figure 3.22: (Color) Phonon thermal conductance of various armchair nanoribbons
with the ribbon width WA = 3, where the supercell lengths LS for A-SiGeNRs and
disordered A-SiGeNRs are (a) LS = 6 and (b) LS = 20, respectively. The curves in
color are calculated from ab-initio and the other curves in gray are calculated from

tight-binding.

Figure 3.23: Phonon thermal conductance κph at T = 300 K calculated from tight-
binding as a function of supercell length LS corresponding to the ribbon width (a)

WA = 3 and (b) WA = 4, respectively.
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In Fig. 3.23, the phonon thermal conductance at T = 300 K for both A-SiGeNRs and
disordered A-SiGeNRs as a function of supercell length LS is investigated, where LS
is defined as the sum of the lengths of silicene and germanene stripes. Because of the
larger supercell size, here we employ the tight-binding method to calculate the thermal
conductance. It can be seen that the phonon thermal conductance decreases largely
with increasing the length of the supercell, and the decreased amplitude of κph for
both A-SiGeNRs and disordered A-SiGeNRs is close to each other. This indicates that
the larger supercell in the silicene-germanene heterostructures can effectively constrain
the phonon transport. Through checking the transmission probability, it is found that
phonons gradually shift to the low frequency region (not shown).

3.2 Optimal figure of merit of SiGe core-shell nanowires ?

3.2.1 Introduction

After the systematic studies of thermoelectric transport in the atomically thin 2D and
1D siliciene and germanene nanostructures, we put the attention here on the figure of
merit of Si and Ge naonwires (NWs). It is well known that bulk Si is a poor thermo-
electric material, while nanostructuring Si could possibly increase the figure of merit
of this material [36, 44, 86–94]. Indeed, in a semiconducting nanostructure at room
temperature, the electronic contribution to the thermal current around Fermi energy
can be nearly neglected with respect to the lattice-vibrational contribution. In this way,
confining or disrupting the lattice vibrations could lead to a reduction of the thermal
conductance without a corresponding degradation of the electronic conductance due to
the decoupling of degrees of freedom of electrons and phonons for ballistic transport. In
this respect, Si NWs have been long studied as possible thermoelectric devices.

In the attempt to quench the phonon transport and then to improve the figure of merit,
we propose the SiGe core-shell NWs and investigate how coating the Si NW with some
Ge shells can influence ZT . Indeed, the presence of Ge shell creates an interface along
the wire thus disrupting some of the vibrational modes. There is an optimal Ge shell
depth after which the presence of the interface is not beneficial any more. We also
investigate the case that the Ge NW is surrounded by Si atoms. We find that the figure
of merit is a monotonously decreasing function of the radius of the NW. To further block
the phonon transport, we consider the case in which the shell is an alloy of Si and Ge.
We show that coating with such an alloy can increase the overall figure of merit. We
find an empirical law that ZT follows by fitting the data. By changing the temperature,
we find a relation between the band gap and the optimal working temperature at which
ZT is maximized, verifying the Goldsmid-Sharp’s rule. The results we present in this
section are in good agreement with the experiment and we shall see later.

The theory we used for the calculations in this section is DFT and Landauer approach.
We first use the VASP-code to calculate the band structures of electrons for the SiGe
NW systems. Then we can extract the electronic transmission coefficient directly by
counting the number of modes. Afterwards, one can obtain the electrical conductance,
Seebeck coefficient, and electric thermal conductance easily using the theory we have
described in chapter 2 or in Refs. [50, 95, 96]. For the phonon part, we discard the

?This section is a part of the article Nano Res. 8, 2611 (2015) by K. Yang, A. Cantarero, A. Rubio,
and R. D’Agosta.
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expensive and time-consuming DFT computations. Instead we employ the empirical
Keating potential which has been shown in Sec. 3.1.5 to calculate the force constant
and then we calculate the phononic transmission function as well as the lattice thermal
conductance using the bosonic Green’s functions [80, 97–101] as we have introduced in
Sec. 2.5.

3.2.2 Details of electronic structure calculations

As to the prediction of electronic structural properties, we performed first-principle
density functional theory calculations within the local density approximation by using
the projector augmented wave potentials as implemented in VASP [73]. The exchange
correlation energy is chosen in the form of Ceperley-Alder which has been parameter-
ized by Perdew and Zunger [74, 75]. For the self-consistent potential and the total
energy calculations, the k-points of the first Brillouin-zone are sampled by a (15×1×1)
Monkhorst-Pack grids. The kinetic energy cut-off for the plane wave basis set is cho-
sen as 300 eV. We use a plane-wave representation of the wave-function which is most
efficient with periodic boundary conditions. To avoid spurious interaction between the
replica of the NW introduced by the periodic boundary conditions, we have included
a vacuum gap larger than 13 Å in our supercell. We have therefore relaxed the ionic
positions by minimising the forces and the total energy. After ionic relaxation, the force
acting on each atom is smaller than 0.02 eV/Å. We have therefore calculated the electron
energy bands, and the the structural stability of the NW is confirmed by checking the
phonon dispersions.

3.2.3 Results and discussions

3.2.3.1 Geometries of SiGe nanowires

The geometrical structure of SiGe core-shell NW within a ball-stick representation can
be seen in Fig. 3.24. Figure 3.24 (a) shows the clean Si or Ge core-shell NW, where we
have either Si in the core and Ge in the shell, or vice-versa, Ge in the core and Si in the
shell. Figure 3.24 (b) shows a NW with clean Si- or Ge-core but disordered shell where
Si and Ge atoms are randomly distributed. The yellow and green could represent the Si
or Ge atoms to build either Ge-core/Si-shell or Si-core/Ge shell NWs, respectively. The
small grey balls on the NW surface represent hydrogen atoms which are used to passivate
the unsaturated atomic-bonds. To denote the thickness of the NW, we introduce the
parameters NC (N ′C) to label the number of atomic layers in the Si-core (Ge-core) and
NS (N ′S) those in the Ge-shell (Si-shell). In the following we will adopt the notation of
indicating the core atomic component before the shell component and separating them
with a slash. Therefore a Si/Ge NW, is a nanowire with Si in the core and Ge in the
shell. Analogously, a Si/SiGe NW has a core of Si and a shell of an alloy of Si and Ge.

To calculate the electronic energy bands, we first relax the structures by using density
functional theory according to the methodology we have described above and in chapter
2 for details. The lattice constants we obtained are about 9.308 Å for Si NWs, 9.692 Å for
Ge NWs, 9.4 Å for Si/Ge NWs and 9.6 Å for Ge/Si NWs, respectively, depending slightly
on their diameters. These relaxed structural parameters are in agreement with those
presented in some previous work [102, 103]. On the other hand, the atomic distances
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Figure 3.24: (Color) Schematic illustrations of (a) clean SiGe core-shell NW (top
view) and (b) clean Si- or Ge-core but disordered SiGe-shell NW (tilted view). The
yellow and green colors could represent either Si or Ge atoms. The grey atoms are
hydrogen atoms used to saturate the dangling atomic-bonds at the surface. We have
used NC (or N ′C) and NS (or N ′S) to indicate the thickness of core and shell layers,

respectively, where for this particular case we have set NC = NS = 3.

between Si and Ge atoms depend on the NW diameter. For example, in considering clean
Si/Ge NWs, after complete ionic relaxation the average SiSi distance for the smallest
NW is equal to 2.33 Å, while the distance increases to 2.36 Å for the largest NW.
Similar differences are observed for other interatomic distances (SiGe and GeGe) and
other NWs. The diameters of the NWs we consider in the following range narrowly
between 1 and 5 nm, varying with the number of layers in the core and in the shell.

3.2.3.2 Thermoelectric coefficients of pure Si and Ge nanowires

Figure 3.25: (a) Figure of merit, (b) Seebeck coefficient, (c) electrical conductance,
and (d) total thermal conductance for pure Si NWs as a function of atomic layers NS .

We first explore the thermoelectric properties of pure Si NWs. Figure 3.25 shows the
thermoelectric coefficients as a function of atomic layers at room temperature. With
increasing atomic layers, we can see from Fig. 3.25 (a) that the figure of merit decreases
monotonously, while the Seebeck coefficient, electrical conductance and total thermal
conductance increase with NS [see Figs. 3.25 (b), (c) and (d)]. On the other hand, the
absolute value of S actually decreases. Since we consider here only electron transport, the
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Seebeck coefficient is negative according to the definition we have discussed in chapter
1. Therefore, the decreasing ZT can be attributed to the largely increased thermal
conductance outweighing the increase of the electrical conductance.

Figure 3.26: (a) Figure of merit, (b) Seebeck coefficient, (c) electrical conductance,
and (d) total thermal conductance for pure Ge NWs as a function of atomic layers N ′S .

In Fig. 3.26 we investigate the thermoelectric properties of pure Ge NWs. Different from
the Si NWs, we can see from Fig. 3.26 (a) that the figure of merit of Ge NWs increases at
the beginning and then decreases with shell layer N ′S . This behavior can be understood
from the Seebeck coefficient shown in Fig. 3.26 (b) and electrical conductance shown in
Fig. 3.26 (c). The absolute value of S increases and the electrical conductance undergoes
a sharp transition at N ′S = 3 varying from rising to ascending, although the thermal
conductance increases slightly [see Fig. 3.26 (d)]. This shell layer dependent behavior
of ZT for Ge NWs will impact the SiGe core-shell NWs as we will see in the following.

3.2.3.3 Figure of merit of clean SiGe core-shell nanowires

We explore here the thermoelectric properties of clean Si/Ge and Ge/Si NWs where
Si and Ge atoms are arranged in a quasi-crystalline structure. Our results for the
thermoelectric figure of merit ZT at room temperature are shown in Fig. 3.27. It can
be seen that the figure of merit of the Si/Ge NWs increases initially and then decreases
rapidly with the number of layers, NS of the external shell. More interestingly, for these
NWs the maximum ZT always appears at NS = 3 whatever the NC . The presence
of the interface between the core and the shell localizes some of the vibrational modes
thus reducing the total thermal conductance. On the other hand, the larger total cross
section increases the electrical conductance bringing an increase of the figure of merit.
For NS > 3, however, the increase in the thermal conductance dominates again and
the figure of merit is reduced. This behaviour is in striking contrast with that of the
figure of merit of Ge/Si NWs which decreases monotonously with increasing the number
of layers in the external shell. The largest figure of merits for Si/Ge and Ge/Si NWs
are 1.117 at NS = 3 and 1.582 at N ′S = 1, respectively. These values are much higher
than that of pure Si and Ge NWs, where, by using the same steps as described above,
we have obtained ZT = 0.76 for Si NW and ZT = 0.98 for Ge NW. With increasing
the number of atomic layers in the core, the figure of merit generally decreases. This
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is due to the large increase of the phonon thermal conductance which outweighs the
increase in the electrical conductance. Our results suggest that the best Si-based NW
for thermoelectric application has a Si core covered by a thin layer of Ge.

Figure 3.27: (Color) Thermoelectric figure of merit as a function of the number of
atomic layers in the shell, NS for (a) clean Si/Ge and N ′S for (b) clean Ge/Si NWs with

different core sizes NC and N ′C , respectively.

The thermoelectric behaviour of Si/Ge and Ge/Si NWs can be understood looking at
their electron and phonon transport properties. We report them in table 3.3 for the case
of a clean Si/Ge NW with core radius NC = 3. For the other cases we get a similar
behaviour of the transport coefficients. It can be seen from table 3.3 that the electrical
conductance G for Si/Ge NWs increases very quickly with the radius NS to reach a
maximum value for NS = 4, while the Seebeck coefficient does not show large variation
oscillating around the value of 0.21 mV/K. Looking at the thermal transport coefficients,
we can see that the phonon thermal conductance κph keeps increasing with the number
of shell layers due to the increased number of phonon modes which contribute to the
heat energy transport.

Table 3.3: Electrical and thermal transport coefficients at the chemical potential for
optimal ZT of the clean Si/Ge NWs with NC = 3 for NS between 1 and 5.

