

▪ Degree’s Final Project ▪

Computer Engineering

An Experiment on Melody Training

for Amateur Musical Instrument

Players

Author: Ainhize Goenaga

Director: Manuel Graña

Degree’s Final Project Ainhize Goenaga

ii

Degree’s Final Project Ainhize Goenaga

iii

Acknowledgements

I would like to thank my director, Manuel Graña, for lending me a hand whenever I

had problems, for teaching me the steps and a proper way to develop a project with such

dimensions and for keeping me motivated all the time.

I would also like to thank Leire Ozaeta, for helping me with everything she could,

mainly the NAO robot part of my project (even if, in the end I had to leave the robot apart).

Another important person I would like to thank is Borja Fernández, who introduced

me to Manuel Graña and for his help whenever my director wasn’t available.

Last, but not least, I would like to thank my family and my friends, for supporting me

and for believing in me.

Degree’s Final Project Ainhize Goenaga

iv

Degree’s Final Project Ainhize Goenaga

v

Abstract

The long term goal of the research started in this project is to develop systems able to

assist people training to sing or hum melodies, or play them on musical instruments. The

current project will focus on single instrument training for short monophonic melodies.

The interaction between the user and a fully developed application would go as

follows: The user selects a melody from the database and the application reproduces it. The

human plays the melody with an instrument while the application records it, so, when

finished; it processes the recording to give its approval or sings again the melody if it hasn’t

been well reproduced.

Materials: computational experiments are carried out on the recordings of a well

known melody played on two instruments (piano, flute), performed by a custom laptop

computer microphone, in order to test robustness against rich harmonics interferences when

trying to extract the melody.

Methods: Programming has been carried out in Python, using available open source

resources: NumPy, SciPy, MatPlotLib, PyAudio. The computational process steps are the

following: signal windowing, Fourier transform, transform spectre downsampling,

fundamental melody frequency extraction, pattern comparison by correlation.

Degree’s Final Project Ainhize Goenaga

vi

Resumen

El objetivo a largo plazo de este proyecto de investigación es crear sistemas capaces

de entrenar personas para cantar o tocar melodías en instrumentos musicales. El proyecto

actual se centrará en el entrenamiento de un único instrumento a la vez con melodías

monofónicas cortas.

La interacción entre el usuario y la aplicación desarrollada por completo será la

siguiente: El usuario elige una melodía de la base de datos, y la aplicación la reproduce. El

usuario toca la melodía con un instrumento musical mientras que la aplicación lo graba.

Cuando el usuario termina de reproducir la melodía, la aplicación procesará lo grabado para

dar su aprobación o volverá a cantar la melodía si ha habido fallos.

Materiales: trabajaremos con una melodía conocida que será grabada con el

micrófono de un ordenador portátil. Se probará con 2 instrumentos musicales diferentes

(piano, flauta) para probar la solidez del algoritmo cuando aparecen armónicos indeseados en

el momento de procesar la melodía.

Métodos: La programación de la aplicación se hará en Python, y se utilizarán recursos

de código abierto tales como: NumPy, SciPy, MatPlotLib, PyAudio. Los pasos del algoritmo

son los siguientes: enventanado de la señal, transformada de Fourier, diezmado del espectro,

extracción de la frecuencia fundamental de la melodía, comparación de patrones utilizando la

correlación.

Degree’s Final Project Ainhize Goenaga

vii

Laburpena

Ikerketa honen luzerako helburua pertsonak kantatu eta musika instrumentuak jotzen

trebatzen laguntzeko sistemak garatzea da. Proiektu hau instrumentu bakarreko melodia

monofonikotan zentratuko da.

Zeharo garatutako produktu eta erabiltzailearen arteko elkarrekintza ondorengoa

izango da: Erabiltzaileak melodia bat hautatuko du datu-basetik, eta aplikazioak

erreproduzitu egingo du. Erabiltzaileak entzundakoa instrumentu batekin joko du aplikazioa

grabatzen dagoen bitartean. Erabiltzaileak bukatzean, aplikazioak grabatutakoa prozesatuko

du emaitzaren onespena emango du edo, gaizki eginez gero, berriro kantatuko du.

Materialak: Ordenagailu eramangarri bateko mikrofonotik grabatutako musika

instrumentu batekin jotako melodia ezagun batekin arituko gara lanean, melodia bi

instrumentu desberdinekin joko da (pianoa, txirula) sendotasuna frogatzeko, melodia

prozesaketan ager daitezkeen harmoniko interferentziak direla eta.

Metodoak: Aplikazioaren programazioa Python lengoaian egingo da, eskura dauden

kode irekiko baliabideak erabiliz: NumPy, SciPy, MatPlotLib, PyAudio. Prozesuaren

pausoak ondorengoak dira: seinalearen leihoketa, Fourier-en transformatua, transformatutako

espektroaren hamarrena hartu (downsampling), melodiatik oinarrizko frekuentzia lortu,

patroien konparaketa korrelazioaren bitartez.

Degree’s Final Project Ainhize Goenaga

viii

Degree’s Final Project Ainhize Goenaga

ix

Index

Introduction .. 1

1. Motivation .. 1

2. Objectives .. 1

3. Structure of the Memory .. 1

Project Management .. 3

1. Work Breakdown Structure ... 3

2. Time Estimation ... 3

3. Gantt Chart ... 4

4. Risk Management .. 6

5. Monitoring and Control ... 6

5.1 Communication ... 6

5.2 Deviations ... 6

Introduction to Pitch Estimation .. 7

1. Definitions.. 7

1.1 Pitch .. 7

1.2 Musical Tone .. 7

1.3 Octave ... 7

1.4 Melody .. 8

1.5 Polyphony ... 8

1.6 Harmonics ... 9

1.7 MIR (Music Information Retrieval) ... 9

2. Mathematics ... 10

2.1 Fourier Transform ... 10

2.2 Downsample / Decimation ... 11

Pitch Estimation Algorithms ... 12

1. Frequency Domain Algorithms ... 12

1.1 HPS (Harmonic Product Spectrum) ... 12

1.2 Cepstrum Analysis .. 13

1.3 Parabolic Interpolation.. 14

2. Time Domain Algorithms .. 14

2.1 ZCR (Zero-crossing Rate) .. 14

2.2 Autocorrelation ... 14

Degree’s Final Project Ainhize Goenaga

x

3. Frequency Domain vs. Time Domain .. 15

Work Environment .. 17

1. Hardware .. 17

2. Software ... 17

2.1 NumPy vs. SciPy .. 18

3. Decisions .. 18

3.1 Python ... 18

3.2 Speech Recognition .. 19

3.3 Monophonic melody ... 19

3.4 Harmonic Product Spectrum (HPS) ... 19

3.5 Hanning Window .. 19

Design .. 21

1. Interaction .. 21

2 Sound Process ... 22

3. Comparison .. 23

Implementation .. 24

1. Sound Processing ... 24

1.1 Read_File .. 24

1.2 HPS_Algorithm .. 25

1.3 Create_File .. 26

1.4 Correlation .. 27

2. Interaction .. 28

2.1 Song_Choice ... 28

2.2 Sing_Song ... 28

2.3 Listen_Song .. 29

2.4 Compare_Files .. 30

3. Synthesized Song ... 30

3.1 note .. 30

3.2 main .. 30

4. Tuner .. 31

4.1 Record ... 31

4.2 Convert_To_Note ... 32

Testing ... 33

Degree’s Final Project Ainhize Goenaga

xi

1. Application ... 33

1.1 Song .. 33

1.2 Flute .. 33

1.3 Piano ... 36

2. Tuner .. 39

2.1 Flute .. 39

2.2 Piano ... 43

2.3 Conclusions ... 45

Improvements ... 47

1. Improve Application .. 47

1.1 PDA Precision .. 47

1.2 Feedback System .. 47

1.3 Interface .. 48

2. Possible Developments .. 48

2.1 Implement into NAO .. 48

2.2 Polyphonic Sound ... 48

2.3 Songs with Lyrics ... 48

Conclusions ... 50

1. Project’s Conclusions .. 50

2. Personal Conclusions ... 50

2.1 Personal Experiences .. 50

2.2 Learnt Lessons .. 51

NAO’s Involvement ... 52

1. Introduction .. 52

1.1 What is Nao? ... 52

1.2 Some properties .. 52

2. Software for Developers .. 53

2.1 Choregraphe .. 53

2.2 SDK .. 55

2.3 NAOqi ... 56

3. Project’s Development ... 56

3.1 Starting .. 56

3.2 Design ... 57

Degree’s Final Project Ainhize Goenaga

xii

3.3 First Version - Choregraphe ... 58

3.4 Second Version - Remote coding ... 58

4. Problems .. 59

4.1 Nao Singing .. 59

4.2 Library Installation ... 59

4.3 File Transfer .. 59

5. Written Code .. 60

5.1 main.py ... 60

5.2 MyClass.py ... 60

Full Code ... 63

1. Sound Processing ... 63

1.1 soundProcessing.py .. 63

1.2. MyClass.py .. 66

1.3 main.py ... 69

2. Tuner .. 69

2.1 findNote.py ... 69

2.2 tuner.py ... 71

3. Synthesize Sound ... 72

3.1 twinkle_S.py ... 72

References ... 73

1. Websites ... 73

2. Books & Documents .. 73

Degree’s Final Project Ainhize Goenaga

xiii

Image Index

Figure 2.1: Work Breakdown Structure ... 3

Figure 2.2: Gantt Chart .. 5

Figure 3.1: Do Scale .. 8

Figure 3.2: Equivalence of Music Sheet and Tablature ... 8

Figure 3.3: Harmonics if the Fundamental Frequency .. 9

Figure 3.4: MIR research areas .. 10

Figure 3.5: Decimation .. 11

Figure 4.1: Harmonic Product Spectrum Algorithm.. 12

Figure 4.2: Cepstrum Algorithm .. 13

Figure 4.3: Difference between Time domain and Frequency domain 15

Figure 5.1: Hanning Window application's graphical view ... 20

Figure 6.1: Interaction diagram between User and Application .. 21

Figure 6.2: Sound Processing block diagram .. 22

Figure 7.1: Read_File function's block diagram .. 24

Figure 7.2: HPS_Algorithm function's block diagram .. 25

Figure 7.3: Create_File function's block diagram .. 26

Figure 7.4: Correlation function's block diagram .. 27

Figure 8.1: Twinkle, twinkle, little star song's music sheet ... 33

Figure 8.2: Signal data obtained from performing the song with the flute 34

Figure 8.3: Signal data's zoom in the first note .. 34

Figure 8.4: Fourier Transform of the signal data from the flute .. 35

Figure 8.5: Comparison between synthesized audio's fundamental frequency sequence and

recorded audio's fundamental frequency sequence (FLUTE) 35

Figure 8.6: Comparison between synthesized audio's auto-correlation and recorded audio's

correlation (FLUTE) ... 36

Figure 8.7: data obtained from performing the song with the piano 37

Figure 8.8: Fourier Transform of the signal data from the piano .. 37

Figure 8.9: Comparison between synthesized audio's fundamental frequency sequence and

recorded audio's fundamental frequency sequence (PIANO) 38

Figure 8.10: Comparison between synthesized audio's auto-correlation and recorded audio's

correlation (PIANO) ... 38

Figure 8.11: Do's Scale with silence .. 39

Degree’s Final Project Ainhize Goenaga

xiv

Figure 8.12: Fundamental frequency sequence of octave with silence 40

Figure 8.13: Do's Scale without silence ... 40

Figure 8.14: Fundamental frequency sequence of octave without silence 41

Figure 8.15: Twinkle, twinkle, little star song's first part (FLUTE) .. 41

Figure 8.16: Song's fundamental frequency sequence (TUNER - FLUTE) 42

Figure 8.17: Do's Scale .. 43

Figure 8.18: Do's Scale fundamental frequency sequence (PIANO) 44

Figure 8.19: Twinkle, twinkle, little star song's first part (PIANO) .. 44

Figure 8.20: Song's fundamental frequency sequence (TUNER - PIANO) 45

Figure A1.1: Nao ... 52

Figure A1.2: Nao's sensors and actuators .. 53

Figure A1.3: Choregraphe's graphical interface .. 54

Figure A1.4: Say box in the Flow Diagram ... 54

Figure A1.5: Script of a random box (Choregraphe) ... 55

Figure A1.6: Function ALProxy for Choregraphe script writter ... 56

Figure A1.7: Interaction block diagram for Nao ... 57

file:///C:/Users/Ainhi/Downloads/Memory.docx%23_Toc460525758

Degree’s Final Project Ainhize Goenaga

xv

Table Index

Table 2.1: Time Estimation.. 4

Table 4.1: Pros and Cons of Time domain and Frequency domain algorithms 16

Table 5.1: Difference between Python and C/C++ .. 18

Degree’s Final Project Ainhize Goenaga

1

CHAPTER 1

Introduction

1. Motivation

Music has taken an important part in our lives for thousands of years, and that makes

it a highly interesting topic of study from a computational point of view.

There are two main lines of research regarding intelligent systems applied to music.

One of these lines is the realization of music synthesis systems, which create musical

compositions applying aesthetic rules and generative systems. The other one is recognition of

music pieces from audio signals, based on signal processing.

The problem of music content recognition can be posed in several degrees, ranging

from the very literal signal matching to the most complex problem of recognizing the musical

composition despite variations of the interpretation.

This project is a simplification of the second line. I want to recognize easy

monophonic melodies interpreted by a single voice (human or instrument) and detect

deviations from the melody.

2. Objectives

The main objective of the experiments carried out in this project is to develop an

application for people who are interested in music or who are learning music to practice

melodies with musical instruments. The experiments have been carried out on recordings of a

song, “Twinkle, twinkle little star”, created synthetically for a perfect sequence of note

frequencies in order to have some gold standard to compare with.