NS ZT G (10−4 S) S (mV/K) κe (nW/K) κph (nW/K)

1 0.534 0.484 -0.21 0.145 1.06
2 0.58 0.588 -0.217 0.126 1.305
3 0.613 0.789 -0.2175 0.187 1.639
4 0.51 0.857 -0.216 0.201 2.14
5 0.364 0.83 -0.209 0.179 2.807

The electrical thermal conductance κe shows a non-monotonic behaviour, but in any
case its value is about 10 times smaller than the phonon thermal conductance. It is
important to point out that κe depends strongly on the value of the chemical potential
µ. Here, we select the value that maximises the figure of merit ZT . In this system,
the Wiedemann-Franz law is clearly not fulfilled for small diameters. This law is a
phenomenological result, mostly valid for metal. The origin of this discrepancy can be
understood via the Landauer theory of transport [50, 95]. Indeed, in this theory, κe
is formed by two different contributions arising from different Lorentz integrals. For a
metal, the Seebeck coefficient is nearly negligible, so this expression simplifies, leading
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to the Wiedemann-Franz law. For a semiconductor, the Seebeck coefficient is not small
and we cannot expect a linear relation between the electrical and thermal conductances.
Here again is the competition between the rapid increase in the electrical conductance G
and the reduced growth of κph that provides an optimal diameter for the shell in terms of
the best figure of merit. By coating the NW with a thin layer of Ge, we have effectively
reduced the rate of increasing of the thermal conductance with the NW radius. In the
case of the Ge/Si NW, the electrical conductance does not show the same increasing
trend, while the thermal conductance increase quickly with the number of Si layers in
the shell, although these data are not reported here.

Our numerical calculations are in very good agreement with the experimental results,
where the measured Seebeck coefficient at room temperature is about 0.22 mV/K for
SiGe core-shell NWs [104]. Our thermal conductances are in qualitative agreement with
the experiment [105], with the limit that the diameters of the NWs are quite larger
than what we can reach with our numerical calculations, therefore making a direct
quantitative comparison appears pointless at the moment.

3.2.3.4 Shell-disordered SiGe nanowires

Experimentally, fabricating NWs is unavoidably accompanied by some impurities. In
addition, because these devices are meant for applications at finite, large temperatures
(around 500 K), we investigate the NWs with pure Si or Ge-core and disordered SiGe
shell in which Si and Ge atoms are randomly distributed. This might describe for
example the diffusion of the atoms on the most external layer of the core into the
layers of the shells, or some impurities present during the growing process. In this
investigation, we have kept a 50/50 stoichiometric ratio between the total number of
Si and Ge atoms present in the unit cell. This means that for a Si/SiGe, the shell is
more rich in germanium, to compensate for the Si atoms in the core. To be accurate, we
have performed the calculations for several different disordered geometrical structures
by randomising the positions of Si and Ge atoms in the shell structures. In any case,
a minimum of 5 different structures have been calculated. We have then considered
the average over the realisation of the random positions. We report the values of the
thermoelectric figure of merit ZT in Fig. 3.28: In the figure the vertical bar at each
point indicates the range of variation of ZT with respect to the different realisation of
the random structures.

It can be seen in Fig. 3.28 that the figure of merit for Si-core NWs increases at the
beginning with the number of shell layers, and then decreases with further increasing
NS . Moreover, similarly to what happens in the clear Si/Ge NWs, there is always a
peak of ZT around NS = 3, and this value is independent of the number of the Si-core
layers in the NWs. For Ge/SiGe NWs, ZT decreases gradually and monotonously with
increasing the number of shell layers, regardless of the number of core layers.

Our numerical calculations can give access merely to small radius NWs. With the ab-
initio techniques we are using, we are limited to a maximum system of 6 layers in the
core and 6 layers in the shell. To understand what the thermoelectric properties are at
the larger NW diameters, we have fitted the numerical data for the figure of merit. We
have chosen

ZT = ZT0 +Ae
−2
(
D−DC
W

)2

, (3.7)
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Figure 3.28: (Color) Thermoelectric figure of merit as a function of number of layers
in the shell, (a-c) NS for Si/disordered SiGe and (d-f) N ′S for Ge/disordered SiGe NWs
at different core size NC and N ′C , respectively. The vertical bars represent the range of
variation of the figure of merit we have obtained from our calculations, and the solid
lines represent the fitted curves [see Eqs. (3.7) for reference]. For each value of NS or

N ′S at least 5 different random structures have been calculated.

where ZT0, A, W andDC are then fitted against the available values of ZT . In Eq. 3.7, D
is the total diameter of the NWs, ZT0 will represent figure of merit in the limit of infinite
diameter, W is an effective diameter, DC an optimal NW diameter, and A the maximum
amplitude of the figure of merit. The fitted parameters are shown in table 3.4 for Si core
and Ge core/SiGe disordered NWs. The fit results allow the determination, for example,
of ZT0 for large diameter NWs. For Ge/SiGe disordered NWs, the parameters A, W ,
and DC are quite sensitive to the number of points calculated. For now, a microscopic
model does not exist that could justify Eq. (3.7) on a microscopic level.

Table 3.4: Fitted parameters of figure of merit ZT for both pure Si- and Ge-core with
disordered SiGe shell NWs [explicit formula is presented in the text as Eq. (3.7)].

Si/disordered SiGe ZT0 A W (nm) DC (nm)

NC = 1 0.76±0.03 0.57±0.06 0.78±0.09 1.85±0.02
NC = 2 0.79±0.03 0.25±0.05 0.43±0.09 2.46±0.06
NC = 3 0.58±0.09 0.34±0.08 1.6±0.5 2.94±0.08

Ge/disordered SiGe ZT0 A W (nm) DC (nm)

N ′C = 1 0.55±0.07 2.3±0.9 2.0±0.6 -0.4±0.5
N ′C = 2 0.47±0.03 0.5±1.4 1.5±2.0 1.2±2.8
N ′C = 3 0.498±0.004 0.4±0.2 1.2±0.4 1.7±0.5

The results we have presented address the case of having a global composition of 50%
Si and 50% Ge in the whole structure. This implies that the shell contains a larger
concentration of the species not in the shell. We have also investigated other case and
different concentrations. Our results are in general good agreement with the one we
have reported. Namely, the figure of merit is increased by the presence of a thin shell.
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Moreover, a larger increase is achieved in the case of a Si core. We have reported the
calculation for the figure of merit for an electron doped material or when the chemi-
cal potential is larger than the Fermi-energy. The figure of merit for holes, although
sometimes larger than that for electrons in small diameter NWs, decays rapidly with
increasing the diameter for both Si- and Ge-core NWs (results are not shown). We
have considered disorder at a compositional level and we did not include any surface
roughness or vacancies. These studies are left for future works.

3.2.3.5 Temperature effect on the figure of merit

So far the results we have presented were obtained at room temperature, T = 300 K. We
examine in the following the effect of temperature on the thermoelectric figure of merit
of SiGe core-shell NWs. Figures 3.29 (a) and (b) show ZT as a function of temperature
for both clean and shell-disordered SiGe NWs, respectively. It can be seen that ZT
shows a non-monotonic behaviour: There is an optimal working temperature TC for the
maximum efficiency 1. When the temperature is below TC , ZT increases almost linearly
and then it decreases when T > TC , a behaviour that has also been recently observed
in experiment [106].

We attribute this behaviour to the bipolar effect. In the formulae for the electrical con-
ductance, electronic thermal conductance and Seebeck coefficient, it enters the negative
derivative of the Fermi-function with respect to the energy f(E,µ, T ) [50, 95]. When the
temperature is lower than TC , the region of energies for which this negative derivative of
the Fermi-function is not exponentially small is far from the valence band. The effective
transport contribution to ZT comes mainly from the electron carriers in the conduction
band. With increasing the temperature, ∂f(E,µ, T )/∂E broadens gradually, and ZT
also increases. When T is larger than TC , the term ∂f(E,µ, T )/∂E extends into the
valence band. In this case, also the holes will start to contribute to the transport. Be-
cause the electrical conductance equals to the integral of the transmission probability
times −∂f(E,µ, T )/∂E and G0, where G0 = 2e2/h is the quantized value of electrical
conductance with e is the electron charge and h the Planck-constant (see Refs. [50, 95]),
G would increase further. On the other hand according to the Wiedemann-Franz law
[13] (although it is not fulfilled for NWs with small diameter), the electric thermal con-
ductance κe will also increase, and the phonon thermal conductance κph increases with
T due to the phonon modes thawing. However, the Seebeck coefficient according to the
derivation in chapter 2 is given by

S =
2e

ThG

∫ ∞
−∞

dETe(E)(E − µ)
∂f(E,µ, T )

∂E
, (3.8)

where Te(E) is the electronic transmission probability at energy E. It can be seen from
this relation that if ∂f(E,µ, T )/∂E extends for energies going into the valence band,
the value of |S| is reduced since the integrand will have different signs around µ, thus
reducing the power factor and the figure of merit. These results can be seen clearly
in Fig. 3.30. Therefore the bipolar effect leads to the overall decrease of the figure of
merit. Accordingly, the maximum ZT happens at the critical temperature TC , when the
electrons’ response to the thermal gradient is not effectively neutralised by holes yet.

1We want to stress here that TC is a working temperature. Since we are working in the linear
response regime, the temperature gradient is negligible with respect to almost any other energy scale.
In particular, the gradient is much smaller than the working temperature.
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Furthermore through comparing Figs. 3.29 (a) and (b) we find that ZT of shell disordered
SiGe core-shell NWs is much higher than that of the clean SiGe core-shell NWs. Indeed,
the disorder in the shell largely suppresses the phonon transport, which can also be seen
in Fig. 3.30.

Figure 3.29: (Color) Thermoelectric figure of merit ZT as a function of temperature.
(a) The ellipse in black and rectangle in red represent ZT of clean Si/Ge NWs with
NC = 5, NS = 3 and NC = 4, NS = 3; the hexagon in green and star in blue represent
ZT of clean Ge/Si NWs with N ′C = 5, N ′S = 3 and N ′C = 4, N ′S = 3, respectively.
(b) The hollow ellipse and rectangle represent ZT of clean Si/disordered SiGe NWs
with NC = 2, NS = 5 and NC = 1, NS = 5; the hollow hexagon and star represent
ZT of clean Ge/disordered SiGe NWs with N ′C = 2, N ′S = 5 and N ′C = 1, N ′S = 5,

respectively.

In Fig. 3.30, we plot the the electrical conductance G, Seebeck coefficient S, and thermal
conductance κe−ph. It can be seen that G at low temperatures is almost constant and
increases quickly when T > 1000 K. At the same time, the Seebeck coefficient has
a minimum at about 800 − 900 K. Indeed, for electrons, the minimum corresponds
to a maximum for S2. In the case of thermal transport, we can see that the total
thermal conductance κe−ph increases slowly at the beginning and then increases quickly
for T > 1000 K. On the other hand, the phonon thermal conductance κph increases
beginning with T , and then varies slowly approaching almost to a constant for T > 600 K
[see the inset of Fig. 3.30]. Therefore for large temperatures, the ascending behaviour
of κe−ph is dominated by the increase in the electronic thermal conductance.

In the range of temperatures we are considering here the Si/Ge and Ge/Si NWs are still
stable against melting, since it has been predicted for them a melting temperature of
about 2500 K (for Si NWs). To the best of our knowledge these results have not been
yet confirmed by experiment.

To understand which factors dictate the transition temperature TC in different systems,
in Fig. 3.31 we plot the band gap Eg as a function of kBTC , where kB is the Boltzmann-
constant. We observe that for almost all the NWs we have considered in this section,
there is a linear relation between Eg and TC . We have therefore fitted Eg against

Eg = Υ0 + ΥkBTC . (3.9)

The values of Υ0 and Υ from the fit can be found in table 3.5.
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Figure 3.30: (Color) (a) Electrical conductance G, (b) Seebeck coefficient S and (c)
total thermal conductance κe−ph as a function of temperature. The inset in (c) shows
the corresponding phonon thermal conductance κph. The curves with different symbols

share the same structures as those in Fig. 3.29

Table 3.5: Fitted parameters of linear relation between Eg and kBTC in Fig. 3.31.

Si/Ge Ge/Si Si/disordered SiGe Ge/disordered SiGe

Υ0 (eV) -0.28±0.07 -1.4±0.3 -0.39±0.04 -0.94±0.13
Υ 10.9±0.6 17.2±2.7 13.2±0.4 17.0±1.2

In Fig. 3.31 the red and black solid lines are the linearly fitted curves for Si-core/clean Ge-
shell and disordered SiGe-shell NWs, while the blue and green lines are the fitted curves
for Ge-core/clean Si-shell and disordered SiGe-shell NWs, respectively. Interestingly, we
found that the value of the slope Υ is essentially determined by the chemical element
in the core: We calculated Υ ' 11 for Si core NWs, and Υ ' 17 for Ge-core NWs,
independently of having a clean or disordered shell layer. This suggests an empirical
method to determine the optimal working temperature for these NWs. It is sufficient
to estimate or measure the electronic band gap, and then invert the linear relation in
Eq. 3.9 to obtain TC . As a rule-of-thumb, we found that kBTC ' Eg/11 for Si-core
NWs (kBTC ' Eg/17 for Ge-core NWs) gives a good estimate of the optimal working
temperature. In this way the thermoelectric enhancement due to the bipolar effect can
thus be more easily realized in narrow band gap materials since there are many more
carriers of both electrons and holes to contribute to the transport. This phenomenon
was first observed in bismuth telluride [107]. Additionally we have also found that
similar relations between the electronic band gap and the optimal working temperature
for thermoelectric energy conversion exist in other materials, like for example monolayer
molybdenum disulfide, silicene and germanene nanoribbons [96], though we didn’t show
here.
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Figure 3.31: (Color) The electronic energy gap Eg versus the critical temperature
kBTC for clean Si/Ge (rectangle) and Ge/Si NWs (star), Si/disordered SiGe (ellipse)
and Ge/disordered SiGe NWs (hexagon). The red, blue, black and green lines are the

linearly fitted curves.

3.3 Classical to quantum transition of heat transfer be-
tween silica nanoclusters ?

3.3.1 Introduction

With the recent developments of nanotechnology, electronic devices continue to scale
down in dimension and scale up in power density [108]. As a result, near-field radiation
starts to play a notable role in the thermal design at nanoscales. Recently, it has
been demonstrated both theoretically [109–114] and experimentally [115–117] that heat
transfer through near-field radiation between two parallel plates or between a sphere and
a plane can be several orders of magnitude larger than the black body limit over a limited
range of frequency. This clearly corroborates the fact that when the gap between two
objects is smaller than the characteristic photon wavelength, a different physical behavior
emerges in which near-field radiation and phonon tunnelling significantly contribute to
heat transfer [118, 119].

The first measurement of the radiative heat flux between two dielectric materials sep-
arated by a nanoscale gap distance has recently been performed by Narayanaswamy,
Shen and Chen [115, 116]. Their results led them to conclude that the proximity-force
approximation is not valid for near-field radiation heat transfer. Shortly after, Rousseau
et al. [117] also measured the heat transfer in the near-field regime. Interestingly, and in
contrast with Narayanaswamy’s conclusions, these later results confirmed the proximity
approximation. The difficulty in performing such experiments makes it probable that
heat transfer at the nanoscale will continue to be debated, as commented by Kittel [120].
Near-field radiation under the dipole or multipole approximation has been extensively
investigated on a theoretical basis. Nonetheless, mechanisms taking place for separation

?This section is a part of the article Phys. Rev. Lett. 112, 114301 (2014) by S. Xiong, K. Yang,
Y. A Kosevich, Y. Chalopin, R. D’Agosta, P. Cortona, and S. Volz.
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distances shorter than 10 nm remain unclear. This range of separation distances may
not be directly accessible by experiments due to the difficulty in fabricating well-defined
planes and spheres at those scales. At the same time, as modern nanostructures might
be smaller than 10 nm and are separated in some cases by only a few fractions of a
nanometer, this range of lengths is of great interest to those who design nanoscale de-
vices [1, 120]. From a fundamental point of view, this domain is also involving the less
understood transition from a classical charge-charge interaction, logically described as a
radiation in the near-field, to a chemical bond interaction, yielding pure heat conduction.

By means of molecular dynamics simulations, Gilberto et al. [121] found a transition
regime characterized by a thermal conductance larger than the contact thermal con-
ductance. But the largest value exceeded the upper physical limit. Using ultra-high
vacuum inelastic scanning tunnelling microscopy, a previously unknown mechanism of
thermal transport (a field-induced phonon tunnelling) has been reported by Altfeder
et al. [122]. The thermal energy transmitted through atomically narrow vacuum gap
exceeds, by ten orders of magnitude, the one of black body thermal radiation. In fact,
before these experimental findings, Kosevich [118] and Prunnila et al. [119] modelled
how acoustic phonons can directly tunnel through vacuum by introducing a coupling
mechanism, and both of them showed that phonons can travel through the vacuum gap
with unitary transmission and thus can lead to significant thermal conductance and heat
flux. Very recently, Chiloyan et al. [123] developed an atomistic framework based on
microscopic Maxwell’s equations and lattice dynamics to describe the convergence of
heat transfer and the transition from near field radiation to phonon heat conduction.
For gaps > 1 nm, they found the predicted conductance values are in good agreement
with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre
gaps or near contact, the conductance is enhanced up to four times compared with the
continuum approach due to the low-frequency acoustic phonons tunnelling through the
vacuum gap.

In this section, we estimate the heat transfer through a chain composed by identical
non-contacting silica nanoclusters by means of the phonon NEGF approach as we have
discussed in chapter 2. We show that there are two critical vacuum gaps of about 4 Å
and 3-5 times the cluster size. The first critical gap of 4 Å corresponds to a transition
between the classical and the quantum regimes with strong interaction. Above this
critical gap, i.e., 4 Å, the thermal conductance decreases first according to a d−3 power
law and then gradually changes to d−6 power law when the gap is larger than 5 times
the cluster size. These power laws can be explained by classical charge-charge and
dipole-dipole interactions, respectively. Below 4 Å, the thermal conductance shows a
much stronger dependence on the gap thickness. The first critical gap is confirmed by
ab-initio calculations showing that the electronic wave functions indeed merge when the
gap becomes shorter than 4 Å.

3.3.2 Silica nanoclusters and computational details

We consider a periodic system composed of identical silica nanoclusters. The supercell
length of the structure is denoted by d. Between two adjacent clusters there is a vacuum
gap with distance l (see Fig. 3.32). A schematic illustration can be found in Fig. 3.32.
We regard one cluster as the reference system and the clusters on its left and right sides
as reservoirs. Since we are focused on the linear response regime, the temperatures
T through the system are uniform. Then the thermal conductance for this quasi-one
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dimensional system is derived from the energy transmission coefficient Tph(ω) [50, 100,
124], i.e.,

κph(T ) =
1

2π

∫ ωmax

0
Tph(ω)

∂

∂T

(
1

e~ω/kBT − 1

)
~ωdω, (3.10)

where ω and ωmax are the phonon energy and the Debye frequency, respectively, kB
and ~ represent the Boltzmann and the reduced Planck’s constants. The transmission
coefficient Tph(ω) is obtained from the phonon Greens function approach as we have
introduced in chapter 2:

Tph(ω) = Tr
{

ΓLGr(ω)ΓR[Gr(ω)]†
}
, (3.11)

where the retarded Green function can be deduced from

Gr(ω) =
[
(ω + iζ)2 −KC − ΣL − ΣR

]−1
, (3.12)

where ζ is an infinitesimal positive value that maintains the causality of the Green’s
function, ΣL = KCLg

r
LKLC and ΣR = KCRg

r
RKRC are the self-energies of the left and

the right leads, respectively, and the line width functions in Eq. (3.11) are defined as

ΓL = i(ΣL−Σ†L) and ΓR = i(ΣR−Σ†R), grL and grR refer to the retarded Green’s functions
of the left and the right leads. KC in Eq. (3.12) is the force constant matrix of the
cluster, KCL and KCR are the coupling matrices between the clusters.

To calculate the Green’s function, first we have to know the force constant matrix K. To
do so we employ the van Beest, Kramer, and van Santen (BKS) potential [125], which
can be expressed as

Vij = qiqj/Rij +Aije
−bijRij − cij/R6

ij , (3.13)

where Vij is the interaction energy of atoms i and j, which consists of a Coulomb term
and a covalent contribution. In Eq. (3.13), qi and qj are the effective charges, Rij is the
inter-atomic distance, Aij , bij , and cij are the fitted parameters as shown in table 3.6.
The BKS potential provides the full physical picture of the long range electromagnetic
and the short range repulsive-attractive interactions.

Figure 3.32: (Color) Schematics of the silica nanoclusters considered in the Greens
function (top) and in the ab-initio (bottom) calculations. For the Greens function
calculation, we use a cubic SiO2 cluster with size N × N × N . For the ab-initio
calculation, we use two parallel silica planes separated by a gap distance l. The lattice

constant of SiO2 is 4.52 Å.

On the other hand, according to the fluctuation-dissipation theorem, the thermal con-
ductivity for the molecular dynamics simulation is calculated from the Green-Kubo
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Table 3.6: Fitted parameters of BKS potential in Eq. (3.13).

i− j Aij (eV) bij (Å−1) cij (eV Å6) qi (e)

O −O 1388.773 2.76 175.0 qO = −1.2

Si−O 18003.7572 4.87318 133.5381 qSi = 2.4

formula, which is given by [126, 127]

λph =
1

3kBV T 2

∫ ∞
0
〈J(0) · J(t)〉dt, (3.14)

with

J =
[∑

i

εivi +
1

2

∑
i,j
i 6=j

(Fij · vi)Rij

]
, (3.15)

where V represents the volume of the simulated supercell, J(0) and J(t) are the auto-
correlation functions of heat flux, and t is the time. εi in Eq. (3.15) is the energy
associated with atom i, Rij = Ri −Rj is the displacement vector, and Fij is the force
exerted on atom i by atom j. vi is the velocity vector of atom i. This formalism
has been implemented in the LAMMPS-code and in the following we will use the code
directly to calculate the thermal conductivity and accordingly the thermal conductance
by κph = Aλph/L, where A is the cross-section area and L is the length of the considered
system.

3.3.3 Thermal conductance calculations and analyses

3.3.3.1 Lattice thermal conductance

The thermal conductance κph for the quasi-one dimensional nanostructures obtained
from Eq. (3.10) is reported in Fig. 3.33. We can see that the thermal conductance
decreases very quickly with distance d in the short gap range. The power law in this
range is estimated to be about d−12 and the absolute value of the power slightly increases
with the increase of the particle diameter D. The thermal conductance per unit cross-
section indeed increases with cross-section as the number of interacting pairs per atom
increases. This latter number becomes larger at short distances and leads to a slight
growth of the absolute exchanged power. This growth should however saturate to a
maximum value as the number of interacting pairs per atom also saturates, but this
limit remains beyond the maximum size under consideration here.

In the intermediate distance range, the thermal conductance decrease with distance turns
to be smoother and follows the power law d−3, which is expected in the framework of the
non-piezoelectric interactions [118]. Silicon and oxygen atoms form a dipole as shown in
the inset of Fig. 3.33 and each particle can be regarded as one macroscopic dipole, with
bound charges of opposite sign at front and rear surfaces. When the distance between
two nanoclusters is comparable with cluster size, the force between surface charges is
proportional to A2/d

2, where A2 is the surface area of cluster 2. According to our
previous model, the transmission of acoustic phonons through a vacuum gap can be
written as

|Taph|2 =
1

1 + (ω/Ω)2
, (3.16)
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Figure 3.33: (Color) Thermal conductance κph between two neighboring nanoclusters
at T = 300 K for different cluster sizes versus the distance d indicated in Fig. 3.32. In
our calculations, the cluster is a cube N ×N ×N unit cells in volume. The diameter
D is set in such a way that the sphere volume is equivalent to that of the simulated
cube. The distance d is used as the abscissa instead of the gap distance l in order to
discriminate the curves otherwise superimposed. The molecular dynamics (MD) results
are taken from Ref. [1], where the same BKS potential parameters as those adopted in

this work were used.

where Ω represents the effective width of the acoustic phonon pass band through the
gap; Ω is proportional to the modulus of the derivative of the force per unit surface
area with respect to the gap width, and as a result, Ω ∝ A2/d

3. The total thermal
conductance is given by the integral of the transmission over all frequencies times the
surface area of cluster 1 A1, and is proportional to A1Ω and, hence is characterized by the
scaling A1A2/d

3. This means that the thermal conductance in this range of distance d is
performed mainly by acoustic phonons, which is in agreement with our results obtained
from Greens function. Interestingly, the slope transition in the log scale occurs at the
same gap distance l = 4 Å whatever the cluster diameter D.