3. Structure of the Memory

This report is divided into different chapters. Each chapter will explain a certain

aspect of the project, and will be divided into different sections.

● Chapter one is the Introduction chapter. Here, the reader can find the motivation for

the project and the objectives

● Chapter two explains the project management. It is divided into 5 sections. The first 4

sections explain the planning made before starting the project substantiated in the

Work Breakdown Structure, Time Estimation, Gantt Chart, and Risk Management.

The last section explains the changes in this planning that took place along the project

development.

● Chapter three explains some interesting concepts about Pitch Detection, which is the

main topic of the project. This chapter contains definitions and mathematical concepts

regarding to music retrieval.

Degree’s Final Project Ainhize Goenaga

2

● Chapter four lists different Pitch Detection Algorithms (PDA) running either in time

domain or in frequency domain.

● Chapter five explains decisions made and technical specifications assumed as

preliminary steps before start proper project development.

● Chapter six contains the design of the application. It is divided into two parts; the first

is about the interaction between the application and the user, and the second about

sound process.

● Chapter seven details the actual implementation of the application.

● Chapter eight explains the results of the test that have been made on experimental data

gathered by the current implementation.

● Chapter nine proposes possible future improvements. These improvements are divided

into two sections. On the one hand, improvements based on the results of the tests. On

the other hand, commercial applications that can be developed from the experience

obtained in this degree project.

● Chapter ten explains the conclusions made out of this project and the personal

experience.

The memory also includes two Appendices:

● The first one explains the long term goal of the research started in this project, which

is developing this application on the Nao robot. In the Appendix there is an

introduction to the Nao, which explains its features and the different software tools to

develop a project with the robot. It also contains the design for the implementation

and the implementation. It also explains the problems that led to leave the robot aside.

● The second Appendix contains the full code of the application, divided into different

files. It also explains different aspects of the files.

Finally, the memory offers a full list of all the references used to develop this project.

These links will be numbered and will be used through the whole memory to indicate where

the relevant information has been found.

Degree’s Final Project Ainhize Goenaga

3

CHAPTER 2

Project Management

1. Work Breakdown Structure

The whole project will be divided into 5 branches, which are Management, Research,

Development, Documentation and Finalization. All these tasks include some work packages

that correspond to the tasks mentioned above.

Figure 2.1: Work Breakdown Structure

2. Time Estimation

The following table (see table 2.1) shows the time estimations made for each work

package mentioned in the Work Breakdown Structure (see figure 2.1).

Degree’s Final Project Ainhize Goenaga

4

Tasks Estimated time (hours)

1 - Management 39

1.1 - Planning 25

1.2 - WBS 4

1.3 - Monitoring and Controlling 10

2 - Research 42

2.1 - Pitch Estimation 20

2.2 - Nao 20

2.3 - Programming language 2

3 - Development 105

3.1 - Setup Work Environment 7

3.2 - Design 15

3.3 - Implementation 80

3.4 - Test Results 3

4 - Documentation 81

4.1 - Write Memory 65

4.2 - Learnt Lessons 2

4.3 - Conclusions 2

4.4 - Review Memory 12

5 - Finalization 22

5.1 - Prepare Presentation 20

5.2 - Defend Project 2

Total 289

Cushion 11

Table 2.1: Time Estimation

3. Gantt Chart

The Gantt Chart (see figure 2.2) illustrates the project schedule. It includes the

starting date and the finishing date of each work package.

Degree’s Final Project Ainhize Goenaga

5

Figure 2.2: Gantt Chart

Degree’s Final Project Ainhize Goenaga

6

4. Risk Management

For this type of project, the following risks have to be taken into account:

● Information loss: As the project’s aim is to create an application, there is a high

chance that the program or the data needed to develop it will get lost. To solve this

problem, each update of the application and the needed extra files (such as the music

files) will be saved into a well-known cloud platform called “Drive” as well as in the

laptop’s hard disk.

● Lack of experience: The development of a fully fledged project is something never

done before by the developer (me), hence the risk of having difficulties understanding

the subject and fulfilling different tasks is a risk that may happen many times during

the time of the implementation. This will lead to delays. I will rely on stackoverflow

or similar websites that provide solutions. The cushion mentioned in the Time

Estimation table (see table 2.1) is also a good solution.

● Software/Hardware related problems: The use of technological devices involves

lots of risks, such as: hardware failure, software version incompatibilities, hardware

(NAO robot) and software incompatibilities and so on. These problems may lead to

different adversities, such as updating the systems that need an update, changing the

programming language used, finding another way to solve the problem and, in the

worst of the cases, changing the aim of the project because of incompatibilities.

5. Monitoring and Control

5.1 Communication

The advisor had access to the entire project’s information through the storage system

called drive. Apart from that, every two weeks, the control meetings were held with the

project advisor to decide the following steps and to discuss the development of the project

and make decisions.

5.2 Deviations

Through the development of this project, there have been a lot of deviations, most of

them regarding to the fact that the main idea had to be changed due to incompatibility factors.

However, once the current project’s development was started, things went smoothly.

Degree’s Final Project Ainhize Goenaga

7

CHAPTER 3

Introduction to Pitch Estimation

In this chapter there will be some definitions and explanations about the most

important part of the project, which is pitch estimation or pitch detection.

1. Definitions

1.1 Pitch

Pitch is a perceptual auditory phenomenon which is closely related to frequency.

After being processed in the human brain, the listener associates the pitch with a musical

tone, which is determined by a musical scale based on the perception of the frequency of

vibration.

Even if pitch and frequency are closely related, they are not the equivalent. Frequency

is an objective, scientific attribute that can be measured, pitch, on the other hand, is the

subjective perception of the sound wave that depends on the listener and cannot be directly

measured.

Sounds can be ordered on a scale from low to high. The relative position in that scale

depends on how fast the sound wave is oscillating, rapid oscillations corresponding to

“higher” pitch, and slow oscillations corresponding to “lower” pitch.

In physical terms, pitch can be considered as fundamental frequency, which can be

measured. While the perceived tone may differ from the perceived fundamental frequency, in

a periodic signal, they correspond to each other.

1.2 Musical Tone

A musical tone is a steady periodic signal. It has 4 attributes, which are duration,

pitch, intensity (loudness) and timbre (quality). However, in music, musical tones may

include other aspects such as vibrato, transients and modulation.

A pure tone corresponds to a sinusoidal wave, this means that it contains a single

frequency. A complex tone is not sinusoidal, but it is periodic and can be described as a sum

of sinusoid wave fronts.

1.3 Octave

An octave is the interval between one musical pitch and another with half or double

its frequency. The musical scale is composed of 7 notes, represented in different ways

depending on the country. The most common ways to represent it are the following: with

letters (C, D, E, F, G, A and B), with syllables (Do, Re, Mi, Fa, Sol, La, Si) which is called

Degree’s Final Project Ainhize Goenaga

8

Solfège, or with numbers (1, 2, 3, 4, 5, 6 and 7). Two notes separated by an octave have the

same representation.

Figure 3.1: Do Scale

There are notes in between the well-known 7 notes, called semitones, which can be

represented as the note followed by the # symbol, which is called “sharp” or by a ♭ symbol,

which is called “flat”.

1.4 Melody

Melody is a concept based on the judgment of human listeners, so it has lots of

different definitions depending on the context. However, it can be simplified as “a linear

succession of musical notes that the listener perceives as a single entity”.

To represent a melody, there are two different ways: (a) the Tablature, which is

unique for each musical instrument, (b) the Music Sheet, which is a common one for all the

instruments. The Tablature is much easier to understand because it is based upon a

diagrammatic representation of the position of the fingers. The Music Sheet, on the other

hand, is more abstract and complex, but it is written in a common musical language.

Figure 3.2: Equivalence of Music Sheet and Tablature

The image above (see figure 3.2) shows part of a music sheet and part of a tablature

for a guitar, and the connection between both methods.

1.5 Polyphony

Polyphony is a property that has some musical instruments to play more than one note

at a time, these instruments are called polyphonic. The instruments that do not have this

property are called monophonic.

Degree’s Final Project Ainhize Goenaga

9

Despite human brains are capable of separating different sources of sound, automated

computer analysis is an extremely complex process, therefore, this project will focus on

monophonic sounds.

1.6 Harmonics

It is applied to repeating signals, such as sinusoidal waves. An harmonic is a positive

integer multiplication of the fundamental frequency, aka first harmonic. The positive integer

multiplication makes the harmonics to have the same period as the fundamental frequency, so

that, sometimes it is difficult to decide which is the original frequency, as some harmonics

can have a higher amplitude.

Figure 3.3: Harmonics if the Fundamental Frequency

As shown in the image above (see figure 3.3), all the sinusoid meet at the same points.

From the green sinusoid only one period appears in the picture. From the red one, there are 3

periods, and from the blue one 5 periods, but the main concept is that all of them meet at half

of the period of the fundamental frequency and the point where the period of the fundamental

frequency ends.

1.7 MIR (Music Information Retrieval)

Music Information Retrieval is the interdisciplinary science of retrieving information

from music. It is used by academics and businesses to categorize, manipulate and even create

music.

There are different types of research areas that can be included in the field of MIR:

Degree’s Final Project Ainhize Goenaga

10

Figure 3.4: MIR research areas

2. Mathematics

2.1 Fourier Transform

 For this project, the Fourier Transform is a very important mathematical concept. It

decomposes a time based function (a signal) into the frequencies that the signal possesses.

For audio signals, the analysis in frequency domain provides information closer to human

perception than the analysis in time domain.

 Fourier Transform can be applied either in continuous time, x(t) with period T (time

interval), or in discrete time, x(n) with period N (number of samples). The absolute value of

the amplitude of the result of applying the Fourier Transform represents the amount of the

frequency of the original signal, and the complex part represents the phase of the sinusoid of

that frequency. Therefore, Fourier analysis decomposes the signal in a combination of

harmonics.

 The formula of this mathematical concept is the following:

𝑋 𝐹 = 𝑥 𝑛

+∞

𝑛=−∞

𝑒𝑗2𝜋𝐹𝑛

where:

F: denotes the frequency

 As it is impossible to store and process ∞ numbers, the Discrete Fourier Transform

(DFT) is the one used. Its formal definition is as follows:

𝑋 𝑘 = 𝑋
𝑘

𝑁
 = 𝑥 𝑛 𝑒𝑗

2𝜋𝑘
𝑁

𝑛

𝑁−1

𝑛=0

Degree’s Final Project Ainhize Goenaga

11

Apart from the Fourier Transform and Discrete Fourier Transform, there also exist

Short-Term Discrete Fourier Transform and it is used to combine the frequential analysis

with time domain analysis.

 The Fast Fourier Transform (FFT) is an improved Discrete Fourier Transform. The

best known version of this algorithm is the Fast Fourier Transform in base 2. This algorithm

uses the idea that the DFT can be shown to be composed of two signals containing the even

and odd numbers of x(n) respectively.

𝑋 𝐾 = 𝐹1 𝑘 + 𝑤𝑁
𝑘𝐹2 𝑘

This algorithm reduces the number of complex multiplications of 𝑁2 to
𝑁

2
𝑙𝑜𝑔2𝑁 and

the complex additions of 𝑁(𝑁 − 1) to 𝑁𝑙𝑜𝑔2𝑁. It is the basis for a multitude of practical

applications of the Fourier transform in signal processing and communications.

2.2 Downsample / Decimation

Downsampling (aka decimation) consists in reducing the samples of the digital signal

to a lower rate. This expands the frequency spectra and compresses the amplitude as shown in

the following picture (see figure 3.5):

Figure 3.5: Decimation

The process of decimation consists in: first, chose a decimation factor, M, which is an

integer value, and, second, keep every Mth value in the discrete signal, discarding all the

other values.

Even if downsampling and decimation aren’t the same, for this project the main

concept is that the signal is compressed, so the difference doesn’t matter. In reality,

downsampling means to only take into account the Mth values and throw the others away, on

the other hand, when applying decimation, a low pass filter has to be applied, as, otherwise, it

could appear aliasing if the Nyquist bound frequency is violated.

Degree’s Final Project Ainhize Goenaga

12

CHAPTER 4

Pitch Estimation Algorithms

There are lots of algorithms that can be used to determine the pitch of each note,

either played in an instrument or sang. These algorithms can be implemented in the time

domain or the frequency domain. Here, some of the best known will be explained briefly.

1. Frequency Domain Algorithms

Frequency domain algorithms are based on the signal’s appearance number within

each given frequency band over a range of frequencies. Frequency domain algorithms rely on

the Fourier Transform.

1.1 HPS (Harmonic Product Spectrum)

Harmonic Product Spectrum measures the maximum coincidence for harmonics for

each spectral frame. The algorithm used is the following:

𝑌 𝜔 = 𝑋 𝜔𝑟

𝑅

𝑟=1

where:

R: number of harmonics being considered

X: magnitude spectrum of the frequency

Figure 4.1: Harmonic Product Spectrum Algorithm

Degree’s Final Project Ainhize Goenaga

13

Being the input a musical note, the audio has to be windowed to apply the Fourier

Transform. As shown in the picture above, (figure 4.1) the spectrum of the signal window

consists of a series of peaks that correspond to the fundamental frequency of the note and its

harmonics. After applying the Fourier Transform, the result has to be downsampled n times,

this makes the peaks stand out and, after downsampling, the n results are multiplied by each

other to obtain a single peak, which should be the fundamental frequency.

This method has its pros and its cons. The pros are that it is computationally

inexpensive and reasonably resistant to noise. However, the low pitches are tracked less

accurately. Another disadvantage is that the resolution depends on the fft length, if the

Fourier Transform is short and fast, the result is limited in the number of discrete frequencies

considered. To make the algorithm more precise, the fft should be longer, which will take

more time.

Octave error is also very common in these kinds of algorithms. This consists on estimating

the musical note one octave above or below as they share the same periodicity.

1.2 Cepstrum Analysis

This algorithm applies the inverse Fourier Transform to the logarithm of the signal’s

spectrum. The name derives from changing the order of the first 4 letters of “spectrum”.

The formula for this algorithm is the following:

 𝐹−1 log(𝐹 𝑓 𝑡 2) 2
where:

F: the Fourier Transform

F
-1

: inverse Fourier Transform

Figure 4.2: Cepstrum Algorithm

As seen in the image above (figure 4.2), the Cepstrum Analysis first frames the

original signal and then applies a window to each frame. After windowing the frame, the

Fourier Transform is applied. The spectrum obtained by doing the fft is represented by a

series of peaks. The following step is to convert into a logarithmic representation, which

accentuates the sinusoidal appearance of waves. Finally the algorithm uses the Inverse of

Fourier Transform to obtain the fundamental frequency peak.

Degree’s Final Project Ainhize Goenaga

14

Cepstrum Analysis uses Homomorphic Filtering, which is a nonlinear transform

applied image or speech processing and it is used to convert the signal obtained from the

convolution of two signals into the sum of two signals.

Cepstrum Analysis has many applications, such as analysis of human speech and

pitch detection. However, it was first developed to detect seismic echoes.

1.3 Parabolic Interpolation

As any frequency domain algorithm, Parabolic Interpolation uses Fourier Transform

to get the frequencies from the time domain.

The goal of this algorithm is to obtain the abscissa of the peak of the sample analyzed

by successively fitting parabolas. It uses 3 points of the sample to create the parabola and find

the peak (either maximum or minimum).

2. Time Domain Algorithms

Time domain algorithms are based on how the signal changes over time. In this case,

the variable is always measured against time.

2.1 ZCR (Zero-crossing Rate)

Zero-crossing rate counts the number of times a signal passes through the value 0. In

time domain, the distance between two adjacent 0s is half the frequency of the signal (which

is represented by the amplitude), as the sinusoid has a positive and negative amplitude, so, if

that is taken into account, zero-crossing can be used to obtain the frequency of a signal.

 The formula is the following:

𝑍𝐶𝑅 =
1

𝑇 − 1
 1𝑅<0

 𝑠𝑡𝑠𝑡−1

𝑇−1

𝑡=1

or

𝑍𝐶𝑅 =
1

𝑇
 𝑠 𝑡 − 𝑠 𝑡 − 1

𝑇

𝑡=1

where

s: signal of length T

1R<0
: indicator function

2.2 Autocorrelation

 Autocorrelation is used to find similarities between the original signal and the signal

shifted. This is used to find the fundamental frequency by detecting the highest point of the

autocorrelation.

Degree’s Final Project Ainhize Goenaga

15

 This method is the most used and most precise when attempting to estimate pitch in

time domain.

To apply autocorrelation, the theoretical formula is the following:

𝑅 𝑚 = lim
𝑁→∞

1

2𝑁 + 1
 𝑥 𝑛 ∗ 𝑥(𝑛 + 𝑚)

𝑁

𝑛=−𝑁

where

N: length of analyzed sequence

M0 = number of autocorrelation points to be computed

However, in pitch detection, as the samples are finite, the following formula is used:

𝑅 𝑚 = 𝑥 𝑛 ∗ 𝑥(𝑛 − 𝑚)

𝑁−1−𝑚

𝑛=0

3. Frequency Domain vs. Time Domain

The following image (figure 4.3) shows the representation of a 1 kHz signal in time

domain and in frequency domain. It can be seen that they both are very different, as the first

one shows a periodic signal over time, the unmistakable figure of a sinusoid, and the second

one shows a peak at 1 kHz, as the x axis represents the frequency.

Figure 4.3: Difference between Time domain and Frequency domain

The table below contains the pros and the cons of each method.

Degree’s Final Project Ainhize Goenaga

16

 Pros Cons

Frequency Domain - Resistant to noise
- Able to process polyphonic

sounds
- Performs well with large

shift factors

- Computationally expensive
- Difficult to implement

Time Domain - Fast
- Easier to implement

- Unable to process

polyphonic sounds
- Less accurate with noise
- Performs poorly with large

shift factors

Table 4.1: Pros and Cons of Time domain and Frequency domain algorithms

Degree’s Final Project Ainhize Goenaga

17

CHAPTER 5

Work Environment

This chapter will explain the steps previous to start the work of implementing the

application. It will include the decisions made before designing the application. It also gives

the description of the technical elements that have been used to develop the project.

1. Hardware

For this project, the main device used has been a Toshiba laptop, version Satellite

L870-10Z, which includes a microphone to record the sounds. It is run in a 64-bit system.

Another device used is a tuner, to compare some results regarding to note frequencies.

2. Software

The laptop OS runs in Ubuntu 14.04 and has installed different packages to

implement the application.

The packages used are the following:

● SciPy: SciPy is a python-based ecosystem of open source software for mathematics,

science and engineering.

● NumPy: NumPy is the fundamental package for scientific computing with python. It

offers the following uses: a powerful N-dimensional array object, sophisticated

functions, tools for integrating C/C++ and Fortran code and useful linear algebra,

Fourier transform and random number capabilities. (belongs to SciPy)

● MatPlotLib: MatPlotLib is a python 2D plotting library which produces publication

quality figures in a variety of hardcopy formats and interactive environments across

platforms. (belongs to SciPy)

● PyAudio: PyAudio is a library that provides Python bindings for PortAudio v19, the

cross-platform audio I/O library. PyAudio can be used to play and record audio

streams on a variety of platforms (e.g., GNU/Linux, Microsoft Windows, and Mac OS

X).

● Wave: The wave module provides a convenient interface to the WAV sound format.

It does not support compression/decompression, but it does support mono/stereo.

All the previously mentioned packages are open source and are used in python, which

is the programming language that has been used to implement the application. They can be

obtained by installing them via pip, which is the recommended tool to install Python

packages, or by downloading them from their main website.

Degree’s Final Project Ainhize Goenaga

18

2.1 NumPy vs. SciPy

Even if the packages NumPy and SciPy are installed separately, they both belong to

the same module, which is SciPy.

If the goal is to develop a big scientific project in python, it is recommended to install both of

them, considering that they each focus on different aspects.

The NumPy package contains the array data type and some basic operations such as indexing,

sorting, reshaping and so on. But the reality is that NumPy focuses on compatibility, so it

tries to retain features supported by its predecessors. Even if NumPy contains some linear

algebra functions, Scipy is more complete in this area, so that’s why it is recommended to

install both of them.

3. Decisions

3.1 Python

 The decision was between four programming languages, which are Python, Matlab,

Java and C/C++.

After some research, Java was put aside, due to the fact that it doesn’t have much

support for these type of projects.

Matlab was the wisest choice as it was the one used in the subject “Procesado Digital

de Sonido e Imagen”, where some similar aspects were taught. However, one of the main

ideas behind this project was to learn something new, so Matlab was also put aside.

 The final choice was between C/C++ and python, each one with good open source

resources and pretty complete for this project. Below, a table with the differences between

both programming languages (see table 5.1):

 Python C/C++

Length of code Short Long

Declaration No need Necessary

Indentation Necessary No need (brackets)

Execution speed Slower Fast

Learning Easy Hard

Table 5.1: Difference between Python and C/C++

Observing the table above (see table 5.1) it can be seen that python has a faster

development and is more user friendly, and taking into account that the first version of the

project, where the robot was used to make the interaction, was written in python, the final

decision was to implement the application in this programming language.

Degree’s Final Project Ainhize Goenaga

19

3.2 Speech Recognition

Making an application that recognizes speech, and detects the notes of the song would

be a really interesting project, as the song chosen for the project has lyrics. Nevertheless,

speech recognition is a very complex discipline, and, for that reason, it was left aside in this

project.

On top of that, to make them both, speech recognition and pitch detection, work

together would be extremely laborious, as both are represented by frequencies, and there

would be mixed concepts.

3.3 Monophonic melody

 An example of polyphonic sound would be playing a polyphonic musical instrument,

as guitar, piano, violin, and playing more than one note at the same time. That would mean

the additional task of separating different sources of audio, which is quite difficult. For that

reason, the idea of processing polyphonic sounds was put aside.

3.4 Harmonic Product Spectrum (HPS)

 The first step for choosing the correct PDA (Pitch Detection Algorithm) was to decide

between time domain and frequency domain algorithms. After some research it was decided

that the most suitable one was frequency domain, as musical notes have a fundamental

frequency and harmonics, and frequency domain algorithms focuses on these concepts.

 Next step was to decide the algorithm. Even if any algorithm would work for this

project, HPS focuses more on harmonics, as downsampling the frame and then multiplying

the results highlights the fundamental frequency based on the harmonics.

3.5 Hanning Window

 Windowing a signal before applying the Fourier Transform is an essential step. There

is a wide range of window functions to choose from. There are a lot of criteria to choose the

most suitable window for each particular signal. However, the Hanning Window is generally

the one that works well in most of the cases, having a 95% of satisfactory results.

Degree’s Final Project Ainhize Goenaga

20

Figure 5.1: Hanning Window application's graphical view

Degree’s Final Project Ainhize Goenaga

21

CHAPTER 6

Design

 Before starting the implementation, a design is needed, to know the steps to follow. It

can be said that the application has two main parts, one regarding to the interaction between

user and application, and the other the sound process, the most important part of the

application.

1. Interaction

 The interaction is very basic and it is explained in the following diagram:

Figure 6.1: Interaction diagram between User and Application

 This diagram shows both the user and the application perspective.

Degree’s Final Project Ainhize Goenaga

22

From the top, the user opens the application and the application shows on screen the

songs available (in this case there is only one song, but the choice is there for future versions

of the application). After the user chooses the song, the application reproduces the

synthesized version of the song. When it finishes reproducing, the user plays back or sings

back the song and, when finished, presses <Enter> on the keyboard. While doing this, the

application is recording the song. After that, the application must process the audio recorded

to give its feedback.

2 Sound Process

Figure 6.2: Sound Processing block diagram

 The diagram above (see figure 6.2) shows the algorithm of the Harmonic Product

Spectrum applied to the recorded audio file.

● First, the application reads the file recorded and takes from it the interesting

information, such as the sample rate and the audio data.

● The information to be processed is the audio data. In a loop, which ends when the

audio file finishes, the steps are the following:

Degree’s Final Project Ainhize Goenaga

23

○ First a frame is taken from the audio data. The size of the frame should not be

too big, nor too small. Big frames leave fewer frequencies to be analyzed, so

the end result is less accurate. Small frames make the performance of the

algorithm more expensive, so more time is spent.

○ After having the frame, a Hanning Window is applied. This improves the

characteristics of the sample.

○ Next step is to Apply Fourier Transform to the windowed frame. This will

make the data of the signal become a series of frequencies so that fundamental

frequency extraction is easier.

○ From the frame, take the absolute values.

○ Once the frame is processed, apply downsampling to make the peak more

visible. The number of downsamples has been chosen after different attempts

and taking the one that shows the best result.

○ Once the frame is downsampled N times, those results are multiplied by each

other to have a unique result.

○ The result of the downsampled frame multiplication, the maximum peak is

chosen, and, from that peak, it is taken the x-axis value, which is the

frequency. This value is turned into frequency by doing some operations that

take into account the sample size and the sample rate.

3. Comparison

 The recorded file, after being processed, has to be compared with the synthesized

song to observe the difference between each other to determine if the song was played

properly.

 For this, the steps are the following:

● Auto-correlate the synthesized song. This will look like a perfect parabola.

● Correlate the synthesized audio file with the recorded one. The result will also look

like a parabola, but it will have some parts different from the previous one, as the

sound isn’t exactly the same.

● As the recorded audio can have a little bit of delay (the user starts playing the song

seconds after the recording starts), this delay is calculated, and the start of the song

that corresponds to the delay is deleted.

● The correlation between the synthesized audio and the recorded audio is done a

second time, this time without delay. The result will deduce if the song was played

properly or not.

Degree’s Final Project Ainhize Goenaga

24

CHAPTER 7

Implementation

This chapter will explain the implementation of the application. It will be separated

into different parts, as the application is composed by more than one script, each one focused

on different aspects.

1. Sound Processing

 Everything that has to do with sound processing is located in this script, called

soundProcessing.py. This script is separated into different functions, to make the code

clearer, and the code has comments to make it more understandable.

 From top to bottom, the functions that appear in the script will be explained:

1.1 Read_File

Figure 7.1: Read_File function's block diagram

This function focuses on reading an audio file and taking from it the information

needed to do sound processing. The interesting information is the sample rate and the audio

data. The audio data is plotted to see the graphical view of it. In addition, Fourier Transform

is applied to plot the audio data in frequencies. Last but not least, the function returns the

sample rate and the audio data.

read audio file depending on mono or stereo
if synth == 0:
 self.fs, self.data = wavfile.read(file_name)
else:
 self.fs, self.data2 = wavfile.read(file_name)
 self.data = self.data2.sum(axis=1) / 2

return [self.fs, self.data]

Degree’s Final Project Ainhize Goenaga

25

To obtain the important information from the audio file it has been used the function

wavfile.read, which is part of the SciPy’s input/output package. To apply Fourier

Transform, the function used has been fft.rfft, this function belongs to NumPy package.

Finally, to plot the results it has been used the package MatPlotLib, and from it the functions

pyplot.plot and pyplot.show.