When the gap distance increases further, i.e., the distance between two neighboring
clusters becomes much larger than the particle size, the energy transfer between two
clusters is performed by optical phonon exchange through dipole-dipole interaction [121],
following the Foerster energy transfer with a 1/d6 decay law [128]. The transition from
charge-charge to dipole-dipole interaction occurs smoothly when d is around 3 to 5 times
the cluster size. Furthermore, we also found that in charge-charge interaction region,
the thermal conductance at a given gap width l follows a D3.85 acaling law, while in the
dipole-dipole interaction range, the thermal conductance varies with diameter according
to D6.5 for a given center of mass distance d. These findings further confirmed our
proposed mechanism of surface charge-charge and volume dipole-dipole heat transfer,
since the total thermal conductance is proportional to the product of clusters surface
area A1A2, that is, to D2

1D
2
2/d

3 for surface charge-charge interaction, while the thermal
conductance is proportional to the product of clusters volume V1V2, that is, D3

1D
3
2/d

6

for volume dipole-dipole interaction.
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To validate our predictions, molecular dynamics (MD) simulation results as taken from
Ref. [1] are plotted in Fig. 3.33 for comparison. A clear agreement between MD and
Greens function predictions appears in the long distance range. But there is no inter-
mediate region in MD predictions and the thermal conductance from Greens function is
several orders of magnitude smaller than the one yielded from MD in the small gap range.
Also in contrast to MD simulations, no thermal conductance decrease is found right be-
fore the contact in our Green’s function calculations. Instead, the thermal conductance
increases continually with the gap decrease. In fact, the maximum thermal conductance
before contact predicted by MD simulations exceeds the physical upper-limit κph,max as
shown in Fig. 3.33. This limit is calculated from the maximum energy 3NkB(T1 − T2)
possibly transferred between two neighbor clusters of N atom each, set to temperature
T1 and T2. Considering the fastest transfer characterized by the highest mode frequency
ωmax, the maximum thermal conductance is obtained as κph,max = 3NkBωmax. The MD
predicted thermal conductance just before the contact is one or two orders of magnitude
larger than the maximum value while the NEGF predictions give estimations below this
limit.

3.3.3.2 Electronic density analysis

To understand the origin of the change in the dependence of the thermal conductance
to the distance d, we performed ab-initio calculations (ABINIT-code) of the electronic
densities for two silica planes schematically shown in the below panel of Fig. 3.32
and separated by vacuum gaps ranging from 0 to 6 Å. As each plane consists of a
1 × 1 × 2 supercell, the two cells’ axes are perpendicular to the interacting surfaces.
Each unit cell contains twelve atoms and the simulation box includes four cells and 48
atoms. Experimental data for the atomic positions are used and the xc interaction is
treated within the generalized gradient approximation with the Perdew-Burke-Ernzerhof
functional [129]. Fritz-Haber Institute pseudopotentials [130] are adopted for Si and O
atoms. The cut-off energy is set to 820 eV and the k-grid size to 4× 4× 1.

Figure 3.34: (Color) Ab initio computation of the electronic density ρ generated by
two parallel silica films separated by different gap widths.
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As revealed by Fig. 3.34, the electron density is non-zero in the middle of the gap,
when the gap is smaller than 4 Å but decreases rapidly as the gap widens from 0 to 4
Å. The electron density reaches zero in the middle of the gap when l increases beyond
4 Å and the zero electron density domain extends when further increasing the gap.
This indicates that the electron wave functions of both sides actually overlap in the
short gap range when l < 4 Å to form a bond. In this region, the atoms of both sides
are connected through a single electronic wave function instead of interacting through
electromagnetic forces relating two separated wave functions. Beyond 4 Å, near-field
radiative heat transfer can be described by Maxwell’s equations while the quantum
Schrödinger equation has to be considered when l < 4 Å. Since the bonds between
atoms in silica nanoclusters are covalent, we call the bond at the contact as pseudo-
covalent. With the formation of those latter bonds, the force between two neighbors
dramatically increases beyond the force produced by electromagnetic waves. As a result,
heat transfer shifts from radiative to conductive, also leading to a slope change of the
thermal conductance in the small gap range.

3.3.3.3 Phonon transmission coefficient

To check the relative contribution of acoustic and optical phonons to heat conduction,
we now turn to our previous modeling of the transmission of acoustic phonon modes
through a vacuum gap as shown in Eq. (3.16). Since Ω represents the effective width of
the acoustic phonon pass-band through the gap and it is proportional to the derivative
of the force between clusters with respect to the gap width, it decreases with the increase
of gap width. Consequently, the acoustic phonon cut-off frequency decreases when the
gap widens and the frequency range of allowed transmission converges to zero.

Figure 3.35 reports the cumulative transmission coefficient from one cluster to its neigh-
bor as a function of frequency and distance l. The cumulative transmission function
increases continuously for the smallest gap of 1 Å (black line), reflecting a continuous
dependence of the transmission to frequency. The continuous decrease of the trans-
mission as the frequency Ω reduces to zero reveals that the modes involved are indeed
acoustical ones.

When the gap width is slightly increased from 1 Å to 4 Å, the cumulative transmission
function dramatically decreases and includes both a continuum at low frequencies and
a set of jumps due to a discrete transmission at higher frequencies as highlighted by the
inset of Fig. 3.35. In qualitative agreement with the model of Eq. (3.16), widening the
gap indeed results in a decrease of the acoustic frequency pass band, which uncovers
the presence of optical contributions appearing as peaks in the transmission spectrum.
A careful analysis of our data shows that the frequency range of the acoustic phonons
continuum reduces to zero as the gap width reaches 5 times the particles size and it
accomplishes most of the heat transfer when the gap width is smaller than 3 times
the particle size. The discrete set of modes also progressively disappear when the gap
width is further increased and only the modes related to the force constants of long
range interactions remain when the gap is enlarged and those also gradually disappear
as those long range interactions vanish.

By considering the phonon-induced interactions of the gap edges, Kosevich [118] and
Prunnila and Meltaus [119] have shown independently that acoustic phonons could
transmit energy between separated bodies by tunnelling through vacuum gap, which
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Figure 3.35: (Color) Angular frequency dependent cumulative phonon transmission
coefficient Tph for different gap distance l in the cluster of diameter D=1.3 nm. Inset:

phonon transmission function versus angular frequency at low frequencies.

can lead to a significant thermal conductance enhancement and which is consistent with
our findings. Accordingly, Altfeder et al. [122] observed phonon tunnelling from a sharp
STM tip to a gold film at a vacuum gap distance of 3 Å. They have claimed that the
tunnelling effect is driven by surface electronic-acoustic-phonon interactions. This result
supports our argument stating that acoustic phonons are predominant in the phonon
tunnelling through small gaps.



Chapter 4

Theory of thermoelectric
coefficients and its application in
the Coulomb blockade regime ?

4.1 Introduction

In the previous chapter, we have utilized DFT combined with LB formalism (LB-DFT)
to calculate the thermoelectric coefficients in the Si-Ge nanomembranes and nanowires
as well as in the silica nanoclusters. LB-DFT is a method that is popularly used to
investigate the transport properties of materials in the ballistic regime [32, 95]. However,
an incautious use of LB-DFT in a confined quantum system as guide to material selection
may point in the wrong direction. In fact, LB-DFT is unable to capture the ubiquitous
CB phenomenon of quantum devices weakly coupled to leads, thereby overestimating
the conductance [131] and, as we shall see, underestimating the Seebeck coefficient. In
Refs. [131–133] it was shown that the erroneous high conductance at the particle-hole
symmetric point predicted by LB-DFT stems from neglecting xc corrections to the bias
[134–138]. According to a recently proposed DFT framework for thermal transport
(and thus for the calculation of the Seebeck coefficient) [139, 140], xc corrections to the
temperature gradient are also expected to occur.

In this chapter, we investigate the thermoelectric coefficients for quantum devices in the
CB regime. We first show the analytical properties of density, conductance and Seebeck
coefficient in the limit of coupling between the quantum dot (QD) and the lead goes
to zero for single level system. Moreover, an exact expression of Hxc potential for this
isolated single site is derived by reverse engineering procedure. We then show how to cure
the KS conductance and Seebeck coefficient. Following a recent idea on the construction
of xc corrections to the conductance [131], we propose an alternative DFT approach to
the Seebeck coefficient well suited for quantum devices in the CB regime. We find a
very simple xc correction to the LB-DFT Seebeck coefficient in terms of static DFT
quantities. To illustrate the theory we consider the single impurity Anderson model, a
paradigm for the CB effect [141, 142], and subsequently extend the analysis to multiple
level systems. The proposed equations are validated by benchmarking the results against

?This chapter is a part of the article Phys. Rev. Lett., (2016) (in review) by K. Yang, E. Perfetto,
S. Kurth, G. Stefanucci, and R. D’Agosta.
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those of the MB and the RE [39–41] calculations, demonstrating the crucial role of the
xc correction. Finally, we apply the theory to single-wall carbon nanotubes and find
good qualitative agreement with experiment.

4.2 Hamiltonian of the interacting system

Let us consider a system that includes a finite-sized QD which is coupled weakly to two
semi-infinite leads. A schematic illustration of the system can be seen in Fig. 4.1. The
two leads are metallic electrodes in which electrons are non-interacting, while for the
QD, electrons are correlated and energy levels are discrete. The Hamiltonian of the MB
interacting system is given by

Ĥ =
∑
k,α

εkαĉ
†
kαĉkα +

∑
m

(εm + vext)d̂
†
md̂m +

1

2

∑
m,n

Umnd̂
†
md̂
†
nd̂md̂n

+
∑
k,α,n,

(Γkα,nĉ
†
kαd̂n + h.c.).

(4.1)

For the KS system, the Hamiltonian is

ĤS =
∑
k,α

εkαĉ
†
kαĉkα +

∑
m

(εm + vext + vHxc)d̂
†
md̂m

+
∑
k,α,n,

(Γkα,nĉ
†
kαd̂n + h.c.),

(4.2)

where α = L,R represents the left (L) and right (R) leads, ĉ†kα and ĉkα are the creation

and annihilation operators in the leads for the state k, d̂†m and d̂m are the creation and
annihilation operators in the QD for the state m, εkα is the electronic energy dispersion
of the leads, and εm describes the discrete energy levels of the QD. Umn in Eq. (4.1)
describes the interaction strength depending on the specific quantized energy levels, and
vHxc in Eq. (4.2) represents the Hxc potential which is chosen such that the KS density
is exactly the same as the one of the MB interacting system.

In the above two equations, we have used Γkα,m to denote the coupling between the
lead α and the QD, and vext to denote the external potential which can be, for example,
the gate voltage applied on the QD. Comparing Eqs. (4.1) and (4.2) with Eq. (2.66)
in chapter 2, we find that the only difference in Eq. (4.1) is the additional external
potential vext applied on the QD, and for the KS system there is an additional term
vext + vHxc but no interaction term in the Hamiltonian. Therefore, one can derive the
electric and heat current formulas in a very similar process as we have done in chapter
2. We skip the step-by-step derivation here and instead only show the final expressions
in the following discussions.

4.3 Theory of thermoelectric coefficients for single level
system

In this section we analyse the electrical conductance G and Seebeck coefficient S for
strongly interacting electrons in the CB regime. The interacting G and S can be derived
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Figure 4.1: (Color) A schematic illustration of a finite-sized QD weakly coupled to
two metallic leads, where the band width of the two leads are assumed to be much

larger than the energy scale of the QD.

from the electric current by using the MB Hamiltonian [see Eq. (4.1)] and more infor-
mation can be found in chapter 2. For the KS conductance GS and Seebeck coefficient
SS , one can derive them based on the Hamiltonian of Eq. (4.2). For simplicity we shall
start from a single level model system, and then we extend the theory to the multiple
level systems.