1.2 HPS_Algorithm

Figure 7.2: HPS_Algorithm function's block diagram

This function takes as parameters the sample rate and the audio data from

Read_File. As explained in the previous Chapter, which explains the design of the

application, the audio process has to be done in frames, as the whole file is too big to be

processed in once. The size of the frame is 2048, as it isn’t too small nor too big. The frame is

modified by applying a Hanning Window, applying the Fourier Transform and taking the

absolute values. After that, it is downsampled 8 times and these results multiplied to get the

Maximum Peak. From the Maximum Peak, the application obtains its position in the x-axis,

as that corresponds to the frequency. This position is converted into frequency by multiplying

with the sample rate and dividing with the frame size and, after that, it is saved in an array so

that the whole data can be plotted. The function returns the array and the number of frames.

for i in range(n_frag):
 frag = data[f_start:f_end] # take a fragment of the file
 frag_win = frag * hann(SAMP) # apply a hanning window to the fragment
 X = abs(fft.rfft(frag_win)) # do the fourier transform

 hps = copy(X) # copy to do the downsample

 # downsampling
 for h in range(2, 6):
 downsample = decimate(X, h)
 hps[:len(downsample)] += downsample

Degree’s Final Project Ainhize Goenaga

26

 # find the position of the max peak and convert to freq
 peak_pos = argmax(hps[:len(downsample)])
 freq = fs * peak_pos / SAMP

The Hanning Window is part of the SciPy’s signal package, and it is called hann.

Fourier Transform is the same as in the previous script, which is fft.rfft from NumPy. To

downsample the frame, it has been used the function decimate, which is part of the SciPy’s

signal package. After that, to find the maximum peak’s position, argmax is the function that

has been used, which is part of the NumPy package. Finally, the plotting of the frequencies is

done with pyplot, explained earlier. All the other operations don’t need any additional

package.

1.3 Create_File

Figure 7.3: Create_File function's block diagram

 This function creates sinusoids based on the frequency array obtained from the

previous function. To do this, there are two loops, one inside the other. To convert the

frequency into sinusoid, the function multiplies each frequency of the array with 2π and

another variable which goes from 1 to 2048 (the frame size). Without this last variable, the

file obtained would be 2048 times smaller than the original file, as, when framing the audio

data, each frequency is obtained from a 2048 sized frame. After that, the result is divided by

the sample rate and converted into a sinusoid, to save into an array that will be used to obtain

the file.

for n in range(n_frag):
 for t in range(1, 2048):
 phase = sin(2 * pi * f0[n] * t / fs)
 song.append(phase)

create final audio file
npsong = array(song)
wavfile.write('f0.wav', fs, npsong)

Degree’s Final Project Ainhize Goenaga

27

The sinusoid function used is called sin and it is part of the NumPy package. To

generate the audio file, it has been used wavfile.write, which is included in the

input/output package of SciPy.

1.4 Correlation

Figure 7.4: Correlation function's block diagram

 This function first auto-correlates the original song and correlates the original song

with the recorded one. After that, it calculates the delay between the recorded song and the

original song and it eliminates it. It correlates again the original song with the recorded song

without any delay and, after plotting both correlations, it compares the original song’s auto-

correlation with the recorded song’s correlation and plots the result.

auto-correlate the synthetised audio
corr_orig = corr_s(orig, orig, mode='same') # correlation

correlate the synthetized audio with the recorded one
corr_reco = corr_s(orig, reco, mode='same') # correlation

calculate the delay between the two signals
delay_reco = int(len(corr_reco)/2) - argmax(corr_reco)
print delay_reco
print len(reco)

delete the delay of the recorded audio signal
delay_reco *= 2
while delay_reco > 0:
 reco.pop(0)
 delay_reco -= 1

correlate again without delay
corr_reco = corr_s(orig, reco, mode='same')

delay_reco = int(len(corr_reco)/2) - argmax(corr_reco)

The correlation function is part of the SciPy’s signal package and is called

correlate. To plot the results it is used the package MatPlotLib, and from this package, it

Degree’s Final Project Ainhize Goenaga

28

uses pyplot.plot, pyplot.subplot (to plot more than one graphic in the same image)

and pyplot.show.

2. Interaction

For the interaction between the user and the application, another script was created,

which is called MyClass.py. This script contains the visual aspects and the interactive

diagram shown previously (see figure 6.1). The first function is Introduction, which don’t

need any explanation as the only thing it does is print some lines on the console. This script is

also separated in different functions that are listed below:

2.1 Song_Choice

 Song_Choice opens the file which contains the song list, reads each line one at a

time and saves them on a vector variable to show them on screen. After this, the user selects a

song, if the choice is wrong, the application lists again the available list of songs.

choice = 1;
opens the file which contains the songs available
f = open("songs", 'r')

reads the file to get the songs
for line in f:
 print line
 words = line.split('.')
 for word in words:
 self.vocabulary.append(word)

while the number entered is wrong, keeps asking the correct number
while choice == 1:
 self.song = raw_input("\nWrite the number of the song and press enter: ")

 if self.song in self.vocabulary:
 choice = 0

 else:
 print "\nThat song doesn't exist.\n"
 choice = 1

The first variable shown in the code is choice, which is used as a flag variable, to

know if the number introduced by the user is correct or incorrect. After that, the function

opens the file which contains the list of the songs available and reads the file line by line to,

then, print each line, which will be the identification number for the song, and the name of

the song. The song’s identifier is also saved in an array, called self.vocabulary. After

that, the code starts a loop until the user chooses a song that is in the array.

2.2 Sing_Song

 This function reproduces the song that the user has chosen in the previous function.

Degree’s Final Project Ainhize Goenaga

29

open the audio file selected
if self.song == "1":
 print "\nYou chose Twinkle twinkle little star."
 wf = wave.open("twinkle_synth.wav", 'rb')

create a pyaudio type variable to reproduce the sound
streamp = p.open(format=p.get_format_from_width(wf.getsampwidth()),
channels=wf.getnchannels(), rate=wf.getframerate(), output=True)
datap = wf.readframes(1024)

while the file doesn't reach the end, keep reproducing the audio file
while datap != '':
 streamp.write(datap)
 datap = wf.readframes(1024)

First, the function uses the PyAudio package’s PyAudio() function to initialize a

variable, called p, that will be used to reproduce the audio file. After that, the code saves the

audio file information using the package Wave, which contains the function open(). Using

the variable p, the function creates a stream with the function open() included in the

PyAudio package that will be used to reproduce the song. This variable, called streamp, will

be initialized with the necessary information for reproducing the file, such as the sample rate,

number of channels and the format. All this information will be obtained from wf, the

variable which contains the audio information. After that, the script takes information from

wf frame by frame, with a size of 1024, and reproduces it until the audio data is finished.

2.3 Listen_Song

 Listen_Song is the function that records the song played by the user.

create a pyaudio variable to record the sound
streamc = pc.open(format=pyaudio.paInt16, channels=2, rate=44100, input=True,
frames_per_buffer=1024)
frames = []

record the sound until <Enter> is pressed
while True:
 datac = streamc.read(1024)
 frames.append(datac)
 if L:
 break

This function initializes a variable called pc, which is the same a p from the previous

function. For that, it is used the function PyAudio() from the package PyAudio. After that, a

stream variable is initialized, called streamc. This variable uses the function open() from

the package PyAudio, and some additional information is included, such as the sample rate,

the number of channels and the format. In a loop, that will end when the user presses the key

<Enter>, the function records the audio frame by frame, which has a size of 1024. For

Degree’s Final Project Ainhize Goenaga

30

recording audio it uses the function read, applied to the variable streamc, included in the

PyAudio package. When the user presses <Enter>, the function closes all the variables and

terminates the recording.

2.4 Compare_Files

 Compare_Files uses the functions from the script soundProcessing.py to apply

the HPS algorithm and to apply the correlation for the comparison.

 First, two variables are initialized, which are going to be used to save the frequency

sequence of the synthesized song and the recorded audio. These variables are two arrays

called f0_orig and f0_reco. After that, the function Read_File from the script

soundProcessing.py is used to open both audio files, the synthesized song and the

recorded audio. As this function returns the sample rate and the audio data, those variables

are used in the HPS_Algorithm function from soundProcessing.py. Finally, the

Correlation function from soundProcessing.py is used, to compare both audio files.

3. Synthesized Song

 To compare the recorded audio with the perfect frequency sequence of the song, a

synthesized song was created. This application creates a sequence that consists of the

frequencies of the song’s notes and it converts it into an audio file.

3.1 note

This function takes as arguments the frequency, the amplitude and the sample rate and

it converts into a sinusoid, so that an audio file can be created out of those frequencies.

def note(freq, len, amp=10000, rate=44100):
 t = linspace(0, len, len*rate)
 data = amp*sin(2*pi*freq*t)
 return data.astype(int16)

To create a variable with a specific length for each note linspace from NumPy is

the function used. For example, if the played note is a quarter note (also called crotchet), the

length is 1, if it is an eighth note (also called quaver) the length is 0.5, and so on. Then, to

convert it into sinusoid, it is used sin from NumPy, and the frequency is multiplied by 2π

and the time obtained with linspace.

3.2 main

 Apart from the function mentioned, this script contains all the frequencies that the

song is made of, and using a concatenation function, all the frequencies are concatenated and

converted into an audio file.

Degree’s Final Project Ainhize Goenaga

31

 The concatenation function used is called concatenate, which is also part of

NumPy. And, finally, to create the audio file, it is used wavfile.write, from SciPy’s

input/output package.

4. Tuner

Apart from the application that is focused on the project’s purpose, another

application was made to visualize on screen the notes played by the user. For this application

Parabolic Interpolation was used, as the results between HPS and this algorithm were quite

different, and the second one had the option of processing in real-time. The script that

contains the main functions for the tuner is called findNote.py, and its functions are used

in the script Tuner.py.

4.1 Record

 This function processes the audio that is recording in real-time. For this, it uses the

Parabolic Interpolation algorithm. As the function processes audio in real-time, the audio that

is being recorded has to be processed at the same time. To do that, the chunk that is recorded,

which has a length of 1024, is saved and converted into an array, as the recorded piece is in

binary format. After that, the algorithm applies the Hanning Window, performs Fourier

Transform and finds the maximum peak.

Information for the recording
stream = p.open(format=pyaudio.paInt16, channels=1, rate=44100, input=True,
frames_per_buffer=1024)
frames = []

Record audio frame by frame
while True:
 data = stream.read(1024)
 dec = numpy.fromstring(data, numpy.int16); # convert binary data into
array
 indata = dec*hann(1024) # apply hanning window
 fft = abs(numpy.fft.rfft(indata))**2 # do Fourier transform

 peak = fft[1:].argmax() + 1 # find max peak

 # Parabolic Interpolation
 if peak != len(fft) - 1:
 y0, y1, y2 = numpy.log(fft[peak - 1:peak + 2:])
 x1 = (y2 - y0) * .5 / (2 * y1 - y2 - y0)
 freq = (peak + x1)*44100 / 1024 # find the frequency and
output it

 else:
 freq = peak * 44100 / 1024

 a.Convert_To_Note(freq) # obtained frequency's corresponding
musical note
 f0.append(freq)

Degree’s Final Project Ainhize Goenaga

32

 if L:
 break

First of all, the function initializes the variable that will be used to record the audio.

This variable is called p, and it uses PyAudio() from the package PyAudio. After that, the

streaming variable is initialized using the variable p and the function open() from PyAudio.

It also needs additional information such as, sample rate, number of channels and the format.

Then, the function enters in a loop that will end when the user presses the key <Enter>. In

this loop, the audio will be recorded in frames of the size of 1024. This frame, first, has to be

converted into a normal format, which is done by using the function fromstring() from

the package NumPy. When the format is the correct one, the frame is modified by applying a

Hanning Window, function hann() from SciPy’s signal package, the Fourier Transform,

function fft.rfft() from NumPy, and taking the absolute value. First it is used the

function argmax() to obtain the maximum peak. To this peak, the function applies the

Parabolic Interpolation method, which will obtain a single maximum peak depending on the

surroundings of the peak obtained earlier. Finally, the maximum peak will be converted into

its corresponding frequency by multiplying it with the sample rate and dividing it with the

frame size, and the function will print the frequency and its corresponding musical note.

4.2 Convert_To_Note

 Convert_To_Note focuses on converting the frequencies obtained when applying

the Parabolic Interpolation to the audio into its equivalents for musical notes. For this, it is

used a file which contains all the musical notes and its frequencies on a list. The audio

recorded might not be the exact frequency of the note, to solve this problem, it was used an

approximation which consists on dividing the note by 2
10/1200

.

a = 1.005792941 # 2**(10/1200)

find corresponding note
for n in range(len(notes)):
 if float(notes[n][1])/a <= f0 <= float(notes[n][1])*a:
 print "Frequency: ", f0, "\tMusical Note: ", notes[n][0]

 First thing is to open the file which contains the musical notes and their corresponding

frequencies. After that, each line from the file is saved in an array to separate the frequency

and the name of each musical note. The variable a is used to have a margin in the process of

finding the corresponding musical note, as the notes played with the instrument aren’t always

the exact frequency of the note. After that, the function enters in a loop that will last until all

the frequencies from the file are compared with the recorded note and the frequency and the

corresponding musical note’s name will be printed. If, by any chance, the frequency recorded

doesn’t correspond to any frequency from the file, despite of the margin, then, the frequency

won’t be printed.

Degree’s Final Project Ainhize Goenaga

33

CHAPTER 8

Testing

This chapter includes all the tests that have been carried out. The chapter is divided

into two sections, the first one being the main application for the project, and the second one

being the tuner explained previously.

This chapter also includes the notes that form the song chosen.

1. Application

1.1 Song

 As mentioned through the memory, the song chosen to perform the tests for the

application is “Twinkle, twinkle, little star”, a well-known English lullaby translated into

several languages.

 The decision to choose this song was because it is a very easy song to play, and that

gives a better clarity when testing the application.

 The following score or music shit is the one used, as it can have variations depending

on the octave and the musical notation.

Figure 8.1: Twinkle, twinkle, little star song's music sheet

 The musical notes used for this song are: C (Do), D (Re), E (Mi), F (Fa), G (Sol) and

A (La), and the corresponding frequencies are the following: 523.25, 587.33, 659.26, 698.46,

783.99, 880 and 987.77.

 For this project, it was only taken the first part of the song.

1.2 Flute

 This is the experiment that was made performing the song on a flute.

Degree’s Final Project Ainhize Goenaga

34

Figure 8.2: Signal data obtained from performing the song with the flute

 This picture is the audio data recorded with the microphone without any modification.

We can observe clearly that the notes are separated by gaps, which mean that there is a

silence in between. The next picture is a zoom to the first note:

Figure 8.3: Signal data's zoom in the first note

 In this picture we can see that the graph is made of sinusoid waves. To determine the

frequency from this note, we can calculate the distance between two contiguous peaks and

compute some operations. The operations are the following:

Degree’s Final Project Ainhize Goenaga

35

𝐹𝑟𝑒𝑞 =
1

𝑑𝑖𝑠𝑡 ∗ (1
𝑓𝑠)

In this case, it would be: 1 / (84 * (1 / 44100)), and the result is 525 Hz. That frequency

corresponds nearly to the note C3 (Do).

Figure 8.4: Fourier Transform of the signal data from the flute

The picture above represents the frequencies that appear in the audio recorded. To

obtain this graph, the Fourier Transform was applied to the audio data.

Figure 8.5: Comparison between synthesized audio's fundamental frequency sequence and recorded audio's

fundamental frequency sequence (FLUTE)

Degree’s Final Project Ainhize Goenaga

36

The graph on the left shows the synthesized song’s result after processing the audio.

On the other hand, the graph on the right shows the results of the song performed with the

flute. The results aren’t exactly the same comparing with the synthesized audio, as, the

recorded file could contain noise that can create distortions. However, the shape of the wave

is very similar to the original one, which means that the algorithm used is appropriate for

flute sounds.

Figure 8.6: Comparison between synthesized audio's auto-correlation and recorded audio's correlation (FLUTE)

 The graph above shows the difference between the synthesized audio’s auto-

correlation and the correlation between the synthesized audio and the recorded one. We can

say that, the main shape of the correlation is similar to the auto-correlation, as, at the

beginning, the graph goes up and then down. However, in the auto-correlation graph we can

see small peaks that in the other graph don’t appear. Additionally, the second graph’s wave is

irregular in some places.

1.3 Piano

 This experiment shows the results obtained when performing the song with the piano:

Degree’s Final Project Ainhize Goenaga

37

Figure 8.7: data obtained from performing the song with the piano

 To begin with, we can compare this audio data to the one in the previous experiment,

and we can observe the difference between them. An aerophone musical instrument depends

on the air that the user throws through an opening. That means that the amplitude depends on

the force of the air. On the other hand, with string instruments, the amplitude depends on the

vibrations of the strings; at the moment of playing the key, the string moves with more power

than at the end. That can be seen in this picture, where the beginning of each note has higher

amplitude, and it decreases gradually until the next note is played.

Figure 8.8: Fourier Transform of the signal data from the piano

Degree’s Final Project Ainhize Goenaga

38

 The picture above shows the Fourier Transform of the recorded audio. This is used to

process the audio and obtain the fundamental frequencies.

Figure 8.9: Comparison between synthesized audio's fundamental frequency sequence and recorded audio's

fundamental frequency sequence (PIANO)

 The same way as in the previous experiment, the first picture represents the

fundamental frequencies of the synthesized audio, and the second picture shows the

fundamental frequencies obtained when processing the recorded audio data. We can observe

a difference between these two pictures, as well as between previous experiment’s and this

experiment’s recorded audio’s results. The problem starts in the second note of the song,

which, in reality, it should be higher than the first one, but, when processing the audio, the

algorithm detects a lower note. If we compare the frequency obtained and the table of

frequencies, we notice that the note was detected correctly, but the algorithm detected the

note in a lower octave than the actual one. That is a common problem for inharmonic musical

instruments, and it is called “octave error” or “octave problem”.

Figure 8.10: Comparison between synthesized audio's auto-correlation and recorded audio's correlation

(PIANO)

Degree’s Final Project Ainhize Goenaga

39

 This picture shows the difference between the auto-correlation of the synthesized

audio and the correlation between the synthesized audio and the recorded one. The shape of

the graph below is similar to the one on top, however, comparing to the result obtained with

the flute, we can see that this one differs more than the previous one, that is because of the

octave error.

2. Tuner

As explained earlier, the tuner is only a tool to know the musical note that it is being

played. To perform these tests, apart from the song mentioned, random musical notes were

used as well as continuous notes of a specific octave.

Something to take into account is that the PDA used in the tuner is Parabolic

Interpolation, so the results might be different from the HPS one.

2.1 Flute

● Octave with silence:

Figure 8.11: Do's Scale with silence

The first try with the flute was playing an entire octave from C5 (Do) to C6 (Do)

making stops between two contiguous notes. The following test is what the application prints

on scream. However, some lines were deleted to take a sample of 3 frequencies from each

note.

Frequency: 526.247236642 Musical Note: C5

Frequency: 526.224334769 Musical Note: C5

Frequency: 526.159616679 Musical Note: C5

Frequency: 588.956842449 Musical Note: D5

Frequency: 590.643585642 Musical Note: D5

Frequency: 590.517785397 Musical Note: D5

Frequency: 658.406786313 Musical Note: E5

Frequency: 662.375983472 Musical Note: E5

Frequency: 662.203928416 Musical Note: E5

Frequency: 701.555209472 Musical Note: F5

Frequency: 701.042208649 Musical Note: F5

Frequency: 700.902345274 Musical Note: F5

Frequency: 781.118648009 Musical Note: G5

Frequency: 785.453010747 Musical Note: G5

Frequency: 784.960631155 Musical Note: G5

Frequency: 875.955704832 Musical Note: A6

Frequency: 875.135642098 Musical Note: A6

Frequency: 876.762218065 Musical Note: A6

Degree’s Final Project Ainhize Goenaga

40

Frequency: 983.297576904 Musical Note: B6

Frequency: 986.625169048 Musical Note: B6

Frequency: 987.200393186 Musical Note: B6

Frequency: 1041.42400976 Musical Note: C6

Frequency: 1042.52368264 Musical Note: C6

Frequency: 1046.24383968 Musical Note: C6

The graphical plot of this recorded piece is the following:

Figure 8.12: Fundamental frequency sequence of octave with silence

 This graphic shows that, between two contiguous notes, there is a gap where the

frequency goes up or down. The frequencies that go down mean that, at that moment, there

wasn’t any sound, which corresponds to the stops made between the notes. The frequencies

that go up mean that the air was thrown in the flute when changing from one note to another,

which makes a sound that doesn’t correspond to any note.

● Octave without silence:

Figure 8.13: Do's Scale without silence

Continuing with the octave tests, the following try with the flute was playing the same

octave from C5 (Do) to C6 (Do) without stops between notes. For this try, the frequencies

and its corresponding names are the same as above, so it won’t be shown the result that prints

the application.

Degree’s Final Project Ainhize Goenaga

41

Figure 8.14: Fundamental frequency sequence of octave without silence

 Comparing this graphic to the one made with silences between notes, it can be seen

that there isn’t any outstanding peak between two contiguous notes. In addition, it shows in a

better way the ladder form of the graphic which corresponds to the idea of the octave.

● Song:

Figure 8.15: Twinkle, twinkle, little star song's first part (FLUTE)

The next test was made with the song of the project, which is “twinkle, twinkle, little

star”. The following is the result printed by the application with some lines deleted due to the

fact that the result is too long to put it here:

Frequency: 525.631523081 Musical Note: C5

Frequency: 525.572564781 Musical Note: C5

Frequency: 525.401649625 Musical Note: C5

Frequency: 525.616385601 Musical Note: C5

Frequency: 788.318749984 Musical Note: G5

Frequency: 780.096245818 Musical Note: G5

Frequency: 781.276024409 Musical Note: G5

Frequency: 780.993046956 Musical Note: G5

Frequency: 882.838535146 Musical Note: A6

Frequency: 875.577822102 Musical Note: A6

Frequency: 882.852953386 Musical Note: A6

Frequency: 883.699923059 Musical Note: A6

Frequency: 779.710306131 Musical Note: G5

Degree’s Final Project Ainhize Goenaga

42

Frequency: 781.132983449 Musical Note: G5

Frequency: 781.628988041 Musical Note: G5

Frequency: 782.379080532 Musical Note: G5

Frequency: 700.584601515 Musical Note: F5

Frequency: 698.254403266 Musical Note: F5

Frequency: 700.819653946 Musical Note: F5

Frequency: 698.557013487 Musical Note: F5

Frequency: 657.567920286 Musical Note: E5

Frequency: 661.379031402 Musical Note: E5

Frequency: 657.736365692 Musical Note: E5

Frequency: 656.321432355 Musical Note: E5

Frequency: 586.801040294 Musical Note: D5

Frequency: 586.937245306 Musical Note: D5

Frequency: 588.231736403 Musical Note: D5

Frequency: 588.756656659 Musical Note: D5

Frequency: 522.769037898 Musical Note: C5

Frequency: 522.792949687 Musical Note: C5

Frequency: 523.483139718 Musical Note: C5

Frequency: 524.096733887 Musical Note: C5

The following image (see picture 8.16) is the graphical representation of the

performance:

Figure 8.16: Song's fundamental frequency sequence (TUNER - FLUTE)

 Even if the graphic isn’t very precise, it can be seen that it has a ladder form with

some jumps bigger than others. Between the first and the second notes the jump is big

Degree’s Final Project Ainhize Goenaga

43

because between the notes C5 (Do) and G5 (Sol) are 5 notes of distance. The other jumps are

small because there only is one note of difference. As explained before, between two

contiguous notes, they appear some peaks that could mean silences or air thrown between

two notes.

2.2 Piano

● Octave:

Figure 8.17: Do's Scale

The first test with the piano was playing an octave from C5 (Do) to C6 (Do). This is

the result that the application prints on screen. As in the other tests, some lines were deleted

to make the result shorter:

Frequency: 523.635714521 Musical Note: C5

Frequency: 523.744862777 Musical Note: C5

Frequency: 522.737147255 Musical Note: C5

Frequency: 293.010867189 Musical Note: D4

Frequency: 292.965463528 Musical Note: D4

Frequency: 293.824974524 Musical Note: D4

Frequency: 329.101377619 Musical Note: E4

Frequency: 329.197428718 Musical Note: E4

Frequency: 329.997675646 Musical Note: E4

Frequency: 1048.55117457 Musical Note: C6

Frequency: 1047.52998599 Musical Note: C6

Frequency: 1045.28746697 Musical Note: C6

Frequency: 392.174443322 Musical Note: G4

Frequency: 391.744272351 Musical Note: G4

Frequency: 391.364691171 Musical Note: G4

Frequency: 440.548147057 Musical Note: A4

Frequency: 440.084143551 Musical Note: A4

Frequency: 441.004700839 Musical Note: A4

Frequency: 493.743881637 Musical Note: B4

Frequency: 494.253102287 Musical Note: B4

Frequency: 494.939419253 Musical Note: B4

Frequency: 523.849572947 Musical Note: C5

Frequency: 524.682059343 Musical Note: C5

Frequency: 522.781395046 Musical Note: C5

 Observing the frequencies and the corresponding names on the result, we can

conclude that something went wrong, as, being an octave, the notes and the frequencies

should follow an increasing pattern. However, the note itself was well detected, the problem

appears when detecting the octave.

Degree’s Final Project Ainhize Goenaga

44

Figure 8.18: Do's Scale fundamental frequency sequence (PIANO)

 The graphical representation shows better the errors that occurred in this test.

● Song:

Figure 8.19: Twinkle, twinkle, little star song's first part (PIANO)

The second test with the piano was playing the song “twinkle, twinkle, little star”.

Frequency: 522.079064831 Musical Note: C5

Frequency: 524.312346383 Musical Note: C5

Frequency: 523.961795776 Musical Note: C5

Frequency: 523.406730141 Musical Note: C5

Frequency: 392.617493509 Musical Note: G4

Frequency: 392.230856632 Musical Note: G4

Frequency: 391.983795191 Musical Note: G4

Frequency: 393.020316425 Musical Note: G4

Frequency: 441.234334883 Musical Note: A4

Frequency: 440.953248788 Musical Note: A4

Frequency: 439.861105811 Musical Note: A4

Frequency: 440.717828713 Musical Note: A4

Frequency: 391.568809265 Musical Note: G4

Frequency: 391.730325363 Musical Note: G4

Frequency: 391.789909422 Musical Note: G4

Frequency: 391.442072355 Musical Note: G4

Degree’s Final Project Ainhize Goenaga

45

Frequency: 348.811604952 Musical Note: F4

Frequency: 350.634331014 Musical Note: F4

Frequency: 349.064900064 Musical Note: F4

Frequency: 351.165899308 Musical Note: F4

Frequency: 329.570107036 Musical Note: E4

Frequency: 328.702621348 Musical Note: E4

Frequency: 329.152449987 Musical Note: E4

Frequency: 328.690307473 Musical Note: E4

Frequency: 292.828883515 Musical Note: D4

Frequency: 293.345225334 Musical Note: D4

Frequency: 292.924093785 Musical Note: D4

Frequency: 293.677714315 Musical Note: D4

Frequency: 523.237991751 Musical Note: C5

Frequency: 523.839721143 Musical Note: C5

Frequency: 523.173968454 Musical Note: C5

Frequency: 523.061814656 Musical Note: C5

As in the previous test, this one also shows that there has been a problem when

detecting the octave, despite of the fact that the note is detected properly.