4.3.1 Analytical properties for quantum dot weakly coupled to leads

Before we discuss the numerical results, let us first focus on the analytical properties
of density, electrical conductance, and Seebeck coefficient in the limit γ → 0, where γ
describes the coupling between the dot and the lead. We have approximated Γ(ε) = γ
by taking into account the metallic electrodes in which the band-width of the lead is
much larger than the energy scale of the QD, where γ is an energy independent constant
and owns a real value. This approximation is called the wide-band limit approximation
(WBLA) [30]. In this approximation we can express the line width functions of the leads
as

ΓL = ΓR =
γ

2
, (4.3)

accordingly the retarded self energies, based on the definition of chapter 2, are

Σr
L = Σr

R = − i
4
γ, (4.4)

where we assumed the QD is coupled equally to the left and right leads. The real part
of Σr goes to zero within the WBLA and for the detailed explanation one can find in
Ref. [30]. Using the above Hamiltonian of Eq. (4.1) and following the derivation we
have shown in chapter 2, the electric current within the WBLA can be written as

J =
iγ

2

∫ ∞
−∞

dε

2π
[fL(ε)− fR(ε)] [Gr(ε)− Ga(ε)] , (4.5)
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where fL(ε) and fR(ε) are the Fermi-Dirac distribution functions of the left and the
right reservoirs, respectively. Gr(ε) and Ga(ε) are the retarded and the advanced Green’s
functions, respectively. For simplicity we have set e = ~ = 1. For the KS system, one
can simply replace the MB Green’s functions with the KS Green’s functions GrS and GaS
to get the the current JS , i.e.,

JS =
iγ

2

∫ ∞
−∞

dε

2π
[fL(ε)− fR(ε)] [GrS(ε)− GaS(ε)] . (4.6)

The retarded Green’s function in Eq. (4.5) for the interacting system is

Gr(ε) =
1− ρ/2

ε− v − Σr
L − Σr

R

+
ρ/2

ε− v − U − Σr
L − Σr

R

=
1− ρ/2

ε− v + iγ/2
+

ρ/2

ε− v − U + iγ/2
,

(4.7)

and for the KS system it is

GrS(ε) =
1

ε− v − vHxc − Σr
L − Σr

R

=
1

ε− v − vHxc + iγ/2
, (4.8)

where v and U are the external potential and charge energy, respectively. For the sake
of clarity, we have omitted the subscripts [see Eqs. (4.1) and (4.2)]. The detailed
derivation of the MB Green’s function Gr can be found in appendix B. Using these
Green’s functions, we define two spectral functions for the MB and KS systems:

A(ε) = i[Gr(ε)− Ga(ε)] =
ργ/2

(ε− v − U)2 + γ2/4
+

(1− ρ/2)γ

(ε− v)2 + γ2/4

=
ρ

2
Lr(ε− v − U) +

(
1− ρ

2

)
Lr(ε− v),

(4.9)

and

AS(ε) = i[GrS(ε)− GaS(ε)] =
γ

[ε− v − vHxc(ρ)]2 + γ2/4

= Lr[ε− v − vHxc(ρ)],
(4.10)

where the Lorentzian function is defined as

Lr(ε) =
γ

ε2 + γ2/4
. (4.11)

Moreover, Lr(ε) = 2πδ(ε) when γ → 0.

Therefore, the densities of the MB and KS systems are

ρ = 2

∫ ∞
−∞

f(ε)A(ε)
dε

2π
, (4.12)

ρs = 2

∫ ∞
−∞

f(ε)AS(ε)
dε

2π
, (4.13)
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where the pre-factor 2 is due to spin. Substituting Eq. (4.9) into Eq. (4.12), we have
the MB density:

ρ = 2

∫ ∞
−∞

f(ε)

[
ργ/2

(ε− v − U)2 + γ2/4
+

(1− ρ/2)γ

(ε− v)2 + γ2/4

]
dε

2π

= ρf(ε)|ε=v+U + (2− ρ)f(ε)|ε=v.
(4.14)

Therefore, if γ → 0,

ρ =
2f(v)

1 + f(v)− f(v + U)
. (4.15)

With the same manipulation, inserting Eq. (4.10) into Eq. (4.13), we have the KS
density:

ρs = 2

∫ ∞
−∞

dε

2π
f(ε)

γ

[ε− v − vHxc(ρ)]2 + γ2/4

= 2f(v + vHxc).

(4.16)

Usually vHxc is a functional of the density, so Eq. (4.16) has to be solved self-consistently.
In the next section we will derive the explicit formula of the Hxc potential. Combined
Eqs. (4.5), (4.6), (4.9), and (4.10), the electrical conductance for the MB and KS systems
can be respectively expressed as

G = −γ
2

∫ ∞
−∞

dε

2π

∂f(ε)

∂ε
A(ε), (4.17)

GS = −γ
2

∫ ∞
−∞

dε

2π

∂f(ε)

∂ε
AS(ε). (4.18)

Substituting Eq. (4.9) into Eq. (4.17), we have

G = −γ
2

[
ρ

2

∂f(ε)

∂ε

∣∣∣∣
ε=v+U

+
(

1− ρ

2

) ∂f(ε)

∂ε

∣∣∣∣
ε=v

]
, (4.19)

while substituting Eq. (4.10) into Eq. (4.18), we arrive at

GS = −γ
2

∂f(ε)

∂ε

∣∣∣∣
ε=v+vHxc

. (4.20)

We notice from Eqs. (4.19) and (4.20) that the MB and KS conductances are propor-
tional to the coupling γ. For the Seebeck coefficient,

S = − 1

T

∫∞
−∞ εdε

∂f(ε)
∂ε A(ε)∫∞

−∞ dε
∂f(ε)
∂ε A(ε)

, (4.21)

SS = − 1

T

∫∞
−∞ εdε

∂f(ε)
∂ε AS(ε)∫∞

−∞ dε
∂f(ε)
∂ε AS(ε)

, (4.22)
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where S and SS are the MB and KS Seebeck coefficients, respectively. Substituting Eq.
(4.9) into Eq. (4.21), we obtain

S = − 1

T

[
ρ
2ε

∂f(ε)
∂ε

∣∣∣
ε=v+U

+
(
1− ρ

2

)
ε∂f(ε)

∂ε

∣∣∣
ε=v

]
[
ρ
2
∂f(ε)
∂ε

∣∣∣
ε=v+U

+
(
1− ρ

2

) ∂f(ε)
∂ε

∣∣∣
ε=v

] . (4.23)

Substituting Eq. (4.10) into Eq. (4.22), we obtain

SS = − 1

T

ε∂f(ε)
∂ε

∂f(ε)
∂ε

∣∣∣∣∣
ε=v+vHxc

= −v + vHxc

T
. (4.24)

For the single level system within the WBLA, we can see that, distinct from the conduc-
tance, the MB and KS Seebeck coefficients are independent on the coupling γ, and SS
shows a linear dependence on gate v with a slope of 1/T . We would point out that the
KS conductance GS and Seebeck coefficient SS are exactly the coefficients predicted the
LB-DFT approach as we have mentioned in the introduction. In the following we will
see that the KS calculations miss the dynamical xc-correction which plays a significant
role in the CB regime.

4.3.2 Hxc-potential of a single-site model

In this section we derive the Hxc potential for an isolated QD. The Hamiltonian for a
single-site model in the presence of an on-site interaction is given by [143, 144]

Ĥ = v(n̂↑ + n̂↓) + Un̂↑n̂↓, (4.25)

where n̂↑ and n̂↓ are the occupation number operators with spin up and down, respec-
tively. For the non-interacting case, the single site Hamiltonian is

ĤS = vs(n̂↑ + n̂↓), (4.26)

where vs is the on-site energy. The complete Fock space of both Hamiltonians is spanned
by the states |0〉, | ↑〉, | ↓〉, and | ↑↓〉 with a particle occupation of zero, one, and two.
These states are eigenstates of Ĥ with eigenvalues 0, v, v, and 2v + U , as well as the
eigenstates of ĤS with eigenvalues 0, vs, vs, and 2vs, respectively. For the single site
model, the density for the MB interacting case reads

ρ = Tr[D̂n̂] =
Tr{exp[−β(Ĥ − µ(n̂↑ + n̂↓))](n̂↑ + n̂↓)}

Z

=
2exp[−β(v − µ)] + 2exp{−β[2(v − µ)] + U}

Z
,

(4.27)

where D̂ is the density matrix operator, β is the inverse temperature, i.e., β = 1/kBT ,
µ is the chemical potential, and

Z = 1 + 2exp[−β(v − µ)] + 2exp{−β[2(v − µ)] + U} (4.28)
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is the grand-canonical partition function. By inverting Eq. (4.27) we obtain

v = µ− U − 1

β
ln

[
δρ+

√
δρ2 + e−βU (1− δρ2)

1− δρ

]
. (4.29)

where δρ = ρ − 1. Following the same lines for the non-interacting case, the density
reads

ρs = Tr[D̂Sn̂] =
Tr{exp[−β(ĤS − µ(n̂↑ + n̂↓))](n̂↑ + n̂↓)}

ZS

=
2exp[−β(vs − µ)] + 2exp{−β[2(vs − µ)]}

ZS
,

(4.30)

where D̂S is the non-interacting density matrix operator and the non-interacting parti-
tion function is

ZS = 1 + 2exp[−β(vs − µ)] + 2exp{−β[2(vs − µ)]}. (4.31)

Again inverting Eq. (4.30), we obtain

vs = µ− 1

β
ln

(
1 + δρs
1− δρs

)
, (4.32)

where δρs = ρs−1. Therefore, the exact Hxc potential for the single site model can now
be easily obtained by taking the difference of the two expressions of Eq. (4.29) and Eq.
(4.32):

vimp
Hxc = vs − v = U +

1

β
ln

[
δρ+

√
δρ2 + e−βU (1− δρ2)

1 + δρ

]
, (4.33)

where we have requested that the interacting density equals the non-interacting one, i.e.,
ρ = ρs, and we find that vimp

Hxc is an explicit function of the density and the temperature.
Eq. (4.33) is an exact result for the isolated single site QD.

Figure 4.2: (Color) Hxc potential of single site impurity model for different temper-
atures as a function of density, where energies are give in units of U .

In Fig. 4.2 we plot the Hxc potential vimp
Hxc as a function of density ρ for different

temperatures, where all the energies are given in units of U . At very low temperatures,
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it can be seen that vimp
Hxc becomes an extremely rapidly varying function of ρ in the vicinity

of ρ = 1, approaching a step function with height U . With increasing the temperature,
the curves become more and more smooth due to the thermal broadening. We will see
in the following that the step feature of vimp

Hxc plays a dominant role in evaluating the
conductance and Seebeck coefficient in the CB regime.

4.3.3 Dynamical xc-correction to the Kohn-Sham conductance

In the above discussions, we have shown how to calculate the conductance and Seebeck
coefficient for the MB and KS systems. However, the KS calculation does not take into
account the dynamical xc correction. We shall see in the following that at very high
temperatures, the KS calculation has no problem since the xc-correction is negligible,
but at low temperatures, in particular for T � U , the dynamical xc-correction becomes
notable. Since the density of the KS system equals the density of the interacting system,
we have

∂ρs
∂µ

=
∂ρ

∂µ
, (4.34)

where

χs =
∂ρs
∂µ

= 2

∫ ∞
−∞

∂f(ε)

∂µ
AS(ε)

dε

2π
+ 2

∫ ∞
−∞

f(ε)
∂AS(ε)

∂µ

dε

2π

=
4

γ
GS − χs

∂vHxc

∂ρs

4

γ
GS ,

(4.35)

where we have used the relation: ∂AS(ε)
∂µ = ∂AS(ε)

∂vHxc

∂vHxc
∂ρs

∂ρs
∂µ = −∂AS(ε)

∂ε
∂vHxc
∂ρs

∂ρs
∂µ by con-

sidering AS as an explicit function of (ε− v − vHxc). After some algebra, we get

χs =
4

γ
GS

1

1 + ∂vHxc
∂ρs

4
γGS

. (4.36)

On the other hand for the interacting system, we have

χ =
∂ρ

∂µ
= 2

∫ ∞
−∞

∂f(ε)

∂µ
A(ε)

dε

2π
+ 2

∫ ∞
−∞

f(ε)
∂A(ε)

∂µ

dε

2π

=
4

γ
G− χR,

(4.37)

where we defined R = −2
∫∞
−∞ f(ε)∂A(ε)

∂ρ
dε
2π . Therefore,

χ =
4

γ
G

1

1 +R
. (4.38)

Combining Eqs. (4.36) and (4.38), we obtain

G

GS
=

1 +R
1 + ∂vHxc

∂ρ
4
γGS

. (4.39)

Eq. (4.39) is an exact result for single level system and its r.h.s. is the dynamical correc-
tion term, although the quantity R remains unknown. In the following we approximate
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R as a function of density:

R = −2

∫ ∞
−∞

f(ε)
∂A(ε)

∂ρ

dε

2π

= −2

∫ ∞
−∞

f(ε)

[
γ/2

(ε− v − U)2 + γ2/4
− γ/2

(ε− v)2 + γ2/4

]
dε

2π

= I(v)− I(v + U),

(4.40)

where we have defined

I(x) =

∫ ∞
−∞

f(ε)
γ

(ε− x)2 + γ2/4

dε

2π
=

∫ ∞
−∞

f(ε)Lr(ε− x)
dε

2π
. (4.41)

For the density, we have

ρ = 2

∫ ∞
−∞

f(ε)A(ε)
dε

2π
= ρI(v + U)− ρI(v) + 2I(v). (4.42)

Accordingly,

ρ =
2I(v)

1 + I(v)− I(v + U)
. (4.43)

The combination of Eqs. (4.40) and (4.43) yields

1 +R =
2I(v)

ρ
. (4.44)

In the case of ρ < 1 and v + U > 0, we have I(v)� I(v + U) and then

ρ ≈ 2I(v)

1 + I(v)
, (4.45)

namely,

I(v) ≈ ρ

2− ρ
, (4.46)

thus,

1 +R ≈ 2

2− ρ
. (4.47)

Taking into account the particle-hole symmetric property, we approximate

1 +R =


1

1−
∣∣ ρ

2
−Int( ρ2 )

∣∣ if
∣∣ρ

2 − Int
(ρ

2

)∣∣ < 1
2

1∣∣ ρ
2
−Int( ρ2 )

∣∣ if
∣∣ρ

2 − Int
(ρ

2

)∣∣ ≥ 1
2 ,

(4.48)

where the function Int(x) is defined as the integer value of x and one should abandon
all the fractional parts. Substituting Eq. (4.48) into Eq. (4.39), we obtain

G =


1

1−
∣∣ ρ

2
−Int( ρ2 )

∣∣ GS

1+
∂vHxc
∂ρ

4
γ
GS

if
∣∣ρ

2 − Int
(ρ

2

)∣∣ < 1
2

1∣∣ ρ
2
−Int( ρ2 )

∣∣ GS

1+
∂vHxc
∂ρ

4
γ
GS

if
∣∣ρ

2 − Int
(ρ

2

)∣∣ ≥ 1
2 ,

(4.49)

In the following we will use this expression to calculate the electrical conductance and
show how significant the dynamical xc-correction is.
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4.3.4 Dynamical xc-correction to the Kohn-Sham Seebeck coefficient

We now derive the xc-correction for the KS Seebeck coefficient. Let me first define

∂J

∂T
=
γ

2

∫ ∞
−∞

∂f(ε)

∂T
A(ε)

dε

2π
, (4.50)

∂JS
∂T

=
γ

2

∫ ∞
−∞

∂f(ε)

∂T
AS(ε)

dε

2π
. (4.51)

In this case the Seebeck coefficient for the interacting and KS systems can be respectively
expressed as

S = −
(
∂J

∂T

)/
G, (4.52)

SS = −
(
∂JS
∂T

)/
GS , (4.53)

because ∂f(ε)
∂T = − ε

T
∂f(ε)
∂ε and we have set the chemical potential as zero. To find out

the connection between S and SS , we have to know the relation between ∂J/∂T and
∂JS/∂T . In the derivation of the conductance, we obtain the relation between G and
GS by taking a derivative of the density with respect to chemical potential. Here, we
take a derivative of the density with respect to temperature. For the KS system,

ϕs =
∂ρs
∂T

= 2

∫ ∞
−∞

∂f(ε)

∂T
AS(ε)

dε

2π
+ 2

∫ ∞
−∞

f(ε)
∂AS(ε)

∂T

dε

2π

=
4

γ

∂JS
∂T
−

(
ϕs
∂vHxc

∂ρs
+
∂vHxc

∂T

∣∣∣∣
ρs

)
4

γ
GS ,

(4.54)

where we have used the relation ∂AS(ε)
∂T = ∂AS(ε)

∂vHxc

[
∂vHxc
∂ρs

∂ρs
∂T + ∂vHxc

∂T

∣∣∣
ρs

]
by taking into

account that vHxc is an explicit function of ρs and T and ρs also is a function of T , i.e.,
vHxc[ρs(T ), T ]. Therefore we obtain

ϕs =
4

γ

(
∂JS
∂T
−GS

∂vHxc

∂T

∣∣∣∣
ρs

)
1

1 + ∂vHxc
∂ρ

4
γGS

. (4.55)

For the interacting system,

ϕ =
∂ρ

∂T
= 2

∫ ∞
−∞

∂f(ε)

∂T
A(ε)dε+ 2

∫ ∞
−∞

f(ε)
∂A(ε)

∂T

dε

2π

=
4

γ

∂J

∂T
−Rϕ.

(4.56)

Therefore we have

ϕ =
4

γ

∂J

∂T

1

1 +R
. (4.57)

Since, by hypothesis,
ϕ = ϕs, (4.58)
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we obtain by combining Eqs. (4.55) and (4.57)

∂J

∂T
=

(
∂JS
∂T
−GS

∂vHxc

∂T

∣∣∣∣
ρs

)
1 +R

1 + ∂vHxc
∂ρ

4
γGS

. (4.59)

Using Eq. (4.49), finally we can get

S = −∂J/∂T
G

= −∂JS/∂T
GS

+
∂vHxc

∂T

∣∣∣∣
ρ

= SS +
∂vHxc

∂T

∣∣∣∣
ρ

, (4.60)

where the first term is the KS Seebeck coefficient and the second term shows the dy-
namical xc-correction to the SS . In the following, we will evaluate both terms on the
r.h.s. of Eq. (4.60), i.e., SS and ∂vHxc

∂T .

Our theory, i.e., Eqs. (4.49) and (4.60), provides a rigorous route to cure the LB-DFT
calculations while still remaining in a pure DFT framework.

4.4 Numerical calculations of thermoelectric coefficients
for single impurity Anderson model

At temperatures T � γ, but still T � U where U is the on-site repulsion energy, the
CB phenomenon leaves clear fingerprints on the conductance and Seebeck coefficient.
Nevertheless, these are only partially captured by GS and SS , even when the exact vHxc

is used. We will see the difference between G and GS as well as the difference between
S and SS clearly in the following calculations.

We start from the single impurity Anderson model since this model is particularly in-
structive allowing us to disentangle the coordinated actions of the CB effect on GS and
SS and of the xc correction in reproducing the interacting G and S. In the calculations
we assume that γ is the smallest energy scale and we approximate vHxc by the exact Hxc
potential of the isolated (γ = 0) QD [143, 145] as we have derived in Sec. 4.3.2. The
Eq. (4.33) can be reformulated as

vHxc[ρ] ≈ vimp
Hxc[ρ] =

U

2
+ gU (ρ− 1), (4.61)

where gU (x) = U
2 + 1

β ln

(
x+
√
x2+exp(−βU)(1−x2)

1+x

)
. At very low temperatures (T > 0),

the Hxc potential exhibits a sharp (but continuous) step of size U at occupation ρ = 1
[143, 146, 147] (see Fig. 4.2).

With an analytic expression for vHxc, we can evaluate G and GS in Eq. (4.49) and both
terms on the r.h.s. of Eq. (4.60) for the Seebeck coefficient. Before doing so, let us first
look at the density. It can be found from Fig. 4.3 that the density obtained from our
DFT approach is exactly the same as the one calculated from MB and RE [40]. The RE
is exact in the limit of γ → 0 and its detailed formalism has been introduced in chapter
2. The MB result is calculated by using the Eq. (4.15) [31].

In Fig. 4.4 (a) we plotted the electrical conductance as a function of gate v. We can see
that the conductances calculated from DFT, MB and RE are the same, while the KS
conductance is very different in contrast to the other three curves. The GS completely
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Figure 4.3: (Color) Density ρ versus gate v for our xc corrected DFT (black), MB
(blue), and RE (red). The parameters are T = 0.1 and γ = 0.01, where energies are

given in units of U .

fails to capture the CB peaks and instead shows a plateau in the gate range (−U, 0).
The behavior of the conductance can be easily understood. The first electron comes the
quantum dot at v ' 0, and then the second electron can enter into the quantum dot only
when the charging energy U is paid effectively by an external potential. So we observe
a peak of G at v ' −U . The broadening of the peaks in Fig. 4.4 (a) is due to the
finite temperature. As to the Seebeck coefficient, in Fig. 4.4 (b) we show S calculated
from our DFT equation (black) versus the gate v. To demonstrate the accuracy of the
result we also show the Seebeck coefficient calculated from MB (blue) as well as the one
calculated using the RE approach (red). We find all three approaches give the same
Seebeck coefficient.

Figure 4.4: (Color) (a) Conductance G and (b) Seebeck coefficient S versus gate v for
our xc corrected DFT (black), MB (blue) and RE (red). The GS , SS (KS, green) and
the xc correction ∂vHxc/∂T (cyan) of the Seebeck coefficient are also displayed. The

parameters are T = 0.1 and γ = 0.01, where energies are given in units of U .

Let us now discuss how the two terms in Eq. (4.60) contribute. The KS Seebeck
coefficient SS (green) accounts for the correct linear behavior (with slope proportional
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to T−1) at large values of |v|. In fact, for γ → 0 the KS spectral function becomes
AS(ε) = 2πδ(ε − v − vHxc) and consequently SS = −(v + vHxc)/T as we have seen in
Eq. (4.24). The linear behavior at large |v| is not surprising since the non-interacting
Seebeck coefficient behaves in the same way. Noteworthy is instead the plateau of SS for
v ∈ (−U, 0). This is a direct consequence of the step in vHxc which pins the KS level to
the chemical potential thereby blocking electrons with energy below v+U from entering
the impurity site. The CB-induced plateau in SS opens a gap in the non-interacting
straight line −v/T , shifting it leftward by U for v < −U and generating the correct
behavior at large negative values of v. However, SS misses entirely the oscillation of
S for ρ ≈ 1, thus severely underestimating the true Seebeck coefficient. Remarkably,
this deficiency is exactly cured by the xc correction ∂vHxc/∂T [see the cyan line of Fig.
4.4 (b)]. The temperature variation of vHxc is the key ingredient for the nonvanishing
Seebeck coefficient in the CB regime [40, 148–150].

4.5 Generalization to multiple levels

We now extend the DFT approach to junctions with more than one level. For T � γ
the Seebeck coefficient exhibits a sawtooth behavior as a function of v, with ”jumps”
occurring when the number of electrons crosses an integer. Furthermore, if the level
spacing ∆ε0 is much larger than T , a superimposed fine structure of wiggles spaced
by ∆ε0 emerges (see Ref. [40]). The wiggles originate from excitations that bring the
system in ground state to an excited state according to the discussions by Beenakker in
Ref. [40].

The physics of the Seebeck coefficient in a multiple level junction is well captured by
the constant interaction model (CIM). The CIM Hamiltonian reads Ĥ =

∑
iσ εin̂iσ +

1
2

∑
iσ 6=jσ′ Uijn̂iσn̂jσ′ , where n̂iσ is the occupation operator of the i-th level with spin σ.

The indices i, j run over M levels and for M = 1 we are back to the impurity Anderson
model. For simplicity we assume that each level is equally coupled to the left and right
leads with tunnelling rate γ/2. In this case the derivation of Eq. (4.21) can be repeated
step by step by replacing the spectral function A with its trace Tr[A]. Consequently,
we can again express S in a pure DFT framework by calculating the derivatives of the
total number of electrons from the KS expression ρs = 2

∫∞
−∞

dε
2πf(ε)Tr[AS(ε)]. The KS

spectral function [AS ]ij = δijAS,i is diagonal in the level basis and reads AS,i(ε) = Lr(ε−
εi − vHxc,i), where the Hxc potential of level i depends on the occupations {ρ1, ρ2, · · · }
of all the levels. It is straightforward to show that

S = SS +
∑
j

∫∞
−∞ dεf

′(ε)AS,j(ε)∫∞
−∞ dεf

′(ε)Tr[AS(ε)]

(
∂vHxc,j

∂T

∣∣∣∣
ρ

)
. (4.62)

As to the conductance for multiple level system, one only needs to replace the spectral
functions in Eqs. (4.17) and (4.18) by their traces Tr[A] and Tr[AS ], respectively, and
one can still get Eq. (4.49) but using the multiple level Hxc potential.

In Ref. [151] it was proved that at zero temperature the Hxc potential of the isolated (γ =
0) CIM Hamiltonian is uniform and depends only on ρ, i.e., vHxc,i[{ρ1, ρ2, · · · }] = vHxc[ρ],
where ρ =

∑
i ρi. The zero-th order approximation at finite temperatures and weak

coupling to the leads therefore consists in neglecting the nonuniformity and the local
dependence on the {ρ1, ρ2, · · · }. In this approximation Eq. (4.62) reduces to Eq. (4.60).
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The interacting Seebeck coefficient then follows once we specify the functional form
of vHxc. Following Ref. [131] we construct vHxc[ρ] as the sum of single-impurity Hxc
potentials according to

vHxc[ρ] =

2M−1∑
K=1

[
UK
2

+ gext
UK

(ρ−K)

]
, (4.63)

where M is the number of the spin-degenerated levels of the QD, UK is the charging
energy needed for adding one electron to the system with K electrons, and the extended
gext
U function is defined according to

gext
U (ρ− 1) =


−U/2 ρ < 0

gU (ρ− 1) 0 ≤ ρ ≤ 2 ,
U/2 ρ > 2

(4.64)

with gU given below Eq. (4.61). The Hxc potential in Eq. (4.63) has a staircase behavior
with steps of width UK between two consecutive integers.

Figure 4.5: (Color) (a) Conductance, (b) Seebeck coefficient and (c) density of CIM
with two spin-degenerate levels computed from RE and DFT using the approximate
functional of Eq. (4.63). The KS conductance and Seebeck coefficient are also shown.