Figure 8.20: Song's fundamental frequency sequence (TUNER - PIANO)

The graphical representation also shows the problem that appears when playing the

song on the piano comparing to the results obtained with the flute.

3. Conclusions

The comparison between the results obtained when performing with the flute and the

piano are quite different.

Degree’s Final Project Ainhize Goenaga

46

In the first case, the flute, being a harmonic musical instrument, the results are the

ones expected. Even if there can appear some variations that the algorithm doesn’t detect as a

note, overall, it is satisfactory.

However, the piano, being an inharmonic musical instrument, the results obtained

aren’t as good as the flute’s ones. This happens when the harmonics of the fundamental

frequency aren’t exactly its multiples. An example could be that the first harmonic of the

frequency 440 Hz, instead of being 880 Hz, it appears as 880.4 Hz. The inharmonicity in

stringed instruments depends on the string’s elasticity, length and stiffness.

Degree’s Final Project Ainhize Goenaga

47

CHAPTER 9

Improvements

This chapter will include possible future improvements that can be made in the

application to have a better accuracy and robustness. It also will include some applications

that could use this experiment to make a bigger project.

1. Improve Application

 There are some areas where the application can be improved. These areas are the

precision of the PDA (Pitch Detection Algorithm), the feedback system and the interface.

1.1 PDA Precision

 At the moment of testing the application, it can be seen that it doesn’t have much

precision when processing the recorded audio.

 When comparing the Pitch Detection Algorithms, HPS was thought to be the best one

for this project, as it was oriented more to music than the other ones. Even if it is quite

precise, it doesn’t have the precision required to make the application outstanding. To

improve this aspect, there are two ways:

● Test HPS with more settings: HPS can be implemented with different settings, such

as a different frame size and different number of downsamples. This option has been

tested in this project briefly, but hasn’t been given much time, as the first time that the

results were passable, the parameters were left like that.

● Use another PDA: There are a lot of Pitch Detection Algorithms that can be used

instead of HPS. When implementing the Tuner, it was used Parabolic Interpolation,

which gave better results than HPS and in real-time. When applying this algorithm for

the main application of the project, the results were worse than using HPS. That

doesn’t mean that it can’t be used. In addition, there are more algorithms apart from

these two that haven’t been tested in this project.

1.2 Feedback System

 The feedback system couldn’t be finished because of bad time management. The

initial idea was to show the points where the performance was worse and remark the

percentage that had been well performed.

 To improve this, apart from the mentioned aspects, some other things could be

included. The application could process sound in real-time and give a real-time feedback,

such as make a beep sound when the user fails in a note.

Degree’s Final Project Ainhize Goenaga

48

1.3 Interface

 As an experimental application, the interface shown is a very basic one, which only

depends on the console. This can be improved by using a GUI package from Python. One

GUI package that can be used would be Tkinter, but there are lots of options.

 The application would have a welcoming page that explains the main idea of the

application. Then, it would have a ComboBox from where the user could choose the song.

After reproducing the song chosen, the application would show the whole process while

recording the audio, such as a graphical view of the sound. It would also contain an option

that would be Advanced Options. This CheckBox would open a menu where the user could

choose different settings for the sound processing part, such as the frame size, the PDA

algorithm used (this choice would involve implementing different PDA algorithms instead of

using only HPS), the way that the feedback is given and so on. Finally, apart from the main

application, the graphical interface would also include the tuner, which has been implemented

in this project.

2. Possible Developments

In this section there will be a list of different applications that can be made based on

this experiment. These applications are only some ideas that came to my mind, however,

anyone reading this document can think of other possible developments.

2.1 Implement into NAO

As the original idea of the project, having more time, this experiment could be used to

develop a system dependent of a humanoid robot, such as NAO, to have a more comfortable

and easy interaction between user and application.

The initial work can be seen in the Appendix I, as, for this project, the implementation

was started using NAO.

2.2 Polyphonic Sound

The experiment uses only monophonic sound, which means it can only be played one

musical instrument at a time to process the sound. However, this project can be used to make

an application that processes polyphonic sound. To do this, it is necessary having a more

deep knowledge about sound processing, as separating the sources of the audio is really hard.

2.3 Songs with Lyrics

A possible development based on this experiment could have the additional aspect of

processing the lyrics of the recorded audio, as well as the musical instrument sounds. This

development can be separated into three parts:

● Only lyrics: An application that processes the lyrics of a song could be used to

memorize the song itself, without taking into account the melody or the musical

instruments that accompany the song. For this, the only method that would be used is

speech recognition.

Degree’s Final Project Ainhize Goenaga

49

● Lyrics and Melody: This application would process the melody sang by the user and

would do speech recognition to process the lyrics. This is a more complex

implementation that the previous one. On the one hand, the melody is mixed with the

lyrics, so separating both things is needed. On the other hand, speech recognition is

based on formants, which are the representations of the vowels and consonants that

are based on frequencies.

● Lyrics and Musical Instruments: The last option would be to have a musical

instrument accompanying the lyrics. This would be a mix of the second point of this

section and the experiment of this project. This application would need to separate the

musical instrument’s sound from the lyrics, and, after that, the lyrics and the melody.

Degree’s Final Project Ainhize Goenaga

50

CHAPTER 10

Conclusions

This chapter will explain personal experiences lived through the period of the

development of the project and the learnt lessons that could be useful for future projects.

1. Project’s Conclusions

 The project’s main idea has been successfully accomplished, which is developing an

application capable of processing an audio recorded and comparing it with a synthesized

version to see how similar they are. However, the application can be improved to achieve

more accuracy and efficiency.

 At the beginning, deciding to use HPS as the algorithm for the sound processing part

was a good idea, as, comparing to other algorithms was the best for this project. However, the

fact that it can’t process sound in real-time was a huge disadvantage. I also tried using the

Parabolic Interpolation algorithm, which has the ability to process sound in real-time, but,

when the testing came, I realized that HPS has more precision, so I decided to make a tuner

as an extra task.

The sound processing was the task that took me the most time to accomplish, and it is

one of the reasons that I couldn’t build a good feedback system. The initial idea was to

compare the synthesized and the recorded audios and to show a percentage of how well it was

performed and to point out the notes that hadn’t been well played. However, in the end the

application shows some graphics that represent the difference between both audios, which is

not a good feedback system.

2. Personal Conclusions

2.1 Personal Experiences

 Developing such a big project for the first time was an experience that couldn’t be

compared with any other projects that I had to make during my university period. Even if

teachers taught us well, this project was in a completely different level. On the one hand, to

come up with the idea without knowing certainly that it could be made was a very scary

situation. On the other hand, having to develop everything on my own was also scary and,

sometimes, discouraging. Nevertheless, with the help of my tutor, friends and family, I can

say that, at the end, this has been a really fascinating experience that helped me grow and see

things with another point of view.

Degree’s Final Project Ainhize Goenaga

51

 The fact that the initial idea for the project had to be put aside caught me by surprise,

and it was discouraging knowing that the hours spent with the robot were going to be useless.

However, at this moment, after finishing the project, I can say that, despite the fact that it was

quite depressing, it made me work harder and see things from another perspective.

 The choice of developing something related to music was really attractive for me, as I

always loved and will love music. Before starting with the project, the only things that I knew

about music were playing and instrument and singing. Being able to implement this

application gave me the chance of deepening my knowledge about music by learning the

physics of it, and I found out that it is something that I like a lot.

2.2 Learnt Lessons

I would say that, the main learnt lesson during this project is the programming

language that I used, which is Python. At the beginning I thought that, implementing the

application in a language that I haven’t used before would be a disadvantage, but, after

writing small testing programs, I realized that it wasn’t going to be a big problem, as the

language itself is easy to learn and easy to code. However, as every programming language

is different from the other ones, I had to get used to programming with this one, as it is quite

different from the others that I have used.

Sound processing was also a pretty challenging task. Even if in the subject “Procesado

Digital de Sonido e Imagen” we have learnt the basics, the level of the skills needed for this

project was in a completely different level and the majority of the references are taken from

the Internet and other similar projects.

This project also taught me that planning everything in advance is almost impossible

and that leaving some space for unexpected events is necessary for this type of projects. The

obstacles that I had to overcome weren’t planned and make me waste precious time that,

thankfully, I had, as I started pretty early with the project and during a period that I didn’t

have anything else to do.

Patience and perseverance are another two features that I gained throughout this

period. If things are going wrong and you are getting nervous, furious or depressed, the last

thing you should do is quitting. Sometimes, taking some time away from the problem and

continuing with another task is a good solution to clear your mind and to start with regained

forces.

Degree’s Final Project Ainhize Goenaga

52

APPENDIX I

NAO’s Involvement

This Appendix will include a brief introduction about the NAO robot and its main

features. It will also include the software needed to develop any project using the robot. It

will also contain the first version of the project and it will explain the problems that happened

during the first period that led to put the NAO aside and continue without it.

1. Introduction

1.1 What is Nao?

Nao (see figure A1.1) is an autonomous,

programmable humanoid robot developed by Aldebaran

Robotics. The first version of the robot was released on

2006 and has been evolving until now.

Nao is used for many different purposes, such as

investigation and research, academic purposes or medical

purposes, this last one to teach autistic children in schools,

as these children find the robot more relatable than the

human beings.

1.2 Some properties

Nao has the appearance of a 5 year-old child. He is 58 cm

tall and he weighs 4.3 kg.

He has 25 degrees of freedom, and the humanoid shape

allows it to move and adapt to the world around him. It has

an inertial unit which allows him to keep balance. It also

has tactile sensors so that he can perceive if someone is

touching him and he can respond to that touch. He can talk

and hear through two loudspeakers and four microphones

that are located in his head. The HD cameras located in his

forehead and the mouth enables him to see the world and

interact with the environment. Internet connectivity is

mainly used to pass and compile the programs needed. The

Ethernet port is located in Nao’s back and it is used to set the Wi-Fi connection. Once the

connection is set, the Ethernet is no longer needed.

The picture below (see figure A1.2) shows the location of these sensors and actuators.

Figure A1.1: Nao

Degree’s Final Project Ainhize Goenaga

53

Figure A1.2: Nao's sensors and actuators

2. Software for Developers

 There are different ways to develop a project using NAO. First of all, the user should

have an account in Aldebaran Robotics (now called Softbank Robotics). This is due to the

fact that all the programs needed to develop projects with NAO are in the Aldebaran website,

and they cannot be downloaded without an account.

 Once the user owns an account these are different programs that can be downloaded:

2.1 Choregraphe

 Choregraphe is the main software created to develop Nao programs. It was

specifically created to make the programming easier as it doesn’t need many skills to create a

simple animation or application. For bigger projects it can also be pretty useful, as veterans

can modify the code as they wish.

Degree’s Final Project Ainhize Goenaga

54

 The image below (see figure A1.3) shows the interface of the program.

Figure A1.3: Choregraphe's graphical interface

 Choregraphe works with connecting boxes. It contains many different types of boxes,

such as for speaking, for walking, for speech recognition and much more. These boxes are

located on the left side. To use a box, it has to be dragged to the white surface (the Flow

Diagram) of the interface and link it to the “beginning”, as shown in the next picture (see

figure).

Figure A1.4: Say box in the Flow Diagram

To change the code of each box, double click on the box. Some boxes may be set up

with more than one box, so, when double click, other boxes may appear. To go into the code,

double click again the box that wants to be modified.

The following picture (see figure A1.5) shows the script of a random box.

Degree’s Final Project Ainhize Goenaga

55

Figure A1.5: Script of a random box (Choregraphe)

 Apart from using the default boxes that come with Choregraphe, anyone can create a

customized box and write any code. To do so, right click on the “Flow Diagram” and click on

“Add a new box”.

 For this project, the first tool used to implement the program was Choregraphe, but, as

it is kind of limited in some aspects, it had to be left aside and implement in the computer

using the SDK that can be installed from the official website.

2.2 SDK

 SDK is used to develop the projects from the PC, without using Choregraphe. This is

more appropriate for big projects, as Choregraphe is a bit limited.

 The programming languages that support Nao are Python, C/C++, Java and

Javascript, so any program written in one of those programming languages can be compiled

in the robot.

 One of the disadvantages of the Nao is that it has very little storage capacity, so if the

project needs a big library, such as SciPy, it is recommended to run it from the computer

instead of installing it in the robot. This is something that happened during the development

of this project, and some things had to be changed.

Degree’s Final Project Ainhize Goenaga

56

2.3 NAOqi

NAOqi is the main software that runs on the robot and controls it. The NAOqi

Framework is the programming framework used to program Aldebaran robots.

With NAOqi, modules can be run independently from the robot or from the computer.

Each module can be called from other modules. These modules are managed by a Broker that

is integrated in the NAOqi. The modules that had been used in the first version of the project

are the following:

● ALAudioPlayer: This module allows playing .mp3 or .wav files.

● ALAudioDevice: This module allows managing audio inputs and outputs.

● ALMemory: This allows storing data that can be accessed subscribing to it.

● ALTextToSpeech: This module makes the robot speak written phrases.

● ALSpeechRecognition: It makes the robot understand what humans say.