To assess the quality of our approximate Hxc potential we first consider a two-level CIM
with Uij = U . In Fig. 4.5 we display the results at temperature T = 0.03, coupling
γ = 0.001 and εi = ε0

i + v where ε0
1 = 0 and ε0

2 = 0.3 (energies in units of U). The
right panel (c) shows the total occupation ρ as well as the occupation ρ2 =

∑
σ ρ2σ

of the highest level calculated using both DFT and RE. Although a perfect agreement
is found for ρ, exponentially small discrepancies are seen for the local occupation. In
fact, the uniformity (i.e., level independence) of our zero-th order approximation vHxc of
Eq. (4.63) neglects thermal excitations, which correspond to mixing only ground states
of different ρ. These thermal excitations could induce additional wiggles in the Seebeck
coefficient as we have mentioned previously, and the number of the wiggles depends
on the level spacing and thermal energy. Accordingly, the DFT Seebeck coefficient is
expected to exhibit only those wiggles associated with the addition of one electron in
the lowest available level. This is confirmed by the middle panel of Fig. 4.5 (b) where
the wiggles associated to the addition energies of excited states are captured by the RE
(red) but missed by DFT (black). As well the DFT conductance shows small difference
compared with the RE results [see Fig. 4.5 (a)]. For improving the agreement between
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DFT and RE one should abandon the zero-th order uniform approximation and consider
a level-dependent Hxc potential which correctly reproduces the level occupations.

To further support this analysis on the relation between the nonuniformity of vHxc

and physical excitations we show in Fig. 4.6 the Seebeck coefficient for the Anderson
model with broken spin degeneracy (a) and for a three-level CIM (b). In the first case
DFT agrees with RE since there exists only one addition energy, whereas in the second
case DFT misses the wiggles of excited-state addition energies. We emphasize that the
wiggles stem from SS (green line), and are not due to the xc correction. The latter is
responsible for the large sawtooth oscillations and, as Figs. 4.5 and 4.6 clearly show, it
is the dominant contribution to S.

Figure 4.6: (Color) Seeebeck coefficient for the Anderson model with non-degenerate
single-particle levels (left) and for three spin-degenerate levels (right). The parameters
are ε0↑ = 0, ε0↓ = 0.3 (left panel) and ε01 = 0, ε02 = 0.3, ε03 = 0.6 (right panel). In both

panels T = 0.03 and γ = 0.001 (all energies in units of U).

4.6 Application to carbon nanotubes

Recently experimental measurements of the Seebeck coefficient and the electrical con-
ductance in the CB regime have been reported for an individual single-wall carbon
nanotube [2] as well as for QDs [149, 150]. For the transport properties of nanotubes,
we can extract from the experimental results both single-particle energies and charging
energies which are then used to calculate both G and S with our DFT scheme. Based
on the CIM Hamiltonian for multiple level system, it is straightforward to have

ε0
1 = E1, U1 = dE12, (4.65)

ε0
2 − ε0

1 + U2 = dE23, ε0
2 − ε0

1 = δE12, (4.66)

ε0
3 − ε0

2 + U3 = dE34, ε0
3 − ε0

2 = δE23, (4.67)

ε0
4 − ε0

3 + U4 = dE45, ε0
4 − ε0

3 = δE34, (4.68)

· · · , · · · , (4.69)
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where E1 is the first peak position of the conductance versus gate for the 1-st electron
entering into the QD, dEK(K+1) is the energy distance between the K-th and the (K+1)-
th conductance peak coordinates, δEK(K+1) is the distance between two wiggles which
could show in the Seebeck coefficient, and UK is the changing energy. Comparing with
the model calculations described previously, here the charging energies UK depend on the
charging state K. In the above expressions, dEK(K+1) and δEK(K+1) can be measured
directly from the experimental results. Then the single particle energies ε0

K and charging
energies UK can be calculated by solving the serial Eqs. (4.65-4.69) systematically, and
the results are shown in table 4.1. We will still use Eq. (4.63) to construct the Hxc
potential, and the coupling for each level to the leads is assumed to be the same.

Figure 4.7: (Color) Conductance (a) and Seebeck coefficient (b) of a single-wall carbon
nanotube from our DFT (black) and experiment (red, data from Ref. [2]). Also shown
is the KS Seebeck coefficient (dashed green). The single particle and charging energies

are given in table 4.1. The other parameters are T = 4.5 K and γ = 0.02 meV.

Table 4.1: Single-particle energies ε0K and charging energies UK (in meV), for mod-
elling the calculation of Fig. 4.7.

ε0
K -6.0 -3.75 -3.75 -3.75 -1.5 0.75

K, UK 1, 3.75 2, 5.0 4, 2.25 6, 4.5 8, 4.5 10, 5.25
3, 6.25 5, 5.75 7, 2.0 9, 6.5 11, 6.75

In Fig. 4.7 we present both the electrical conductance G (upper panel), and the Seebeck
coefficient (lower panel) S as a function of gate voltage v calculated with the parameters
listed in table 4.1 and for temperature T = 4.5 K and γ = 0.02 meV. For comparison we
also report the Seebeck coefficient as calculated from the LB-DFT formalism (dashed
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green line) with the same parameters. LB-DFT fails in reproducing the characteristic
sawtooth behaviour of the experimental results. Instead, the Seebeck coefficient calcu-
lated with our DFT scheme clearly shows the peak and valley structures observed in
experiment, confirming again the crucial role of the xc correction. Also, all the fine
structure wiggles (kinks in some cases) are correctly captured.





Chapter 5

Conclusions

In this thesis, we used DFT calculations combined with LB formalism to investigate
the transport properties of nanostructured materials and in particular the efficiency of
thermoelectric energy conversion in the silicene and germanene nanomembranes, the Si
and Ge nanowires, and the silica nanoclusters. We calculated the figure of merit of these
systems and found ZT can be remarkably enhanced in contrast to their counterparts
of bulk crystals. We also calculated the thermoelectric coefficients for quantum devices
in the CB regime and found the dynamical xc-correction plays a key role in evaluating
the conductance and Seebeck coefficient. We expect our results are useful for designing
future nanodevices and we summarize as follows.

(1) We first performed first-principle calculations of the thermoelectric coefficients for
both two-dimensional silicene and germanene nanosheets as well as for one-dimensional
silicene and germanene nanoribbons [96]. We also considered the heterostructures of
Si and Ge stripes to form a nanoribbon in the attempt to quench phonon dynamics
and thus increasing the figure of merit. We found the figure of merit ZT for Si and
Ge low dimensional systems is quite high, in the range 1 to 3 at room temperature.
These systems can be good thermoelectric materials if they can be reliably produced.
We expect these devices based on Si and Ge to be easily interfaced with the modern
electronic systems, a distinct advantage with respect to other materials which have
shown poor integrability with the current technology.

(2) We then investigated the thermoelectric efficiency of SiGe core-shell NWs along (111)
direction [152]. We found that coating a Si core NW with a thin atomic layer of Ge or
an alloy of Si and Ge provides the highest figure of merit. This result is stable over the
range of core diameters we have been able to investigate with the ab-initio technique
and it should be possible for an experimental group to test this prediction. We do not
expect this enhancement of the figure of merit due to the coating to depend strongly on
the growing direction of the NW. Moreover, we provided a simple rule-of-thumb for the
NWs we considered here to determine the optimal working temperature at which ZT
is maximized, verifying the Goldsmid-Sharps’s formula [6]. We expect this rule to be
applicable also in other systems.

(3) We investigated the heat transfer between two silica nanoclusters using NEGF ap-
proach [153]. We found that the studied gap range can be divided into three regimes with
two critical gap distances of 4 Å and 3-5 times the cluster size, and they follow different
decay power laws of d−12, d−3 and d−6, respectively. The critical gap of 4 Å corresponds

97
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to the classical to quantum transition beyond which heat transfer between neighboring
clusters follows the classical law prescribed by the charge-charge (intermediate range)
and dipole-dipole (long range) interactions, while the heat flux drastically increases with
the gap distance below 4 Å. Near-field radiation clearly captures the thermal interaction
above 4 Å, but the heat transfer below this distance is dominated by heat conduction as
we showed that electrons are actually forming a chemical bond in the gap. Our results
hence provide a deeper insight to understand the behaviour of the transition between
radiation and heat conduction in gaps smaller than a few nanometers.

(4) We proposed an alternative DFT scheme for the calculation of thermoelectric co-
efficients, in particular the Seebeck coefficient, which corrects the deficiencies of the
canonical LB approach in the CB regime [154]. We found that two ingredients in the
Hxc potential are essential for Seebeck coefficient: (i) the step feature at integer particle
number opens a gap in the linear dependence on gate voltage and (ii) the temperature
derivative generates the sawtooth behaviour in this gap region. Remarkably, the xc
correction represents the dominant contribution to the Seebeck coefficient just as the
xc correction to the electrical conductance dominates in the CB regime [131]. We com-
pared our theory with both RE and experimental results on a carbon nanotube, and
found good quantitative agreement in all cases. The present approach is valid in the
linear response regime, where the applied voltage and thermal gradient between the two
leads are small. Going beyond the linear response would pave the way for a deeper
understanding of the thermoelectric effect and allow to study materials for extreme ap-
plications. The recently proposed DFT framework for thermal transport by Eich et al.
[139, 140] appears a promising starting point for this purpose.



Appendix A

Relations of Seebeck, Peltier and
Thomson coefficients

In this appendix we derive the relations among Seebeck, Peltier and Thomson coefficients
according to the thermodynamical laws [155]. We use the same notation of Fig. 1.1 and
assume the temperatures at the interfaces A and B of the two metals are T1 and T2,
respectively, (see the main text of chapter 1). When a current flows through the ring, it
will take place heat absorption or generation processes which are found to be reversible
as we have discussed before. Taking into account the first law of thermodynamics, the
absorbed heat energy after a cycle could be fully transferred into the work, while the
inner-energy of the system does not change, i.e.,∑

∆U =
∑

(Q+W ) = 0, (A.1)

where ∆U represents the change of inner-energy of the system in each step of the cycle
process, W is the work produced by the system, and Q is the summation of Peltier heat
and Thomson heat in the ring. Supposing that there is a charge q moving along the
direction from conductor a to b by crossing the interface A with temperature T1, and
then back to a by crossing the interface B with temperature T2, in this process the work
produced by the system is qVab. For the first step that the charge q crosses the interface
A, the absorbed Peltier heat is

q[Πb(T1)−Πa(T1)] = qΠab(T1), (A.2)

where we have defined Πab(T ) = Πb(T )−Πa(T ) and for the absorbed Thomson heat it
is

q

∫ T2

T1

Θb(T )dT, (A.3)

where the charge q moves in conductor b from interface A to B.

Similarly for the second step that the charged particle goes back to a from conductor b
at the r.h.s., the absorbed Peltier heat through the interface B is

qΠba(T2) = −qΠab(T2), (A.4)
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and the absorbed Thomson heat in conductor a going from B to A is

q

∫ T1

T2

Θa(T )dT = −q
∫ T2

T1

Θa(T )dT. (A.5)

Using Eq. (A.1), therefore we have

qVab + qΠab(T1)− qΠab(T2) + q

∫ T2

T1

[Θb(T )−Θa(T )]dT = 0, (A.6)

namely,

Vab = Πab(T2)−Πab(T1)−
∫ T2

T1

Θab(T )dT, (A.7)

where Θab(T ) = Θb(T )−Θa(T ).

In the above equation, if we take T1 as a constant and do a derivative of Eq. (A.7) with
respect to T , we obtain

Sab =
dVab
dT

=
dΠab

dT
−Θab(T ). (A.8)

Considering the change of entropy should equal zero always for a reversible process from
the second law of thermodynamics, i.e.,∑ Q

T
= 0, (A.9)

so
Πab(T2)

T
− Πab(T1)

T
−
∫ T2

T1

Θab(T )

T
dT = 0, (A.10)

where we have used the Eq. (A.6).

Taking a derivation of Eq. (A.10) with respect to temperature T , one obtains

d

dT

[
Πab(T )

T

]
− Θab(T )

T
= 0. (A.11)

Combination of Eqs. (A.8) and (A.11) gives

Πab = SabT. (A.12)

Substituting Eq. (A.12) into Eq. (A.11) we obtain

dSab
dT

=
Θab(T )

T
. (A.13)

Therefore once we know the Seebeck coefficient, we can immediately obtain the Peltier
and Thomson coefficients.