 To create a remote project, proxies are used to create the modules. These are made by

using NaoQi’s ALProxy module, where the module’s name, Nao’s IP address and the port

has to be added, as shown below (see figure A1.6):

Figure A1.6: Function ALProxy for Choregraphe script writter

The IP address can be obtained by pressing for some seconds the button on the chest

of the robot. The port 9559 is the default one.

Each module has its functions that are called using the proxy variable, in the previous

case (see figure A1.6) using “self.tts”.

3. Project’s Development

3.1 Starting

To develop the first version of this project, “Computational Intelligence Group”

provided the Nao robot called Endor and the username and password to download the

necessary software to develop the project.

Before starting with the implementation, some introductory and exercise books []

were used to learn how to program the robot.

After getting to know the basics, Choregraphe was used to create the first prototype.

At first, the advance was really slow, as it was a new way to do things and the environment

was new, and, even if some introductory books were used, there were things that weren’t

explained in them.

Degree’s Final Project Ainhize Goenaga

57

3.2 Design

To develop an application with such dimensions, the first step is to have everything

settled. For this, it is very important to design it.

 As the project is based on the interaction between the human and the robot, this

interaction has to be designed. For this project, the following interaction scheme was

designed (see figure A1.7):

Figure A1.7: Interaction block diagram for Nao

Degree’s Final Project Ainhize Goenaga

58

This diagram is from the point of view of the robot. These are the steps explained

more detailed:

1. Greet the user and offer the list of songs: When Endor detects that someone is near,

he will greet the user and offer the songs from his database, so that the user can chose

the one he wants to practice.

2. Record the answer of the user: After offering the list of the songs, the robot will

stay recording the answer until the user makes a signal saying that the song was

chosen.

3. Decide if the song is in the list: The next step is to determine if the recorded audio is

a song from the list or any other thing. For this, Nao offers a function that does

Speech Recognition.

4. Sing the song or greet again: If the recorded audio is part of the list, Endor will sing

the selected song. On the other hand, if the recorded audio is something else, the

algorithm will start from the beginning, and Endor will offer the songs again (go to

step 1)

5. Record the user’s song: Once the song is sung by the robot, it is the turn of the user.

Endor will stay recording audio until the user makes a signal that represents the end of

the song.

6. Process recorded audio: When the song is finished and recorded, the sound

processing will begin.

7. Congratulate or record again: After processing the audio recorded, Nao will decide

if the song was sung correctly or if there were mistakes. If it was sang correctly,

Endor will congratulate the user, if not, he will sing again so that the user can listen

again (go to step 4).

3.3 First Version - Choregraphe

 As explained before, for the first version Choregraphe was used. The first task was to

make Endor ask the user which song he/she wanted to practice, and provide him/her a list of

available songs. After this, the user had to select one of the songs, and Endor had to be able to

tell apart if the song the user selected was on the list or not. Then, Endor had to sing the song

selected, and, finally, he would listen to the song sang or played by the user.

 For this, there were used some default boxes, other default boxes with modified code

and some others that were created from scratch.

 The problem in the first version was that installing the SciPy in Endor was a

completely difficult task, if not impossible. So this led to start working with Endor remotely,

without using Choregraphe.

3.4 Second Version - Remote coding

 With the necessary libraries installed on the computer and accessing Endor remotely,

the development could continue. For this version, there were taken some codes from the

boxes of the Choregraphe version to advance faster in the development. Nevertheless, the fact

Degree’s Final Project Ainhize Goenaga

59

that Endor was accessed remotely changed a lot of pieces of code. Fixing this took some

extra time that wasn’t planned.

 The first task was to make the Choregraphe’s version work. For this, it was important

to know how NaoQi Framework worked, as a lot of modules had to be used to compensate

the Choregraphe’s automatic connection with the robot.

 After advancing a little bit with the project another problem was found: The audio

recorded by Endor was saved in the robot and it had to be copied or moved to the computer to

process it. As too much time was spent with this issue without a solution, the decision to start

implementing the application putting aside the robot was taken.

4. Problems

 The problems that appeared during this period of time are explained briefly above,

here they will be explained with more detail.

4.1 Nao Singing

 Even if the first problem isn’t exactly a problem, it is interesting to be mentioned as it

took some time to solve it. At first, the idea was that the Nao could sing the melody by itself,

without using an audio file. After searching on the Internet and watching some YouTube

videos of Nao singing an e-mail was sent to the developer of one of those videos about how it

was done, and the answer was that Nao couldn’t sing by itself.

4.2 Library Installation

As said before, the first problem was that the library needed to start with the audio

process couldn’t be installed in the robot. After digging deep in this aspect, and with some

external help, it was decided that it wasn’t possible to continue using Choregraphe to develop

the project.

Choregraphe only works with libraries that are installed directly in the Nao, and, as

Nao doesn’t possess a lot of storage capacity, the library needed, SciPy, couldn’t be installed.

4.3 File Transfer

The last issue was that the file recorded by Endor couldn’t be transferred to the

computer to process it. For this there were used different libraries that allow scp from a

python script, an example of this is “paramiko”.

At first, the attempts of transferring with this library were made only using the robot.

After spending some time trying and failing, the idea that maybe the library didn’t work

appeared, and the library was used to transfer a file from two different university computers.

This last one worked, so it was kind of obvious that the problem was with the robot and not

the library.

Degree’s Final Project Ainhize Goenaga

60

5. Written Code

5.1 main.py

#!/usr/bin/env python

from MyClass import MyClass

robot = MyClass()
robot.Introduction()
robot.Song_Choice()
robot.Sing_Song()
robot.Listen_Song()
#robot.Move_Files()

main.py is the script that calls all the functions in the order needed. It needs the class

where the functions are implemented and an object called “robot” is used to do the calling.

5.2 MyClass.py

#!/usr/bin/env python

import time
import scipy
import paramiko
from naoqi import ALProxy

class MyClass():

 # Initialization of Proxy
 def __init__(self):

 self.tts = ALProxy("ALTextToSpeech", "192.168.1.96", 9559)
 self.asr = ALProxy("ALSpeechRecognition", "192.168.1.96", 9559)
 self.mem = ALProxy("ALMemory", "192.168.1.96", 9559)
 self.aup = ALProxy("ALAudioPlayer", "192.168.1.96", 9559)
 self.aud = ALProxy("ALAudioDevice", "192.168.1.96", 9559)
 self.aam = ALProxy("ALAutonomousMoves", "192.168.1.96", 9559)
 self.amp = ALProxy("ALMotion", "192.168.1.96", 9559)

 self.tts.setLanguage("English")
 self.asr.setLanguage("English")
 self.vocabulary = []

 def Introduction(self):

 self.amp.setBreathEnabled("Legs", False)
 self.amp.setBreathEnabled("Arms", False)

 #print self.aam.getExpressiveListeningEnabled()
 #print self.aam.getBackgroundStrategy()
 #self.aam.setBackgroundStrategy("none")
 #self.aal.setState("disabled")

Degree’s Final Project Ainhize Goenaga

61

 self.tts.say("Hello!")
 self.tts.say("Which song would you like to play?")
 self.tts.say("Please, say the number of the song.")
 #self.aal.setState("solitary")
 #self.aam.setBackgroundStrategy("backToNeutral")

 def Song_Choice(self):

 # opens the file which contains the songs available
 f = open("songs", 'r')
 songs = []

 # reads the file to get the songs
 for line in f:
 self.tts.say(line)
 words = line.split('.')
 for word in words:
 self.vocabulary.append(word)

 # adds the songs to the word recognition vocabulary
 self.asr.setVocabulary(self.vocabulary, False)

 # sunscribes to the event of recognizing the words
 self.asr.subscribe("Test_ASR")
 self.mem.subscribeToEvent("WordRecognized", "asrModule",
"onWordRecognized")
 time.sleep(10)

 # recolects the recognized words
 self.recolist = self.mem.getData("WordRecognized")

 # unsubscribes from the events of word recognition
 self.asr.unsubscribe("Test_ASR")
 self.mem.unsubscribeToEvent("WordRecognized", "asrModule")

 def Sing_Song(self):

 self.aal.setState("disabled")
 print self.recolist[0]
 if self.recolist[0] == "1":
 self.aup.playFile("/home/nao/songs/twinkle_synth.wav")
 if self.recolist[0] == "2":
 self.aup.playFile("/home/nao/songs/happy_synth.wav")

 def Listen_Song(self):

 self.tts.say("Now it's your turn.")
 self.aud.startMicrophonesRecording("/home/nao/proba.wav")
 time.sleep(5)
 self.aud.stopMicrophonesRecording()
 self.aup.playFile("/home/nao/proba.wav")

 def Move_Files(self):

 ssh = paramiko.SSHClient()
 ssh.load_system_host_keys()
 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy)

Degree’s Final Project Ainhize Goenaga

62

 print "Starting connection"
 ssh.connect('192.168.1.96', 9559, 'nao', 'nao24')
 print "Connected"
 #sftp = ssh.open_sftp()
 #print "aaa"
 #sftp.get("/home/nao/proba.wav", "/home/NAO/proba.wav")
 #sftp.close()
 ssh.close()

MyClass.py is the script where all the functions are implemented. At the beginning

of the script there are the libraries that are used in the script. scipy is the mathematical library,

that would be used to process the audio recorded. paramiko is used to make a ssh connection

to transfer files using scp. NAOqi is the library that includes all the modules from Nao.

To start with, whenever an object of this class is created, the __init__ function is

called. This function initializes all the proxies that are used during the program. The language

is also set in the __init__ function as well as a vector to save the list of the songs that Nao

will play, called vocabulary.

With the Introduction function Nao greets the user and asks him/her which song

he/she wants to play. The other lines are used as an attempt of leaving the Nao still, but they

don’t work so they don’t need to be taken into account. Everything that has to do with Nao

talking uses ALTextToSpeech module.

Song_Choice is where Nao reads the song list from a file, saves them on the vector

variable initialized in __init__ and lists them so that the user can chose one. After this, the

user selects a song and Nao decides if it belongs to the list or it doesn’t exist. If it doesn’t

exist, he, again, lists the songs available until the user selects a song of the list. The user has

10 seconds to select the song (the idea was to let the user say the song and, with a signal such

as a clap that Nao was capable of knowing that the song was chosen, but, as finally Nao

wasn’t used, this idea wasn’t developed). To recognize the song, Nao uses the

ALSpeechRecognition module.

After Song_Choice, Nao sings the song using Sing_Song function. This function

uses the ALAudioPlayer module to reproduce the audio file located in the Nao (as

transferring the file wasn’t working). The list of songs has 2 songs “twinkle, twinkle, little

star” and “happy birthday”, using the vocabulary vector.

After singing the song, Nao waits until the user sings it back using the function

Listen_Song. In this case, the user has 5 seconds to sing or play the song (the same as the

song choice happens here). For recording the audio ALAudioDevice is used.

Finally, the code includes the attempt of making the file transfer. This function is called

Move_Files and it uses the paramiko library. First there are some initializations, after that

it is made the connection with the Nao by adding the IP address, the port, the login user and

the password, but, as said before, it doesn’t work.

Degree’s Final Project Ainhize Goenaga

63

APPENDIX II

Full Code

1. Sound Processing

1.1 soundProcessing.py

#!/usr/bin/python

import time
from numpy import fft, log, copy, sin, pi, array, argmax
from scipy.io import wavfile
from scipy.signal import decimate, hann
from matplotlib import pyplot
from scipy.signal import correlate as corr_s
from scipy.signal import convolve as conv_s

class soundProcessing():

 # This function reads the audio file and plots results
 def Read_File(self, file_name, synth):

 # read audio file depending on mono or stereo
 if synth == 0:
 self.fs, self.data = wavfile.read(file_name)
 else:
 self.fs, self.data2 = wavfile.read(file_name)
 self.data = self.data2.sum(axis=1) / 2

 # plot original audio file
 pyplot.figure(1)
 pyplot.title("Signal Data")
 pyplot.plot(self.data)
 pyplot.show()

 # plot fourier transform of the original audio file
 pyplot.figure(1)
 pyplot.title("Fourier Transform")
 pyplot.plot(fft.rfft(self.data))
 pyplot.show()

 return [self.fs, self.data]

 # It processes the audio data using HPS algorithm
 def HPS_Algorithm(self, data, fs):

Degree’s Final Project Ainhize Goenaga

64

 # Initialize values
 SAMP = 2048 # sample length
 f_start = 0 # start of fragment
 f_end = SAMP # end of fragment
 N = float(len(data)) # length of signal
 n_frag = len(data) / SAMP # number of fragments
 f0 = [] # list to save the
fundamental frequencies

 # Harmonic Product Spectrum
 for i in range(n_frag):
 frag = data[f_start:f_end] # take a fragment of the
file
 frag_win = frag * hann(SAMP) # apply a hanning window to
the fragment
 X = abs(fft.rfft(frag_win)) # do the fourier
transform

 hps = copy(X) # copy to do the
downsample

 # downsampling
 for h in range(2, 6):
 downsample = decimate(X, h)
 hps[:len(downsample)] += downsample

 # find the position of the max peak and convert to freq
 peak_pos = argmax(hps[:len(downsample)])
 freq = fs * peak_pos / SAMP

 f0.append(freq) # save the frequencies on a list

 f_start += SAMP
 f_end += SAMP

 # visualize the frequency list
 pyplot.figure(1)
 pyplot.title("Fundamental Frequency Sequence")
 pyplot.plot(f0)
 pyplot.show()

 return [f0, n_frag]