Appendix B

Time-ordered Green’s functions

In this appendix, we present the derivation of the equation of motion for both fermionic
and bosonic time-ordered Green’s functions [33–35]. And also we will derive the many
body spectral function for interacting system [31], which could be used in chapter 4.

B.1 Fermionic Green’s function

B.1.1 Equation of motion of time-ordered Green’s function

We start from the Heisenberg equation using the Hamiltonian we have described in
chapter 2. The time-ordered Green’s function of fermionic system is defined as

Gtn,kα(t, t′) = − i
~
〈T̂ [ĉ†kα(t′)d̂n(t)]〉

= − i
~
θ(t′ − t)〈ĉ†kα(t′)dn(t)〉+

i

~
θ(t− t′)〈d̂n(t)ĉ†kα(t′)〉.

(B.1)

where T̂ is the time-ordered operator.
Taking a derivative of the above Green’s function with respect to t′, it yields

i~
∂

∂t′
Gtn,kα(t, t′) = δ(t′ − t)〈ĉ†kα(t′)d̂n(t)〉+ δ(t′ − t)〈d̂n(t)ĉ†kα(t′)〉+

θ(t′ − t)〈 ˙̂c†kα(t′)d̂n(t)〉 − θ(t− t′)〈d̂n(t) ˙̂c†kα(t′)〉

= θ(t′ − t)〈 ˙̂c†kα(t′)d̂n(t)〉 − θ(t− t′)〈d̂n(t) ˙̂c†kα(t′)〉

= −iθ(t′ − t)〈[ĉ†kα(t′), Ĥ(t′)]d̂n(t)〉+ iθ(t− t′)〈d̂n(t)[ĉ†kα(t′), Ĥ(t′)]〉

= −iθ(t′ − t)〈[ĉ†kα(t′),
∑

k′,α′=L,R

εk′α′ ĉ
†
k′α′(t

′)ĉk′α′(t)+∑
m

εmd̂
†
m(t′)d̂m(t′) + U

∑
m

n̂m↑n̂m↓+∑
k”,α”=L,R,m

(Vk”α”,mĉ
†
k”,α”(t′)d̂m(t′) + V ∗k”α”,md̂

†
m(t′)ĉk”α”(t′))]d̂n(t)〉+

(B.2)
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iθ(t− t′)〈d̂n(t)[ĉ†kα(t′),
∑

k′α′=L,R

εk′α′ ĉ
†
k′α′(t

′)ĉk′α′(t
′)+

∑
m

εmd̂
†
m(t′)d̂m(t′) + U

∑
m

n̂m↑n̂m↓ +
∑

k”,α”=L,R,m

(Vk”α”,mĉ
†
k”α”(t′)d̂m(t′)+

V ∗k”α”,md̂
†
m(t′)ĉk”α”(t′))]〉

= −iθ(t′ − t)〈[ĉ†kα(t′),
∑

k′,α′=L,R

εk′α′ ĉ
†
k′α′(t

′)ĉk′α′(t
′)+

∑
k”,α”=L,R,m

(Vk”α”,mĉ
†
k”α”(t′)d̂m(t′) + V ∗k”α”,md̂

†
m(t′)ĉk”α”(t′))]d̂n(t)〉+

iθ(t− t′)〈d̂n(t)[ĉ†kα(t′),
∑

k′,α′=L,R

εk′α′ ĉ
†
k′α′(t

′)ĉk′α′(t
′)+

∑
k”,α”=L,R,m

(Vk”α”,mĉ
†
k”α”(t′)d̂m(t′) + V ∗k”α”,md̂

†
m(t′)ĉk”α”(t′))]〉

= −iθ(t′ − t)〈[ĉ†kα(t′), εkαĉ
†
kα(t′)ĉkα(t′) +

∑
m

(Vkα,mĉ
†
kα(t′)d̂m(t′)+

V ∗kα,md̂
†
m(t′)ĉkα(t′))]d̂n(t)〉+

iθ(t− t′)〈d̂n(t)[ĉ†kα(t′), εkαĉ
†
kα(t′)ĉkα(t′) +

∑
m

(Vkα,mĉ
†
kα(t′)d̂m(t′)+

V ∗kα,md̂
†
m(t′)ĉkα(t′))]〉

= −iθ(t′ − t)〈[−εkαĉ†kα(t′)−
∑
m

V ∗kα,md̂
†
m(t′)]d̂n(t)〉+

iθ(t− t′)〈d̂n(t)[−εkαĉ†kα(t′)−
∑
m

V ∗kα,md̂
†
m(t′)]〉

= iθ(t′ − t)〈εkαĉ†kα(t′)d̂n(t)〉 − iθ(t− t′)〈εkαd̂n(t)ĉ†kα(t′)〉+

iθ(t′ − t)〈
∑
m

d̂†m(t′)d̂n(t)V ∗kα,m〉 − iθ(t− t′)〈
∑
m

d̂n(t)d̂†m(t′)V ∗kα,m〉

= −εkα~Gtn,kα(t, t′)− ~
∑
m

Gtn,m(t, t′)V ∗kα,m,

(B.3)

where we have used the anti-commutate relation for Fermi particles.

Therefore we have

[−i ∂
∂t′
− εkα]Gtn,kα(t, t′) =

∑
m

Gtn,kα(t, t′)V ∗kα,m. (B.4)

If one defines

(−i ∂
∂t′
− εkα)gtkα(t, t′) = δ(t, t′), (B.5)

we can finally get

Gtn,kα(t, t′) =
∑
m

∫ ∞
−∞

dt1Gtnm(t, t1)V ∗kα,mg
t
kα(t1, t

′). (B.6)

This is called the equation of motion for the time-ordered Green’s function Gtn,kα and it
will be used for the derivation of electric and energy current formulas in chapter 2.



B Time-ordered Green’s functions 103

B.1.2 Spectral function of many body interacting system with single
level

We start from an isolated quantum dot, and then add the coupling effect to the Green’s
function in terms of a self-energy based on the Dyson equation [31]. We assume that
there is only one level in the central region for simplicity, and the equilibrium counterpart
of the time-ordered Green’s function for the dot is gσσ,t(t, t′) = − i

~〈T̂ d̂σ(t)d̂†σ(t′)〉, where
σ denotes the spin up or spin down. Then the equation of motion for gσσ,t(t, t′) in the
time space is

i
∂

∂t
gσσ,t(t, t′) = δ(t− t′) + εσg

σσ,t(t, t′) + Ug(2),t(t, t′), (B.7)

and in the energy space it can be

(ε− εσ)gσσ,t(ε) = 1 + Ug(2),t(ε), (B.8)

where we have used the relation i~ ˙̂
dσ = εσd̂σ + Ud̂σn̂σ̄ and σ̄ = −σ. The minus sign

indicates the opposite spin polarization direction. The second term in the relation for
d̂σ, which is due to the on-site interaction, generates a higher order Green’s function
g(2),t:

g(2),t(t, t′) = − i
~
〈T̂{d̂σ(t)n̂σ̄(t)d̂†σ(t′)}〉. (B.9)

The next step is to derive the equation of motion for g(2),t. Since [n̂σ̄, Ĥ] = 0, one only
has to consider the time derivative of d̂σ. The result is

i
∂

∂t
g(2),t(t, t′) = δ(t, t′)〈n̂σ̄〉+ εσg

(2),t(t, t′) + Ug(2),t(t, t′)〉. (B.10)

After a Fourier transformation, we have

(ε− εσ − U)g(2),t(ε) = 〈n̂σ̄〉. (B.11)

Inserting Eq. (B.11) into Eq. (B.8), we find

gσσ,t(ε) =
ε− εσ − (1− 〈n̂σ̄〉)U
(ε− εσ − U)(ε− εσ)

=
〈n̂σ̄〉

ε− εσ − U
+

1− 〈n̂σ̄〉
ε− εσ

,

(B.12)

where the second line shows that the Green’s function has two resonances, at ε = εσ+U
and ε = εσ, with weights 〈n̂σ̄〉 and 1− 〈n̂σ̄〉, respectively.

Eq. (B.12) can be used to determine the density 〈n̂σ̄〉 and hence gσσ,t(ε) by self-consistent
calculation. In equilibrium according to the fluctuation-dissipation theorem, we have

〈n̂σ〉 = −i
∫ ∞
−∞

dε

2π
gσσ,<(ε) =

∫ ∞
−∞

dε

2π
[−2 Im gσσ,r(ε)f(ε)], (B.13)

where the retarded Green’s function gσσ,r is obtained from Eq. (B.12) with the replace-
ment ε = ε+ iζ. For single degenerated level system, the density 〈n̂σ〉 should be equal
to 〈n̂σ̄〉. For non-degenerated system, one has to self-consistently calculate the spin up
and spin down densities by combining Eqs. (B.12) and (B.13).
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Using the Dyson equation, we can finally obtain

Gσσ,r(ε) =
〈n̂σ̄〉

ε− εσ − U − Σr
+

1− 〈n̂σ̄〉
ε− εσ − Σr

, (B.14)

where Σr is the related self energy.
Therefore the interacting spectral function is

A(ε) = i[Gσσ,r(ε)− Gσσ,a(ε)], (B.15)

where Ga is the advanced Green’s function: Ga = [Gr]†. For the non-interacting Green’s
function and spectral function, one can easily obtain, by setting U = 0,

Gσσ,rS (ε) =
1

ε− εσ − Σr
, (B.16)

AS(ε) = i[Gσσ,rS (ε)− Gσσ,aS (ε)]. (B.17)

These expressions will be used in the derivation of chapter 4.

B.2 Time-ordered bosonic Green’s function

In this section, we derive the equation of motion for bosonic time-ordered Green’s func-
tion. The center-left time-ordered Green’s function is defined as [33–35]

∂

∂t′
GCL,tjk (t, t′) = − i

~
∂

∂t′
〈T̂ ûLk (t′)ûCj (t)〉

= − i
~
∂

∂t′
〈θ(t′ − t)ûLk (t′)ûCj (t) + θ(t− t′)ûCj (t)ûLk (t′)〉

= − i
~
〈δ(t′ − t)[ûLk (t′), ûCj (t)]〉 − i

~
〈T̂ ˙̂uLk (t′)ûCj (t)〉

= − i
~
〈T̂ ˙̂uLk (t′)ûCj (t)〉,

(B.18)

where the first term in the second line from bottom equals zero since the two elements
commute. The second derivative can be derived in a similar way as Eq. (B.18), and it
yields

∂2

∂t′2
GCL,tjk (t, t′) = − i

~
〈T̂ ¨̂uLk (t′)ûCj (t)〉, (B.19)

where

¨̂uLk (t′) = − i
~
eiĤt

′
[ ˙̂uLk , Ĥ]e−iĤt

′

= − i
~
eiĤt

′
[ ˙̂uLk , ĤL + ĤLC ]e−iĤt

′

= − i
~
eiĤt

′
[ ˙̂uLk ,

∑
lm

(
1

2
( ˙̂uLl )T ˙̂uLm +

1

2
ûLl K

L
lmû

L
m + ûLl V

LC
lm ûCm)]e−iĤt

′

= − i
~
eiĤt

′
[−i~

∑
l

(KL
klû

L
l + V LC

kl ûCl )]e−iĤt
′

= −
∑
l

[KL
klû

L
l (t′) + V LC

kl ûCl (t′)].

(B.20)
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So Eq. (B.19) becomes

∂2

∂t′2
GCL,tjk (t, t′) = − i

~
〈T̂ [−

∑
l

(KL
klû

L
l (t′) + V LC

kl ûCl (t′))]ûCj (t)〉

= −〈− i
~

[
∑
l

T̂KL
klû

L
l (t′)ûCj (t) + T̂ V LC

kl ûCl (t′)ûCj (t)]〉

= −
∑
l

[KL
klG

CL,t
jl (t, t′) + GCC,tjl (t, t′)V LC

kl ].

(B.21)

We now omit the subscript and express in a more compact matrix form:

∂2

∂t′2
GtCL(t, t′) +KLGtCL(t, t′) = −GtCC(t, t′)V CL. (B.22)

This is the equation of motion for the bosonic Green’s function. If one defines a time-
ordered Green’s function for the left lead, i.e.,

∂2

∂t′2
gtL(t, t′) +KLgtL(t, t′) = −δ(t, t′), (B.23)

the combination of Eqs. (B.22) and (B.23) will yield

GtCL(t, t′) =

∫ ∞
−∞

dt1GtCC(t, t1)V CLgtL(t1, t
′). (B.24)

This expresses the center-left time-ordered Green’s function in terms of the center-center
time-ordered Green’s function, and we will use this equation for the derivation of the
heat current for bosons in chapter 2.
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