 # It processes the audio data using PI algorithm
 def Parabolic_Interpolation(self, data, fs):

 # Initialize values
 SAMP = 2048 # sample length
 f_start = 0 # start of fragment
 f_end = SAMP # end of fragment
 N = float(len(data)) # length of signal
 n_frag = len(data) / SAMP # number of fragments
 f0 = [] # list to save the fundamental frequencies

 # Fourier Transform with Parabolic Interpolation
 for i in range(n_frag):

Degree’s Final Project Ainhize Goenaga

65

 frag = data[f_start:f_end] # take a fragment of
the file
 frag_win = frag * hann(SAMP) # apply a hanning
window to the fragment
 X = abs(fft.rfft(frag_win))**2 # do the fourier
transform

 peak = X[1:].argmax() + 1 # find peak position
with argmax function

 # do parabolic interpolation
 if peak != len(X) - 1:
 y0, y1, y2 = log(X[peak - 1:peak + 2:])
 x1 = (y2 - y0) * .5 / (2 * y1 - y2 - y0)
 freq = (peak + x1) * 44100 / 1024 #
find the frequency and output it

 else:
 freq = peak * 44100 / 1024

 f0.append(freq) # save the frequencies on a list

 f_start += SAMP
 f_end += SAMP

 # visualize the frequency list
 pyplot.figure(1)
 pyplot.title("Fundamental Frequency Sequence")
 pyplot.plot(f0)
 pyplot.show()

 return [f0, n_frag]

 # Creates a synthesized audio file from fundamental frequencies
 def Create_File(self, f0, n_frag, fs):

 song = []

 # convert the frequencies into audio
 for n in range(n_frag):
 for t in range(1, 2048):
 phase = sin(2 * pi * f0[n] * t / fs)
 song.append(phase)

 # create final audio file
 npsong = array(song)
 wavfile.write('f0.wav', fs, npsong)

 # Applies correlation to compare two fundamental frequency sequences
 def Correlation(self, orig, reco):

 # auto-correlate the synthetised audio
 corr_orig = corr_s(orig, orig, mode='same') # correlation

 # correlate the synthetized audio with the recorded one

Degree’s Final Project Ainhize Goenaga

66

 corr_reco = corr_s(orig, reco, mode='same') # correlation

 #conv_orig = conv_s(orig, orig, mode='same') # convolution
 #conv_reco = conv_s(orig, reco, mode='same') # convolution

 # visualize the results
 fig1, (ax_corr_o, ax_corr_r) = pyplot.subplots(2, 1, sharex=True) #
correlation
 ax_corr_o.plot(corr_orig)
 ax_corr_r.plot(corr_reco)
 fig1.show()

 #fig2, (ax_conv_o, ax_conv_r) = pyplot.subplots(2, 1, sharex=True)
 # convolution
 #ax_conv_o.plot(conv_orig)
 #ax_conv_r.plot(conv_reco)
 #fig2.show()

 # calculate the delay between the two signals
 delay_reco = int(len(corr_reco)/2) - argmax(corr_reco)
 print delay_reco
 print len(reco)

 # delete the delay of the recorded audio signal
 delay_reco *= 2
 while delay_reco > 0:
 reco.pop(0)
 delay_reco -= 1

 # correlate again without delay
 corr_reco = corr_s(orig, reco, mode='same')

 #conv_reco = conv_s(orig, reco, mode='same')

 delay_reco = int(len(corr_reco)/2) - argmax(corr_reco)

 # visualize the results without delay
 fig1, (ax_corr_o, ax_corr_r) = pyplot.subplots(2, 1, sharex=True) #
correlation
 ax_corr_o.plot(corr_orig)
 ax_corr_r.plot(corr_reco)
 fig1.show()

 #fig2, (ax_conv_o, ax_conv_r) = pyplot.subplots(2, 1, sharex=True)
 # convolution
 #ax_conv_o.plot(conv_orig)
 #ax_conv_r.plot(conv_reco)
 #fig2.show()

 raw_input('Press <ENTER> to continue')

1.2. MyClass.py

#!/usr/bin/env python

Degree’s Final Project Ainhize Goenaga

67

import time
import scipy
import pyaudio
import wave
import thread
from soundProcessing import soundProcessing

class MyClass():

 # Initialization of variables
 def __init__(self):

 self.vocabulary = []
 self.s = soundProcessing()

 # Let user select a song from the list
 def Song_Choice(self):

 print "\n\n\t\tMelody Training"
 print "\n\n ** \n\n"
 print "Choose a song\n\n"

 choice = 1;

 # opens the file which contains the songs available
 f = open("songs", 'r')

 # reads the file to get the songs
 for line in f:
 print line
 words = line.split('.')
 for word in words:
 self.vocabulary.append(word)

 # while the number entered is wrong, keeps asking the correct
number
 while choice == 1:
 self.song = raw_input("\nWrite the number of the song and
press enter: ")

 if self.song in self.vocabulary:
 choice = 0

 else:
 print "\nThat song doesn't exist.\n"
 choice = 1

 # Application reproduces the chosen song
 def Sing_Song(self):

 p = pyaudio.PyAudio()

 # open the audio file selected
 if self.song == "1":

Degree’s Final Project Ainhize Goenaga

68

 print "\nYou chose Twinkle twinkle little star."
 wf = wave.open("twinkle_synth.wav", 'rb')

 # create a pyaudio type variable to reproduce the sound
 streamp = p.open(format=p.get_format_from_width(wf.getsampwidth()),
channels=wf.getnchannels(), rate=wf.getframerate(), output=True)
 datap = wf.readframes(1024)

 # while the file doesn't reach the end, keep reproducing the audio
file
 while datap != '':
 streamp.write(datap)
 datap = wf.readframes(1024)

 streamp.stop_stream()
 streamp.close()
 wf.close()

 p.terminate()

 def input_thread(self, L):

 raw_input()
 L.append(None)

 # Record the user's song
 def Listen_Song(self):

 a = MyClass()
 pc = pyaudio.PyAudio()

 print "\n\nNow it's your turn.\n\n"

 # create a pyaudio variable to record the sound
 streamc = pc.open(format=pyaudio.paInt16, channels=2, rate=44100,
input=True, frames_per_buffer=1024)
 frames = []

 print "\t* Start recording *"

 print "\n Press <Enter> to finish the recording."
 L = []
 thread.start_new_thread(a.input_thread, (L,))

 # record the sound until <Enter> is pressed
 while True:
 datac = streamc.read(1024)
 frames.append(datac)
 if L:
 break

 print "\n\t* Done recording *"

 streamc.stop_stream()

Degree’s Final Project Ainhize Goenaga

69

 streamc.close()

 pc.terminate()

 # save the recorded data in an audio file
 wfc = wave.open("recorded.wav", 'wb')
 wfc.setnchannels(2)
 wfc.setsampwidth(pc.get_sample_size(pyaudio.paInt16))
 wfc.setframerate(44100)
 wfc.writeframes(b''.join(frames))
 wfc.close()

 def Compare_Files(self):

 f0_orig = []
 f0_reco = []

 # Read the synthesized and the recorded audio files
 fs_orig, data_orig = self.s.Read_File("twinkle_synth.wav", 0)
 fs_reco, data_reco = self.s.Read_File("piano_recorded.wav", 1)

 # Process the synthesized and recorded audio data
 f0_orig, n_frag_orig = self.s.HPS_Algorithm(data_orig, fs_orig)
 f0_reco, n_frag_reco = self.s.HPS_Algorithm(data_reco, fs_reco)

 self.s.Create_File(f0_reco, n_frag_reco, 44100)

 # Compare synthesized and recorded results
 self.s.Correlation(f0_orig, f0_reco)

1.3 main.py

#!/usr/bin/env python

from MyClass import MyClass

app = MyClass()
app.Song_Choice()
app.Sing_Song()
app.Listen_Song()
app.Compare_Files()

2. Tuner

2.1 findNote.py

#!/usr/bin/python

import struct
import pyaudio
from matplotlib import pyplot
import wave

Degree’s Final Project Ainhize Goenaga

70

import thread
import numpy
from scipy.signal import hann, decimate
from decimal import Decimal

class findNote():

 def input_thread(self, L):

 raw_input()
 L.append(None)

 # Records user's audio and prints the frequency and musical note
 def Record(self):

 a = findNote()
 p = pyaudio.PyAudio()
 f0 = []

 # Information for the recording
 stream = p.open(format=pyaudio.paInt16, channels=1, rate=44100,
input=True, frames_per_buffer=1024)
 frames = []

 print "\t* Start recording *"

 print "\n Press <Enter> to finish the recording."
 L = []
 thread.start_new_thread(a.input_thread, (L,))

 # Record audio frame by frame
 while True:
 data = stream.read(1024)
 dec = numpy.fromstring(data, numpy.int16); # convert
binary data into array
 indata = dec*hann(1024) # apply hanning window
 fft = abs(numpy.fft.rfft(indata))**2 # do Fourier
transform

 peak = fft[1:].argmax() + 1 # find max peak

 # Parabolic Interpolation
 if peak != len(fft) - 1:
 y0, y1, y2 = numpy.log(fft[peak - 1:peak + 2:])
 x1 = (y2 - y0) * .5 / (2 * y1 - y2 - y0)
 freq = (peak + x1)*44100 / 1024 # find the
frequency and output it

 else:
 freq = peak * 44100 / 1024

 a.Convert_To_Note(freq) # obtained frequency's
corresponding musical note
 f0.append(freq)

Degree’s Final Project Ainhize Goenaga

71

 if L:
 break

 frames.append(data)

 stream.stop_stream()
 stream.close()

 p.terminate()

 # save recorded audio into an audio file
 wf = wave.open("recorded.wav", 'wb')
 wf.setnchannels(1)
 wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
 wf.setframerate(44100)
 wf.writeframes(b''.join(frames))
 wf.close()

 pyplot.figure(1)
 pyplot.title("Frequencies")
 pyplot.plot(f0)
 pyplot.show()

 return f0

 # Read note's file and find frequency's corresponding note
 def Convert_To_Note(self, f0):

 lines = []
 notes = []
 f = open("notes", "r")

 # save file's lines in an array
 for line in f:
 lines.append(line.split("\n"))

 # separate notes and frequencies from file
 for words in lines:
 l = words[0].split("\t")
 notes.append(l)

 a = 1.005792941 # 2**(10/1200)

 # find corresponding note
 for n in range(len(notes)):
 if float(notes[n][1])/a <= f0 <= float(notes[n][1])*a:
 print "Frequency: ", f0, "\tMusical Note: ",
notes[n][0]

2.2 tuner.py

from findNote import findNote

f0 = []
t = findNote()

Degree’s Final Project Ainhize Goenaga

72

f0 = t.Record()

3. Synthesize Sound

3.1 twinkle_S.py

#!/usr/bin/python

from numpy import linspace, sin, pi, int16, concatenate, array
from scipy.io import wavfile

def note(freq, len, amp=10000, rate=44100):
 t = linspace(0, len, len*rate)
 data = amp*sin(2*pi*freq*t)
 return data.astype(int16)

tC = note(523.25, 0.5)
tC2 = note(523.25, 1)
tD = note(587.33, 0.5)
tE = note(659.26, 0.5)
tF = note(698.46, 0.5)
tG = note(783.99, 0.5)
tG2 = note(783.99, 1)
tA = note(880, 0.5)
t = note(0, 0.01)

twinkle = concatenate((tC, t, tC, t, tG, t, tG, t, tA, t, tA, t, tG2, t, tF, t,
tF, t, tE, t, tE, t, tD, t, tD, t, tC2), axis=1)

nptwinkle = array(twinkle)
wavfile.write('twinkle_synth.wav', 44100, twinkle)

Degree’s Final Project Ainhize Goenaga

73

References

1. Websites

[1] Wikipedia: https://en.wikipedia.org/wiki/Main_Page

[2] Nao’s Official Website: https://www.ald.softbankrobotics.com/en

[3] Python’s Official Website Documentation: https://www.python.org/doc/

[4] SciPy’s Official Website: http://www.scipy.org/

[5][6] Pitch Detection Algorithms:

 https://ccrma.stanford.edu/~pdelac/154/m154paper.htm

 http://obogason.com/fundamental-frequency-estimation-and-machine-learning/

[7] Digital Signal Processing Website: http://dsp.stackexchange.com/

[8] Procesado Digital de Sonido e Imagen:

https://egela1516.ehu.eus/course/view.php?id=1713

2. Books & Documents

[9] Naotoshi Seo sonots@umd.edu “ENEE632 Project4 Part I: Pitch Detection”:

http://note.sonots.com/?plugin=attach&refer=SciSoftware%2FPitch&openfile=pitch.pdf

[10] Mike Beiter, Brian Coltin, Somchaya Liemhetcharat, “An Introduction to Robotics with

Nao”, Aldebaran Softbank Group

[11] David Gerhard, “Pitch Extraction and Fundamental Frequency: History and Current

Techniques”, Technical Report, University of Regina, CANADA

[12] Justin J. Salamon, “Melody Extraction form Polyphonic Music Signals”, Tesis Doctoral,

Barcelona, SPAIN

[13] Silvia Maria Alessio, “Digital Signal Processing and Spectral Analysis for Scientists”,

Springer, ISBN 978-3-319-25466-1

https://en.wikipedia.org/wiki/Main_Page
https://www.ald.softbankrobotics.com/en
https://www.python.org/doc/
http://www.scipy.org/
https://ccrma.stanford.edu/~pdelac/154/m154paper.htm
http://obogason.com/fundamental-frequency-estimation-and-machine-learning/
http://dsp.stackexchange.com/
https://egela1516.ehu.eus/course/view.php?id=1713
mailto:sonots@umd.edu
http://note.sonots.com/?plugin=attach&refer=SciSoftware%2FPitch&openfile=pitch.pdf

